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1 Abstract 

We always strive to minimize the impact of bias in observational studies due to possible 

nonrandom treatment assignment. Propensity score and inverse weighting methods both attempt 

to achieve this goal. Inverse probability weighting is the method based on Horvitz and 

Thompson (1952) while propensity score is based on Rosenbaum and Rubin (1983). Because 

they are the most prevalent methods in longitudinal studies, these methods should be evaluated 

to find out which is better in reducing bias and producing accurate estimates. However, there are 

few studies comparing the two approaches. In a study of theory and simulated data, Ertefaie and 

Stephens (2010) demonstrated that, in simple cases, multivariate generalized propensity score 

(MGPS) routinely produced estimators with lower Mean-Square Error (MSE) when compared to 

inverse probability weighting (IPW). In the same paper, however, they were unable to show the 

same result in a longitudinal dataset. In this paper, I will perform similar comparisons in the 

treatment effect hazard ratio estimates as well as the efficiency of the estimates, specifically the 

variance of the two methods in an observational longitudinal public health study. I will only 

compare the direct effect of treatment, or the unconfounded and unmediated effect on expected 

response, since this is the only place where Propensity score and Inverse Weighting methods are 

comparable, and demonstrate that PS may not be the best method of analysis for reducing bias in 

longitudinal time-to-event studies, despite theoretical studies to the contrary. The results show 

that the treatment effect hazard ratio estimates with the two approaches are indistinguishable, 

although PS is consistently efficient while IPW varies based on whether stabilization occurs and 

on covariates. 
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2 Introduction 

In a perfect world, the designers of experimental studies and controlled clinical trials 

would attempt to randomly assign subjects or patients to a condition or treatment group.  

However, in real-life studies, the “assignment” of a person to a treatment group or condition is 

usually not entirely random, unless specifically designed. Observational studies are, by design, 

not likely to be random in group or condition “assignment”. Prominent statisticians have spent 

years inventing and introducing methods to reduce the biases in experimental studies. And in the 

recent decade, competing methods have been slowly overtaken in popularity by weighting 

methods. 

 Even though inverse probability weighting (IPW) method was first introduced in the 

1950s (Horvitz and Thompson, 1952), it was, for an extended period, widely considered 

inefficient relative to likelihood based methods (Clayton et al. 1998), and resulted in estimates 

sensitive to the precise form of the model for the probability of response (Little and Rubin, 

1987), Robins and colleagues proposed improved IPW estimates that mitigated both problems in 

a series of papers in the 1990s, such as Robins et al. (1995), Robins and Rotnizky (1995), and 

Scharfstein et al (1999). IPW is a weight equal to the inverse of the probability of response by 

treatment group. 

Another method of reducing bias is the propensity score (PS). PS, first proposed by 

Rosenbaum and Rubin (1983, 84), is defined as the conditional probability of receiving the 

treatment given pre-treatment covariates. IPW and PS are thus constructed in similar fashion. 

First, a model for treatment group or condition is fitted. The resulting conditional model for the 

outcome is then fitted either through weighting for IPW or matching for PS.  
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Despite the theoretical similarity of the two bias-reducing methods, there have been very 

few direct comparison studies between them. Ertefaie and Stephens (2010) found that PS 

outperformed IPW in mean squared error (MSE) in single and multiple interval simulation 

studies. However, no preference was found for either method using real data from Mother’s 

Stress and Children’s Morbidity Study, a small (N=167) longitudinal study. Tan (2007) also 

could not show superior efficiency of an IPW or IPW-like estimator over that of a regression 

estimator based on controlling for all pretreatment variables, essentially a PS estimator. Hirano et 

al. (2003) found the two estimators to be asymptotically equivalent. 

In this paper, we compare PS and IPW in a large (n=5698) longitudinal time to event 

dataset from the Medicare Current Beneficiary Survey (MCBS). We will examine the 

performance indicators, such as the variance and MSE, of the estimators produced by the two 

methods for establishing the magnitude of the direct effect of treatment, without any of the 

confounding effects. The main focus is on direct effect of the treatment because it is the only 

situation where IPW and PS methods can be directly compared. The hazard ratio estimates of all 

other potential covariates for the effect of covariates are interesting to discuss but not directly 

comparable, because only IPW adjustment plays a role in estimating the effects of other 

covariates.  

