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On the banks of the Red Cedar: toward socio-ecologically
robust riparian management in an iconic Michigan river

Andrew K. Carlsona,b,c, Annika F. Lintvedtc, Allison N. Luchenbillc,
Allison M. Irwinc, Samantha A. Heilerc, Allison R. Kowalskic, Payton S. Burgerc,
Nadine E. Nahrac, Caitlin J. Weathersc, Sundeep Dhanjalc and
Christopher R. Yatoomac

aCenter for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan
State University, East Lansing, MI, USA; bEcology, Evolutionary Biology, and Behavior, Michigan State
University, East Lansing, MI, USA; cBiological Sciences Program, College of Natural Science, Michigan
State University, East Lansing, MI, USA

ABSTRACT
Land use is continually evolving in river watersheds and riparian
zones, particularly in areas containing dense human populations
requiring infrastructure development. Land use planners in south-
central Michigan, USA, are challenged to balance infrastructure
needs with the ecological integrity of the iconic Red Cedar River,
which flows through the Michigan state capital (Lansing) and sur-
rounding suburban and rural areas and supports freshwater dia-
toms, mussels, fishes, and other organisms. Although land use
goals in the Red Cedar River watershed include protecting riverine
biodiversity, decision-makers need a systematic method for pre-
dicting and mitigating effects of land use change on the river
ecosystem. We developed a framework for evaluating habitat
associations of diatoms and native unionid mussels in the Red
Cedar River using field collections and mixed-effects modeling to
facilitate socio-ecologically informed riparian management.
Diatoms were significantly more abundant and genus-rich in rif-
fles and pools than runs, whereas mussels were more abundant
in riffles than pools, with intermediate run abundance. Diatom
relative abundance was most affected by pH (þ effect), depth
(þ), and water temperature (þ), similar to diatom genus richness
(pH and depth þ). Mussel relative abundance was best explained
by depth (–), pH (þ), and percent forest cover (þ), similar to mus-
sel length (depth þ, pH –). Results from this study underscore
riparian management strategies for optimizing forest cover, depth,
and pH to promote ecologically favorable conditions for diatoms
and mussels in the Red Cedar River (e.g. stable, near-neutral pH;
diverse tree species with �60% forest cover). Advancing under-
standing of aquatic biota and their habitats, this research provides
a foundation for socio-ecologically balanced land use planning in
the Red Cedar River and other riverine ecosystems.
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Introduction

Rivers and streams are “arteries” of their surrounding landscapes that transport water
from the land to lakes and oceans, supply clean water, control floods, and provide recre-
ational opportunities. However, these ecosystems are vulnerable to land use alteration
(Rosso and Cirelli 2013), climate change (Woodward et al. 2010), groundwater with-
drawal (Winter 2007), and associated threats to biotic communities and habitats
(Hershkovitz et al. 2015; Kanno et al. 2015). Land use has a particularly important bear-
ing on managers’ ability to conserve riverine biota and habitats because it can change
frequently, across a range of spatiotemporal scales, and with diverse hydrological and
ecological effects. For instance, watershed and riparian land use influences river runoff,
discharge, evapotranspiration, percolation, groundwater recharge, water temperature, in-
stream habitats, and biotic assemblages (e.g. fishes; Compagnucci et al. 2001; Diana
et al. 2006). Clearly, land use conditions and alterations have important hydrological
and ecological ramifications in riverine ecosystems, yet these impacts vary among rivers
and biota (Bosmans et al. 2017).

Effects of land use change in rivers are particularly strong for biota that are sensitive
to physical and chemical habitat alterations. For instance, freshwater diatoms are generally
negatively affected (with respect to abundance or community structure) by organic pollu-
tion and nutrient enrichment (e.g. nitrates, nitrites, phosphates; Dela-Cruz et al. 2006;
Potapova and Charles 2007; Feio et al. 2009), increased substrate embeddedness (Griffith
et al. 2002) and suspended solids (Feio et al. 2009), and riparian vegetation disturbance
caused by agriculture (Griffith et al. 2002). Diatom community structure is also regulated
by river pH (Yangdong et al. 1996; Orendt 1998), water temperature (Richter et al. 2016),
and flow regime (i.e. patterns of discharge and current velocity; Potapova 1996), which
can change in response to land use alteration (e.g. tree removal adjacent to rivers can
decrease pH and increase discharge; Saarinen et al. 2013; Levy et al. 2018). Interactions
among multiple environmental gradients (e.g. alkalinity, total phosphorus, riparian habitat
type), rather than single gradients alone, are known to regulate diatom community com-
position (Snell and Irvine 2013). Moreover, effects of local, reach-scale habitat variables
on diatom communities are often nested within the context of entire watersheds, suggest-
ing that diatom studies should incorporate several spatial scales and environmental gra-
dients (Snell and Irvine 2013). Overall, the environmental sensitivity of freshwater
diatoms – along with their wide geographic distribution, numerical abundance, and well-
established autecology (Feio et al. 2009) – makes them excellent indicator organisms and
compelling subjects for riverine research, particularly in the context of land use change.

Unionid mussels are also indicators of freshwater biodiversity and ecosystem health
(Aldridge et al. 2007) that provide important ecological services. Mussels transfer
nutrients from the water column to sediments and recycle them through food webs
(Vaughn et al. 2004; Spooner and Vaughn 2006), excrete nutrients and thereby stimulate
primary (Vaughn et al. 2007) and secondary (Howard and Cuffey 2006) production, and
store nutrients in their body tissues that are eventually used by other organisms (Spooner
2007). Likewise, mussels move energy from the water column to sediments (Vaughn and
Hakenkamp 2001; Nichols et al. 2005), enhance resource acquisition by other mussels
(DiDonato and Stiven 2001), and convert food into fine particulate organic matter used
by other organisms (Raikow and Hamilton 2001; Howard and Cuffey 2006). Moreover,
mussels supply habitat for other aquatic organisms via attachment to their shells, or
otherwise improve habitat by stabilizing sediments or biodepositing organic matter
(Spooner and Vaughn 2006; Vaughn and Spooner 2006; Vaughn et al. 2008).

