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ABSTRACT 

Combustion with a high surface area continuous solid immersed within the flame, 

referred to as combustion in porous media, is an innovative approach to combustion as the solid 

within the flame acts as an internal regenerator distributing heat from the combustion byproducts 

to the upstream reactants. By including the solid structure, radiative energy extraction becomes 

viable, while the solid enables a vast extension of flammability limits compared to conventional 

flames, while offering dramatically reduced emissions of NOx and CO, and dramatically 

increased burning velocities. Efforts documented within are used for the development of a 

streamlined set of design principles, and characterization of the flame’s behavior when operating 

under such conditions, to aid in the development of future combustors for lean burn applications 

in open flow systems. Principles described herein were developed from a combination of 

experimental work and reactor network modeling using CHEMKIN-PRO. Experimental work 

consisted of a parametric analysis of operating conditions pertaining to reactant flow, 

combustion chamber geometric considerations and the viability of liquid fuel applications. 

Experimental behavior observed, when utilizing gaseous fuels, was then used to validate model 

outputs through comparing thermal outputs of both systems. Specific details pertaining to a 

streamlined chemical mechanism to be used in simulations, included within the appendix, and 

characterization of surface area of the porous solid are also discussed. Beyond modeling the 

experimental system, considerations are also undertaken to examine the applicability of exhaust 

gas recirculation and staged combustion as a means of controlling the thermal and environmental 

output of porous combustion systems. This work was supported by ACS PRF #51768-ND10 and 

NSF IIP 1343454. 
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CHAPTER ONE: INTRODUCTION 

1.1 Why Combustion in Porous Media 

As the world continues to grow, with “developing countries” entering into the post 

industrial age, the need to derive means of producing efficient thermal energy will have an 

increasing importance. Recent advances in the gasification process of coal [1, 2] and declines on 

the return rates from oil drilling [3] both bring change to the nature of combustion; future 

combustors will need to better utilize resources than current technology while burning fuels with 

increased variability in their composition. Combustion in porous media can offer increased 

stability, reduced emissions, and higher firing rates than existing combustion technology; 

supplementing these enhanced lean burn characteristics, combustion in porous media can also act 

as a valuable tool in the reformation of fuel stocks for the production of syngas. 

Combustion processes are series of chemical reactions, recombining unreacted molecules 

at a high energy potential, to various combinations of molecules at a lower energy potential. 

Combustion, being an irreversible process, generates large concentrations of entropy [4]. ; 

though, what can be done to a combustion reaction to reduce the inefficiencies which occur when 

formulating low formation enthalpy products, allowing near theoretical heat to be obtained?  

Supposing combustion was initiated at a higher temperature, through imposing a 

regenerator into the system, the total fuel needed to produce a mixture at a high temperature is 

greatly lessened as combustion is starting from a point of higher enthalpy. Weinberg [5] 

proposed the inclusion of an in combustion event regenerator, which has ignited the study into 

combustion in porous media. Emplacing a solid structure with high surface area into the space in 

which combustion is designed to occur, the combustion reaction dynamics change due to the 
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heterogeneous nature of the solid-gas interactions. A solid structure within the combustion 

region provides a structure through which thermal energy readily propagates.  

Weinberg never directly expressed the utilization of porous media within a combustion 

reaction, merely the idea of internal heat recirculation leading to more efficient combustion; the 

high temperature offered by heat recirculation could produce high reaction rates of combustion 

processes accompanied with high thermodynamic efficiency, and high heat transfer rates. As a 

result of the reactant preheating, one of the sought after abilities of porous combustion is the 

possibility of exhibiting a localized flame temperature in excess of the fuel mixture’s adiabatic 

flame temperature. However, the localized superadiabatic temperature will be within the region 

of the flame region only as exhaust gas temperatures will always exhibit a thermodynamic upper 

bound of the adiabatic flame temperature.  

Weinberg proposed several advantages of such a combustion technique, high 

temperatures afforded by the porous structure enable a heightened thermal potential, coning the 

phrase “excess enthalpy combustion” which is more commonly referred to as superadiabatic 

combustion. Superadiabatic combustion is a combustion regime in which the flame exists at a 

temperature above that of the adiabatic flame temperature. Extreme temperatures offered by 

superadiabatic combustion enable for increased  heat extraction potentials and significantly faster 

combustion processes [5]; he even proposed the excess enthalpy combustion would be able to 

produce reaction products of higher organization by sudden gas quenching [5].  

 Matrix stabilized porous combustion also yields higher burning velocities and leaner 

flammability limits than open flames [6]. Furthermore, combustion completely submerged within 

porous media occurs without a flame [7] similar to catalytic combustion [8]. Simultaneously, 

porous media burners also feature low CO and NOx emissions [6, 9, 10]. As the insertion of a 
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solid structure also allows for the direct control of particulate emissions [7]. The porous 

structure’s ability to regulate heat flux also enables combustion capable of burning low calorific 

value fuels [9] and ultra-low equivalence ratios. 

A porous solid structure can be implemented in several ways into a combustion reaction. 

Open flow systems can constitute surface combustors, more commonly known as radiant 

burners, [11-13] or immersed flame porous combustors [6, 14, 15] which have the flame 

stabilized within the voids of the porous matrix. Closed combustion systems can use a porous 

structure in multiple alternate ways. What is common between all these techniques is the solid 

structure is generally made of a thermally stable ceramic and the solid transmits heat to the gas.  

As with any fluid flow device, it is necessary to consider the mechanics of the fluids 

which progress through the devices. Entire fields of study are dedicated to the effects which the 

nature of fluid flow affects the combustion characteristics of a system [16]; combustion systems 

under high pressure as would be experienced in Brayton Cycle turbines are particularly 

susceptible to thermoacoustic instabilities [17, 18]. 
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1.2 Visualization of a Porous Combustor 

 

 

Figure 1) Model of a axial flow heterogeneous combustor, showing the preheating δp  and flame 

regions δL. 

 

Within the combustion chamber, a formal definition of the flame thickness is given as δL., 

corresponding to the region of peak chemical heat release. Prior to the flame thickness there is a 

preheating zone denoted by δp, the bounds of the preheat zone are defined by the length of flow 

from the combustion chamber inlet, until the gas and solid phase temperature reach thermal 

equilibrium marking the beginning of the chemical reaction. In reference to the flame’s position 

within the porous media, these definitions are visible in Figure 1  

Within heterogeneous combustion, when the flame exists within the solid, the various 

modes of heat transfer are working to modify the structure of the flame. Within Figure 2, the 

region beyond the flame, heat is convectively transferred from the post combustion gasses into 

the solid. Heat then conducts and radiates through the solid structure upstream through the flame. 
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Within the preheating region, heat is again convectively transferred from the solid structure to 

the gas. 

 

Figure 2) Temperature distribution within an adiabatic porous combustor. 

1.3 Basics of Combustion 

Products of combustion reactions exist in a configuration which requires less energy to 

maintain a stable form than the reactants. Akin to conventional combustion, combustion within a 

porous media mandates three components, assuming a monopropellant is not being used, to 

maintain a stable combustion reaction: an oxidizing agent, a reducing agent, and an energy 

source for ignition of the reactants are required. However, the key element which makes 

combustion in porous media so unique is the ability to run the mixture at equivalence ratios well 

beyond normal combustion limits due to internal heat transfer; extension of these limits can be 

further increased by including a catalytically active solid material. 

One of the two primary chemical reagents needed for a combustion reaction is referred to 

as an oxidizer. Oxidizers are a classification of molecules which strip electrons from other 

compounds in the reaction.  By nature oxidizers are typically electronegative; elemental 

oxidizers are organized on the periodic table around fluorine with the next two most 

electronegative elements occurring as oxygen and chlorine respectively [19].  Outside of 
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aerospace applications, the oxidizing agent which is most widely utilized across combustion 

devices is the diatomic oxygen occurring in air [4]; however, the enhancement of the oxidizer 

stream by pure oxygen injection [20] is common. The selection of air is governed by its’ 

availability and low cost of retrofitting.  

 Reductants, commonly referred to as fuels, are the second necessary chemical group 

consumed by combustion reactions.  Fuels utilized within a combustion reaction may take a 

variety of forms; though most fuels will exhibit a high amount of bond energy within the 

molecular structure and a high formation enthalpy relative to its mas compared to reaction 

byproducts like CO2 and H2O [21].  Located in Table 1.1 several common combustion compounds 

of a C-H-N-O-S system are displayed, arranged in order of the highest formation enthalpy to the 

lowest. Formation enthalpy is derived from the energy within the chemical bonds of a structure, 

compared to some defined base, it is common practice in combustion analysis to apply the 

ground state as N2, O2, H2, C (solid), and S (solid) at conditions of 1 atm and 298.15K.  

Table 1) Selected Compounds arranged in order of heats of formation at reference conditions. Compounds exist in 

the gas phase unless otherwise listed. 

Molecule Name ΔHf° (kJ/mol)  Molecule Name ΔHf° (kJ/mol) 

C (Carbon) 716.67  S (Sulfur)- Solid 0.000 

N (Monatomic Nitrogen) 472.68  H2S (Hydrogen Sulfide) -20.50 

O (Monatomic Oxygen) 249.17  NH3 (Ammonia) -45.90 

S (Monatomic Sulfur) 276.98  CH 4 (Methane) -74.87 

H (Monatomic Hydrogen) 218.00  C2H6 (Ethane) -84.81 

O3 (Ozone) 142.67  CO (Carbon Monoxide) -110.53 

SH (Mercapto) 139.33  COS (Carbonyl Sulfide) -138.41 

NO (Nitric Oxide) 90.29  H2O (Water) -241.83 

SO (Sulfur Oxide) 5.007  C8H18 (Octane) -250.31 

O2 (Diatomic Oxygen) 0.000  H2O (Water) -285.10 

N2 (Diatomic Nitrogen) 0.000  SO2 (Sulfur Dioxide) -296.84 

H2 (Diatomic Hydrogen) 0.000  CO2 (Carbon Dioxide) -393.52 

C (Carbon)- Solid 0.000  SO3 (Sulfur Trioxide) -395.77 

Within a combustion event, interaction of the electron clouds between the fuel and 

oxidizer cause the fuel to chemically decay, and the recombination of the chemical elements 

which constitute the reactants results in the formation of the reaction byproducts. Products of the 
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reaction are composed of the same elements which the reactants are comprised of, though in a 

form with reduced energy contained with the chemical bonds. As continuity is maintained across 

the chemical species, the reaction byproducts will occur in a much higher molar quantity as 

compared to the reactants.  

1.3.1 Reaction Pathways and the Transition State 

 Clarification of a reaction process can be assisted through a visual representation, of the 

transition state theory [22]. Figure 3 is a graphical overview of transition state theory which is 

comprised a curve of the energy potential of the reactants as they progress through the chemical 

reaction, black, and three additional denotations. In plots of this nature, the x axis is referred to 

as the reaction coordinate, which is an abstract representation of the reactions completion 

progress.  Separating the local minima is the saddle point of the reaction which characterizes the 

“transition state.” Noting the initial and finial minima, the products of the reaction, energy 

denoted by the blue line, exist at a lower energy state than the reactant potential, denoted by the 

green dotted line.   

 
Figure 3) Energy Pathway of Reactants, showing the activation energy barrier and the maximum 

extractable energy of the system. 
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Prior to the reaction, at the x axis zero, the chemical species of the reactants contain a 

given chemical energy potential. As the reaction progresses, additional energy is introduced to 

the reactants resulting in a positive first derivative until a maxima occurs; the differential of 

energy between the maxima and the initial is known as the activation energy. Once the activation 

energy has been supplied, the reaction molecules enter a transition state which exists for only a 

short instance until a viable pathway for the reactants to continue to the post reaction minima. In 

a theoretical combustion system, the difference in energy between the green and blue lines 

represents the maximum energy which can be extracted from the combustion reaction.  

1.3.2 Gas Phase Combustion 

 The aforementioned transition state is what allows a single chemical reaction to occur. 

However, within combustion systems there are often hydrocarbons containing several C-C 

bonds, and as a result the direct formation of products from reactants is an unlikely event. For a 

reaction to proceed there are several steps undertaken by the reactants, on the progression to the 

byproducts. A simple overview is explained in Figure 4, which shows a simple interaction 

process between N2, H2, and O2. 

 

Figure 4) A visual representation of a reaction system of N2, H2, and O2. 
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 In Figure 4, the first state identifies diatomic N H and O; a collision occurs between the 

H2 and the N2.  N2, having the stronger bond, acts as a solid body and assists to split the H2 into 

two-H radicals. With the H radicals free, these split and one of the H’s are attracted to the O2 to 

form HO2, a pseudo stable combustion radical. Upon the interaction of HO2 with N2 the 

dissociation of HO2 occurs forming two additional radicals O and OH. Rates at which 

compounds are produced and consumed are functions of: equilibrium constants, availability of 

the chemical species, the number of bodies considered for the reaction, activation energy for the 

reaction, collision frequency and the temperature dependent forward reaction rate [23]. 

1.3.3 Catalytic Combustion 

 Catalysts exists in many forms, ranging from enzymes [24] to injected gas phase 

compounds to reduce NOx concentrations [25]; however, for the purposes of the text following 

catalysts refers to solid structures which interact with a reacting  flow. Catalytically enhanced 

combustion allows, for the targeting of reducing concentrations of pollutants such as NOx [26], 

VOC’s [27], and SOx [28]. Inclusion of catalysts within a combustion reaction leads to a regime 

of combustion referred to as “catalytically enhanced combustion.”  

A catalyst operates undergoing a mass hysteresis [8, 29]. On the surface of the catalyst 

exposed to a reacting flow, a localized disruption in the structure of the catalyst surface, which 

are known as surface vacancies, where a bond can be made from mass in the free reactant flow 

stream [30]. Examining Figure 5, it can be seen the free floating O2 approaches the surface 

vacancies. Assuming there is sufficient energy the collision which occurs between the O2 atom 

and the surface will disrupt the double bond. At the point of bonding on the catalyst surface, the 

electron configuration of the O molecule is complementary to the exhibited open electron 

configuration and geometric spacing exhibited by the vacancy. Once bonded, the oxygen atom 
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now denoted by O(s) representing a surface species closes the surface vacancy and forms a 

structure which allows for secondary bonding existing in parallel to the formation of a gas phase 

O radical. 

 

Figure 5) Simple model of a catalytic surface reaction where diatomic oxygen directly interacts 

with surface vacancies. 

1.3.4 Series of Reactions 

Combustion processes are typically “fast” compared to other types of flow problems, 

requiring only milliseconds for ignition of stationary reactants [31] once sufficient energy is 

provided to allow chemical shifts. In a combustion process with a homogeneously mixed 

reacting flow, the limiting factor is the reaction rate of the fuel and oxidizer. Reaction rates are a 

function of temperature and are specific to the chemical composition of the fuel and oxidizer. 

Temperature dependence governs the rate at which a reaction occurs, expressed as k, or the 

reaction rate coefficient through a modified form of the Arrhenius  

(1).  

Temperature dependence of a reaction rate is dependent upon the rate at which molecules 

collide, and have sufficient energy to chemically interact A. A temperature dependence of 

activation energy, Ea, the energy needed to reach the transition state by compounds expressed as 
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exponential function and an exponential temperature dependence which ranges accordingly to 

the n power. Essentially, the equation yields the corresponding rate at which a collision of fuel 

and oxidizer molecules will result in reaction propagation.  

  ( )                

 

(1) 

While it is possible for a combustion system to form reaction byproducts directly from its 

initial reactants, this rarely happens; in most instances, there are several intermediary compounds 

which occur sequentially and simultaneously to form products from reactants. Chemical 

reactions regardless of their rates and final equilibrium concentrations exhibit a degree of 

complexity beyond the direct formation of products from reactants.  

Examining the single step reaction of methane and air as equation (2), it can be seen that 

fuel and oxidizer is directly converted to products with nitrogen acting as an inert third body. 

However, the energy needed for this reaction to occur is rather high, and the global reaction takes 

the form of a first law efficiency; biased on this reaction the amounts of extractable energy 

biased on complete combustion can be produced. However, equation (2) is actually a state 

function where the process itself is more appropriately described over several partial reactions 

which vary according to the temperature range across the reaction regime [32]. A simplified 

chemical model for methane in porous media is expressed as equations (3) through (6) [33] 

which allows for the creation of intermediates and incomplete products. 

