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ABSTRACT

Resonance frequency detuning (RFD) is a piezoelectric-based vibration reduction approach

that applies to systems experiencing transient excitation through a system resonance. Particu-

larly, this vibration reduction technique can be applied to turbomachinery experiencing changes

in rotation speed, such as on spool-up and spool-down. This technique relies on the inclusion of

piezoelectric material and manipulation of its electrical boundary conditions, which control the

stiffness of the piezoelectric material—the open-circuit condition corresponds to the high stiffness

state of the material and the short-circuit condition corresponds to the low stiffness state. When

placed in a region of high strain, the altered stiffness of the piezoelectric material causes a global

stiffness change in the system. Resonance frequency detuning takes advantage of this effect by

switching from the open- to the short-circuit stiffness state as the excitation approaches resonance,

subsequently detuning the structure from the excitation and reducing the vibratory response.

Although other piezoelectric vibration techniques exist that allow for a greater reduction of the

response (spanning the range from passive to active approaches), these techniques suffer draw-

backs when applied to systems with tight size and power requirements, such as a turbomachinery

environment. Resonance frequency detuning simplifies these approaches by relaxing some of these

requirements by creating a large broadband vibration reduction approach with limited power, cir-

cuitry, and signal processing requirements. For this approach, the peak response dynamics are
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determined by the system’s sweep rate, modal damping ratio, electromechanical coupling coeffi-

cient, and most importantly, the trigger—represented here in terms of excitation frequency—that

initiates the stiffness state switch.

Like all dynamic analyses, understanding the system response for a range of various design

parameters requires an accurate model. In this thesis, a piezoelectric bimorph model is derived

using the assumed modes method to analyze the RFD approach. Validation is provided by a finite

element model constructed with the Abaqus FEA software package using both static and dynamic

analyses. The assumed modes approach is the preferred method in this thesis as it more readily

allows for optimization and parametric studies due to its computational speed and efficiency. Addi-

tionally, this model can be nondimensionalized and simplified by applying the analysis to a single

mode, effectively reducing the equations to those of a mass-spring-damper system with a varying

stiffness due to the piezoelectric electrical boundary conditions. Although direct numerical inte-

gration can be used to solve for the system response it is computationally expensive; an analytical

solution is applied as it shows the excellent computational speed, especially at slower frequency

sweep rates, that is needed to perform a large number of simulations. Significantly, this approach

must be modified and rescaled to account for the altered system natural frequency following the

stiffness state switch.

This thesis identifies the optimal frequency-based switch trigger over a range of sweep rates,

damping ratios, and electromechanical coupling coefficients that minimizes the peak of the system

response envelope. This optimal switch trigger is primarily a function of the electromechanical

coupling coefficient and the phase of vibration at which the switch occurs. As the coupling co-
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efficient increases, the frequency-based switch trigger decreases approximately linearly with the

square of the coupling coefficient. Furthermore, the optimal stiffness switch occurs on peak strain

energy; however, the degradation in vibration reduction performance associated with a switch oc-

curring at a non-optimal phase is negligible for typical sweep rates and modal damping ratios

expected in a turbomachinery application.

In a physical application, perfect knowledge of the system may not be possible and an alternate

method of determining the optimal switch utilizing an easily measurable parameter is necessary.

Such a parameter may be as simple as the open-circuit piezoelectric voltage, or could involve

additional processing such as a smoothed derivative of the rectified voltage. As such, the thesis

also identifies a potential control law using the open-circuit piezoelectric response envelope and

its derivatives. The optimal switch triggers collapse to a near linear trend when measured against

the response envelope derivatives and, subsequently, an empirical control law is extracted. This

control law agrees well with and produces a comparable response to that of the optimal control

determined using perfect and complete knowledge of the system.
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CHAPTER 1

INTRODUCTION

In recent years, turbomachinery technology has trended towards the use of integrally bladed ro-

tors (IBRs), otherwise known as monolithic bladed disks or blisks. These blisks shown in Fig. 1.1a,

can be either machined from one piece of material, the blades can be welded onto the rotor, or can

be manufactured using a composite lay-up [1, 2]. The previous approach in turbomachinery blade

technology was a disk with separate blade attachments; these blades were typically attached in

either radial or circumferential slots as shown in Fig. 1.1b. Because monolithic blisks eliminate

the blade attachment required by their counterparts, they have lower parts count and weight, in

addition to increased aerodynamic efficiency, reduced drag, and decreased fuel consumption. The

blisk is not without its disadvantages, however. If the blisk blades become damaged, individual

blades cannot be replaced easily and repair becomes more difficult: perhaps an entire blade can be

welded to the blisk, but often the approach is to remove and replace the entire blisk [1]. Essentially

relevant here, the removal of the blade attachment fixture eliminates a source of frictional damping,

a side effect of this attachment, thus leading to a decrease in intrinsic damping. This problem is sig-

nificant due the high vibratory environment and subsequently large vibratory stresses experience

by these blisks.
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(a) Compressor blisk

manufactured by GE

(from [3])

(b) Disk and separate blade attachment

(from [4])

Figure 1.1: Turbomachinery bladed disk assembly techniques

1.1 Turbomachinery Blade Vibration

Turbomachinery blades are inherently exposed to a high stress environment ranging from large

static stresses due to the centrifugal loading at high rotation speeds as well as the high pressure

and temperature of the airflow. Perhaps most dangerously, however, are the vibratory stresses due

to the aerodynamic forcing caused by the fluid-structure interaction between the rotor blades and

stator or guide vanes. The complex dynamics of this flow field arise from a number of sources

including the viscous wake produced by the stator vanes, vortex shedding at the stator vane trail-

ing edge, flutter, and potential flow disturbances. Because both the stator vanes and rotor blades

are lifting surfaces, their presence and relative motion in the airflow induce these potential flow
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disturbances and pressure variations are developed. Following the stator vanes are pockets of high

and low pressure; the rotation of the rotor blades through these pressure pockets leads to a peri-

odic aerodynamic forcing that can be idealized as a sinusoid with constant amplitude [5]. If the

rotation speed of the engine is constant, this periodicity leads to a harmonic excitation. Varying

the engine rotation speed, such as during spool-up and spool-down, results in an excitation with a

time-varying frequency.

Figure 1.2: Campbell diagram showing rotation dependent excitation frequencies (gray dashed lines)

with corresponding engine order N and blade natural frequencies (solid lines) (from [6])

A convenient way of examining this rotation dependent excitation is the Campbell diagram,

an example of which is shown in Fig 1.2. The excitation frequency (gray dashed lines) increases

linearly as the rotation speed of the engine increases. The rate that this frequency increases is de-

pendent on the engine order of excitation N that describes the number of times a rotor blade passes

an alternating pressure pocket in one revolution. The excitation frequency is then N multiplied

by the rotation speed of the engine. This diagram also shows the rotation dependent natural fre-
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quencies of the blade (solid lines) due to the varying centrifugal loading and corresponding altered

blade stiffness. Trouble arises when this excitation frequency nears the blade natural frequency,

resulting in resonance and large blade vibrations.

For monolithic blisks, this resonance crossing is especially troublesome because the blades

lack the damping necessary to limit these large vibrational deflections and, over a large number

of flight cycles, high-cycle fatigue occurs. To exhibit the possibility of this occurrence, Fig 1.3

shows the failure of a compressor blisk of a Saab 340 passenger aircraft. On May 23, 2001, this

aircraft had to abort takeoff due to right engine failure. After investigation of this event, the Aus-

tralian Transportation Safety Board concluded that the failure was due to slow crack propagation

and ultimately, fracture of one of the blades of the compressor blisk causing damage throughout

downstream engine components. This catastrophic failure of the blisk was found to be caused by

the high-cycle fatigue encountered by the blisk during its many flight cycles [7].

Figure 1.3: Failure of compressor blisk in Saab 340 aircraft with the fractured blade indicated

(from [7])
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1.2 Resonance Frequency Detuning

To combat these large deflections in blisks, alternate vibration reduction approaches have been

proposed; one such method is that of resonance frequency detuning (RFD). Originally proposed

by Kauffman and Lesieutre [6], this method reduces vibration by intelligently altering the stiff-

ness state of the blade as it approaches a resonance crossing. Referring again to the Campbell

diagram in Fig. 1.2, by following the two stripe mode (labeled ’2S’ and designated in purple) and

an excitation with engine order N = 10, a resonance crossing exists at a rotation speed of 3950

RPM. The RFD method can be explained by examining a zoomed portion of this crossing shown

in Fig 1.4. The blade originally operates in its designed stiffness state (2S1). As rotation speed

increases and resonance approaches, a switch is made to a lower stiffness state (2S0), detuning the

response from that of excitation. After this resonance crossing is passed, a switch is then made

back to the original stiffness state to preserve the intended design. Although resonance cannot be

completely avoided because of the continuous nature of this varying stiffness state, this switch is

nearly instantaneous, resulting in rapid passage through resonance and a reduction in the vibration

amplitudes. To perform this stiffness state switch, a smart material can be included in the system.

Although there are various smart materials that exhibit a changing stiffness due to an external stim-

uli, piezoelectric material is chosen due to its rapid response time necessary to perform this nearly

instantaneous switch. A small amount energy is also needed to power this switching mechanism

and due to the large power density of piezoelectric materials, the energy can be harvested from
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the blade vibrations. Although beyond the scope of this thesis, a parallel research effort is being

conducted to identify methods to harvest this vibration energy [8].

Figure 1.4: Zoomed portion of resonance crossing (black circle in Fig. 1.2) of the two-stripe mode

near 3950 RPM (from [9])

For the RFD approach, the peak response dynamics depend on the excitation frequency sweep

rate, the system modal damping ratio, the piezoelectric coupling coefficient, and, most impor-

tantly, the switch trigger (represented in terms of excitation frequency) that initiates the stiffness

state switch [6]. This thesis investigates methods of determining this optimal switch control law

corresponding to maximum vibration reduction from the untreated case. An initial analysis as-

sumes perfect knowledge of the system parameters and a control law based upon these parameters

can be realized. However, in realistic implementation, knowledge of these parameters may not

be readily available and measurement of a directly accessible quantity such as the piezoelectric
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voltage is more beneficial. This voltage is a proxy for the blade vibration and signal processing

can be used to rectify and smooth this signal to supply information on the blade response envelope

and its associated derivatives. So ultimately, the RFD method should be cast in terms of a control

law that relies on these quantities. Similarly, the energy extracted from the blade vibrations may

also be used as a parameter to govern this stiffness switch [10].

1.3 Thesis Structure

Chapter 2 reviews the relevant background literature regarding other piezoelectric-based vibra-

tion reduction approaches. It begins with a brief overview of piezoelectricity and its associated

effects that enable vibration reduction. Passive, semi-passive, and semi-active vibration reduction

approaches are discussed along with their inherent drawbacks for application in a turbomachinery

environment and comparisons to RFD are drawn along the way.

Chapter 3 deals with the development of an appropriate system model to analyze the RFD

method. This model consists of a piezoelectric bimorph derived using the assumed modes method.

This model is then validated with a finite element model using both static and dynamic analyses.

An optimization design study is also explored followed by a derivation of the nondimensional

equations of motion used to perform a parametric study.

Chapter 4 presents the determination of the optimal switch trigger. First, the RFD method

is explained for a limiting case of zero sweep rate (harmonic excitation). The optimal switch

trigger and corresponding maximum peak amplitude is found analytically for this limiting case.
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Next, the effect of the optimal switch trigger when a frequency sweep is introduced and complete

knowledge of the system parameters is examined. Lastly, an optimal trigger control law based

solely on quantities that are observable on-blade is presented.

Chapter 5 concludes this thesis by providing a summary of the salient results obtained in this

research effort. Physical considerations are also presented for application of the RFD method to a

turbomachinery environment. Lastly, this chapter identifies the research questions that still remain,

as well as potential paths forward.
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CHAPTER 2

PIEZOELECTRIC-BASED VIBRATION REDUCTION APPROACHES

The piezoelectric effect—corresponding to materials exhibiting electromechanical coupling—

has been known for more than a century, but it wasn’t until the past few decades that researchers

have developed the theoretical framework and models necessary to apply these materials to a large

range of systems. More specifically, piezoelectric materials are extremely well-suited for vibration

control applications due to the easy manipulation of their mechanical properties by controlling the

electrical boundary conditions and their fast response times. As such, the RFD method utilizes

these materials for vibration control in a turbomachinery application and a fundamental under-

standing of piezoelectricity as it applies to vibration reduction is necessary. This chapter presents

the background information necessary to understand the current research effort and begins with

a brief overview of the history of piezoelectric materials and the fundamentals surrounding the

piezoelectric effect. Various piezoelectric vibration reduction approaches are then presented and

their drawbacks for application in a turbomachinery environment are discussed. Comparisons are

also made along the way with resonance frequency detuning and how this method can circumvent

some of the drawbacks present in other vibration reduction approaches.
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2.1 Piezoelectricity

The discovery of the piezoelectric effect has been credited to the Curie brothers in 1880, who

were seeking to produce an electric field from an applied pressure. The discovery of the converse

piezoelectric effect — an applied electric field producing a mechanical strain — is credited to

Gabriel Lippman who theoretically predicted this effect; the Curie brothers later verified it exper-

imentally. In 1894, the first complete and rigorous classification of the crystal structures that give

rise to piezoelectricity was presented by Woldemar Voigt [11].

Figure 2.1: Crystal structure of a piezoelectric material exhibiting cubic symmetry at T > Tc with no

dipole moment and tetragonal symmetry at T < Tc with induced dipole (from [12])

These properties of piezoelectric materials arise due to their tetragonal symmetric crystal struc-

ture, with an non-centered ion in the crystal resulting in the existence of a dipole moment [12].

Above a critical temperature, known as the Curie temperature Tc, the crystal structure of a piezo-

electric material is cubic symmetric and the ion is centered in the crystal, resulting in no induced

dipole moment (both crystal structures are shown in Fig 2.1). Below the Curie temperature, the

existence of the dipoles gives rise to regions with a net polarity — termed domains — that are
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randomly aligned within the piezoelectric material; these charges largely cancel out and the ma-

terial has no overall polarity. The poling process involves application of a strong direct current

electric field to the surface of the piezoelectric material and aligns these dipoles, giving the ma-

terial an overall polarity [13]. This alignment causes internal mechanical stresses to develop and,

upon removal of the electric field, the dipoles attempt to reorient themselves into their initial po-

sition of random alignment; however, they are unable to do so due to these induced mechanical

stresses. These dipoles are then locked into place and a permanent polarity remains [12]. This

poling process is shown in Fig. 2.2.

