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ABSTRACT ARTICLE HISTORY
Aquatic macroinvertebrates respond to patch dynamics arising from Received 21 June 2017
interactions of physical and chemical disturbances across space and time. Accepted 11 December 2017

Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from KEYWORDS

the ocean and alter physical and chemical properties of recipient Aquatic macroinvertebrates;
spawning streams. Sea lamprey disturb stream benthos physically through sea lamprey; nutrients;
nest construction and spawning, and enrich food webs through nutrient spawning; disturbance;
deposition from decomposing carcasses. Sea lamprey spawning nests streams; anadromous
support greater macroinvertebrate abundance than adjacent reference

areas, but concurrent effects of stream bed modification and nutrient

supplementation have not been examined sequentially. We added

carcasses and cleared substrate experimentally to mimic the physical

disturbance and nutrient enrichment associated with lamprey spawning,

and characterized effects on macroinvertebrate assemblage structure.

We found that areas receiving cleared substrate and carcass nutrients

were colonized largely by Simuliidae compared to upstream and

downstream control areas that were colonized largely by Hydropsychidae,

Philopotamidae, and Chironomidae. Environmental factors such as

stream flow likely shape assemblages by physically constraining

macroinvertebrate establishment and feeding. Our results indicate

potential changes in macroinvertebrate assemblages from the physical

and chemical changes to streams brought by spawning populations of sea

lamprey.

Introduction

Aquatic macroinvertebrates are functionally important in stream food webs and provide an interme-
diate pathway in the cycling of nutrients and transfer of energy (Cummins 1974; Wallace and
Webster 1996). Spawning anadromous fish influence freshwater communities through physical dis-
turbance and subsequent delivery of energy and nutrient subsidies (Janetski et al. 2009). These fish
may function as ecosystem engineers by physically modifying benthic stream habitat through nest
construction and spawning activities (Jones et al. 1994; Moore 2006; Hogg et al. 2014). Additionally,
these fish supplement available nutrient pools in the form of metabolic waste, gametes, and post-
spawned carcasses (Nislow and Kynard 2009; Flecker et al. 2010). The benthic stream disturbance
associated with spawning may influence subsequent nutrient addition effects and therefore affect
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macroinvertebrate community structure and function. The literature describing these mechanisms is
replete among salmonids in the Pacific Northwest; however, these effects are not well studied for
other anadromous fish.

Macroinvertebrate assemblages may be influenced by the chemical and physical alterations to the
benthos from spawning anadromous fish. Research from the Pacific Northwest has demonstrated
Pacific salmon (Oncorhynchus spp.) carcasses stimulate production (Cederholm et al. 1999; Gende
et al. 2002) and increase densities of scrapers, collectors, shredders, and predators (Wipfli et al.
1998, 1999) as well as growth rates and production concurrent with fall migration (Chaloner and
Wipfli 2002; Lessard and Merritt 2006). Conversely, salmon spawning and redd construction may
disturb and scour the streambed, thus reducing production for some invertebrate species, or create
habitat and facilitate colonization for others (Moore and Schindler 2008; Campbell et al. 2012; Hogg
et al. 2014). Thus, the physical and chemical disturbances from anadromous fish may create
mosaics, or patches of heterogeneous habitat that influence stream communities (Pringle et al. 1988;
Townsend 1989). The spatial and temporal scales (i.e. perturbation and timing of migration) that
characterize the impact of salmon across the stream landscape may not apply to other anadromous
fish.

Anadromous sea lamprey Petromyzon marinus are a semelparous species native to Atlantic fresh-
waters that, like salmon, disturb benthic habitat through the construction of mound and pit nests
and deliver pulses of nutrients from carcasses of post-spawned adults (Beamish 1980; Nislow and
Kynard 2009; Weaver et al. 2016). During the spring, sea lamprey migrate from the ocean into fresh-
water, where they construct nests and condition gravel and cobble substrate that create many inter-
stitial spaces free of fine sediment (Sousa et al. 2012; Hogg et al. 2014). After spawning, lamprey die
and carcasses may remain in streams for up to three weeks during which the majority of carcass-
bound nitrogen and phosphorus is liberated (Weaver et al. 2015). Stream disturbances from spawn-
ing fish and subsequent pulses of nutrients from decomposing carcasses may influence macroinver-
tebrate colonization on these newly cleared substrates.