 CH4 + 2 (3.76 N2 + O2) → CO2 + 2 H2O + 7.52 N2 (2) 

 CH4 +2 H + H2O → CO + 4 H2 (3) 

 CO + H2O → CO2 + H2 (4) 

 2 H + M → H2 + M (5) 
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 3 H2 + O2 → 2 H2O + 2 H (6) 

When utilizing mechanisms with a plethora of reactions, it is typical to break down a 

large mechanism into several groups arranged with similar molecular complexity; this hierarchal 

structure follows the tendency of reactions to occur. Following the vernacular proposed by 

Green, [34], a mechanism seed is a base subset of reactions which are the lowest common 

denominator of the combustion system. Mechanism seeds are at the base of a hierarchical 

structure of reaction complexity and are crucial to accurate numerical representation of physical 

systems.  

The H2 and O2 base chemistry seed mechanism is greatly responsible for the accurate 

prediction of ignition delay times [35]; while both the CO and H2 base chemistry are the most 

important reactions in the accurate prediction of laminar flame speed analysis in methyl and 

methylene species combustion [36]. When considering combustion of larger hydrocarbons: i-

octane, n-dodecane, and n-hexadecane the complexity of the necessary intermediates to represent 

the system increases considerably. In these, long chain hydrocarbon combustion analyses, a 

“full” mechanism which accurately depicts the oxidation of lighter hydrocarbons: methane, 

ethane, and propane become seed mechanisms [37]. 

Chemical mechanisms contain many reactions which form a series of species specific 

differential rate equations. A subset of hydrogen and oxygen reactions [38, 39] are presented in 

Table 2. Presented are specific reactions with Arrhenius Constants. For this system, 

examinations of seven molecular species are considered across five reactions. To make use of 

such data the formation of differential equations are used to generate the net rate of production 

across each species. 
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Table 2) Excerpt of H2/O2 chemistry.  

 Chemical Reaction A (cm
3
/(mol·s))   n Ea (cal/mol) 

1) OH+H2↔H+H2O 2.14E+08 1.5 3449.0 

2) O+H2O↔OH+OH 4.50E+04 2.7 14550.0 

3) HO2+H↔ OH+OH 8.40E+13 0.0 400.0 

4) HO2+O↔OH+O2 1.63E+13 0.0 -455.0 

5) HO2+OH↔H2O+O2 3.60E+21 -2.1 9000.0 

 Using O2 as an example species, differential equation rates of production from specific 

reactions can be produced based on the mole fractions of the reactants within the mixture and the 

temperature dependent Arrhenius rate constants which are presented as equations (7) and (8). 

These can be summed together across any of the, i reactions contained within the mechanism of j 

species, forming the net rate of production for the specific compound expressed in the general 

sense of equation (9). When a considered mechanism is “large” rather than using the form 

proposed in equation (9), it is convent to represent a combustion system in a matrix form (9).  

 

 
           ( )            (7) 

 
           ( )            (8) 

 
        ∑          (9) 

   [ ( )     ( )       ( )     ( )   ] (10) 

 It is also of importance to note, for every chemical reaction which features a “↔” symbol 

also features a reverse reaction tabulated from the given reaction rate and the equilibrium 

constant for that chemical system. Formally, these quantities are related as expressed below in 

equation (11). Where   , the equilibrium constant, is derived from the thermodynamic 
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equilibrium of all species involved in the reaction, and subscripts F and R denote forward and 

reverse, respectively. 

         (11) 

 For cases of reactions invariant of timescale, the achievement of thermodynamic 

equilibrium constitutes the termination of a combustion reaction. At thermodynamic equilibrium, 

for the case of an adiabatic reaction process, the maximum conventional temperature of the 

flame is achieved, known as the adiabatic flame temperature.  Equation (12) denotes the likely 

products of methane combustion across equivalence ratios ranging from .25 to 5, when using air 

as an oxidizer.  

 

       (          )                                              ∑   (    )  

(12) 

 In order to solve the coefficients for the products at thermodynamic equilibrium, an equal 

number of equations must be generated for the constants. For any chemical systems a number of 

equations equal to the number of chemical species can immediately be generated. Once an 

atomic species balance has been considered is then necessary to take into account the net 

equilibrium of products and reactants, equation (13); using this equation a series of additional 

equations can be generated. Equation (14) for example, allows for the expression of enthalpy 

conservation between the products and reactants which at equilibrium sums to zero.  

     ∑      (13) 

   ∑   (         ) (14) 
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 Additional equations necessary to determine the remaining coefficients are derived from  

the partial pressure of each constituent gas species, equation (15); from which specific 

equilibrium constants as a function of partial pressures and of formation constants   ( ) which 

are equilibrium constants for formation reactions when the references are usually taken as 

species with zero energy potential as shown in Table 1 are able to be generated. In Figure 6, the 

adiabatic flame temperatures for an air methane mixture in an open flow system are conveyed as 

a function of equivalence ratio with a peak temperature at equivalence of 1.038 producing a 

temperature of 2327K. 

 

           ∑   (15) 

     ∏      (16) 

     ∏  ( )     (17) 

 

Figure 6) Adiabatic flame temperature of an air methane mixture over a wide range of 

equivalence ratios, generated using the GRI 3.0 Mechanism[40]. 

 



16 

 

For lean combustion operating on methane and air, a streamlined pathway of chemical 

species has been included Using the GRI 3.0 mechanism [40], along with the Glarborg [39] 

sulfur model and key reactions [41-44] a mechanism was generated for reduced complexity of 

reacting systems across the equivalence ranges 0.4-1.1, pressure ranges of 0.1 atm to 20 atm, and 

initial temperatures as low as 1200K in ignition delay tests. 

 From this streamlined process the following outlined pathways of methane oxidation 

were found to be prominent and are graphically represented in Figure 7. Four primary pathways 

are employed to CO2 formation, after all methane is converted to methyl: a higher order 

hydrocarbon pathway, a methyl subspecies path, and a methylene path. Methylene prominently 

interacts with nitrogen forming several nitrogen containing subspecies prior to oxidizing 

completely. 

 

Figure 7) Reaction diagram of methane combustion in the lean oxidation regime. 
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CHAPTER TWO: LITERATURE REVIEW  

2.1 Theory of Porous Burners 

 Design principles of porous combustors are widely varied, various designs offer their 

own specific key features. While it is impossible to examine the field within its entirety, some of 

the notable points of heterogeneous combustion in porous media are outlined in the following 

text. A detailed theory of the operation of a porous burner is presented. Examples of interesting 

porous burner designs are presented which have developed to suit various experimental and 

practical needs. With a finalized review which is pertinent to the explicit modeling of porous 

combustion systems. 

2.1.1 Combustion Chamber Geometric Dependence  

 Within an open flow porous combustion system, the selection of the geometric 

configurations of the combustion chamber is of great importance. Open flow porous burners are 

afforded flexibility of the geometric configuration of the flow within the porous structure; 

reactant flow can undertake a Cartesian configuration, cylindrical axial flow, cylindrical radial 

flow or spheroidal flow [45-47].  

The solid medium which the flame is to be immersed in must provide a balance 

depending on the intended operational temperature spectrum of the burner. The macroscopic 

properties of the porous solid play a role in determining optimal effects, while the pore size 

determines heat and fluid flow dependencies. 
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Figure 8) Cylindrical axial and spherical porous combustor flowing charge gasses axially with 

radial dependence of flame within the porous solid. 

For the corresponding modeling and experimental aspects of the work provided herein, 

Figure 9 and Figure 10 depict the porous solid used prior to being fired through the burner. 

Figure 9  displays bulk surface characteristics, used for heat transfer calculations, of the silicon 

carbide porous structure used. As can be seen in the figure, there is no preferred orientation of 

the material and the structure of the solid is assumed to be random. Analysis of such an object is 

characterized by voids, the space occupied by gases, and webs, the solid structure which encloses 

the voids.  

 

Figure 9) Image of Silicon Carbide Porous Media, ~8.5 pores per linear inch (ppin). 
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When examining the silicon carbide in greater magnification as can be seen in Figure 10, 

the complexity of the seemingly homogeneous surface disintegrates. Observing the differences in 

the light reflection patters, it is observable that several phases are simultaneously present within 

the material. Furthermore from the figure it can be seen the solid structures surface exhibits a 

high degree of roughness on the nano-scale, to supplement the fissures viewable on the ceramic 

surface.  

These small scale discontinuities present a large contribution to the modeling of the 

porous structure. Roughness on the surface ensures a turbulent airflow over single solids. 

However, the characteristics of the surface create a localized site distribution of the various 

solids when considering catalytic reactions. 

 

Figure 10) Microstructure view of porous silicon carbide using optical microscope. 
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The macroscopic dimensions of a combustion chamber play a significant role in the 

stability of a burner as the solid length required to produce an excess enthalpy flame increased 

with increasing flow rate [48]. However the dimensions on the pore scale greatly dictate the heat 

transfer characteristics. A modified form of the Peclet number was derived shown below in (18. 

The number is a rough indicator as for the allotment of flame propagation within an inert porous 

media, with the critical Pe*=65±45 [49]. The number is a ratio of the heat released from 

combustion within a given pore, as compared to the heat absorbed convectively into the pore 

therefore, for effective flame ignition Pe/Pe* >> 1. where SL is the laminar flame speed, dm is the 

equivalent diameter of the combustion section, and αf is the thermal conductivity of the reactants.  

 

Figure 11) Energy release within a control element as compeared to the advection losses. 

            (18) 

 It is of importance to note this process only manages to take into account convective 

heating of the solid, and does not include any radiative terminology.  Gasses have a emissive 

structure which is related to the rotational and vibrational spectra of molecules which comprise 

the gas [50]. As a result, discrete peaks of radiative interaction occur; as a result radiative 

emission and absorption of gasses is strongly dependent upon its mixture temperatures.  

Depending on the constituent mixture of the unreacted flow, the radiative influence may falter. 

For example, CO2 has discrete peaks of radiative emission around across a wide but 

discontinuous spectrum:  1.06 μm, [51], 2.0 μm 2.7 μm, 4.3  μm, [52]  9.4 μm 10.4 μm [53]. 
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2.1.2 Material Considerations 

Porous media is an arbitrary term which can apply to a wide facet of materials [9]; 

depending on the type of porous structure the associated defining characteristics will vary. Even 

with such variations, the function of the porous structure remains unchanged: conduct heat and 

act as a surface which preferentially interacts with the ongoing combustion reactions. A literature 

search reveals the porous structure is commonly made of some type of ceramic or in burners 

which are made to run extremely lean a metallic insert is used such as FeCrAlY [54].  Regardless 

of the composition of the structure, it must withstand the intensity of the harsh environment 

associated with the formation of radicals during combustion. 

 Porous burners are inherently dependent non only of the geometric configurations of the 

immersed solid structure but also on the material properties of the structure. Where often CO 

emissions are strongly dependent upon the type of porous media being utilized [10]. As a 

baseline, whatever porous solid immersed within the combustion reaction must be able to 

withstand the high temperature oxidizing environments of a reaction environment. Though, 

characteristics of a suitable material must take into account chemical and thermal reactivity prior 

to implementation; as Zhdanok et al [55] demonstrated  the solid phase’s ability to regulate heat 

within the combustion reaction directly controls properties of the flame. 

 Prior to examining heat transfer properties of a possible material, it is necessary to ensure 

the structure remains stable within the operating environment. The spectrum of temperatures 

which the materials will be exposed to in some cases can reach 1600 K, and as a result the 

material must ensure such structures will not degrade. Simultaneously, the structure exists within 

a chemically harsh environment due to the formation of free radicals within the combustion 

reactions. From one experiment within the combustion chamber utilizing silicon carbide signs of 
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melting upon temperatures in excess of 1600 K was observed [56]. For long lasting structures 

this limits the viable materials selection choices to steels with high chromium and molybdenum 

content, SAE designator 3xx which remain viable up to 1500 K , or ceramics. A short list of 

ceramics compiled from burners described within literature include: alumina (Al2O3), cordierite 

((MgFe)2Al3(Si5AlO18)), Mullite (2Al2O3SiO2 or 3Al2O3SiO2), and partially stabilized zirconia 

(PSZ).  

Further considerations of thermal transfer characteristics play a dominant role in the 

selection of a material to be included as material properties of the solid matrix play a 

predominant role in determining the operating range of the burner [57]. The purpose of the solid 

structure is to mitigate and control heat flux through the system. For example, the thermal 

capacity of the immersed solid is a distinguishing feature of the burners operation; in situations 

where the burner must reach steady state quickly it is desirable to have a limited thermal mass 

conversely, for a burner which is to remain stable for long periods of time it is favorable to 

utilize a structure with a heightened thermal mass as additional stability will be offered.  

Both intraphase and interphase heat transfer characteristics of the desired material play a 

dominant role in the burners operation. A burner designed to operate in a specific temperature 

regime should have favorable thermal conductivity and radiadiative emissivity on that operating 

range. For example, burners which are designed to be radiative emitters from their downstream 

components could utilize alumina as a downstream flame holder as Al2O3 is characterized with 

high transparency for near infrared emission light and a sharp decrease of transmittance at the 3.0 

µm wavelength [58].  

Chemical considerations regarding the surface chemistry of the immersed solid plays a 

determine role.  A particular solid structure may have desirable effects such as catalytic activity, 
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or negative effects which inhibit the effectiveness of the reaction. In a particular series of 

circumstances it was found when using a particular Yttrium biased ceramic, the combustion 

flame would exist as if there was no interaction with the porous media [56]. In this particular 

series of experiments it was also found when utilizing pre-vaporized heptane showed the droplets 

would collect on the surface of the yttrium resulting in the additional phase of a combustion 

reaction [56]. 

Of particular interest are the characteristics of the degradation of the solid phase. Using 

silicon carbide, or SiC as an example, at high temperatures the solid phase will interact with the 

flow stream. Oxygen will adhere to the SiC surface and reform bonds to create quartz, SiO2, and 

CO, SiC →SiO & SiO2 →SiOx(g) [59]. CO will evolve off the surface and a nano layer of SiO2 

forms with smaller active sub layers.  

Growth of the layer is then controlled by the rate at which diffusion of gasses through the 

surface layer occurs [60]. While the doping of SiC with borides such as ZrB2 have been shown to 

decrease the rates of solid phase oxidation [61]; the long term viability of a SiC structure requires 

further investigation. Susceptibility of surface scale formation decrease dramatically at a lower 

temperature, the rates of oxidations can be reduced significantly [59, 61, 62]. 

Selection of an emplaced solid phase also requires considerations of the fuel’s chemical 

composition as hydrocarbons of various complexity feature different burn characteristics; 

however it is also important to consider the fuels purity as quantities of impurities are not 

significant on a thermodynamic scale, but greatly affect the environmental impact of a 

combustion system and its long term stability. When sulfur is present in fuel, the combustion flue 

gasses high tendency to form sulfuric acid [63]. In large furnace installations, trace 

concentrations of sulfur dramatically affect the composition along the walls which route 
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combustion gasses dramatically affecting the corrosion process [64]; such exposure of sulfur 

compounds can dramatically affect the long term viability of a flame immersed solid if care is 

not taken to appropriately select a viable material. 

2.1.3 Reactant Flow Considerations 

 Selection of a fuel is a crucial endeavor, even within ordinary flame theory the burning 

characteristics of fuels vary, in both the radicals which are formed but also in the velocity in 

which reactants cross the boundary of the flame. From a design perspective, when formulating a 

burner to run on multiple fuel sources, considerations of the chemical composition of the fuel 

must be accounted for as the volumetric flow rate must be in agreement with burning 

characteristics of the flame. This of course is not to say a burner can’t be formulated to run on 

both natural gas and kerosene, but rather that considerations must be taken for the oxidation 

characteristics of both fuel flow types.  

 The selection of a fuel and the operational range of an equivalence ratio for a porous 

combustor is pertinent to its design, as it has been shown with increasing equivalence ratio, the 

heat recirculation efficiency decreases [57].  A dimensionless parameter was crafted titled the 

flame speed ratio, given here the symbol ψ, is seen in (19), examination of the flame velocity in 

this manner allows for comparisons of reactant flux, taking into account for the effective 

equivalence ratio of the reacting mixture. Furthermore it was found there are definite trends 

between the percent of heat recirculated, (20) where ι is the firing rate and the energy transferred 

to the gas from the solid, and the flame speed ratio.  

              (19) 
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     ̇  (      )    (20) 

 

Figure 12) Expressed relation between flame speed ratio and heat recirculation efficiency across 

various equivalence ratios. 

