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ABSTRACT 

The role of sensor technology is obvious in improvement and optimization of many industrial 

processes. The sensor films, which are considered the core of chemical sensors, have the 

capability to detect the presence and concentration of a specific chemical substance.  Such sensor 

films achieve selectivity by detecting the interaction of the specific chemical substance with the 

sensor material through selective binding, adsorption and permeation of analyte. This research 

focuses on development and verification of a comprehensive mathematical model of mixed metal 

oxide thin film growth using spray pyrolysis technique (SPT).  An experimental setup is used to 

synthesize mixed metal oxide films on a heated substrate. The films are analyzed using a variety 

of characterization tools. The results are used to validate the mathematical model. There are three 

main stages to achieve this goal: 1) A Lagrangian-Eulerian method is applied to develop a CFD 

model of atomizing multi-component solution. The model predicts droplet characteristics in 

flight, such as spatial distribution of droplet size and concentration. 2) Upon reaching the 

droplets on the substrate, a mathematical model of multi-phase transport and chemical reaction 

phenomena in a single droplet is developed and used to predict the deposition of thin film. The 

various stages of droplet morphology associated with surface energy and evaporation are 

predicted.  3) The processed films are characterized for morphology and chemical composition 

(SEM, XPS) and the data are used to validate the models as well as investigate the influence of 

process parameters on the structural characteristics of mixed metal oxide films. The structural 

characteristics are investigated of nano structured thin films comprising of ZnO, SnO2, 

ZnO+In2O3 and SnO2+In2O3 composites. The model adequately predicts the size distribution and 

film thickness when the nanocrystals are well-structured at the controlled temperature and 

concentration.   
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CHAPTER 1: INTRODUCTION 

1.1 Problem Considered 

This research focuses on development and verification of a comprehensive mathematical model 

of the spray pyrolysis method for nanocomposite sensor film growth.  The model is used to 

design an experimental apparatus for synthesis of mixed metal oxide films on a substrate. The 

films developed are analyzed using a variety of characterization tools. The results are used to 

validate the mathematical model. 

Sensor technology plays a key role in the improvement and optimization of many important 

industrial and engineering processes [1-2]. Chemical sensors detect the presence and 

concentration of a specific chemical substance. The sensor films have the capability to detect the 

presence and concentration of a specific chemical substance.  Such sensors achieve selectivity by 

detecting the interaction of the specific chemical substance with the sensor material through 

selective binding, adsorption and permeation of analyte [3]. Since the discovery almost 50 years 

ago that the absorption of a chemical substance on the surface of a semiconductor can cause a 

change in the electrical resistance of the material, there has been an effort to produce such 

conductometric chemical sensors. For example, detection of toxic and flammable gases is one of 

the most important applications of such gas sensors [4]. 

Various techniques have been investigated for thin film production with emphasis on reliability 

and cost. These techniques can be classified as physical and chemical methods. The physical 

methods include oxidation of an evaporated metal film, reactive/non-reactive sputtering 

techniques, laser ablation and molecular beam epitaxy. The chemical methods are divided into 
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gas phase deposition (for example, chemical vapor deposition (CVD)) and solution techniques 

(for example, spray pyrolysis) [5]. The chemical techniques have been studied extensively for 

the preparation of thin films.  

The present study uses the aerosol deposition method which is essentially a chemical spray 

pyrolysis (CSP) or spray pyrolysis technique (SPT). SPT was developed initially for the 

deposition of CdS and CdSe films [6]. It has since been used in glass industry and in solar cell 

production to deposit electrically conducting electrodes. Through this technique, dense and 

porous oxide films, ceramic coatings and powders can be prepared. It represents a very simple 

and relatively cost-effective method. Materials obtained by SPT find a wide range of applications 

in optoelectronic devices, anti-reflective coatings, sensors, etc. [7]. 

Figure 1-1 shows a schematic of the SPT experimental setup. The method typically involves a 

number of steps. A precursor solution which contains constituent elements of the compound is 

pulverized in the form of tiny droplets. The droplets spray onto a preheated substrate. Based on 

the thermal decomposition of precursor, a film of more stable compounds form and adhere to the 

heated substrate.  
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Figure 1-1 - The experimental setup of spray pyrolysis technique. 

A comprehensive mathematical model of the aerosol formation is necessary to aid design of the 

experiment. The model developed starts with consideration of single droplet physics and the 

interaction with the surrounding flow and the heated substrate. In the next step, a system of 

droplets, forming a spray, is considered and modeled by a commercial computational fluid 

dynamics software (FLUENT [8]). The model uses numerical solution of the equations 

governing the transport of atomized droplets from the nozzle. A variety of processing parameters 

is investigated to provide fundamental understanding of the spray physics including particle size, 

particle velocity, thermal parameters and etc. This study focuses on the particle size and particle 

distribution which largely dictate the subsequent film microstructure and film properties. 

The precise control of nanoparticle size homogeneity in the film is the key to achieving high 

sensing effect. In general, both the nanoparticle mean size and size distribution are influenced by 

the following: the chemical constituents, concentration and distribution of the nanoparticles, and 

synthesis conditions including substrate temperature, droplet size, droplet transport, and 
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deposition rate.  Therefore, the main goal of the growth modeling is to predict the particle and 

film growth rate and particle size distribution as a function of the above factors.  Specifically, 

modeling will assist prediction of the particle size distribution on the substrate required to ensure 

structural and concentration homogeneity. 

Another parameter to be considered is the composition of reactants both in the spray solution and 

in the droplets just before reaching the substrate. A complete reaction to form the oxides occurs 

only when the ratio of reacting materials in the sprayed solution is stoichiometric. Therefore, 

control of the particle size and composition just before impinging on the substrate is crucial to 

synthesis of a homogeneous film. The droplet characteristics are subject to change on 

impingement due to evaporation.  Thus, the aerosol model considers the variety of synthesis 

parameters that affect particle size and size distribution in flight. 

The results obtained are first checked for numerical accuracy through grid-independence tests. 

Then the model results from modeling are validated with available published data before being 

applied for the design of the spray deposition system for the physical experiment. Modeling also 

allows the input data from the experiment to be used to predict the film structure for direct 

comparison with the experimental data obtained from structural characterization studies.  

The different components of the experimental apparatus are connected and controlled as an 

integrated system. The system can thus sustain the repeatability of experiments as well as 

assessment of the effect on the results of each parameter.  

In this research, SPT is used to form metal oxides and mixed metal oxides thin films. Metal 

oxide-based gas sensors are chosen due to several inherent advantages [9-10] such as technology 



5 

 

simplicity, inexpensive materials and process, small and moveable experimental apparatus size, 

high stability and fast response. In addition, mixed oxides are utilized in order to improve the 

sensor properties and benefit from the best sensing property of the different constituent oxides; 

the mixed oxides have used to form the thin film. 

The films produced are characterized by a variety of methods. Structural characterization is the 

important link between materials synthesis, growth modeling, and simulation. In particular, the 

particle size and distribution in the films obtained are the important parameters that can be used 

to assess the accuracy of the mathematical model being developed. The following specific 

methods are used for film characterization: 

 SEM (Scanning Electron Microscopy): for surface morphology, particle size and size 

distribution [11-12]. 

 XPS (X-ray Photoemission Spectroscopy), Raman Spectroscopy: for chemical 

composition [13]. 

A comparison of the results of simulation and experiments aids better understanding of film 

growth mechanism. In addition, finding the correlation between particle size and size distribution 

obtained from experiments, and the input spray parameters and substrate properties, will aid 

optimization of processing conditions for improved film growth. The specific objectives of the 

research are presented in the following section. 

1.2 Objectives 

The main objectives of this research are as follow: 

a. Predict the spray parameters that determine growth characteristics of mixed metal oxide film 

(thickness and porosity). These parameters include particle size, droplet temperature and 
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droplet velocity within the spray. A mathematical model is developed to simulate aerosol 

formation, stochastic motion of droplets, and interaction between droplets.  

b. Model the effect of heated substrate on motion and solution characteristics of a single 

droplet, phase change inside droplet, and film growth on the substrate. The model utilizes 

spray data in (a) to simulate spray deposition and growth of mixed metal-oxide films from 

multicomponent precursor solution. 

c. Design and construct an experimental spray deposition system guided by mathematical 

modeling. The system consists of customized spray system for generating droplets with 

specified sizes. The composition of the precursor solution and experimental conditions 

(substrate temperature and flight distance) are determined from the predicted spray 

parameters in (a). 

d. Measure the film characteristics (such as size and size distribution of deposited particles, and 

chemical composition) using XRD, XPS, and SEM.  

e. Validate mathematical model by comparison of experimental data with predictions. 

Specifically, the following parameters obtained from the measurements are compared with 

the predictions: droplet size distribution, temperature distribution, and velocity profile. 

1.3 List of References 

1. Fraden, J. (2004). Handbook of modern sensors: physics, designs, and applications. Springer. 

2. Wilson, J. S. (2004). Sensor technology handbook. Elsevier. 

3. Gründler, P. (2007). Chemical sensors: an introduction for scientists and engineers. Springer. 

4. Zakrzewska, K. (2001). Mixed oxides as gas sensors. Thin solid films, 391(2), 229-238. 
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state gas sensors, Eds. PT Moseley and BC Tofield, Adam Hilger, Bristol, 198-237.  

10. Ferro, R., Rodriguez, J. A., Jimenez, I., Cirera, A., Cerda, J., & Morante, J. R. (2005). Gas-

sensing properties of sprayed films of (CdO)x (ZnO)1-x mixed oxide. Sensors Journal, 
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ZnO prepared by sol-gel processes. In Eighteenth European Frequency and Time 
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by an ultrasonic spray pyrolysis method. Microelectronic Engineering,51, 703-7 

13. Deng, R., Yao, B., Li, Y. F., Zhao, Y. M., Li, B. H., Shan, C. X., Zhang, Z. Z., Zhao, D. X., 

Zhang, J. Y., Shen, D. Z., & Fan, X. W. (2009). X-ray photoelectron spectroscopy 

measurement of n-ZnO/p-NiO heterostructure valence-band offset. Applied Physics 

Letters, 94(2), 022108-022108.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Various methods are used in industry to synthesize nanocomposite gas sensing films. These 

methods can be broadly classified as physical and chemical. Chemical spray pyrolysis (CSP) or 

spray pyrolysis technique (SPT) uses chemical reaction of compounds in a precursor solution to 

form desired film components. One of the most common materials that have extensive 

applications in gas sensors are metal oxides. Such materials exhibit relatively strong sensitivity 

to gas phase compounds; primarily due to the adsorption of oxide ions on the surface that 

enhance film conductivity. Nanoparticle size and size distribution are the parameters that largely 

determine the conductivity property of such films. These parameters can be measured by film 

characterization methods and controlled by managing the formation of the spray droplets. 

2.2 Gas Sensor Technology 

A gas sensor consists of a material whose physical properties, such as electrical or optical, can be 

changed in the presence of a gas. The change can then be measured to reflect the gas 

concentration. The microscopic chemical interactions are typically converted selectively into a 

measurable electrical signal. The selective and reversible sensing properties are the main 

requirements for these types of sensors [1]. 

Nanocrystalline metals are one of the simplest nanomaterial-based sensors. When a 

nanocrystalline metal is exposed to gas such as hydrogen, the electrical resistance of the metal 

may change. For example, hydrogen molecules can exhibit dissociative reactions at the surface 
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and diffusive into nanocrystalline Palladium (Pd). The response to gas is faster when 

nanocrystalline materials are used instead of conventional micron-sized particles. This trend is 

attributed to the relatively smaller inter-particle spacing and gas diffusivity within particles in the 

former than the latter [2]. 

2.2.1 Metal Oxide Semiconductor Sensors 

Gas sensors have traditionally been based on metal-oxide semiconductors. The main advantages 

of such sensors are [3]: 

 Low cost, 

 Technological simplicity, 

 Small size, 

 Ease of handling and 

 Low power consumption 

Thin film gas sensors have high performance, such as high stability and fast response. Simple 

metal oxides such as SnO2, WO3, ZnO and Fe2O3 are well known for their high sensitivity to 

changes in the surrounding gas atmosphere [4]. They, thus, play an important role in gas sensing 

applications.  

The sensors are usually constructed as a porous sintered ceramic body which is heated between 

300⁰ C and 700⁰ C. The sensing behavior is believed to be related to the adsorption of oxygen in 

the neck region between the grains. In the oxide layer, a positive space charge (depletion layer) 

develops as electrons transfer to the adsorbed oxygen. Meanwhile a negative charge accumulates 

on the surface of the film. Some of the O2- ions can be removed from the surface by the reducing 
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gas, creating a conduction path that increases the electrical conductivity of the film material [1]. 

One of the most common oxides is SnO2 which is used for detecting H2, CH4 and CO2 and 

operates at moderate temperatures (300⁰ C to 400⁰ C). These sensors are considered as surface 

sensors [4]. The properties of SnO2 based sensors have been investigated comprehensively under 

different working conditions [5]. 

The sensing properties of some other metal oxides such as titanium oxide (TiO2) are governed by 

another mechanism. Specifically in these materials, the bulk diffusion of defects determines the 

sensor response [4]. 

2.2.2 Need for Alternative Sensor Materials 

Despite the high sensitivity of some of the metal oxide materials, they often demonstrate high 

resistivity which affects the performance of the sensor. For example, NO2, which is an oxidizing 

gas, increases the resistance of a film because of the increase in the O2- ions in n-type 

semiconductors1 [6]. The sensing property of gas sensors are defined by four main factors [7]: 

 Sensitivity: “The ratio of incremental change in the output of the sensor to its incremental 

change of the measured in the input”. 

 Selectivity: “Ability to measure a single component in the presence of others”. 

 Response time: “The time taken by a sensor to arrive at a stable value (a certain 

percentage of its final value, for instance 95%)”. 

                                                 

1 N-type semiconductors are a type of semiconductors which the dopant atoms provide extra conduction electrons to 

the host material. It makes an excess of negative electron charge carriers. In contrast, a P-type semiconductor has an 

excess of free of charge carriers. 
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 Recovery time: “Defined in a similar way of response time, but conversely”. 

The sensitivity of gas sensors can be increased by doping with noble metal1 catalysts such as 

platinum, rhodium or palladium. These materials usually act as catalysts for adsorption of  

gases [4]. For example, Labeau et al. [8-9] investigated the effect of noble metals, such as Pt and 

Pd, on SnO2 films. It was found that these metals acted as catalyst to decrease activation energy 

of surface reaction for CO and ethanol molecules. Therefore, the sensitivity of gas sensor 

increased. Cirera et Al. [10] investigated the effect of Pd doping on enhancement of CO-CH4 

selectivity for SnO2 sensor. It was found that by increasing concentration of Pd up to 10% and 

distributed on all sensing layer, a decrease of resistance occurred. However the response of 

heavy catalyzed sensors produces zero sensitivity due to bulk and fast catalytic conversion of the 

gas. 

2.2.3 Mixed Metal Oxide Films 

Besides introducing dopants, another method to improve sensor performance is mixing metal 

oxides [11]. The mixed oxides have the potential to benefit from the best sensing properties of 

their pure components. The mixing of oxides modifies the electron structures which results in 

changes to both the bulk and surface properties. 

                                                 

1 Noble metals: Metals those are resistant to corrosion and oxidation in moist air. They rarely can be found in the 

Earth’s crust and considered to be (in order of increasing atomic number): ruthenium (Ru), rhodium (Rh), palladium 

(Pd), silver (Ag), osmium (Os), iridium (Ir), platinum (Pt), and gold (Au). (In contrast, base metals, such as iron 

(Fe), nickel (Ni) and lead (Pb), oxides and corrodes easily).  
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These systems are usually categorized into three types: 

 Compounds, 

 Solid solutions, 

 Neither (a) nor (b). 

The first category takes advantage of forming distinct chemical compounds. For example, ZnO-

SnO2 forms ZnSnO3 and Zn2SnO4. The CdIn2O4 that occurs in the CdO-In2O3 mixed system 

behaves as an active medium for CO. The second category consists of the mixed oxides that 

form solid solutions. For example, TiO2-SnO2 has such a behavior. The third category represents 

the materials which form neither compounds nor solid solutions, such as TiO2-WO3 [4]. 

Ferro et al. [3] investigated the effect of mixing CdO with ZnO. ZnO was the first metal oxide 

used for chemical sensors. It is mostly used to detect NO2. However, ZnO thin films have high 

resistance. To enhance the film conductivity and modulate the sensing properties of ZnO, CdO is 

often mixed in adequate proportions. CdO films have low electrical resistivity. Therefore, a thin 

film with variable material proportions, (CdO)x(ZnO)1-x, has been investigated [3].  

Vigil et al. [12] investigated (ZnO)x(CdO)1-x mixed oxides, over a range of oxide proportions 

with a focus on the effect of post-thermal annealing on the film properties. It was demonstrated 

that the post-thermal annealing in air at 450⁰ C enhances the structural perfection of the samples. 

Moon et al. [13] examined the electrical conductivity and the sensing properties of SnO2 – TiO2. 

It was found that SnO2 and TiO2 metal oxides form a mixture when sintered at 800⁰ C.  The 

sensitivity of the mixture to hydrogen gas is higher than that of SnO2. This increase in sensitivity 

is attributed to the increase in the surface area by adding 80% of TiO2. The sensitivity of the 
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mixed oxide to CO gas is however lower than the value obtained with SnO2. When the mixture is 

coated with Cu, the selective detection to both CO and H2 demonstrates significant improvement. 

Correa-lozano et al. [14] studied the effect of preparation temperature on resistivity of the SnO2-

Sb2O5 films. It was figured out that the minimum resistivity occurred at 550⁰ C. Also, it was 

shown that SPT method allowed more control on quantitative control comparing to Chemical 

Vapor Deposition (CVD) method.  

Inoue et al [15] found that by introducing SiO2 binding to WO3 oxide sensors, the sensing 

behavior, such as stability and selectivity, to NO2 gas was improved. Patil et al. [16] studied 

MoO3 – WO3 thin films. This mixture determines a very good electro-chromic behavior which 

can be used in large area display devices and smart windows1. 

A comprehensive study on different metal oxides and mixed oxide thin films and their synthesis 

has been undertaken [17]. 

2.3 Chemical Spray Pyrolysis Technique 

The main step in the synthesis of modern gas sensors is the transfer from ceramic to thin film gas 

sensor (TFGS). Through this transfer, microminiaturization, cost reduction and energy 

consumption can be achieved. Therefore thin films are typically used to make gas sensitive 

micro sensors [5]. 