 

3 Methods 

3.1 Propensity Score (PS) 

As previously discussed, propensity score is a method of reducing bias in treatment effect 

estimation. At its most basic form, PS is defined for binary treatment as  

π(x) = p(Tr = 1|x), 
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where π(x) is the propensity score, Tr is treatment, and x is the covariate, by Rosenbaum and 

Rubin (1983) and is the most basic function of covariates that has the balancing property, which 

means treatment assignment is independent of covariates given the propensity score. This, of 

course, requires all confounding variables to be known as well as the existence of a real choice 

between treatment and control for each patient at the time of treatment selection, both critical 

criteria for what Rosenbaum and Rubin (1983) called the assumption of a strongly ignorable 

treatment assignment. 

To produce the least biased propensity score model, it is important to not only include 

covariates that are correlated with treatment but also those correlated with outcome, as doing so 

would decrease the precision of the treatment effect estimate (Brookhart et al, 2006) Variables 

whose removal result in insignificant changes in estimated treatment effect and an increase in 

precision are seen as unlikely confounders and can be safely removed from propensity model 

(Hill and Kleinbaum, 2000). The average treatment effect can be computed from propensity 

score estimates using iterated expectation 

µ = E[Y(1) – Y(0)] = Eπ(X){E[ Y(1)| π(X)] – E[Y(0)| π(X)]}  

where Eπ(X) is the expectation with respect to the distribution of π(X) in the entire population 

(Ertefaie and Stephens, 2010) 

 The propensity scores produced can be used to find a conditional estimate of treatment 

effects given propensity score π, over the distribution of π. This can be best accomplished 

through matching between treatment and control patients, stratification, or using the PS directly 

as a covariate in the regression. Matching protects against misspecification of the propensity 

model but can significantly reduce sample size. Many existing user-generated programs and 

macros with numerical matching algorithms exist for SAS and other statistical analysis tools. 



 

 

Stratification is similar to matching in effectiveness w

lack of strong assumptions on time dependency of the effect of PS on the outcome. A quasi

standard of 5 strata exists for stratification based on the work of Cochran (1968). But Cochran 

also suggests that more than 5 strata should be used for larger datasets to further reduce 

imbalance. However, because stratification aims to produce treatment groups with similar 

probability of receiving treatment versus control, the individuals in the strata may be 

indistinguishable for further clinical decision making. (Curtis et al, 2007)

For our MCBS dataset, the 

an easy method to implement since the absolute standardized difference between the probability 

of outcome in the treated group and the probability of outcome in the untreated group can be 

determined (Austin 2008). But an incorrect

PS and outcome, such as assuming assignment to treatment group to be a pro

itself after controlling for other covariates,

results (Rosenbaum and Rubin, 1983).

and the second step of establishing functional r

be correct in order to correct bias.

 In a dataset with time-varying covariates, a generalized propensity score method is more 

appropriate. If we set Yij, Trij, and X

j, respectively, then we can find π

find, for every dose tr, 

and with it the E[Yij (tr) | πij (tr, X

of covariate Xij. 

6 

Stratification is similar to matching in effectiveness without the risk of losing subjects due to a 

lack of strong assumptions on time dependency of the effect of PS on the outcome. A quasi

standard of 5 strata exists for stratification based on the work of Cochran (1968). But Cochran 

an 5 strata should be used for larger datasets to further reduce 

imbalance. However, because stratification aims to produce treatment groups with similar 

probability of receiving treatment versus control, the individuals in the strata may be 

ble for further clinical decision making. (Curtis et al, 2007) 

our MCBS dataset, the estimated PS is used directly in the model as a covariate. It is 

an easy method to implement since the absolute standardized difference between the probability 

ome in the treated group and the probability of outcome in the untreated group can be 

an incorrect assumption about the functional relationship between 

, such as assuming assignment to treatment group to be a prognostic factor by 

itself after controlling for other covariates, can negate the benefits of PS and lead to biased 

results (Rosenbaum and Rubin, 1983). Therefore, both the first step of propensity score model 

and the second step of establishing functional relationship between PS and the outcome need to 

be correct in order to correct bias. 