Examining Figure 12, and taking into the relations expressed by equations (19) and (20), 

important characteristics of porous burners can be made. While porous burners are able to 

operate at extremely low equivalence ratios, there is a necessity to circulate more heat to the 

reactants prior to ignition. Considering at a lower equivalence ratio, the firing rate of the burner 

is chemically hindered there is a considerable drop-off in the net heat which can be extracted 

from the burners output. However, it is important to note at increased flame speed ratios, across 

all equivalence ratios, the energy necessary to recirculate energy from the reactants dramatically 

decreases; thus conveying porous burners are exceptionally efficient when producing high 

velocity reactant flows. 
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2.2 Modeling of Porous Combustion 

 In order to produce a valid model of any system, the model must “accurately enough” 

represent the processes of the system being modeled. When modeling such a system, the key 

variables of interest are temperatures of the gas and solid phases. More detailed models are able 

to consider additional parameters such as locational concentrations and final equilibrium 

concentrations. Coupling of the dependencies within porous media combustion creates quite the 

task when analyzing such processes in either a numerical or analytical manner. When analyzing 

combustion in porous media several common assumptions are made as adopted from J.R. Howell 

et al [6]: 

- The fuel air mixture is completely premixed as it enters the burner at a known 

temperature and equivalence ratio. 

- Flow within the burner is incompressible and one dimensional. 

- The pressure drop across the porous media is negligible as compared to channel flow. 

- Gas within the porous media can be treated as transparent. 

- To maintain a 1 D spatial model, the walls of the combustion device are assumed 

adiabatic. As a note, this is an accepted invalid assumption . 

Comments regarding the aforementioned assumptions are pertinent to understanding of 

the behavior of heterogeneous combustion. Foremost, the assumed adiabatic nature of 

combustion in porous media is a common assumption but should only be considered for initial 

iterations as external heat loss greatly increases the preheating length and the likelihood of flame 

quenching [65]. Secondly, although it is not outlined by J.R. Howell et all it is assumed all gases 

considered are ideal. Thirdly, for reactors which have combustion dimensions in which the ratio 
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of the length of the combustion chamber in the flow direction and orthogonal to this direction 

approach zero, the effects of multidimensional effects become increasingly important [66].  

Assuming a homogenous fuel and air mixture allows for the production of a system 

where the rate limiting step can be attributed to reaction rates opposed to the diffusive fluxes of 

chemical species within a reacting stream. Combining assumptions regarding pressure drop and 

incompressible flow allows for the determination of the flow velocity directly as a function of 

temperature. Treatment of the gas as non-participating in the radiative Heat Transfer process 

allows the equation which links the energy balance between the gas and solid phase to be linear. 

Given the high spectral dependence of gasses and their participation in radiation, this is assumed 

valid. Combined, these assumptions allow the temperature defined reaction rate to determine the 

thickness of the reaction zone and the temperature gradient [32]. 

2.2.1 Analytical Analysis of Porous Combustion 

A theoretical study was considered on the insertion of a finite length porous solid to act 

as an internal heat recirculation device was performed by Takeno et al [67] as an extension of 

laminar flame theory. Their early model provides a large degree of quantitative insight as to how 

combustion in porous media operates and sought to predict the existence of limits of the system. 

From Figure 13 which is the physical representation of the system modeled by Takeno, with the 

green structure being the length of the solid which the flame interacts with. 
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Figure 13) Physical domain representation of an isothermal solids interaction with a as described 

by Takeno et al. Upstream Boundary on the left, fluids moving in the positive x direction. With a 

solid of finite length occurring from 0 to L. 

In addition to momentum conservation, continuity of mass flux and atomic species, 

solution of the flame theory as it interacts with a solid requires the solution to equation (21), the 

energy flux equation as an extension of diffusion flame theory; is consistent of a conduction 

term, advection term, enthalpy release term and an interphase heat transfer term. Additionally, 

equation (22) quantifies the net thermal losses through the solid. Solutions of the equation are 

then produced according to a series of mass flux dependent Eigen values, expressed as equation 

(23). 

    (      )    ̇           ̇  (           )    (     )    (21) 

    ∫   (     ) 
      (22) 

          (  )  ̇       (23) 

Solutions of equation (21) are then non-dimensionalized. Of importance to this 

discussion, replacement of the spatial domain variable x with ξ, and temperature variable T with τ  

allows for a simplification in solution presentation. Mass flux is also reduced to the 
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nondimensionalized parameter r which is a ratio of the actual mass flux as compared to the 

laminar. 

     ̇         (24) 

               (25) 

                (26) 

     ̇  ̇   (27) 

 The findings of Takeno produce a series of stable states of the combustion system. The 

dependencies according to their model take into account heat transfer parameters between the 

solid structure and the working fluid, temperature dependent combustion rates and the necessary 

activation energy for combustion. For a given flow rate there exists a plurality of steady states 

for the system which is dependent on the amount of unreacted fuel initially within the system. 

Above a critical mass flow rate for any system, no stable condition of the system exists and the 

introduction of heat loss reduces this maximum mass flux. For the test case presented in [67] 

Figure 14, a locus of Eigen Values indicating the solutions of the solid phase temperature as a 

function of mass flux.  
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Figure 14) Plot of stable flow rates produced as a solution to an Eigen Function for a porous 

burner as produced by Takeno [67].  

Examining the two solutions produced at the flow rate r=10 from Figure 14, an upper 

branch solution, one in which the fuel is completely oxidized prior to the termination of the 

porous media is presented as Figure 15. A supplementary lower branch solution is also presented 

in Figure 16; solutions of the lower branch have a lower solid temperature than the upper branch 

and produce a flame which reaches completion beyond the length of porous media. 
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Figure 15) Calculation of the excess enthalpy flame of the Upper branch of Eigen solutions [67]. 

 

 

Figure 16) Calculation of the excess enthalpy flame of the Lower branch of Eigen solutions [67]. 

 Foutko et al, [68], discusses the analytical analysis of transient combustion waves within 

porous combustors; this work builds off of  the postulated idea proposed by Hanamura. Within 

this transient flame model, it is assumed a single step, temperature dependent, reaction. Further 

assumptions of the model assume a specific heat which is invariant of temperature, though a 

thermal conductivity term which takes radiative effects into account for conduction within the 
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solid with dependencies upon the defined external radiative and convective heat loss, and 

approximated ignition temperature. 

 Foutko et al conveyed sustained superadiabatic combustion occurring when the velocity 

of the combustion wave does not match the velocity of the reactant flow, causing the flame front 

to shift. For their model, if the provided heat exchange coefficient of the solid structure exceeds a 

critical value, the combustion heat release rate can exceed the supply rate from the porous solid 

to the gas; from this point the gas phase reaction can then be treated as an explosion [68]. 

 

Figure 17) Transient combustion wave displayed with temperature peaks corresponding to 300 

second intervals within a porous combustor [68]. 

2.2.2 Numerical Analysis of Porous Combustion 

 Adopted from an output of a model, produced by Henneke and Ellzey [69], the basis for 

analyzing a single simulation output is explained. When analyzing a specific event 

corresponding to the burner it is convenient to utilize a graph as shown in Figure 18, which 

features an abscissa of length with the dependent variables plotted on the Y axis. To analyze any 

simulation the three most encompassing traces which are to be considered are: temperatures of 
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the gas and solid phase along with the net heat release rate. Heat release rates are useful as they 

exist as a single global expression representing the chemical model.  

 

Figure 18) Temperature and heat production output plot of the region immediately surrounding 

the flame peak intensity within a porous combustor [69], note the arrow indicates the direction of 

flow. 

Analysis of the population of various species contained within the chemical model will 

reveal further details which are glossed over by the heat release rate plot. Figure 19 displays the 

corresponding mass fractions of the CH4 within the reacting flow as well CO and CO2. 

Following the plot of CH4, it can be approximated the reaction begins at the location where the 

mass fraction of CH4 begins to sharply decay; to better represent the location of reaction 

initiation the analysis of radical onset can also be examined. Displaying the CO-CO2 plots are a 

common indicator of reaction completion as CO2 is the final product of the combustion reaction 

and is also responsible for a significant portion of the overall heat release as disruption of the 

triple bond contained within CO to CO2, on the order of 293 kJ/kmol.   
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Figure 19) Chemical Conversion plot of carbon containing species as a function of distance 

within a modeled porous flow reactor [69]. 

 A model proposed, by Henneke [69], for a packed bed porous burner operates on the 

principles of a one-dimensional model, including gas-phase transport, radiation, interphase heat 

exchange, and solid conduction. It is important to note, the model produced assumes not an 

isothermal solid, but rather thermal equilibrium between the gas and solid phases. When defining 

scales of combustion, it was considered formulated such that the thickness of the reaction zone to 

be the smallest possible scale; meaning considerations of the scales at which individual species 

occur will shift out of existence quickly. They also assume the solid is only used as a heat 

recirculation tool and does not influence the chemical reactivity. Their research sought to 

explicitly examine the validity of modeling ultra-lean conditions. 

 The treatment of the solid phase radiative loss model was fixed using Marshak’s 

boundary conditions, a solution geared towards surfaces with azimuthal symmetry which 

produces a recurrence relation [70]. The solid phase neglected the secondary convective effects 

on the solid. Further assumptions for the radiative exchange dictate the time constant required for 
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radiative properties versus those of chemical properties can allow for a quasi-equilibrium 

radiative exchange.  

 When running their model, initially the mixture and flux of the inlet flow was held 

constant at an equivalence ratio of 0.15, and inlet flow velocity of 43 cm/s. Based on 

comparative data of experimental work produced by Zhdanok et al [55] Henneke was also able 

to determine diffusive effects within porous combustion are negligible at lean equivalence ratios.  

A model proposed by Barra et al [57], builds off the model proposed by Henneke [69],  

seeks to examine the effects of heat recirculation from the combustion byproducts into the 

incoming reactants of a packed bed burner. Their proposed model incorporates a 1D volume 

average approach assuming thermal disequilibrium between solid and gas phase of the burner. 

Their proposed model for porous burner heat recirculation accounts for: solid to gas conduction, 

solid to solid radiation, convective heat transfer between the solid and gas species diffusions, 

dispersions and detail chemistry of several species through a discrete summation. In addition to 

the simplistic burning evaluations characterizing the combustion reaction, several other 

variations of system behavior were observed across various equivalence ratios. 

The burner used in this study features a combustion section comprised of two varying 

pore size of partially stabilized zirconia as produced by Khanna et al [71]. The upstream section 

with a length of 3.5cm and 25.6 ppcm is followed by a downstream section of 3.9 ppcm which is 

2.55 cm in length. The design was selected to produce a stable operating range of components. 

The proposed reaction model in assumption to the generally aforementioned components, 

assumes: Catalytic, buoyancy, Dufour and Soret effects are negligible. It also assumes the time 

constant associated with radiation equilibrium is significantly shorter than those associated with 

chemistry and fluid mechanics; thus enabling radiation to be treated as a quasi-equilibrium 
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problem. To complement the various constraint equations, it is assumed the only heat lost from 

the solid occurs as a function of radiation to a black body at a temperature of 298K, upon exit of 

the combustion reaction the change in chemical species terminates, and there is no diffusive flux 

of energy from the gas phase at the upstream and downstream ends. 

2.2.3 Numerical Solutions and the Mechanism Dependency 

 When considering a chemical mechanism, its intended temperature [72], pressure range 

[73], and equivalence ratio [74] dictate the reactions which are needed to model a combustion 

evbent. In short, what works to accurately predict the flame speed, equilibrium concentrations, 

and ignition delay in one scenario, will not necessarily reflect others. Determining the 

appropriate purpose of a mechanism also dictates its importance; suppose in addition to flow 

analysis, temperature profiles and pollutant formation are also needed to accompany a CFD 

simulation.  

As the complexity of the problem increases, the feasibility of implementation a large 

mechanism quickly dwindles and a reduced target mechanism, for say NOx formulation [75], 

may be needed. Alternatively, some simulation events which investigate strictly the chemical 

behavior of a of a fuel reforming system may favor larger mechanisms having logarithmically 

more reactions such as the Lawrence Livermore National Laboratory Mechanism [76] to 

accurately predict trace compound species.  

 Often times, a prepackaged mechanism selected for a numerical combustion investigation 

will have a surplus of reactions and species needed to represent a combustion system suited for 

engineering applications and the given conditions which are being considered. Often times, 

numerical stiffness of the rates of production matrices and the variability in the expected time 

scales of the radicals involved [77]; as a direct result of the aforementioned numerical difficulties 
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of complex reaction mechanisms, excessive computational times require the pruning of irrelevant 

data from the mechanism. When preforming a mechanism reduction, it is first necessary to 

define a reasonable scheme to which the reduction process may be evaluated. 

 Schemes for mechanism reduction range from the extremely simple concept of 

examining the rate controlling reactions for subsequent species [78] or assuming homogeneous 

concentrations of radicals, Quasi-Steady-State-Approximations, [79]. Intricate methods for 

mechanism reduction include analysis of manifold space, created by the perturbation a chemical 

system with each molecular species representing a degree of freedom in multi-dimensional space 

[80] using theoretical analysis on the nonlinear dynamics of chemical systems. Often times, 

several techniques will be used in conjunction with one another [81] to provide a limiting 

mechanism. 

 Given any technique or combination thereof of mechanism reduction the endeavor is only 

worthwhile if, the reduced mechanism must accurately compare to both the initial mechanism 

and the combustion system which it is representing. Accurate depiction of changes in results 

according to variation reaction pressure, finalized concentrations of chemical species on 

appropriate timescales, and close approximation of ignition delay are all important characteristics 

which must be considered [82].  

 While simplification of a mechanism provides invaluable solutions for the modeling of 

complex systems, it is often difficult to discern as to which reactions and species are negligible 

in the grander scheme. Reactions which are important at a given temperature range may not be 

within the exception of a specific series of initial conditions. None the less, removal of such 

reactions can impair the validity of the overall model. Implementation of basic concepts of graph 

theory is useful when considering the reduction of a chemical system [77].  
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2.3 Porous Burner Designs 

2.3.1 Fuel Selection for Porous Combustors  

Gaseous fuels are typically consistent of the lighter alkanes (CH4, C2H6, and C3H8) 

hydrogen and carbon monoxide[83, 84]. When designing a system to operate with these fuels, it 

is typical to have fuel and air premixed upstream of the combustor as differences in the 

kinematic viscosity, Prandtl Number, and thermal conductivity, of the fuel compared to air are 

negligible. 

Combustors operating on liquid fuel require considerations of a three phase reaction 

environment, as opposed to a two phase environments which is seen in gaseous combustion. 

External environmental considerations, such as cool temperatures, may impair the ability of the 

fuel system as is similar with diesel trucks. Implementation of bio fuels and other large 

hydrocarbons have characteristically high gelling temperatures. Fuel gelation can be addressed 

through implementation of fuel blending [85], introduction of additional heat to the fuel [86] or 

through forced agitation of the fuel within its reservoir. 

Beyond ensuring liquid fuel will be suitable in the intended operating conditions, delivery 

of the fuel to the sustained chemical reaction must prove to be stable.  Liquid fuel introduction in 

porous combustion is widely grouped into two groups: fuel-vaporization and fuel-spray [87]. 

When considering a fuel vaporization system it is important to ensure optimal temperatures for 

the vaporization of the fuel [88]. In a vaporization liquid fuel delivery scheme, a solid surface 

introduces heat to the liquid fuel causing evaporation. As a function of the surface temperature, 

Figure 20, conveys a qualitative expression of droplet life time as a function of wall surface 

temperature.  
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Figure 20) Droplet life time as a function of wall surface temperature adopted from [88]. 

 If the wall temperature is less than that at a, the fluid boiling point then, evaporation is 

lengthy as it is controlled by the partial pressure of the fuel in the gas phase. Beyond the boiling 

point, the wall temperature can increase while maintaining a layer of fluid on the surface up to 

some specific temperature b. At this temperature the maximum evaporation rate of the fuel 

occurs this temperature related rate is known as the Nukiyama Point. Further increasing the 

surface temperature decreases the heat flux until the next maxima known as the Leidenfrost 

Point; a transition occurs at this temperature where there is always a layer of gas between the 

surface and the liquid inhibiting heat transfer. 

 In addition to the liquid vaporization method, a pressurized stream of fuel can also be 

used to create an evenly dispersed fuel-air mixture. Displayed below, in Figure 21, are two fuel 

nozzles used in a study on porous combustion [89]. While the interaction of fuel and air as they 

are emitted from the nozzle, it is typical for pressurized fuel streams to be used in conjunction 

with a dispersant, typically air to create a homogenous mixture of fine fuel droplets. When 

considering a fuel nozzle, it is important to select a nozzle for the given flow considerations 
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which will produce adequately small droplets as droplet size has been shown to strongly 

influence the combustion characteristics [90]. 

 

Figure 21) Two types of liquid fuel nozzles for use with porous combustors [89]. Top: 

pressurized air injector. Bottom: Pressurized swirling air injector. 

2.3.2  Novel Uni-Directional Flow Combustors 

 A combustor with a non premixed fuel stream was constructed to examine the influence 

of fuel mixing on performance within porous media combustion [91]. Portrayed in Figure 22, the 

burner had a split fuel stream where a swirling device in the center introduced angular 

momentum into the fuel stream; the air stream was introduced radially to the fuel stream and the 

span of the channel which allowed the air to mix was designed which allowed controlling of the 

mixing length.  
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Figure 22) Non premixed flame burner [91]. 