Figure 2.2: Poling process of a piezoelectric material (from [13])

The direct piezoelectric effect arises from external mechanical forces acting on the poled piezo-

electric material, as seen in Figure 2.3. When a mechanical force is applied to the material, the

position of the ion in the crystal structure is altered, producing a net electric potential across the

material. In particular, compression of the material in the poled direction produces a voltage with

the same sign as the material polarity. Conversely, tension in the poled direction produces a volt-

age of opposite sign. If the electrodes on the surface of the material form an open circuit, the

material is characterized by a higher stiffness state. If these electrodes are shorted, a current is

produced through the material and no electric potential is produced, resulting in a lower stiffness
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state. The electrodes can alternatively be attached to a shunt circuit, where the impedance of the

circuit can be adjusted to vary the stiffness state of the material. This concept is the basis for many

piezoelectric-based vibration reduction approaches, including the RFD method.

Figure 2.3: Direct piezoelectric effect (from [13])

The electromechanically coupled properties of piezoelectric materials can be characterized in

one of several constitutive forms. Here, the stress-charge form in presented:
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(2.1)

where T and D are the stress and electric displacement vectors, and S and E are the strain and the

electric field vectors; c, e, and ε are the elastic stiffness, piezoelectric coupling, and permittivity

coefficients; the superscripts E and S refer to the quantities at a constant electric field and a constant

strain; and the superscript t is the transpose operator [14].

In this form, it is apparent that the piezoelectric coupling (stress coefficient) e gives rise to this

electromechanical coupling and is a property of the piezoelectric material. For the RFD method,

a more convenient way of expressing this piezoelectric coupling is through the use of the squared
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electromechanical coupling coefficient k2. This coupling coefficient can be easily measured using

the short- and open-circuit natural frequencies of the piezoelectric material:

k2 =
ω2

oc −ω2
sc

ω2
oc

(2.2)

and is an essential parameter used to characterize the stiffness state for RFD and other state-

switching vibration reduction approaches. This coupling coefficient is not only a property of the

piezoelectric material itself, but can be extended to any system incorporating this material. In

this way, the value of k2 is measured using the entire system open- and short-circuit natural fre-

quencies [14]. Although the system is generally regarded as having a smaller k2 value than the

piezoelectric material, pre-stressing the system with near buckling loads can increase the system

coupling to values surpassing that of the piezoelectric material coupling [15]. Additionally, the

coupling coefficient is a measure of the conversion of energy between the mechanical and electri-

cal domain. For mechanical loading, the coupling coefficient is expressed as

k2 =
Uelec

Wmech

(2.3)

where Uelec is the converted electrical energy and Wmech is the mechanical work input to the system.
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2.2 Passive Approaches

Passive piezoelectric vibration reduction approaches utilize a shunt circuit attached to the elec-

trodes of the piezoelectric material and contains a passive circuit element to dissipate the converted

electrical energy. This idea was first presented by Forward who experimentally showed that by uti-

lizing a resistor and inductor as the passive circuit elements, damping was achievable on a resonant

structure [16]. Over ten years later, Hagood and Von Flotow provided the theoretical framework

for these passive shunt circuits [17]. They first incorporated a resistor as the passive circuit element

and the effective material properties for this configuration are shown in Fig. 2.4.

(a) k2 = 65% (b) k2 = 30%

Figure 2.4: Resistive shunt effects on material loss factor (solid) and stiffness ratio (dashed); note

different vertical scales (Adapted from [17])

For larger coupling coefficients, a greater amount of energy is converted into the electrical

domain to be dissipated, resulting in larger material loss factors. The resistance of the shunt circuit

can be tuned to maximize this peak loss factor to occur at the desired target frequency. Additionally,
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this peak loss factor occurs at the transition point between the short- and open-circuit stiffness states

of the piezoelectric material.

A resonant shunt circuit utilizing a resistor and inductor as the passive circuit elements was

also presented. These passive circuit elements, in parallel with the capacitance of the piezoelectric

material, forms a resonant RLC circuit. The electrical frequency can then be tuned to match the

desired target mechanical frequency, facilitating a greater amount of electrical energy to be dissi-

pated through the resistor. The corresponding effective material properties are shown in Fig. 2.5.

For the same coupling values as the resistive shunt case, the resonant shunt offers far greater vibra-

tion reduction with the expense of a smaller frequency bandwidth. Additionally, smaller coupling

values reduce this bandwidth even farther, making this approach extremely sensitive to knowledge

of the system natural frequencies.

(a) k2 = 65% (b) k2 = 30%

Figure 2.5: Resonant shunt effects on material loss factor (solid) and stiffness ratio (dashed) (adapted

from [17])
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Although passive shunts were at first only applied to a single resonance frequency, methods

have been developed to extend this approach to a multimodal system. Hollkamp introduced a

method of suppressing multiple vibration modes with a single piezoelectric material by adding an

additional RLC branch to the shunt circuit for each additional mode targeted [18]. Each individual

branch, however, could not be treated independently and tuned using the approach for the single

mode case — tuning one branch to a target frequency would detune the other branches. Instead,

Hollkamp derived an analytical estimation for the tuning parameters of the circuit elements. Exper-

imental results for a two mode system showed comparable vibration reduction to that of a single,

optimally tuned shunt circuit.

In a separate approach, Wu introduced a shunt circuit that utilized “blocking” circuits in series

with a resonant circuit optimally tuned to target an individual vibration mode [19]. Each blocking

circuit consists of an inductor and capacitor in parallel and are tuned to be antiresonances for

non-targeted vibration modes. On one branch of the circuit, designed to target the first mode of

vibration, the blocking circuits provide infinite resistance for all other resonance frequencies and

allow no current to pass. For the target resonance frequency, the blocking circuits will provide

minimal resistance, allowing the current generated in this mode to pass and, consequently, the

electrical energy to be dissipated in the optimally tuned circuit elements. Also introduced was a

modified circuit with less antiresonant circuits and simpler circuit operation. Experimental results

showed vibration reduction for three modes but, once again, an additional circuit branch must be

included for each additional targeted mode for both the original and modified circuits.
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Whereas these previous passive approaches found the optimally tuned parameters using a me-

chanical impedance model, Kim et al. presented a tuning method utilizing an an impedance model

in the electrical domain to maximize the dissipated energy in the shunt circuit [20]. The previ-

ously discussed tuning approaches require knowledge of the open- and short-circuit system natural

frequencies, while the electrical impedance approach uses measured data to tune the circuit pa-

rameters to maximize the dissipated energy and yields more accurate results for more arbitrary

and realistic piezoelectric-based systems. This method showed comparable vibration reduction

potential to that of a mechanical vibration absorber and outperformed the mechanical impedance

method for both a cantilever beam and a plate.

Although passive approaches offer greater vibration reduction than RFD for systems subject to

transient excitation, their size requirements ultimately limit these approaches in a turbomachinery

environment [21]. For low resonance frequencies, the size of the inductors required for tuning

a resonant shunt can be quite large (hundreds of Henries), adding both size and weight to a sys-

tem. To reduce the inductor sizing requirements, Fleming et al. introduced a synthetic impedance;

however, this approach adds additional complexity to the system and requires an external power

supply [22]. To reduce the inductance requirements further, Fleming et al. attached a supplemental

capacitor across the piezoelectric material, effectively increasing the piezoelectric capacitance and

causing a corresponding decrease in required inductance [23]. Although offering vibration reduc-

tion, this approach decreases the amount of damping compared to that of a traditional resonant

shunt. Additionally, the number of resonance frequencies to be targeted in a turbomachinery blade

would require circuitry that is far too large and complex to be feasible on-blade. Environmental
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effects are also a cause for concern, causing the natural frequencies to vary over time and neces-

sitating a periodic tuning of the circuit parameters. Lastly, with frequency sweep excitation, the

maximum peaks of the response do not occur at the system natural frequencies; instead they are

delayed by an amount depending on the sweep rate present. Thus, tuning the circuit parameters to

a particular blade natural frequency may provide little vibration reduction if the maximum peak is

not located precisely at this point.

2.3 Semi-Active Approaches

Semi-passive and semi-active approaches were developed to alleviate large inductor require-

ments and to extend a vibration reduction system to a larger number of frequencies,. These ap-

proaches rely on altering the stiffness of the piezoelectric material at certain points in the vibration

cycle and were given their name due to the small amount of power needed to operate the switching

mechanism. The first semi-passive damping approach was presented by Clark and termed state

switching [24]. In this approach, the piezoelectric material switches from the open-circuit (higher

stiffness) to the short-circuit (lower stiffness) state at the extrema points of displacement. The

piezoelectric material then operates in the short-circuit state for a quarter of the vibration cycle

until the point of peak kinetic energy, when it is switched back to the open-circuit state. In the

open-circuit state, a voltage develops across the piezoelectric material that is proportional to the

displacement. Upon application of the switch, the voltage instantaneously becomes zero, as seen in

Fig. 2.6. Because the open-circuit corresponds to the higher stiffness state, a larger amount of strain

18



energy is developed. A switch at the displacement extrema to the lower stiffness state dissipates

some of this energy through the impedance of the attached shunt. An example response can be

seen in Fig. 2.7. The system first operates in the baseline open-circuit condition, the state switch-

ing damping system is then turned on, the transients decay, and a reduced, stead-state vibratory

response is achieved.

Figure 2.6: Displacement and voltage waveforms for state switching (adapted from [24])

Figure 2.7: Time response of state switching technique (adapted from [24])
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A similar approach was taken by Richard et al. termed synchronized switch damping

(SSD) [25]. This approach improved the performance of state switching by keeping the piezo-

electric material in the short-circuit stiffness state only long enough to cancel the charge across

the piezoelectric material. With this approach, a larger voltage can be developed, facilitating a

greater amount of electrical energy to be dissipated than the state-switching approach [26]. The

transferred energy in this approach is nearly four times greater than in state switching, leading to

increased damping performance. To improve this method further, Richard et al. included an in-

ductor in the shunt circuit and termed this method synchronized switch damping on an inductor

(SSDI) [27]. The purpose of this inductor is to create a resonant circuit that can invert the voltage

of the piezoelectric material, thus allowing a larger voltage to develop and a subsequent increase

in energy dissipation. The performance of this approach is limited by the resistance of the shunt

circuit and the quality of the inductor prohibiting the voltage to fully invert. As opposed to the

passive resonant shunt, the frequency of this circuit is required to be much larger than the targeted

mechanical resonance frequency, meaning a much smaller inductor is used to reverse the electrical

current as quickly as possible.

Lefeuvre et al. used a slightly different approach, termed synchronized switch damping on

voltage sources (SSDV), to increase the voltage across the piezoelectric material artificially by

switching between a positive or negative external voltage source [28]. Similar to SSDI, the inductor

inverts the voltage after the switch at peak strain energy is applied. If the inverted voltage is

positive, a constant positive voltage is added by the external supply; if the inverted voltage is

negative, a constant negative voltage is added. Experimental results showed that a single patch of
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piezoelectric material with a 10 V power supply can cause equivalent vibration reduction as six

patches of material with no additional voltage. There is a critical voltage value that theoretically

cancels out all the vibration; however, voltages above this value can lead to a piezoelectric force

acting as an excitation and increasing the response. Because this voltage source is constant and

independent of the excitation and vibration levels, Badel et al. showed that stability problems arise

and introduced an enhanced SSDV technique that utilizes a continuous voltage source that can

adapt to the vibration level of the system to alleviate these concerns [29].

Figure 2.8: Vibration reduction performance of semi-active approaches

The performance of these semi-active approaches discussed is shown in Fig. 2.8. The SSDV

method clearly provides the greatest performance while the state-switching approach provides the

smallest vibration reduction, with the other approaches falling somewhere in between; this per-

formance is directly linked to the amount of voltage generated across the piezoelectric material.
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Each of these semi-active approaches outperform RFD in suppressing transient vibrations but, as

with passive approaches, may be infeasible due to the restrictions inherent on a turbomachinery

blade [21]. One such restriction is the need for rapid switching corresponding to four switches per

vibration cycle and the power needed to perform these switches. Resonance frequency detuning

alleviates this requirement by only requiring two switches per resonant crossing.

Perhaps the biggest restriction for these approaches is the signal processing needed for exact

knowledge of the local blade response to detect the displacement extrema, especially for multi-

modal systems. While application of the stiffness switch is optimal at the displacement extrema

for a single mode, this control law breaks down when multiple modes are involved. In these cases,

many local extrema associated with the higher mode numbers are present in the response. Because

these higher modes are usually less energetic than the lower modes, applying the switch at these lo-

cal extrema points is not optimal. Corr and Clark presented a multimodal control law based on the

measurement of the rate of change of mechanical energy of the targeted modes [30]. This method

experimentally reduced vibrations in three modes of a cantilever beam but required an extensive

amount of signal processing and a separate piezoelectric patch to function as a sensor. Another

multimodal method was presented by Lallart et al. in which a self-powered circuit performed the

stiffness state switch when the piezoelectric voltage crossed a particular threshold [31]. Resonance

frequency detuning alleviates these restrictions by utilizing a control law requiring minimal signal

processing and independent of the local blade vibration.
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CHAPTER 3

SYSTEM MODEL DEVELOPMENT AND VALIDATION

This chapter develops the equations of motion for a cantilever beam with attached piezoelec-

tric material using the assumed modes method. The accuracy of this model is then validated using

a finite element model developed using the Abaqus FE software package using both static and

dynamic analyses. Finally, a set of simplifying assumptions and nondimensionalizations are pro-

posed to further simplify this assumed modes model for efficient analysis of the system response

for application of resonanace frequency detuning in the transient regime.

3.1 Assumed Modes Model Formulation

For this thesis, a piezoelectric bimorph—a cantilever beam with attached piezoelectric patches

on the top and bottom surfaces—is utilized. Although RFD is applied to a turbomachinery blade, a

piezoelectric bimorph can give a fundamental understanding of the concept as it applies to a system

with sufficiently well-spaced modes, such as the lower vibration modes for a blade. Additionally,

this system is more readily manufacturable and testable in a physical setting. To begin, a low order

assumed modes model previously developed for a piezoelectric energy harvester is adapted for this

bimorph with the derivation followed [32].
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Figure 3.1: Piezoelectric bimorph set-up

This method begins by assuming a set of mode shapes that satisfy the geometric boundary

conditions of the model; the corresponding weights are then the generalized coordinates of the

system and need to be determined. A cantilever beam of length L, width b, and thickness h is

used with two piezoelectric patches of length Lp, width bp, and thickness hp placed on the upper

and lower surfaces of the beam at a distance xp1 from the base as shown in Fig. 3.1. The beam is

clamped at the base x = 0 and free at the end x = L.