Among Atlantic coastal streams, Hogg et al. (2014) found benthic invertebrate abundance was
higher in sea lamprey spawning mounds versus adjacent reference areas, most notably for Philopo-
tamidae (Trichoptera), a collector/filterer, and Heptageniidae (Ephemeroptera), a scraper. Addition-
ally, carcass nutrients increased periphyton biomass accrual and were assimilated in several
macroinvertebrate families including Heptageniidae, Hydropsychidae (Trichoptera), and Perlidae
(Plecoptera) (Weaver et al. 2016). However, the role of spawning disturbance and subsequent nutri-
ent enrichment from anadromous sea lamprey on macroinvertebrates was not examined. The cou-
pled effects of these disturbances may demonstrate important patch-dynamic processes that shape
stream communities and nutrient cycling (Pringle et al. 1988).

Our objective was to determine the effects of nutrient addition from sea lamprey carcasses on
macroinvertebrate colonization on substrate cleared and conditioned by sea lamprey nest construc-
tion. We simulated physical and chemical effects of sea lamprey spawning by introducing rock bags,
as surrogates for cleared gravel and cobble in nests, and carcasses in a small Atlantic coastal stream
to characterize macroinvertebrate colonization, abundance, and biomass.

Study site

We conducted our carcass addition experiment in Sedgeunkedunk Stream, a third-order tributary to
the Penobscot River at river kilometer (rkm) 36.5 (Figure 1). Two dams were removed from the
stream in 2008 and 2009 restoring connectivity of a 5-km reach to the Penobscot River and ulti-
mately the Atlantic Ocean. Following the dam removals, spawning sea lamprey were observed regu-
larly throughout Sedgeunkedunk Stream (Gardner et al. 2012; Hogg et al. 2013). We selected a
150-m experimental reach with a mean stream width of 6.7 m and mean depth of 0.23 m (Weaver
et al. 2016) just upstream of Tannery Falls, a natural barrier in which we observed no spawning sea
lamprey, evidence of nest construction, or post-spawned carcasses. We collected sea lamprey for
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Figure 1. From Weaver et al. (2016). Location of study reach and 10 sites for experimental sea lamprey carcass addition. Inset:
shaded boxes indicate sites that received sea lamprey carcass additions. See text for details as well as Weaver et al. (2016) for a
detailed description of the study reach.

experimental carcass-addition from Milford Dam (rkm 61.0) on the main-stem Penobscot River. All
fish were measured for mass and total length and stored frozen until addition into the experimental
reach.

Methods
Experimental design

We delineated 10 sites along an approximate 150-m experimental reach (Figure 1 inset). Each
site began at the head of a riffle, extended into a glide, then ended at the next riffle. Sites 1 and
2 served as references (hereafter referred to as ‘upstream controls’) and received no carcasses.
The following six downstream sites (3-8; hereafter referred to as ‘treatments’) received 20 sea
lamprey carcasses each (120 carcasses total). Finally, sites 9 and 10 were the furthermost down-
stream and received no carcasses (hereafter referred to as ‘downstream controls’). Sites ranged
from 6-12 m in length. Weaver et al. (2016) determined that stream nutrient concentrations
and periphyton biomass accrual from added carcasses invoked localized effects, which allowed
us to assume independence between sites. Carcass numbers and spacing were intended to
approximate patchy spawning aggregations that typically occur in riffles containing coarse
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substrates. Carcasses were placed into 2.5-cm mesh bags and then secured into 2.5-cm mesh
metal cages, which were staked mid-channel at each site. See Weaver et al. (2016) for more
information on the study design of the current experiment.

At each site, we deployed 10 rock bags that mimicked substrate disturbed and cleaned by sea
lamprey now available for macroinvertebrates and provided a means to standardize sampling
effort (Maine Department of Environmental Protection 2017). Rock bags were deployed uni-
formly at each site >1 m from the stream bank to ensure substrate immersion, and >1 m down-
stream from the added carcasses. Ten rock bags provided adequate coverage and representation
of each site. Rock bags consisted of 2.5-cm mesh filled with 3.17 kg (£0.05 SD) of 3.8-5.1 cm
diameter clean rocks. This substrate is similar to the gravel and cobble substrate sea lamprey
use to construct nests (Sousa et al. 2012; Hogg et al. 2014). The size range of rocks used in this
experiment is classified as ‘very coarse gravel’ (Bovee and Milhous 1978), and therefore likely
mimics the selected sizes of substrate used by sea lamprey to construct nests. The standardized
quantity and substrate size of rock bags used allowed us to make inferences between control
and treatment sites.