 From analysis of their experimentation, the appropriate gap distance was bounded by two 

concepts, which are believed to control the fuel and oxidizer mixing process. Producing a smaller 

gap forces more radial mixing of the two flow streams, though if there is not enough distance 

from the exit plane of the swirler to the inlet plane of the porous medium, mixing does not have 

sufficient time to occur. From the worst combination of swirling rate, no swirl, and gap distance 

the gas temperatures were limited to 1098K 8ppm of NOx and 2200 ppm of CO2; conversely the 

highest attempted swirling rate and optimal mixing length produced an exit plane temperature of 

1453K, 1ppm of NOx and 800 ppm of CO2 at an equivalence ratio of 0.833. 

The previous example considered a single stage combustion process. By allowing several 

independent stages to exist in series, the efficiency of combustion can be better controlled as the 

reactant profiles can be considered at each stage uniquely [6]; thereby allowing for a reduction of 
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CO and NOx while maintaining radiant output [92]. A multi stage series combustor design also 

enables better use of the downstream radiative losses as encountered by a single stage combustor 

by specific targeting of the temperature of the porous solid at the exit plane. 

 

Figure 23) Two stage porous combustor [93]. A steel screen is used to inhibit flame movement, 

radiative emissions are allowed to pass through Quartz tubing, and the energy is collected from a 

radiation to fluid heat exchanger. 

 Each of the combustion chambers featured a porous structure comprised of partially 

stabilized zirconia (PSZ) ceramic, with a transparent quartz sleeve surrounding the porous 

medium, allowing the porous structure to emit radiative energy to a coil containing flowing 

water allowing regulation of the solid phase temperature. At the primary fuel air mixture system, 

methane and air are delivered as a single flow to the first of the two combustors. A steel mesh is 

emplaced shortly after the entrance. A small region is allowed to exist following the steel mesh 

to ensure proper flow distribution. Between the steel mesh and the first stage combustion 

chamber, a 65 ppin PSZ porous ceramic was implemented to cause rapid preheating. 
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Following the first stage of combustion, the primary component combustion byproducts, 

were introduced to the second stage, supplemented with additional gas delivery comprised of 

unreacted methane and air. The unreacted gasses were mixed into the first stage flow stream 

utilizing four jets directed radially inward. As a result of the additional flow added to the system, 

the second stage burner will have a higher mass flux than the primary burner due to the increased 

reactant flux.  

Burner ignition mandated the use of a flame, introduced to the downstream section of the 

second combustion chamber and allowed to migrate upstream. Upon the flame boundary 

reaching the beginning of the second porous media, the flame would delay at this point. The 

flame was not allowed to propagate further until enough heat had saturated first porous section, 

at this time the flame would jump across the vacancy.  

2.3.3 Reciprocating Flow Porous Combustors 

 Hanamura et al [94] postulated a reciprocating combustion system. A constant volume 

process over five steps similar to an Otto cycle is employed within this burner. The device 

utilizes two crank shafts each with their own corresponding piston for a single combustion 

chamber. Outlined in, Figure 24, the five step process begins with ejecting exhaust gasses 

through a displacement piston while simultaneously drawing in a fuel mixture, similar to a two 

cycle engine. As the displacement piston compresses the mixture (1). The fluids are then 

compressed within the combustion chamber (2). Prior to completing the displacement piston 

compression stroke, the gasses are passed through the porous medium and ignited from the 

previous gasses (3). The expansion of the gasses causes the power piston to displace downstream 

while the displacement piston maintains constant position near the porous medium (4). The 
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return of the power piston then causes the gasses to diffuse through the porous medium and 

cause the return of the displacement piston to complete the cycle (5).  

 
  

  

Figure 24) The five step process associated with the closed chamber combustion device 

developed by Hanamura. 

 Building from the theoretical analysis of a reciprocating flow combustor, Hoffman [10] 

operates utilizing a common inlet and exit of reactant gasses. The routing of the gasses through 

the insulated combustion chamber cycles at a common time interval. The gas pathing is 

controlled through the symmetric operation of a series of solenoid valves. A figure of the 

reciprocating flow burner can be seen in Figure 25. An external view of characteristic auxiliary 

systems for a reciprocating flow combustor can be seen in Figure 26. 

 

Figure 25) Reciprocating flow burner design showing combustion section, insulation, and 

ignition point [10]. 
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 At steady state, a reciprocating flow combustor will produce a flame front which moves 

through the porous structure in accordance with a half cycle time constant. At some point the 

flow direction is reversed and a symmetric temperature profile is produced. Characteristically a 

plateau will form when examining the solid phase temperature at an optimal time constant. A 

temperature profile of this nature will allow minimal emissions from the ends of the porous 

burner as the thermal potential at these regions is reduced compared to the peak temperatures 

 

Figure 26) Reciprocating flow porous combustor, combustion chamber shown with oscillating 

valve series to control flow directions. [95] 
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CHAPTER THREE: LEAN APPLICATIONS OF HETEROGENOUS 

COMBUSTION 

3.1 Enhancement of Pilot Flames 

 Many household devices: water heaters, furnaces, ranges, ect, which operate on natural 

gas require a small flame which is always on to provide ignition energy for larger flame which is 

needed when the appliance is under load. Emplacement of a porous combustor can dramatically 

reduce the fuel demands of the devices when they are in their standby state while reducing the 

heating demands the standby flame emplaces on HVAC systems.  

 

Figure 27) Enthalpy transfer, from products initially at the burned temperature, to reactants at the 

unburned temperature [96]. 

 Heterogeneous combustion enables reactant preheating through enthalpy transfer from 

the reaction byproducts Figure 27. Preheating of the reactants enables the initiation of 

combustion at lean limits which are far less than that of a conventional flame; operating a flame 

which is only needed at short times on less fuel will reduce the net fuel consumption by the 

device. However reducing the enthalpy which is generated emplaces a lessened load on HVAC 

systems further reducing the net energy needs of the device.  
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Often the amount of energy which is extracted from the combustion process in this standby state 

is un needed and the exhaust gasses merely heat the inside of the structure which the devices are 

emplaced.  

 Using a venturi design, Figure 28, a pressurized head of gaseous fuel can be employed to 

also draw in air towards a porous medium. The flame would then exist within the medium under 

standby mode and when a load is needed to ignite the primary flame, from the Takeno analytical 

model it is known a rich flame will be longer. A series of valves at the fuel source are then used 

to enrich the fuel flow to the heterogeneous pilot flame while simultaneously allowing fuel flow 

to the primary burner will cause the flame to exit and simultaneously ignite the larger burner. 

Once lit, the excess fuel to the pilot flame can be terminated and it can resume its standby mode 

until ignition energy is again needed. 

 

Figure 28) Venturi design inlet for a surface stabilized heterogeneous combustor. An inlet at the 

center, for gaseous fuel, contracts producing a pressure drop; using pressure as the driving force 

ambient air will then be drawn in to the Venturi.   
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3.2 Ignition Devices in Internal Combustion Engines 

A control mass combustor with a porous medium is exemplified in Figure 29. The design 

features direct injection to the combustion chamber; with a porous media structure immediately 

interacting with the injected fuel flow. In this design for an internal combustion engine, porous 

media replaces a spark plug as an ignition source; the fuel is supplied the necessary thermal 

energy to cause the fuel to vaporize and subsequently decay into its radical composition.  

 

 

Figure 29) Closed combustion chamber with Porous Media used in lieu of a spark igniter as 

described by [97]. 

 

3.3 Energy Extraction via Reclaimed Fuel Sources 

 Preheating gasses within a porous solid enable a vast reduction in the necessary fuel 

concentration. Porous media burners have been shown to be effective for the oxidation of VOC’s 

when the mass fraction of combustible compounds in the fuel stream is on the order of 2% [98]. 
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Porous combustors which are able to sustain a flame on low quality fuels, combined with the 

ability to dramatically reduce emissions make porous combustors perfect for the combustion of 

reclaimed fuel sources which have a considerable fraction of other pollutants.  

 Shown in Table 3 are the respective major species which constitute biogas, gas from 

sewage treatment facilities with anaerobic digesters; and landfill gas, gas which is produced 

naturally at landfills by the decomposition of organic solid matter. As displayed within the table 

there is a considerable amount of methane produced by such sources, however there is also a 

large amount of inert CO2 and a small but significant fraction of H2S.  

Table 3) Compositions of important gaseous species from Biogas and Landfills.  
[99, 100] Biogas Landfill Gas 

CH4 40~75 (% Vol) 45~60 (% Vol) 

CO2 25~40 (% Vol) 40~60 (% Vol) 

H2S . 0.1~1 (% Vol) 0~1 (% Vol) 

Misc. 1.6~6.7 (% Vol) 0.2~ 2.6 (% Vol) 

3.4 Radiative Emitters 

Solids at elevated temperatures, as encountered in porous media burners is a perfect 

source of thermal radiation. A simple method of quantifying the efficiency of the radiative 

emission from the downstream section of a porous burner was proposed by Khanna et al [71]. 

Equations formulated within the model were used to quantify the theoretical radiative heat output 

at the exit plane of the combustion chamber as emitted by the solid porous media. Their model 

proposed this heat content could be expressed as both a form of the enthalpy difference of the 

working fluid from the inlet conditions as compared to the combustion section and the radiative 

power. Expressions correlating these variables are observable as equations (28) and (29).  

 

   (   )   (    )   ̇               (28) 

                          (29) 
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 A heterogeneous combustor designed for the emissions of radiative energy can be 

designed to operate in a manner which allows the emissions of energy from either along the body 

length or at the exit plane. In either of these cases, enclosures can be crafted which promote the 

focused emissions of radiative energy. 

 

Figure 30) Combustion chamber design for combustion in porous media which allows for the 

emission of radiative energy from the combustion chamber length through a small opening. 
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CHAPTER FOUR: EXPRIMENTAL SETUP 

 Design and refinement of experimental devices is a challenge. Whatever changes made to 

a device are done so in order to optimize and perfect their operation. Such processes are iterative, 

undergoing design, testing, analysis, and cycling in order to further improve the system. 

However, it is imperative that the learned knowledge during one stage reflects the next rendition 

of the design contributing to a better system.  

4.1 Double Feedback Loop Burner 

 Initial investigations into porous media combustion were performed on a combustor 

designed to operate over a wide range of equivalence ratios, and volumetric flow rates. 

Considerations were also undertook in order to investigate the differences between simple 

hydrocarbon fuels such as gaseous methane, compared to longer hydrocarbons, n- dodecane or n-

heptane, which would exist in standard conditions in their liquid form. While complications of 

liquid fuel use resulted in failure of the device, much was learned about the nature of the design 

of the porous combustor and its operating characteristics; demonstrating such technology offered 

the stable operation at equivalences of 0.5 with combustion temperatures exceeding 1383 K as 

the K-Type thermocouple recording temperature melted. 
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4.1.1 Flow Loop Design 

 

Figure 31) Flow loop of the double feedback burner with each component outlined and the 

location of the 6 steady states as they correspond to the location of the burner. 

The double feedback loop burner, Figure 31, was designed with a flow loop consisting of 

four interlinked devices, with six thermodynamic states, supplementary reactant delivery, and 

sensory systems. Design of the burner focused on steady state analysis and operation. At state 0, 

dried-pressure regulated air, and gaseous fuels, are introduced to the concentric heat exchanger, 

Figure 32. Upon entering the heat exchanger, thermal energy would be extracted from the post 

combustion exhaust gasses. In order to allow the burner the ability to utilize multiple fuels with 

various boiling points, user controllable bypass valves were also incorporated to the design 

allowing some of the hot exhaust gasses to be extracted from the system prior to entering the 

heat exchanger. 
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Figure 32) CAD Depiction of concentric heat exchanger. 

State 1 identifies the preheated fluid at the vaporization chamber inlet. Within the 

vaporization chamber, Figure 33, liquid fuel can be injected into metallic foam, Figure 34, driven 

by an external fuel pump. Gases which exit the heat exchanger are used to maintain the 

temperature of the steel foam at the boiling point of the liquid fuel. Upon the liquid fuel’s contact 

with the metallic foam, the high surface area offered by the foam allows complete vaporization 

of the liquid fuel. Fuel vapors and the gaseous reacting flow are then assumed to be unevenly 

distributed and at State 2; the vaporized fuel mixture enters the Mixing Chamber. Within the 

Mixing Chamber, baffles disrupt the flow of the incoming fluid forcing the transition to a 

homogeneous reactant mixture upon the fluids exit of the mixing chamber.  
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Figure 33) Vaporization Chamber showing liquid fuel needles and method of reactant delivery. 

 

 

Figure 34) Steel foam as attached to the access hatch of the vaporization chamber. 

At State 3 the homogeneous mixture enters the Combustion Chamber depicted. Within 

the Combustion Chamber, a sustained heterogeneous combustion reaction occurs within ceramic 

porous media; the ceramic porous media acts to re-circulate heat upstream to the incoming 

reactants, promoting efficient combustion and marking the first feedback mechanism. Post 

combustion gasses exiting the Combustion Chamber at 4 then enter the hot side of the Heat 

Exchanger where heat is transferred into the incoming reactants at State 0, marking the second 

feedback mechanism. An idealized thermodynamic cycle of the burner is presented in Figure 35 

with each of the six states identified.  
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Figure 35) Outlined thermodynamic Cycle outlining the relative locations of the thermodynamic 

states between the sections within the combustor. 

By design, the maximum working total pressure is experienced at the inlet 0, and is 

limited to 4.0 atm. Quantitatively, analysis of the system is then characterized by the deviation 

from the specific entropy and temperature from 0; net extractable heat from the system is a result 

of the enthalpy difference between the inlet temperature at state 0 with the experimentally 

specific exit pressure and the conditions of the fluids exit from the burner at state 5. 

4.1.2 Combustion Chamber Design 

A combustion chamber must be able to contain and sustain a combustion reaction, though 

it is also important to allow for examination of the reaction. Instrumentation ports along the 

“top” of the combustion chamber allow for a thermal mapping of the reaction. From literature, 

the range of equivalence ratios which a stable flame could be sustained within is directly dictated 

by the length of the porous solid [67] therefore a “long” combustion media was implemented. A 

cutaway diagram of the combustion chamber can be seen in Figure 36.  
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Figure 36) 2D representation of the combustion chamber showing dimensions, green alumina 

inserts, red silicon carbide porous media, thermocouple ports, as well as the silicon carbide 

structure. From right to left, each of the instrumentation ports are referred to as 0~7. Dimension 

a) 25.4mm, b) 152.4, c) 63.5mm, d)50.8mm. 

A cross sectional representation of the combustion chamber is displayed in Figure 36. 

Containing the combustion reaction is the combustion chamber housing, machined from SAE 

316 stainless steel. 316 steel was selected as it is commonly used in the manufacturing of boilers 

[101] and nuclear reactors [102], with continuous ratings for structural loading at temperatures of 

1198K with a maximum temperature limit of 1650K [103].  

Figure 37, Depicts the packing arrangement of the combustion chamber internals. A large 

combustion media was selected made of silicon carbide and lies between two alumina oxide 

medias which were used to scatter radiation emitted from the silicon carbide media. SiC and 

Al2O3 were selected as these materials exhibit a high melting point, favorable radiative properties 

and a high thermal resistance, these values are presented in Table 4. Complementing the ceramic 

Instrumentation 
Ports 

Radiation Scattering Media 

Flow Direction 

Combustion Media 

a 

b 

c d 
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structures, a fine steel mesh was employed to prevent flashback into the mixing chamber. A 

discardable steel mesh was also employed around the boundary of the combustion media to 

facilitate the disassembly process. 

 

Figure 37) Arrangement and packing of the combustion media, radiation scattering media and 

wall screen protectors. 

 

Table 4) Selected materials properties of SiC and Al2O3. 
[104-106] SiC Al

2
O

3
 

Melting Point 3100 K 2323 K 
ε (1000~1500 K) 0.87~0.85 0.55~0.41   (1200~1500 K) 58~30 W/(m·K) 6.55~5.66 W/(m·K) 

R
T
 (1273K) 2.5 kW/m 2.2 kW/m 

Emplacement of a passive device which inhibited the progression of the flame in the 

event of flashback was crucial to the safety during operation of the combustor. However, 

arbitrarily assigning mesh would not ensure it would serve the purpose intended. As the Peclet 

Number quantity exhibited a high comparative uncertainty, verifications to ensure the flame was 

unable to travel through the screen were conducted. By subjecting a free flame emitted from a 
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blow torch up against the screen, examinations were considered across various flame speeds to 

ensure the flame would be unable to progress through the steel screen. The uninsulated 

assembled burner flow loop can be seen in Figure 38. 