varying covariates, a generalized propensity score method is more 

, and Xij, as the response, treatment, and covariates of unit 

, respectively, then we can find πij as the propensity score. Moodie and Stephens (2010) then 

Yij (tr)  Trij | πij (tr, Xij), 

Xij)] can be found as the unbiased estimate over the distribution 

ithout the risk of losing subjects due to a 

lack of strong assumptions on time dependency of the effect of PS on the outcome. A quasi-

standard of 5 strata exists for stratification based on the work of Cochran (1968). But Cochran 

an 5 strata should be used for larger datasets to further reduce 

imbalance. However, because stratification aims to produce treatment groups with similar 

probability of receiving treatment versus control, the individuals in the strata may be 

PS is used directly in the model as a covariate. It is 

an easy method to implement since the absolute standardized difference between the probability 

ome in the treated group and the probability of outcome in the untreated group can be 

assumption about the functional relationship between 

gnostic factor by 

of PS and lead to biased 

Therefore, both the first step of propensity score model 

elationship between PS and the outcome need to 

varying covariates, a generalized propensity score method is more 

tes of unit i at time 

as the propensity score. Moodie and Stephens (2010) then 

)] can be found as the unbiased estimate over the distribution 
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 Any proposed propensity score model can be adequate as long as balance is achieved, 

that is, the distribution of covariates X for different values of treatment Tr for each strata of PS π 

is approximately balanced. While any score that achieve balance will provide unbiased estimates 

of the treatment effect, the variance depends strictly on the definition of the PS (Ertefaie and 

Stephens 2010). In this case, variance is obtained using the standard model-based variance 

estimate. The results for the propensity score method were generated by Ling Han, MD, MS of 

the Yale Program on Aging/Pepper Center Biostatistics Core. 

 

3.2  Inverse Probability Weighting (IPW) 

The basic idea of IPW is conceptually easy to grasp and to program. A simple example is 

presented by missingdata.org.uk (2012) 

Suppose we saw the following data, 

Group A B C 

Response 1 1 1 2 2 2 3 3 3 

 

then the average response is 2. However if we observed 

Group A B C 

Response 1 ? ? 2 2 2 ? 3 3 

 

then the average response is 13/6, which is biased. However, the probability of response is 1/3 in 

group A, 1 in group B and 2/3 in group C. We can therefore calculate a weighted average, where 

each observation is weighted by 1/{Probability of response}: 

1 � 31 � �2 � 2 � 2� � 1 � �3 � 3� � 3231 � 1 � 1 � 1 � 32 � 32
 



 

 

Thus, in this case, inverse probability weighting (IPW) has eliminated the bias

adjusting for measured data. More 

estimates, just less of them. 

We can then expand the idea for treatment that is confounde

treatment parameter can even be obtained using a weighted analysis, assuming there are no 

unmeasured confounders. For a binary treatment (treated/untreated or treated/placebo), much like 

beta blocker use we have in our present 

assigned, where 

ηi = 

where tri is the observed binary treatment and 

weight, essentially an ideological extension of 

used in a weighted regression of Y on observed treatment T and components of X

an average treatment effect.  

 While the estimated weight is 

highly variable. This can be amended by stabilization, replacing the numerator of the weight with 

the marginal probability of receiving the treatment. The resulting stabilized weight