Rock bags were given a unique tag number for identification during retrieval. At the treat-
ment sites, rock bags were placed <1 m downstream of the caged carcasses. No rock bags were
placed within 0.5 m of either bank to avoid emersion or influences from the bank. The locations
of the rock bags in the stream were noted so that upon sampling we could confirm they had
remained roughly in their original deployment site. Carcasses and rock bags were deployed on
25 June 2014.

After three weeks incubation, all rock bags were sampled. If bags had been displaced >1 m from
their original deployment location, then they were excluded from analysis. Rock bags were washed
thoroughly in a bucket of water to extract macroinvertebrates and debris within the rock bag. Con-
tents were sieved into 500-micron mesh and preserved with 70% ethanol.

Abiotic stream variables

Temperature loggers (Hobo Pendant UA-001-08, Onset, Cape Cod, Massachusetts, USA) were
deployed in the stream reach and retrieved at the conclusion of the experiment. Loggers contin-
uously recorded temperature at 1-h intervals. We measured total stream depth and mean col-
umn velocity at 0.5-m increments along one cross-sectional transect located in the riffle habitat
at each site during base flow, and then periodically for three weeks with a top-set wading rod
and Swoffer model 2100 current velocity meter (Swoffer Instruments, Seattle, Washington,
USA).

Macroinvertebrate subsampling and sorting

Samples were subsampled by mass following the protocol of the Canadian Aquatic Biomonitoring
Network (McDermott et al. 2012). Each sample was homogenized by hand-stirring the contents,
and then the sample was divided into four trays of equal mass. One tray was selected using a random
number table that would serve as the subsample. A trained technician sorted macroinvertebrates to
family in the entire subsample. A minimum of 300 total macroinvertebrates in the subsample was
necessary to end the sorting after the first subsample. If this first subsample did not contain this
minimum number, a second subsample was sorted in its entirety. All macroinvertebrates were iden-
tified to family and counted. The total number of subsamples and total subsample mass were
recorded.

We observed four macroinvertebrate families common to all samples: Hydropsychidae, Philopta-
midae, Simuliidae (Diptera), and Chironomidae (Diptera). These families generally represented
>95% of sample abundance and therefore were the focus of this study. Sorted samples were placed
into tin trays, measured for mass, then placed into an oven for 24 h at 75 °C. After 24 h, samples
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were reweighted to obtain dry mass. Other macroinvertebrate families were present in the samples
and noted, but not included in any analyses.

We estimated total macroinvertebrate abundance and total biomass for each of those four fami-
lies. Based on the dominance of these taxa, we assumed that the macroinvertebrates sorted in each
of the four subsamples adequately represented 25% of the entire sample and extrapolated biomass
based on the number of samples. We used the subsampled dry mass of each of the four macroinver-
tebrate families to calculate average dry mass per individual, then extrapolated based on adjusted
counts to estimate total sample biomass.

Statistical analysis

We examined the assemblage of the four aforementioned macroinvertebrate families as an index of
the taxa colonizing the rock bag samples with nonmetric multidimensional scaling (NMDS; Kruskal
1964). We reduced abundance and biomass estimates from the four families among rock bag sam-
ples from each site into two-dimensional space. We used the ‘metaMDS’ function in the ‘vegan
package’ in the statistical package RStudio (version 0.99.491, RStudio, Boston, MA, USA; Oksanen
et al. 2016). The Bray—Curtis dissimilarity distance function was used, which is most appropriate for
ecological abundance data collected at different sampling locations from a consistent area (e.g. rock
bag volume) (Bray and Curtis 1957). We examined the goodness of fit by calculating stress, which is
the sum of squared differences between the ordination distances and distances predicted from the
regression. Stress values for the configured plots of abundance and biomass were low (6% and 4%,
respectively; Clarke 1993), indicating a low disagreement between the two-dimensional configura-
tion and the predicted values from the regression. We plotted averaged NMDS scores among rock
bag samples for each site (+SE).

