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ABSTRACT
In a mesocosm experiment, the growth and photosynthetic responses of
Vallisneria natans (Lour.) Hara was studied monthly in different water depths
under flowing and static water. Water depth showed a significant effect on
the shoot length, below-ground: above-ground biomass, and total biomass,
while water velocity showed only a significant effect on the total biomass.
In addition, total biomass and shoot length at 45, 75 and 105 cm was
higher in the flowing treatment than that in the static treatment, which
suggested that total biomass and shoot length are promoted by water flow
to some extent. All of the investigated photosynthetic showed different
changes with different months. Water depth exhibited significant effects on
the maximum photosynthetic efficiency Fv/Fm, the maximum electron
transport rate rETRmax, Chla, Chla + b and Chla/b, while water velocity
showed only significant effects on Chla, Chla + b, ETRmax. The rapid light
response curves varied differently with the time periods. In October, the
time-course of slow chlorophyll a fluorescence induction curves, Fm peak, in
the flowing treatment in 45, 75 and 105 cm is higher than that in the static
treatment. All the results demonstrated that the differences between
flowing and static water resulted in the different life strategy.
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Introduction

Vallisneria natans (Lour.) Hara, a perennial submerged clonal plant with a wide geographical range,
grows predominantly in still water such as lakes and ponds, or flowing water in streams, creeks and
rivers (Xu, Hu, Deng, Zhu, Zhou, and Liu 2016) where it is rooted in mud, silt or mixed sediment of
silt, sand and gravel. V. natans also plays an important role in the maintenance and stabilization of
freshwater ecosystems, such as providing food for waterfowl, nursery habitat for fishes and substrate for
invertebrates and purifying water quality (Li et al. 2005; Wu et al. 2009). Therefore, it is used frequently
to restore freshwater ecosystems in China (Xie et al. 2007). V. natans is widely distributed in shallow
water and its area and density are generally lower when distributed in deep water. Cao et al (2014) have
found that the suitable water depth for restoring V. natans is in the range of 100–140 cm in the region
with high water transparency. In habitat such as rivers, flowing water creates the water movement, while

CONTACT Feng He hefeng@ihb.ac.cn; Qiaohong Zhou qhzhou@ihb.ac.cn

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

JOURNAL OF FRESHWATER ECOLOGY
–237

https://doi.org/10.1080/02705060.2018.1432509
2018,    VOL. 33, NO. 1, 223

http://crossmarksupport.crossref.org/?doi=10.1080/02705060.2018.1432509&domain=pdf
http://orcid.org/0000-0002-3375-8358
http://orcid.org/0000-0002-3375-8358
mailto:hefeng@ihb.ac.cn
mailto:qhzhou@ihb.ac.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/02705060.2018.1432509
http://www.tandfonline.com


wind and artificial perturbation-induced waves generate turbulence in lakes (Schutten et al. 2005). In
such habitats, mechanical stress can result from exposure to water flow. Such stresses result ultimately
in negative effects on plant growth (Power 1996; Crossley et al. 2002). On the other hand, water flow
can have an indirect positive effect on plant growth. Moderate water motion can increase the flow of
chemicals across the boundary layer (Koch 1994; Hurd 2000), thus favoring metabolic processes and,
potentially, plant growth (Thomas et al. 2000; Stewart and Carpenter 2003).

Additionally, many studies reported that water depth is the most important environmental
factor influencing water transparency and hence survival and distribution of submerged plants
varies with depth (Milne et al. 2006; Cao et al. 2012; Zhu et al. 2012). Macrophytes are able to
grow only at water depths less than the maximum depth of macrophytes. Therefore, determin-
ing the optimal light requirement threshold to enable macrophyte growth is essential for mac-
rophyte recovery and aquatic system management (Collier et al. 2012). Thus, water depth is a
major environmental factor influencing the growth, reproduction and distribution of sub-
merged macrophytes (Strand and Weisner 2001; Wang et al. 2016; Xu, Hu, Deng, Zhu, and Li
2016). Submerged macrophytes exhibit high phenotypic plasticity in response to increasing
water depth. Morphological characteristics, such as plant length, ramet number, internodal
length and branch number may react to water depth (Zhu et al. 2012; Reckendorfer et al.
2013). Such adaptations are influenced by different photosynthetic efficiencies at low light
intensities (Yang et al. 2004; Eusebio Malheiro et al. 2013).