Robins (1997) is 

where (tri, xi) are treatment and confounders as previously described

density function. The further expansion of this idea for multilevel and continuous treatment is 

discussed by Robins et al (2000), where the stabilized we
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Thus, in this case, inverse probability weighting (IPW) has eliminated the bias

ore generally we will see it may still give biased parameter 

We can then expand the idea for treatment that is confounded. Unbiased estimates of the 

treatment parameter can even be obtained using a weighted analysis, assuming there are no 

unmeasured confounders. For a binary treatment (treated/untreated or treated/placebo), much like 

we have in our present data, for each subject i the weight wi = 1 + e

= logit{ p(Tr = tri | X = xi)} = β0 + β1xi 

is the observed binary treatment and xi the observed confounder for subject 

, essentially an ideological extension of the propensity score discussed earlier,

used in a weighted regression of Y on observed treatment T and components of X

While the estimated weight is theoretically asymptotically unbiased, in practice 

highly variable. This can be amended by stabilization, replacing the numerator of the weight with 

the marginal probability of receiving the treatment. The resulting stabilized weight

swi = f (tri) / f (tri | xi) 

) are treatment and confounders as previously described, and f is the probability 

. The further expansion of this idea for multilevel and continuous treatment is 

(2000), where the stabilized weight becomes  

swi  f (tri) / f (tri | xi), 

Thus, in this case, inverse probability weighting (IPW) has eliminated the bias by 

parameter 

d. Unbiased estimates of the 

treatment parameter can even be obtained using a weighted analysis, assuming there are no 

unmeasured confounders. For a binary treatment (treated/untreated or treated/placebo), much like 

= 1 + e-ηi is 

the observed confounder for subject i. This 

the propensity score discussed earlier, can then be 

used in a weighted regression of Y on observed treatment T and components of X in order to find 

in practice wi is 

highly variable. This can be amended by stabilization, replacing the numerator of the weight with 

the marginal probability of receiving the treatment. The resulting stabilized weight, according to 

, and f is the probability 

. The further expansion of this idea for multilevel and continuous treatment is 
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provided that the initial logistic model calculating the weight is correctly specified. The Marginal 

structural models (MSM), a class of causal models for the estimation of the causal effect of a 

time-dependent exposure in the presence of time-dependent covariates that may be 

simultaneously confounder and intermediate variables from observational data, are consistently 

estimated by IPW estimators (Robins et al, 2000). 

 The IPW we already introduced, however, only accounts for confounders at baseline. To 

adjust for time-varying aspect of potential covariates, stabilized IPW for patient i at visit j are the 

product of inverse probability of exposure defined as  

�	
��   � ���
�|��
���, �
�, ��
���   0�����
�|��
���, ��
���, ��
���   0��
�
�  , 

where 0� is a vector of zeroes, �
� a vector of fixed baseline variables and ��
��� a vector of time-

varying variables. The denominator adjusts for bias while the numerator stabilizes. Therefore, 

unstabilized IPW for the same patients are just 

 �	
��   � 1���
�|��
���, ��
���, ��
���   0��
�
�  . 

The magnitude of nonpositivity bias increases with the number of time points and decreases with 

the use of appropriately stabilized weights (Cole and Hernán, 2008). In most cases, lack of 

stabilization results in larger variance estimates. Therefore, stabilization is generally preferred in 

order to achieve greater efficiency for no real cost.  

IPW adjusted time-to-event analysis is a derivative of using such weights in controlling 

of confounding in analyzing survival data, as described by Robins et al (2000). A Cox regression 

model, weighted by estimated stabilized weights, accounts for cofounding by the covariate 

vector X because the “pseudo-population” created by weighting on the covariate X are unrelated 

to treatment Tr (Cole and Hernán, 2004). The use of the Cox model further removes the need for 
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adjusting our IPW for the inverse probability of censoring. Variance of the hazard ratio estimate, 

obtained through a Cox model, is normally estimated through the robust variance estimator of 

Lin and Wei (1989) so that variance estimate is valid under null hypothesis and provides 

conservative confidence interval range. However, in this case we must utilize the sandwich 

estimator, similar to generalized estimating equations proposed by Zeger et al. (1988), 

accounting for the variability in estimating the weights. Based on Carpenter and Kenward 

(2006), if we write the estimating equation for β as Σn
i=1 µi(β) = 0, and the estimating equation for 

the logistic regression on the probability of observing X1i, parameterized by α, as Σn
i=1 νi(α) = 0. 