We analyzed macroinvertebrate abundance, biomass, and individual taxa mass (average mass per
individual) as a function of site with a series of analysis of variance (ANOVA) models. We com-
pared abundance and mass estimates among all 10 sites. We tested for spatial autocorrelation among
all sites with a Mantel test. We constructed two matrices containing linear distances between each of
the sites and distances between abundance values of each taxa. The Mantel test computed the corre-
lation of the two distance matrices and then calculated 1000 permutations to generate p values for
the four taxa. For all tests, statistical significance was gauged at p < 0.05. ANOVA tests with a signif-
icant site main effect were further examined with Tukey’s HSD pairwise post hoc tests and adjusted
family-wise error rates.

Results

Temperatures ranged from 17 to 29 °C, and averaged 24.2 °C (£2.1 SD) during the three-week
experiment. We observed mean cross-sectional stream flow (among all transects) increase from
0.18 m/s (£0.05 SD) at baseflow before our experiment to a high of 0.64 m/s (£0.09 SD) during
the second week of our experiment (Figure 2). During elevated flows, we observed generally
higher mean cross-sectional stream flows at sites receiving sea lamprey carcasses, which ranged
0.61-0.80 m/s compared to the reference sites, which ranged 0.46-0.59 m/s. We attribute ele-
vated flows to precipitation from a tropical depression that arrived during the second week of
the experiment.

We retrieved between 6 and 10 rock bag samples from each site that fit the sampling criteria.
The remaining rock bags were either displaced >1 m from the original deployment location,
and thus were not sampled, or were not recovered because of high flows. During sample sorting
and identification, typically only one or two subsamples were required to meet the minimum
number of individuals, but this was not the case for three samples, where more than two sub-
samples were required.
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Figure 2. Mean (4SD) cross-sectional mean column velocity (m s~') over a three-week period. The dashed line indicates the
period during which precipitation from a spate elevated stream flows.

Among all samples, we identified 10 families of macroinvertebrates. Hydropsychidae, Philo-
potamidae, Simulidae, and Chironomidae were present in all samples and comprised >95% of
the total abundance. Six other families were found infrequently or rarely in low abundance
(<5% total abundance) and included Perlidae, Elmidae (Coleoptera), Psephenidae (Coleoptera),
Heptageniidae, Aeshnidae (Odonata), and Corydalidae (Megaloptera). The Mantel tests sug-
gested spatial autocorrelation among Hydropsychidae, Philopotamidae, and Chironomidae
among sites (p < 0.05).

Our NMDS plots for abundance and biomass revealed macroinvertebrate colonization pat-
terns varied among sites. Generally, assemblages in the upstream control sites differed from
those in treatment and downstream sites. For abundance, upstream controls were influenced
largely by Hydropsychidae, Philopotamidae, and Chironomidae, while treatment and down-
stream controls were relatively influenced more by Simuliidae (Figure 3). For biomass, upstream
controls were not distinctly characterized by Hydropsychidae, Philopotamidae, and Chironomi-
dae. Similar to abundance, biomass in the treatment and downstream controls were influenced
most strongly by Simuliidae. Conversely, macroinvertebrate samples among the treatment sites
and downstream control sites varied in the indicator taxa that were most influential to the
assemblage. Several samples from the treatment sites and additional downstream sites were influ-
enced more by Simuliidae.

We found differences in abundance among Hydropsychidae, Simuliidae, and Chironomidae,
and among biomass of all four taxa across all sites (p < 0.05; Table 1). Generally, post hoc tests
revealed higher abundance and biomass estimates among Hydropsychidae and Chironomidae
families in the upstream control sites compared to the treatment and downstream control sites
(Tables 2 and 3). However, Simuliidae abundance and biomass were generally higher in the treat-
ment sites that received carcasses. These results are consistent with the NMDS analysis, which
depicted treatment sites were more influenced by Simuliidae, while the upstream and down-
stream control sites were influenced more strongly by the abundance and biomass of the other
three families.