                                                 

1 The windows that control the amount of light and heat allowed passing through them. 

http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Heat
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Various methods are used for producing thin films. Kalantar-zadeh [7] introduced the following 

six classifications: 

 Physical Vapor Deposition (PVD) 

 Chemical Vapor Deposition (CVD) 

 Liquid Phase Techniques 

 Casting 

 Sol-gel 

 Nanolithography and Nano-Patterning. 

These six methods can be summarized into two broad groups based on the nature of the 

deposition process, namely, physical and chemical methods. Figure 2-1 illustrates this broad 

classification [18].  
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Figure 2-1 - Classification of thin film deposition. 

Physical methods involve the techniques in which the deposition occurs after the material to be 

deposited has been transferred to a gaseous state. It can happen either by evaporation or an 

impact process. On the other hand, chemical methods can be described as thermal oxidation 

processes in which the substrate itself can be considered as the source for the constituent oxide. 

The reactants can be in either gaseous or liquid phase. 

These methods of preparation lead to different properties of deposited thin film layers such as 

structural, optical and electrical properties. The deposition mechanism has strong influence on 

oxygen vacancies which serve as donors in oxide films. In general, physical methods results into 

deposition of other insulating phases, and subsequently relatively highly resistive films. On the 

other hand, chemical methods especially spray pyrolysis technique, leads to thin films without 

co-existence of other insulating phases. It results into films with relatively low resistivity [19] 

Figure 2-2 summarizes different chemical deposition methods [20]. 
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Figure 2-2 - Chemical thin film deposition methods. 

Based on the phase of reactants to form the film, chemical deposition process can be categorized 

as gas phase or solution methods. Each method is briefly described below [7, 21]: 

Chemical vapor deposition (CVD) is a popular technique in which a solid film on the substrate 

surface is formed as the constituents of the vapor phase reacts. LCVD (laser CVD) uses laser 

source to activate the chemical reaction. 

Atomic Layer Epitaxy (ALE) is a method for producing thin film layers one atomic layer at a 

time by utilizing self-control based on saturating surface reactions.  It is based on separate 

surface reactions between the growing surface and each of the components of the compound, one 

at a time. 

Sol-Gel is defined as a colloidal suspension that will be gelled to form a solid. It includes the 

transition of a system from a liquid “sol” into a solid “gel” phase. 

Spin coating involves four consequent steps: a) place a small volume of liquid on a surface; b) 

spin up the substrate to flow the liquid radially; c) let the excess liquid flow and leave the 

surface; and d) start evaporation to lead to solidification. 
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Dip Coating means the immersion of a substrate into a liquid, coating the material, removing the 

substrate and letting the excess liquid drain off. 

The chemical method proposed for the present research is spray pyrolysis. It is also sometimes 

called chemical spray pyrolysis (CSP) [1] or simply spray pyrolysis technique (SPT). Spray 

pyrolysis is a processing technique used to prepare oxide films, ceramic coatings and powders. It 

has also been used for several years in glass industries and solar cell production. 

Spray pyrolysis includes a thermally stimulated chemical reaction between fine droplets of 

different chemical species. In this technique, a solution containing soluble salts of the constituent 

atoms of the compound is sprayed on a heated surface as tiny droplets by a nozzle atomizer with 

help of a carrier gas. The droplets start pyrolytic decomposition to form a film on the substrate 

surface, when they reach the substrate. The hot surface maintains the required thermal energy for 

the decomposition and recombination. The carrier gas sometimes plays an active role in the 

pyrolytic process. 

To spray the solution on the substrate, the following atomizers are usually used [20]: 

 Airblast/Air assisted/Pressure swirl: Liquid is atomized by a stream of air; 

 Ultrasonic: Ultrasonic frequencies are used to atomize the solution using short wave-

lengths; 

 Electrostatic: High electric fields cause droplet formation. 

This technique has many advantages; some of which are listed below [1, 18, 20, 22]: 

 Low cost (inexpensive apparatus); 
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 Does not require high quality targets or vacuum at any stage: a major advantage when 

scaled up for industrial applications; 

 Simplicity and good productivity; 

 Easy control of composition, deposition rate, film thickness and microstructure by 

changing the spray parameters. It eliminates the major problems of chemical methods 

such as sol-gel which produces films of limited thickness. 

 Ease of doping virtually any material in any proportion by merely adding doping element 

to spray solution; 

 Deposition possible at low or moderate temperatures (100⁰ C to 500⁰ C); 

 Can produce films on less robust materials, with virtually no limitation on substrate 

material , dimension or the surface profile; 

 Technological  capability for mass production; 

 Easy preparation of multi-layer films with composition gradient through the thickness by 

changing composition of the spray solution during the spray process; 

 Produce uniform coatings on large area; 

 Does not produce local overheating (Overheating may avoid materials to be deposited), 

unlike high-power methods such as radio frequency magnetron sputtering (RFMS); 

 Offers opportunity to obtain reliable fundamental kinetic data because of well-formed 

film surfaces. The resulting films are quite compact, uniform without any side effects 

from substrate. 

Despite the many advantages, there are also some disadvantages to this method including: 

 Possibility of sulfide oxidation when processed in air atmosphere; 

 Difficult to determine the growth temperature; 

 Spray nozzle might get cluttered after long usage; 

 Film quality highly dependent on droplet size and spray nozzle. 
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2.3.1 Design of Experimental Apparatus 

To synthesis thin films using SPT, a precursor solution which contains constituent reactant 

compounds is atomized in the nozzle to tiny droplets. The droplets spray onto a preheated 

substrate. Based on the chemical reaction and thermal decomposition of the precursor, a film of 

more stable compounds form and adhere to the substrate. A simple spray pyrolysis system 

consists a spray nozzle, a furnace for heating the substrate, thermocouple (included temperature 

controller) and air compressor. To measure the flow of solution and air, liquid and air flow 

meters have been used (Fig. 2-3 [23]).  

 

Figure 2-3 - Spray pyrolysis system. 

The precise control of nanoparticle size homogeneity in the film is a key to achieving high 

sensitivity. The average size and size distribution of the particles can be estimated from the size 
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of the atomized droplet and the concentration of the starting solution [24]. Particle size can be 

controlled through appropriate choice of the atomization method and parameters [17, 25]. 

Particle generation and distribution in the resulting film is a multi-stage process which is highly 

dependent among other things, on the initial solution atomization conditions, and the substrate 

temperature.  Thus, the major issues that need to be addressed in the film synthesis are the type 

and composition of the starting solution, droplet generation, and particle morphology.  

The reactants are typically dissolved in the solution with pre-determined stoichiometric ratio. 

Water or alcohol can be used as solvent [24]. The initial reactant concentration in the solution 

plays a significant role in determining the final particle size [27-27]. 

2.3.2 Component Specifications and Parameters 

The experimental parameters are addressed in several previous technical papers. Each parameter 

value can be maintained in a specific range in order to produce metal oxide thin films efficiently. 

There are several parameters which control the size and shapes of nanostructures: 

 Temperature on the substrate (Tpyr), 

 Input pressure of the carrier gas (Pg), 

 Solution volume (vl), 

 Construction of heating reactor, 

 Distance between the nozzle and the substrate (L), 

 Concentration of precursors in solution (C), 

 Time of spraying (ts), etc. 
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Changing any of these parameters leads to variation of film thickness and nanostructure 

crystallite size. Specifically, increasing the solution volume (vl), and deposition temperature 

(Tpyr) generally leads to increase the film thickness. In contrast, a greater distance from the 

nozzle and the substrate (L) and higher carrier gas pressure (Pg) may cause to produce thinner 

film. To achieve minimum size of crystallites, a trade-off between low Tpyr, L, and Pg is 

necessary [28]. 

Based on these parameters, experimental setup is designed and each component is selected. It is 

important to consider that the droplets reaching the substrate are expected to still contain 

sufficient amount of solvent to produce smooth and dense film [22]. Thus the solvent in the 

initially formed tiny particles can be partially evaporated before reaching the substrate and still 

able to stick to the substrate [20].  

It is necessary that the experimental system maintains the mentioned desired conditions. The 

most important controllable parameters are the ambient temperate, the substrate temperature, 

distance between the nozzle and the substrate and the solution mass flow rate. 

2.4 Thin Film Processing 

2.4.1 Film Growth Mechanism 

2.4.1.1 Film Growth Stages 

The quality of thin films by the SPT deposition method considered depends primarily on the 

substrate temperature and precursor solution concentration and to a lesser extent other 

parameters [25]:  
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a) Temperature: The substrate surface temperature is the most important parameter which 

determines film morphology, roughness, crystallinity, the stoichiometry of the film etc. High 

temperature also leads to large crystal size [29]. The film morphology can range from a 

cracked to a porous microstructure depending on the temperature [25, 30].  

b) Precursor solution: The concentration of precursor solution is the second most important 

parameter which can modify the morphology of the thin films [25]. Increasing Solution 

concentration can increase film thickness and grain size [19]. In some cases, the grain size 

decreases with increasing film thickness when the roughness of the film decreases [31]. The 

volume of solution (or spray flow rate) also modifies the morphology of the film. A linear 

correlation has been found between volume of solution and film thickness. Precursor solution 

ageing has also been observed to have the opposite effect on the thickness of the film. When 

the time between preparation and spraying increases, the film thickness reduces. This result 

may be due to hydrolysis between the metal salt and water in the solution [28]. 

c) Other parameters: Other parameters have been found to have minor effect on the film 

synthesis but must be maintained in specific range in order to form the desired structure. For 

example, Korotcenkov et al. [28] showed that the film thickness increases when air pressure 

decreases. The result may be related to the decrease of spray flow velocity and increase of 

droplet sizes. It was also found that the film thickness can be decreased by increasing the 

distance between the nozzle and the substrate.  

The process also involves a series of time constants which determines the properties of the 

deposited film. These characteristic times are highly dependent on the above mentioned control 

parameters. The reaction time (τrxn) and residence time of reaction (τres) are considered the most 
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deterministic parameters. The reaction time is defined as τrxn=[C]i/Ri where [C]i is the 

concentration of metal oxide species and Ri is the reaction rate of precursor.  The residence time 

can be readily estimated by the time required for droplets to reach the boundary of the substrate 

[32]. Based on these parameters, different deposition regimes are expected in the SPT process as 

illustrated in Fig. 2-4 [25].  

 

Figure 2-4 - Effect of heated substrate on a single droplet in a spray pyrolysis process. 

At very low substrate temperature, the droplet has small residence time to initiate chemical 

reaction and therefore splashes onto the surface without any reaction (Regime I). By increasing 

the temperature, the droplets can reach the substrate as a precipitate and chemical reaction cannot 

be completed at this regime (Regime II). At higher temperatures of the substrate which is 

sufficient to initiate the chemical reaction (Regime III), the reaction rate increases and the 

solvent evaporates in flight. In this regime the reaction time is higher than the residence time and 

therefore the vapor reacts at the substrate. The deposition occurs on the substrate and a dense and 
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smooth film can be deposited. This process is a vapor phase deposition process which is also 

used in chemical vapor deposition method (CVD) [33]. Increasing the flow rate at the same 

temperature further reduces the residence time resulting in a thicker film.  

Increasing the residence time (e.g. by increasing the distance between spray nozzle and the 

surface) and decreasing the reaction time (e.g. by reducing the precursor concentration in the 

solvent or increasing the temperature), make these two time characteristics to be on the same 

order of magnitude. Therefore the chemical reaction can be initiated in some of the droplets in 

flight and a mixture of particles and vapor will be formed. This process will lead to the growth of 

columnar films on the surface (Regime III and IV together). The reaction time will be lower than 

residence time at much higher temperatures (Stage IV). This condition causes the formation of 

solid particles before reaching the surface in the gas phase. The deposited particles will 

eventually form granular film on the surface [32]. Increasing the concentration of the precursors 

at this level will decrease residence time and increase coalescences and subsequently increase 

particle sizes. This result is attributed to the complete evaporation of the solvent before the 

droplet hits the substrate [34].  

Spray Pyrolysis Technique (SPT) can handle all these regimes by controlling the experimental 

parameters. On the other hand, vapor phase deposition (Regime III) is representing Chemical 

Vapor Deposition method (CVD) which is another common method to deposit metal oxides like 

ZnO [33]. In this process, the precursor is exposed on a heated substrate through inert gas and 

the film deposition is independent on direction which facilitates modeling formulation. Similarly, 

the solvent evaporates before the droplet hits the substrate and droplets reach the surface as 

vapor through controlled SPT with the specified surface temperature. 



25 

 

2.4.1.2 Chemical Reaction 

The preparation of a metal oxide thin film depends on surface reaction (pyrolysis) of metal 

compounds, such as metal chlorides, on a heated substrate surface. The reaction type depends on 

the selection of the carrier gas and the solvent. By choosing air as carrier gas and water as the 

solvent, the general reaction equation can be stated as [35]:  

MClx  +  y H2O →  MOy  +  x HCl (2-1) 

where M is the host metal such as Zn, Cd, In etc. of the oxide films. The spray nozzle with the 

aim of the carrier gases performs the atomization of the chemical solution into aerosols. The 

temperature of the substrate is fixed at a constant value by using a temperature controlled furnace 

or hot plate. In general, the films grown at a substrate temperature less than a specific value, 

depending on metal oxide type, are amorphous in nature. It is needed to apply higher 

temperatures or perform post annealing treatment to get polycrystalline films. The film formation 

depends upon the droplet landing, reaction and solvent evaporation, which relates to the droplet 

size. When the droplet approaches the substrate just before the solvent is completely removed, 

that is the ideal condition for the preparation of the film. 

To produce mixed metal oxides, the similar approach can be addressed. A dilute solution consists 

of two metal compounds, such as metal chlorides or acetates1 [12] which are miscible, is 

produced. The produced aqueous solution is sprayed on the hot substrate to maintain chemical 

pyrolysis.  

                                                 

1 Acetate is a salt or ester of acetic acid, containing the anion CH3COO− or the group -OOCCH3. 
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2.4.1.3 Thin Film Properties 

The main purpose of deposition of metal oxide on the target substrate is growing a thin film on 

it. The thin film is characterized by the thickness and particles shape and arrangement. The term 

thin film is used when these particles are classified as nanostructures. Nanostructures can be 

introduced as structures designed on atomic or molecular scale in which at least one dimension is 

measured in nanometers (1-100 nm). Since they have small size of building blocks (particle, 

grain or layer) and high surface to volume ratio, significant increase in grain boundary area, 

these materials are expected to demonstrate unique mechanical, optical, electronic, and magnetic 

properties [22]. Therefore, the interest in these materials has been increased. The main effort of 

researchers is focusing on the production of these structures with desired size and shapes. Figure 

2-5 shows a few typical growth morphologies of ZnO nanostructures including nanowires, 

nanorods, nanotubes and nanobelts [22]. 
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Figure 2-5 - Different morphologies of hexagonal ZnO nanostructures. 

2.4.2 Deposition of Single and Mixed Oxides 

The objective of this research is to investigate the effect of synthesis conditions (specifically, 

substrate temperature and precursor concentration) on the structure of ZnO, SnO2, ZnO+In2O3 

and SnO2+In2O3 thin films produced by SPT.   

Several studies have considered the deposition of ZnO films. A study on the effect of post 

annealing on the properties of ZnO films shows that annealing enhances the quality of film by 

removing structural defects through agglomeration of small particles. The results indicated that 

post–thermal annealing could enhance the structural quality in general [12, 29]. A similar 

approach has been used to synthesize ZnS and ZnO thin films, and study the growth mechanism 

and film characteristics (such as structure and crystalline properties) as a function of temperature, 

solution composition and concentration [22]. The effect of temperature on ZnO film structure has 
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also been investigated, indicating that such films could be crystallized better at substrate 

temperatures above 400° C [36]. 

The influence of deposition parameters on SnO2 thin film characteristics has demonstrated that 

SPT could be used to produce nano-scale films for gas sensing applications [28]. The electrical 

and structural properties of SnO2 films deposited by SPT also show improvement of crystal 

growth at high temperatures (above 450° C) [37].  

Mixing of metal oxides in a sensor film has recently been explored to improve sensor 

performance and thermal stability. The mixed oxides have the potential to benefit from the best 

sensing properties of their pure components. As it is mentioned before, the electronic structures 

of the oxides are modified, resulting in change to both the bulk and surface properties [11]. 

Some research studies have investigated the properties of indium-doped ZnO nanofiber thin 

films by SPT, using temperatures between 350° C and 500° C for film deposition and 500° C for 

annealing. The results indicate a decrease in grain size with increasing temperature [38-39].  

Similar studies have investigated the effect of deposition parameters on the characteristics of 

indium-doped SnO2 films as well as ZnO. The studies used low temperature (380° C) for 

deposition of zinc-indium oxides and higher temperature (450° C) for tin-indium oxides at 

ambient atmosphere [40]. 

Two primary synthesis parameters controlling the structure of films produced by SPT are the 

substrate temperature and the concentration of precursors in solution. Although several studies 

have considered the effect of substrate temperature and solution concentration on the structure of 

metal oxide films [41], there is a lack of systematic investigation of the effect of temperature on 
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different oxides synthesized by SPT under similar controlled conditions. This issue is addressed 

in the present study by maintaining constant values of some process parameters (e.g. spray 

nozzle diameter, spray velocity, and distance between spray nozzle and substrate), while varying 

the temperature. In addition, the effect of precursor concentration is similarly investigated. 

2.4.3 Effect on Sensor properties 

A number of studies have shown that one promising approach to improve conductometric metal 

oxide sensors is to utilize semiconducting nanostructured composite materials consisting of 

metal oxides with different electronic structure and chemical properties [42-44].  It has been 

established that using a mixture of metal oxides, the resulting composite sensor material can 

achieve selectivity and sensitivity for gas detection in air ambience that far exceed those 

achievable with the individual constituent metal oxides of the composite [45-49]. 

Studies of sensory phenomena in metal oxide composites have shown that there are certain 

optimum compositions for which these effects reach maximum values [46-47]. One of the 

important factors that determine the dependence of sensory phenomena in metal oxide 

composites on composition is the effect of composition on the morphology of the sensor film. 

Therefore, it is important to clarify the morphological features of the composite sensors that 

exhibit high sensitivity. These features depend on the nature of the components of the mixed 

metal oxide composite and the processing conditions. 
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2.5 Mathematical Models 

The film property depends crucially on the film microstructure, which in turn is determined 

largely by the synthesis.  The objective of this section is to investigate by means of mathematical 

modeling the effect of synthesis conditions on the droplets produced by the aerosol technique. 