Then, let wi(β, α) = (µT, νT)T. And finally, let 

"  #
$
%

&&' (
 0
0 &&) *
+

,-

.� /0,12

 

Then the sandwich estimator of the variance of treatment effect is the upper 4 x 4 block of  

�"���3∑ 5
6'7, )895
:6'7, )89-
.� ;�"���. 

SAS programming is used in both data transformation and analysis with this method. 

 

4 Data and Analysis 

4.1 MCBS 

 The dataset used in the analysis is a subset of 3752 patients between 2002 and 2006 in the 

large Medicare Current Beneficiary Survey (MCBS) that focuses on the effect of beta-blocker 

usage in patients with co-existing coronary artery disease and COPD or after myocardial 

infarction (MI) patients for combating adverse cardiovascular events. Even though randomized 

controlled trials have repeatedly shown beta-blockers to effectively protect the heart after MI 
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according to the meta-analysis of Freemantle et al. (1999), this is an excellent opportunity to 

study the overall cardio-protective effectiveness of binary beta-blocker use in a strongly 

representative subset of the overall elderly population regardless of previous MIs. The subset 

includes patients from age 65 to 103, with the mean age being 78.39 years and median age 78, 

which is exactly what one would expect of the Medicare utilizing population.  

Each individual had a variety of cardiovascular risk factors recorded, including sex, race, 

prior myocardial infarction, stent CABG, smoking status, etc. Based on enrollment date, each 

patient was observed for an entire year with no repeated measurement of the covariates and only 

seen when an adverse cardiac event occurs or at the end of the observational period. 1946 of the 

uncensored patients were followed for a further year with new measurements of the covariates 

under similar conditions. We use these data to determine treatment effect of beta-blocker use on 

cardiac health. Logistic regressions are used to fit the model for weights and propensity score 

over each interval over all relevant covariates, including the cardiovascular risk factors 

introduced earlier, as well as mobility, hypertension, diabetes, oral corticosteroid use, prior 

stroke, congenital heart defect, dementia, end stage renal disease, and a few others. 

 

4.2 PS versus stabilized and unstabilized IPW 

The resulting logistic models that include all the possible covariates, collectively shown 

as xij, for unit i and time j are 

logit{ p(tri1 = 1)} = α0 + α1xi1 

logit{ p(trij = 1)} = β0 + β1tri(t-1) + β2ci(t-1) + β3xi1 

for t =1 and t >1, where c is the response variable and tr is treatment. 



 

12 

 

 We can then model our binary response, adverse cardiac symptoms, using cox regression 

with beta-blocker usage, all relevant time-varying covariates, and either PS as a covariate or 

weighting by IPW of treatment. The Cox proportional hazard model must then be generalized in 

order to fit the time-varying covariates. This is easily handled in theory for Cox regression 

models and in practice with modern statistical programming software such as SAS. Ties are 

resolved using the standard Breslow method for Cox regression and life model (Breslow, 1974). 

We compare the estimates and the variance of treatment effect of beta-blockers using PS, 

stabilized IPW, as well as unstabilized IPW. The results of the analysis are presented in Table 1 

below.  

Table 1: Parameters estimates based on IPW and PS for MCBS adverse cardiac events 

study. 

  
Hazard Ratio Estimate Standard Error 

95% Hazard Ratio 

Confidence Limits 

Untabilized 

IPW 

No Covariates 0.975 0.06411 (0.861, 1.105) 

All Covariates 0.985 0.08709 (0.830, 1.168) 

Stabilized 

IPW 

No Covariates 0.984 0.11878 (0.780, 1.242) 

All Covariates 1.029 0.11059 (0.828, 1.278) 

PS 1.033 0.07487 (0.892, 1.197) 

* Sandwich variance estimate used for all IPW method variances 

^ Hazard Ratio Estimate compares beta-blocker users vs nonusers 

 

 We can see that the treatment effects are all not significant and very similar to each other. 

Because of the consistent overlap between estimated treatment effect confidence interval 

regardless of any of the methods listed, it is difficult to say that one is preferable to another in 

terms of estimation efficiency. In fact, even the general rule that stabilized IPW has lower 

variance was not true in our case. Adjusting for covariates did not make much of a difference in 

unstabilized IPW in terms of the hazard ratio estimate for beta-blocker users versus nonusers. 