It is known that for submerged aquatic macrophytes in general, moderate water flow
improves leaf uptake of nutrients as well as uptake of dissolved inorganic carbon and oxygen
(Smith and Walker 1980; Larkum et al. 1989; Stevens and Hurd 1997). Although plastic
responses to water depth or water flow often have been reported for many aquatic plants (Ata-
paththu and Asaeda 2015; Baastrup-Spohr et al. 2016), there is a lack of information relating
plasticity in photosynthetic response of submersed plants to both water depth and water flow.
Chlorophyll fluorescence is strongly connected with plant photosynthesis and for this reason it
has been central to understanding the fundamental mechanisms of photosynthesis, the
responses of plants to environmental change and ecological diversity. In fact, chlorophyll fluo-
rescence from plants is a detectable signal which can be measured at some distance from the
studied sample in a non-intrusive way (Schreiber et al. 1995; Cerovic et al. 2002). The main pur-
pose of this study was to compare the effects of water depth on the growth and photosynthetic
properties of V. natans under flowing and static water, and to examine the interactions between
water flow, water depth and growth.

Methods

Plant materials

Seedlings of V. natans were collected from the Plant Experiment Station of Wuhan Botanical
Garden, CAS, and pre-cultured in tap water for acclimation. The sediment was collected from
East Lake, a highly eutrophic lake in Hubei Province, China. (total nitrogen (TN) = 3.894 §
0.152 mg/g DW, total phosphorus (TP) = 1.357 § 0.028 mg/g DW, and organic matter content =
7.032 § 0.194%, mean § SD, N = 6) and placed into pots (20 cm in diameter, 15 cm high) as the
planting substrate.

Experimental setup

The experiment was conducted in outdoor ponds. An engine outside of the raceways was installed
and drove a clear-water pump to create water flow. The power of the engine was adjusted to produce
demanded water velocities. Water flow was measured just above the sediment surface of each water
depth utilizing a warm bead thermistor flow meter. The velocity (0.3 m/s) used was comparable to
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the velocities found within Vallisneria plants in running water (0.01–0.1 m/s). The velocity in the
flowing ponds was controlled by the inlet valve and power of the pump. The measurement of water
velocity within macrophyte patches was measured by a hand-held and portable acoustic Doppler
velocimeter. The experiment lasted five months and was replicated three times.

Pond experiment

The seedlings were cultivated in 60 cm water depth. A week later, a total of 72 young seedlings with
similar size (3–4 leaves, <5 cm root, 30 cm long) were selected and transplanted individually to 24
small plastic trays (20 cm diameter £ 20 cm high) filled with 5.5 kg sediment. Three seedlings were
planted in each small plastic tray in a triangle arrangement. The small plastic trays were then placed
into the eight ponds. After transplanting the plants, the pond was fully filled with tap water. There
were four water depths (45, 75, 105 and 135 cm) and two water velocities (0 and 0.3 m/s) used in
this experiment in a random design.

Harvest and plant morphology

At harvest, plants were dug out by hand with care to collect as many roots belonging to plants as
possible and cleaned with tap water. The plants’ fresh weight was recorded. Plants were separated
into two parts: below-ground and above-ground. After drying at 80 �C for 72 h to constant weight,
the two parts were weighed to measure biomass production. Plant shoot length was calculated as the
average shoot length.

Measurements of chlorophyll (Chl) content and water chemistry

The total chlorophyll was extracted from 200 mg fresh apical shoots in 10 mL of 90% acetone in the
dark for 48 h at 25 �C. Then the supernatant was used to measure the absorbance with a spectropho-
tometer (Daojin uv-1800, Japan) at 645 nm and 663 nm, respectively. The chlorophyll (a and b)
content was calculated by the equations of Arnon (1949) and expressed in mg of pigments per g of
fresh weight. Physicochemical analyses were carried out at each site on each sampling date: tempera-
ture (Thermo ORION 5-STAR, US), light intensity (ZDS-10, shanghai), pH, dissolved oxygen (DO)
and conductivity were measured once at 1500 h every three days.