2.5.1 Spray Modeling 

The mathematical model involves numerical solution of the equations governing the transport of 

atomized droplets from the nozzle to predict the droplet characteristics in the spray prior to 

impingement on the substrate.  This information is used to model evaporation and chemical 

reaction on the substrate to produce the oxide particles, as well as oxide particle size distribution 

and film growth. A complete reaction occurs only when the ratio of reacting materials in the 

sprayed solution is stoichiometric. Therefore, control of the particle size and composition just 

before impingement on the substrate is crucial to the synthesis of film with optimal oxide particle 

size distribution and sensitivity.  

There are several studies of spray modeling which includes different steps such as solution 

evaporation modeling and nanoparticle formation process. 

Spray modeling studies often consider various stages of the process including solution 

evaporation and nanoparticle formation. 

Semiao et al. [50] simplified the equations of droplet size distribution in sprays. The study 

considered two types of atomizers (pressure jet atomizers and airblast atomizers). 



31 

 

Lim et al. [51], Jiang et al. [52], and Yu and Liao [53] simulated the liquid aerosol evaporation 

and verified the results with the results with experimental data. The velocity, droplet temperature 

and size distribution were investigated. The focus was on the effect of types of liquids in aerosol 

and initial conditions on droplet specification. 

Eslamian et al. [54] performed CFD simulation to determine necessary solute concentration and 

droplet size distribution on during aerosol pyrolysis process. The formulation considered 

different parameters such as droplet and wall temperate. Jayanthi et al. [55] studied particle 

formation during aerosol thermolysis. The model investigated the effect of solute properties, 

ambient temperature, initial solute concentration and initial droplet radius on particle formation 

process. 

2.5.2 Droplet Evaporation Modeling 

Droplet impingement on heated substrate has been a subject of intense investigation in recent 

years [56]. However, a number of issues are still not fully addressed including the conditions that 

lead to maximum droplet spread without rebound, the mechanisms correlating heat transfer with 

contact line dynamics, and the partitioning of energy between single- and two-phase zones. In 

order to understand the fundamental mechanisms responsible for wetting and two-phase mass 

and heat transfer during spray deposition of droplet on a heated surface, a detailed study of single 

droplet dynamics is essential.  The objective of this section is to develop a comprehensive 

mathematical model of transport and chemical reaction phenomena in a single droplet deposited 

on a heated substrate.  The ultimate goal is to utilize the results in a spray-deposition model for 

the synthesis of mixed-oxide composite film for sensor application. 
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Droplet impingement on a hot surface is relevant to a variety of practical applications, including 

surface cooling through spray, mist and electrowetting [57-58]. In the cooling methods, coolant 

droplets are applied to absorb heat from the surface. In such cases, the goal is to make the surface 

as wet as possible. Previous studies of this problem have focused on evaporation rate and wetting 

properties [59]. The contact angle and contact lines are subject to change during the 

impingement and evaporation processes. The variation of contact angle has been widely 

investigated and formulated in relation to the surface energy [59]. Hu et al. [60] investigated the 

evaporation of a droplet on a surface and derived the formulation of variation of height and 

contact line with respect to the contact angle. Figure 2-6 [61] shows a schematic representation 

of droplet shape variation during this process. This figure indicates that droplet contact line and 

contact angle gradually decrease due to evaporation. 
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Figure 2-6 - Schematic sketch of droplet evaporation process. 

There are other applications which demand minimum surface wetting and maximum evaporation 

rate on a surface.  At very low temperature, the droplet splashes onto the surface and 

decomposes. At higher temperatures, the solvent evaporates during flight and dry precipitate 

reaches the substrate, where decomposition occurs. At much higher temperatures, the solvent 

evaporates before the droplet hits the substrate [25]. This situation occurs when the surface is 

very hot and able to initiate chemical reaction between the precursors in the droplet solution. A 

typical example is the spray pyrolysis process which is of interest in this study. This deposition 

method is based on surface reaction in droplets that still contain enough solution after reaching 

the surface.  

A number of studies have been done on droplet impingement and evaporation on a flat surface. 

Most of these studies focus on low temperature deposition or single component droplets [62-63]. 

There are also studies that consider evaporation of multi-component droplets but without 
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chemical reaction [64-65]. However, spray pyrolysis which is of interest here typically involves 

surfaces at high temperatures. In addition, the components in the droplet solution affect the 

dynamics and the evaporation process. Therefore, the purpose of this study is to understand the 

behavior of a multi-component droplet impinging on a hot substrate while undergoing 

evaporation and chemical reaction.   The mathematical model developed is solved using the 

FLUENT commercial code [66]. 

2.5.3 Comprehensive Film Growth Model 

SPT is a solution based method [67] utilizing thermal deposition of a metal precursor. It involves 

primarily four stages: 

i. Atomization 

ii. Evaporation 

iii. Decomposition/Reaction 

iv. Deposition 

Figure 2-7 represents the approach used to cover all of these 4 stages. 

 

Figure 2-7 - Modeling and experimental approach. 

The parameters associated to each stage are described in Fig. 2-8.  



35 

 

 

Figure 2-8 - Spray pyrolysis process models. 

The synthesized film is typically composed of mixtures of electron donors (e.g. In2O3) and 

electron acceptors (e.g. ZnO, SnO2). In order to synthesize the film with the desired properties, 

the morphology of the film must be controlled and largely predictable.  The objective of this 

research is to develop a model for systematic investigation of the processes involved in mixed 

metal oxide deposition by SPT in order to predict the film morphology.  

Several approaches have been used to develop mathematical methods of the process. One 

approach involves descriptive models which mostly consider the physics of the process. 
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Different spray methods and the deposition stages were studied by using this approach [25] and a 

conceptual model of the process was developed in previous study [68].  

Computational Fluid Dynamics (CFD) approach has been applied to study SPT deposition 

process in previous studies. Evaporation and drying for SPT was modeled and validated with the 

deposition of different materials [69]. CFD was used to model spray droplets and the effect of 

heated environment on droplet characteristics [70]. A similar model was developed to investigate 

the evaporation phenomena in ethanol-NaCl-water droplet in [71].  

Modeling the reaction and the film growth has been considered in some recent studies. These 

studies considered the variation of concentration within the droplets by defining the 

characteristic time constants. A model which includes the evaporation and reaction stages was 

developed and validated for deposition of TiO2 nano particles in [72]. The atomization and 

decomposition processes were also considered. Droplet transport and interaction between 

droplets was assumed as chemical vapor deposition phenomena in [73]. In this study, the 

precursor was exposed to a heated substrate through inert gas and the film deposition was 

independent of direction, which facilitated model formulation. The model was validated by 

experimental results from deposition of tin chloride on silicon wafer substrate.  

Considering that the flow rates of gas and precursor in both CVD and SPT methods can be 

controlled [74] for the same range of temperature [75], a novel approach is proposed in this 

research to model the deposition of metal oxide thin films. Specifically, SPT and CVD can be 

assumed to be analogous when the solvent evaporates before the droplet hits the substrate, and 

subsequently reaches the surface in the vapor phase. The temperature of the substrate is 
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considered at the range for which columnar film is expected to grow. This temperature permits 

the assumption that the residence and reaction times are on the same order. 

In summary, mathematical models developed in this research, provide a cost-effective mean to 

guide mixed metal oxide deposition experiments. The aerosol model presents here examines the 

variety of synthesis parameters that affect droplet size and size distribution in flight. This 

research uses mathematical modeling to investigate the effect of solution mass flow rate and 

swirl velocity on droplet size and distribution. The results of such a study are used to guide 

placement of substrate for optimal film growth and film properties. In addition, the droplet 

characteristics are subject to change on impingement due to evaporation. 

In spite of the advances that have been made in understanding spray pyrolysis, very limited 

studies have involved the formation mixed oxide films. Specifically, there is still a need to 

develop a comprehensive mathematical model which considers not only solution atomization 

through spray nozzle but also the formation of mixed metal oxide thin film on a heated substrate. 

This model needs to be developed by studying the interaction and combination of deposition 

stages and validated by experimental studies. 

2.6 Conclusion 

The spray pyrolysis technique has numerous advantages that outweighs the disadvantages and 

make it an ideal choice for the present research. The spray method has different classifications. 

The pressurized spray method (PSM) has been chosen for the present study due to its relative 

simplicity and ease of synthesizing mixed oxides merely by changing the precursors. The 

technique will be used to provide mixed-oxide films on which there have been relatively few 
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published studies. A novel and comprehensive model is also required to investigate 

systematically the process of mixed metal oxide deposition by SPT. This model should be able to 

predict the film characteristics and morphology based on processing parameters.  
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CHAPTER 3: MODELING OF AEROSOL SPRAY 

3.1 Overview 

In this chapter, a model of aerosol spray is developed for synthesis of sensor film from solution. 

The synthesis technique considered involves atomization of a solution of mixed salts in 

methanol, spraying of solution droplets, droplet deposition on a heated substrate, evaporation and 

chemical reaction to produce mixed oxides, and subsequent film growth. The precise control of 

oxide nanoparticle size distribution and inter-particle spacing in the film is crucial to achieving 

high sensitivity. These in turn largely depend on the droplet characteristics prior to impingement 

on the substrate. This research focuses on the development of a model to describe the 

atomization and spray processes prior to the film growth. Specifically, a mathematical model is 

developed utilizing computational fluid dynamics solution of the equations governing the 

transport of atomized droplets from the nozzle to the substrate in order to predict droplet 

characteristics in flight. The predictions include spatial distribution of droplet size and 

concentration, and the effect on these characteristics of swirling inlet flow at the spray nozzle. 

3.2 Problem Considered 

In SPT, a precursor solution which contains constituent reactant compounds is assumed to be 

atomized in the nozzle to tiny droplets. The droplets are then sprayed onto a preheated substrate. 

(Fig. 3-1) A film of stable compounds subsequently forms and adheres to the substrate due to 

chemical reaction and thermal decomposition of the solution. Complete chemical reaction occurs 

only when the ratio of reacting materials in the sprayed solution is stoichiometric. Therefore, 

control of the droplet size and composition just prior to impingement on the substrate is crucial 
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to synthesis of film with optimal oxide particle size distribution and sensitivity [1]. A number of 

experimental studies have focused on the variation of the parameters affecting film growth [2]. 

 

Figure 3-1 - Aerosol system used for spraying the solution. 

The precise control of nanoparticle size distribution and inter-particle spacing in the film is 

essential to achieving high sensitivity. The average size and size distribution of the particles can 

be estimated from the size of the atomized droplet and the concentration of the precursor solution 

[3]. Particle size can be controlled through appropriate choice of the atomization method and 

parameters [4-5]. 

The generation and distribution of particles in the resulting film is a multi-stage process which is 

highly dependent among other things, on the initial solution, atomization conditions, and the 

substrate temperature.  Thus, the major issues that need to be addressed in the film synthesis are 

the type and composition of the initial solution, droplet generation, and particle morphology.  
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The reactants are usually dissolved in the solution of pre-determined stoichiometric ratio, with 

water or alcohol being the typical solvent [3]. The initial reactant concentration in the solution 

plays a significant role in determining the final particle size [6-7]. The droplets reaching the 

substrate are expected to contain sufficient amount of solvent to produce smooth and dense film 

[8]. Thus the solvent in the initially formed tiny particle can be evaporated before reaching the 

substrate and still be able to adhere to the substrate [9].  

3.3 Formulation 

There are two distinct stages to solving the aerosol spray problem investigated.  For the present 

study air has been chosen as the continuous phase and methanol as the discrete phase.  The first 

stage solution considers the air flow from the spray nozzle as well as the surrounding air. This is 

a steady state problem that determines the flow that will be used to track the droplets 

subsequently. The second stage considers droplet generation at the spray nozzle with defined 

initial velocity. After being released from the spray, the droplets follow the pattern which was 

defined previously by the continuous flow field. There occurs mass and energy exchange 

between the discrete phase (droplets) and continuous phase (air flow). In addition, the droplets 

may be evaporated as a result of the ambient thermal flow field which again would have been 

previously determined.  

3.3.1 Modeling Continuous and Discrete Phase 

Two approaches are typically used for mathematical modeling of spray deposition [10]: Euler-

Lagrangian (E-L) and Euler-Euler (E-E). In the E-L approach which is employed in this chapter, 
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the spray is considered a quasi-two phase flow of carrier gas and liquid droplets. The gas phase is 

treated as a continuum with the flow-field solved by the Navier-Stokes equations [12]. The 

dispersed phase (methanol droplets) is solved by tracking a large number of droplets through the 

calculated gas flow field.  The droplet dynamics result from a force balance between the droplet 

inertia and the forces acting on the droplet thus: 

𝑑𝑢𝑝𝑑𝑡 = 18𝜇𝜌𝑝𝑑𝑝2 𝐶𝐷 𝑅𝑒24 (𝑢 − 𝑢𝑝) + 𝑔𝑥(𝜌𝑝−𝜌)𝜌𝑝 + 12 𝜌𝜌𝑝 𝑑𝑑𝑡 (𝑢 − 𝑢𝑝) + 𝐹𝑥  (3-1) 

where 𝑢 is the fluid phase velocity, 𝑢𝑝 is the droplet velocity, 𝜌𝑝 is the density of the droplet,  𝑑𝑝  is the droplet diameter, 𝐶𝐷 is the drag coefficient, and Re is the droplet relative Reynolds 

number 𝑅𝑒 ≡ 𝜌𝑑𝑝|𝑢𝑝−𝑢|𝜇 . The first term on the right-hand side of Eq. (3-1) is the drag force per 

unit droplet mass, the second is the buoyancy force due to gravity, and the third is the virtual 

mass force which is the force required to accelerate the fluid surrounding the droplets [12]. The 

virtual mass force is negligible since the density of air is much less than the droplet density. The 

other possible forces, such as thermophoretic force, Brownian force and Saffman’s lift force are 

collectively inserted as 𝐹𝑥 that can be eliminated in most cases in our study [10].  The Brownian 

force, which applies for sub-micron droplets, can be important when the energy equation is 

needed and the flow is laminar [10, 13]. 

 It should be remarked that the flow field is predominant in one direction (gravitational 

direction), the shear rate is negligible, and since the droplet size is typically large (above the 

submicron domain), the Reynolds number will be high (the Re ranges from 600 to 1000 for the 
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mass flow rates considered. Note that the transition Reynolds number for such flow systems is 

typically 1000) and Saffman force is expected to be insignificant [10, 14]. 

3.3.1.1 Drag Coefficient  

The resistance of gas molecules always tends to slow down the movement of particles. 

Under turbulent conditions, the drag force, FD, can be defined as Newton’s resistance thus: 

𝐹𝐷 = 𝐶𝐷 𝜋8 𝜌𝑔𝑉2𝑑𝑝2 (3-2) 

where CD is the drag coefficient. The drag coefficient has a nearly constant value of 0.44 when 

the flow is turbulent. Under laminar conditions, the Newton’s law is no longer valid. 

A number of correlations have been established for the drag coefficient, CD, for the Euler-

Lagrange model. The Schiller-Maumann correlation has been used in this research because the 

Reynolds number range considered is less than 1000 [10], thus: 

CD = 24Re (1 + 0.15Re0.687)  (3-3) 

3.3.2 Heat and Mass Exchange  

A multi-component droplet is defined as one consisting of a mixture of species [15]. Therefore, 

droplet mass (m) and density (𝜌) can be formulated as [10]: 
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𝑚 = ∑ 𝑚𝑖𝑖   (3-4) 

𝜌 = (∑ 𝑚𝑖𝑚𝜌𝑖𝑖 )−1
  

(3-5) 

where subscript i refers to species i.    

Heat and mass transfer equations are defined as follow:  

𝑚𝑝𝑐𝑝 𝑑𝑇𝑝𝑑𝑡 = 𝐴𝑝𝜀𝑝𝜎(Ө𝑅4 − 𝑇𝑝4) + ℎ𝐴𝑝(𝑇∞ − 𝑇𝑝) + ∑ 𝑑𝑚𝑖𝑑𝑡𝑖 (ℎ𝑖,𝑝 − ℎ𝑖,∞)  (3-6) 

𝑑𝑚𝑖𝑑𝑡 = 𝐴𝑝𝑀𝑤,𝑖𝑘𝑐,𝑖(𝐶𝑖,𝑠 − 𝐶𝑖,∞)  (3-7) 

where 𝑚𝑝 is the mass of droplet, 𝑐𝑝 is the droplet heat capacity,  𝑇𝑝 is the droplet temperature, 𝐴𝑝 is the surface area of droplet, 𝑇∞ is the temperature of the continuous phase, 𝜀𝑝 is droplet 

emissivity, 𝜎 is Stefan-Boltzmann constant (5.67×10-8 W/m2 K4), Ө𝑅 radiation temperature, and ℎ𝑖,𝑝 and ℎ𝑖,∞ are latent heats of droplets and the bulk gas respectively. The first term on the right-

hand side of the heat transfer Eq. (3-6) represents the adsorption/emission of radiation at the 

droplet surface. The second term is the convective heat transfer between droplet and surrounding 

air, while the last term represents energy transfer associated with droplet evaporation.  

The convective heat transfer coefficient ℎ at the droplet/continuous phase interface of Eq. (3-6)  

is evaluated using the following correlation [16]: 

𝑁𝑢 = ℎ𝑑𝑝𝑘∞
== 2.0 + 0.6𝑅𝑒12𝑃𝑟13  (3-8) 
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where 𝑘∞ is the thermal conductivity of the continuous phase, and 𝑃𝑟 = 𝑐𝑝𝜇/𝑘∞ is the Prandtl 

number of the continuous (gas) phase. 

In Eq. (3-7), 𝐶𝑖,𝑠 is the concentration of vapor at the droplet surface, and 𝐶𝑖,∞ is the concentration 

of vapor in the bulk gas. It is important that all the processes of relevance are considered and 

integrated in one equation in the analysis of a multicomponent droplet. 𝑀𝑤,𝑖 is the molecular 

weight of species 𝑖. The transfer coefficient 𝑘𝑐 is calculated from the Sherwood correlation [16]. 

3.3.3 Droplet Diameter  

One of the basic characteristics of atomization is the distribution of droplet size which is closely 

related to the nozzle condition.  The Rosin-Rammler distribution approach introduces the most 

probable droplet size and a spread parameter to characterize the droplet size distribution. The 

most probable droplet size, d0, can be expressed as [17]: 

𝑑0 = 1.2726𝑑32 (1 − 1𝑠)1𝑠
  

(3-9) 

where 𝑑32 is the Sauter mean diameter [18], and s is the spread parameter. Eq. (3-9) gives the 

range of droplet size distribution and can be evaluated from experimental observations. A large 

spread parameter value results in narrow droplet size distribution. The spread parameter can be 

chosen as 3.5 [10].  