But doing the same in stabilized IPW pushed the hazard ratio estimate in line with PS hazard 
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ratio estimate. Unfortunately, the difference was still rather small and within the range of the 

confidence interval. 

 

 4.3 Bootstrap 

 To more accurately access the precision of the hazard ratio estimates of the treatment 

effect of beta-blocker use, we can use bootstrapping to find standard error. A bootstrap sample is 

an independent random sample of size n taken from dataset x with replacement. The bootstrap 

replication of statistic <= = s(x) is <=> = s(?>) and the bootstrap estimate of standard error is the 

observed standard deviation of repeated bootstrap replications. (Efron and Tibshirani, 1993) As 

the number of independent samples approaches infinity, <=> is approximately normally distributed 

and the bootstrap estimate of standard error approaches the estimate of the actual sample 

standard error. Precisely, the bootstrap estimate of standard error is calculated thusly, 

@AB�  C∑ DE0>�F��E0>�.�GH
����F.�  , where <=>�. �   ∑ E0>�F�

��F.�  . 

For our data, we ran k=100 bootstrap sampling of the original dataset through the same models. 

Table 2 illustrates the comparison between model estimates and bootstrap estimates of hazard 

ratio for beta-blocker users versus nonusers and standard errors for all methods in Table 1. 

Table 2: Comparison between model estimates and bootstrap estimates of hazard ratio for 

beta-blocker users versus nonusers and standard errors 

  

Hazard Ratio 

Estimate 

Standard 

Error 

Bootstrapped Hazard 

Ratio Estimate 

Bootstrapped 

Standard Error 

Unstabilized 

IPW 

No Covariates 0.975 0.06411 0.976 0.06598 

All Covariates 0.985 0.08709 0.989 0.07608 

Stabilized IPW 
No Covariates 0.984 0.11878 0.983 0.07895 

All Covariates 1.029 0.11059 1.034 0.10037 

PS 1.033 0.07487 1.037 0.07877 

* Sandwich variance estimate used for all IPW method variances 
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^ Hazard Ratio Estimates are for beta-blocker users versus nonusers 

 

We can see here that bootstrapped hazard ratio estimates and standard errors are very 

close to the estimates the model of the original dataset produced. One noticeable difference was 

in the standard error of the unadjusted treatment effect of beta-blocker use, where the standard 

error dropped from a high of 0.11878 to be more in line with other standard errors. More 

importantly, we can state that the standard error of the treatment effect adjusted for all important 

covariates with the stabilized IPW method is higher than that through other methods and 

therefore less efficient in this case. 

 

4.4 Truncated IPW 

We may further adjust the IPW models with truncation methods as suggested by Cole and 

Hernán (2008). They indicate that the choice of the model used to construct weights may impact 

the results of the marginal structural model. This choice is based on an informal bias-variance 

tradeoff between inclusion of a sufficient number of flexibly modeled confounders in the weight 

model and well-behaved weights. Truncation methods allow us to explore this trade-off and can 

give us a more refined comparison between the hazard ratio for beta-blocker users versus 

nonusers and variance estimates obtained through stabilized and unstabilized IPWs. The simplest 

way to explore such a tradeoff is through progressive truncation, developed by Kish (1992). In 

this method, weights are truncated by resetting the values of weights greater or less than 

percentile p(100-p) to the value of the weights at percentile p(100-p). The comparison of 

truncation-adjusted IPW between stabilized and unstabilized weights for our study is presented 

below in Table 3. 
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Table 3: Comparison of truncated IPW between stabilized and unstabilized weights for 

MCBS adverse cardiac events study. 