The mechanical displacement w(x, t) can then be written as a weighted sum of assumed mode

shapes, at least if the family of shapes is complete; in practice, only a finite number of shapes

are used. The displacement can then be separated into its temporal and spatial components and
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approximated as

w(x, t)≈
R

∑
r=1

qm,r(t)ϕm,r(x) (3.1)

Looking ahead to the upcoming derivations, this displacement can be expressed in matrix form as

w(x, t)≈ {qm}t{ϕm}= {ϕm}t{qm} (3.2)

where ϕm,r(x) are the assumed mechanical mode shapes for transverse displacement, qm,r(t) are

the generalized mechanical coordinates, and R is the total number of assumed shapes. Additionally,

the set of mode shapes is chosen to satisfy the geometric boundary conditions of the system; that

is, for a cantilever beam, zero deflection and slope at x = 0 and unconstrained at x = L. Due to

simplicity in calculation, these chosen shapes are:

ϕm,r(x) =
( x

L

)r+1

(3.3)

Additionally, a set of assumed shapes need to be assigned for the voltage Φ(z, t) through the

piezoelectric patches. The boundary conditions for this patch are such that the voltage is zero at the

interface between the beam and patch and the free surface is unconstrained. A linear distribution

is assumed and the voltage can be approximated as:

Φ(z, t)≈ qe(t)
z− zp1

zp2 − zp1
(3.4)
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where qe(t) is the electrical generalized coordinate and zp1 and zp2 are the bottom and top surfaces

of the corresponding piezoelectric patch.

3.1.1 Mechanical Potential Energy

The mechanical potential energy arises due to the strain energy of the transverse deflection of

the beam defined as:

Ustrain =
1

2

∫

V
σxxεxxdV (3.5)

The strain and stress are

εxx =−z
∂ 2w

∂x2
(3.6)

σxx = Eεxx (3.7)

where E is the Young’s modulus of the beam and the domain of integration without the attached

patches is

∫

V
dV =

∫ L

0

∫ b
2

− b
2

∫ h
2

− h
2

dzdydx (3.8)

Substitution of Eqs. (3.1), (3.6), (3.7), and (3.8) into (3.5) results in the form

Ustrain =
1

2
{qm}t [Km]{qm} (3.9)
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where [Km] is the mechanical stiffness matrix defined as

[Km]rs =
∫

V
Ez2ϕ ′′

m,r(x)ϕ
′′
m,s(x)dV

=
EI

L3

rs(r+1)(s+1)

r+ s−1

(3.10)

where I is the moment of inertia of the cross section of the beam and r and s refer to the components

of the matrix. The added stiffness of the piezoelectric patches must also be considered The domain

of integration over the patches is

∫

Vp

dVp =
∫ xp1+Lp

xp1

∫ y2

y1

∫ z2

z1

dzdydx (3.11)

where the subscript p is used to specify piezoelectric-related properties. The elements of the

additional stiffness matrices for each piezoelectric patch are

[Kmp]rs =
EpIp

L3

rs(r+1)(s+1)

r+ s−1

[(xp1 +Lp

L

)r+s−1

−
(xp1

L

)r+s−1]

(3.12)

3.1.2 Kinetic Energy

The kinetic energy associated with the motion of the beam is

T =
1

2

∫

V
ρ
(∂w

∂ t

)2

dV (3.13)
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where ρ is the density of the beam. Taking the time-derivative of the transverse deflection given

by Eq. (3.1) produces the transverse velocity. Substitution into the above equation results in the

kinetic energy taking the form

T =
1

2
{q̇m}t [Mm]{q̇m} (3.14)

The elements of the mass matrix of the beam [Mm] are

[Mm]rs =
∫

V
ρϕm,r(x)ϕm,s(x)dV

=ρAL
1

r+ s+3

(3.15)

where A is the cross-sectional area of the beam. The contribution of the piezoelectric patches to

the mass matrix is

[Mmp]rs = ρpApL
1

r+ s+3

[(xp1 +Lp

L

)r+s+3

−
(xp1

L

)r+s+3]

(3.16)

where ρp and Ap are the density and cross-sectional area of the piezoelectric patch.

3.1.3 Electrical Potential Energy and Piezoelectric Coupling

The piezoelectric material also contributes to the potential energy in the electrical domain and

is given as

Ue =
1

2

∫

Vp

εp

(

− ∂Φ

∂ z

)2

dVp (3.17)
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where εp is the dielectric permittivity of the piezoelectric material. Substituting in the assumed

voltage from Eq. (3.4), the electrical potential energy can be expressed in the form

Ue =
1

2
{qe}t [Ke]{qe} (3.18)

Here, each row/column of the electrical stiffness matrix [Ke] represents a different patch. As such,

[Ke] is a diagonal matrix and the diagonal terms associated with a particular patch are

[Ke]pp = εp

Lpbp

hp
(3.19)

The inclusion of the piezoelectric patches also gives rise to a coupling potential energy term

Uc =
1

2

∫

Vp

(

− ∂Φ

∂ z

)

epεxxdVp −
1

2

∫

Vp

epεxx

(

− ∂Φ

∂ z

)

dVp (3.20)

where ep is the electromechanical coupling term. Substituting the strain and assumed voltage, the

coupled energy becomes

Uc =
1

2
{qe}t [Kc]{qm}−

1

2
{qm}t [Kc]

t{qe}= 0 (3.21)
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These two terms making up the coupling energy are equal and the coupling does not add to the

total potential energy. The elements of the coupled stiffness matrix [Kc] are

[Kc]pr =
∫

Vp

ϕ ′
e(z)epzϕ ′′

m,r(x)dVp

=ep

bp(h/2+hp)

2L
(r+1)

[(xp1 +Lp

L

)r

−
(xp1

L

)r]
(3.22)

3.1.4 Virtual Work

The transverse loads acting on the beam can be treated as acting through a virtual displacement

δw and performing virtual work

δW = {δqm}t{Fm} (3.23)

where the elements of the generalized forcing vector {Fm} are

{Fm}r =
∫ L

0
ϕm,r(x)g(x, t)dx (3.24)

and g(x, t) is a distributed force across the beam length. In a similar manner, the virtual work

performed on the piezoelectric patch gives rise to the additional forcing vector {Fmp} and the

elements are

{Fmp}r =
∫ xp2

xp1

ϕm,r(x)g(x, t)dx (3.25)
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For a concentrated load at a single point xin, the forcing function g(x, t) becomes

g(x, t) = G(t)δ (x− xin) (3.26)

where G(t) is a time varying concentrated force and δ (x− xin) is the Dirac delta function. The

generalized forcing vectors are then

{Fm}r = G(t)

(
xin

L

)r+1

(3.27)

{Fmp}r =







G(t)
(

xin
L

)r+1
xp1 ≤ xin ≤ xp2

0 all other values of xin

(3.28)

For the case of a piezoelectric bimorph with patches bonded near the clamped end and a concen-

trated force at the tip xin = L, these generalized forcing matrices are further reduced to

{Fm}r = G(t) (3.29)

{Fmp}r = 0 (3.30)

Similarly, an electrical force acts through the piezoelectric patch thickness performing the virtual

work

δW = {δqe}t{Fe} (3.31)
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where the generalized electric force is

{Fe}p =
∫ zp,2

zp,1

Ge(z, t)
z− zp,1

zp,2 − zp,1
dx (3.32)

and Ge(z, t) is the applied charge density.

3.1.5 Equations of Motion

With the energy of the system and virtual work accounted for, applying Lagrange’s equations

leads to a set of electromechanically coupled equations of motion:







Mm 0

0 0













q̈m

q̈e







+







Cm 0

0 0













q̇m

q̇e







+







Km −Kc
t

Kc Ke













qm

qe







=







Fm

Fe







(3.33)

where the contributions of the piezoelectric patch are included in Mm and Km. The mechanical

damping matrix Cm is also included and can be generated using a variety of different methods,

including a proportional damping model for mathematical convenience.
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3.2 Model Validation

In the following section, a finite element approach for modeling the piezoelectric bimorph is

implemented using Abaqus FEA software to validate the accuracy of the assumed modes model.

The core beam is made of aluminum with the material properties given in Table 3.1.

Table 3.1: Aluminum material properties

Density, ρ 2700 kg/m3

Young’s, Modulus, E 68.9 GPa

Poisson Ratio, ν 0.3

The piezoelectric material considered here is orthotropic in nature and exhibits symmetry in the

directions orthogonal to the poling direction. For this analysis, a rectangular coordinate system is

used and the material is to be poled in the 3-direction (z-direction) leading to the material exhibiting

symmetry in the 1- and 2-directions (x- and y-directions). The selected piezoelectric material has

the following properties (Note that the below matrices are material properties and should not be

confused with system matrices). Furthermore, these matrices correspond to all 3 axes and, where

applicable, shear terms.
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The matrix of material constitutive mechanical properties is

C =























120.35 75.18 75.09 0 0 0

75.18 120.35 75.09 0 0 0

75.09 75.09 110.87 0 0 0

0 0 0 22.57 0 0

0 0 0 0 22.57 0

0 0 0 0 0 21.05























GPa (3.34)

The matrix of material electromechanical coupling terms is

e =











0 0 0 0 13.1941 0

0 0 0 13.1941 0 0

−7.8647 −7.8647 14.7039 0 0 0











C/m2 (3.35)

The material dielectric permittivities are

ε =











8.1066 0 0

0 8.1066 0

0 0 7.3455











10−9 F/m (3.36)

Finally, the material density is ρ = 7800 kg/m3.

The geometric dimensions of both the core aluminum beam and the piezoelectric patches are

indicated in Table 3.2
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Table 3.2: Bimorph dimensions

Beam Length, L 293 mm Piezo Length, Lp 62 mm

Beam Height, h 3.17 mm Piezo Height, hp 0.25 mm

Beam Width, b 25.5 mm Piezo Width, bp 25.5 mm

Position from root, xp,1 2.46 mm

Figure 3.2a shows the completed bimorph assembly with the piezoelectric patches located at

the base of the structure. The core beam was meshed using C3D20 elements which are 20-node

quadratic brick elements, and the piezoelectric patches were meshed using C3D20E elements

which are similar 20-node quadratic brick elements that allow for the electric properties of the

piezoelectric material. The patches were then attached to the surface of the core beam using the

*TIE constraint.

(a) Completed bimorph assembly
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(b) Zoomed portion of bimorph base showing

the fixed boundary condition at the root of

the beam

(c) Zoomed portion of the piezoelectric patches

with the master node on the interior surfaces

arrowed

Figure 3.2: Finite element assembly and applied boundary conditions

(figure continued from previous page)

With the assembly completed, the boundary conditions could then be applied. The first con-

dition was to fix the base of the beam as shown in Fig. 3.2b while the rest of the beam is free.

Electrical boundary conditions could then be applied to each of the piezoelectric patches. To

do this, master nodes were defined on the interior surface of the patches as shown in 3.2c. An

*EQUATION constraint was applied to the rest of the nodes on the interior surface relating them

to the master node. In this manner, an electrical boundary condition can be applied to the master

node and the rest of the nodes on the surface will adhere to this condition. In both the open- and

short-circuit conditions, the interior surface maintains zero voltage so a zero electrical potential

constraint was applied to these nodes. Similarly, master nodes were created for the exterior surface

of the patches for boundary conditions to be applied. For the open-circuit condition, there was no

electrical potential constraint applied and the voltage across the patch was allowed to vary freely

with the beam displacement; for the short-circuit condition, a zero electrical potential condition

was applied to these exterior surface nodes and, consequently, no voltage could develop across the

patch.
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3.2.1 Static Analysis

With the finite element model in place, a static analysis was performed to validate the assumed

modes approach. A 10 N concentrated load was applied at the tip of the beam and the beam

deflection as a function of the distance from the base is shown in Fig. 3.3 where the assumed modes

model is designated by solid lines and the finite element results are shown as circular markers. A

cantilever beam with no attached piezoelectric patches is shown in black, a bimorph with the

piezoelectric patches in the short-circuit condition is shown in red, while the bimorph with the

patches in the open-circuit condition is shown in blue. As expected, the presence of the patches

on the base of the beam increases the overall system stiffness causing smaller deflections along

the beam, and the open-circuit condition of the bimorph is slightly stiffer than the short-circuit

condition. Additionally, the results using the assumed modes model show excellent agreement

with the finite element model.

Figure 3.3: Static deflection along beam length with a 10 N tip force
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Figure 3.4 shows the results using the finite element model with the piezoelectric patches in

the open-circuit condition. Figure 3.4a shows the deflection along the length of the beam with

a maximum tip deflection of 1.44 cm, slightly smaller than the 1.49 cm deflection for the short-

circuit case. Figure 3.4b shows the stress along the beam length. As expected, the extremum stress

values occur at the base of the beam on the top and bottom surfaces. Lastly, Figs. 3.4c and 3.4d

show the voltage developed across the piezoelectric patch. The voltage begins at zero at the interior

surface of the patches and there is a linear increase until a maximum of 169 V is reached at the

exterior surfaces, which is in agreement with the assumed voltage mode shape given in Eq. (3.4).

Figure 3.5a shows the maximum beam tip deflection and voltage generated through the piezo-

electric patch as functions of the the tip force where there is a linear increase in the tip deflection

for each case. Figure 3.5b shows the open-circuit voltage through the piezoelectric patch also lin-

early increases as the tip force increases. This behavior is expected since the voltage generated is

proportional to the deflection of the beam, which will be derived in a later section. Once again,

excellent agreement exists between the finite element model and the assumed modes model.
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(a) Displacement of bimorph

(b) Stress σxx of the bimorph

(c) Voltage through piezoelectric patch (d) Zoomed portion of Fig. 3.4c

Figure 3.4: FE static analysis with tip load of 10N
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(a) Beam tip deflection as a function of applied tip force

(b) Voltage through piezoelectric patch as function of applied tip force

Figure 3.5: Static analysis: finite element model comparison with assumed modes model
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3.2.2 Dynamic Analysis

Due to the transient nature of the RFD method, the assumed modes model must be able to

predict the dynamic behavior of the system accurately. Modal analysis was employed and the

natural frequencies for the first six bending modes are reported in Table 3.3 for the short-circuit

condition and in Table 3.4 for the open-circuit condition. For the first five bending modes, the error

between the natural frequencies found using the finite element model and assumed modes model

are < 1%. For the sixth mode, this error is approximately 1.5% and further increases for each addi-

tional mode. This deviation is due to the assumed modes model suffering from numerical stability

errors when using more than 10 assumed modes and, therefore, these higher modes suffer inac-

curacies and overestimate the true natural frequencies. Table 3.5 displays the coupling coefficient

k2 for the first six modes. Both models produce similar trends in the coupling coefficient values

with the finite element approach producing a consistently larger estimation. This discrepancy may

be attributed to the finite element model being three-dimensional and including shearing effects,

which may lead to a larger coupling coefficient estimation in addition to the slightly larger voltage

estimation previously shown in Fig. 3.5b. Also, the mesh density and element types may lead to

small discrepancies in the calculation of the natural frequencies in both the open- and short-circuit

conditions, which may also lead to differences in the measured coupling coefficient.