Wu et al. [19] proposed a correlation to relate the initial drop size to the estimated turbulence 

quantities of spray, thus: 
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𝑑32 = 133.0𝜆𝑊𝑒−0.74  (3-10) 

where 𝜆(= 𝑑80) is the radial integral length scale at the spray exit based upon fully-developed 

turbulent pipe flow, and  𝑊𝑒 ≡ 𝜌𝑙𝑢2𝜆𝜎  is the Weber number (𝑙 is the characteristic length which is 

assumed to be equivalent to the droplet diameter) 

3.3.3.1 Droplet breakup, Collision and Coalescence 

The breakup model assumes that when the droplet oscillations grow to a critical value (that is, 

when oscillations at the north and south poles of droplet with this amplitude meet at the droplet 

center and the distortion is equal to half the droplet radius), the parent droplet breaks up into a 

number of smaller child droplets. The initial child droplets are assumed neither distorted nor 

oscillating [20]. Child droplets are sampled based on the Rosin-Rammler distribution (see Eqs. 

(3-9) and (3-10)). 

The outcome of a collision is coalescence or bouncing. The probability of each outcome is 

calculated from the coalitional Weber number (Wec) and experimental observations thus [10]: 

𝑊𝑒𝑐 ≡ 𝜌𝑈𝑟𝑒𝑙2 �̅�𝜎   (3-11) 

where Urel is the relative velocity between two droplets of interest and �̅� is the arithmetic mean 

diameter of the two droplets. This probability is derived from the point of view of the larger 

droplet (droplet 1) and the smaller droplet (droplet 2). The model uses droplet 1 as reference 

such that its velocity is zero. In this reference frame, the probability of coalescence is related to 

the offset of droplet 1 center and trajectory of droplet 2. In general, the outcome leads to 
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coalescence if the droplets collide head-on, and bouncing if the collision is oblique. There is a 

critical offset which is a function of the collisional Weber number and the relative radii of the 

droplets, defined by the critical collision parameter bcrit thus [21]: 

𝑏𝑐𝑟𝑖𝑡 = (𝑟1−𝑟2)√min(1.0, 2.4𝑓𝑊𝑒 )  (3-12) 

where 𝑟1is the radius of droplet 1, 𝑟2is the radius of droplet 2, and f is a function of r1/r2 defined 

as: 

𝑓 (𝑟1𝑟2) = (𝑟1𝑟2)3 − 2.4 (𝑟1𝑟2)2 + 2.7(𝑟1𝑟2)  (3-13) 

The value of the actual collision parameter, b, is(𝑟1+𝑟2)√𝑌, where Y is a random number 

between 0 and 1. The calculated b is compared to bcrit. If b < bcrit we can assume that the result of 

collision is coalescence. Otherwise, the droplets bounce and each one has a new velocity and 

direction based on conservation of momentum and energy. 

3.3.4 Atomizer Model  

The physical atomizer parameters such as orifice diameter and mass flow rate can be used to 

estimate the initial droplet size, velocity and position.  The liquid sheet issuing from the nozzle is 

atomized into droplets by the air directed against it. The liquid sheet trajectory exits from an 

annulus with inner and outer diameters of 3.5 mm and 4.5 mm respectively (the film height can 

be calculated as 0.5 mm consequently). The sheet initially converges toward the centerline at an 

angle of 45º (spray half angle).  In this atomization process the droplet size is largely controlled 
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by the gas/liquid mass ratio and the initial length scale of the liquid as it encounters the air. The 

droplet size can be controlled by means of the liquid port diameter [22]. Figure 3-2  [10] shows a 

schematic sketch of the atomizer system considered. It consists of two air flow sources: inner air 

stream and a swirling annular stream, which surrounds the inner air. 

 

 

Figure 3-2 - Internal atomizer flow to the external spray. 

3.3.5 Computational Details 

3.3.5.1 Boundary and Initial Conditions 

The atomizer consists of two air flow sources: inner air stream and a swirling annular stream, 

which surrounds the inner air. The corresponding computational domain considered is shown 

schematically in Fig. 3-3. 
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Figure 3-3 - Inlet and boundary conditions. 

The initial and boundary conditions employed at the inlet to the computational domain are listed 

in Table 3-1.  The outlet boundary is defined as a pressure outlet with It=5%, µ t = 5 % and 

T=293K because of inflow through this boundary [15]. These values have been chosen based on 

previous studies [12]. 

Table 3-1 - Continuous phase boundary conditions. 

Inlet 

Mass flow 

rate, 

 �̇� (kg/s) 

Velocity, |𝑽| (m/s) 

Turbulence 

intensity,  

It (%) 

Hydraulic 

Diameter,  

Dh (m) 

T 

 (K) 

Central Air 9.167×10-5 - 10 0.0037 293 

Co-flow Air - 1 5 0.0726 293 

Swirling Air - 19; 27 5 0.0043 293 
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Methanol (CH3OH) is chosen as the base liquid for generating the droplets which can also 

evaporate. Its saturated vapor pressure is considered a linear function of temperature. The 

methanol is assumed to be cooled to 263 K before being introduced into the atomizer.  

The relative velocity between the atomizing air and liquid sheet is assumed to be 82.6 m/s based 

on previous experimental study [2]. To reduce calculation load of 3 dimensional modeling, a 30o 

section of the atomizer is simulated with symmetric boundaries. For this 30o section, three mass 

inflow rates are investigated thus: 8.5×10-5(kg/s), 1.275×10-4 (kg/s), and 1.7×10-4 (kg/s).   The 

atomizer dispersion angle assumes the default value of 6o based on previous work [23]. 

3.3.5.2 Mesh and Geometry 

A comprehensive grid refinement study was done to ensure numerical accuracy of the results. 

The initial mesh size was set at 1 mm and systematically refined especially near the outlet of 

spray and centerline using the approach in a previous study [12]. Finally 6.40×104 quadratic cells 

were used to obtain grid independent results. The experimental data of Patil [5] were used to 

validate the initial results of the impingement study. 

3.3.5.3 Swirl Flow 

The effect of swirl flow on spray characteristics is also investigated. A Swirl number, S, is 

defined as: 
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𝑆 = 𝐺∅𝑅𝐺𝑥 = ∫ 𝑈𝑊𝑟2𝑑𝑟𝑅𝑜∫ 𝑈2𝑟𝑑𝑟𝑅𝑜   (3-14) 

where 𝐺∅ (kg m2/s2) is the axial flux of the swirl momentum, Gx (kg m2/s2) is the axial flux of the 

axial momentum, and R (m) is the characteristic length. Here we take the radius of the swirl 

annulus as the characteristic radius [24].  

The axial and radial components of inlet gas velocity (𝑈 and 𝑊) are calculated at each radial 

distance from the centerline (𝑟) are considered in Eq. (3-14). The resulting swirling air velocity 

is varied from 19 m/s to 27 m/s, giving S=0.01 to 0.02. 

3.3.5.4 Viscous model parameters 

Since the main flow is turbulent, a “realizable” k-ε turbulence model is used. The term 

“realizable” indicates that the model satisfies certain mathematical constrains on the Reynolds 

stresses which is consistent with the physics of turbulent flows. This model provides a more 

accurate prediction of the spreading rate of jets than the standard k-ε model. The model constants 

are chosen as the default values of Launder and Spalding [25] and Kays et al. [26], including  

C1ε = 1.44, and C2ε = 1.9, and turbulent Prandtl numbers of σk = 1.0, and σε = 1.2, energy and 

wall turbulent Prandtl numbers of 0.85, and Turbulent Schmidt number of 0.7. 

A stochastic tracking approach is used to predict the turbulent dispersion of particles. The model 

simulates the interaction of a particle with a succession of discrete stylized fluid phase turbulent 

eddies, called discrete random walk model. In this model, each eddy is characterized by a 

Gaussian distributed random velocity fluctuation and a time scale which can be set as a random 
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number multiplied by the k/ε ratio and an integral time-scale constant factor (CL = 0.15 for the 

k- ε model). Integral time shows the time spent in turbulent motion along the particle path. 

3.3.6 Numerical Details 

The above set of equations is solved subject to the given boundary conditions, using the 

FLUENT commercial code [15].  The discrete phase is allowed to interact with continuous 

phase, i.e. exchange mass, momentum, and energy. Although the continuous phase flow is 

treated as a steady state problem, particle tracking is assumed unsteady in order to improve 

numerical stability of particle source terms. In addition, since there is allowance for droplet 

collision and droplet breakup in the model, the particle dynamics is unsteady. The number of 

interactions which allows control of the frequency at which the particles are tracked is set to 10. 

The particle time step size is 0.0001 s and the number of time steps is 1 per simulation iteration. 

The injection duration is 100 s which is much larger the period of interest which means the 

injection essentially continuous. The maximum number of time steps used to compute a single 

particle trajectory via integration of equation is set to 500 to ensure sufficient time for particle 

tracking and avoid particle being trapped in a recirculating flow. The integration time step size 

(Δt) is set to 5 s implying that 60 droplet parcels are introduced into the domain at every time 

step. Under relaxation factor of 0.1 is employed for discrete phase sources. The simulations 

converged after about 160 iterations and 15 minutes of CPU time in all the cases considered. 
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3.4 Results 

Figure 3-4 shows the predicted radial variation of the axial velocity at several axial (z) planes 

from the spray tip for the case with spray mass flow rate of 1.275×10-4 (kg/s) and inlet swirl 

number S=0.01. The velocity is normalized by the centerline value while the radial distance is 

normalized by the half radius of the jet.    The predicted velocity profile exhibits self-similarity 

far from the nozzle.  The high swirling flow outside the nozzle acts to mix and atomize the spray 

as well as suppress droplet dispersion. The self-similarity observed at some distance from the 

spray nozzle indicates that the effect of swirl is limited to the vicinity of the nozzle, for the 

specific conditions considered. 

 

Figure 3-4 - Axial velocity profile on three axial planes from the spray nozzle; �̇� = 1.275×10-4 (kg/s). 

Figure 3-5 shows the corresponding radial distribution of normalized concentration (mole 

fraction of the methanol) at three axial planes from the nozzle. The mole fraction is normalized 
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by values at the centerline and the radial distance is normalized by the outer diameter of the 

spray at each axial distance. In the consensus of the velocity profile prescribed in the previous 

Fig. 3-4, the predicted concentration profile spreads more uniformly farther away from the 

nozzle, where the confinement effect of swirl has attenuated for the relatively small swirl number 

(S=0.01) considered.  This finding may be useful in guiding the optimal placement of substrate 

for uniform particle distribution and uniform film growth.  

 

Figure 3-5 - Normalized concentration of solvent on three axial planes from spray nozzle; �̇� = 1.275×10-4 

(kg/s). 

3.4.1 Effect of spray Mass flow rate 

Different mass flow rates are applied to examine spray modeling: 8.5×10-5 (kg/s), 1.275×10-4 

(kg/s), and 1.7×10-4 (kg/s).  Figures 3-6 and 3-7 represent mole concentration variation like Fig. 

3-5 but with different mass flow rates. Similar trends have been observed as explained before.  
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Figure 3-6 - Mole concentration of solvent on three planes from spray nozzle; �̇� = 8.5×10-5(kg/s). 

 

Figure 3-7 - Mole concentration of solvent on three planes from spray nozzle; �̇� = 1.7×10-4 (kg/s). 
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Figures 3-8 and 3-9 show the effect of varying the inlet mass flow rate on the radial distribution 

of mass fraction at specific axial planes of z = 5 mm and z = 25 mm from the spray nozzle.  

 

Figure 3-8 - Mole concentration of solvent at z=5mm from spray at three different spray mass flow rates. 

 

Figure 3-9 - Mole concentration of solvent at z=25mm from spray at three different spray mass flow rates. 

Figure 3-10 shows the effect of varying the inlet mass flow rate of spray on the radial 
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the spray nozzle. It should be noted that the flow has become self-similar at this location.  This 

result indicates that the input spray flow rate within the range considered does not have 

significant effect on the normalized radial concentration distribution. This is consistent with the 

self-similarity of results at that axial location, as well as the limited effect of the swirling flow 

beyond the vicinity of the nozzle.  

 

Figure 3-10 - Normalized concentration of solvent at axial plane z=45mm from spray nozzle  

for three different spray mass flow rates. 

Figure 3-11 shows the predicted proportion of droplets (vertical axis) having specified average 

concentration (horizontal axis) as a function of the spray mass flow rate. 
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Figure 3-11 - Percentage of droplets with different mole concentration. 

The result exhibits a minimum at almost 13% of particles, in irrespective of mass flow rate, 

having a mass fraction of 1.517×10-3, 1.837×10-3, and 2.011×10-3 as the mass flow rate increases. 

It can be explained that the particles either tend to remain tiny with low mass concentration or to 

collide to form larger particles with higher mass concentration. This may be related to the 

balance between particles momentums and surface tension effect.  The results indicate that high 

mass flow rate affects the concentration of droplets in general. Specifically, there are more 

droplets with high mole fraction of solvent when the spray rate is increased, or in other word, the 

droplets with high solvent concentration increases. This trend can be attributed to the strong 

effect of mass flow rate on atomization rate.  When the droplets have high kinetic energy, the 

momentum overwhelms the surface tension (smaller Weber number less than 100 [27]). Thus the 

initial droplets adhered together readily to form droplets with higher mole fractions. Therefore, 
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there may be more sufficient solvent for the chemical reaction to proceed to produce the particles 

on the substrate. 

3.4.2 Effect of Swirl 

Figure 3-12 shows the normalized concentration in the radial direction from the centerline at 

different axial locations from the nozzle for swirl number S=0.01. Figure 3-13 shows the 

corresponding results at a higher swirling number S=0.02. The two sets of results are essentially 

similar. However, the peak concentration is larger at the lower swirl rate (S=0.01) at all axial 

planes. This trend implies that the droplets are more concentrated near the axis when swirl flow 

is relatively weak. When the swirl flow rate increases, the droplets are largely spread out in the 

radial direction and the maximum concentration decreases as a consequence. 
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Figure 3-12 - Variation of normalized concentration of solvent with radial distance from centerline  

at three axial planes from spray nozzle (S=0.01). 

 

Figure 3-13 - Variation of normalized concentration of solvent with radial distance from centerline  

at three axial planes from spray nozzle (S=0.02). 
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marked change in slope between r/D0=2 and r/D0=3 at the smaller swirl number S=0.01. This 

trend may be attributed to the effect of the central air which spreads through the domain at the 

lower swirl flow rate. The sudden change in slope does not exist at the higher swirl number 

because the swirl effect perpetuates father away from the nozzle. 
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Figure 3-14 - Variation of normalized concentration of solvent with radial distance from centerline at 

z=40 mm. 

 

Figure 3-15 - Variation of normalized concentration of solvent with radial distance from centerline at 

z=50 mm. 
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Figure 3-16 shows the predicted evolution of droplet size for the two swirling numbers 

considered. The results show that there is in general a significant reduction in droplet size when 

the swirling air velocity increases. Specifically, by increasing the swirl number from 0.01 to 

0.02, the minimum droplet diameter is reduced by 9%, the maximum diameter is reduced by 

26% and the average size is reduced by 26% (see Table 3-2).  

It should be noted that although the minimum diameter is reduced with increased swirling rate, 

there are other physical factors impacting droplet breakup. One of the most important of such 

factors is the surface tension of droplet fluid which determines the range of possible droplet 

sizes. The surface tension can be modified by changing the type of precursor solution used for 

the spray. 
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Figure 3-16 - Change in droplet diameter with time for one set of droplets (in whole domain): (a) S=0.01 

and (b) S=0.02.  

Table 3-2 - Predicted effect of swirl flow on droplet diameter. 

Swirl Condition 
Minimum Diameter 

(m) 

Maximum Diameter 

(m) 

Average Diameter 

(m) 

S=0.01 3.16×10-5 0.000288 5.70×10-5 

S=0.02 2.88×10-5 0.000213 4.21×10-5 

Size change (%) 9.08 25.94 26.27 

Figure 3-17 shows the predicted axial variation of total number of representative droplets (N) for 

S=0.01 and S=0.02.  These results are obtained by introducing continuously 120 representative 

droplets of uniform size at the inlet and allowing for coalescence and breakup in the subsequent 

spray. The number of droplets first decreases until a certain axial distance (z=12.5 in both cases), 

increases until approximately z=35mm, decreases till about z = 40 and subsequently increases to 

the outlet of the domain. This trend may be attributed to the various stages of droplet collision, 
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coalescence and breakup in relation to the flow pattern. Initially, the droplets have very high 

velocity and correspondingly, the highest Weber number (We) in the domain. This high We 

translates to high probability of collisions leading to coalescence (see Eq. (3-12)) and production 

of large-sized droplets but fewer in number. Further from the nozzle the velocity decreases (due 

to spray zone expansion) and the large droplets which were previously formed start to break up 

(secondary breakup) to smaller sizes. At this stage, the collisions primarily make the droplets 

bounce and disperse in different directions due to the relatively large size of droplets and low 

Weber number.  Subsequently, (at z=35 mm in the cases considered) a slight decrease in number 

of droplets can be observed which may be attributed to evaporation of tiny droplets in the low 

downstream pressure and coalescence of the tiny droplets produced after secondary breakup.  

Beyond this zone and near the outlet, the probability of collision decreases significantly and the 

only phenomenon occurring is breakup of the remaining large droplets. There are generally more 

droplets at the higher swirl number than the lower swirl number due to higher potential for 

droplet breakup in the former situation. However there is a notable switch in that trend between 

z=35mm and z=45 mm. This switch may be due to the effect of swirl on droplet kinetic energy. 

Specifically, at high swirling rate, there is a higher probability for droplet collision and 

coalescence due to their high kinetic energy even far from the nozzle. Such coalescence may lead 

to a reduction in the number of droplets. This result is consistent with those presented in previous 

Figs. 3-15 and 3-16 which indicate residual effect of swirl at the higher swirl number (S=0.02) 

even at distances relatively remote from the spray nozzle. 
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Figure 3-17 - Effect of swirl on axial variation of number of droplets. 

3.5 Conclusion 

The quality of films produced through spray pyrolysis method depends critically on tuning the 

atomizer parameters. Specifically, the droplet characteristics play important role in the 

determination of film microstructure and film properties. The optimum spray flow rate, and 

substrate positioning and temperature for desired film property can be determined through 

mathematical modeling.  The droplet characteristics in an aerosol spray has thus been 

investigated.  The characteristics considered include droplet diameter distribution, velocity and 

rate of spread of spray, effect of spray mass flow rate as well as the effect of swirling flow on 

solvent concentration and number of droplets generated 
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CHAPTER 4: MODELING EVAPORATION AND CHEMICAL 

REACTION IN A MULTI-COMPONENT DROPLET 

4.1 Overview 

This chapter describes the mathematical modeling of transport and chemical reaction phenomena 

in a single droplet deposited on a heated substrate by spray pyrolysis. The droplet contains mixed 

salt solutions of Tin Chloride (SnCl4) and Indium Nitrate (In(NO3)3) which react on the substrate 

to produce mixed oxides (In2O3+SnO2) and water residue. The water residue is subsequently 

evaporated, leaving a thin film of the mixed oxides. The droplet, containing solvent and 

precursors is modeled using Computational Fluid Dynamics technique.  The various stages of 

droplet morphology associated with surface energy and evaporation are predicted.  The transient 

distribution is also predicted of the concentration of the various species in the droplet. The results 

show that homogeneous chemical reaction occurs within 60% of the radial distance from the 

center. This in turn results in the deposition of metal oxide within that region while a significant 

amount of unused reactants remains thereafter.  