430 A. K. CARLSON ET AL.



Despite their ecological importance, freshwater mussels are among the most imperiled
animal groups in the world due to habitat loss, pollution, land use change, and invasive
species (Vaughn 2010; Cao et al. 2015), making it imperative for conservation scientists
and managers to understand how environmental factors influence their distribution and
abundance. Mussel communities differ based on flow regime such that species that prefer
hydrologically stable sites (e.g. Elliptio dilatata; Di Maio and Corkum 1995) tend to be
most abundant in flow refugia, areas where riverbed sediments are stable during high-dis-
charge events (e.g. inner and outer banks; Strayer 1999; Zigler et al. 2008; Smit and
Kaeser 2016). As such, abundance of these species tends to be negatively associated with
stream power (i.e. rate of energy dissipation against stream bed and banks) and bankfull
sheer stress, in contrast to species that occupy hydrologically variable habitats such as
mid-channels and point bars (e.g. Fusconaia flava; Di Maio and Corkum 1995; McRae
et al. 2004; Smit and Kaeser 2016). Another important reach-level factor that influences
mussel community structure is channel slope, higher values of which promote siltation
and destabilization of stream substrates and thereby decrease mussel abundance (Arbuckle
and Downing 2002; Gangloff and Feminella 2007; Cao et al. 2015). However, large-scale
factors such as geology, land use, catchment size, climate (e.g. temperature, precipitation,
growing degree days) also influence mussel community structure and warrant consider-
ation by researchers and managers because they can regulate the effects of smaller-scale
factors (e.g. substrate type and stability; Atkinson et al. 2012; Cao et al. 2015; Smit and
Kaeser 2016). For instance, land use changes or natural disturbances that degrade water
quality or modify flow regimes decrease mussel abundance and diversity (Arbuckle and
Downing 2002; Haag and Warren 2008).

In addition to examining how environmental factors influence diatom and mussel
communities, it is important to consider how these taxa interact. Richter et al. (2016) dis-
covered that diatom species richness (but not diversity) was lower in German river sites
with unionid mussels than those without mussels due to a combination of mussel filtra-
tion, grazing activity, and nutrient recycling (Allen et al. 2012; Atkinson et al. 2013).
However, in rivers in Oklahoma, USA, sites containing unionid mussels had higher dia-
tom relative abundance than sites without mussels (Atkinson et al. 2013), likely because
mussels provided physical habitat for diatom attachment or stimulated diatom production
by translocating nutrients and materials. The diversity of diatom-mussel relationships sug-
gests they depend on the particular diatom/mussel species present in rivers or the extent
to which mussels modify local environmental conditions experienced by diatoms (Vaughn
et al. 2008).

The Red Cedar River arises in south-central Michigan, USA, and flows through the
Michigan state capital (Lansing) and Michigan State University (MSU), where the river is
an iconic component of the aesthetic appeal and cultural identity of the university and
surrounding communities in south-central Michigan. Land use change is frequent in the
Red Cedar River watershed due to continual maintenance of and modifications to the
infrastructure of MSU and nearby municipalities (e.g. roads, buildings, parking struc-
tures). These changes could have ecological consequences in the Red Cedar River and its
riparian zone (e.g. decreased vegetation; increased runoff, sedimentation, water tempera-
ture, acidity; Diana et al. 2006), but such impacts have not been thoroughly researched,
particularly with regard to potential effects on diatom and mussel communities. Although
the MSU Campus Master Plan (CMP; Michigan State University 2017) and the basin-
wide Watershed Management Plan (WMP; Campbell et al. 2015) specify goals to balance
the needs of river-dependent human populations and aquatic biota (e.g. minimize nega-
tive water quality impacts, protect biodiversity, enhance environmental stewardship), land
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use planners need a systematic method for predicting and mitigating the effects of infra-
structural changes on the Red Cedar River ecosystem. Moreover, the recent occurrence of
property-damaging floods in the Red Cedar River (e.g. spring 2017 and 2018), and the
riparian predominance of green ash (Fraxinus pennsylvanica) – which is threatened by
the invasive Emerald Ash Borer (Agrilus planipennis) – highlight the need to understand
ecological relationships to inform Red Cedar River management. For instance, how do
water temperature changes affect river biota (e.g. diatoms, native unionid mussels)? How
does riparian habitat quality (e.g. forest cover) impact the abundance and distribution of
river organisms? How can river managers balance ecological concerns with socioeconomic
needs? These and related questions have not been thoroughly addressed in the Red Cedar
River, yet they are invaluable for socio-ecologically informed riparian management and
land use planning.

