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ABSTRACT

Semi-active vibration reduction techniques switch a piezoelectric transducer between an open

circuit and a shunt circuit in a way that reduces vibration. The steady-state vibration amplitude is

reduced by exploiting the change in stiffness between states, manipulating the converted electrical

energy, or both. Semi-active techniques typically require four switches per vibration cycle. Con-

trol laws such as state switching and synchronized switch damping require switches to occur at

every displacement extrema. Due to the complexity of analyzing a system with discrete switches,

these control laws were developed based on intuition. The few analyses that attempt to determine

an optimal switching law mathematically only evaluate the system at resonance. This thesis in-

vestigates the effects of switch timing on vibration reduction and the frequency dependence of the

optimal switch timing control law. Regardless of the switch timing, sensing uncertainties, noise,

and modeling errors can cause the switches to occur away from the designed moment. Thus, this

work also quantifies the expected degradation in vibration reduction performance due to variations

in the designed switch time. Experimental, numerical, and analytical solutions agree that the opti-

mal switch timing of these semi-active techniques depends on frequency. A closed-form solution

for the optimal switch timing is derived in terms of well-known, non-dimensional parameters.
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CHAPTER 1

INTRODUCTION

Adaptive structures utilize accessible system parameters to adjust the mechanical state in re-

sponse to its operating environment. Oftentimes, use of a “smart” material introduces this accessi-

ble parameter. These materials are typically characterized by their ability to convert energy from

one physical domain to another. For example, piezoelectric materials exhibit a coupling of energy

between the mechanical and electrical domains. Thus, integrating a piezoelectric transducer into

a structure admits altering the mechanical configuration by adjusting electrical parameters. One

particular application of adaptive structures is to reduce structural vibration. Piezoelectric-based

vibration reduction techniques exploit the inherent electromechanical coupling in piezoelectric

materials to remove or alter mechanical energy and reduce displacement and strain.

1.1 Piezoelectricity

Pierre and Jacques Curie discovered the direct piezoelectric effect in 1880 by detecting the gen-

eration of electric charge induced by the application of pressure to certain ceramics [1]. Shortly

thereafter, the indirect piezoelectric effect, whereby a mechanical displacement is generated by the

application of voltage, was predicted by Lippman and verified by the Curie brothers. In actuality,
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the coupled piezoelectric properties link two mechanical states (stress T and strain S) with two

electrical states (charge displacement D and electric field E). Thus, the constitutive equations can

be written for any combination of mechanical and electrical states in terms of the two remaining

states. For example, the constitutive equations in stress-charge form are given by [2]:
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cE −et

e εS
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E















(1.1)

The coefficients cE , εS, and e refer to the elastic modulus matrix for a constant electric field, the

dielectric permittivity matrix at a constant strain, and the piezoelectric coefficient matrix, respec-

tively. The piezoelectric coefficient matrix links the mechanical and electrical equations.

P
o
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Indirect Effect Direct Effect 

Figure 1.1: Visualization of electromechanical coupling in piezoelectric material: mechanical de-

formation induces voltage (direct effect) or applied electric field induces deformation (indirect

effect).
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While equation 1.1 provides the basis for the coupled electrical and mechanical properties of

piezoelectric materials, it is often more useful to represent the coupling of the system with the

electromechanical coupling coefficient k2 [3]:

k2 =
converted energy

imposed work
=

ω2
oc −ω2

sc

ω2
oc

(1.2)

Here, ωoc and ωsc refer to the natural frequency of the structure when the piezoelectric transducer

is in open-circuit and short-circuit conditions, respectively. This coupling coefficient provides a

measurement of the proportion of energy that is coupled between the mechanical and electrical

domains when a piezoelectric transducer is integrated into a structure. Typical coupling values in

built structures range from 0.5% to 10% [4].

This coupling coefficient also indicates an important fact for piezoelectric adaptive structures:

the effective stiffness of the structure depends on the electrical boundary conditions of the material.

Specifically, the structure is stiffer in open circuit than short circuit. Furthermore, varying the shunt

impedance leads to different effective stiffness values for the structure. This change in stiffness can

be exploited in the design of adaptive structures, including the development of vibration reduction

techniques [5, 6].