Table 3.3: Short-circuit natural frequencies (Hz)

Bending Mode # 1 2 3 4 5 6

Assumed Modes 33.8 198.12 534.77 1034.7 1709.3 2612

Finite Element 33.909 199.43 538.31 1040.1 1718.6 2571.2

Percent Error 0.321 0.657 0.658 0.522 0.519 1.587
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Table 3.4: Open-circuit natural frequencies (Hz)

Bending Mode # 1 2 3 4 5 6

Assumed Modes 34.25 199.16 535.24 1034.8 1711.1 2615.2

Finite Element 34.53 201.21 539.35 1040.1 1720.5 2576

Percent Error 0.811 1.019 0.762 0.510 0.546 1.522

Table 3.5: Coupling coefficient k2 (%)

Bending Mode # 1 2 3 4 5 6

Assumed Modes 2.562 0.994 0.175 0.014 0.2099 0.2399

Finite Element 3.570 1.762 0.385 0 0.221 0.3723

For both models, the first mode has the largest coupling coefficient due to the amount of strain

induced on the piezoelectric patch. The fourth and fifth modes produce nearly zero coupling

due to the opposing curvature experienced by the piezoelectric material operating in these mode

shapes, leading to a cancellation of the charge through the material. Figure 3.6 displays the mass-

normalized mode shapes calculated from the assumed modes model (solid line) and finite element

model (circles) and indicates the beam in blue and piezoelectric patch in red. The mode shapes for

the first five modes are nearly identical; however, deviations start arising in the sixth mode for the

same reasons as deviations in the natural frequencies. Lastly, the response to sinusoidal forcing

can be examined through the use of the frequency response function (FRF). For the case of the

patches in the open-circuit condition, a sinusoidal force is concentrated at the tip of the beam and

the response of this same point is measured and displayed in Fig. 3.7. The FRF for the first six

modes of this system is nearly identical between the two modeling approaches and for the seventh

mode and beyond, the assumed modes approach overestimates the frequencies. This FRF analysis
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was computed assuming zero damping in the system so the peaks at each resonance theoretically

approach infinity; however, the resolution in frequencies chosen to simulate causes the decreased

peak magnitudes and the discrepancies in values between these two approaches.

Figure 3.6: Mass-normalized mode shapes from assumed modes (solid) lines and finite element

(circles); also shown is the piezoelectric patch (red) and beam (blue)

Figure 3.7: Frequency response function from a tip force to the tip displacement

43



3.3 Bimorph Optimization

The strength of the assumed modes model is the computational speed and efficiency in per-

forming parametric studies; such a model can be used to optimize a system to fit certain criteria

that are beneficial when designing a system or set of experiments. For instance, for the proposed

bimorph, the dimensions of the core beam can be optimized for a particular piezoelectric patch, or

a piezoelectric patch and placement can be optimized for a particular core beam.

An example of an optimization problem can be shown using the same material properties as

the previous section, with the core aluminum beam and the piezoelectric patch being fixed in their

dimensions. If the bimorph is designed to maximize the coupling coefficient for each mode, the

patch is placed at the base of the beam (xp1 = 0). The patch thickness can then be adjusted to

maximize this coupling. Figure 3.8 shows the change in the coupling coefficient as the patch

thickness increases for the first three modes. For all three modes, the coupling is increased as the

patch thickness increases until a point where any further increase in material becomes detrimental

to the coupling. For the first mode, k2
max = 3.54% occurs for a patch thickness of 23.11% of the

beam; for the second mode, k2
max = 4.01% occurs for a patch thickness of 53.26%. Interestingly,

for the third mode, the coupling coefficient continues to increase to k2
max = 6.035% when the patch

thickness is 141.7% of the beam thickness. Depending on the patch thickness, the coupling in the

second and third modes can be increased to values greater than the first mode.
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Figure 3.8: Coupling coefficient for varying piezoelectric thickness for patch location at base (xp1 = 0)

If, however, the piezoelectric patch size is fixed (e.g., availability of commercial off-the-shelf

patches), a system can be designed around this patch. For example, using the piezoelectric patch

with the same dimensions as given in Table 3.2, except located at the base of the beam (xp1 = 0),

the core aluminum beam dimensions can then be optimized to achieve the largest coupling in

any targeted mode. Figure 3.9 shows how the coupling coefficient for the first three modes is

affected by the core beam length and thickness and the maximum coupling for each mode with

the corresponding beam dimensions are recorded in Table 3.6. The largest coupling occurs for the

first mode for a beam that is shorter and thicker than the optimal beam for the other two modes,

and remains relatively high for beam lengths L < 200 mm. Both the second and third modes

experience sharp gradients for the coupling as the beam length increases and both exhibit regions

of zero coupling. Once again, the opposing curvature experienced by the piezoelectric patch due

45



to the system mode shapes results in the cancellation of the electric charge and the resulting zero

coupling.

Table 3.6: Coupling coefficients for beam dimensions

k2
max (%) Lp (mm) hp (mm)

Mode 1 8.5 106.5 0.447

Mode 2 6.89 155.9 0.125

Mode 3 6.30 269.9 0.165

A good estimation of the coupling coefficient is essential for any piezoelectric system, whether

the application of this system is for energy harvesting, vibration reduction, actuation, etc. By

selecting an optimal configuration to maximize the coupling for a particular mode, the energy con-

version will also be maximized leading to higher performance systems. For a multi-DOF system,

the system parameters can be optimized by implementing an objective function to maximize the

coupling across a number of modes. Lastly, although this analysis is presented for a cantilever

beam, it is apparent that for any arbitrary system, knowing a priori the various mode shapes and

corresponding strains allows for a good initial placement of the piezoelectric material to maximize

coupling for a particular mode.
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(a) Mode 1

(b) Mode 2
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(c) Mode 3

Figure 3.9: Coupling coefficients as a function of aluminum beam dimensions

(figure continued from previous page)

3.4 Nondimensional Equations of Motion

Although the previous section dealt with the design and optimization of a system and deter-

mining the coupling coefficients for various modes, the remainder of this thesis is concerned with

extending this analysis to a family of systems by nondimensionalizing the equations of motion to

determine how various design parameters affect the response. A similar process is used in Ref. [9]

and is reproduced here.

First, the analysis can be simplified by assuming the vibration modes are sufficiently well-

spaced. Applying this assumption to a single mode of interest, the MDOF equations of motion can
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then be reduced to a set of two electromechanically-coupled equations of motion:

Mmq̈m +Cmq̇m +Kmqm −Kcqe = Fm (3.37)

Kcqm +Keqe = Fe (3.38)

Rearranging Eq. (3.38) such that the electrical coordinate is on the right hand side, and upon

substitution into Eq. (3.37) results in

Mmq̈m +Cmq̇m +(Km +
Kc

2

Ke
)qm − Kc

Ke
Fe = Fm (3.39)

−Kc

Ke
qm +

1

Ke
Fe = qe (3.40)

For the open-circuit stiffness state, the stiffness matrix is

Koc ≡ Km +
Kc

2

Ke
(3.41)

This open-circuit stiffness is, by definition, larger than the short-circuit stiffness by addition of the

term Kc
2

Ke
resulting in higher system natural frequencies. Next, the mechanical forcing function Fm

needs to be defined. For a turbomachinery application, the forcing function is typically assumed

periodic due to the interaction of rotor blades and the flow field following the stator vanes and can

be idealized as

Fm = Fo sinϕ(t) (3.42)
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where F0 is a constant forcing amplitude and ϕ(t) is the phase of vibration for a frequency sweep

with a constant angular acceleration [5]. During a frequency sweep with constant angular acceler-

ation,

ϕ̈(t) = ωrate (3.43)

where ωrate is the linear frequency sweep rate. A physical understanding of ωrate can be made

using the Campbell diagram shown previously in Fig. 1.2. The engine order of excitation N that is

associated with periodic forcing — rotor-stator passes — can be multiplied by the rate of change

of the engine rotation speed Ω̇ to produce

ωrate = NΩ̇ (3.44)

Starting from an initial angular velocity of ω0, the frequency of excitation is

ϕ̇(t) = ωratet +ω0 (3.45)

where

ω0 = NΩ0 (3.46)

and Ω0 is the original engine operating speed. Integrating once more

∫ t

t0

ϕ̇(τ)dτ =
∫ t

t0

(ωrateτ +ω0)dτ (3.47)
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results in the phase of excitation

ϕ(t) =
ωrate

2
t2 +ω0t +(−ωrate

2
t0

2 −ω0t0)
︸ ︷︷ ︸

ψ0

(3.48)

where ψ0 represents the time-invariant portion of this phase. This analysis is also taken to begin at

start-up (t0 = 0) such that ψ0 = ω0 = 0.

To perform a parametric study for various design variables, the equations of motion are then

nondimensionalized. Begin by scaling the time by the open-circuit natural frequency:

τ ≡
√

Koc

Mm
t = ωoct (3.49)

The mechanical forcing function is then defined using the scaled time τ

Fm = Fo sinϕ(τ) (3.50)

and phase of excitation ϕ is also a function of τ

ϕ(τ) =
α

2
τ2 +α0τ +(−α

2
τ2

0 −α0τ0)
︸ ︷︷ ︸

ψ0(τ0)

(3.51)
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where the nondimensional sweep rate α and initial nondimensional angular velocity α0 are defined

α ≡ ωrate

ω2
oc

=
frate

2π f 2
oc

(3.52)

α0 ≡
ω0

ωoc
=

f0

2π foc
(3.53)

Substituting the forcing function given by Eq. (3.50) into Eq. (3.39) results in

Mmq̈m +Cmq̇m +Kocqm − Kc

Ke
Fe = F0 sinϕ(τ) (3.54)

and dividing through by F0 yields

Mm

F0
q̈m +

Cm

Fo
q̇m +

Koc

Fo
qm − Kc

KeFo
Fe = sinϕ(τ) (3.55)

The mechanical coordinate is then scaled by its open-circuit static value, creating a nondimensional

displacement

x ≡ Koc

Fo
qm (3.56)

Solving for the derivatives with respect to τ results in

ẋ ≡
√

KocMm

Fo
q̇m (3.57)

ẍ ≡ Mm

Fo
q̈m (3.58)
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The electrical forcing term is then scaled by its blocked static value, creating a nondimensional

charge

Q ≡ Fe
Kc

KeFo
(3.59)

Substituting Eqs. (3.56)–(3.59) into Eq. (3.55) results in

ẍ+
Cm√

KocMm

ẋ+ x−Q = sinϕ(τ) (3.60)

Finally, defining the nondimensional modal damping

ζ ≡ Cm

2
√

KocMm

(3.61)

results in the first nondimensional equation of motion

ẍ+2ζ ẋ+ x−Q = sinϕ(τ) (3.62)

The second nondimensional equation of motion is derived by first multiplying Eq. (3.40) by Kc

F0
:

− K2
c

KeF0
qm +

Kc

KeF0
Fe =

Kc

F0
qe (3.63)

The electrical coordinate is then be scaled by Kc

F0
creating a nondimensional voltage

V ≡ Kc

F0
qe (3.64)
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Substituting the nondimensional displacement, charge, and voltage terms given by

Eqs. (3.56), (3.59) and (3.64) into Eq. (3.63) results in

− K2
c

KeKoc
x+Q =V (3.65)

Conveniently, the coeffient of x is actually the electromechanical coupling coefficient k2, the third

design parameter

k2 ≡ ωoc
2 −ωsc

2

ωoc
2

=
Koc −Ksc

Koc
=

Kc
2

KeKoc
(3.66)

Substituting the coupling coefficient into Eq. (3.65) results in the second nondimensional equation

of motion:

−k2x+Q =V (3.67)

The electrical boundary conditions of the piezoelectric material can then be used to decouple these

equations of motion and reduce the analysis to a SDOF system. For the open-circuit condition,

the electrodes of the piezoelectric material are open and the impedance of the circuit approaches

infinity, prohibiting any current to be produced and resulting in a nondimensional charge Q = 0.

Applying this boundary condition to Eqs. (3.62) and (3.67) results in

ẍ+2ζ ẋ+ x = sinϕ(τ) (3.68)

V =−k2x (3.69)
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Here, the open-circuit frequency ωoc = 1 and the nondimensional piezoelectric voltage V is a linear

function of the square of the coupling coefficient and the nondimensional displacement. The sec-

ond electrical boundary condition exploited is the short-circuit condition, in which the electrodes

of the piezoelectric material are shorted and the impedance of the circuit is zero, prohibiting any

electric potential to be produced and resulting in the nondimensional voltage V = 0. Applying this

boundary condition to Eqs. (3.62) and (3.67) results in

ẍ+2ζ ẋ+(1− k2)x = sinϕ(τ) (3.70)

k2x = Q (3.71)

Now the short-circuit frequency is ωsc =
√

1− k2. As previously mentioned, this short-circuit state

of the system is less stiff than the open-circuit state by a factor of (1−k2). Although the impedance

of the circuitry can be varied between the open- and short-circuit stiffness states to allow for various

stiffness states, RFD is most effective when the difference in natural frequencies between the two

stiffness states is maximized, which results in maximizing the coupling coefficient k2 for a given

configuration.

55



CHAPTER 4

DETERMINATION OF OPTIMAL FREQUENCY-BASED SWITCH

TRIGGERS

This chapter begins with the presentation of the control law governing the stiffness state switch.