Given that land use in the Red Cedar River basin is evolving (Campbell et al. 2015),
with potential effects on in-stream and riparian habitats and biota, our goal was to
assess relationships between diatom and mussel communities and habitat parameters
sensitive to land use change (e.g. forest cover, water temperature; Diana et al. 2006) to
inform river management. We emphasized diatoms and mussels because they are indi-
cators of freshwater biodiversity and ecosystem health (Aldridge et al. 2007; Feio et al.
2009) and, in the case of mussels, highly threatened by habitat degradation and inva-
sive species (Vaughn 2010; Cao et al. 2015). Indeed, 19 of Michigan’s 45 unionid mus-
sels are listed by the state as endangered, threatened, or of special concern (Badra and
Goforth 2003). Our first objective was to compare community characteristics of dia-
toms (i.e. abundance, genus richness [number of genera]) and native unionid mussels
(i.e. abundance, length) among habitat types (i.e. riffle, run, pool) in the Red Cedar
River. Our second objective was to measure the effects of land use-sensitive habitat
parameters (i.e. depth, forest cover, pH, water temperature, nitrate concentration) on
diatom and mussel communities using multiple regression models and associated pre-
dictions regarding how future changes in these parameters will impact river biota.
Combining results from these objectives, we offer recommendations for socio-ecologic-
ally balanced riparian management and land use planning in the Red Cedar River
basin. We hypothesized that diatom abundance and genus richness would be greatest
in habitats with abundant hard surfaces for biofilm accumulation (generally rocks and
root wads in the Red Cedar River; Kelly et al. 2005). Because the Red Cedar River con-
tains abundant diatom attachment surfaces (e.g. cobbles, boulders, root wads) in riffles
and fewer surfaces in runs and pools, we expected diatoms to be most abundant and
genus-rich in riffles. We also predicted that diatom abundance and genus richness
would increase with water temperature and pH (Patrick 1971; Planas 1996), decrease
with forest cover and depth (i.e. shading, reduced temperature; Cantonati et al. 2009),
and decline with increasing mussel abundance due to mussel grazing activity (Richter
et al. 2016). We hypothesized that abundance and length of mussels (i.e. Elliptio dila-
tata in the study area) would peak in runs because they have a balance of moderate
velocity and relatively stable sediments that promote flow refugia (Smit and Kaeser
2016), in contrast to pools (mid-channel habitats with unstable sediments in the study
area) and riffles (high-velocity habitats with relatively shallow water where predators
[e.g. raccoons, Procyon lotor] are known to forage in the study area; pers. obs.). We
predicted that mussel abundance and length would increase with forest cover, pH, and
water temperature (Williams et al. 1993; Hincks and Mackie 1997) and be maximized
at intermediate depth (i.e. balance of velocity and sediment stability; Cyr 2008).
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Methods

Study area

The Red Cedar River (Figure 1) originates near Cedar Lake in Livingston County,
Michigan, before flowing 80 km northwesterly to its confluence with the Grand River (a
major tributary of Lake Michigan) in Lansing, Michigan. The river drains 122,000 ha as it
flows through rural agricultural lands, suburban communities, and urban areas such as
Lansing (Ball et al. 1969). The Red Cedar River watershed is primarily composed of culti-
vated crops, pasture, and hay (35%) but also encompasses grassland/shrubland (23%),
wetland and open water (17%), developed land (15%), and forest (10%; Campbell et al.
2015). Forest cover is generally deciduous (e.g. oak [Quercus spp.], maple [Acer spp.],
hickory [Carya spp.]) but includes some conifers (e.g. spruce [Picea spp.], cedar [Thuja
spp.]). The Red Cedar River is fed by 12 major tributaries totaling 1,086 km distributed in
19 subwatersheds on generally flat topography (gradient 0.45 m/km) with gentle rolling
plains (Campbell et al. 2015). Geology in the upper 10 km of the Red Cedar River water-
shed is dominated by end moraines of coarse-textured till, followed by a downstream
stretch of approximately 15 km composed of medium-textured glacial till (Campbell et al.
2015). Middle reaches of the Red Cedar River (n¼ 25 km) contain glacial outwash (i.e.
sand, gravel) and postglacial alluvium, whereas the lower 30 km of the river is dominated
by medium-textured glacial till. The Red Cedar River is recreationally important for
canoeing, kayaking, wildlife watching, biking/walking (on adjacent trails), and angling for
species such as smallmouth bass (Micropterus dolomieu), northern pike (Esox lucius), rock
bass (Ambloplites rupestris), and bluegill (Lepomis macrochirus).

Diatom collection

Diatom samples were collected from the Red Cedar River on the MSU campus in
October 2017 in three distinct habitat types: riffles, runs, and pools. Diatoms were col-
lected using a consistent protocol in each habitat type wherein researchers selected collec-
tion surfaces (i.e. rocks) with attached biofilms in locations of the river with similar,
relatively slow velocities (Kelly et al. 2005). Using stiff, clean toothbrushes initially rinsed
in river water, researchers repeatedly scraped rocks for 10 seconds to displace diatoms and
biofilm particles for collection in polypropylene centrifuge tubes (50mL, wide opening)
positioned immediately downstream of rocks (Feio et al. 2009; Nagy 2011; Richter et al.
2016). The close proximity of sampling tubes to rocks ensured that samples accurately
represented diatom abundance and were not affected by potential influences of surround-
ing water velocity (unlikely because velocity and diatom collection methods were consist-
ent among sites).

Diatom samples were collected such that habitat types were replicated (riffles [n¼ 3],
runs [n¼ 3], and pools [n¼ 2]). Within each individual habitat, diatoms were collected
from at least two randomly chosen rocks. All habitats were revisited four times between 3
October, 2017 and 31 October, 2017. For each sampling period, diatoms were collected
following the original protocol on the same rocks using surfaces adjacent to but distinct
from those used in prior weeks to avoid potential biases associated with previous sam-
pling and accurately represent diatom communities (Richter et al. 2016). In addition, the
following environmental data were collected during each sampling period at each sam-
pling location: depth (m), water temperature (�C), pH, percent forest cover (i.e. percent
of riparian zone composed of mature canopy trees, averaged across right and left banks),
and nitrate concentration (mg/L). Diatom samples were transported to the laboratory
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immediately after collection, so a sample preservative was not necessary (Kelly et al.
2005). Diatom samples were affixed to microscope slides and identified using standard
methods (Kelly et al. 2005; Feio et al. 2009; Richter et al. 2016) involving Naphrax diatom
mountant (Brunel Microscope Ltd., United Kingdom; Sabbe et al. 2003) and a NikonVR
upright microscopes (40� objective lens, 100� when necessary).