 

Figure 38) Assembled porous combustor with instrumentation hookups shown on the 

combustion chamber. 

 

4.2 Combustion Event Modeling 

 To supplement the examination of phenomena observed within the combustor’s 

experimental operation, shortly following the completion of the first design iteration combustion 

was investigated utilizing CHEMKIN-PRO. CHEMKIN-PRO allowed for the manipulation of 

various design characteristics quickly without necessitating further time and costs associated 

with fabrication. Following preliminary operations of the double feedback loop combustor, 

construction of a model which accurately reflected the experimental observations was 

constructed using methane fuel and the GRI 3.0 Chemistry package. Secondly, the construction 

of a reduced chemical mechanism was incorporated to better focus on the geometric 

considerations of the porous reactor. 
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Figure 39) Control volume analysis of porous media. 

From the presented terms in Figure 39 all of the necessary conservation equations can be 

constructed for the control volume of the porous combustion element. A full steady state analysis 

would mandate the use of the following equations: continuity of mass and atomic species flux, 

momentum conservation, and a thermochemical energy balance.  An energy balance must be 

considered individually for both the solid and gas phases within the element; the solid phase 

balance consists of radiative flux from other elements, as well as conductive flux into the porous 

structure external heat loss, any heat generated from surface chemical reactions, and lastly the 

interlinking term merging the gas and solid phase. Energy conservation for the gas phase would 

also contain the interlinking term, heat generation as a result of gas phase chemical reactions, 

and advection associated with the mass flux in and out of the control element. Under lean 

conditions, diffusion characteristics of the gasses is able to be neglected [55]. 

Examination of the solid phase within the combustion chamber is highly scale dependent 

as exhibited in Figure 9 and Figure 10. Therefore, vapor deposition or other similar methods will 
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reveal the active surface area of the structure, but not the effective convection boundary. Figure 

40 exemplifies this, examining the red outline several cavities can be seen; within these cavities 

or pores, the effective mode of atomic transport is diffusion related. Using the real surface area 

which takes into account the diffusion exposed area will not truly represent the surface area of 

the structure as would be convection dominant; the convective boundary is conveyed by the blue 

line on the right.  

  

Figure 40) Comparison between real surface area (red) of micro and mesio pores as compared to 

effective convective surface area (blue) [107]. 

 

 

Figure 41) In depth geometric analysis of porous media showing void openings, voids, and 

unformed openings. These are shown in conjunction with characteristic webbing lengths and 

widths used in calculations.  
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Examining Figure 41, openings of the porous media are roughly pentagonal, examples of 

which are boxed within the figure. The vertices of the opening are termed “webbing” and have 

their own characteristic length and width; these measurements are shown in red and white, 

respectively. The porous media regularly encloses to form voids in the shape of a dodecahedron, 

arranged in a close configuration. Defects such as unformed openings act to increase the 

effective surface area of such geometry.  

 From observation, the utilized porous media is best characterized as a lattice of irregular 

dodecahedrons. For the sake of convince equations pertaining to the characterization of a single 

void are considered to be that of a regular dodecahedron, Figure 42. In such an analysis, the 

length of each vertex, a, represents the webbing length and it is assumed the porous media exists 

in the shape of a cylinder around each of the vertices with the diameter of the webbing width; 

With the given webbing length, the radius of a sphere which is the mid-radii between the 

circumscribed and inscribed spheres about the polyhedron is expressed as equation (30). 

Considerations are also taken bounding the volume of each of the cylinders within the 

circumscribed sphere.  

 

Figure 42) Regular dodecahedron. Used to illustrate idealized structure of the porous media. 

         (  √ ) (30) 

As a dodecahedron is unable to form a lattice, it is assumed the randomness of the porous 

solid allows for the geometric predictability of the dodecahedron. Using the dodecahedron as a 

model for a single pore, it was then assumed the series of pores were arranged in a face centered 
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cubic structure where the radius of each sphere within the arrangement exhibits the mid-radi of 

the polyhedron’s inscribed and circumscribed spheres. 

 

Figure 43) FCC Crystal Structure. Used to orchestrate the arrangement of voids within a porous 

structure. 

Using the FCC crystal structure, the packing factor is used to determine the number of 

pores arranged in a plane Np and the number arranged along the solids length NL.  The net surface 

area is then calculated from these parameters and the term which describes the net surface area 

per dodecahedron per void in accordance with the webbing length a and width Dw. The 

equivalent effective radius of the combustion chamber re is then calculated according to the 

atomic packing factor. 

      ⁄             
(31) 

      ⁄            
(32) 

                  (            ) 
(33) 

      ⁄        (34) 

Using the above method, comparisons were drawn between the measured value of 

volume of the solid structure through water immersion and the calculated volume of the irregular 

dodecahedron. Measurements of the water immersion testing were limited due to the resolution 
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of the instrument, and have an uncertainty of 2.5 cm
3
. Through immersion the average volume of 

the porous media was found to be 55 cm
3
 with a standard deviation of 5.463 cm

3
 of the twenty 

recorded samples. For the porous media whose average recorded webbing length was found to be 

.305 cm and webbing width of 0.025 cm a porous solid volume of 55.8 cm
3
 was found. Based on 

the above method of solid volume approximation, the bulk surface area can then be derived for 

interfacial heat transfer and the fractions of cross sectional planar area corresponding to both 

void and solid surface area.  

As to the knowledge of the author at the writing of this manuscript, there are no closed 

form expressions which express the Nusselt Number or convection coefficient for porous media. 

An approximation was constructed utilizing an assumed similarity of entrance length pipe flow 

with correction parameters for the corresponding drop in pipe diameter associated with the 

volume occupied by the solid structure represented in (35) [108] corresponding to the length of 

an open pore. 

                             [                   ]  ⁄  (35) 

With rigidly defined conditions for the characteristics of the solid structure, it was then 

possible to construct a physical model to represent the combustion system. Within CHEMKIN-

PRO, networks of zero dimensional reactor points were arranged. Heat transfer was allowed to 

occur within the reactors as would be presented in three space flow. At each point, the incoming 

gasses are assumed perfectly mixed with no partiality of the properties of the porous media 

corresponding to arrangement. Each of the nodes were affixed thermal losses in the form of a 

heat flux which would correspond to the behavior of the system, however the end nodes were 
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also offered additional heat loss which reflected radiative emissions from the combustion media 

on the planes normal to the direction of flow. 

In order to validate the model, prior to drawing any conclusions between model outputs 

and experimental data, comparisons regarding fixed inlet conditions were implemented with the 

number of nodes as a variable to demonstrate convergence. From the eight thermocouples which 

are on the physical combustion chamber, the number of discrete sections which comprised the 

combustion chamber was increased until asymptotic convergence of the system results was 

observed using the GRI 3.0 Mechanism [38]. . Kerosene fuel was not utilized as burn data to 

validate such models was limited. 

 The domain over which combustion is allowed to occur was constructed from a linear 

arrangement of reactor points, matching Figure 44. Which yield a lump sum of the properties 

over the discrete span the point encompasses. At each point, the incoming gasses are assumed 

perfectly mixed, and the rate limiting step of the reaction is assumed to be the Arrhenius 

behavior. At each discretization, the assumed random geometry of the porous media was 

assumed constant, and as a result no bias according to any section within the reaction model is 

implemented within the combustion section. However, an extension of the reactor model was 

considered to reflect the change in flow between the combustion chamber and the thermocouple 

sensor at 4 reflected in the experiment; this node is boxed within the figure comparing the 

combustion chamber to the cross section. 
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Figure 44) Discretization of porous section overlaid on the combustion media for comparison 

purposes. 

 

 To prevent failure of the exterior housing, heat losses are necessary from the combustion 

event. As the enclosure of the fume hood is reflective, it is assumed the only present losses are 

derived from natural convection (37) [108]. A plot for the convection coefficient for an air 

temperature of 296K of an isothermal horizontal cylinder, of diameter 5.08 cm, is presented in 

Figure 45 as a function dependent only on the temperature of a hot surface. 
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Figure 45) Convection coefficient for an isothermal horizontal cylinder as a function of exterior 

surface temperature. 

               (       ) (36) 

           {  
                 ⁄

[  (       ⁄ )   ⁄ ]   ⁄ }  
   

 (37) 

In order to validate the model, prior to drawing any conclusions between model outputs 

and experimental data, comparisons regarding fixed inlet conditions were implemented with the 

number of nodes as a variable to demonstrate convergence of the numerical system. As the 

combustion chamber is further discretized, effects of increased sensitivity of heat transfer within 

the reactor as well as the likely hood of examining intermediate reaction compounds were 

observed. However, due to computational limitations the model was never able to reveal 

superadiabatic combustion conditions which are present within the peak intensity of the flame. 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

5.1 Double Feedback Burner 

5.1.1 Double Feedback Burner Experimental Results 

Experimental results from the double feedback burner can be analyzed through the time 

history. From Figure 46 three regions can be observed from the vertical bars emplaced over the 

time history data. Between the green bars, is an associated warm-up period with the burner. 

Operation of the burner between the green and red bars, correspond to various flow rates with a 

fixed equivalence ratio as an examination of the ability to throttle the burner while operating on 

gaseous methane fuel. Verification of the burner’s ability to run liquid fuel is proudly presented 

between the red bars.    

 

Figure 46) Temporal dependency of an experimental run of the double feedback burner, 

temperature profile is taken from 4. 

 From operation of the experimental burner, the thermal operation of the heat exchanger 

was spot on with calculations used in the development of the model. A Joule Thompsons effect 

was observed with the steel delivery foam as a non ideal temperature drop was incurred with the 
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addition of each piece of porous foam, indicating the higher pore density foam induced a 

significant pressure drop [109]. It was also observed at the inlet to the combustion chamber, a 

significant drop in temperature was incurred regardless of insulation on the surface; it is assumed 

the long residence time allowed constant enthalpy changes in chemical potential of the flow. Due 

to the placement and design of the thermocouples the data extracted from them produces a 

qualitative examination of the combustion event and the most reliable temperature profile data 

for post reaction quantification can be taken from the thermocouple at 4. 

5.1.1.1 Results of Utilizing Liquid Fuel 

 Liquid fuel was successfully utilized as a combustion fuel within the burner. Maintaining 

a base flow rate at 36.5 SLPM and equivalence of 0.5 using methane fuel, an additional fuel 

source of 10 ml/min of K-2 grade kerosene was utilized.  

 

Figure 47) Temperature plot of the vaporization chamber for the double feedback burner. 

Figure 46 displays the temperature profiles of the combustion chamber outlet at 4 and the 

vaporization chamber temperatures at 1 and 2. Immediately a temperature increase can be 



69 

 

observed in the thermal output, the inclusion of kerosene flow assuming it is approximately 

C12H26 [110] greatly increases the equivalence ratio of the reacting flow.  

 During this time period, the availability of enthalpy to be passed through the hot side of 

the heat exchanger increases, resulting in a steadily increasing vaporization chamber inlet 

temperature. Analyzing the steady rise in temperature over the period of approximately 15 

seconds to 380 seconds following liquid fuel introduction the combustion chamber temperature 

profile reveals the flame progressing downstream. Examining Figure 48, the downstream 

thermocouples record an increasing temperature corresponding to the increase in post 

combustion chamber temperature observed in Figure 46.  

 

Figure 48) Partial combustion chamber thermocouple plot missing thermocouples 0 and 3 as 

these were damaged at an earlier point in the experiment. 

At roughly 450 seconds following the flow of kerosene into the system, the flame had 

propagated outside of the combustion media and had entered the converging section where the 

post combustion chamber thermocouple was located. To prevent damage to the system, allowing 
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the flame to be swallowed back into the combustion media the flow of liquid fuel was 

terminated. 

 While this immediately sought to reduce the danger to the system, a sizeable amount of 

enthalpy was still being transferred to the unreacted stream. Upon reaching the vaporization 

chamber, residual buildup on the steel delivery foam of the liquid fuel along with the increased 

tendency to ignite a reactive mixture occurred and ignition happened within the vaporization 

chamber. Unfortunately this resulted in failure of the experimental device. 

5.1.1.2 Results of Using Gaseous Fuels 

 Operating the burner on strictly methane provided more fruitful data which demonstrated 

the applicability of the system to throttling and allowed for the construction of data for model 

validation. Maintaining constant equivalence ratio, the mass flux was varied discreetly from 49.3 

to 26.3 SLPM. Referencing Figure 49 a correlation between the thermal output of the system 

directly coincides with the reactant flux through the system. Segmenting the data from Figure 49, 

between 6000 and 12000s, to coincide with each step change in the flow rate of the reactants 

through the system, a plot of augmented times is displayed in Figure 50. 

 
Figure 49) Step wise flow rate drops maintaining constant equivalence of 0.50, plotted along 

with the output temperature at 4. 
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Figure 50) Combustion chamber outlet temperature 4 time evolution starting from initial point at 

which mass flux was changed. 

 

5.1.2 Double Feedback Burner Modeling Considerations 

 Having gathered sufficient data from the experimental device, a similar throttling 

examination was considered of the modeled system. The results of which were used to validate 

the model.  

Figure 51 presents this comparison. It is important to note, any output derived from the 

experimental model is going to be “ideal.” Also, as the quantification of the internal surface area 

is vague, an uncertainty of 20% is considered, as well as an uncertainty of 20% for the internal 

and external convection coefficients. Examinations of the sensitivity of the chemical model were 

also considered, though the maximum temperature difference of the most pertinent reactions was 

on the order of 1K. Experimental thermocouple data was treated with a prescribed error of 1.5% 

on the limitations of the thermocouple, with cold junction errors on the order of 13K. As a 24-bit 

DAQ was used over a small full scale range, numerical errors associated with data binning are 

assumed negligible. 
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Figure 51) Comparative data between the model, and experimental system using gaseous 

fuel at an equivalence of 0.50 over a range of flow rates. 

 Analyzing the data presented within Figure 51, it can be seen both the model and 

experimental apparatus show an increased output at higher flow rates, indicating the work 

potential of a porous combustor responds favorable to higher fluxes as the increased mass flux 

and exergy content of the gasses are favorable at these regions. It is also interesting to note there 

is a decay in the thermal potential with reactant flux increases that is exhibited in both the model 

and experiment. 

5.2 Exploratory Modeling Work 

5.2.1 Determination of Solid Length 

An excessively long porous structure within the combustion chamber is detrimental to the 

performance of a heterogeneous combustor. The solid structure exerts a drag force on the 

reactants as they pass over the solid [45]. In addition there are substantial losses in the exergy of 

the reaction byproducts with an excessively long combustion chamber as the chamber body 
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allows a substantial release of thermal energy to the environment. An examination was 

considered for the calculation of internal parameters to length parameters to appropriately size 

the combustion chamber’s length for a fixed diameter and pore size. 

From the analytical model [67], it has been established that at a higher equivalence ratio 

the flame will lengthen this will also happen at higher mass fluxes. As a means of determining 

the appropriate distance of length for the combustion chamber, a temperature profile was 

constructed from a simulation conducted at an equivalence of 0.60 and a flux of 55 SLPM. This 

profile is presented in Figure 52 

 

Figure 52) CHEMKIN-PRO temperature profiles of Double-Feedback Burner at 49.75 SLPM. 

 A further comparison between the solid and gas temperatures is abstracted using a 

augmented temperature profile difference between the solid and gas phase, Figure 53 described 

in (38). Examining the temperature profile, the early length has initially a large negative value, 

crosses zero, then peaks. The observed peak corresponds to the location of the highest 

temperature of the gas. Beyond this peak a nonlinear drop in temperature is then observed, with a 
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linear drop off in temperature until the end of the combustion chamber. Based from the model an 

appropriate length is on the size of 4.45 cm, compared to the experimental systems length of 

15.24 cm. 

  ( )    ( )    ( )      (38) 

 

 

Figure 53) Augmented temperature profile corresponding to the Double-Feedback burner at 

55.00 SLPM and equivalence ratio of 0.60. 

 A comparison between the experimental system and model was conducted to examine the 

validity of this analysis. Referencing Figure 54, black carbon deposition can be seen along the 

wall, spanning between the first and third thermocouples. Knowing the distances between the 

thermocouples is 2.166 cm and the threaded holes for the thermocouples are 3/8-16 UNC 

threads, the active length of the combustion chamber experimentally produced revels a length of 

4.62 cm. 
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Figure 54) Carbon deposition along the combustion chamber inlet, white arrow pointing to 

carbon deposition along the wall, with the apparent reaction zone outlined in orange. Spacing 

between each thermocouple tap center is 2.166 cm. 