4.2 Problem Considered 

The droplet, consisting of a two-phase aqueous solution of Tin Chloride (SnCl4) and Indium 

Nitrate (In(NO3)3), impinges on a hot substrate as illustrated in Fig. 4-1. The concentration of 

SnCl4 considered was 0.25 mol/l while that of In(NO3)3 was 0.1 mol/l. These concentrations were 

chosen based on optimum concentration employed in a previous study [1]. It should be noted that 

due to symmetry only one half of the droplet is simulated. Allowance is made for different 



78 

 

species in the solution. The model assumes perfect thermal contact between the droplet and the 

isothermal substrate. 

 

Figure 4-1 - Droplet domain for computation. 

The transport equation comprises not only the equation of momentum and energy, but also 

species conservation due to variation of species in the droplet. Energy equation is required to 

model the heat transfer between the surface and the two-phase fluid which consists of liquid and 

gas phases (droplet and surrounding air) and between two fluids. Species transport between the 

fluid and the surface is also considered to model the deposition phenomena.  

The preparation of a metal oxide thin film by the spray pyrolysis method depends on surface 

reaction (pyrolysis) of metal compounds, such as metal chlorides, on a heated substrate. The 

reaction type depends on the selection of the carrier gas and the solvent. The spray nozzle uses 

the carrier gas to atomize the chemical solution into aerosols. The temperature of the substrate is 

fixed at a constant value by using a temperature-controlled furnace or hot plate. In general, the 

films grown at a substrate temperature less than a specific value (depending on metal oxide type) 

are amorphous in nature [2]. The film formation depends on the droplet landing, reaction and 
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solvent evaporation which relates to the droplet size [2]. The most ideal condition for film 

preparation is for the droplet to approach the substrate just before the solvent is completely 

evaporated off. 

A similar approach is considered here to produce mixed metal oxides in which a dilute solution 

consisting of two metal compounds is sprayed on the hot substrate for the chemical pyrolysis. 

For example, in order to produce the mixed metal oxide, the following two chemical reactions 

occur: 

SnCl4  +  2 H2O →  SnO2  +  4 HCl (4-1) 

ZnCl2(l) + H2O  →  ZnO + 2 HCl(g) (4-2) 

2In(NO3)3  +  3 H2O →  In2O3  +  6 HNO3 (4-3) 

The details of the analysis of chemical reaction are provided in the subsequent section. 

4.3 Formulation 

4.3.1 Droplet Evaporation 

4.3.1.1 Liquid-Gas Phase Model 

The volume of Fluids (VOF) model embodied in the FLUENT computer code is applied [3] to 

model the two-phase transport phenomena because of the inherent well-defined interface 

between the liquid and gas phases. The liquid phase is water and the gaseous phase consists of 

water vapor and air. The approach essentially applied a surface-tracking technique to a fixed 
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Eulerian mesh. It is typically used for two or more immiscible fluids where the position of the 

interface between the fluids is desired [4]. The model simulates the flow of two fluids (liquid and 

gas) by solving a single set of Navier-Stokes equations. The governing equations in differential 

notations are as follows [5]: 

4.3.1.2 Mass Conservation 

𝜕(𝛼1𝜌)𝜕𝑡 + 𝜕(𝛼1𝜌𝑢)𝜕𝑟 + 𝜕(𝛼1𝜌𝑢)𝑟 + 𝜕(𝛼1𝜌𝑣)𝜕𝑧 = −𝑚12̇  
(4-4) 

where 𝛼1is the liquid fraction, 𝛼2(= 1 − 𝛼1) is the gas mass fraction, u is the radial velocity, v is 

the axial velocity, mͦ is the mass transfer rate per unit volume, and ρ is the density. In Eq. (4-4), z 

denotes the vertical and r the radial coordinate direction. The VOF equation is solved for the 

liquid phase only from which the gas phase volume fraction is deduced.  

4.3.1.3 Momentum Conservation 

𝜕(𝜌𝑢)𝜕𝑡 + 𝜕(𝜌𝑢𝑢)𝜕𝑟 + 𝜕(𝜌𝑣𝑢)𝜕𝑧 + 𝜕(𝜌𝑢𝑢)𝑟 = 𝜕𝑝𝜕𝑡 + 2 𝜕𝜕𝑟 (𝜇 𝜕𝑢𝜕𝑟) + 𝜕𝜕𝑧 (𝜇 𝜕𝑢𝜕𝑧) + 2𝜇𝑟 𝜕𝑢𝜕𝑟 + 𝜕𝜕𝑧 (𝜇 𝜕𝑣𝜕𝑟) −
2𝜇𝑢𝑟2 + 2𝜎𝜌𝐾1𝜌1+𝜌2 𝜕𝛼1𝜕𝑟   

(4-5) 

𝜕(𝜌𝑣)𝜕𝑡 + 𝜕(𝜌𝑢𝑣)𝜕𝑟 + 𝜕(𝜌𝑣𝑣)𝜕𝑧 + 𝜕(𝜌𝑢𝑣)𝑟 = − 𝜕𝑝𝜕𝑧 + 𝜕𝜕𝑟 (𝜇 𝜕𝑣𝜕𝑟) + 2 𝜕𝜕𝑧 (𝜇 𝜕𝑣𝜕𝑧) + 𝜇𝑟 𝜕𝑣𝜕𝑟 +
𝜕𝜕𝑟 (𝜇 𝜕𝑢𝜕𝑧) + 𝜇𝑟 𝜕𝑢𝜕𝑧 + 𝜌𝑔 + 2𝜎𝜌𝐾1𝜌1+𝜌2 𝜕𝛼1𝜕𝑧   

 

 

 

(4-6) 
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where K is the curvature, σ is the surface tension, μ is the dynamic viscosity, p is the gauge 

pressure, 𝜌1 is the density of phase 1, 𝜌2 is the density of phase 2, 𝜌 = 𝛼1𝜌1 + 𝛼2𝜌2,  2𝜎𝜌𝐾 

represents the surface tension force, u is the radial velocity, and v is the axial velocity,  

4.3.1.4 Energy Equation 

𝜕(𝜌𝐸)𝜕𝑡 + 𝜕(𝑢(𝜌𝐸+𝑝))𝜕𝑟 + 𝜕(𝑣(𝜌𝐸+𝑝))𝜕𝑧 + 𝑢(𝜌𝐸+𝑝)𝑟 = 𝜕𝜕𝑟 (𝑘 𝜕𝑇𝜕𝑟) + 𝜕𝜕𝑧 (𝑘 𝜕𝑇𝜕𝑧) + 𝑘𝑟 𝜕𝑇𝜕𝑟  (4-7) 

where 𝐸 = 𝛼1𝜌1𝐸1+𝛼2𝜌2𝐸2𝛼1𝜌1+𝛼2𝜌2  is total energy per unit volume, and T is temperature. 

4.3.1.5 Species Conservation 

The species consist of water in liquid phase, and water vapor and air in gaseous phase involving 

in the evaporation and non-reaction processes. The equation governing species conservation can 

be expressed as: 

𝜕(𝜌𝑔𝑌𝑔,𝐻2𝑂)𝜕𝑡 + 𝜕(𝜌𝑔𝑢𝑌𝑔,𝐻2𝑂)𝜕𝑟 + 𝜕(𝜌𝑔𝑣𝑌𝑔,𝐻2𝑂)𝜕𝑧 + 𝜌𝑔𝑢𝑌𝑔,𝐻2𝑂𝑟 = 𝜕𝜕𝑟 (𝜌𝑔𝐷𝐻2𝑂−𝑎𝑖𝑟 𝜕𝑌𝑔,𝐻2𝑂𝜕𝑟 ) +
𝜕𝜕𝑧 (𝜌𝑔𝐷𝐻2𝑂−𝑎𝑖𝑟 𝜕𝑌𝑔,𝐻2𝑂𝜕𝑧 ) + 𝜌𝑔𝐷𝐻2𝑂−𝑎𝑖𝑟𝑟 𝜕𝑌𝑔,𝐻2𝑂𝜕𝑟 + 𝑚l𝑔̇   

(4-8) 

where 𝑌𝑔,𝑎𝑖𝑟 = 1 − 𝑌𝑔,𝐻2𝑂, Yg,H20 is the mass fraction of water vapor, Yg,air is the mass fraction of 

air, and DH2O-air is the droplet diameter, and mlg is the mass transfer rate between liquid and gas 

phases.  
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4.3.1.6 Boundary Conditions 

Figure 4-2 shows a schematic of the computational domain and boundary conditions utilized in 

the study. The initial temperature in the domain is assumed to be 300 K.  The following 

conditions are imposed on the boundaries: 

- Substrate Surface: 

  
𝑢 = 0𝑣 = 0𝑇 = 600𝐾} No-slip condition  

  
𝜕𝛼1𝜕𝑧 = 0, 𝜕𝑌𝐻2𝑂𝜕𝑧 = 0  

where YH20 is the mass fraction of water. The above conditions imply isothermal surface with no 

allowance gradient of water concentration since the wall is not permeable to the solution. 

- Symmetry axis: 

  
𝜕𝛼1𝜕𝑟 = 0, 𝑢 = 0, 𝜕𝑣𝜕𝑟 = 0, 𝜕𝑌𝑔,𝑂𝜕𝑟 = 0, 𝑎𝑛𝑑  𝜕𝑇𝜕𝑟 = 0  

- Pressure-Outlet: 

P = 0 (gauge) 

The outlet boundary is located approximately 10 droplet diameters from the substrate surface, 

following a previous study [5] indicating that at such a distance, the boundary-induced 

disturbances are negligible. 
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Figure 4-2 - Schematic of computational domain and boundary conditions. 

4.3.2 Deposition on a Heated Surface 

Mixing and transport of chemical species are modeled by solving the conservation equations for 

species concentration that include chemical reaction sources. The species in the present study are 

Tin Chloride (SnCl4) and Indium Nitrate (In(NO3)3) and Oxygen (O2) as reactants and Tin Oxide 

(SnO2) and Indium Oxide (In2O3) as products. Although multiple simultaneous chemical 

reactions can be modeled with reactions occurring in the bulk phase (volumetric reactions) and 

on the wall surfaces, the present study considers the chemical reaction species separately to 

reduce complexity.  
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4.3.2.1 Volumetric Reactions 

4.3.2.2 Species Transport Equations 

The species transport equations for the evaporation process was presented in a previous Eq. 

(4-8). This equation needs to be modified for the process involving chemical reaction as follows.   

The local mass fraction of each species Yi can be predicted through the solution of a convention-

diffusion equation for the i-th species. The equation takes the following general form [3]:  

𝜕𝜕𝑡 (𝜌𝑌𝑖) + ∇. (𝜌𝜈𝑌𝑖)  = −∇. 𝐽𝑖⃗⃗⃗ + 𝑅𝑖 + 𝑆𝑖 (4-9) 

where Ri is the net rate of production of species i by chemical reaction, Si is the rate of reaction 

by addition from the dispersed phase and, 𝐽𝑖⃗⃗⃗ is the flux of species i. 

4.3.2.3 Mass Diffusion 

The diffusion flux of species i (Ji in Eq. (4-9)) is due to gradients of concentration and 

temperature. Assuming laminar flux due to the typically low Re number of flow within the 

droplet, mass diffusion due to concentration gradients is modeled using the Fick’s law, giving the 

flux: 

𝐽𝑖⃗⃗⃗ = −𝜌𝐷𝑖,𝑚𝛻𝑌𝑖 − 𝐷𝑇,𝑖 𝛻𝑇𝑇  
(4-10) 

where Di,m is the mass diffusion coefficient for species i in the mixture, and DT,i is the thermal 

diffusion coefficient. 
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4.3.2.4 The Laminar Finite Rate Model 

The laminar finite rate model computes the chemical source term using the Arrhenius expression, 

and ignores the effect of turbulent fluctuations [4]. The net source of chemical species i due to 

reactions is computed as the sum of the Arrhenius reaction sources over the NR reactions in 

which  the species participate, thus: 

𝑅𝑖 = 𝑀𝑤,𝑖 ∑ �̂�𝑖,𝑟𝑁𝑅
𝑟=1  

(4-11) 

where Mw,i is the molecular weight of species i and Ȓi,r is the Arrhenius molar rate of 

creation/destruction of species i in reaction r. The reaction occurs in the continuous phase at the 

wall surface. 

Consider the r-th reaction written in the general form: 

∑ 𝜈’𝑖.𝑟𝑁
𝑖=1 ℳ𝑖 ⇋𝑘𝑏,𝑟𝑘𝑓,𝑟 ∑ 𝜈’’𝑖.𝑟ℳ𝑖𝑁

𝑖=1  

 (4-12) 

where: 

N = Number of chemical species in the system 

𝜈’i,r = stoichiometric coefficient for reactant i in reaction r 

𝜈”i,r = stoichiometric coefficient for product i in reaction r 

𝓜i = Symbol denoting species i 
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kf,r = forward rate constant for reaction r 

kb,r = backward rate constant for reaction r 

This equation is valid for both reversible and non-reversible reactions. For non-reversible 

reactions, the backward rate constant, kb,r is omitted. 

The forward rate constant for each kf,r is computed using the Arrhenius expression: 

𝑘𝑓,𝑟 = 𝐴𝑟𝑇𝛽𝑟𝑒(−𝐸𝑟𝑅𝑇)
 

(4-13) 

where: 

 Ar = pre-exponential factor  

βr = temperature exponent 

Er = activation energy for the reaction (J/kmol) 

 R = universal gas constant (J/kmol) 

The Arrhenius expression contains parameters Ar and r that must be set based on the 

experimental data. The parameters are obtained for Eq. (4-1) from a previous study [6] as  

Ar, SnO2 ~ 1012, and βr, SnO2 =0.5. The parameters for Eq. (4-3) are [7] Ar,In2O3 ~ 106 and  

βr,In2O3 = 0.5. The reactions are considered to start with equal initial concentration. 

The reaction rate is defined on a volumetric basis and the rate of creation and destruction of 

chemical species becomes a source term in the species conservation equations. For surface 
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reactions, the rate of adsorption and desorption is governed by both the chemical kinetics and the 

diffusion to and from the surface. 

4.4 Results 

Figure 4-3 shows the predicted velocity vectors in the computational domain. The droplet is 

clearly outlined in the figure. There is flow circulation inside the droplet due to convection from 

the heated surface. The convective flow is particularly strong near the 3-phase contact point at 

the end of the droplet attachment to the surface due to amplification by the local high surface 

energy between the vapor and water there. Wakes also develop on the droplet surface at the point 

of attachment to the substrate due to temperature gradient between the heated surface and the 

surrounding air. Specifically, this wake results from the interaction between water vapor on the 

droplet surface and the diffusive motion of the surrounding heated air.  
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Figure 4-3 - Predicted velocity vectors within and outside the droplet. 

Figure 4-4 shows the variation of droplet surface height (H) with radius as a function of time. 

The height and radius have been normalized by Ho and Ro respectively, in which Ho is the initial 

height of droplet and Ro is the initial radius of droplet. The Parameter t* is a dimensionless time 

defined as t* = t.(Vo/Do) where Vo and Do are the initial velocity and diameter of droplet 

respectively. The droplet initially spreads along the surface (0< t*<0.018) when evaporation rate 

is relatively small. As the evaporation rate intensifies especially at the center of the droplet, the 

droplet deforms and the height decreases in the range (0.18< t*<0.252).  The droplet diameter 

correspondingly starts to decrease, implying the termination of spreading and onset of shrinkage.  
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Figure 4-4 - Transient variation of droplet boundary height with radius. 

Figure 4-5 shows the transient variation of droplet height normalized by the initial height H0. 

There is initially a rapid decrease in droplet height due to the spreading on the surface (0< 

t*<0.03). Next the height decreases more gradually (0.03< t*<0.018), and remains almost 

constant (0.18< t*<0.22), before gradually decreasing again (0.22< t*<0.252).  When the droplet 

is almost flat, the rate of height reduction starts to decrease. These trends are consistent with 

evaporation occurring mainly from the 3-phase contact point at the edges due to the high 

temperature and not from the center of the droplet. 
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Figure 4-5 - Transient variation of normalized droplet height. 

Figure 4-6 shows the corresponding transient variation of droplet radius at the 3-phase contact 

point. The radius has been normalized by the initial value Ro. The results indicate initial rapid 

increase in radius (up to t* = 0.018) as the droplet spreads along the surface immediately after 

impact.  This trend is consistent with the initial rapid decrease in droplet height observed 

previously in Figs. 4-4 and 4-5.  Next, the radius gradually decreases (i.e. the droplet shrinks 

laterally) due to intense evaporation that originates from the contact line.  This trend continues 

until t* = 0.18 when the droplet is nearly flat on the substrate. Subsequently the contact line 

shrinks very fast until the droplet is completely evaporated. 
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Figure 4-6 - Transient variation of normalized droplet radius. 

Figure 4-7 shows the temperature distribution in the computational domain investigated at t* = 

0.18. Preliminary calculations indicate that t* = 0.18 is the threshold duration over which the 

droplet resides on the substrate before evaporation occurs.  There is observed a temperature 

gradient on the droplet surface which produces the velocity wakes around the droplet that was 

observed in a previous Fig. 4-3. The temperature is also much higher at the midpoint along the 

droplet surface. 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.05 0.1 0.15 0.2 0.25 0.3

R
/R

0

t*



92 

 

 

Figure 4-7 - Temperature distribution at t* = 0.18. 

Figure 4-8 shows the temperature variation along the centerline of the droplet from substrate 

(H/Ho = 0) to the free surface (H/Ho =1). The temperature is observed to be highest near the 

heated substrate and lowest at the free surface of the droplet.  The profile exhibits four distinct 

zones.  In Zone 1 (0<H/Ho<0.05) near the substrate, the temperature decreases sharply away 

from the substrate due to convection inside the droplet as observed in Fig. 4-7. Liquid circulation 

causes temperature homogeneity inside the droplet. However at the center of the droplet, there is 

reduced circulation which allows the water there to be heated to initiate evaporation. The heating 

decreases away from the center. In Zone 2 (0.05<H/Ho<0.22), the temperature is nearly constant 

because the inside of the droplet has not been affected by the decreasing surface temperature due 

to evaporation.  In Zone 3 (0.22<H/Ho<0.3) there is again a steep temperature gradient due to 

phase change from liquid to air/vapor.  Finally, in Zone 4 (H/Ho>0.3), the temperature is 

essentially constant due to reduced influence of the heated surface on the surrounding air. 
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Figure 4-8 - Temperature distribution along centerline of droplet at t* = 0.18. 