Mussel collection

Researchers collected native unionid mussels (i.e. Elliptio dilatata) in October 2017 at the
same habitats where diatoms were sampled (i.e. n¼ 3 riffles, n¼ 3 runs, n¼ 2 pools).
Sampling locations were shallow and clear, so reliable sampling representative of the mus-
sel population was achieved using timed searches by hand and sediment excavation with
a D-framed net (depth =10 cm; Hornbach and Deneka 1996; Badra and Goforth 2003;
Deiner and Altermatt 2014). In each habitat, mussels were collected from at least two ran-
domly selected 1.5-�1.5-m quadrats for a total of 10minutes per quadrat (Chowdhury
et al. 2016). Mussels were enumerated, and shell lengths (cm) were measured using
Vernier calipers (Aldridge 1999). Mussels were collected in the same habitats four times
between 3 October, 2017 and 31 October, 2017. A consistent collection protocol was used
for each sampling period, but quadrats were placed at different locations to avoid poten-
tial biases associated with prior collection.

Statistical analysis

We expressed diatom and mussel abundance as relative abundance or catch-per-unit-
effort (i.e. # diatoms/microscope slide, # mussels/quadrat) to enable reliable comparisons
among samples from different locations and thus accurate interpretation of spatial pat-
terns in abundance (Bonar et al. 2009; Rodriguez-Ramos et al. 2015). Because mussels are
relatively long-lived and likely respond less to instantaneous environmental measurements
than to long-term trends, we used data spanning the year prior to mussel collection (i.e.
October 2016–October 2017) to calculate mean annual depth, pH, and water temperature
at each sampling site. We then evaluated mussel abundance and length relative to these
long-term data. However, instantaneous environmental measurements collected in
October 2017 were used to assess diatom relative abundance and genus richness (# gen-
era/microscope slide) as these organisms are short-lived and have fast turnover times. All
data related to diatoms (i.e. relative abundance, genus richness), mussels (i.e. relative
abundance, length), and environmental factors were normally distributed and homosce-
dastic as revealed by Shapiro-Wilk and Levene’s tests, respectively. Differences in mean
diatom relative abundance among riffles, runs, and pools were tested using one-way ana-
lysis of variance (ANOVA) with post hoc Tukey’s Honestly Significant Difference tests
(a¼ 0.05). The same procedure was used to evaluate among-habitat differences in mean
diatom genus richness, mean mussel relative abundance, and mean mussel length. Linear
and polynomial regressions between forest cover and organismal characteristics (i.e. dia-
tom relative abundance and genus richness, mussel relative abundance and length) were
performed to assess the potential existence of riparian forest management targets (i.e. lev-
els of forest cover beyond which organismal characteristics increase rapidly). Forest cover
was used for these analyses because it is more controllable by managers than other envir-
onmental factors (e.g. depth, pH). Linear and polynomial regressions were used to
account for potential linear or non-linear relationships between forest cover and organis-
mal characteristics.
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Linear mixed-effects models (random intercept) were developed to evaluate the effects
of land use-sensitive habitat variables (i.e. depth, forest cover [For], pH, water tempera-
ture [Temp], nitrate concentration) on diatom relative abundance and genus richness and
mussel relative abundance and length. Model intercepts were allowed to vary by habitat
type (i.e. riffle, run, pool). All models followed the structure of global models with associ-
ated assumptions:

Response ¼ a þ Depth þ For þ pH þ Temp þ Nitrate þ 1jHabitatð Þ þ e
b ¼ N 0;Dbð Þ
e ¼ N 0;Deð Þ

b; e independent

(1)

where “Response” represents an organismal response variable (i.e. diatom relative
abundance/genus richness, mussel relative abundance/length), a represents the model
intercept, and e denotes the model error. It was assumed that random effects b and errors
e were normally distributed with mean zero and variance Db and De, respectively. It was
also assumed that b and e were independent.

For each organismal variable, 10 a priori models were generated to represent multiple
working hypotheses (Chamberlain 1965) about the effects of land use-sensitive habitat
variables on diatoms and mussels (see Introduction). Models were compared with an
information-theoretic approach using bias-corrected Akaike’s information criterion (AICc;
Burnham and Anderson 2002). Multimodel inference was performed via full-model aver-
aging (Lukacs et al. 2009) for models comprising >90% cumulative Akaike weight (wi) to
make robust inferences from all informative models (i.e. those containing parameters that
reduce model deviance; Burnham and Anderson 2002; Arnold 2010). All analyses were
performed in program R (RStudio Desktop version 1.1.423; RStudio 2015).

Results

Diatoms

Diatom sampling produced 2,417 individuals representing 18 genera (Table 1). Compared to
runs, riffles and pools had greater diatom relative abundance (F2,56=5.91; p< .01; Figure 2a)
and genus richness (F2,56=4.69; p= .01; Figure 2b). Linear mixed-effects modeling indicated
that diatom relative abundance was best explained by a model including pH, depth, and
water temperature, but not percent forest cover (wi=0.76; Table 2). An alternative model
including only pH and depth also received moderate statistical support (DAICc =3.08;
wi=0.16; Table 2). The individual models and the model-averaged estimator (Table 3)
included positive effects of pH, depth, and water temperature on diatom relative abundance.