 

5.2.2 Exhaust Gas Recirculation Analysis 

 Exhaust gas recirculation or EGR introduces a small fraction of the combustion 

byproducts to the combustion event, and aids in the reduction of pollutant formation [111]. Using 

the experimental model, optimized for length from the existing combustion reactor, a combustion 

chamber design featuring an EGR, Figure 55, is used to numerically investigate the effects of 

EGR on heterogeneous combustors. In this example a pressure driven flow reroutes exhaust 

gasses back to the inlet with a fixed recirculation flux of 2.5% of the mass flux of the inlet. 
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Figure 55) Representation of an EGR system which features pathways for the exhaust to reroute. 

 Comparing the exhaust gas temperature profiles between the non-recirculating and EGR 

burners, Figure 56, it can be observed there is a negligible difference in the thermal output of the 

combustor with the nominal change in exhaust temperature being less than 0.05 K over a range 

of lean equivalence ratios. However, over the equivalence ratio between 0.80 and 0.94, there is a 

localized region where there is an increase in the thermal output of the combustion gasses. 

 

Figure 56) Temperature reduction as a result of EGR implementation at a recirculation flux of 

2.5%. 

 Examining the reduction in NOx it can be seen there is a significant improvement, which 

increases as the equivalence ratio gets richer, until it peaks at an equivalence of 0.87. 
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Dissimilarly, there is a negligible change in CO output, however over the range of equivalence 

ratios under the same band which there is an increase in exergy of the exhaust gasses, there is a 

correlation of CO reduction. Conveniently, this band also features peak reductions in NOx. 

 

 

 

Figure 57) Reductions in the NOx and CO concentrations, respectively, for a heterogeneous 

combustor featuring EGR with a recirculation flux of 2.5%. 

  

5.2.3 Staged Injection 

 Building from series combustor [92], which featured two discrete porous structures with 

a separate injection, for each stage, a modification of this design which employs a single porous 

structure with a secondary inlet, Figure 58. Two Series of tests were carried out to examine the 

scope of applicability for staged reactant injection. As similar to the exhaust gas recirculation 

tests, the same model features for the experimental reactor were implemented; however, 

considerations of a length reduction to that of the appropriately sized porous combustor were 

also employed. 

 Featured in Figure 58, is the conceptual burner used. A primary inlet with the larger 

corresponding mass flux lies upstream of a flashback inhibiting screen. Between the primary and 

secondary inlets, a span of porous media which gives sufficient length to have the primary phase 
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of the reaction at near completion before the secondary inlet, marks the upstream third of the 

reactor. At the entrance to the secondary inlet, the reaction temperatures are already going to be 

at appreciable levels, to prevent pre-ignition of the secondary inlet, separate oxidizer and fuel 

streams are employed.   

 

Figure 58) Porous combustor with staged inlet. 

 To reduce the likelihood of failure, the secondary inlets are used to cool off the reaction. 

The shorter pathways which travel from the upstream section to the inlet plane would ideally be 

used for fuel or water injection. Downstream, a helical coil is employed within the walls of the 

combustion chamber which is to be used for the oxidizer. As this device features multiple inlets, 

in order to keep a common base measure, an “overall equivalence ratio”  ̅, was employed to 

give a mass flux based average for a reactor with multiple inlet planes.  

  ̅  ∑  ̇     ∑  ̇  (39) 

5.2.3.1 Spanned Reactant Flux Examinations 

 The first of two investigations considered for a split plane system dealt with the 

investigation of a fixed mass flux spread over multiple inlets. A net mass flux of 80 SLPM and 

fixed equivalence ratio of 0.55 SLPM is employed for both cases; case one features a single inlet 

carrying 100% of the mass flux through the system, whereas the second case employs a split 
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mass flux of 60 SLPM at the primary inlet with an additional 20 SLPM at the secondary inlet 

both of which are at a fixed equivalence ratio of 0.55. 

 

Figure 59) Temperature profile of the gas phase for 80 SLPM at an equivleance ratio of 0.55 

through a heterogenous reactor.  

 Examining the thermal output Figure 59, it can be seen the single inlet configuration 

increases the preheating length as the gasses need an increased length to obtain the sufficient 

energy to ignite. Whereas the double inlet design gas phase temperature profile reveals ignition 

occurs much earlier; there is also a corresponding temperature drop where the second stage 

gasses are injected. At the exit plane, the difference in thermal potential of the two reactors is 

negligible, however the split design features a 7.65 ppm CO increase and a 274 ppb NOx increase 

indicating there is a correlation with the pollutant formation and flame speed. 
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5.2.3.2 Varied Equivalence Multiple Inlet Examinations 

  As it is known there is a correlation between reactant flux and emissions, an examination 

was undertaken to measure the effectiveness of a varied equivalence ratio multiple inlet design, 

where the reactant flux is directly increased with the secondary inlet. In this test case, the 

primary inlet with a mass flux of 80 SLPM and a secondary inlet of 20 SLPM in series; for each 

inlet the equivalence ratio was varied from 0.54 to 1.02 and differences were marked between 

the two. In the case of the double inlet design, the upstream equivalence ratio was maintained at 

0.84. 

Using the staged inlet design, the exergy content of the reaction byproducts is of 

negligible difference over the range of presented overall equivalence ratios, however the multiple 

inlet design features a higher reactant flux. While the decreased exergy may be less beneficial in 

terms of Carnot Efficiency[4], it is more favorable as at these heightened temperatures the 

reaction byproducts will need to be cooled prior to their introduction to nozzles used for turbine 

cooling and there is a higher mass flux associated. 

 

Figure 60) Comparison of a single inelt and double inlet reactor by examination of the thermal 

output. 
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 While the thermodynamic potential of the two designs may not mandate their further 

interest, the associated environmental benefits of the staged inlet design are highly preferable. In 

both cases, the ability of the combustor to respond to changes at the secondary inlet convey a 

reduction in CO, examining the magnitude of its formation, whereas a significant reduction in 

NOx is observed comparatively speaking with a tendency to have increased benefit at 

equivalence ratios tending to 1.0. 

  

Figure 61) Comparison of CO and NOx output for single inlet and double inlet deisgn over 

varying overall equivleance ratios. 
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CHAPTER SIX: CONCLUSIONS 

Based on the literature review and the work presented within this text, heterogeneous 

combustion is an interesting means of combustion with several applications in the advancement 

of emissions reduction and applications to reclaimed fuel sources. Combustion with a high 

surface area continuous solid immersed within the flame, as the solid within the flame acts as an 

internal regenerator distributing heat from the combustion byproducts to the upstream reactants. 

By including the solid structure, radiative energy extraction becomes viable, while the solid 

enables a vast extension of flammability limits compared to conventional flames, while offering 

dramatically reduced emissions of NOx and CO, and dramatically increased burning velocities. 

For the scope of study a combustor was built to operate on liquid fuel and demonstrated 

the ability to throttle output at constant equivalence by varying the reactant flux through the 

system. Furthermore a reactor network model was constructed within CHEMKIN-PRO and 

verified using experimentally gathered data. 

From the development of the experimental model, a series of investigations were made to 

study the effectiveness of optimizing a porous combustor in the form of: solid length profiling, 

exhaust gas recirculation and staged reactant injection. Reducing the length of the solid phase 

enabled a higher fraction of energy to be available in the form of sensible enthalpy of the 

reaction byproducts. While the impact of exhaust gas recirculation is minimal, it is still a valid 

control technique when properly configured to target NOx reduction, and should be employed as 

a final step in the combustor design process. Furthermore, the benefits of multiple reactant inlets 

offer a dramatic reduction in CO and NOx emissions while maintaining exergy content of the 

combustor’s exhaust stream. 



83 

 

  



84 

 

APPENDIX A: REDUCED CHEMICAL MECHANISM RATES 
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! 

! ************************************************************************ 

!    Extension of Hindiyarti, Glarborg and Marshall, JPCA 2007           * 

! ************************************************************************ 

! 

! ************************************************************************ 

!    GRI 3.0 Merged in allowing for N2/CH4/C2H6/C3H8 Oxidation              * 

!   H/O & Some CO chemistry was reserved from Glarborg               * 

! ************************************************************************ 

! 

! ************************************************************************ 

!   Units of Cal Mol K Atm        * 

!   GRI reactions denoted by <=> if no hyperlink is given     * 

!   Glarborg Reactions Denoted by =       * 

!   Externally Sourced Reactions have Hyperlink Included       * 

! ************************************************************************ 

ELEMENTS 

    O  H  C  N   AR 

END   

! 

SPECIES                 

! 

 AR                     ! Argon 

! 

! H/O SPECIES 

! 

H                      ! Hydrogen radical 

H2                     ! Hydrogen 

O                      ! Oxygen radical 

O2                     ! Oxygen 

OH                     ! Hydroxide 

H2O                    ! Water 

HO2                    ! Hydrogen peroxyl  

H2O2                   ! Hydrogen peroxide 

! 

! C1 SPECIES 

! 

HCO      ! 

CO                      ! Carbon monoxide 

CO2                     ! Carbon dioxide 

HOCO                    ! Hydroxyoxomethyl radical 

CH2          ! Metyhlene Radical 

CH2(S)         ! 

CH2O      !    

CH2OH      ! Methelenohol 

CH3               ! Methyl Radical 

CH3O           !  

CH3OH      ! Methanol 

CH4        ! Methane 

! 

! C2 Species 

! 

C2H3        ! 

C2H4        ! Ethylene 
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C2H5         ! 

C2H6      ! Ethane 

HCCO         ! 

CH2CO       ! 

! 

! C3 Species 

! 

C3H7      ! 

C3H8           ! Propane 

! 

! N SPECIES 

! 

N      ! Nitrogen Radical 

N2                      ! Nitrogen   

NNH      ! 

NH         !     

NH2      ! Amidogen   

NH3       ! Ammonina 

NO          ! N=O 

NO2         ! O-N=O 

N2O         !  

HNO         ! H-N=O 

! 

! S SPECIES 

! 

S                      ! Sulfur 

SH                     ! Mercapto radical (H-S*) 

H2S                    ! Hydrogen sulfide (H-S-H) 

SO                     ! Sulfur monoxide (triplet) (S=O) ground state 

SO(S)                  ! Sulfur monoxide (singlet) (S=O) excited state 

SO2                    ! Sulfur dioxide (O=S=O) 

SO3                    ! Sulfur trioxide (O=S(=O)=O) 

HSO                    ! H-S*=O 

HOSO                   ! HO-S*=O 

!                        

! Mixed Base Species 

HCN      ! 

NCO      ! 

HNCO     ! 

! 

END 
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REACTIONS 

! 

! ***************************************************************************** 

!    H2/O2 subset                                                             * 

! ***************************************************************************** 

! 

H+O2=O+OH                            3.550E+15   -0.410   16600.00 ! RAS/GLA07_CO HES98 

H+O2(+M)=HO2(+M)                     1.480E+12    0.600       0.00 ! RAS/GLA07_CO MUE/DRY98 

  LOW  / 3.5E+16 -0.41 -1116 /                                 ! 

  TROE / 0.5 1.0E-30 1.0E+30 /                                 ! 

  N2/0/ AR/0/ H2O/11/ H2/2/ O2/0.78/                           ! 

H+O2(+AR)=HO2(+AR)                   1.480E+12    0.600       0.00 ! RAS/GLA07_CO MUE/DRY99 

  LOW  / 9.04E+19 -1.500 490 /                                 ! 

  TROE / 0.5 1.0E-30 1.0E+30 /                                 ! 

H+O2(+N2)=HO2(+N2)                   1.480E+12    0.600       0.00 ! RAS/GLA07_CO LI/DRY04 

  LOW  / 6.37E+20 -1.720 520 /                                 ! 

  TROE / 0.8 1.0E-30 1.0E+30 /                                 ! 

O+H2=OH+H                            3.818E+12    0.000    7948.00 ! RAS/GLA07_CO CEC05 

  DUP                                                    ! 

O+H2=OH+H                            8.792E+14    0.000   19175.00 ! RAS/GLA07_CO CEC05 

  DUP                                                    ! 

OH+H+M=H2O+M                         4.500E+22   -2.000       0.00 !           CON/WES04 

  AR/0.38/ H2/0.73/ H2O/12/ !HE/0.38/                 !    

OH+H2=H+H2O                          2.140E+08    1.520    3449.00 ! RAS/GLA07_CO MIC92 

O+H2O=OH+OH                          4.500E+04    2.700   14550.00 ! RAS/GLA07_CO MIC92 

HO2+H=OH+OH                          8.400E+13    0.000     400.00 ! RAS/GLA07_CO 

HO2+O=OH+O2                          1.630E+13    0.000    -445.00 ! RAS/GLA07_CO CEC05 

HO2+OH=H2O+O2                        3.600E+21   -2.100    9000.00 ! RAS/GLA07_CO 

  DUP                                                    ! 

HO2+OH=H2O+O2                        2.000E+15   -0.600       0.00 !  

  DUP                                                    ! 

HO2+OH=H2O+O2                       -2.200E+96  -24.000   49000.00 !  

  DUP                                                    ! 

H2O2(+M)=OH+OH(+M)                   4.000E+11    0.000   37137.00 ! RAS/GLA07_CO KAP/TRO02 

  LOW  /2.291E+16 0.0 43638/                                   ! 

  TROE /0.5 1E-30 1E+30 1E+30/                                 !           (Fc=0.5) 

  H2O/12/ H2/2.5/ AR/0.64/                                     ! 

H2O2+O=HO2+OH                        9.550E+06    2.000    3970.00 ! RAS/GLA07_CO NBS86 

H2O2+OH=H2O+HO2                      1.000E+12    0.000       0.00 ! RAS/GLA07_CO HEL/DRY98 

  DUP                                                    ! 

H2O2+OH=H2O+HO2                      5.800E+14    0.000    9560.00 !            

  DUP                                                    ! 

H+2O2<=>HO2+O2                       2.080E+19   -1.240        .00 ! GRI 3.0 

H+O2+H2O<=>HO2+H2O                   11.26E+18    -.760        .00 ! GRI 3.0 

H+O2+N2<=>HO2+N2                     2.600E+19   -1.240        .00 ! GRI 3.0 

H+O2+AR<=>HO2+AR                     7.000E+17    -.800        .00 ! GRI 3.0 

OH+HO2<=>O2+H2O                      1.450E+13     .000    -500.00 ! GRI 3.0 

 DUP 

OH+H2O2<=>HO2+H2O                    2.000E+12     .000     427.00 ! GRI 3.0 

 DUP 

OH+H2O2<=>HO2+H2O                    1.700E+18     .000   29410.00 ! GRI 3.0 

 DUP 
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OH+HO2<=>O2+H2O                      0.500E+16     .000   17330.00 ! GRI 3.0 

 DUP 

! 

! ***************************************************************************** 

!    C1 subset                                                                * 

! ***************************************************************************** 

! 

CO+O(+M)=CO2(+M)                     1.800E+10   0.0      2384 ! RAS/GLA07_CO ALL/DRY97 

  LOW  /1.35E+24 -2.79 4191/                                   !            

  TROE /1.0 1E-30 1E+30 1E+30/                                 !           Fc=1 

  H2/2.5/ H2O/12/ CO/1.9/ CO2/3.8/                             ! 

CO+OH=CO2+H                          8.000E+10   0.000       0 ! RAS/GLA07_CO (1 bar, 300<T<2000K) 

  DUP                                                    ! 

CO+OH=CO2+H                          8.800E+05   1.770     954 ! RAS/GLA07_CO (1 bar, 300<T<2000K) 

  DUP                                                    ! 

CO+OH=HOCO                           6.000E+26  -5.600    2881 ! RAS/GLA07_CO (1 bar, 300<T<2000K) 

CO+HO2=CO2+OH                        6.919E+06   1.609   17496 ! Klippenstein ab initio  

HOCO+OH=CO2+H2O                      4.558E+12   0.0       -89 !           YU/FRA05 

  DUP                                                    ! 

HOCO+OH=CO2+H2O                      9.544E+06   2.000     -89 !           YU/FRA05 

  DUP                                                    ! 