Figure 4-9 shows the radial variation of temperature on the droplet surface at t*= 0.18 which 

indicates the time when droplet height remains nearly invariant. The temperature gradually 

increases from the apex of the droplet (R/Ro = 0) to the edge (i.e. the 3-phase contact line). The 

temperature gradient is particularly steep near the contact line in the consensus of the previous 

Fig. 4-7. This trend may be attributed to the high temperature and the low thermal conductivity 

of the substrate. 
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Figure 4-9 - Temperature distribution on droplet surface at t*= 0.18. 

The results of the chemical reaction are presented below. Only the results for one of the two 

oxides formed (SnO2) are presented for brevity since the normalized features are similar for 

SnO2 and In2O3.  The transient variation of molar concentration of SnO2 in the droplet is 

presented in Fig. 4-10. The concentration generally increases with time as the evaporation rate 

decreases. 
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Figure 4-10 - Transient variation of precursor SnO2 concentration. 

Figure 4-11 shows the chemical reaction rate profile for the reaction associated with the 

deposition of SnO2 of the mixed oxide In2O3+SnO2 on the substrate within the domain of the 

droplet. Figure 4-12  shows the corresponding variation of chemical reaction rate with radius. 

Both figures show that the chemical reaction rate is nearly constant from the center to about 60% 

of droplet radius. This implies that the chemical reaction is homogenous within most of the 

droplet. At 0.6<r<0.95 the rate decreases linearly. The observed trend is because most of the heat 

conduction occurs near the center of the droplet and the convention inside the droplet enhances 

both evaporation and reaction. Near the edge of the droplet (r>0.95) the reaction rate increases 

slightly due to larger convection of hot air near the contact line. This circulation enhances both 

evaporation and heat conduction to the droplet at the vicinity of the contact line. 
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Figure 4-11 - Contour of chemical reaction rate of deposition of SnO2 on substrate within droplet domain. 

 

Figure 4-12 - Chemical reaction rate of deposition of SnO2 on substrate within droplet domain. 

Figures 4-13 and 4-14 show the corresponding deposition of SnO2 of the mixed oxide 

In2O3+SnO2 on the substrate. The results are consistent with those obtained for chemical reaction 

rates of SnO2 in Figs. 4-11 and 4-12. Specifically, the deposition rate correlates with the 

chemical reaction rate. The highest deposition occurs again at 0<r<0.6 and r>0.95. 
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Figure 4-13 - Contour of deposition of SnO2 on substrate within droplet. 

 

Figure 4-14 - Normalized deposition rate of SnO2 on substrate within droplet. 

Figures 4-15 and 4-16 show the predicted radial variation of mass fraction of reactant SnCl4 

associated with the SnO2 component of the mixed oxide In2O3+SnO2 on the substrate after 

completion of chemical reaction. Initial mass fraction was achieved based on the results of a 

previous stud [8-9]. There is a significant amount of unused SnCl4 at r>0.6. This result is again 

consistent with the predicted higher reaction rate in the middle of the droplet compared to the 

edges that was observed in previous Figs. 4-11 and 4-12.  
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Figure 4-15 - Contour of mass fraction of SnCl4 on substrate within droplet domain after completion of 

reaction. 

 

Figure 4-16 - Normalized mass fraction of SnCl4 on substrate within droplet domain after completion of 

reaction. 

4.5 Conclusion 

A numerical study has been performed for a droplet sprayed from a nozzle, deposited and 

evaporated on a heated flat substrate surface. The model involves solving the time dependent 

governing equations of continuity, momentum, energy, species concentration, and chemical 
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reaction. The model also considers surface tension, wall adhesion, gravitational body force, and 

evaporation.  

The predicted results show that the droplet behavior after impingement occurs in stages, 

depending on the degree and location of significant evaporation. First the droplet spreads rapidly 

radially along the substrate due to force balance between surface force and droplet weight. The 

contact angle decreases and the spreading rate increases. The apex height starts to oscillate and 

the amplitude of oscillation decreases with time due to viscous dissipation. Subsequently, with 

more evaporation, the contact angle and apex height remains nearly constant while the three-

phase contact line decreases and the droplet shrinks laterally.  

The predicted temperature variation on the droplet surface and near the substrate correlates with 

the observed convection of fluid inside the droplet. The roll cells resulting from this convection 

sustains the evaporation rate at the early stages. Evaporation rate decreases as the droplet 

gradually flattens on the substrate and can no longer sustain the roll cells. 

The results of chemical reaction model assuming surface reaction show that the reaction occurs 

homogenously inside most of the droplet. There is a constant reaction rate within about 60% 

radius of the droplet from the interior. Beyond that, the reaction rate decreases linearly away 

from the center. The reaction rate is partially high at the contact line of droplet with the substrate. 

Oxide deposition is concentrated within the 60% radius from the center and there is a significant 

amount of unused reactants thereafter.  
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CHAPTER 5: PROCESSING OF SINGLE AND MIXED  

METAL -OXIDE THIN FILMS 

5.1 Overview 

In this chapter, the influence of deposition parameters is investigated on the structural 

characteristics of nanoheterogeneous single and mixed oxides produced by spray pyrolysis 

technique. The films were synthesized by spraying precursor solutions through a nozzle onto a 

heated alumina substrate. The precursor consisted separately of aqueous solutions of tin chloride 

for SnO2, and zinc chloride for ZnO single oxide deposition. For mixed oxide cases, aqueous 

solutions of tin chloride and indium nitrate were mixed and used for deposition of SnO2+In2O3, 

while zinc chloride and indium nitrate solutions were used for deposition of ZnO+In2O3. The 

substrate temperature was varied from 350° C to 450° C for ZnO, and 350° C to 500° C for SnO2.  

The temperature was set at 400° C for ZnO+In2O3 and 500° C for SnO2+In2O3. The films 

produced were characterized by X-ray Photoelectron Spectroscopy and Scanning Electron 

Microscopy. The X-ray diffraction data show that the SPT process results in polycrystalline films 

of hexagonal wurtzite types. The morphology of the synthesized films is studied by scanning 

electron microscopy as well as the dependence of morphology on the synthesis conditions, 

specifically the temperature of the aerosol precipitation and the concentration of the precursors in 

solutions. The results indicate that a non-homogenous film is formed at low temperature for both 

single oxides considered. The temperature has significant effect on the composition of the 

synthesized films of both single oxides below 450° C. The characteristics of nucleation and 

growth of oxide crystals during the synthesis of mixed oxide composite films are also 

considered. The results for mixed oxides show that the best homogeneous films are obtained for 
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80 wt. % ZnO + 20 wt. % In2O3, and 80 wt. % SnO2 + 20 wt. % In2O3. However, the film with 

the composition 25 wt% ZnO+75 wt% In2O3 contains a large number of small crystal aggregates 

of arbitrary shape with a high density of contacts between the aggregates and are characterized 

by a homogeneous structure with high dispersion. Such morphology has high specific surface, 

which favors high sensory response. In addition, in this range of aggregate composition the 

relationship between the particles of the catalytically active component – ZnO, cleavage of 

hydrogen molecule, and In2O3 particles with a high concentration of conduction electrons is close 

to optimal for the maximum sensory effect in the detection of hydrogen. 

5.2 Experiments Performed 

5.2.1 Deposition Mechanism 

A precursor solution which contains constituent reactant compounds is atomized in a nozzle to 

tiny droplets which are then sprayed onto a preheated substrate. The surface of the substrate must 

be sufficiently hot to initiate chemical reaction between the precursors in the droplet solution. 

Specifically, the droplet must still contain enough reactants in solution after reaching the 

substrate [1-2]. A film of stable compounds subsequently forms that adheres to the substrate due 

to chemical reaction and thermal decomposition of the solution.  

5.2.2 Experimental Procedure 

The importance of spray parameters and their effects were investigated completely in chapter 3. 

The results are used to determine experimental conditions to synthesis thin films through spray 

system. 
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Zinc oxide was deposited using aqueous solution of zinc chloride (ZnCl2) precursor while tin 

oxide utilized tin chloride (SnCl4) precursor solution in water. In order to deposit mixed oxides, 

tin chloride and indium nitrate were dissolved together in water to synthesize SnO2+In2O3. Zinc 

chloride and indium nitrate were used for deposition of ZnO+In2O3 for different composition 

ratios. The chemical reactions were previously formulated in chapter 4, Eqs. (4-1), (4-2), and 

(4-3) [3]. It should be noted that the reaction of tin chloride solution is a heterogeneous reaction 

that occurs in the vapor phase [4]. 

Each precursor was fed into a 2 mm-diameter duct at a flow rate of 1 ml/min [5]. The solution 

was injected through a 1 mm-diameter round spray nozzle and then atomized at 1 bar air 

pressure. The solution in the nozzle was then sprayed onto a heated aluminum oxide (Al2O3) 

coated substrate. The distance between the spray nozzle and the hot substrate was kept constant 

at 10cm for the experiments. This distance was chosen based on the results of previous studies 

[1, 6]. The thin film was finally annealed for 30 minutes after deposition to the desired structures 

at 450° C [7-9]. The annealing process promotes adhesion of the film to the substrate. These 

conditions were kept constant for all other sets of experiments performed. Figure 5-1 is the 

experimental setup used for the deposition of thin films in this research. 
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Figure 5-1 – Experimental apparatus. 

5.2.3 Control Parameters 

The substrate Temperature (Ts) and solution concentration (C) were used as the control 

parameters. In order to assess the results of mixed oxide deposition, the optimum case from 

single oxide deposition was also considered. The experimental parameters are chosen and 

determined based on previous studies which were explained thoroughly in chapter 2, section 

2.4.2. 

Two sets of experiments were designed for deposition of ZnO. In the first set of experiments 

(Cases 1 and 2), the concentration was maintained constant (C=0.1 mol/lit) while the temperature 
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was varied from 400° C to 450° C. In the second set (Cases 3 and 4), the concentration was 

increased from C=0.2 mol/lit for Case 3 to 0.3 mol/lit for Case 4 while the temperature was 

constant at 400° C [10].   

The same approach was used for deposition of SnO2. In the first set (Cases 5 to 8), the substrate 

temperature (Ts) was varied from 350° C to 500° C at 50 degrees increments for different sets of 

experiments while the concentration was constant at 0.25 mol/lit.  In the second set (Cases 9 and 

10), the temperature was kept constant at 450° C while the concentration was varied from 0.1 to 

0.5 mol/lit [11-12].  

In order to deposit mixed oxide films, the precursor concentration ratio was changed for new sets 

of experiments. Indium nitrate was mixed with zinc chloride to produce 25 wt. % ZnO + 75 wt. 

% (Case 11) and 80 wt. % ZnO + 20 wt. % In2O3 (Case 12). For these cases, temperature and 

solution concentration were kept constant at 400° C and 0.1 mol/lit, respectively. For deposition 

of SnO2+In2O3, indium nitrate was added to produce 80 wt. % SnO2 + 20 wt. % (Case 13) and 95 

wt. % SnO2 + 5 wt. % In2O3 (Case 14). 

5.2.4 Material Characterization 

The deposited thin films were characterized by X-ray photoelectron spectroscopy (XPS) and 

Scanning electron microscopy (SEM). Surface morphology was studied using a Zeiss ULTRA-

55 FEG SEM system which used Schottky field emission source with a resolution of 1 nm @ 15 

KV and 1.7 nm @ 1 KV and STEM detector. Surface spectroscopy was performed by Physical 

Electronics 5400 ESCA system to detect elemental composition. 



106 

 

5.3 Results 

Table 5-1 summarizes the various cases considered and the corresponding substrate temperature 

(Ts), precursor concentration (C) and the observed morphology for the various films produced. 

The results show that the resulting film structure is strongly dependent on the deposition 

temperature in each case. However the qualities of films were found to be enhanced by 

systematically increasing the precursor concentration. The effect of these two processing 

parameters is investigated in this section. 

Table 5-1 - Film morphology of deposited films. 

Case Film Composition 
Temperature 

Ts (°C) 

Concentration 

C (mol/lit) 
Film Morphology 

1 ZnO 400 0.1 granular 

2 ZnO 450 0.1 dense 

3 ZnO 400 0.2 columnar 

4 ZnO 400 0.3 columnar 

5 SnO2 350 0.25 dense 

6 SnO2 400 0.25 non-homogenous 

7 SnO2 450 0.25 porous 

8 SnO2 500 0.25 dense 

9 SnO2 450 0.1 dense 

10 SnO2 450 0.5 granular 

11 25 wt. % ZnO+75 wt. % In2O3 0.1 400 columnar 

12 80 wt. % ZnO+20 wt. % In2O3 0.1 400 columnar 

13 80 wt. % SnO2+20 wt. % In2O3 0.25 450 granular 

14 95 wt. % SnO2+5 wt. % In2O3 0.25 450 dense 
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5.3.1 Single Oxides 

5.3.1.1 Effect of Substrate Temperature 

Figure 5-2 shows the SEM micrographs of ZnO films (Cases 1 to 4). Figures 5-2(a) and 5-2(b) 

show the deposition of ZnO at low concentration (C=0.1 mol/lit) and different temperatures 

(T=400° C and T=450° C) while Figs. 5-2(c) and 5-2(d) show the deposition at constant 

temperature (T=400° C) and higher concentrations (C=0.2 mol/lit and C=0.3 mol/lit), 

respectively. 

Figure 5-2(a) (Case 1: T=400° C and C=0.1 mol/lit) shows that small spherical crystallites are 

formed that agglomerate at the surface in the shape of powder with an average size of ~ 50 nm in 

the consensus of previous studies [13-15]. In Fig. 5-2(b) (higher temperature of T=450° C), the 

film uniformity is enhanced due to the progression of chemical reaction at the higher 

temperature. The film is denser and the growth rate is highly limited by diffusion. The results are 

in good agreement with a previous study [16].  

Temperature has similar effect on the deposition of SnO2 film (cases 5 to 10). Table 5-1 shows 

that a dense film is formed at the lowest temperature (Case 5, 350° C). This result may be 

attributed to the limited evaporation of the droplets reaching the surface at low temperature. 

Some cracks are observed in the film due to thermal stress during the annealing process [17]. In 

addition, the precursor solution does not have sufficient time to form a continuous film on the 

Al2O3 substrate. As the temperature increases, a non-stoichiometric film with rough aspect ratio 

is formed (Table 5-1, Case 6). In this case, the nucleation process is faster due to the higher 
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temperature [18] and a film with a non-homogenous structure is synthesized which is similar to 

the previous ZnO films deposited at low temperature (Fig. 5-2, Case 1).   

Figure 5-3  shows the SEM micrographs of some SnO2 films produced (Cases 7 to 10). Figures 

5-3(a) and 5-3(b) show the deposition of SnO2 at low concentration (C=0.25 mol/lit) and 

different temperatures (T=450° C and T=500° C) while Figs. 5-3(c) and 5-3(d) show the 

deposition at constant temperature (T=450° C) and different concentrations (C=0.1 mol/lit and 

C=0.5 mol/lit). 

Figures 5-3(a) (T=450° C) and 5-3(b) (T=500° C) show thin films with continuous structure at 

both temperatures while the precursor solution is constant at C=0.25 mol/lit. At 450° C (Fig. 5-

3(a)), the deposited film exhibits porous structure which prevents homogeneity. Such a 

characteristic porous microstructure has also been observed in a previous study [8]. The pore 

sizes are in the sub-micron range. The increase in porosity can be attributed to increased 

temperature and the film becomes denser without cracks at higher temperature [17], as observed 

in Fig. 5-3(b). In this case, the pores shrink and the film surface subsequently becomes smooth. 
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2(a) Case 1 2(b) Case 2 

2(c) Case 3 2(d) Case 4 

Figure 5-2 - SEM micrographs of spray pyrolysis deposition of ZnO thin films on Al2O3 substrate:  

(a) T= 400° C and C=0.1 mol/lit; (b) T= 450° C and C=0.1 mol/lit; (c) T= 400° C and C=0.2 mol/lit; and 

(d) T= 400° C and C=0.3 mol/lit.  
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 3(a) Case 7 3(b) Case 8 

3(c) Case 9 3(d) Case 10 

Figure 5-3 - SEM micrographs of spray pyrolysis deposition of SnO2 thin films on Al2O3 substrate:  

(a) T= 450° C and C=0.25 mol/lit; (b) T= 500° C and C=0.25 mol/lit; (c) T= 450° C and C=0.1 mol/lit 

and (d) T= 450° C and C=0.5 mol/lit. 

The compositions of the deposited films are determined by X-ray photoelectron spectroscopy 

(XPS). Figure 5-4(a) shows the XPS of ZnO film grown at 400° C (Case 1). The corresponding 

result at 450° C (Case 2) is shown in Fig. 5-4(b). ZnO deposition is clearly evident in both cases. 

However the atomic concentration of Zn increases from 0.9% at 400° C to 7.1% at 450° C due to 

the enhanced chemical reaction at the higher temperature. The peak of Zn 2P3 is associated with 

the Zn-O bond [16]. 

Figure 5-5 (a) and 5-5(b) show the XPS results for SnO2 films deposited at 450° C (Case 7) and 

500° C (Case 8). These results clearly confirm the formation and deposition of SnO2 at both 

temperatures, and exhibit the same atomic concentration of Sn at both temperatures. The result 
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therefore shows that the temperature appears to have minimal effect on the atomic concentrations 

above 450° C. 

 
4(a) Case 1 4(b) Case 2 

Figure 5-4 - XPS of ZnO thin film on Al2O3 substrate at (a) T=400° C and C=0.1 mol/lit; and  

(b) T=450° C and C=0.1 mol/lit. 

 
5(a) Case 7 5(b) Case 8 

Figure 5-5 - XPS of SnO2 thin film on Al2O3 substrate at (a) T=450° C and C=0.25 mol/lit; and  

(b) T=500° C and C=0.25 mol/lit. 