Chlorophyll fluorescence

Light response curves of chlorophyll a fluorescence were performed simultaneously with a Dual-
PAM-100 measuring system (Walz-Effeltrich, Germany) in detached, new, fully expanded leaves
collected from the top of the plant. Leaves were immediately dark adapted for 5 min (to obtain open
reaction centers (RCs)). A saturating pulse was applied to obtain the maximal fluorescence (Fm)
and then leaves were exposed for 5 min at each photosynthetic photon flux density (PPFD) (0, 27,
58, 131, 221, 344, 435, 665, 1033 and 1957 mmol photons m¡2 s¡1) in order to obtain steady state
readings. All the measurements were performed at room temperature. Recordings and calculations
were performed with the Dual-PAM 1.7 data analyses and control software, and the data were
retrieved from the software output (Walz-Effeltrich, Germany).

Statistical analyses

A fixed-model two-way ANOVA was used to evaluate effects of water depth and water flow on bio-
mass, below-ground: above-ground biomass and shoot length, while repeated measures ANOVA
was used to evaluate the pigment and chlorophyll fluorescence characteristics. Multiple comparisons
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of means of were performed using Duncan’s test at the 0.05 significance level. All plant data were
log-transformed and met assumptions of normality prior to analyses, and homogeneity was tested
using Levene’s test. The statistical package SPSS 22.0 was utilized for all analyses.

Results

Results of environmental factors during the experiment

Table 1 shows the environmental parameters such as pH, total suspended solids (TSS), DO, chloro-
phyll a (Chla), electrical conductivity (EC), total dissolved solids (TDS), water transparency (WT),
oxidation–reduction potential (ORP) and turbidity during the experiment. The parameters, pH,
DO, Chla, EC, ORP and turbidity in the static water were lower than that in the flowing water
(t test, df = 28, p < 0.05), while SD was higher (t test, df = 28, p < 0.05).

Figure 1 shows the water temperature and irradiance during the experiment. The water tempera-
ture in the flowing water was higher than that in the static water; additionally, the water temperature
generally exhibited no obvious change in the flowing water from 45 to 135 cm water depth.

Table 1. Water chemical conditions during the experiment.

Static Flowing

Parameter Mean § SD Mean § SD
pH 7.69 § 0.003 8.75 § 0.005
TSS (mg/L) 16.31 § 0.01 15.58 § 0.01
TN 0.32 § 0.05 0.49 § 0.078
TP 0.06 § 0.01 0.083 § 0.014
DO (mg/L) 6.32 § 0.023 7.64 § 0.034
Chla (mg/L) 1.53 § 0.47 2.78 § 0.53
EC (mS/cm) 198.0 § 0.31 254.0 § 0.57
TDS 760.2 § 1.34 756.2 § 1.04
WT (cm) 150 § 0.01 82.8 § 33.12
ORP (mV) ¡136.2 § 2.1 ¡98.2§ 1.5
Turbidity (NTU) 1.95 § 0.09 8.23 § 0.31

Figure 1. The water temperature and illumination of the sampling point of different water depths during the experiment.
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The water temperature showed a progressive decrease in the static water from 45 to 135 cm water
depth. Also, the irradiance in each pond showed a progressive decrease from 45 to 135 cm, but the
irradiance in the static water was higher than that in the flowing water.

Plant growth and morphology

Total biomass, the ratios of below-ground: above-ground biomass and shoot length of V. natans in the
experiment are shown in Figure 2. V. natans showed a significant increase in biomass with increasing
water depth in the static treatment; Total biomass was significantly lower in the static water than in
the flowing water (7–27 g per plant versus 3–13 g per plant). Total biomass increased from 3 to 13 g
per plant in the static water with increasing water depth from 45 to 135 cm, indicating that plant
growth was positively related to water depth. Statistical analysis showed that biomass accumulation
was significantly affected by both the water depth and water velocity (Table 2, p < 0.01).

The ratios of below-ground: above-ground biomass of V. natans were significantly affected by
water depth (Table 2), but not significantly by water velocity (Table 2, p > 0.05). Low water depth
usually resulted in a high root: shoot ratio. Of the four water depth treatments, the ratios of below-
ground: above-ground biomass were the highest in 45 cm in the flowing treatment (1.11 § 0.23).