 

Truncated Percentile Mean (SD) Min Max Hazard Ratio Estimate SE 

Unstabilized 

IPW 

0, 100 1.18 (0.68) 0.11 11.46 0.985 0.0871 

1, 99 1.16 (0.54) 0.67 4.04 0.967 0.0795 

5, 95 0.95 (0.35) 0.86 2.38 0.951 0.0779 

10, 90 1.07 (0.21) 0.91 1.64 0.956 0.0743 

25, 75 1.01 (0.03) 0.97 1.05 0.949 0.0735 

50, 50 1.02 (0.00) 1.02 1.02 0.948 0.0734 

Stabilized 

IPW 

0, 100 0.42 (0.31) 0.01 4.48 1.029 0.1106 

1, 99 0.41 (0.26) 0.05 1.58 0.999 0.0981 

5, 95 0.40 (0.21) 0.10 0.93 0.983 0.0899 

10, 90 0.38 (0.16) 0.14 0.64 0.978 0.0830 

25, 75 0.37 (0.11) 0.23 0.51 0.973 0.0762 

50, 50 0.39 (0.00) 0.39 0.39 0.948 0.0734 

* Sandwich variance estimate used for all IPW method variances  
^ Hazard Ratio Estimates are for beta-blocker users versus nonusers 

  

Here the first row of each section corresponds to the marginal structure model adjusted 

for covariates for unstabilized and stabilized weight, respectively. Similarly, the last row of each 

section corresponds to the previously not shown baseline-adjusted model, which has a weight of 

1 for every subject, is why the hazard ratio estimates are the same with either method. We can 

see that precision of the estimate increases as truncation increases. However, bias also increases 

since we are truncating more of the weights. Therefore, in this case and assuming the marginal 

structural model estimate is unbiased, it is unlikely for the small gain in precision to outweigh 

the increase in bias.  

 

5 Discussion and Summary 

Past studies, such as Chamberlain (1987), Hahn (1998), Hirano et al. (2003), and Ertefaie 

and Stephens (2010) have collectively demonstrate the theoretical superiority of propensity score 
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method over inverse probability weighting method in MSE, variance, efficiency, and bias 

removal, assuming correct model specification in general longitudinal studies. But no simulation 

seems to exist for show the same for longitudinal time-to-event data. A real dataset like our study 

on the MCBS impact of beta-blocker use on adverse heart event data shows that, in a large 

empirical public health dataset with longitudinal time-to-event binary outcome, could not 

conclusively determine PS method as having better performance than IPW methods. We were 

able to show that PS results in a numeric variance estimate of the treatment effect hazard ratio 

estimate that is similar to that using the unstabilized IPW method, while maintaining a hazard 

ratio estimate that is more similar to that using the stabilized IPW.  

Unfortunately, there were significant overlaps in the confidence interval estimates, which 

did not allow a conclusion on the statistical superiority of one method versus the other, especially 

without simulation to show the accuracy of the estimates. We would have also preferred larger 

resampling of bootstrapping for the precision analysis. However, hardware limitations restricted 

the bootstrapping capacity of SAS for such a large dataset and 25 to 200 replications is generally 

seem as sufficient for estimating a standard error through bootstrapping. The treatment in our 

study, beta-blocker use, did not have a significant treatment effect on adverse cardiac events. We 

cannot be sure that a study with a significant treatment effect would not result in clearer 

distinction between PS and IPW methods according to theoretical projections. Furthermore, the 

limited of time points limited the usefulness of the stabilized IPW method. Future analyses with 

multiple time points could be of interest.  

Direct implementation of PS as a covariate in the model is a simpler process than the 

multiple modeling and calculation required for both truncated and stabilized IPW. However, the 

current development of PS limits its use to estimation of direct hazard ratio estimate for treated 
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versus untreated, whereas the marginal structural method with IPW allows for the estimation of 

effects of other covariates as well, which tells researchers additional information about the 

dataset. We would have also liked to include the same comparison with the PS matching method. 

But computational limits eliminated that plan. Therefore the comparison between PS and IPW 

methods is not necessarily simply for theoretical efficiency and accuracy but also for whether the 

study is only interested in the treatment or other covariates as well. Furthermore, current 

developments in doubly robust IPW and potential developments in PS that allows for estimation 

of total effects could improve the current weakness in each method, respectively, and make for 

interesting future comparisons. 
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