Diatom genus richness was best explained by a model containing pH, depth, and
depth:pH (i.e. interaction of depth and pH; wi=0.71; Table 4). Other models including pH
and depth (DAICc =3.56; wi=0.12) and pH alone (DAICc =4.10; wi=0.09; Table 4)
received moderate statistical support. The individual models and the model-averaged esti-
mator (Table 3) included positive effects of pH and depth and a negative effect of
depth:pH on diatom genus richness.

Native unionid mussels

Mussels (n¼ 579 total) were significantly more abundant in riffles than pools (F2,11¼ 4.01;
p¼ .04), with runs having intermediate relative abundance (Figure 3). Mussel relative
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abundance increased as the riparian zone became more forested, particularly as forest
cover increased above 60% (R2¼ 0.78; p< .01; Figure 4). Mussels were measurably (but
not statistically) longer in runs (mean 6.96 cm) than riffles (4.34 cm) and pools (4.19 cm;
F2,11¼ 1.61; p¼ .24). Linear mixed-effects modeling indicated that mussel relative abun-
dance was best explained by a model including depth and pH (wi¼ 0.73; Table 5). An
alternative model containing pH and forest cover also received moderate statistical support
(DAICc¼ 3.66; wi¼ 0.12; Table 5). The individual models and the model-averaged estima-
tor (Table 3) included positive effects of depth, pH, and forest cover on mussel relative
abundance. Mussel length was best explained by a model including depth and pH
(wi¼ 0.91; Table 6). Other mussel length models were developed but did not receive suffi-
cient AICc support to be considered informative, so model averaging was not performed.

Discussion

As we hypothesized, diatoms were more abundant and genus-rich in riffles than runs,
which likely reflected the prevalence of rocky and woody substrates (i.e. diatom attach-
ment surfaces) in riffles. Comparatively high diatom abundance and genus richness in
pools was surprising but likely resulted from the occasional presence of boulders and logs
in these habitats. Diatom relative abundance was best explained by pH (þ relationship),
depth (þ), and water temperature (þ), similar to diatom genus richness (pH þ, depth
þ), as in previous research (Yangdong et al. 1996; Orendt 1998; Richter et al. 2016).
Percent forest cover had a relatively small effect on diatom abundance and genus richness
compared to other habitat variables, in contrast to our hypothesis. pH is known to exert a
strong influence on freshwater diatom assemblages (Douglas and Smol 1995; De Nicola
2000), which is consistent with our findings, helping fill a knowledge gap regarding pH
preferenda of Red Cedar River diatoms. Many diatom species have preferences for fairly
narrow pH ranges (van Dam et al. 1994), with abundances generally decreasing as condi-
tions become more acidic (Planas 1996). However, reported pH levels at which diatom
abundance declines precipitously (i.e. between 3.5 and 4.5; Charles 1985; De Nicola 2000)
are far more acidic than the pH range documented herein (6.6–7.1). Hence, Red Cedar

Table 1. Diatom genera sampled in October 2017 in the Red Cedar River, Michigan.

Genus October 3 October 10 October 17 October 31 Total

Achnanthes 15 7 25 2 49
Amphora 27 97 112 5 241
Bacillaria 12 3 7 2 24
Caloneis 10 13 32 8 63
Cocconeis 18 18 7 2 45
Cyclotella 19 14 28 2 63
Cymatopleura 9 28 9 3 49
Cymbella 76 23 29 3 131
Diatoma 226 34 31 3 294
Gomphonema 72 20 158 8 258
Gyrosigma 59 5 6 3 73
Melosira 57 38 62 13 170
Navicula 97 105 90 24 316
Nitzschia 105 23 91 10 229
Rhoicosphenia 36 36 31 9 112
Surirella 35 1 50 4 90
Synedra 37 29 56 6 128
Tryblionella 28 22 26 6 82
Total 938 516 850 113 2,417
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River diatoms were comparatively sensitive to pH during fall sampling, becoming signifi-
cantly less abundant and genus-rich with even slight acidic deviations from neutral pH.

Diatom abundance and genus richness also increased with water depth. Although
depth-distribution profiles have been evaluated for diatoms in Lake Michigan, USA

Figure 2. Comparison of (a) mean diatom relative abundance (#/microscope slide) and (b) mean genus richness (#
genera/microscope slide) in riffles, runs, and pools in the Red Cedar River. Different letters denote significant differen-
ces between habitat types as determined ANOVA by Tukey’s Honestly Significant Difference tests (a¼ 0.05). Error bars
represent ±1 SEM.

Table 2. Results of linear mixed-effects modeling to explain variation in diatom relative abundance (RelAb, #/micro-
scope slide) in the Red Cedar River, Michigan as a function of depth (m), forest cover (For, %), pH, water tempera-
ture (Temp, �C), and the interaction of depth and water temperature (Depth:Temp).

Model N K AICc DAICc wi

RelAb¼Depthþ pHþ Tempþ (1jHabitat) 8 4 595.48 0.00 0.76
RelAb¼Depthþ pHþ (1jHabitat) 8 3 598.56 3.08 0.16
RelAb¼Depthþ Forþ pHþ (1jHabitat) 8 4 600.47 4.99 0.06
RelAb¼Depthþ Tempþ (1jHabitat) 8 3 605.78 10.29 <0.01
RelAb¼Depthþ Forþ Tempþ (1jHabitat) 8 4 608.21 12.72 <0.01
RelAb¼ Forþ pHþ (1jHabitat) 8 3 608.62 13.14 <0.01
RelAb¼Depth:Tempþ Tempþ (1jHabitat) 8 3 609.20 13.71 <0.01
RelAb¼Depth:Tempþ Forþ Tempþ (1jHabitat) 8 4 611.62 16.13 <0.01
RelAb¼Depthþ (1jHabitat) 8 2 612.04 16.55 <0.01
RelAb¼ Tempþ (1jHabitat) 8 2 612.50 17.02 <0.01