5.3.1.2 Effect of Solution Concentration 

The effect of concentration on deposition of ZnO are also presented in the previous Figs. 5-2(c) 

(Case 3: T=400° C and C=0.2 mol/lit) and 5-2(d) (Case 4: T=400° C and C=0.3 mol/lit). The 

results show that the grain size increases with increase in the amount of precursor dissolved in 

solution. The deposited grains tend to form crystalline shapes at higher concentrations (Fig. 5-
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2(d)). Figure 5-2(c) shows that at a lower concentration, the film is uniform with nanoparticle 

sizes of ~ 100 nm with hexagonal flake-like morphology which is in the consensus of a previous 

study that utilized the same concentration of precursors [19]. When the concentration is 

increased, the density and size of particles are further increased. In Fig. 5-2(d), the crystals are 

plate-like and the sides of the walls are grown packed as was also observed in a previous study 

[20]. A larger size of grains was similarly observed at the higher concentration [21]. 

The effect of concentration on the deposition of SnO2 can similarly be assessed by comparing 

Figs. 5-3(c) (Case 9: T=450° C and C=0.1 mol/lit) and 5-3(d) (Case 10: T=450° C and C=0.5 

mol/lit). At low concentration, the grains form smooth, uniform thin film observed in Fig. 5-3(c). 

A previous study has shown that at low concentrations, the film surface is smooth with no well-

defined crystallites [22]. However by increasing the concentration, the particles begin to 

agglomerate and form clusters. These particles have sharpened boundaries with spherical grain 

shapes [22]. A similar result can be observed in Fig. 5-3(d). Such a transition from an amorphous 

texture to a larger size of crystallites was also observed in a previous study [23]. The study 

attributed the observed trend to excess amount of surface-free energy at lower temperature which 

leads to formation of smooth film surface.  

5.3.2 Mixed Oxides 

Figures 5-6 and 5-7 show the SEM micrographs of ZnO+In2O3 and SnO2+In2O3 thin films on 

Al2O3 substrate. Figures 5-6(a) and 5-6(b) are the results for ZnO+In2O3 at T= 400° C and 

concentration ratios of 25% of ZnO and 80% of ZnO respectively. It has been found that an un-

doped ZnO film will form a non-uniform structure [24]. By doping with indium, the uniformity 
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is enhanced and grain size is increased [24]. At low concentration ratio of ZnO (Fig. 5-6(a)), 

ZnO nano wires are formed. By increasing the amount of ZnO (from 25% in Fig. 5-6(a) to 80% 

in Fig. 5-6(b)), crystallization occurs and a well-structured thin film is produced. These results 

exhibit the same trend that was observed in the previous Fig. 5-2 for ZnO films. Thus by 

increasing the amount of zinc in solution, there is a better chance to produce zinc oxide crystals 

or rods. In Fig. 5-6(b), the growth of ZnO rods occurs fully due to the growth of side walls, 

resulting in the formation of nano tubes [20, 25-26]. By increasing the indium dopant, the grain 

size decreases. This trend is attributed to the stresses applied by the mixture which limits the 

growth of the grain size [27]. 

Figure 5-7 shows the SEM micrographs of SnO2+In2O3 thin films deposited on Al2O3 substrate 

at T= 450° C and at a concentration ratio of 80% of SnO2 and 95% of SnO2 respectively. The 

results show that small spherical particles are formed at the low concentration of tin (Fig. 5-7(a)). 

When the concentration of tin is high (Fig. 5-7(b)), the synthesized film is similar to the single 

oxide thin film of Case 5, resulting in cracking and formation of a thick film. 
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6(a) Case 11 

 
6(b) Case 12 

Figure 5-6 - SEM micrographs of spray pyrolysis deposition of ZnO+In2O3 on Al2O3 substrate:  

(a) 0.25ZnO+0.75In2O3 at T= 400° C and C=0.1 mol/lit; and (b) 0.8ZnO+0.2In2O3 at T= 400° C and 

C=0.1 mol/lit. 

 
7(a) Case 13 

 
7(b) Case 14 

Figure 5-7 - SEM micrographs of spray pyrolysis deposition of SnO2+In2O3 on Al2O3 substrate:  

(a) 0.80SnO2+0.20In2O3 at T= 450° C and C=0.25 mol/lit; and (b) 0.95SnO2+0.05In2O3 at T= 450° C and 

C=0.25 mol/lit. 

5.3.2.1 Size distribution 

Image processing techniques were applied to the SEM micrographs in order to calculate the 

particle size distribution, specifically the mean diameter of each particle. The average particle 

size was determined by considering all particle dimensions in the film. The mean area of 

particles (Ā) was calculated by considering the total number of particles and the space intervals 

thus [28]:  
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�̅� = 𝐴 + (∑ 𝑓𝑑/𝑁) 𝑖 (5-1) 

where Ā is actual mean area, A is the assumed mean area, i is the class interval between particles, 

d is the deviation of midpoint from assumed mean, and N is total number of particles considered. 

The mean diameter was then obtained from Ā assuming spherical particles.   

Table 5-2 shows the average particle size and standard deviation from average particle size 

obtained for some of the films produced. The standard deviation values show the dispersion of 

particle sizes from the measured average particle size for each case. Smaller values of standard 

deviations indicate narrower range of particle size distribution from average value. It implies 

simultaneous chemical reactions inside droplets and subsequently a homogenous particle growth 

on the substrate due to the balance between the substrate temperature and the concentrations of 

precursors in solution. Figures 5-8 and 5-9 show the particle size distributions obtained for ZnO 

single oxide and ZnO+In2O3 mixed oxide films respectively.  

Table 5-2 - Particle size of synthesized ZnO and ZnO+In2O3 films. 

Case Deposited Metal Oxide 
Temperature  

(° C) 

Concentration 

(mol/lit) 

Ave. 

Particle 

Size (nm) 

Standard 

Deviation  

SD (nm) 

1 ZnO 400 0.1 112 65 

3 ZnO 400 0.2 119 70 

4 ZnO 400 0.3 233 89 

10 SnO2 450 0.5 47 41 

11 25wt.% ZnO+75wt.% In2O3 400 0.1 136 94 

12 80wt.% ZnO+20wt.% In2O3 400 0.1 201 123 

13 80wt.%SnO2+20wt.% In2O3 450 0.25 94 46 
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Figure 5-8 shows that by increasing the concentration of ZnO, the particles grow larger. At low 

concentration, the particles are smaller and the size distribution is less homogenous (Table 5-2, 

Case 1) as was also observed in a previous study [21]. At C=0.3 mol/lit and T=400 °C (Table 

5-2, Case 4), a narrow particle size distribution is observed with high probability of a more 

homogenous film. Comparing the standard deviation values of cases 1 to 3 approves that more 

particles within 1 SD is observed when solution concentration is high and subsequently the 

homogeneity of particle size is higher.   

Figure 5-9 for ZnO+In2O3 mixed oxide shows that the addition of indium oxide component to 

ZnO results in the growth of particles over a wider range of sizes. Higher standard variation 

values represents that there is more deviation from average size when a mixed precursor is 

deposited on the surface. It means that the particles in mixed oxides cases are produced with less 

homogeneity compared to the single oxides (ZnO) of Fig. 5-8. In the mixed oxide film cases of 

Fig. 5-9, the results show that a more homogenous particle distribution is obtained when ZnO is 

the dominant precursor. The experimental results show that by increasing the amount of ZnO, 

crystallization occurs and a well-structured thin film is produced. There is therefore a better 

chance to produce zinc oxide crystals or rods at the higher ZnO concentration [20]. Thus the 

overall particle size is reduced when the concentration of indium is increased (Table 5-2, Case 

11). This trend may be attributed to the fact that indium ions limit the growth of ZnO particles on 

the surface [24] or by the increased stresses applied by the mixture which limits the growth of 

grain size [27].  

Figure 5-10 shows the particle size distribution for SnO2 single oxide and SnO2+In2O3 mixed 

oxide films. The single oxide is deposited in the shape of spherical grains with sharp boundaries 
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as indicated in the previous Fig. 5-3(d). The mixed metal oxide is formed with rough structure 

with larger spherical grains as shown in the previous Fig. 5-7(a). The results show that in the 

latter case, the particles agglomerate and form larger-sized particles as depicted in Fig. 5-10 

(Table 5-2, Cases 10 and 13). 
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Figure 5-8 - Particle size distribution of ZnO single oxide thin films. 

 

Figure 5-9 - Particle size distribution of (x wt. % ZnO + y wt. % In2O3) mixed oxide thin films. 
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Figure 5-10 - Particle size distribution of SnO2 single oxide and 80 wt. % SnO2 + 20 wt. % In2O3 mixed 

oxide thin films. 
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The previous Fig. 5-2 indicated the effect of temperature and concentration on morphology of 
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Our study of ZnO+In2O3 composite oxide films has demonstrated that the morphology of the 

films depends strongly on the composition. The previous Fig. 5-6 presented the 

photomicrographs of the composite films with various ZnO to In2O3 ratios. The composite film 

0.25ZnO+0.75In2O3 (Fig. 5-6(a)) consists of elongated particles of arbitrary shape, which are 

aggregates that combine small crystallites of In2O3 and ZnO. The composite 0.8ZnO+0.2In2O3 

(Fig. 5-6(b)) contains for the most part faceted particles that are large individual ZnO crystals (or 

splices of such crystals). In this composite, such particles of ZnO are mixed with the In2O3 

particles, which other studies [30] have shown to also increase the sensory response by about 15-

20% compared to the response of pure ZnO, i.e. considerably less than in the composite of Fig. 

5-6(a). 

5.5 Conclusion 

In this chapter, the processing of single oxide and mixed oxide films by spray pyrolysis 

technique (SPT) was investigated. Two single oxides (ZnO and SnO2) and two mixed oxides 

(ZnO+In2O3 and SnO2+In2O3) were considered. The films were processed under varying 

substrate temperature conditions and different precursor solution concentrations, and deposited 

on heated Al2O3 substrates. The films were then characterized by SEM for microstructure and 

XPS for composition.  

The study also considered the dependence of the morphology of the films on the synthesis 

conditions. It has been shown that increasing the deposition temperature in the range 350 to 

450C results in the formation of films with more uniform particle sizes and the size of deposited 

particles increases with increasing concentration of precursor solution from 0.1 to 0.3 mol/liter. 
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The particles of the film are not separate crystallites, but splices or aggregates of crystallites. The 

interaction between crystallites inside crystalline aggregates is stronger that the interaction 

between aggregates. The conductivity of the film is determined by the electron density in an 

aggregate and the contacts between aggregates. 
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CHAPTER 6: MATHEMATICAL MODELING AND EXPERIMENTAL 

VALIDATION OF FILM GROWTH 

6.1 Overview 

In this chapter, the deposition of metal oxide films using SPT is investigated through 

mathematical and physical modeling. A comprehensive model is developed of the processes 

including atomization, spray, evaporation, chemical reaction and deposition. The predicted 

results including particle size and film thickness are compared with the experimental data 

obtained in the previous chapter. The predicted film thickness is in good agreement with the 

measurements when the temperature is high enough to for the chemical reaction to proceed. The 

model also adequately predicts the size distribution when the nanocrystals are well-structured at 

controlled temperature and concentration.  

6.2 Problem Considered 

A comprehensive mathematical model of the SPT process can be considered in two broad 

categories. The first involves the atomization process and the second involves collectively the 

evaporation, chemical reaction and the film growth processes. The parameters associated with 

each process are listed in Table 6-1.  

 

 

 



126 

 

Table 6-1 - Spray pyrolysis process models. 

Model Type Input Output 

Spray 
CFD 

Model 

Ts (Substrate Temperature) 

Vi (Initial droplet velocity) 

P (Pressure) 

T (Temperature) 

mi (Initial Droplet mass) 

dd (Initial Droplet diameter) 

Evaporation 
Math 

Model 

P (Pressure) 

T (Temperature) 

mi (Initial droplet mass) 

dd (Initial droplet diameter) 

mf (Final droplet mass) 

Decomposition/ 

Reaction 

Math 

Model 

T (Temperature) 

C (Initial concentration of  

precursor) derived from mf 

xR,f (Final fraction of precursor 

reacted) 

df (Final droplet diameter) 

Deposition/ 

Growth 

Math 

Model 

Di (Initial film thickness) derived 

from df 
Df (Final film thickness) 

The major parameters associated with each process are shown in Fig. 6-1. First, a spray model is 

developed to predict droplet diameter before reaching the substrate (dd). The details of the spray 

model have been presented in previous chapter 3. This CFD model also is used to determine the 

pressure and temperature distribution within the domain.  The initial droplet mass (mi) can be 

calculated from the droplet diameter and used in the subsequent evaporation model.  
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Figure 6-1 - Schematic view of spray pyrolysis stages. 

6.3 Formulation 

6.3.1 Evaporation  

The solvent evaporation rate is determined by the decreasing droplet mass (m) and can be 

formulated as: 

𝑑𝑚𝑑𝑡 = 2𝜋𝑑𝑑𝐷𝑣𝑀𝑁𝐴 . (𝑛𝑔 − 𝑛𝑠𝑎𝑡). 𝜑 
(6-1) 
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where 𝐷𝑣  is the diffusion coefficient of solvent vapor in air, 𝑁𝐴 is Avogadro’s constant 

(6.0221413×1023 1/mole), 𝑀 is the molecular weight of water, and 𝑛𝑔 and 𝑛𝑠𝑎𝑡 are the vapor 

concentrations at the droplet surface and in the surrounding air, respectively [1]. Initial mass 

(𝑚𝑖) is determined from CFD modeling of spray for a droplet at the substrate. This value 

considers the mass of water inside the droplet. In the specific experiment considered for 

validation, the precursor comprised 1% ZnCl2 (for ZnO single oxide) and 5% ZnCl2 + 95% 

In(NO3)3 (for ZnO+In2O3 mixed oxide) of the total mass of droplet. Therefore, the mass of 

precursor can be neglected in consideration of the total mass at this stage. The parameter 𝜑 in 

Eq. (6-1) is the Knudsen correction which allows for the effect of transport when the size of 

droplet is on the order of the mean free path of molecules in air (λ~68 nm): 

𝜑 = 2𝜆+𝑑𝑑𝑑𝑑+5.33(𝜆2𝑑𝑑)+3.42𝜆  (6-2) 

where 𝑑𝑑 is the droplet diameter.  

The vapor concentration can be calculated as: 

𝑛𝑔 = 𝑥𝑤𝑃𝑔𝑘𝐵𝑇𝑠𝑎𝑡  (6-3) 

𝑛𝑠𝑎𝑡 = 𝑥𝑤𝑃𝑠𝑎𝑡𝑘𝐵𝑇𝑠𝑎𝑡   (6-4) 

where 𝑃 is the pressure and 𝑥𝑤 is the mole fraction of solvent (water). The parameter 𝐷𝑣 can be 

defined as [1]: 

𝐷𝑣 = 1.13∗10−5.𝑇2.159𝑃    
(6-5) 
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Since 𝐷𝑣 , 𝑛𝑔 and 𝑛𝑠𝑎𝑡  are dependent on surrounding air pressure (𝑃) and temperature (𝑇), the 

temperature and pressure are determined by CFD modeling of spray using the FLUENT software 

package which was developed in previous chapter 3. The substrate temperature is fixed at 400° C 

as a reference.  

By solving Eq. (6-1) in MATLAB, the final mass (𝑚𝑓) inside the droplet can be determined. 

This value can be used to calculate the initial droplet diameter (𝑑𝑖) and the concentration of 

initial precursor (𝐶) for the next stage. 

6.3.2 Decomposition/Reaction 

The pyrolysis of the precipitate starts before the precipitate reaches the substrate and nucleation 

and growth of thin films on the substrate occurs later. Subsequently, a continuous thin layer of 

metal oxide is synthesized by the growth of the nuclei. The desired condition is for the droplet to 

approach the substrate when the solvent has been largely removed [2]. 

A chemical reaction (thermal decomposition) occurs during spray pyrolysis in addition to the 

physical processes of evaporation and drying [1]. The chemical reaction for the system 

considered was previously formulated in chapter 4 (Eqs. (4-1), (4-2), and (4-3)) 

The general kinetic equation can be described as [1]: 

𝑑𝑥𝑅𝑑𝑡 = 𝐴𝑒(−𝐸𝑎 𝑅𝑇⁄ ). 𝑓(𝑥𝑅)   (6-6) 

where 
𝑑𝑥𝑅𝑑𝑡  is the reaction rate, 𝑅 is gas constant (8.3144621 J/mol.K), 𝑥 is the fraction of 

precursor reacted [ZnCl2 and/or In(NO3)3], and 𝑓(𝑥𝑅) is the function of fraction reacted which 
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depends on the mechanism of the decomposition reaction. This function represents the 

theoretical kinetic equation of the decomposition mechanism and it can be defined by normal 

grain growth model: 𝑓(𝑥𝑅) = (1 − 𝑥𝑅)𝑛 where n=1.25 is a function of reaction order [1]. In Eq. 

(6-6), 𝐴 is the pre-exponential factor and 𝐸𝑎 is the activation energy which can be determined 

from the Arrhenius kinetic reaction equation. By solving the differential Eq. (6-6), the final 𝑥𝑅 

(𝑥𝑅,𝑓) can be found which is the fraction of the precursor reacted at the final stage. 

The final diameter after chemical reaction is derived from the one-droplet to one-particle 

principle in spray pyrolysis [1] thus: 

𝑑𝑓 = 𝑑𝑑 (𝐶.𝑀𝑝𝜌𝑝 )1/3
    

(6-7) 

where 𝑑𝑓  is the final particle diameter, 𝑑𝑖  is initial droplet diameter, 𝐶 is concentration of initial 

precursor, 𝑀𝑝 is molecular weight of the generated particle, and 𝜌𝑝 is the density of the generated 

particle (ZnO in single oxide and ZnO+In2O3 in mixed oxide). Since only a fraction of precursor 

is involved in the chemical reaction at this stage, the final droplet diameter needs to be modified 

accordingly. Therefore, the final droplet size is corrected using the 𝑥𝑅,𝑓 factor. In effect, when 𝑥𝑅,𝑓 =1, the final 𝑑𝑓 is equal to the calculated diameter, and when 𝑥𝑅,𝑓 =0, there is no particle 

created and 𝑑𝑓=0.  

6.3.3 Deposition/Growth 

The growth rate in a spray deposition process is linearly dependent on spray time and 

logarithmically dependent on substrate temperature [3]. This rate can be represented as:  
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𝑑𝐷𝑑𝑡 = 𝐴1. 𝑒(−𝐸/𝑘𝐵𝑇)  (6-8) 

where 𝐷 is the film thickness, 𝐴1 is the growth rate coefficient, 𝑇 is temperature, 𝑡 is time and 𝑘𝐵 

is the Boltzmann constant (=1.3806488×10-23 m2.kg/s2.K). Based on the experimental results, the 

following parameters were used to solve Eq. (6-8): 𝐴1 = 3.1 µm, 𝑡 =30 s, 𝑇 =400° C, 𝐸 = 

0.427eV. Since the amount of indium nitrate in the mixture is less than 20%, the same growth 

rate coefficient can be used for the mixed oxide cases.  