For individual macroinvertebrate mass among families, we found differences among Hydropsy-
chidae and Philopotamidae among sites (Tables 1 and 4). Hydropsychidae mass at site 7, which was
downstream of 100 carcasses, was higher than at upstream sites influenced by fewer carcasses
as well as at upstream and downstream control sites that received no carcasses (Table 4).
Among individual Philopotamidae mass, we found higher mass per individual in the upstream
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Figure 3. Plots of mean (£SE) NMDS scores from two-dimensional configurations of macroinvertebrate abundance (top) and bio-
mass (bottom) estimates for rock bag samples among sites from the upstream controls (triangles; sites 1 and 2), treatments (circles;
sites 3-8), and downstream controls (squares; sites 9 and 10). Letters depict the indicator taxa influencing the sites: Hydropsychi-
dae (H), Philopotamidae (P), Simuliidae (S), and Chironomidae (C).

control sites compared to the treatment and downstream control sites. We found no differences for
individual Simuliidae and Chironomidae mass among sites. Post hoc tests generally found no differ-
ences between sites designated as upstream controls and sites designated as downstream controls
(Tables 2 and 3).

Table 1. F and p statistics from ANOVA models among macroinvertebrate taxa tested for differences among sites. Bolded p-values
indicate statistically significant differences among sites (p < 0.05).

Variable Taxon F p
Abundance Hydropsychidae 6.547 <0.001
Philopotamidae 1.922 0.0636
Simuliidae 451 <0.001
Chironomidae 4.456 <0.001
Biomass Hydropsychidae 5.129 <0.001
Philopotamidae 3.015 0.004
Simuliidae 3.966 <0.001
Chironomidae 3.135 0.003
Average individual mass Hydropsychidae 3.707 <0.001
Philopotamidae 4384 <0.001
Simuliidae 1.455 0.183

Chironomidae 0.755 0.658
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Table 2. Mean (£SE) total macroinvertebrate abundance among N rock bag samples at each site. Treatment indicates the number
of sea lamprey carcasses added to each site. Similar superscript letter combinations depict similarities among sites from pairwise
post hoc tests. See Figure 1 and text for site locations and descriptions.

Site Treatment N Hydropsychidae Philopotamidae Simuliidae Chironomidae
1 Upstream control 10 2111 (229)* 555 (62)? 38 (11)° 141 (23)°
2 8 1752 (120)® 492 (45)° 19 (6)° 82 (13)*
3 Treatments 8 1055 (152)°¢ 432 (122) 199 (44)° 109 (20)?>°
4 7 912 (116)> 346 (48)° 73 (26)° 81 (16)<
5 6 979 (172)°« 462 (109) 121 (54)%° 90 (25)%<
6 9 544 (86)° 197 (62)° 16 (6) 45 (16)°
7 6 994 (87)Pdef 273 (51) 115 (62)?° 30 (9)P
8 9 1311 (236)%f 274 (62)° 40 (9)%< 68 (17)°
9 Downstream control 8 1096 (162)°<def 269 (63)° 20 (3)*¢ 25 (5)*
10 9 1295 (196)2ccef 358 (72)° 24 (6)*¢ 69 (11)%<

Table 3. Mean (£SE) total macroinvertebrate biomass (mg) among N rock bag samples at each site. Treatment indicates the num-
ber of sea lamprey carcasses added to each site. Similar superscript letter combinations depict similarities among sites from pair-
wise post hoc tests. See Figure 1 and text for site locations and descriptions.

Site Treatment N Hydropsychidae Philopotamidae Simuliidae Chironomidae
1 Upstream control 10 342.1 (31.8)° 188.5 (23.6)° 3.2(0.8)° 5 8 (1.1)
2 8 169.1 (24.8)° 169.1 (14.2)° 13 (0.5 8(0.6)°
3 Treatments 8 162.3 (28.9)* 76.0 (24.5)° 14.2 (3.7)° 8(1.2)®
4 7 112.6 (14.0) 497 (7.8)%° 3.6 (0.9)%< 0 (0.9
5 6 141.4 (30.5) 742 (29.1)° 8.6 (5.8)< 2 (1.0
6 9 101.7 (19.7) 41.1 (143)° 14 (0.5)%0de 4 (0. 6)b
7 6 2253 (29.0)*° 63.1(17.9/® 10.3 (6.0 3(0.5)°
8 9 199.6 (35.4)2° 75.1 31.0)® 3.2 (0.6)?0cdef 5 (0.5
9 Downstream control 8 181.6 (27.1)%¢ 85.5 (23.1)® 2.7 (0.6)?cdef 0(0.3)°
10 9 180.4 (32.1)2¢ 96.2 (21.0)® 2.1 (0.5)2bdef 9(0.6)°
Discussion