The shoot length of V. natans responded positively to water depth in the static water. At the end
of the experiment, compared to the initial length (20 cm), the shoot length of V. natans increased
greatly, according to the final shoot average length of V. natans, the order from long to short in the
static treatments was: 135 cm (74.5 § 5.92 cm) > 105 cm (62 § 2.83 cm) > 75 cm (54.5 § 4.43 cm)
> 45 cm (20.5 § 0.58 cm). In the static water, the length of V. natans increased about 3.4 times,
while the length of V. natans increased about 2.1 times in the flowing water.

Pigment analysis

All the investigated pigment indices Chla, Chlb Chla + b and Chla/b showed different changes with
different months, water depth showed significant effects on Chla, Chla + b, Chla/b, while water
velocity showed only significant effects on Chla, Chla + b (Table 3). The Chla, Chlb, Chla/b and
total Chl concentrations are presented in Figure 3. In the static treatment, Chla concentrations were
0.17 § 0.04, 0.21 § 0.05, 0.20 § 0.02 and 0.27 § 0.01 mg/g FW for 45, 75, 105 and 135 cm, respec-
tively, in October, which were much lower than in June, July, August and September. Differently, in
the flowing water, the Chla concentrations in August were lower than other months. Analogously,
in the flowing water, the Chlb was 0.06 § 0.01, 0.07 § 0.02, 0.05 § 0.01 and 0.06 § 0.01 mg/g FW
for 45, 75, 105 and 135 cm, respectively, in September, which was obviously lower than other
months. In October, total Chl concentrations in the static water were 0.23 § 0.06, 0.27 § 0.07,
0.24§ 0.03 and 0.35§ 0.02 mg/g FW for 45, 75, 105 and 135 cm, respectively, which were obviously
lower than other months. The concentration tendencies of Chla, Chlb and total Chl in both the
static water and the flowing water were all the same; however, in October, Chla/b ratio in the static
water were 2.52 § 0.27, 4.07 § 0.15, 4.94 § 0.71 and 3.58 § 0.33 for 45, 75, 105 and 135 cm, which
were obviously lower than the corresponding water depth in the flowing water (3.30 § 0.47, 7.16 §
0.97, 6.98 § 0.41, 5.12 § 0.73). Different from the result above, Chla/b ratio in the static water in
October except in the 45 cm was significantly higher than other months.

The maximum photosynthetic efficiency (Fv/Fm) and rETRmax

The maximum photosynthetic efficiency (Fv/Fm) and the maximum electron transport rate (rET-
Rmax) showed different changes with different months, and water depth had significant effects on
Fv/Fm and rETRmax. In contrast, water velocity showed only significant effects on ETRmax (Table 3).
Figure 4 shows the differences in Fv/Fm of V. natans in the static and flowing treatments. Fv/Fm in
the static water were 0.62 § 0.05, 0.60 § 0.02, 0.64 § 0.05, 0.69 § 0.06 and 0.63 § 0.13 in 45 cm for
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Figure 2. Total biomass, the ratios of below-ground: above-ground biomass and shoot length (cm) (means § SD) of Vallisneria
natans grown in the experiment treatments.

Table 2. F-values and significance of two-way ANOVA of the effects of water depth and water velocity on total biomass, below-
ground: above-ground biomass and shoot length of V. natans.

Dependent variable Water depth (D) Water velocity (V) D £ V

Total biomass 15.27��� 18.32��� 8.58���

Below-ground: above-ground biomass 17.47��� 1.304 1.69
Shoot length 78.48��� 2.36 5.13��

���p < 0.001.
��p < 0.01.
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June, July, August, September and October, respectively, which showed little change, but in the flow-
ing water Fv/Fm in 45 cm was 0.59 § 0.06, 0.48 § 0.03 and 0.59 § 0.04 for June, July and August,
respectively, which was obviously lower than that in September (0.72 § 0.02) and October (0.75 §
0.02). Overall, Fv/Fm in 45 and 75 cm were lower than that in 105 and 135 cm. Additionally, Fv/Fm
in June and July < October and September < August.

Table 3. F-values and significance of repeated measures ANOVA results showing water depth and flowing water effects on Chla,
Chlb, Chla + b, Chla/b, Fv/Fm and ETRmax of V. natans from June to October during a five-month growth period.