An analytical prediction of the optimal switch trigger is derived using a limiting case of zero sweep

rate, reducing the frequency sweep excitation to that of a harmonic excitation. A frequency sweep

is then introduced and its effects on the optimal switch trigger are investigated. Both direct numer-

ical integration and an analytical method can be used to solve for the response and comparisons

between the two approaches are made. The optimal switch trigger is then reported as a function of

the three key parameters: sweep rate α , modal damping ζ , and coupling coefficient k2. A second

method is then proposed to determine the optimal switch control law utilizing a readily measurable

quantity such as the open-circuit piezoelectric voltage; the performance is then compared to the

ideal switch trigger found using complete knowledge of the system parameters. It is important here

to note that this thesis is an extension to the RFD method presented by Kauffman in Refs. [6, 9]

and as such, some of the analytical framework in this section is similar but with new results.
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4.1 Switch Trigger Control Law

Essential to resonance frequency detuning is the application of the switch used to alter the stiff-

ness states of the system. With the equations of motion describing the two stiffness states in place,

a control law governing this stiffness state switch can be implemented. Before the switch occurs,

the system response is described by the open-circuit equation of motion with a nondimensional

stiffness S(τ) = 1. After the switch occurs, the system is described by the short-circuit equation

of motion with S(τ) = 1− k2. In a physical application, this change in stiffness states occurs over

a finite time; however, this analysis idealizes this step change in stiffness as instantaneous. This

control law can be summarized compactly as

S(τ) =







1 ω < ωsw (open-circuit)

1− k2 ω ≥ ωsw (short-circuit)

(4.1)

where ωsw is the frequency at which the switch occurs. With this control law in place, the general

SDOF equation of motion can be written as:

ẍ+2ζ ẋ+S(τ)x = sin(
α

2
τ2 +α0τ +ψ0) (4.2)

For the RFD method, the key design parameters affecting the vibration reduction performance

are the previously derived excitation frequency sweep rate α , the modal damping ratio ζ , the elec-

tromechanical coupling coefficient k2, and, most importantly, the frequency at which the stiffness
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switch occurs. This section examines the effects that α , ζ , and k2 has on the timing of this optimal

switch. In this thesis, the key metric in defining optimality is the minimization of the peak of the

response envelope. Other metrics may exist that lead to a reduction in the high-cycle fatigue and

may include minimizing the total area of the response envelope or minimizing the time it takes for

the response envelope to decrease below a certain threshold. A separate study is needed to perform

this optimality analysis and is beyond the scope of this thesis.

4.2 System Response to Harmonic Excitation

A first step to analyze this optimal frequency switch is to examine a limiting case of zero sweep

rate, which simplifies the excitation to a harmonic forcing function

Fm = sinωτ (4.3)

where ω is the forcing frequency. Due to the analysis being scaled around the open-circuit natural

frequency, this natural frequency remains stationary at ωoc = 1 and the short circuit natural fre-

quency ωsc =
√

1− k2. An example response in the frequency domain is shown in Fig. 4.1a with

a coupling coefficient k2 = 9.75% (short-circuit natural frequency ωsc = 0.95) and damping ratio

ζ = 0.5%. The response initially operates in the open-circuit condition until reaching a frequency

coinciding with the intersection of the open- and short-circuit magnitudes; the switch is then made

and the response operates in the short-circuit condition. This optimal switching frequency can be
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found analytically using the magnitude of the response given by

|X |= 1
√

(S(τ)−ω2)
2
+(2ωζ )2

(4.4)

The open- and short-circuit response magnitudes are then

|X |S(τ)oc
=

1
√

(1−ω2)
2
+(2ωζ )2

(4.5)

|X |S(τ)sc
=

1
√

(1− k2 −ω2)
2
+(2ωζ )2

(4.6)

Because this optimal switch frequency occurs at the point of intersection between the open- and

short-circuit magnitudes, these values are set equal to each other and solving for the frequency

ω∗ =

√

1− k2

2
(4.7)

where ω∗ is the optimal switch frequency. For this limiting case of zero sweep, ω∗ is solely

a function of the coupling coefficient k2. As k2 is increased, the short-circuit natural frequency

is shifted farther away from the open-circuit frequency, resulting in a corresponding shift in ω∗

farther from the open-circuit frequency. This trend is seen in Fig. 4.1b where the short-circuit

response corresponding to k2 = 9.75% is shifted as the coupling is increased to k2 = 19% and the

optimal switch occurs at a lower frequency. Although the modal damping affects the magnitudes

of these response peaks, the short- and open-circuit frequencies remain unchanged and ω∗ remains

unaltered.
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(a) Open-circuit response (ωoc = 1) in blue, short-circuit

response (ωsc = 0.95) in black, and optimal response in red

(b) Open-circuit response (ωoc = 1) in blue, the first

short-circuit responses (ωsc,1 = 0.95) in black and

(ωsc,2 = 0.90) in green, with optimal responses in red

Figure 4.1: Short- and open-circuit response magnitudes due to harmonic forcing with system

parameters k2 = 9.75% and ζ = 0.5%
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The magnitude of the response at this optimal switching point X∗ can also be found analytically

by substituting Eq. (4.7) into Eq. (4.5)

X∗ =
2

√

k4 +8ζ 2(2− k2)
(4.8)

Expected values of k2 are on the order of magnitude of 1%, so k2 ≪ 2, and the above equation

reduces to

X∗ ≈ 2
√

k4 +16ζ 2
(4.9)

If the damping of the system is much greater than the coupling ζ ≫ k2, the above equation reduces

to

X∗ ≈ 1

2ζ
(4.10)

and the magnitude of the switch approaches that of the open-circuit response peak magni-

tude. However, for lightly damped turbomachinery blisks, typical values of damping are

ζ ∈ [0.005%,0.1%] [33]. Thus, the damping is at least an order of magnitude lower than expected

coupling values and the assumption that 4ζ ≪ k2 can be made reducing Eq. (4.9) to

X∗ ≈ 2

k2
(4.11)

Similar to ω∗, X∗ is solely a function k2 and as the coupling is increased, the short-circuit peak is

shifted farther from the open-circuit peak, and the magnitude X∗ at the intersection of these two

response curves is decreased, as shown in Fig. 4.1b. The reduction of the response due to the
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application of RFD can be measured by normalizing Eq. (4.11) by the open-circuit peak response

(≈ 1
2ζ

)

X∗
norm =

4ζ

k2
(4.12)

Unlike X∗, this normalized magnitude includes the modal damping. As the modal damping is

increased, the maximum response peaks decrease and less vibration reduction is present from the

untreated case; however, for systems with large modal damping, a vibration reduction treatment is

not necessary due to the lack of large vibrational magnitudes present in the untreated case.

4.3 System Response to Sweep Excitation

Although a harmonic analysis is beneficial for understanding RFD conceptually, the method

applies to systems experiencing a transient excitation force, so a time domain analysis is necessary.

This section examines how the response and optimal frequency switch trigger is altered when the

excitation is no longer harmonic and a frequency sweep with the phase of excitation given in

Eq. (3.51) is introduced.

4.3.1 Direct Numerical Integration

One method of solving for the response with a frequency sweep excitation is through direct

numerical integration of the equations of motion. For this approach, the second-order equation of
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motion given by Eq. (4.2) is transformed into two first-order differential equations by setting x1 = x

and x2 = ẋ:






x2 = ẋ1

ẋ2 =−S(τ)x1 −2ζ x2 + sin(α
2

τ2 +α0τ +ψ0)

(4.13)

where the stiffness of the system S(τ) is governed by the control law previously defined in Eq. (4.1).

With the equations set, any number of numerical integration approaches can be assigned to solve

for the response. Here, MATLAB’s ode45 differential equation solver based on a variable step

Runge-Kutta approach is utilized. An example response in the open-circuit state with no switch

application is shown in Fig 4.2 and includes both the oscillatory response (blue) and the response

envelope (red). One characteristic of this response is that the maximum peak location is delayed

with a decreased magnitude compared to that of the harmonic case. As this sweep rate increases,

the maximum peak will be increasingly delayed and the magnitude will continually decrease to

a point that a vibration reduction treatment is no longer necessary. As the sweep rate decreases,

the response will approach that of the harmonic case. The inclusion of a sweep also generates

a beating phenomena that occurs due to the superposition of two responses: the forced response

due to the variable frequency forcing function and the free vibrations associated with the passage

through resonance. The use of this approach does, however, involve large computational effort for

slower sweep rates, as documented in Table 4.1. The computation times exponentially increase as

the sweep rate decreases due to the large number of oscillations present for sweeps slower than

α ≤ 10−5, resulting in this approach becoming highly inefficient and computationally expensive.
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Figure 4.2: System response obtained using direct numerical integration, with both the oscillatory

response (blue solid) and the response envelope (red solid); the harmonic response

envelope (black) is shown for comparison

Table 4.1: Computation time (in seconds) using MATLAB’s ode45 solver (“Numerical”) and the

approach of Markert and Seidler (“Analytical”) over the time range τ = 0 to τ = 1.5
α , with

ζ = 0.1% and k2 = 5%. These simulations were performed on a computer with a 2.27 GHz

Intel Core i5 processor and 4 GB of RAM.

Sweep Rate, α

10−2 10−3 10−4 10−5 10−6

Numerical 0.356 0.562 2.62 33.1 1150

Analytical 0.220 0.230 0.564 0.601 1.23

4.3.2 Analytical System Response

Due to the large number of simulations needed for a parametric study, a different approach than

direct numerical integration is desired. An analytical solution for a frequency sweep excitation and
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passage through resonance was derived by Markert and Seidler and the application to RFD is

presented as follows [34]. Starting with the open-circuit response described by Eq. (3.68) and

reproduced here

ẍ+2ζ ẋ+ x = sinϕ(τ) (3.68)

the eigenvalues that characterize the behavior of the system are

λ1,2 =−ζ ± i

√

1−ζ 2 (4.14)

The response is then given as

X(τ) = |Q(τ)|sin[ϕ(τ)−β (τ)| (4.15)

where β is the phase difference between the excitation and the response, and Q(τ) is the complex

magnitude given as

Q(τ) = B1w(ν1)+B2w(ν2)+C1eν10
2−ν1

2

+C2eν20
2−ν2

2

(4.16)

where the function w is the complex error (Faddeeva) function and defined as

w(u) = e−u2

(

1+
2i√
π

∫ u

0
et2

dt

)

(4.17)
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with complex times

ν1(τ) =− 1+ i

2
√

α
(ατ +α0 + iλ1) (4.18)

ν10 =− 1+ i

2
√

α
(α0 + iλ1) (4.19)

ν2(τ) = sign(α)
1+ i

2
√

α
(ατ +α0 + iλ2) (4.20)

ν20 =− 1+ i

2
√

α
(α0 + iλ2) (4.21)

and constants

B1 =
1− i

4
√

1−ζ 2
(4.22)

B2 = sign(α)
1− i

4
√

1−ζ 2
(4.23)

C1 =
(λ2x0 − ẋ)e−i(ψ− π

2 )

λ2 −λ1
−B1w(ν10) (4.24)

C2 =
(λ1x0 − ẋ)e−i(ψ− π

2 )

λ1 −λ2
−B2w(ν20) (4.25)

For a system with zero-initial conditions, the complex magnitude Q(τ) can be solved exactly using

the B1w(ν1) and B2w(ν2) terms which correspond to the entrained response. With initial condi-

tions present, the four term solution is needed and the terms involving the constants C1 and C2

correspond to the free response that decays in time. Computation times required to generate a

solution from this analytical approach are compared to that of the numerical approach in Table 4.1.
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All computations are completed on the order of magnitude of seconds, including those with slower

sweep rates; for this reason, the analytical approach is chosen.

4.3.2.1 Rescaling the Equation of Motion

With the analytical solution for the open-circuit condition in place, a step change in stiffness

following the switch to the short-circuit condition must be included. The short-circuit equation of

motion given by Eq. (3.70) and reproduced here is

ẍ+2ζ ẋ+(1− k2)x = sinϕ(τ) (3.70)

and shows the step change in stiffness from S(τ) = 1 to S(τ) = 1− k2. To apply the analytical

approach, this equation must be rescaled and set into the proper form. This process involves

rescaling the nondimensional time by the short-circuit natural frequency

τ̄ =
√

1− k2(τ − τsw) (4.26)

where the rescaled time is indicated with a bar (rescaled variables in subsequent equations will

also be indicated with a bar). Because this short-circuit condition begins at the time of the switch

τsw, this term must be included with this new scaled time. The phase of excitation is then rescaled

using this new time

ϕ(τ̄) =
ᾱ

2
τ̄2 + ᾱ0τ̄ + ψ̄ (4.27)

67



where the rescaled variables are defined as

ᾱ =
α

1− k2
(4.28)

ᾱ0 =
ατsw +α0√

1− k2
(4.29)

ψ̄ =
α

2
τ2

sw +α0τsw +ψ0 (4.30)

The response is then scaled by the short-circuit stiffness

x̄ = (1− k2)x (4.31)

with the corresponding derivatives with respect to the rescaled time τ̄ as indicated with ()′

x̄′ =
√

1− k2ẋ (4.32)

x̄′′ = ẍ (4.33)

Substituting these rescaled variables into Eq. (3.70) results in

x̄′′+2ζ̄ x′+ x̄ = sinϕ(τ̄) (4.34)

where the rescaled damping is

ζ̄ =
ζ√

1− k2
(4.35)
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An example comparing both the responses generated from the direct numerical integration ap-

proach and the analytical approach is shown in Fig. 4.3a. These responses incorporate the stiffness

switch that occurs at ωsw = 0.94, indicated by the green circle and the sharp increase in response

envelope slope due to the altered natural frequency. Figure 4.3b shows a zoomed portion of the

maximum response peak from Fig. 4.3a to compare the two solution approaches. The analytical

solution slightly overestimates the maximum response; however the difference in this case is < 1
4
%

and is negligible.
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(a) Oscillatory response and response envelope for both analytical and

numerical case with a switch occuring at ωsw = 0.94 (green circle)

(b) Zoomed in portion of peak magnitude from Fig. 4.3a (black

rectangle)

Figure 4.3: Numerical and analytical response comparison with system parameters α = 3E
−4,

ζ = 0.5% and k2 = 5%
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4.4 Optimal Trigger Determination With Perfect System Knowledge

Previously shown in Section 4.2, the optimal switch frequency for a limiting case of zero sweep

rate occurs at the point where the open- and short-circuit response envelopes intersect. Although

valid when the maximum response peaks occur at the system resonance, the introduction of a

frequency sweep modifies this optimal trigger to take into account the delay of the maximum peak

past resonance. (The results presented in this section were previously published at ASME Turbo

Expo 2014 [35].)

Figure 4.4a shows the response envelopes of arbitrary trigger selections and compares them

with the short- and open-circuit response envelopes (all responses are normalized by the open-

circuit maximum peak). The maximum amplitudes (red dots) for each response can then be

mapped to and plotted as a function of the frequency-based switch triggers, as shown in Fig. 4.4b.

The optimal switch ω∗ is the one that minimizes the peak response, in this case ω∗ = 0.989 where

the normalized peak magnitude is X∗
norm = 0.6028. Additionally, if the trigger is applied too early

(ωsw < 0.96) or too late (ωsw < 1.019), the peak response is actually increased above its open-

circuit value.

With optimality defined, simulations can be performed to determine how the design parameters

α , ζ , and k2 affect this optimal switch trigger. The test matrix of the design parameters consisted

of values of α ∈ [10−5,10−1], ζ ∈ [0.001%,1%], and k2 ∈ [1%,25%]; each design case tested a

number of switch trigger values ωsw ∈ [0.92,1] and the optimal trigger was then found using the

previously described criteria. These simulations were then conducted with ωsw occurring at differ-
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ent points in the vibration cycle: at maximum strain energy (displacement extrema), at maximum

kinetic energy (zero displacement), and at arbitrary points between these limiting cases.