We simulated physical and chemical effects of sea lamprey spawning on macroinvertebrates by
experimentally adding carcasses and monitoring colonization on bare substrate mimicking newly
constructed sea lamprey nests. Previous work has indicated that sea lamprey nest construction
serves as a physical disturbance that may influence macroinvertebrate assemblages (Hogg et al.
2014). Also, nutrients from sea lamprey carcasses increased periphyton biomass and were assimi-
lated by several macroinvertebrate taxa (Weaver et al. 2016). Collectively, results from this and prior
studies indicate that physical and chemical changes brought about from sea lamprey spawning, and
subsequent nutrient liberation from carcasses, influence macroinvertebrate colonization on newly

Table 4. Mean individual macroinvertebrate mass (.1g) among N rock bag samples at each site. Treatment indicates the number of
sea lamprey carcasses added to each site. Similar superscript letter combinations depict similarities among sites from pairwise post
hoc tests. See Figure 1 and text for site locations and descriptions.

Site Treatment N Hydropsychidae Philopotamidae Simuliidae Chironomidae
1 Upstream control 10 163.1° 33437 108.7% 38.3°
2 8 172.0° 350.72 78.7° 36.3
3 Treatments 8 146.3 167.9% 67.1° 42.0°
4 7 125.3% 138.7° 62.6° 36.5°
5 6 140.4% 185.5°¢ 96.0° 35.2°
6 9 188.0%¢ 229,530« 122.2° 33.5°
7 6 227.5% 230.220< 85.1° 497°
8 9 150.4%c¢ 228.23bd 105.4% 47.0°
9 Downstream control 8 167.120cde 286.3204 133.22 4252

10 9 131.9%c¢ 256.020<d 126.72 25.9°
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cleaned and conditioned substrate. More broadly, the biotic and abiotic effects from migratory fish
may influence patch dynamics across interacting spatial and temporal scales.

There is ample research examining the role of migrating and spawning Pacific salmon and corre-
sponding effects on stream ecosystems (Janetski et al. 2009). However, the effects of other anadro-
mous fish species are not well studied, but our results suggest disparate ecological effects. Previous
research has demonstrated negative responses of macroinvertebrate abundance and richness to
salmon spawning. The large migrations and subsequent redd construction and spawning excavate
and scour the stream channel, reducing benthic invertebrate abundance, increasing drift, and offset-
ting any subsequent increases in productivity from post-spawned carcass nutrients (Moore and
Schindler 2008; Honea and Gara 2009; Lessard et al. 2009; Monaghan and Milner 2009; Tiegs et al.
2009). Contrary to these studies, our results and those of Hogg et al. (2014) suggest that sea lamprey
spawning disturbance may increase streambed habitat heterogeneity, and therefore create favorable
conditions (via increased interstitial spaces) for macroinvertebrate foraging. However, spawning dis-
turbance coupled with nutrient deposition from carcasses and elevated stream flows may elicit
taxon-specific responses. While our data are suggestive, future studies could test our hypothesis
more rigorously by examining changes in macroinvertebrate assemblages from intact nests with
nutrient supplementation from carcasses.

Nutrient deposition from post-spawned fish carcasses may influence macroinvertebrate coloniza-
tion on newly cleared and conditioned cobble substrate. In the current study, it is plausible that
Hydropsychidae, Philopotamidae, Simuliidae, and Chironomidae utilize the cleared substrate for
foraging and consume sloughed and drifting tissue from carcass decomposition. Prior research has
demonstrated corresponding increases in productivity and macroinvertebrate abundance and bio-
mass in response to added salmon carcasses in Pacific coast systems (Wipfli et al. 1998; Chaloner
and Wipfli 2002; Kohler and Taki 2010), and assimilation of sea lamprey carcass nutrients by scra-
pers (e.g. Heptageniidae) and collectors (e.g. Hydropsychidae) in Atlantic coast systems (Weaver
et al. 2016). However, these studies were not subject to the disturbance from migrating and spawn-
ing fish. In contrast, we generally observed lower macroinvertebrate abundance and biomass among
colonized rock bag samples in sites with added sea lamprey carcasses compared to the control sites.
Similar to previous studies with Pacific salmon, the patterns we observed were specific to certain
macroinvertebrate taxa. Among treatment sites receiving carcasses, we generally observed higher
abundance and biomass of Simuliidae, compared to the control sites, but lower abundance and bio-
mass of Hydropsychidae, Philopotamidae, and Chironomidae.