Dependent variable Month (M) Water depth (D) Water velocity (V) D £ V M £ D M £ V M £ V £ D

Chla 78.08��� 8.22�� 14.52�� 12.46��� 2.95�� 110.27��� 2.55�

Chlb 145.11��� 0.92 0.20 10.62��� 3.62�� 55.92��� 2.57�

Chla + b 100.79��� 5.91�� 8.05� 13.54��� 2.35� 102.24��� 2.58�

Chla/b 7.01��� 3.77� 0.21 2.71 5.28��� 28.39��� 6.19���

Fv/Fm 26.46��� 24.41��� 0.73 0.443 2.89� 3.26� 1.56
ETRmax 26.85��� 15.11��� 10.66�� 3.01 6.45��� 14.66��� 2.43�

���p < 0.001.
��p < 0.01.
�p < 0.05.

Figure 3. Chlorophyll content in Vallisneria natans. Chlorophyll concentrations were evaluated, on a fresh weight basis, in different
water depths at static and flowing water treatment, over a period of five months. (A) Molar concentration of chlorophyll a. (B)
Molar concentration of chlorophyll b. (C) Molar concentration of chlorophyll a + b. (D) Chlorophyll a to b molar ratio. Values are
means with standard deviations (n = 3).
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In the static water, rETRmax (5.17 § 0.71 mmol¢m¡2s¡1) was the lowest in 135 cm in
October and the highest in 105 cm in July (11.57 § 1.11 mmol¢m¡2s¡1). In the flowing water,
rETRmax was the highest (13.07 § 2.43 mmol¢m¡2s¡1) in 75 cm in October and the lowest
(6.83 § 0.87 mmol¢m¡2s¡1) in 45 cm in September. Overall, rETRmax in 45 and 135 cm
were lower than that in 75 and 105 cm. Additionally, rETRmax in September < August and
October < July < June.

Figure 4. The maximum photosynthetic efficiency (Fv/Fm) and rETRmax of Vallisneria natans during the experiment. Values are
means§ SD (n = 3).
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Rapid light response curves (RLCs) of V. natans

A further conclusion can be drawn based on the results of the RLCs. The RLCs are similar to the tra-
ditional oxygen-based photosynthesis irradiance (PeI) curve (Figure 5). When the intensity of the
light limits V. natans, we see a linear rise, and the RLCs become a plateau as the photosynthetic
pathway becomes limited.

Influence of water depth on the plant photosynthesis is also reflected in the ability to respond to
the light levels. In the light response curve, the change of low light intensity phase curve is of impor-
tant significance. Rapid light response curve (RLC) is the electron transfer rate curves of light inten-
sity, rapid determination of light response curve can determine the actual photochemical efficiency
of V. natans. If the light is not excessive, electron transport rate (ETR) and photosynthetic active
radiation (PAR) is linear. When the light is excessive, the incidence of PAR and ETR is no longer
linear, with a lower linear relationship between estimated values. Finally, ETR reaches saturation,
which represents the photosynthetic electron transfer ability that is dependent on the physiological
status and environmental factors. Figure 5 shows that the rapid kinetic curves of V. natans, the pho-
tosynthetic electron transfer rate increases with the increase of light intensity through the electron
transfer of Photosystems II (PSII). When the light intensity increases to a certain value, the ETR
does not increase, and shows a stable or slightly downward trend. In June, at 45 cm, when the PAR
was 65–107 mmol m¡2s¡1, the electron transfer rate was no longer increasing. In 105 cm, when the
PAR was 107—178 mmol m¡2s¡1, the electron transfer rate reached the maximum value. In June, in
the same water treatment group, the photosynthetic electron transport capacity varied in 45, 75, 105
and 135 cm water depth, of which electronic transfer ability in 45 cm was the strongest, the electron
transfer ability in 135 cm was relatively weak, significantly lower than that of other water depths.
The ETR is significantly related to net photosynthetic rate of the plant, the dynamic changes of pho-
tosynthetic rate are consistent with the ETR. As a result, in June, photosynthetic capacity of V.
natans is relatively strong in 75 cm, while photosynthetic capability of V. natans is weak in 135 cm.
In July, both in the static water and flowing water, the electron transfer capacity is the strongest in
105 cm. In August, in the flowing water the photosynthetic capacity in 45 cm is the strongest, while

Figure 5. Mean relative electron transport rate (rETR) of rapid light response curves (RLCs) of Vallisneria natans. Values are means
§ SD (n = 3).
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in the static water the photosynthetic capacity in 105 cm is the strongest. In September, in the static
water and the flowing water, the electron transfer capacity shows no significant difference.