(a) Determination of the optimal response (red solid) using

arbitrary switch triggers (blue solid) compared to open- and

short-circuit response envelopes (black dashed)

(b) The peaks of each response (red dots in Fig. 4.4a) mapped to

their frequency-based switch triggers, with optimal trigger

(red X)

Figure 4.4: Determination of the optimal response with α = 10−4, ζ = 0.1%, and k2 = 5%
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Figure 4.5 shows how the optimal trigger varies with the sweep rate, damping, and coupling

coefficient values with the blue curves corresponding to the switch occurring at peak strain energy.

Each curve from these figures is plotted holding the other parameters constant. For example, a

single curve in Fig. 4.5a is generated by varying the sweep rate while holding the damping and

coupling coefficient constant. A different curve corresponds to a different value of the damping

and coupling coefficient. The optimal switch trigger shows little dependence on the sweep rate and

damping that is present in the system, as shown by the relatively horizontal curves in Figs. 4.5a

and 4.5b.

Figure 4.5c shows the variation in the optimal trigger as the coupling coefficient is varied for

the two cases of the switch being applied at peak strain energy (blue) and peak kinetic energy

(red), along with the predictions from the harmonic analysis (black, limiting case of α = 0) given

by Eq. (4.7). For the harmonic case, as k2 increases, the optimal trigger decreases linearly. The

optimal trigger with a frequency sweep present follows a similar trend as the predicted values;

however differences do arise. As previously shown, with α > 0, the peak magnitudes are delayed

past resonance and consequently, the optimal trigger is delayed. Additionally, as k2 is increased,

a larger variation in optimal switch trigger values arise. Figure 4.6a helps to explain this behavior

showing the normalized maximum response as the switch trigger is varied for two cases of the

coupling coefficient k2 = 20% (blue) and k2 = 2% (red). For the larger k2 value, the bottom of the

“bucket” shaped curve is nearly horizontal for a range of switch triggers ωsw ∈ [0.945,0.965] and

any switch trigger chosen in this range provides nearly identical vibration reduction. The optimal

switch trigger in such situations may vary slightly from case to case due to numerical computations;
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this also explains the slight variations from the horizontal lines shown in Figs. 4.5a and 4.5b. In

contrast, the smaller k2 value shows a sharper “bucket” and there exists a much narrower range

of switch trigger values that provide maximum vibration reduction, ultimately causing the optimal

response to be much more sensitive to the switching point.

(a) Sweep rate

(b) Damping
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(c) Coupling coefficient effect on optimal trigger with switch

applied at peak strain energy (blue), peak kinetic energy

(red), and prediction from harmonic case (black)

Figure 4.5: Optimal frequency-based switch trigger determination with variation of sweep rate,

damping, and coupling coefficient

(figure continued from previous page)

(a) Effect of varying coupling coefficient between k2 = 20%

(blue) and k2 = 2% (red)
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(b) Effect of switch on peak strain energy (blue), peak kinetic

energy (red), and arbitrary phase of vibration (gray)

Figure 4.6: Normalized maximum response as a function of the switch trigger for α = 10−4 and

ζ = 0.01%

(figure continued from previous page)

Another trend that arises in Fig. 4.5c is the optimal trigger applied at peak strain energy occurs

later than the optimal trigger applied at peak kinetic energy. Figure 4.6b helps to explain this

behavior showing the normalized maximum response for switch triggers applied at peak strain

energy (blue), peak kinetic energy (red) and arbitrary points in the vibration cycle (gray). For

switch triggers applied farther away from resonance, the curves collapse onto each other, meaning

the vibration reduction is independent of the local phase of vibration. As the switch triggers are

applied closer to resonance, however, a deviation between the two curves arises where the switch

applied at peak strain energy offers greater vibration reduction. As the response nears resonance,

additional energy is absorbed in the system. Applying the switch at peak strain energy, has the

added benefit of dissipating some of the mechanical energy across the piezoelectric material, in a
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fashion similar to other state-switching techniques. In contrast, applying the switch at peak kinetic

energy does not exhibit this dissipating effect, so the optimal switch occurs slightly earlier—when

less energy is present—than the optimal point when switched at peak strain energy. Application of

the switch at peak kinetic energy also has less vibration reduction potential compared to a switch

at peak strain energy. This degradation in vibration reduction potential due to optimal switch

being applied at peak kinetic energy compared to the ideal location of peak strain energy can be

quantified as

Degradation =
Xnorm,KE −Xnorm,SE

1−Xnorm,SE

(4.36)

where

Xnorm,SE =
Xmax,SE

Xmax,oc
(4.37)

Xnorm,KE =
Xmax,KE

Xmax,oc
(4.38)

and the subscripts “SE”, “KE”, and “oc” correspond to the switch applied at peak strain energy,

the switch applied at peak kinetic energy, and the baseline open-circuit condition with no switch

applied.

This choice of measurement was made such that greater emphasis is given to cases experiencing

less overall vibration reduction. As an example, let the difference in the maximum normalized

response between the switch at peak kinetic energy and peak strain energy be Xnorm,KE−Xnorm,SE =

0.05. A case representing large vibration reduction potential Xnorm,SE = 0.2 results in a degradation

of 6.25%, whereas a case representing less vibration reduction potential Xnorm,SE = 0.8 results in
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a degradation of 25%. In essence, a variation in maximum peak amplitudes for the two cases has

a lesser effect when the vibration reduction is large since a large amount of vibration reduction is

still present in the non-ideal case.

Figure 4.7 shows this percent degradation in vibration reduction as a function of the sweep rate

and damping (coupling coefficient has negligible effect). For slower sweep rates, the degradation

between these two switching cases is insignificant. For faster sweep rates, this degradation does

become more significant; however, excellent vibration reduction is still present. Coincidentally,

the cases subjected to faster sweep rates produce little absolute vibration due to the quick passage

through resonance, and a vibration reduction treatment is likely not needed.

This analysis is restricted to a SDOF system, and the effect of applying the switch at peak strain

energy for a MDOF system and exciting other modes is unknown and currently a topic of further

study. Application of a switch at peak strain energy is similar to a mechanical impact and can cause

strong transients to develop [36]. Additionally, semi-active approaches have shown that switching

between open- and short-circuit at peak strain energy excites the odd harmonics which can be

problematic if a system resonance is located near one of these excited frequencies. If switching on

peak strain energy does cause an adverse effect on the vibration reduction, RFD can switch at peak

kinetic energy without much degradation in performance, an advantage over other state-switching

approaches.
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Figure 4.7: Percent degradation in vibration reduction due to optimal switch applied at peak kinetic

energy compared to peak strain energy

4.5 Optimal Trigger Determination Using Measurable Response Characteristics

The previous section focused on the effect various system design parameters have on the opti-

mal switch trigger and a parametric study was performed where these parameters were controlled.

In practice, these parameters may be difficult to measure. For instance, a turbomachinery blade is

effectively a cantilevered plate, and as such, it contains regions of high modal density at the higher

mode numbers. As a result, it is difficult to distinguish the dominating mode and the corresponding

coupling coefficient. Because the optimal switch trigger is primarily a function of k2, implementing

a control law requiring knowledge of this parameter may be difficult. For this reason, an alternate
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method of incorporating a control law utilizing a variable more easily measurable is desired. (The

results presented in this section were originally published at AIAA SciTech 2015 [37].)

4.5.1 Control Law Development

Returning to the open-circuit equation of motion defining the piezoelectric voltage before the

stiffness switch ωsw, the voltage is directly proportional to the displacement

V =−k2x (3.69)

As previously noted, the piezoelectric voltage can be used to generate information regarding the

oscillatory mechanical response of the blade. By rectifying and smoothing the signal, informa-

tion can also be obtained about the mechanical response envelope and, consequently, the voltage

response envelope designated as V̄ . The first and second time derivatives of V̄ , designated as V̄ ′

and V̄ ′′, can be used as a measure of how quickly this voltage response envelope is changing. Fig-

ure 4.8a shows the switch triggers for the entire design space considered in the previous parametric

studies (black) and optimal triggers (red) plotted against these voltage envelope derivatives at the

point the trigger is applied. Although there is no observable trend for the non-optimal switching

cases, the optimal switch triggers collapse to a well-defined subspace on a logarithmic scale.
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(a) Optimal switches (red circles) and the entire design space in

parametric studies (black circles)

(b) Optimal switches for k2 ≤ 5% (red), 5% < k2 ≤ 10% (blue),

10% < k2 ≤ 20% (green), k2 > 20% (pink)

Figure 4.8: Switch triggers parameterized in terms of derivatives of the piezoelectric voltage envelope
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Figure 4.8b focuses on these optimal switch cases to examine the effects the design parameters

have on the corresponding voltage envelope derivatives. Although damping has little influence,

both the sweep rate and coupling coefficients have appreciable effects on these derivative magni-

tudes. As the sweep rate increases, the magnitudes of these derivatives decrease. For slow sweeps,

the response envelope approaches that of the harmonic case and the peak magnitude increases, re-

sulting in a sharper increase in the voltage envelope V̄ and corresponding increase in its derivatives.

In contrast, faster sweeps pass through resonance more quickly and exhibit a decreased response

and subsequent broader increase in V̄ resulting in decreased derivatives. This change in the deriva-

tives is more pronounced for small k2 values (shown in red), decreasing over several orders of

magnitude, as opposed to large k2 values (shown in pink), decreasing only a single order of mag-

nitude. For slower sleeps, increasing k2 decreases the values of the the derivatives. As previously

discussed, increasing k2 causes the optimal trigger to occur at an earlier time and farther away from

the maximum peak as shown in Fig. 4.9a for a sweep rate α = 10−5. This figure presents V̄ for two

k2 values, the left vertical axis corresponds to the lower coupling coefficient k2 = 2% (black) and

the right vertical axis corresponds to the higher coefficient k2 = 20% (red) along with the associ-

ated optimal switch values for both cases (circle markers). For both cases, the magnitude of V̄ at

the switch is nearly equal (V ≈ 2); however, for the larger k2 value, the slope and curvature of V̄ are

smaller at the optimal switching point leading to the reduced V̄ derivatives. Interestingly, for faster

sweep rates, increasing k2 has the opposite effect by increasing the derivatives. For these faster

sweeps, V̄ changes much more gradually due to the decreased vibration level than slower sweeps,
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as shown Fig. 4.9b. In combination with the larger k2 value corresponding to larger magnitudes of

V̄ when the optimal switch occurs, this leads to larger V̄ derivatives.

(a) α = 10−5

(b) α = 10−3

Figure 4.9: Time response of the voltage envelopes for two coupling coefficients: k2 = 2% on left

vertical axis (black) and k2 = 20% on right vertical axis (red) with corresponding optimal

switch triggers (circles) for ζ = 0.01%
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Although the coupling coefficient may not be readily known, it is an intrinsic element char-

acterizing the voltage response and its derivatives. Ultimately, by taking advantage of this effect,

an optimal governing switch control law can be implemented based on this open-circuit voltage

measurement rather than on k2 itself. To extract this control law, a nonlinear regression can be

performed over the optimal switch triggers and associated voltage envelope derivatives shown in

Fig. 4.8a. The fit equation will first be derived for a general case of a linearly scaled set of data

and then adapted to perform a fit on a logarithmic scale. The first step is to define the error as the

difference between the data y and the values found using a nonlinear fit ŷ

{e}= {y}−{ŷ} (4.39)

where {ŷ} is a quadratic function of {x}

{ŷ}= a0 +a1{x}+a2{x2} (4.40)

and a0, a1, a2 are coefficients to be determined. The weighted sum of the squares of the error is

J = {e}T [W ]{e} (4.41)

where [W ] is a diagonal matrix with user-defined weights. For the case where all data values are

equally weighted, [W ] reduces to the identity matrix. Putting the above equation into index notation
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results in

J =
I

∑
i

wie
2
i

=
I

∑
i

wi(yi − ŷi)
2

=
I

∑
i

wi[yi − (a0 +a1xi +a2(xi)
2)]2

(4.42)

where I is the total number of data points. Taking the derivative with respect to the a coefficients

and setting equal to zero yields

∂J

∂a0
=−2

{ I

∑
i

wi[yi − (a0 +a1xi +a2(xi)
2)]2

}
= 0 (4.43)

∂J

∂a1
=−2

{ I

∑
i

wixi[yi − (a0 +a1xi +a2(xi)
2)]2

}
= 0 (4.44)

∂J

∂a0
=−2

{ I

∑
i

wix
2
i [yi − (a0 +a1xi +a2(xi)

2)]2
}
= 0 (4.45)

and results in the following three equations for the three unknown a coefficients where the sum-

mation limits have been dropped for brevity

a0 +a1
∑wixi

∑wi
+a2

∑wix
2
i

∑wi
=

∑wiyi

∑wi
(4.46)

a0 +a1
∑wix

2
i

∑wixi
+a2

∑wix
3
i

∑wixi
=

∑wixiyi

∑wixi
(4.47)

a0 +a1
∑wix

3
i

∑wix
2
i

+a2
∑wix

4
i

∑wix
2
i

=
∑wix

2
i yi

∑wix
2
i

(4.48)
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These equations can also be represented in matrix form:











1 ∑wixi
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∑wix
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1
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(4.49)

[A]{a}= {B} (4.50)

To solve for the coefficients {a}, both sides of the above equation can be premultiplied by the

pseudo-inverse of [A]:

{a}=
[
[A]T [A]

]−1
[A]T{B} (4.51)

To perform the curve fit for the specific case shown in Fig. 4.8a, xi and yi are defined as

xi = log10 V̄ ′ (4.52)

yi = log10 V̄ ′′ (4.53)

leading to a fit equation of the form

log10 V̄ ′′
fit = a0 +a1 log10 V̄ ′+a2(log10 V̄ ′)2 (4.54)

and the coefficients for an unweighted fit (wi = 1) are found to be

a0 = 1.0829, a1 = 0.8568, a2 = 0.2784 (4.55)
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To simulate this control law, the mechanical response is first obtained and the corresponding

voltage response and envelope is generated using Eq. (3.69). The voltage envelope derivatives V̄ ′

and V̄ ′′ are then approximated using a finite difference approach. The fit variable V̄ ′′
fit is determined

by inserting V̄ ′ into Eq. (4.54). The switch is then applied when the values of V̄ ′′
fit and V̄ ′′ are

equal. As shown in Fig. 4.10, by comparing the values between V̄ ′′
fit (blue solid) and V̄ ′′ (red

solid), the switch is applied when these curves intersect (red circle). Compared to the ideal switch

found assuming complete knowledge of the system parameters (black dashed line), the difference

between switch trigger values and corresponding response is negligible for this example.