The physical and chemical disturbances from anadromous fish may further interact with other
environmental disturbances enacting on the stream landscape. We observed elevated stream flows,
likely at flood-stage levels, associated with precipitation from a spate, which may increase macroin-
vertebrate drift rates and reduce local abundance (Effenberger et al. 2008). Foraging capabilities
unique to macroinvertebrate functional feeding groups, and their response to disturbance, may
explain the observed patterns in abundance and biomass. We observed higher abundance of Simulii-
dae, and lower abundances of Hydropsychidae and Philopotamidae among treatment sites com-
pared to the control sites. These three taxa are largely collector/filterers that capture drifting
particles in the water column (Fuller and MacKay 1980; Wallace and Webster 1996). Generally, the
net-spinning caddisflies (e.g. Hydropsychidae) prefer swift moving waters (Philipson and Moor-
house 1974). However, Simuliidae are unique in that they occupy a feeding position on substrates
that minimizes energy expenditure (Wallace 1980), and demonstrate lower drifting rates with
increasing stream flow (Fenoglio et al. 2013). The increased stream flows we observed, which were
likely at flood levels, may have affected the treatment sites differently than the control sites through
differences in channel architecture (e.g. steeper banks; Naman et al. 2016). These differences in flow
rate may have further interacted with the carcass addition treatments, which favored Simuliid colo-
nization. Our work suggests that multiple disturbances (i.e. spawning disturbance, nutrient addition,
stream flooding) affect macroinvertebrate colonization among taxa differently. Stream communities
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may be influenced by the effects of patch dynamics altered by local resources (i.e. carcasses) and
local environmental factors (i.e. flood disturbance).

We used rock bags to mimic the substrate arrangement left from spawning sea lamprey, and we
believe they served as a representative surrogate for sea lamprey nests. We used substrate similar in
size to that of sea lamprey nests (Sousa et al. 2012; Hogg et al. 2014). Additionally, Hogg et al.
(2014) found Philopotamidae and Hydropsychidae were among the most abundant taxa found in
sea lamprey nest mounds compared to adjacent reference areas. We observed these two taxa com-
prise the majority of the macroinvertebrate assemblage among our rock bag samples. Therefore,
while we may not have accurately represented changes across the entire macroinvertebrate commu-
nity, we are confident that our samples reflect the colonization of macroinvertebrate assemblages
observed after sea lamprey spawning and nutrient deposition from carcasses.

Our Mantel tests revealed spatial autocorrelation among several macroinvertebrate taxa. Gener-
ally, adjacent rock bags contained similar macroinvertebrate assemblages than those farther away.
This may limit our ability to draw inferences from the results of our ANOVAs. The carcass nutrients
and associated macroinvertebrate assemblages from one treatment site may affect subsequent down-
stream treatment sites (i.e. a cumulative effect); however, Weaver et al. (2016) did not observe
cumulative downstream carcass nutrient effects. We attribute spatial autocorrelation among taxa to
the treatments we imposed on the stream and potentially differential effects of increased streamflows
in treatment sites relative to upstream control sites.

Among river landscapes, migratory fish may create a mosaic of heterogeneous habitats across
interacting spatial and temporal scales (Pringle et al. 1988; Campbell et al. 2012). Sea lamprey
migrate into freshwaters during the spring, a period of increasing temperature, and metabolic
demand for organisms (Hall 1972), and nutrient limitation (Norris 2012; Weaver et al. 2016). The
physical disturbances from sea lamprey spawning alter the benthos (Hogg et al. 2014), and their sub-
sequent death and decomposition supplement available nutrient pools and increase periphyton bio-
mass (Weaver et al. 2015; Weaver et al. 2016). Macroinvertebrates function as an integral
component in the cycling of nutrients and transfer of energy (Wallace and Webster 1996), and
therefore likely mediate the interaction of the physical and chemical bioengineering characteristics
of sea lamprey.
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