At the end of the experiment, time-course of slow chlorophyll a fluorescence induction curves of
V. natans exhibits different curves in different water depths in October. In 45, 75 and 105 cm, Fm
peak in the flowing treatment is higher than that in the static treatment, while in 135 cm the curve
trend is opposite to the results above (Figure 6). With the decline of temperature and light, plant
decayed, and the electron transfer capacity decreased significantly in both the static water and the
flowing water.

Discussion

This study compared the growth and photosynthetic responses of V. natans to a different water
depth gradient under flow and static water. Water depth can affect the underwater temperature,
nutrients, DO, etc. which is the synthesis of multiple factors (He et al. 2009). Water depth has an
important effect on the intensity of light into the water, and greater water depth can reduce the
intensity of light absorbed and utilized by submerged plants in water. The intensity of light
decreases, which is not conducive to the germination, growth and distribution of submerged plants.
The underwater light environment in aquatic systems, including the intensity and spectral composi-
tion, varies greatly with water depth (Zhang et al. 2012; Shi et al. 2014). At the same time, because of
water power disturbance, V. natans in the depths of 45, 75, 105 and 135 cm under the static water
experienced more different water temperatures, much longer periods of low temperatures, and
more intense illumination than V. natans under the flowing water during the experiment. Addition-
ally, in static water, there were much Spirogyra adhering on the leaves of V. natans. Indeed, meta-
bolic processes may be reduced in standing water by limited chemical flow across the boundary
layer and under these conditions. Flowing water can improve leaf uptake of nutrients as well as dis-
solved inorganic carbon, and oxygen. Moreover, while at medium velocities, growth and photosyn-
thesis of submerged macrophytes are usually promoted and there is a positive correlation between
biomass and velocity (Madsen and Sondergaard 1983; Chambers et al. 1991; Madsen et al. 1993).

Figure 6. Time-course of slow chlorophyll a fluorescence induction (PAM) of Vallisneria natans in October.
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Contrarily, constraints resulting from hydrodynamic stress contribute to modifications in shape
of leaves, spatial organization of plant biomass, type of clonal growth and offspring production
(Ferreiro et al. 2013).

Growth and morphology of V. natans adapting to the environment

Previous studies emphasize that morphological adaptations, such as reduction in the leaf number,
are the result of aquatic plant response to hydrodynamic stress (Puijalon et al. 2007; Rooney et al.
2013). Morphological adaptations reducing damage risk have also been identified in plants exposed
to mechanical stress. In this study, in the static water, the shoot length of V. natans increasing
greater, about 3.4 times, while in the flowing water is relatively small, about 2.1 times. The ratios of
below-ground: above-ground biomass in the 45 cm in the flowing water was higher than that in the
static water. This result was consistent with that a size reduction to leaves exposed to flow, together
with an increased allocation to below-ground organs (Idestam-Almquist and Kautsky 1995; Bagger
and Madsen 2004), would result in weak forces and a greater anchoring effectiveness, thus reduce
the uprooting risk (Crook and Ennos 1996; Niklas 1998; Puijalon et al. 2005). In the 45, 75 and
105 cm, the plant biomass was higher in the flowing treatment than that in the static treatment,
which demonstrated that shifts in biomass allocation reflect an adaptive response to water flow. The
results are similar to those from Puijalon et al. (2007); specifically, that water flow leads to increased
clonal growth and biomass production and decrease in body size. It seems that this life strategy – a
balance in flowing water – enhances the ability to survive.

Pigment content changes of V. natans adapting to the environment

Chla is the main component of the photosynthetic RC complex, and the photosynthetic pigments
that perform energy conversion. Depending on its protein environment, Chla functions either as a
light harvester, or as a redox participant in the primary charge separation in the RCs of PSII and
Photosystem I (PSI) (Clegg and Govindjee 2010; Renger 2010). Chlb is the main composition of
light-harvesting proteins complex, whose primary role is absorbing and transferring solar energy.

Measurements of the pigment concentrations reveal pronounced differences between the static
and flowing water. It has been demonstrated that when leaves are exposed to relatively low-intensity
illumination, the Chl concentration rises and the Chla/b ratio declines (Lakshmi Praba et al. 2011).
Chla/b ratio values in the flowing water were higher than that in the static water, which illustrates
that the water movement was of certain influence on the synthesis of chlorophyll, and further pro-
moted the photosynthesis level of the plant, and slowed down the leaf senescence of V. natans.