Figure 4.10: Time response of the piezoelectric voltage (black) with the corresponding second

derivative V̄ ′′ (red) and fit value V̄ ′′
fit (blue) for α = 1.1E

−4, ζ = 0.01%, and k2 = 5%
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The effectiveness of the performance of this empirical control law can be measured by once

again using the degradation in vibration reduction potential

Degradation =
Xnorm,Fit −Xnorm,Ideal

1−Xnorm,Ideal

(4.56)

where

Xnorm,Ideal =
Xmax,Ideal

Xmax,oc
(4.57)

Xnorm,Fit =
Xmax,Fit

Xmax,oc
(4.58)

and the subscript “Ideal” refers to the value found for the ideal case assuming complete knowledge

of the system parameters and the subscript “Fit” refers to the value found using the empirical

control law and the nonlinear regression equation presented in this section.

For the unweighted fit, the percent degradation in vibration reduction performance for the var-

ious design parameters is shown in Fig. 4.11a. For moderate to slow sweep rates, there is little

degradation and this control law exhibits comparable performance to the ideal case; however, for

faster sweep rates (α > 10−3), many cases experience a large degradation. Referring again to

Fig. 4.10, as the sweep rate is increased, the value of V̄ ′′
fit (blue curve) increases relative to the value

of V̄ ′′ (red curve), and the switch trigger may be applied too early, resulting in a non-optimal switch

and large degradation. Increasing the sweep rate further, the value of V̄ ′′
fit becomes greater every-

where than V̄ ′′. At this point, the control method breaks down and no switch is applied, resulting

in the response remaining in the open-circuit condition. However, for many cases involving these
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rapid sweeps, the absolute vibratory response is minimal and no vibration reduction treatment is

necessary.

To enhance this approach, a weighting scheme can be introduced depending on the desired

metric defining the optimality. As previously noted, for this thesis, the optimal trigger is defined by

minimizing the peak of the mechanical response envelope; subsequently, weights can be assigned

that give greater importance to cases experiencing the largest peak reduction

wi = 1−Xnorm,i (4.59)

Applying this weighting scheme with the nonlinear regression results in the coefficients

a0 = 1.1285, a1 = 0.8069, a2 = 0.2903 (4.60)

The degradation in vibration reduction potential is shown in Fig. 4.11b along with the applied

weights (larger markers refer to larger weights). The largest weights are assigned to high k2 val-

ues and low sweep rates as these cases experience the greatest vibration reduction; intermediate

weights are assigned to high k2 values and faster sweep rates and also for low k2 values and slower

sweeps. Small weights are assigned to low k2 values and rapid sweeps as these cases exhibit min-

imal vibration reduction. For moderate to slow sweeps and all k2 and ζ values, the performance

between the weighted and unweighted curve fit is comparable. Once again, the control law does

break down for many cases including faster sweeps (α > 10−3); however, the number of cases in

which the law breaks down is reduced compared to the unweighted scheme.
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(a) Unweighted: wi = 1 ∀i

(b) Weighted: wi = 1−Xnorm,i

The weight associated with the data point is indicated by the

marker size.

Figure 4.11: Percent degradation in vibration reduction performance when using observable quantities

instead of assuming complete system knowledge
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Figure 4.12 compares the optimal switch triggers ω∗
ideal and ω∗

fit along with a one-to-one re-

lationship where both switch triggers are equal (indicated by a black line). The major outliers

correspond to the cases in which the control scheme breaks down and the switch is applied too

early (cases are not shown where there is no application of the switch); these breakdowns cor-

respond to cases with rapid sweep rates and a vibration reduction treatment is unnecessary. The

number of outliers is indeed reduced for the weighted curve fit. For large k2 values, corresponding

to early switch times, there is a larger variation between ω∗
fit and ω∗

ideal compared to smaller k2

values, corresponding to switch times near unity. Although these smaller k2 values experience less

variation, there is greater degradation. As previously explained in Section 4.4, cases with smaller

k2 values are far more sensitive to the time the switch trigger is applied and any deviation from the

ideal will result in larger degradation in the vibration reduction potential.

(a) Unweighted: wi = 1 ∀i
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(b) Weighted: wi = 1−Xnorm,i

Figure 4.12: Comparison of optimal trigger values found assuming complete knowledge of parameters

ω∗
ideal and the nonlinear regression ω∗

fit with the associated degradation values in colored

(figure continued from previous page)
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CHAPTER 5

CONCLUSIONS

The main goal of this research effort was to determine the switch trigger that optimizes the

response for the resonance frequency detuning method. This thesis explored a fundamental un-

derstanding of the effects the various design parameters have on the timing of this switch trigger

and found that the electromechanical coupling coefficient is the main contributor. This result was

predicted for a limiting case of a zero sweep rate and verified with simulations with a frequency

sweep present. The response displays a much higher sensitivity to the switch trigger when the cou-

pling coefficient is small compared to cases with larger coupling values. The phase of vibration

has an additional effect on this optimal switch trigger and corresponding response in that a switch

at peak strain energy (displacement extrema) resulted in greater vibration reduction and occurs at

a later time than a switch at peak kinetic energy (zero displacement). The discrepancy in vibration

reduction potential between these two switching points, however, is negligible for sweep rates and

damping ratios expected to be encountered in a turbomachinery environment.

A method of applying the optimal switch trigger with no knowledge of the system parameters

was also presented. For a turbomachinery blade, the coupling coefficient corresponding to the

dominating mode in a region of high modal density may not be a feasible parameter to measure.

As such, an optimal trigger control law based on a more readily available on-blade quantity, such as
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the open-circuit piezoelectric voltage response envelope and its derivatives, was derived. Although

knowledge of the coupling coefficient—the main factor in determining the optimal switch—is

unknown, this value is essentially encoded in the open-circuit voltage response, enabling a control

law based on this measurement to be extracted. For slow to moderate sweep rates, this control

law provides comparable results to that of the ideal case where complete knowledge of the system

parameters is available. A weighting scheme can also be introduced to assign greater importance to

target areas. One such scheme is to assign larger weights to cases experiencing the largest vibration

reduction. Other schemes can be introduced depending on the metric of optimality that is utilized.

5.1 Physical Considerations

The main motivation behind resonance frequency detuning is for application to monolithic

bladed disks in turbomachinery. More generally, RFD can be extended to any system experiencing

a time-varying frequency sweep excitation with stringent physical restrictions. As such, a brief

discussion on possible physical implementation is necessary.

Perhaps the greatest benefit of RFD lies in turbofan and turbojet engines for military aircraft,

in which the blades cycle through resonance crossings with far greater frequency than passenger

aircraft. Restrictions of the locations of the piezoelectric material throughout the engine do exist,

however. As previously discussed, when piezoelectric materials are exposed to high temperature

environments greater than that of the Curie temperature, a loss in their piezoelectric properties

occurs. High Curie temperature piezoelectric materials do exist, but at the expense of a decreased
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coupling coefficient [38, 39]. Additionally, these Curie temperatures are still well below the oper-

ating temperatures of the high-temperature turbine section of an engine, so application in this lo-

cation remains infeasible without a method of cooling. Inclusion of piezoelectric materials is then

most likely in the fan blades and blades located in the cold-side of the compressor—coincidentally,

locations that experience the largest vibrations.

The piezoelectric material must be incorporated on or in the blade such that it does not alter the

airflow or structural integrity throughout these sections. Although many experiments are comprised

of bonding the piezoelectric materials to a structure’s surface, not only may this configuration alter

the airflow through the engine, the high velocities (and associated ingested particles) present in

these stages may erode or even detach the material from the surface of the blade. One method of

incorporation is through a cavity in the blade interior. Careful consideration must be taken when

using this approach such that the structural integrity of the blade is not compromised and does

not have an adverse effect on the blade vibration. The best solution may be to coat the fibers of

a composite lay-up with the piezoelectric material without requiring a cutout in the laminate [40].

Recent breakthroughs in blade technology have led to the use of composite fan blades by GE

making this approach feasible [2]. In such a way, the fibers in locations of high modal strain can be

coated creating localized “patches” of the piezoelectric material. Questions still remain regarding

methods of connecting these patches throughout the blade without altering its structural integrity.

Lastly, the method of incorporating the optimal switch control law and mechanism to perform

this switch needs to be addressed. Certainly, one approach is to implement RFD as much as

possible in the stationary frame, where additional measurements and system knowledge may be
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available. However, drawbacks to this approach would involve rigorous testing of the blisk to

identify the natural frequencies and coupling coefficients corresponding to resonance crossings

of interest. The possibility of blade mistuning also necessitates the testing of each individual

blade. Additionally, the disk and blade properties may change slightly over time, requiring periodic

testing of the structure [9].

The more attractive approach is to implement a switch control law using a readily measurable

quantity such as the open-circuit piezoelectric voltage as presented in Section 4.5. In this method,

zero knowledge of the excitation, blisk natural frequencies, or coupling coefficients is needed,

rendering rigorous testing of the blisk unnecessary. All that is required is a minimal amount of

signal processing to rectify and smooth the voltage signal to obtain knowledge of the voltage

envelope and its associated derivatives. The switch is then applied once the measurement reaches

a certain threshold. Because each switching circuit can be implemented independently for each

blade, the presence of blade mistuning is also accommodated in this approach.

5.2 Future Work

As a final closing to this thesis, it is prudent to identify areas where this ongoing research

effort can lead in progressing the RFD method. This thesis assumes that the key metric for the

high-cycle fatigue of a turbomachinery blade is the peak vibration magnitude. Although this as-

sumption may be valid, a full fatigue analysis is necessary to truly define the optimal response that

can extend the blade life. Such metrics may include decreasing the total area under the response
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envelope or decreasing the amount of time the response vibrates above a certain threshold. Al-

though the piezoelectric bimorph model used in this thesis is valid for testing the RFD concept,

a better representative blade model (such as that derived in [9]) would be needed to facilitate this

fatigue analysis. An additional assumption made in this thesis is that the stiffness state switch was

instantaneous. In reality, this stiffness change occurs over a finite time and may affect both the

switch trigger and the optimal response, and thus warrants further examination.

Additionally, the analysis set forth in this thesis is restricted to a SDOF system. Although a

valid assumption for the lower mode numbers in a turbomachinery blade, this assumption breaks

down at the higher mode numbers due to the high modal density that exists. Relaxing the SDOF

system assumption is necessary and a MDOF analysis should be employed to understand the con-

tributions of other modes to RFD performance. A first step for analysis can be to apply RFD to a

2-DOF system with closely-spaced modes. Investigation can then be made regarding the stiffness

state switch, the corresponding shifts in natural frequency, and their effect on vibration reduc-

tion performance. Parameters affecting the vibration reduction performance may be the amount

of separation between the two modes, the coupling coefficients of both modes, and the stiffness

component that couples the two masses. This analysis is underway and can then be extended to a

full blade model and investigated in the regions of high modal density.

An ongoing, parallel research effort regarding RFD is to harvest the energy from the blade

vibrations to power the circuitry components and switching mechanism. Because the need for

the switch is near the system resonance, an abundance of strain energy is present that can be

converted to electrical energy through the same piezoelectric material used to initiate the stiffness
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state switch. The last step will be to combine these two research efforts to create a self-powered,

large broadband vibration reduction system capable of sensing an optimal switch trigger condition,

harvesting the energy needed to power that switch, and finally, actuating the stiffness state switch.
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APPENDIX

MATLAB CODE
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A.1 Bimorph Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Matlab code for piezoelectric bimorph model derived using the assumed

%modes method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; close all; clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEGIN USER INPUTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Core Beam Material

rho = ; %density (kg/m^3)

E = ; %Young’s Modulus (Pa)

%beam dimensions

b = ; %width (m)

h = ; %thickness (m)

L = ; %length (m)

%piezoelectric dimensions

Np = ; %number of patches

x1 = ; %distance from root of beam (m)

Lp1 = ; %length (m)

bp = ; %width (m)

hp = ; %thickness (m)

rhop = ; %density (kg/m^3)

%piezoelectric electrical/coupling properties

eps = ; %dielectric permittivity (F/m)

S_E11 = ; %compliance (m^2/N)

Ep = ; %Young’s Modulus (N/m^2)

e31 = ; %piezoelectric coeff (C/m^2)

%misc

N = ; %number of assumed mode shapes

zeta = ; %damping

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% END USER INPUTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CALCULATED PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A = b*h; %cross-sectional area (m^2)

I = b*h^3/12; %moment of inertia (m^4)

Ap = bp*hp; %cross-sectional area (m^2)

Ip = bp/12*(4*hp^3+3*h^2*hp+6*h*hp^2); %moment of intertia (m^4)

hp1 = h/2; %interior surface of patch (m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ASSUMED MODES FORMULATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialize system matrices

M_b = zeros(N,N); %core beam mass matrix

M_p1 = zeros(N,N); %patch contributions to mass matrix

K_b = zeros(N,N); %core beam stiffness matrix

K_p1 = zeros(N,N); %patch contributions to stiffness matrix

Ke = zeros(Np,Np); %piezoelectric electrical stiffness matrix

Kc = zeros(Np,N); %piezoelectric coupling stiffness matrix

%calculate system matrices

for r = 1:N

for s = 1:N

M_b(r,s) = rho*A*L./(r+s+3);

M_p1(r,s) = rhop*Ap*L./(r+s+3)*(((x1+Lp1)/L)^(r+s+3)...

-(x1/L)^(r+s+3));

K_b(r,s) = E*I/L^3*r*s*(r+1)*(s+1)/(r+s-1);

K_p1(r,s) = Ep*Ip/L^3*((r+1)*(s+1)*r*s)/(r+s-1)*...

(((x1+Lp1)/L)^(r+s-1)-(x1/L)^(r+s-1));

if r<= Np

if s==1;

Ke(r,r) = Lp1*bp/hp*eps;

end;

if r==1

Kc(r,s) = e31*bp*(h/2+hp/2)*(s+1)/L*...

(((x1+Lp1)/L)^s-(x1/L)^s);

else

Kc(r,s) = e31*bp*(-h/2-hp/2)*(s+1)/L*...