HOCO+O2=CO2+HO2                      9.910E+11   0.0         0 !           NOL/WAG93 

O+CH3<=>H+CH2O                           5.060E+13     .000        .00 ! GRI 3.0 

O+CH4<=>OH+CH3                           1.020E+09    1.500    8600.00 ! GRI 3.0 

O2+CO<=>O+CO2                            2.500E+12     .000   47800.00 ! GRI 3.0 

H+CH4<=>CH3+H2                           6.600E+08    1.620   10840.00 ! GRI 3.0 

H+CH2O(+M)<=>CH2OH(+M)                   5.400E+11     .454    3600.00 ! GRI 3.0 

     LOW  /  1.270E+32   -4.820   6530.00/ 

     TROE/   .7187  103.00  1291.00  4160.00 / 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  

H+CH2O(+M)<=>CH3O(+M)                    5.400E+11     .454    2600.00 ! GRI 3.0 

     LOW  /  2.200E+30   -4.800   5560.00/ 

     TROE/   .7580   94.00  1555.00  4200.00 / 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  

H+CH2OH<=>OH+CH3                         1.650E+11     .650    -284.00 ! GRI 3.0 

H+CH2OH<=>CH2(S)+H2O                     3.280E+13    -.090     610.00 ! GRI 3.0 

OH+CH3(+M)<=>CH3OH(+M)                   2.790E+18   -1.430    1330.00 ! GRI 3.0 

     LOW  /  4.000E+36   -5.920   3140.00/ 

     TROE/   .4120  195.0  5900.00  6394.00/  

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  

OH+CH3<=>CH2+H2O                         5.600E+07    1.600    5420.00 ! GRI 3.0 

OH+CH3<=>CH2(S)+H2O                      6.440E+17   -1.340    1417.00 ! GRI 3.0 

OH+CH4<=>CH3+H2O                         1.000E+08    1.600    3120.00 ! GRI 3.0  

OH+CH2O<=>HCO+H2O                        3.430E+09    1.180    -447.00 ! GRI 3.0 

OH+CH3OH<=>CH2OH+H2O                     1.440E+06    2.000    -840.00 ! GRI 3.0 

OH+CH3OH<=>CH3O+H2O                      6.300E+06    2.000    1500.00 ! GRI 3.0 

CH2+O2=>OH+H+CO                          5.000E+12     .000    1500.00 ! GRI 3.0 

CH2(S)+N2<=>CH2+N2                       1.500E+13     .000     600.00 ! GRI 3.0 

CH2(S)+AR<=>CH2+AR                       9.000E+12     .000     600.00 ! GRI 3.0 

CH2(S)+O2<=>H+OH+CO                      2.800E+13     .000        .00 ! GRI 3.0  

CH2(S)+O2<=>CO+H2O                       1.200E+13     .000        .00 ! GRI 3.0 

CH2(S)+H2O(+M)<=>CH3OH(+M)               4.820E+17   -1.160    1145.00 ! GRI 3.0 

     LOW  /  1.880E+38   -6.360   5040.00/ 

     TROE/   .6027  208.00  3922.00  10180.0 / 
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H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  

CH2(S)+H2O<=>CH2+H2O                     3.000E+13     .000        .00 ! GRI 3.0 

CH2(S)+CO2<=>CH2+CO2                     7.000E+12     .000        .00 ! GRI 3.0 

CH2(S)+CO2<=>CO+CH2O                     1.400E+13     .000        .00 ! GRI 3.0 

CH3+O2<=>O+CH3O                          3.560E+13     .000   30480.00 ! GRI 3.0 

HO2+CH3<=>OH+CH3O                        3.780E+13     .000        .00 ! GRI 3.0! Near Stoich Ignition Specific 

CH3+O2<=>OH+CH2O                         2.310E+12     .000   20315.00 ! GRI 3.0 

HCO+H2O<=>H+CO+H2O                       1.500E+18   -1.000   17000.00 ! GRI 3.0 

HCO+M<=>H+CO+M                           5.150E+14   -1.200   17734.00 

!http://kinetics.nist.gov/kinetics/Detail?id=2002FRI/HER5778-5788:4 

H2/2.00/ H2O/ .00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  

HCO+O2<=>HO2+CO                          13.45E+12     .000     400.00 ! GRI 3.0 

CH2OH+O2<=>HO2+CH2O                      1.800E+13     .000     900.00 ! GRI 3.0 

O+CH3=>H+H2+CO                           3.370E+13     .000        .00 ! GRI 3.0 

H+CH3(+M)<=>CH4(+M)                      13.90E+15    -.534     536.00 ! GRI 3.0 

     LOW  /  2.620E+33   -4.760   2440.00/ 

     TROE/   .7830   74.00  2941.00  6964.00 / 

H2/2.00/ H2O/6.00/ CH4/3.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

! 

! ***************************************************************************** 

!    C2 subset                                                                * 

! ***************************************************************************** 

! 

O+C2H6<=>OH+C2H5                         8.980E+07    1.920    5690.00 ! GRI 3.0 

H+C2H4(+M)<=>C2H5(+M)                    0.540E+12     .454    1820.00 ! GRI 3.0 

     LOW  /  0.600E+42   -7.620   6970.00/ 

     TROE/   .9753  210.00   984.00  4374.00 / 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

OH+C2H4<=>C2H3+H2O                       3.600E+06    2.000    2500.00 ! GRI 3.0 

C2H3+O2<=>CH3+CO2       4.167E+12  -0.100  -60.43 ! 

http://www.sciencedirect.com/science/article/pii/S0009261402004025 

OH+C2H6<=>C2H5+H2O                       3.540E+06    2.120     870.00 ! GRI 3.0 

OH+CH2CO<=>HCCO+H2O                      7.500E+12     .000    2000.00 ! GRI 3.0 

CH2+CO(+M)<=>CH2CO(+M)                   8.100E+11     .500    4510.00 ! GRI 3.0 

     LOW  /  2.690E+33   -5.110   7095.00/ 

     TROE/   .5907  275.00  1226.00  5185.00 / 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

2CH3(+M)<=>C2H6(+M)                      6.770E+16   -1.180     654.00 ! GRI 3.0 

     LOW  /  3.400E+41   -7.030   2762.00/ 

     TROE/   .6190  73.20  1180.00  9999.00 / 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

C2H5+O2<=>HO2+C2H4                       8.400E+11     .000    3875.00 ! GRI 3.0 

HCCO+O2<=>OH+2CO                         3.200E+12     .000     854.00 ! GRI 3.0 

OH+CH3=>H2+CH2O                          8.000E+09     .500   -1755.00 ! GRI 3.0 

CH2+O2=>2H+CO2                           5.800E+12     .000    1500.00 ! GRI 3.0 

CH2+O2<=>O+CH2O                          2.400E+12     .000    1500.00 ! GRI 3.0 
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! 

! ***************************************************************************** 

!    C3 subset                                                                * 

! ***************************************************************************** 

! 

CH3+C2H5(+M)<=>C3H8(+M)                  .9430E+13     .000       .00 ! GRI 3.0 

     LOW/ 2.710E+74  -16.82  13065.0 / 

     TROE/ .1527  291.0  2742.0  7748.0 /  

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

O+C3H8<=>OH+C3H7                         1.930E+05    2.680   3716.00 ! GRI 3.0 

OH+C3H8<=>C3H7+H2O                       3.160E+07    1.800    934.00 ! GRI 3.0 

CH3+C2H4(+M)<=>C3H7(+M)                  2.550E+06    1.600   5700.00 ! GRI 3.0 

      LOW/ 3.00E+63  -14.6  18170./ 

      TROE/ .1894  277.0  8748.0  7891.0 /  

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

! 

! ***************************************************************************** 

!    N subset                                                                 * 

! ***************************************************************************** 

! 

N+NO<=>N2+O                              2.700E+13     .000     355.00 ! GRI 3.0 

N+O2<=>NO+O                              9.000E+09    1.000    6500.00 ! GRI 3.0 

N2O+O<=>N2+O2                            1.400E+12     .000   10810.00 ! GRI 3.0 

N2O+H<=>N2+OH                            3.870E+14     .000   18880.00 ! GRI 3.0 

N2O+OH<=>N2+HO2                          2.000E+12     .000   21060.00 ! GRI 3.0 

N2O(+M)<=>N2+O(+M)                       7.910E+10     .000   56020.00 ! GRI 3.0 

     LOW  /  6.370E+14     .000  56640.00/ 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .625/  

HO2+NO<=>NO2+OH                          2.110E+12     .000    -480.00 ! GRI 3.0 

NO+O+M<=>NO2+M                           1.060E+20   -1.410        .00 ! GRI 3.0 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

NO2+O<=>NO+O2                            3.900E+12     .000    -240.00 ! GRI 3.0 

NO2+H<=>NO+OH                            1.320E+14     .000     360.00 ! GRI 3.0 

NH+OH<=>HNO+H                            2.000E+13     .000        .00 ! GRI 3.0 

NH+OH<=>N+H2O                            2.000E+09    1.200        .00 ! GRI 3.0 

NH+O2<=>HNO+O                            4.610E+05    2.000    6500.00 ! GRI 3.0 

NH+O2<=>NO+OH                            1.280E+06    1.500     100.00 ! GRI 3.0 

NH+H2O<=>HNO+H2                          2.000E+13     .000   13850.00 ! GRI 3.0 

NH+NO<=>N2+OH                            2.160E+13    -.230        .00 ! GRI 3.0 

NH+NO<=>N2O+H                            3.650E+14    -.450        .00 ! GRI 3.0 

NH2+O<=>H+HNO                            3.900E+13     .000        .00 ! GRI 3.0 

NH2+OH<=>NH+H2O                          9.000E+07    1.500    -460.00 ! GRI 3.0 

H+NO+M<=>HNO+M                           4.480E+19   -1.320     740.00 ! GRI 3.0 

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/  

HNO+OH<=>NO+H2O                          1.300E+07    1.900    -950.00 ! GRI 3.0 

HNO+O2<=>HO2+NO                          1.000E+13     .000   13000.00 ! GRI 3.0 

NH3+OH<=>NH2+H2O                         5.000E+07    1.600     955.00 ! GRI 3.0 

NH3+O<=>NH2+OH                           9.400E+06    1.940    6460.00 ! GRI 3.0 

NH+CO2<=>HNO+CO                          1.000E+13     .000   14350.00 ! GRI 3.0 
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! 

! ***************************************************************************** 

!    Multi Base subset                                                        * 

! ***************************************************************************** 

! 

NCO+OH<=>NO+H+CO                         0.250E+13     .000        .00 ! GRI 3.0 

NCO+NO<=>N2O+CO                          1.900E+17   -1.520     740.00 ! GRI 3.0 

NCO+NO<=>N2+CO2                          3.800E+18   -2.000     800.00 ! GRI 3.0 

HCN+OH<=>HNCO+H        2.520E+06   4.710     493.00 

! http://kinetics.nist.gov/kinetics/Detail?id=1991TSA/HER609-663:8 

CH2+NO<=>H+HNCO        2.510E+12    0.000    5981.00 ! 

http://kinetics.nist.gov/kinetics/Detail?id=1995BAU/KLA97-104:2 

CH2+NO<=>OH+HCN                          2.900E+14    -.690     760.00 ! GRI 3.0 

HNCO+O<=>NCO+OH                          2.200E+06    2.110   11400.00 ! GRI 3.0 

HNCO+OH<=>NCO+H2O                        3.300E+07    1.500    3600.00 ! GRI 3.0 

HNCO+OH<=>NH2+CO2                        3.300E+06    1.500    3600.00 ! GRI 3.0 

HNCO+H<=>NH2+CO                          2.250E+07    1.700    3800.00 ! GRI 3.0 ! .5 Eq ignition Specific 

NCO+NO2<=>N2O+CO2                        3.250E+12     .000    -705.00 ! GRI 3.0 

END 
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APPENDIX B: THERMODYNAMICS DATA 
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THERMO 

   300.000  1000.000  5000.000 

! GRI-Mech Version 3.0 Thermodynamics released 7/30/99 

! NASA Polynomial format for CHEMKIN-II 

! see README file for disclaimer 

 

AR        BUR0302 L 6/88AR  1    0    0    0G   200.000  6000.000 1000.        1 

 0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00    2 

-0.74537500E+03 0.43796749E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00    3 

 0.00000000E+00 0.00000000E+00-0.74537500E+03 0.43796749E+01 0.00000000E+00    4 

! H2/O2 

H         BUR0302 L 6/94H   1    0    0    0G   200.000  6000.000 1000.        1 

 0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00    2 

 0.25473660E+05-0.44668285E+00 0.25000000E+01 0.00000000E+00 0.00000000E+00    3 

 0.00000000E+00 0.00000000E+00 0.25473660E+05-0.44668285E+00 0.26219035E+05    4 

H2                121286H   2               G  0300.00   5000.00  1000.00      1 !LI/DRY04 (v6.1) 

 2.99142337E+00 7.00064411E-04-5.63382869E-08-9.23157818E-12 1.58275179E-15    2 

-8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07    3 

-9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00                   4 

O                 120186O   1               G  0300.00   5000.000  1000.00     1 !LI/DRY04 (v6.1) 

 2.54205966E+00-2.75506191E-05-3.10280335E-09 4.55106742E-12-4.36805150E-16    2 

 2.92308027E+04 4.92030811E+00 2.94642878E+00-1.63816649E-03 2.42103170E-06    3 

-1.60284319E-09 3.89069636E-13 2.91476445E+04 2.96399498E+00                   4 

O2        BUR0302 RUS 89O   2    0    0    0G   200.000  6000.000 1000.        1 

 3.66096083E+00 6.56365523E-04-1.41149485E-07 2.05797658E-11-1.29913248E-15    2 

-1.21597725E+03 3.41536184E+00 3.78245636E+00-2.99673415E-03 9.84730200E-06    3 

-9.68129508E-09 3.24372836E-12-1.06394356E+03 3.65767573E+00 0.00000000E+00    4 

OH                S 9/01O   1H   1    0    0G   200.000  6000.000 1000.        1 !LI/DRY04 (v6.1) 

 2.86472886E+00 1.05650448E-03-2.59082758E-07 3.05218674E-11-1.33195876E-15    2 

 3.68362875E+03 5.70164073E+00 4.12530561E+00-3.22544939E-03 6.52764691E-06    3 

-5.79853643E-09 2.06237379E-12 3.34630913E+03-6.90432960E-01 4.51532273E+03    4 

H2O                20387H   2O   1          G  0300.00   5000.00  1000.00      1 !LI/DRY04 (v6.1) 

 2.67214561E+00 3.05629289E-03-8.73026011E-07 1.20099639E-10-6.39161787E-15    2 

-2.98992090E+04 6.86281681E+00 3.38684249E+00 3.47498246E-03-6.35469633E-06    3 

 6.96858127E-09-2.50658847E-12-3.02081133E+04 2.59023285E+00                   4 

HO2               L 5/89H   1O   2   00   00G   200.000  3500.000  1000.000    1 !LI/DRY04 (v6.1) 

 4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14    2 

 1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05    3 

-2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 1.00021620E+04    4 

H2O2              120186H   2O   2          G  0300.00   5000.00  1000.00      1 !LI/DRY04 (v6.1) 

 4.57316685E+00 4.33613639E-03-1.47468882E-06 2.34890357E-10-1.43165356E-14    2 

-1.80069609E+04 5.01136959E-01 3.38875365E+00 6.56922581E-03-1.48501258E-07    3 

-4.62580552E-09 2.47151475E-12-1.76631465E+04 6.78536320E+00                   4 

!C1 

HCO               L12/89H   1C   1O   1     G   200.000  3500.000  1000.000    1 

 2.77217438E+00 4.95695526E-03-2.48445613E-06 5.89161778E-10-5.33508711E-14    2 

 4.01191815E+03 9.79834492E+00 4.22118584E+00-3.24392532E-03 1.37799446E-05    3 

-1.33144093E-08 4.33768865E-12 3.83956496E+03 3.39437243E+00                   4 
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CO        BUR0302 RUS 79C   1O   1    0    0G   200.000  6000.000 1000.        1 

 0.30484859E+01 0.13517281E-02-0.48579405E-06 0.78853644E-10-0.46980746E-14    2 

-0.14266117E+05 0.60170977E+01 0.35795335E+01-0.61035369E-03 0.10168143E-05    3 

 0.90700586E-09-0.90442449E-12-0.14344086E+05 0.35084093E+01-0.13293628E+05    4 

CO2       BUR0302 L 7/88C   1O   2    0    0G   200.000  6000.000 1000.        1 

 0.46365111E+01 0.27414569E-02-0.99589759E-06 0.16038666E-09-0.91619857E-14    2 

-0.49024904E+05-0.19348955E+01 0.23568130E+01 0.89841299E-02-0.71220632E-05    3 

 0.24573008E-08-0.14288548E-12-0.48371971E+05 0.99009035E+01-0.47328105E+05    4 

HOCO      CLR est L 7/88C   1O   2H   1    0G   200.000  6000.000 1000.        1  !CLR est based on CO2 data and 

SANDIA 

 0.46365111E+01 0.27414569E-02-0.99589759E-06 0.16038666E-09-0.91619857E-14    2  !H298=-45.19 kcal/mol 