The increase of Chlb promotes the content of light-harvesting complex proteins, while the num-
ber of grana and grana lamella could also be promoted (Anderson et al. 1973). Therefore, it could be
concluded that the high content of pigment was an adaptation to the relatively low-intensity illumi-
nation, which could also explain the low value of the Chla/Chlb ratio. Woolhouse argued that as the
leaf senescence, content of chlorophyll gradually declined, and chlorophyll a fell faster than chloro-
phyll b, so chlorophyll a/b was available as the leaf senescence index (Woolhouse 1974). The V.
natans in static water were exposed to relatively higher levels of illumination, and thus Chl content
was the most important for achieving the maximum potential photosynthesis (Lambers et al. 2008).

Responses of PSII to environmental changes

Measurements of Chla fluorescence provide information on photosynthesis, including the energy
absorption, distribution and utilization (Phinney and Cucci 1989; Zhang et al. 2007). The parame-
ters Fv/Fm and rETRmax were both analyzed in order to evaluate the changes in the photosynthetic
activity of V. natans in the static and flowing treatments. The parameter rETRmax expresses the max-
imum photosynthetic capacity, obtained when the photosynthetic rate is limited by the activity of
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the electron transport chain or Calvin cycle enzymes (Ralph and Gademann 2005; Serôdio et al.
2006).

The maximum quantum yield of PSII, as measured by Fv/Fm, has been widely used as a potential
indicator of environmental and chemical stress-induced perturbations in the photosynthetic appara-
tus (Schreiber et al. 2007). Fv/Fm of V. natans was approximately 0.73 s, which is similar to that
recorded for other Vallisneria spp. (e.g. Hulsen et al. 2002). Overall, the parameters Fv/Fm in 45 and
75 cm were lower than that in 105 and 135 cm. The results of the chlorophyll fluorescence investiga-
tion could further demonstrate the different physiological conditions of V. natans in the experiment.
In 45 cm, it is likely that the flowing water can improve the plant growth compared to static water.
This greater growth may be due to the improved foliar uptake of nutrients and/or dissolved inor-
ganic carbon. Water depth is an integrative index, however, does not affect plant growth in isolation,
but instead affects plant growth in conjunction with sediment and other factors such as light inten-
sity, water pressure and stability of environmental factors, wave and velocity of flowing (Maurer and
Zedler 2002; Xu et al 2011). Such adaptations are favored by different photosynthetic efficiency at
low light intensities (Eusebio Malheiro et al. 2013), as changes in biomass allocation and morphol-
ogy can enhance performance and optimize resource acquisition (Vretare et al. 2001). Light drives
photosynthesis, leading to the production of oxygen and carbohydrates required for plant growth
(Ralph et al. 2007; Liu et al. 2016). The study showed that the value of Fv/Fm in 45 cm in the static
water was significantly higher than that in the flowing water, which suggested that the V. natans
had relatively greater photosynthetic efficiency in the flowing water. Based on the analysis, chloro-
phyll content in V. natans decreased, the largest photochemical efficiency and electron transfer
capacity decreased subsequently, resulting in a decline in photosynthetic efficiency. The result for
Fv/Fm was similar to the findings relating to the concentrations of Chla, Chlb and total Chl. There-
fore, in comparison with the V. natans in the flowing water, it can be proposed tentatively that the
V. natans might experience greater damage from the environment, which could reduce their relative
photosynthetic efficiency. The RLCs could reflect a similar result with regard to the fluorescence
induction kinetics. There were significant differences between the plant in the static and flowing
water in terms of the photochemical and non-photochemical quantum yields of PSII.

Conclusions

In conclusion, our experimental results proved that V. natans can respond to different long-term
water depths under flowing and static water by morphological adaptations and changes of the physi-
ological characteristics, and so on. Additionally, changes of physiological indexes in V. natans such
as chlorophyll content and photosynthetic characteristics make plant morphology and biomass
change obviously. Our results demonstrated that water depth and water velocity could be considered
in the recovery of the submersed macrophytes in shallow lakes. Hence, we conclude that the results
of this study could provide a potential theoretical basis reference for restoration and rehabilitation
of submerged macrophytes.
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