(((x1+Lp1)/L)^s-(x1/L)^s);

end

end

end

end

M_np = M_b; %mass matrix - beam no patches

101



M = M_b+Np*M_p1; %mass matrix - bimorph

K_np = K_b; %stiffness matrix - beam no patches

K_sc = K_np+Np*K_p1; %stiffness matrix - bimorph (short-circuit)

K_oc = K_sc+Kc’*(Ke\Kc); %stiffness matrix - bimorph (open-circuit)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%STATIC ANALYSIS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%forcing information

xin = L; %force input location

Fo=1; %input force

r = 1:N;

F(r,1) = Fo*(xin/L).^(r+1); %force vector

%static mechanical generalized coordinates

qstatic_np = K_np\F; %beam no patches

qstatic_sc = K_sc\F; %bimorph (short-circuit)

qstatic_oc = K_oc\F; %bimorph (open-circuit)

%discretize beam length

x = linspace(0,L,100);

%static deflections

def_sc = zeros(N,x);

def_oc = zeros(N,x);

def_np = zeros(N,x);

for n = 1:N

def_sc(n,:) = (x./L).^(n+1).*qstatic_sc(n);

def_oc(n,:) = (x./L).^(n+1).*qstatic_oc(n);

def_np(n,:) = (x./L).^(n+1).*qstatic_np(n);

end

def_np = sum(def_np,1); %beam no patches

def_sc = sum(def_sc,1); %bimorph (short-circuit)

def_oc = sum(def_oc,1); %bimorph (open-circuit)

%maximum deflections

wmax_np = max(def_np);

wmax_sc = max(def_sc);

wmax_oc = max(def_oc);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MODAL ANALYSIS
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%No attached piezoelectric patches

[V_np,lambda_np] = eig(M_np\K_np);

[wn_np,ind] = sort(sqrt(diag(lambda_np)));

freq_np = wn_np/2/pi;

V_np = V_np(:,ind);

Ma_np = V_np’*M*V_np;

%Short circuit values

[V_sc,lambda_sc] = eig(M\K_sc);

[wn_sc,ind] = sort(sqrt(diag(lambda_sc)));

z = zeta*ones(size(wn_sc));

fn_sc = wn_sc/2/pi;

V_sc = V_sc(:,ind);

Ma_sc = V_sc’*M*V_sc;

%Open circuit values

[V_oc,lambda_oc]=eig(M\K_oc);

[wn_oc,ind]=sort(sqrt(diag(lambda_oc)));

fn_oc = wn_oc/2/pi;

V_oc = V_oc(:,ind);

Ma_oc = V_oc’*M*V_oc;

%coupling coefficients

k2 = (wn_oc.^2-wn_sc.^2)./(wn_oc.^2)*100;

%mass normalized modeshapes

Vm_np = zeros(size(V_np));

Vm_sc = zeros(size(V_sc));

Vm_oc = zeros(size(V_oc));

for n = 1:N

mn_np = Ma_np(n,n);

Vm_np(:,n) = V_np(:,n)./sqrt(mn_np);

mn_sc = Ma_sc(n,n);

Vm_sc(:,n) = V_sc(:,n)./sqrt(mn_sc);

mn_oc = Ma_oc(n,n);

Vm_oc(:,n) = V_oc(:,n)./sqrt(mn_oc);

end

Mm_np = Vm_np’*M*Vm_np;

Km_np = Vm_np’*K_np*Vm_np;

Fm_np = Vm_np’*F;
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Mm_sc = Vm_sc’*M*Vm_sc;

Km_sc = Vm_sc’*K_sc*Vm_sc;

Fm_sc = Vm_sc’*F;

Mm_oc = Vm_oc’*M*Vm_oc;

Km_oc = Vm_oc’*K_oc*Vm_oc;

Fm_oc = Vm_oc’*F;

%calculates mode shapes

modeshape = zeros(N,length(x));

px = linspace(x1,x1+Lp1,20);

p_mode = zeros(N,length(px));

for m = 1:N

for n = 1:N

mode_temp(1,:) = (x./L).^(n+1).*Vm_oc(n,m);

modeshape(m,:) = mode_temp+modeshape(m,:);

pmode_temp(1,:) = (px./L).^(n+1).*Vm_oc(n,m);

p_mode(m,:) =pmode_temp+p_mode(m,:);

end

end

%plots mode shapes

figure

for nplot = 1:6

N_mode = nplot;

subplot(3,2,nplot);

mode_plot = modeshape(N_mode,:);

pmode_plot = p_mode(N_mode,:);

plot(1000*x,mode_plot,’b’);

hold on;

plot(1000*px,pmode_plot,’r’,’linewidth’,4);

xlabel(’x (mm)’); ylabel(’Magnitude’);

title(sprintf(’Mode %i’,N_mode));

xlim([0 1000*L]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%FREQUENCY RESPONSE FUNCTION CALCULATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%define frequency range

freq = logspace(0,4,4000);

w = freq*2*pi;

%definine output point

xout = L;
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%modal coordinate calculations

alpha_np = zeros(N,length(w));

alpha_sc = zeros(N,length(w));

alpha_oc = zeros(N,length(w));

alpha_static = Km_np\Fm_np;

for n = 1:N

alpha_np(n,:) = Fm_np(n)./(wn_np(n)^2-w.^2+2*1i*z(n)*wn_np(n).*w);

alpha_sc(n,:) = Fm_sc(n)./(wn_sc(n)^2-w.^2+2*1i*z(n)*wn_sc(n).*w);

alpha_oc(n,:) = Fm_oc(n)./(wn_oc(n)^2-w.^2+2*1i*z(n)*wn_oc(n).*w);

end

%generalized coordinates

q_np = Vm_np*alpha_np;

q_sc = Vm_sc*alpha_sc;

q_oc = Vm_oc*alpha_oc;

H_np = zeros(N,length(w));

H_sc = zeros(N,length(w));

H_oc = zeros(N,length(w));

for m = 1:N

WOut = (xout/L)^(m+1);

WOut_dist(1,:) = (x./L).^(m+1);

H_np(m,:) = q_np(m,:).*WOut;

H_sc(m,:) = q_sc(m,:).*WOut;

H_oc(m,:) = q_oc(m,:).*WOut;

end

H_np = sum(H_np,1);

H_sc = sum(H_sc,1);

H_oc = sum(H_oc,1);

%plot FRF magnitude

figure

plot(w./2/pi,20*log10(abs(H_sc)./abs(H_sc(1))),’r’,’linewidth’,1.5);

hold on;

plot(w./2/pi,20*log10(abs(H_oc)./abs(H_oc(1))),’b’,’linewidth’,1.5);

set(gca,’xscale’,’log’)

title(’FRF’)

ylabel(’Magnitude (dB)’)

xlabel(’Frequency (Hz)’)

legend(’Short-circuit’,’Open-circuit’)

xlim([10 10^4])

105



%plot FRF phase

figure

plot(w./2/pi,angle(H_sc)*180/pi,’r’);

hold on;

plot(w./2/pi,angle(H_oc)*180/pi,’b’);

set(gca,’xscale’,’log’)

xlim([10 10^4])

title(’FRF’)

xlabel(’Frequency (Hz)’)

ylabel(’Phase (Deg)’)

legend(’Short-circuit’,’Open-circuit’)

A.2 Resonance Frequency Detuning

A.2.1 Numerical Integration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Matlab code that uses numerical integration to solve for the response of a

%system with resonance frequency detuning

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; close all; clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEGIN USER INPUTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ksquared = ; %squared coupling coefficient

zeta = ; %modal damping

alpha = ; %sweep rate

x0 = ; %initial displacement

xd0 = ; %initial velocity

w0 = ; %initial integration frequency

w_end = ; %final integration frequency

w_switch = ; %frequency based switch trigger

alpha0 = ; %initial excitation frequency

psi = ; %initial phase of excitation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% END USER INPUTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%calculated parameters

tsw = w_switch/alpha; %time-based switch trigger

t0 = w0/alpha; t_end = w_end/alpha; %time integration limits

S1 = 1; %open-circuit stiffness

S2 = 1-ksquared; %short-circuit stiffness

%before switch (open-circuit condition)

[t1,x1]=ode45(@numerical_RFD,[t0,tsw],[0,0],odeset,...

S1,zeta,alpha,alpha0,psi);

x2_0 = x1(end,1); x2_d0 = x1(end,2);

%after switch (short-circuit condition)

[t2,x2]=ode45(@numerical_RFD,[tsw,t_end],[x2_0,x2_d0],odeset,...

S2,zeta,alpha,alpha0,psi);

t = [t1;t2];

x = [x1(:,1);x2(:,1)];

function xdot = numerical_sweep(t,x,S,zeta,alpha,alpha0,psi)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Matlab function that solves for a SDOF system response subject to a linear

%frequency sweep

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xdot = zeros(2,1);

xdot(1) = x(2);

xdot(2) = -S*x(1)-2*zeta*x(2)+sin(alpha/2*t.^2+alpha0*t+psi);

A.2.2 Analytical Response Envelope

function [xabs,beta] = swept_env(t,z,a,a0,psi,flag,X0,XD0)

%SWEPT_ENV Generate SDOF response envelope to frequency sweep.

% [XABS,BETA] = SWEPT_ENV(T,Z,A,A0,PSI,FLAG,X0,XD0), when T is a

% vector of time, is the corresponding vector of response envelope

% magnitude (XABS) and phase (BETA) for a frequency sweep with

% instantaneous frequency OMEGA = A_0 + A*T and modal damping Z. Uses

% one-term approximation unless FLAG=2, in which case a two-term

% approximation is used, or FLAG=4, in which case all four terms are

% included (recommended unless response is entrained with excitation)

% and initial displacement X0 and velocity XD0. Written based on

% paper by R Markert and M Seidler
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% <doi:10.1016/S0020-7683(00)00147-5>.

%

% Written by Jeff Kauffman <jlk519@psu.edu> -- 28 February 2011.

% Updated to include "transient" terms -- 28 March 2011.

% Uses ERFZ as written by Paul Godfrey <pgodfrey@intersil.com> with

% small changes by Peter J. Acklam <jacklam@math.uio.no>.

L1 = -z + 1i*sqrt(1-z^2);

v1 = -(1 + 1i) / 2 / sqrt(a) * (a*t + a0 + 1i*L1);

v10 = -(1 + 1i) / 2 / sqrt(a) * (a0 + 1i*L1);

w1 = exp(-v1.^2) .* (1 - erfz(-1i*v1));

w10 = exp(-v10^2) * (1 - erfz(-1i*v10));

B1 = (1 - 1i) / 4 / sqrt(1-z^2) * sqrt(pi/a);

x = B1 * w1;

if (nargin>5)||(flag>1)

L2 = -z - 1i*sqrt(1-z^2);

v2 = sign(a) * (1 + 1i) / 2 / sqrt(a) * (a*t + a0 + 1i*L2);

199

v20 = sign(a) * (1 + 1i) / 2 / sqrt(a) * (a0 + 1i*L2);

w2 = exp(-v2.^2) .* (1 - erfz(-1i*v2));

w20 = exp(-v20^2) * (1 - erfz(-1i*v20));

B2 = sign(a) * (1 - 1i) / 4 / sqrt(1-z^2) * sqrt(pi/a);

x = x + B2 * w2;

if flag==4

if nargin==6

X0 = 0; XD0 = 0;

end

C1 = (L2*X0 - XD0) / (L2-L1) * exp(-1i*(psi-pi/2)) - B1*w10;

C2 = (L1*X0 - XD0) / (L1-L2) * exp(-1i*(psi-pi/2)) - B2*w20;

x = x + C1 * exp(v10^2 - v1.^2) + C2 * exp(v20^2 - v2.^2);

end

end

xabs = abs(x);

beta = angle(x);

function f = erfz(zz)

%ERFZ Error function for complex inputs

% f = erfz(z) is the error function for the elements of z.

% Z may be complex and of any size.

% Accuracy is better than 12 significant digits.

%

% Usage: f = erfz(z)
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%

% Ref: Abramowitz & Stegun section 7.1

% equations 7.1.9, 7.1.23, and 7.1.29

%

% Tested under version 5.3.1

%

% See also erf, erfc, erfcx, erfinc, erfcore

% Main author Paul Godfrey <pgodfrey@intersil.com>

% Small changes by Peter J. Acklam <jacklam@math.uio.no>

% 09-26-01

error(nargchk(1, 1, nargin));

% quick exit for empty input

if isempty(zz)

f = zz;

return;

end

200

twopi = 2*pi;

sqrtpi=1.772453850905516027298;

f = zeros(size(zz));

ff=f;

az=abs(zz);

p1=find(az<=8);

p2=find(az> 8);

if ~isempty(p1)

z=zz(p1);

nn = 32;

x = real(z);

y = imag(z);

k1 = 2 / pi * exp(-x.*x);

k2 = exp(-i*2*x.*y);

s1 = erf(x);

s2 = zeros(size(x));

k = x ~= 0; % when x is non-zero

s2(k) = k1(k) ./ (4*x(k)) .* (1 - k2(k));

k = ~k; % when x is zero

s2(k) = i / pi * y(k);

f = s1 + s2;

k = y ~= 0; % when y is non-zero

xk = x(k);

yk = y(k);

s5 = 0;
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for n = 1 : nn

s3 = exp(-n*n/4) ./ (n*n + 4*xk.*xk);

s4 = 2*xk - k2(k).*(2*xk.*cosh(n*yk) - i*n*sinh(n*yk));

s5 = s5 + s3.*s4;

end

s6 = k1(k) .* s5;

f(k) = f(k) + s6;

ff(p1)=f;

end

if ~isempty(p2)

z=zz(p2);

pn=find(real(z)<0);

if ~isempty(pn)

z(pn)=-z(pn);

201

end

nmax=193;

s=1;

y=2*z.*z;

for n=nmax:-2:1

s=1-n.*(s./y);

end

f=1.0-s.*exp(-z.*z)./(sqrtpi*z);

if ~isempty(pn)

f(pn)=-f(pn);

end

pa=find(real(z)==0);

% fix along i axis problem

if ~isempty(pa)

f(pa)=f(pa)-1;

end

ff(p2)=f;

end

f=ff;

return

A.2.3 Curve Fit Subroutine

function [a] = weightedfit(x,y,n,w)
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%WEIGHTEDFIT finds the coefficients (a) of the polynomial P(X) of degree N

%that fits the data Y best using least-squares. In addition the input

%variable W is the weight assigned. If only 3 inputs are defined, the

%data is unweighted and the weight is set to w_i=1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = length(x);

if nargin < 4

w = ones(1,N);

end

A = zeros(n+1,n+1);

A(:,1) = 1;

for ii = 1:size(A,1)

for jj = 2:size(A,2)

A(ii,jj)=sum(w.*x.^((jj-1)+(ii-1)))/sum(w.*x.^(ii-1));

end

yhat(ii,1) = sum((w.*x.^(ii-1)).*y)./sum(w.*(x.^(ii-1)));

end

a = (A’*A)\(A’*yhat);

a = a’;
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