-2.44401027E+04 2.54925146E+00 0.23568130E+01 0.89841299E-02-0.71220632E-05    3  !S298= 60.00 

cal/mol/K 

 0.24573008E-08-0.14288548E-12-2.37871697E+04 1.43850505E+01-0.47328105E+05    4 

CH2               L S/93C   1H   2          G   200.000  3500.000  1000.000    1 

 2.87410113E+00 3.65639292E-03-1.40894597E-06 2.60179549E-10-1.87727567E-14    2 

 4.62636040E+04 6.17119324E+00 3.76267867E+00 9.68872143E-04 2.79489841E-06    3 

-3.85091153E-09 1.68741719E-12 4.60040401E+04 1.56253185E+00                   4 

CH2(S)            L S/93C   1H   2          G   200.000  3500.000  1000.000    1 

 2.29203842E+00 4.65588637E-03-2.01191947E-06 4.17906000E-10-3.39716365E-14    2 

 5.09259997E+04 8.62650169E+00 4.19860411E+00-2.36661419E-03 8.23296220E-06    3 

-6.68815981E-09 1.94314737E-12 5.04968163E+04-7.69118967E-01                   4 

CH2O              L 8/88H   2C   1O   1     G   200.000  3500.000  1000.000    1 

 1.76069008E+00 9.20000082E-03-4.42258813E-06 1.00641212E-09-8.83855640E-14    2 

-1.39958323E+04 1.36563230E+01 4.79372315E+00-9.90833369E-03 3.73220008E-05    3 

-3.79285261E-08 1.31772652E-11-1.43089567E+04 6.02812900E-01                   4 

CH2OH             GUNL93C   1H   3O   1     G   200.000  3500.000  1000.000    1 

 3.69266569E+00 8.64576797E-03-3.75101120E-06 7.87234636E-10-6.48554201E-14    2 

-3.24250627E+03 5.81043215E+00 3.86388918E+00 5.59672304E-03 5.93271791E-06    3 

-1.04532012E-08 4.36967278E-12-3.19391367E+03 5.47302243E+00                   4 

CH3               L11/89C   1H   3          G   200.000  3500.000  1000.000    1 

 2.28571772E+00 7.23990037E-03-2.98714348E-06 5.95684644E-10-4.67154394E-14    2 

 1.67755843E+04 8.48007179E+00 3.67359040E+00 2.01095175E-03 5.73021856E-06    3 

-6.87117425E-09 2.54385734E-12 1.64449988E+04 1.60456433E+00                   4 

CH3O              121686C   1H   3O   1     G   300.00   3000.00   1000.000    1 

 0.03770799E+02 0.07871497E-01-0.02656384E-04 0.03944431E-08-0.02112616E-12    2 

 0.12783252E+03 0.02929575E+02 0.02106204E+02 0.07216595E-01 0.05338472E-04    3 

-0.07377636E-07 0.02075610E-10 0.09786011E+04 0.13152177E+02                   4 

CH3OH             L 8/88C   1H   4O   1     G   200.000  3500.000  1000.000    1 

 1.78970791E+00 1.40938292E-02-6.36500835E-06 1.38171085E-09-1.17060220E-13    2 

-2.53748747E+04 1.45023623E+01 5.71539582E+00-1.52309129E-02 6.52441155E-05    3 

-7.10806889E-08 2.61352698E-11-2.56427656E+04-1.50409823E+00                   4 

CH4               L 8/88C   1H   4          G   200.000  3500.000  1000.000    1 

 7.48514950E-02 1.33909467E-02-5.73285809E-06 1.22292535E-09-1.01815230E-13    2 

-9.46834459E+03 1.84373180E+01 5.14987613E+00-1.36709788E-02 4.91800599E-05    3 

-4.84743026E-08 1.66693956E-11-1.02466476E+04-4.64130376E+00                   4 

!C2 

C2H3              L 2/92C   2H   3          G   200.000  3500.000  1000.000    1 

 3.01672400E+00 1.03302292E-02-4.68082349E-06 1.01763288E-09-8.62607041E-14    2 

 3.46128739E+04 7.78732378E+00 3.21246645E+00 1.51479162E-03 2.59209412E-05    3 

-3.57657847E-08 1.47150873E-11 3.48598468E+04 8.51054025E+00                   4 
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C2H4              L 1/91C   2H   4          G   200.000  3500.000  1000.000    1 

 2.03611116E+00 1.46454151E-02-6.71077915E-06 1.47222923E-09-1.25706061E-13    2 

 4.93988614E+03 1.03053693E+01 3.95920148E+00-7.57052247E-03 5.70990292E-05    3 

-6.91588753E-08 2.69884373E-11 5.08977593E+03 4.09733096E+00                   4 

C2H5              L12/92C   2H   5          G   200.000  3500.000  1000.000    1 

 1.95465642E+00 1.73972722E-02-7.98206668E-06 1.75217689E-09-1.49641576E-13    2 

 1.28575200E+04 1.34624343E+01 4.30646568E+00-4.18658892E-03 4.97142807E-05    3 

-5.99126606E-08 2.30509004E-11 1.28416265E+04 4.70720924E+00                   4 

C2H6              L 8/88C   2H   6          G   200.000  3500.000  1000.000    1 

 1.07188150E+00 2.16852677E-02-1.00256067E-05 2.21412001E-09-1.90002890E-13    2 

-1.14263932E+04 1.51156107E+01 4.29142492E+00-5.50154270E-03 5.99438288E-05    3 

-7.08466285E-08 2.68685771E-11-1.15222055E+04 2.66682316E+00                   4 

HCCO              SRIC91H   1C   2O   1     G   300.00   4000.00   1000.000    1 

 0.56282058E+01 0.40853401E-02-0.15934547E-05 0.28626052E-09-0.19407832E-13    2 

 0.19327215E+05-0.39302595E+01 0.22517214E+01 0.17655021E-01-0.23729101E-04    3 

 0.17275759E-07-0.50664811E-11 0.20059449E+05 0.12490417E+02                   4 

CH2CO             L 5/90C   2H   2O   1     G   200.000  3500.000  1000.000    1 

 4.51129732E+00 9.00359745E-03-4.16939635E-06 9.23345882E-10-7.94838201E-14    2 

-7.55105311E+03 6.32247205E-01 2.13583630E+00 1.81188721E-02-1.73947474E-05    3 

 9.34397568E-09-2.01457615E-12-7.04291804E+03 1.22156480E+01                   4 

!C3 

C3H7              L 9/84C   3H   7          G   300.000  5000.000  1000.000    1 

 0.77026987E+01 0.16044203E-01-0.52833220E-05 0.76298590E-09-0.39392284E-13    2 

 0.82984336E+04-0.15480180E+02 0.10515518E+01 0.25991980E-01 0.23800540E-05    3 

-0.19609569E-07 0.93732470E-11 0.10631863E+05 0.21122559E+02                   4 

C3H8              L 4/85C   3H   8          G   300.000  5000.000  1000.000    1 

 0.75341368E+01 0.18872239E-01-0.62718491E-05 0.91475649E-09-0.47838069E-13    2 

-0.16467516E+05-0.17892349E+02 0.93355381E+00 0.26424579E-01 0.61059727E-05    3 

-0.21977499E-07 0.95149253E-11-0.13958520E+05 0.19201691E+02                   4 

! N 

N                 L 6/88N   1               G   200.000  6000.000  1000.000    1 

 0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226245E-10-0.20360982E-14    2 

 0.56133773E+05 0.46496096E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00    3 

 0.00000000E+00 0.00000000E+00 0.56104637E+05 0.41939087E+01                   4 

N2        BUR0302 G 8/02N  2.   0.   0.   0.G   200.000  6000.000 1000.        1 

 2.95257637E+00 1.39690040E-03-4.92631603E-07 7.86010195E-11-4.60755204E-15    2 

-9.23948688E+02 5.87188762E+00 3.53100528E+00-1.23660988E-04-5.02999433E-07    3 

 2.43530612E-09-1.40881235E-12-1.04697628E+03 2.96747038E+00 0.00000000E+00    4 

NNH               T07/93N   2H   1          G   200.000  6000.000  1000.000    1 

 0.37667544E+01 0.28915082E-02-0.10416620E-05 0.16842594E-09-0.10091896E-13    2 

 0.28650697E+05 0.44705067E+01 0.43446927E+01-0.48497072E-02 0.20059459E-04    3 

-0.21726464E-07 0.79469539E-11 0.28791973E+05 0.29779410E+01                   4 

NH                And94 N   1H   1          G   200.000  6000.000  1000.000    1 

 0.27836928E+01 0.13298430E-02-0.42478047E-06 0.78348501E-10-0.55044470E-14    2 

 0.42120848E+05 0.57407799E+01 0.34929085E+01 0.31179198E-03-0.14890484E-05    3 

 0.24816442E-08-0.10356967E-11 0.41880629E+05 0.18483278E+01                   4 

NH2               And89 N   1H   2          G   200.000  6000.000  1000.000    1 

 0.28347421E+01 0.32073082E-02-0.93390804E-06 0.13702953E-09-0.79206144E-14    2 

 0.22171957E+05 0.65204163E+01 0.42040029E+01-0.21061385E-02 0.71068348E-05    3 

-0.56115197E-08 0.16440717E-11 0.21885910E+05-0.14184248E+00                   4 

NH3               J 6/77N   1H   3          G   200.000  6000.000  1000.000    1 

 0.26344521E+01 0.56662560E-02-0.17278676E-05 0.23867161E-09-0.12578786E-13    2 

-0.65446958E+04 0.65662928E+01 0.42860274E+01-0.46605230E-02 0.21718513E-04    3 

-0.22808887E-07 0.82638046E-11-0.67417285E+04-0.62537277E+00                   4 
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NO                RUS 78N   1O   1          G   200.000  6000.000  1000.000    1 

 0.32606056E+01 0.11911043E-02-0.42917048E-06 0.69457669E-10-0.40336099E-14    2 

 0.99209746E+04 0.63693027E+01 0.42184763E+01-0.46389760E-02 0.11041022E-04    3 

-0.93361354E-08 0.28035770E-11 0.98446230E+04 0.22808464E+01                   4 

NO2               L 7/88N   1O   2          G   200.000  6000.000  1000.000    1 

 0.48847542E+01 0.21723956E-02-0.82806906E-06 0.15747510E-09-0.10510895E-13    2 

 0.23164983E+04-0.11741695E+00 0.39440312E+01-0.15854290E-02 0.16657812E-04    3 

-0.20475426E-07 0.78350564E-11 0.28966179E+04 0.63119917E+01                   4 

N2O               L 7/88N   2O   1          G   200.000  6000.000  1000.000    1 

 0.48230729E+01 0.26270251E-02-0.95850874E-06 0.16000712E-09-0.97752303E-14    2 

 0.80734048E+04-0.22017207E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04    3 

 0.96819806E-08-0.29307182E-11 0.87417744E+04 0.10757992E+02                   4 

HNO               And93 H   1N   1O   1     G   200.000  6000.000  1000.000    1 

 0.29792509E+01 0.34944059E-02-0.78549778E-06 0.57479594E-10-0.19335916E-15    2 

 0.11750582E+05 0.86063728E+01 0.45334916E+01-0.56696171E-02 0.18473207E-04    3 

-0.17137094E-07 0.55454573E-11 0.11548297E+05 0.17498417E+01                   4 

! S 

S     BUR0302     J 9/82S   1    0    0    0G   200.000  6000.000 1000.        1 

 2.87936498E+00-5.11050388E-04 2.53806719E-07-4.45455458E-11 2.66717362E-15    2 

 3.25013791E+04 3.98140647E+00 2.31725616E+00 4.78018342E-03-1.42082674E-05    3 

 1.56569538E-08-5.96588299E-12 3.25068976E+04 6.06242434E+00 3.33128471E+04    4 

SH    BUR0302     s06/01S  1.H  1.   0.   0.G   200.000  6000.000 1000.        1 

 3.03153188E+00 1.25805478E-03-4.05525688E-07 6.19651478E-11-3.50864386E-15    2 

 1.63428914E+04 6.15027214E+00 3.68468234E+00 3.24598115E-03-1.28632474E-05    3 

 1.69509712E-08-7.07586975E-12 1.60405724E+04 2.01782467E+00 1.71999456E+04    4 

H2S   BUR0302     RUS 89H   2S   1    0    0G   200.000  6000.000 1000.        1 

 0.29770813E+01 0.36005325E-02-0.12328487E-05 0.19692654E-09-0.11677327E-13    2 

-0.35155970E+04 0.67868340E+01 0.41194112E+01-0.18771599E-02 0.82066045E-05    3 

-0.70594243E-08 0.21405829E-11-0.36819294E+04 0.15345832E+01-0.24775964E+04    4 

SO    BUR0302     J 6/77S   1O   1    0    0G   300.000  5000.000 1000.        1 

 4.01428730E+00 2.70228170E-04 8.28966670E-08-3.43237410E-11 3.11214440E-15    2 

-7.10519560E+02 3.49973505E+00 3.14902330E+00 1.18393470E-03 2.57406860E-06    3 

-4.44434190E-09 1.87351590E-12-4.04075710E+02 8.31987915E+00 6.02271219E+02    4 

SO(S)        SO+deltaH  H   0O   1S   1    0G   300.000  5000.000 1000.00      1 

 4.01428730E+00 2.70228170E-04 8.28966670E-08-3.43237410E-11 3.11214440E-15    2 !S298 = 50.89 cal/mol/K 

 1.07137380E+04 2.41770183E+00 3.14902330E+00 1.18393470E-03 2.57406860E-06    3 

-4.44434190E-09 1.87351590E-12 1.10201820E+04 7.23784593E+00 6.02271219E+02    4 

SO2   BUR0302     J 6/61S   1O   2    0    0G   300.000  5000.000 1000.        1 

 5.24513640E+00 1.97042040E-03-8.03757690E-07 1.51499690E-10-1.05580040E-14    2 

-3.75582270E+04-1.07404892E+00 3.26653380E+00 5.32379020E-03 6.84375520E-07    3 

-5.28100470E-09 2.55904540E-12-3.69081480E+04 9.66465108E+00-3.57007867E+04    4 

SO3   BUR0302     J 9/65S   1O   3    0    0G   300.000  5000.000 1000.        1 

 7.07573760E+00 3.17633870E-03-1.35357600E-06 2.56309120E-10-1.79360440E-14    2 

-5.02113760E+04-1.11875176E+01 2.57803850E+00 1.45563350E-02-9.17641730E-06    3 

-7.92030220E-10 1.97094730E-12-4.89317530E+04 1.22651384E+01-4.75978348E+04    4 

HSO   BUR0302     T 4/93H   1S   1O   1    0G   200.000  6000.000 1000.        1 !BURCAT 

 0.45416010E+01 0.22648458E-02-0.83152058E-06 0.13614796E-09-0.82290966E-14    2 

-0.21608556E+04 0.23357633E+01 0.34130925E+01 0.32105128E-02 0.38960721E-05    3 

-0.81958128E-08 0.37789804E-11-0.17554966E+04 0.86522782E+01-0.57517665E+03    4 

HOSO DAG/GLA03 GOU/MAR99H   1O   2S   1    0G   300.000  1500.000 1500.00    0 1 

 0.16184697E+01 0.21164061E-01-0.26690482E-04 0.16272216E-07-0.37779005E-11    2 

-0.30255641E+05 0.19477260E+02 0.16184697E+01 0.21164061E-01-0.26690482E-04    3 

 0.16272216E-07-0.37779005E-11-0.30255641E+05 0.19477260E+02                   4 
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! Mixed Base 

HCN               GRI/98H   1C   1N   1     G   200.000  6000.000  1000.000    1 

 0.38022392E+01 0.31464228E-02-0.10632185E-05 0.16619757E-09-0.97997570E-14    2 

 0.14407292E+05 0.15754601E+01 0.22589886E+01 0.10051170E-01-0.13351763E-04    3 

 0.10092349E-07-0.30089028E-11 0.14712633E+05 0.89164419E+01                   4 

NCO               EA 93 N   1C   1O   1     G   200.000  6000.000  1000.000    1 

 0.51521845E+01 0.23051761E-02-0.88033153E-06 0.14789098E-09-0.90977996E-14    2 

 0.14004123E+05-0.25442660E+01 0.28269308E+01 0.88051688E-02-0.83866134E-05    3 

 0.48016964E-08-0.13313595E-11 0.14682477E+05 0.95504646E+01                   4 

HNCO              BDEA94H   1N   1C   1O   1G   300.000  5000.000  1478.000    1 

 6.22395134E+00 3.17864004E-03-1.09378755E-06 1.70735163E-10-9.95021955E-15    2 

-1.66599344E+04-8.38224741E+00 3.63096317E+00 7.30282357E-03-2.28050003E-06    3 

-6.61271298E-10 3.62235752E-13-1.55873636E+04 6.19457727E+00                   4 

 

 

END 
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