AICc: bias-corrected Akaike’s information criterion; DAICc: difference in AICc between each model and the most sup-
ported model; K: number of parameters; N: number of habitats sampled; wi: Akaike weight (relative strength of evi-
dence for each model).
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(Kingston et al. 1983), these relationships are less understood in Michigan rivers and
streams, particularly the Red Cedar River. Freshwater diatoms are influenced to varying
degrees by depth gradients (Stevenson and Stoermer 1981; Cantonati and Lowe 2014)
because environmental conditions change with depth. For instance, as depth increases,
light becomes less available due to reduced sunlight penetration and shading from phyto-
plankton higher in the water column, conditions that can be expected to reduce diatom
abundance and genus richness (Cantonati et al. 2009). However, the portion of the Red

Table 3. Equations for model-averaged estimators (except mussel length) to explain variation in diatom relative
abundance (#/microscope slide), diatom genus richness (# genera/microscope slide), and mussel relative abundance
(#/quadrat) as a function of environmental factors (i.e. depth [m], forest cover [%], pH, water temperature [�C]) in
the Red Cedar River, Michigan.

Taxa Response variable Model

Diatoms Relative abundance Y¼ –979.93þ 17.67�Depth þ137.32� pH þ2.13� Temp
Genus richness Y¼ –43.49þ 3.07�Depth – 0.34�Depth:pH þ7.08� pH

Mussels Relative abundance Y¼ –225.76 – 73.25�Depth þ0.29� For þ43.80� pH
Length (not model averaged) Y¼ 138.87þ 9.54�Depth – 20.50� pH

Depth, pH, and water temperature are expressed as weekly measurements across the fall season for diatoms and
annual means for mussels.

Table 4. Results of linear mixed-effects modeling to explain variation in diatom genus richness (GRich, # genera/
microscope slide) in the Red Cedar River, Michigan as a function of depth (m), forest cover (For, %), pH, water tem-
perature (Temp, �C), the interaction of depth and pH (Depth:pH), and the interaction of depth and water tempera-
ture (Depth:Temp).

Model N K AICc DAICc wi

GRich¼DepthþDepth:pHþ pHþ (1jHabitat) 8 4 294.13 0.00 0.71
GRich¼Depthþ pHþ (1jHabitat) 8 3 297.70 3.56 0.12
GRich¼ pHþ (1jHabitat) 8 2 298.24 4.10 0.09
GRich¼Depth:Tempþ pHþ (1jHabitat) 8 3 300.96 6.82 0.02
GRich¼Depthþ pHþ Tempþ (1jHabitat) 8 4 301.01 6.87 0.02
GRich¼Depth:pHþ pHþ (1jHabitat) 8 3 301.56 7.43 0.02
GRich¼Depth:pHþDepthþ Tempþ (1jHabitat) 8 4 302.76 8.63 0.01
GRich¼Depth:pHþ pHþ Tempþ (1jHabitat) 8 4 304.87 10.74 <0.01
GRich¼Depthþ Forþ pHþ (1jHabitat) 8 4 306.06 11.93 <0.01
GRich¼Depth:pHþ Forþ pHþ (1jHabitat) 8 4 309.93 15.80 <0.01

AICc: bias-corrected Akaike’s information criterion; DAICc: difference in AICc between each model and the most sup-
ported model; K: number of parameters; N: number of habitats sampled; wi: Akaike weight (relative strength of evi-
dence for each model).

Figure 3. Comparison of mean mussel relative abundance (#/quadrat) in riffles, runs, and pools in the Red Cedar
River. Different letters denote significant differences between habitat types as determined ANOVA by Tukey’s Honestly
Significant Difference tests (a¼ 0.05). Error bars represent ±1 SEM.

JOURNAL OF FRESHWATER ECOLOGY 439



Cedar River studied herein was relatively shallow (generally <1 m) and clear, meaning
light limitation with increasing depth was unlikely to appreciably influence diatom abun-
dance and genus richness. This was contingent on high water clarity, as excess sedimenta-
tion due to factors such as riparian habitat degradation could reduce water clarity and

Figure 4. Linear regression between mean mussel relative abundance (#/quadrat) and percent forest cover in the Red
Cedar River. Error bars represent ±1 SEM.

Table 5. Results of linear mixed-effects modeling to explain variation in mussel relative abundance (RelAb, #/quad-
rat) in the Red Cedar River, Michigan as a function of forest cover (For, %), mean annual depth (m), mean annual
pH, mean annual water temperature (Temp, �C), mean annual nitrate concentration (mg/L), the interaction of depth
and pH (Depth:pH), and the interaction of forest cover and pH (For:pH).

Model N K AICc DAICc wi

RelAb¼Depthþ pHþ (1jHabitat) 8 3 81.80 0 0.73
RelAb¼ Forþ pHþ (1jHabitat) 8 3 85.46 3.66 0.12
RelAb¼Depthþ Forþ (1jHabitat) 8 3 85.61 3.81 0.11
RelAb¼Depthþ For:pHþ (1jHabitat) 8 3 89.26 7.46 0.02
RelAb¼Depth:pHþ Forþ (1jHabitat) 8 3 89.53 7.73 0.02
RelAb¼Depth:pHþ Tempþ (1jHabitat) 8 3 90.93 9.13 0.01
RelAb¼Depth:pHþNitrateþ (1jHabitat) 8 3 92.18 10.38 <0.01
RelAb¼ For:pHþ Tempþ (1jHabitat) 8 3 94.41 12.61 <0.01
RelAb¼ For:pHþNitrateþ (1jHabitat) 8 3 96.87 15.07 <0.01
RelAb¼Depthþ Forþ pHþ (1jHabitat) 8 4 131.33 49.53 <0.01

AICc: bias-corrected Akaike’s information criterion; DAICc: difference in AICc between each model and the most sup-
ported model; K: number of parameters; N: number of habitats sampled; wi: Akaike weight (relative strength of evi-
dence for each model).