The initial film thickness (𝐷𝑖) is derived from the reaction stage. Specifically, the final droplet 

diameter (𝑑𝑓) at that stage is assumed to be the same as the initial film thickness, assuming a 

spherical particle shape. The final film thickness (𝐷𝑓) is predicted subsequently by solving Eq. 

(6-8). It should be remarked that since the precursor solution used for the spray is typically 

dilute, the above model is expected to be valid for both single and mixed oxides. 

An experimental study was conducted to validate the modeling results. The details about the 

experiment were presented in the previous chapter 5, section 5.2. In the experiment, the optimum 

processing conditions are strongly dependent on the composition of the precursor solution. The 

deposited single and mixed oxide thin films are subsequently characterized by Scanning Electron 

Microscopy (SEM) for the particle size and film thickness. SEM combines high spatial 

resolution with a wide field of view to improve accuracy [4]. The calculation of particle size 

distribution from SEM micrographs was explained in previous Section 5.3.2.1 [5]. Table 6-2 

summarizes the input data used for the experiments to validate the results. 
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Table 6-2 - Experimental parameters used for deposition of ZnO and ZnO+In2O3 films. 

Deposited Metal Oxide 
Concentration 

C (mol/lit) 

Temperature  

Ts (° C) 

ZnO 0.1 350 

ZnO 0.1 400 

ZnO 0.2 400 

ZnO 0.3 400 

25 wt. % ZnO+75 wt. % In2O3 0.1 400 

80 wt. % ZnO+20 wt. % In2O3 0.1 400 

6.4 Results 

6.4.1 Film Thickness 

Figure 6-2 shows the predicted variation of ZnO film thickness with deposition duration. The 

film initially grows rapidly and after a certain duration (~10s), becomes gradual. The result 

illustrates the role of mass diffusion in the growth of crystalline structures. This observed trend 

may be attributed to space limitation on the substrate surface and pressure from adjacent growing 

particles which subsequently limit the growth rate. At long time duration, the growth rate is 

limited by diffusion at a constant level in the consensus of previous studies [6]. 

Figure 6-3 shows the predicted variation of ZnO film thickness with substrate temperature. 

Increasing the substrate temperature enhances the growth of particles on the surface. This trend 

is consistent with the direct influence of temperature on both diffusion and chemical reaction. It 

should be noted that the threshold deposition time of 10s of previous Fig. 6-2 which produced a 

film thickness of 272 nm corresponds to a temperature of 400 °C in Fig. 6-3. 
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Figure 6-2 - Predicted variation of ZnO film thickness with deposition time (T=400 °C, C=0.2 mol/lit). 

 

Figure 6-3 - Predicted variation of ZnO film thickness with substrate temperature (T=400 °C, C=0.2 

mol/lit). 

Table 6-3 compares the film thickness of ZnO films obtained from modeling and experiments at 

two substrate temperatures. The experiment was performed with deposition duration of 10s 

which is the threshold deposition time obtained from the model (Fig. 6-2). The model predicts 

the film thickness on the same order as the experiment and the accuracy is quite good (<3% 

error) at the higher temperature of 400 °C. The improved model accuracy at higher temperature 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

F
il

m
 T

h
ic

k
n

e
ss

 (
n

m
)

t(s)

100

150

200

250

300

350

250 300 350 400 450 500 550

F
il

m
 T

h
ic

k
n

e
ss

 (
n

m
)

Ts (ºC)



134 

 

is attributed to the heat loss in the experiment which impedes film growth. Some of the heat loss 

is compensated at the higher temperatures. These results are also consistent with Figs. 6-2 and 6-

3. Thus the proposed model has the potential to successfully predict the optimum processing 

parameters for the film synthesis. 

Table 6-3 - Predicted and measured thickness of ZnO films. 

Temperature 

Ts (° C) 

Concentration 

C (mol/lit) 

Time  

t (s) 

Measured  

Film Thickness (nm) 

Predicted  

Film Thickness (nm) 

350 0.1 10 112 169 

400 0.2 10 233 214 

6.4.2 Particle Size  

The previous Figs. 5-2 (a) through 5-2(d) in chapter 5 showed the SEM micrographs of single 

ZnO oxides processed at defined temperature and different concentrations. The result indicated 

that at low concentration (C= 0.1 mol/lit) (Fig. 5-2(a)), small spherical crystallites are formed 

that agglomerate at the surface in the shape of powder. The average particle size is 112 nm which 

is in the consensus of previous studies [7-9].  

The properties of particles change by increasing the concentration. The grain size increases with 

increase in the amount of precursor dissolved in solution in Fig. 5-2(c) as was also observed in 

previous studies [10-11]. The film is mostly homogenous with average nanoparticle size of about 

119 nm. The particles exhibit hexagonal flake morphology similar to a previous study [12]. Upon 

further increase in concentration (C= 0.3 mol/lit), the density and size of particles are increased 

to an average size of 233 nm. In this case, the crystals are plate-like and the sides of the walls are 



135 

 

grown packed together (Fig. 5-2(d)). A similar hexagonal wurtzie structure has also been 

observed at high concentration [13].  

The previous Figs. 5-6(a) and 5-6(b) show the SEM micrographs of ZnO+In2O3 mixed oxide thin 

films on Al2O3 substrate at T= 400° C composed  of 25% of ZnO mixed with 75% of In2O3 (Fig. 

5-6(a)), and 80% of ZnO mixed with 20% of In2O3 (Fig. 5-6(b)). At lower composition ratio of 

ZnO (Fig. 5-6(a)), the growth of particle side walls results in the formation of nano tubes [10, 

14]. By increasing the amount of zinc (Fig. 5-6(b)), crystallization is enhanced and a well-

structured thin film is synthesized. In this case, there is a better chance to produce ZnO crystals 

or rods [10]. This result confirms that the overall particle size is increased when the 

concentration of In2O3 is decreased. The observed trend may be attributed to the fact that indium 

ions limit the growth of ZnO particles on the surface. The grain size has been observed to 

decrease by increasing the indium doping [15]. This is attributed to the stresses applied by the 

mixture which limits the growth of grain size. 

The results show that addition of In2O3 component to ZnO results in the growth of particles over 

a wider size range as was also observed in a previous study [16]. Thus the particles are deposited 

with less homogeneity compared to the single oxide ZnO.  A comparison of Figs. 5-6(a) and 5-

6(b) also shows that the film is more homogenous when ZnO is the dominant precursor. At low 

concentration of ZnO, the structure of the mixed oxide is similar to that obtained for single oxide 

ZnO in Fig 5-2(d). However the average particle size obtained (~136 nm) is less than the single 

oxide. The value predicted from the mathematical model for the mixed oxide of Fig. 5-6(a) is 

209 nm which is lower than the corresponding value for ZnO deposition. This value is however 

still in the range of the measured particle size. The predicted particle size is 244 nm at the higher 
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concentration of ZnO (Fig. 5-6(b)). Table 6-4 summarizes the values of the average particle sizes 

obtained from modeling and experiments. The results show that the predicted particle size values 

are within 1 SD at high solution concentration while the predicted particle size values are within 

2 SD when the concentration of zinc precursor in solution is lower than 0.2 mol/lit. These results 

imply that the predictions from the mathematical model are more reliable at higher 

concentrations of precursor solutions, which correspond to enhanced crystallization and well-

structured thin films. The dependency of particle size on concentration is also expressed in Eq. 

(6-7) of mathematical model. At higher concentrations, the sufficient amount of precursors in 

solution promotes the chemical reaction and enhances the growth of particles from initial 

droplets. Therefore, the experimental result and mathematical model show better agreement on 

determination of final particle size. Similar statistical results indicate that the predicted values are 

within the standard deviation in the mixed metal oxide cases.  

Table 6-4 - Predicted and measured particle size for single and mixed oxides. 

Deposited Oxide 
Temperature  

Ts (° C) 

Concentration 

C (mol/lit) 

Measured 

Particle 

Size (nm) 

Standard 

Deviation 

SD (nm) 

Predicted 

Particle 

Size (nm) 

ZnO 400 0.1 112 66 189 

ZnO 400 0.2 119 70 234 

ZnO 400 0.3 233 89 265 

25wt.%ZnO+75wt.% In2O3 400 0.1 136 94 209 

80wt.%ZnO+20wt.% In2O3 400 0.1 201 123 244 

The agreement between the experimental measurements and modeling is generally acceptable 

and the results are on the same order of magnitude. The agreement is particularly good when the 
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deposited film is completely well-structured and the crystal shapes are fully formed as in cases 3 

and 5 for which the maximum error is less than 14% in case 3. 

6.5 Conclusion 

A comprehensive mathematical model has been developed to simulate film deposition by Spray 

Pyrolysis Technique (SPT). The mechanism underlying film growth by SPT was systematically 

investigated, enabling identification of important processes for development of a comprehensive 

model. Thus, the model was divided into four sub-models: Atomization, Evaporation, 

Decomposition and Growth based on the underlying physical and chemical mechanisms. The 

model developed is applicable to the growth of both single oxide (ZnO) and mixed oxide 

(ZnO+In2O3). The predicted results (particle size and film thickness) were validated by 

comparison with the experimental data obtained in previous chapter. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary of Chapters 

The research involves experimental and mathematical investigation of aerosol synthesis of 

mixed-oxide nanocomposite thin films for gas sensors. The chapters may be summarized in the 

following sections. 

7.1.1 Chapter 3: Modeling of Aerosol Spray 

The major findings of this chapter can be summarized thus: 

 High spray mass flow rate produces droplets with high proportion of solvent. 

 Increased swirl at the concentric annulus surrounding the central spray inlet enhances the 

radial spread and radial uniformity of droplet concentration, reduces the droplet size and 

generally increases the number of droplets over most of the spray. 

 The effect of swirl perpetuates far from the nozzle at high swirl numbers. 

The results of this study are used to optimize operating parameters for synthesis of thin film for 

sensor application. The parameters include nozzle diameter, mass flow rate, swirl rate, as well as 

the range of acceptable distance from nozzle to substrate for optimal film growth. The results are 

also applied for investigation of specific mixed-oxide precursor solution, detailed analysis of 

droplet deposition on substrate, droplet evaporation, chemical reaction and film growth. 
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7.1.2 Chapter 4: Modeling Evaporation and Chemical Reaction in a Multi-component Droplet 

The results of this chapter demonstrate that the deposition of oxides from precursor solutions 

using spray pyrolysis method can be modeled subject to certain assumptions. The results appear 

plausible and confirm that the extent of significant chemical reaction and oxide deposition does 

not cover the entire the droplet domain, but is rather limited to about 60% radial distance from 

the center.  In addition, the droplet morphology is transient and strongly dependent on the 

balance and interaction between the rate of water evaporation and chemical reaction. This 

interaction in turn is largely determined by the substrate temperature within the range of 

synthesis parameters investigated in the study.  The findings are quite significant as they have 

provided insight into the parameters required for control of both the composition and 

morphology of metal-oxide semiconductor films. Such information is critical to the synthesis of 

mixed-oxide films with microstructure tailored to meet specific characteristics including 

nanoparticle size and inter-particle spacing. Control of these characteristics is critical to 

achieving the desired sensor selectivity, sensitivity and response time. 

7.1.3 Chapter 5: Processing of Single and Mixed Metal-Oxide Thin Films 

The findings of the study on single oxide in this chapter can be summarized thus:  

 At low temperatures, small spherical crystallites of ZnO are formed which agglomerate at 

higher temperature.  

 The density and size of ZnO particles are increased by increasing the solution 

concentration for deposition at 400° C. The results show that both low temperature and 

high concentration will produce packed ZnO rods.  
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 SnO2 film with non-homogenous structure is synthesized at 400° C which reshapes to 

porous microstructure by increasing the temperature to 450° C. The composition of SnO2 

is however largely unaffected by temperature above 450° C. 

 It is necessary to increase the concentration of Sn precursor in order to form packed rod 

arrays. 

The study also has demonstrated the similarities and differences between the two metal oxides 

(ZnO and SnO2) considered thus:  

a. Non-homogenous film structures are observed at almost the same low temperatures, and 

crack-free films are formed by increasing the temperature in both cases.  

b. SnO2 requires a higher temperature and concentration than ZnO to produce continuous 

films. 

The findings of this chapter on the mixed metal oxides (ZnO+In2O3 and SnO2+In2O3) can be 

summarized in the following:  

 ZnO+In2O3 deposition exhibits increasing particle size with increasing precursor solution 

concentration and Zn composition. 

 Doping ZnO with indium oxide component results in a less homogenous particle size 

distribution. Thus indium ions limit the growth of ZnO particles in the mixture. 

 ZnO nano wires are grown at low concentration of Zn. By increasing this concentration, 

ZnO rods grow and tend to reshape to nano tubes with distinct side walls. 

 SnO2+In2O3 film with more homogenous structure is formed at 80% ratio of tin. The 

precursor solution does not have sufficient time to form a continuous film at high 

concentration of Sn. 
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The morphology of the ZnO+In2O3 composite films depends strongly on the composition of the 

film. It was shown that the film of composition 25 wt% ZnO+75 wt% In2O3 contains a large 

number of small crystal aggregates of arbitrary shape and therefore has a high density of contacts 

between the aggregates. It should be emphasized that only the films with good homogeneous 

structure demonstrated high sensory properties. In this range of aggregate composition the 

relationship between the particles of the catalytically active component (ZnO), that breaks 

hydrogen molecules, and In2O3 particles with a high concentration of conduction electrons, is 

close to optimal value. Therefore, due to both morphology and electronic structure of the films of 

this composition, the sensor response to hydrogen in air ambience is able to reach the maximal 

value. 

These findings could be significant in the choice of processing conditions for production of metal 

oxide films for next-generation highly selective and sensitive conductometric gas sensors with 

ultra-fast response. Such sensors are critical to the detection of hazardous environmental 

substances, and explosives. Specifically, the precise micro-structure of the sensor films 

determines the adsorption of analyzed gas on the semiconductor particles as well as interaction 

with the sensitive layer of the film. The results of this chapter have shown that this objective 

could be achieved through careful control of the substrate temperature and concentration of 

precursor solution. 

7.1.4 Chapter 6: Mathematical Modeling and Experimental Validation of Film Growth 

The predicted results from this chapter demonstrate the important roles that temperature, 

concentration and deposition duration play on film growth. This finding is in agreement with 
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previous studies. The model however extends beyond the experiment by indicating the threshold 

deposition duration at which the initial rapid film growth seizes and the film thickness stabilizes 

by diffusion.  

The model was validated with experimental results for both single oxide (ZnO) and mixed oxide 

(ZnO+In2O3) film growth. Both sets of results indicate that by increasing the concentration of 

precursors, particles grow faster and develop into large-sized crystals. At low concentration, the 

particles are smaller and the size distribution is less homogeneous. The results also indicate 

random orientation of crystallites and smaller particle sizes at low temperature.  

SEM micrographs of synthesized films were used to measure particle size distribution on film 

surface. The predicted and measured particle size and film thickness are on the same order of 

magnitude. The accuracy of the model significantly improves at high substrate temperatures for 

which the reaction rate is close to the stoichiometric condition. 

The mathematical model developed could potentially be applied in a variety of situations. For 

example, the results from the decomposition model can be used to determine the optimum 

condition to synthesize thin films with homogeneous particle size distribution. 

7.2 Recommendations for Future Studies 

It is recommended to investigate the following aspects for future studies: 
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7.2.1 Measurement of physical and dynamic properties of droplets in flight and on surface 

There are different physical and chemical phenomena involved to grow nano-size particles on a 

non-conductive substrate. These phenomena are occurring on a short period of time subsequently 

and simultaneously. An engineer approach should be applied to break this continuous process 

into scientifically meaningful stages. Each of these stages needs to be defined in a theoretical or 

practical way. These definitions are supported by governing equations and fundamental 

concepts. Therefore, developing a comprehensive model for the whole process is completely 

achievable in theory. However, because of the level of the complexity involved in the nature of 

this problem, these models should be developed either empirically or mathematically or as a 

combination of both.  The main stages of the models were already developed in this research: 

multi-component solution atomization; solution evaporation, multi-phase transport; chemical 

reaction between the precursors and the solvent, and film growth on the heated substrate. These 

models need to be verified for each case by conducting measurement techniques.  Considering 

the initial stages of the process, the following parameters can be measured: 

a) Temperature inside the droplet using laser induced methods. 

b) Size of the droplet while approaching to the heated surface. 

c) Velocity of droplet in flight.  

The obtained values will be used as the input parameters of the evaporation model. The data will 

also be analyzed to determine the evaporation rate at each stage. This rate can be considered as a 

variable parameter influenced by changing the temperature and concentration inside the droplet. 

The results will be implemented in models to achieve more accurate prediction of thin film 

growth rate.  
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7.2.2 Optimization and test of synthesized films for gas sensor applications 

There are three stages to improve the sensor properties of the deposited thin films: 

Stage 1: The mixed metal oxide films were synthesized at different experimental conditions. The 

surface morphology of the films was investigated by characterization techniques in order to find 

the influence of deposition parameters on the structural characteristics of the films. A thorough 

study on the morphology of the deposited film can be performed to determine the particle size 

and distribution for each case of metal oxide. A comprehensive solution will also require 

extending the range of temperature and concentration investigated as well as other synthesis 

conditions. These parameters play a key role in understanding the actual interaction between thin 

film material and surrounding gases.  

Stage 2: These nano-structured films deposited on a heated surface can potentially detect the 

presence and concentration of specific gases. Such a study would be followed by the design and 

testing of the sensor film on specific analytes. The measured response will be analyzed to 

determine the desired structure for each material. In order to achieve this goal, the electrical 

conductivity of the film will be tested by exposing it to specific gases. This test will be used to 

calibrate the film as a gas sensor. Sensitivity, selectivity and the response time for each film will 

be assumed as the optimization parameters. These parameters would be correlated to the particle 

size and distribution, as discussed in the previous stage.  

Stage 3: The results of these studies could also be useful in the determination of the optimum 

conditions required to produce the desired films to meet specific performance characteristics. A 

backward analysis will be done to find the optimum initial conditions. The conditions are simply 
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spray system working condition and the surface thermal conditions. By choosing limited number 

of parameters, this optimization will be repeatable for different combination of precursors in 

order to produce different metal oxide sensors. The next step will be developing an optimization 

model to show how setting experimental conditions can affect synthesizing the thin films. This 

optimization method will consider all main effective parameters in the process, such as the 

temperature of the surface, the concentration of the precursors in solution etc. 
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