Table 6. Results of linear mixed-effects modeling to explain variation in mussel length (cm) in the Red Cedar River,
Michigan as a function of forest cover (For, %), mean annual depth (m), mean annual pH, mean annual water tem-
perature (Temp, �C), mean annual nitrate concentration (mg/L), the interaction of depth and pH (Depth:pH), and the
interaction of forest cover and pH (For:pH).

Model N K AICc DAICc wi

Length¼Depthþ pHþ (1jHabitat) 8 3 60.25 0 0.91
Length¼Depthþ Tempþ (1jHabitat) 8 3 65.50 5.25 0.07
Length¼DepthþNitrateþ (1jHabitat) 8 3 68.99 8.74 0.01
Length¼Depth:pHþ Tempþ (1jHabitat) 8 3 69.39 9.14 0.01
Length¼ Forþ pHþ (1jHabitat) 8 3 71.05 10.8 0.00
Length¼Depthþ Forþ (1jHabitat) 8 3 72.55 12.3 0.00
Length¼Depth:pHþNitrateþ (1jHabitat) 8 3 72.89 12.64 0.00
Length¼Depthþ For:pHþ (1jHabitat) 8 3 76.41 16.16 0.00
Length¼Depth:pHþ Forþ (1jHabitat) 8 3 76.52 16.27 0.00
Length¼Depthþ Forþ pHþ (1jHabitat) 8 4 119.85 59.6 0.00

AICc: bias-corrected Akaike’s information criterion; DAICc: difference in AICc between each model and the most sup-
ported model; K: number of parameters; N: number of habitats sampled; wi: Akaike weight (relative strength of evi-
dence for each model).
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light penetration and thereby influence diatom abundance and genus richness. However,
the study area had abundant forest cover provided by riparian trees and shrubs, which
helped maintain high water clarity and prevented a potential reduction in diatom abun-
dance with riparian shading (Michels et al. 2006). Our results indicate that the most
important factors regulating fall diatom abundance and genus richness in the Red Cedar
River (e.g. depth, pH) operate independent of riparian shading, as documented in other
streams (Hl�ubikov�a et al. 2014). Hence, it is important to continue monitoring relation-
ships between depth, pH, and diatom communities in the Red Cedar River given the
potential for fluctuations in discharge, sediment, and acidity due to anthropogenic influ-
ences at MSU (e.g. infrastructure development) and throughout the watershed (e.g. water
withdrawal, climate change; V€or€osmarty et al. 2000; Sophocleous 2004). After all, Peters
(1959) documented seven genera of Red Cedar River diatoms (i.e. Cocconeis, Cyclotella,
Cymbella, Diatoma, Gomphonema, Navicula, Synedra), whereas 18 genera were observed
in the present study. This suggests a temporal change in genus richness, reflecting poten-
tial alterations in depth, pH, water temperature, or combinations of these factors and fur-
ther supporting the importance of long-term diatom monitoring across multiple
environmental gradients in the Red Cedar River (Snell and Irvine 2013).

Water temperature had a positive effect on diatom abundance (but not genus richness)
in the Red Cedar River. Diatom metabolism is regulated by water temperature such that
growth and reproduction (and hence abundance) generally increase in warmer environ-
ments, as documented herein. Diatoms have been classified into cold water (<15 �C),
temperate (15–25 �C), and warm water (>25 �C) forms based on optimum temperature
ranges for growth (Patrick 1971). Water temperatures in the present study ranged from
5.9 to 20 �C, suggesting the occurrence of cold-water and temperate diatoms. Temperate
genera evidently predominated, as the overall positive temperature-abundance relationship
suggests that increased abundances of temperate species between 15 and 20 �C (and
declines between 5.9 and 15 �C) numerically outweighed the opposite trends exhibited by
cold-water genera. Although water temperature has measurable effects on diatom com-
munities (Richter et al. 2016), it was a less important predictor than depth and pH in the
present study. Red Cedar River managers can control the latter factors by protecting and
rehabilitating riparian buffer zones to mitigate fluctuations in depth (e.g. erosion, sedi-
mentation) and pH (e.g. increased acidity due to runoff) and thereby benefit diatom
communities.

Native unionid mussels were abundant in riffles and relatively scarce in pools, indicat-
ing that riffles had suitable water velocity and stable sediments preferred by Elliptio dila-
tata (Di Maio and Corkum 1995). Mussels were also relatively abundant in runs, which
likely offered favorable water velocity and sediment stability. However, contrary to our
hypothesis, these factors evidently did not cause greater mussel abundance in runs than
riffles, similar to Hegeman et al. (2014). Low mussel abundance in pools supported our
hypothesis and suggests unstable sediments and lack of flow refugia during high-discharge
events (Di Maio and Corkum 1995; Smit and Kaeser 2016).

Mussel relative abundance was best explained by depth (–), pH (þ), and forest cover
(þ). Similarly, mussel length was best explained by depth (þ) and pH (–). Mussel depth
distributions are limited by physical forces (e.g. exposure to winds, wave action) and
thermocline depth in inland lakes, such that maximum densities occur at intermediate
depths that have relatively low turbulence, stable sediments, and abundant food (Cyr
2008). The negative relationship between depth and mussel abundance observed herein
suggests that deeper habitats (e.g. pools) in the Red Cedar River were generally unfavor-
able for mussels, likely due to smaller, less stable sediments than shallower, nearshore
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areas with larger, more stable substrates that provide flow refugia during high-discharge
events (Strayer 1999; Smit and Kaeser 2016). Indeed, sediment particle size is known to
be positively correlated with mussel abundance in Michigan rivers (Badra and Goforth
2003). This relationship is reflected in Figure 3, as mussel abundance increased from
pools (generally sand and silt) to riffles (cobbles and boulders), reflecting an increase in
sediment size, stability, and flow refugia for mussels (Di Maio and Corkum 1995; Smit
and Kaeser 2016). Like diatoms, freshwater mussels are sensitive to changes in pH (Rooke
and Mackie 1984; Hincks and Mackie 1997) and depth (Cyr 2008). Strongly acidic condi-
tions and declines in pH can impede ion exchange and cause mussels to lose calcium to
the external environment (Hunter 1990), both of which impair metabolism, reduce
growth (e.g. length), and increase mortality. Mussels are particularly responsive to pH
changes in certain Michigan rivers, including Hannah Creek (eastern Upper Peninsula),
where a pH decline of only 0.06 (from 8.23 to 8.17) removed mussels from population
surveys (Harriger et al. 2009). Similarly, mussels in the Red Cedar River responded posi-
tively to pH via increased relative abundance over a relatively small pH range (6.6–7.1).

The positive relationship between native unionid mussel abundance and forest cover
likely reflects the importance of riparian trees in minimizing erosion and siltation, which
are major threats to native unionid mussel populations, along with channel modification,
habitat destruction, and invasive species (Williams et al. 1993; Hanlon et al. 2009).
Siltation, often caused by sediment erosion resulting from riparian deforestation and agri-
cultural practices that degrade stream banks, is an especially important threat in the Red
Cedar River basin due to relatively high agricultural land use (35%; Campbell et al. 2015).
Hence, Red Cedar River managers should partner with the agricultural stakeholders to
maintain and expand riparian tree coverage as a way to sustain mussel abundance and
diversity (Morris and Corkum 1996; Cosgrove et al. 2017) and promote the aesthetic ben-
efits of forested landscapes at MSU and in surrounding river communities (Michigan
State University 2017). Riparian conservation is critical amid range expansion of Emerald
Ash Borer (EAB), which has invaded southeast Michigan and threatens hundreds of mil-
lions of ash trees throughout the state (Herms and McCullough 2014). Because green ash
is predominant on the banks of the Red Cedar River, the ability of river managers and
citizens to mitigate the spread of EAB (via restricted wood movement, insecticide treat-
ment, active monitoring and research, etc.) has implications for the health of aquatic biota
in the river. This is especially true for native unionid mussels, the abundance of which
increased rapidly above 60% forest cover. It is important for Red Cedar River managers
to implement a riparian conservation program that simultaneously protects green ash
trees and enhances tree diversity to buffer against potential forest and mussel community
changes resulting from EAB invasion. Restoration plantings of silver maple (Acer sacchari-
num), red maple (A. rubra), willow (Salix spp.), eastern cottonwood (Populus deltoides),
and other floodplain species to meet or exceed 60% forest cover would be an effective
way to promote tree diversity and achieve goals of the CMP, offering opportunities for
the MSU and surrounding communities help sustain floodplain forests and mussel popu-
lations. Such plantings would also reduce runoff, erosion, and sedimentation, which
would help stabilize pH, mitigate declines in depth, and thereby maintain or enhance dia-
tom abundance and genus richness, as documented herein.

Although our study was not designed to comprehensively evaluate interactions between
diatom and mussel communities in the Red Cedar River, our data suggest that such inter-
actions exist. Diatoms were most abundant and genus-rich (Figure 3) in pools, where
mussels were least abundant (Figure 4). Likewise, diatoms were least abundant and genus-
rich in runs, where mussels were abundant. Relative to riffles and pools, runs had
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environmental conditions that were more conducive for diatom growth and abundance
(i.e. greater pH and water temperature). Thus, relatively low diatom abundance in runs
suggests mussel grazing pressure (Richter et al. 2016). Both diatoms and mussels were
abundant in riffles (Figures 3 and 4), likely due to the preponderance of rocky and woody
substrates, which simultaneously provide diatom attachment surfaces and flow refugia
(e.g. non-turbulent areas adjacent to submerged rocks and logs) that are preferred by cer-
tain mussel species (Smit and Kaeser 2016), including Elliptio dilatata (Di Maio and
Corkum 1995). In addition, water velocity in riffles of the Red Cedar River is likely
slower, on average, than the threshold velocities that mussels can tolerate, allowing mus-
sels to persist despite documented predation by raccoons (pers. obs.), which is evidently
not severe enough to appreciably influence mussel abundance. Overall, we recommend
that diatom-mussel interactions, particularly spatiotemporal patterns in the occurrence of
commensalism versus diatom grazing by mussels, are focal points for future Red Cedar
River research.

In conclusion, our research advances scientific understanding of the habitat associa-
tions of Red Cedar River biota that are ecologically important and, in the case of native
unionid mussels, threatened by habitat alterations resulting from land use changes. In so
doing, this study informs land use planning in the Red Cedar River watershed, offering
decision-makers important ecological data for river management and infrastructure devel-
opment (e.g. road, sidewalk, and bridge construction/refurbishment). In particular, ripar-
ian management strategies should be designed to optimize forest cover, depth, and pH to
promote ecologically favorable conditions for diatoms and native unionid mussels (e.g.
stable, near-neutral pH; diverse tree species with �60% forest cover) and infrastructure
development to support vibrant human communities. Overall, our research furnishes a
framework for studying habitat associations of aquatic biota in ways that facilitate socio-
ecologically robust riparian management in an iconic Michigan river.
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