1.2 Piezoelectric-Based Vibration Reduction

Vibration reduction techniques that exploit the piezoelectric effect can be classified into three cat-

egories: passive, active, and semi-active. Passive techniques connect the electrodes of the piezo-
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electric transducer to a shunt circuit that contains only passive circuit elements. This shunt circuit

dissipates converted mechanical energy or otherwise alters the system in a way that reduces vi-

bration. In the simplest case, the shunt circuit contains only a resistor that is tuned to match the

impedance of the structural motion, providing additional damping that is analogous to viscoelastic

damping [7]. Greater vibration reduction is achieved with the use of an inductive shunt, where the

circuit contains an inductor that is tuned to the resonance of the structure. A properly tuned in-

ductive shunt can greatly reduce vibration at a particular frequency [7]. Another passive technique

utilizes diodes that effectively switch the piezoelectric material between open- and short-circuit

states when the voltage reaches the opening threshold of the diodes [8]. However, this threshold

voltage must be tuned to the vibration level.

A major drawback to these passive techniques is their sensitivity to tuning of circuit parame-

ters. Since the circuit elements must be precisely tuned to the vibration of the structure, unknown

or changing mechanical parameters greatly decrease the performance of passive shunts. Actively

tuning circuit elements improves robustness to changing parameters at the cost of the system re-

quiring a power source [9]. In addition, the inductance required for low-frequency modes can be

very large, resulting in very large inductors or the need for synthetic inductors, which require a

power source [10]. Furthermore, a single tuned inductor only reduces vibration for the targeted

frequency. Researchers have attempted to design circuitry to target multiple frequencies, but these

methods require an additional branch of circuitry per frequency [10–12]. Thus, multiple-mode

damping is possible, but leads to complicated and bulky circuitry, which is not acceptable for

many applications.
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Active techniques apply current to the piezoelectric transducer to oppose motion and reduce

vibration. There are many active implementations that apply a variety of control theory methods,

such as classical feedback control or optimal control [13, 14]. Active techniques exhibit excel-

lent vibration reduction performance as well as robustness to unknown and changing parameters.

However, their need for a power source makes active techniques not suitable for many applications.

Semi-active techniques provide a compromise between active and passive approaches, offer-

ing good vibration reduction performance while adding robustness to parameter uncertainty. Their

advantage over active techniques is a significant reduction in power requirements. In fact, typical

semi-active techniques only need enough power to throw a switch. Since electrical energy is al-

ready present from the vibration of the piezoelectric transducer, it is even possible to power the

switch without an external power source (discussed in much greater detail in section 2.3) [15, 16].

Thus, semi-active techniques provide an alternative solution to vibration reduction when passive

and active techniques do not meet the needs of the system. These semi-active techniques are par-

ticularly useful in the aerospace industry, where size and power requirements are critical [6, 17].

While passive techniques require tight tuning of circuit elements in the frequency domain,

semi-active techniques require tight tuning of switching in the time domain; typically four switch-

ing events per vibration cycle. Therefore, the performance of these techniques is sensitive to the

timing of these switches. Current approaches for determining the optimal switch timing focus on

maximizing the piezoelectric voltage or energy dissipation, and only evaluate the optimal switch

exactly at resonance [18,19]. However, this investigation will show that the optimal switch timing

5



for displacement reduction depends on frequency. Thus, the classical switch timing laws are only

optimal when the excitation is exactly at resonance.

Even with the optimal switch timing known, there is still no guarantee that the physical imple-

mentation will execute the switches at the desired time. Sensing uncertainties and modeling errors

may cause the switches to deviate from the designed moment. Thus, it is important to know the

level of degradation in vibration reduction performance that should be expected when switching

away from the optimal switch time.

1.3 Thesis Structure

The next section provides a background and discussion of the semi-active techniques that will be

investigated in this study. The operating principles and relative performance of state switching and

synchronized switch damping techniques are described. Then, several autonomous, self-powered

implementations are discussed, along with motivation for the determination of an optimal switch

time and performance degradation away from the optimal switch.

Chapter 3 presents a single vibration mode model typically used to characterize piezoelectric-

based vibration reduction techniques. Then the equations are manipulated into a single, non-

dimensional equation of motion suitable for numerical simulations. Next, key assumptions are

used to derive an analytical solution for structural displacement based on the switch timing for the

synchronized switching techniques. Furthermore, a closed-form solution for the optimal switch

time is derived based on global, non-dimensional parameters.

6



Following the model development, Chapter 4 presents the experimental, numerical, and ana-

lytical results for optimal switch timing. All three methods show good agreement, validating the

analytical solution. Then, the analytical solution is used to evaluate the optimal switch as a function

of frequency based on the free parameters of the system. Also, the degradation in displacement re-

duction performance is characterized when switching away from the optimal switch time. Finally,

the last section will summarize the effect of the forcing frequency on the optimal switch timing.
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CHAPTER 2

SEMI-ACTIVE VIBRATION REDUCTION TECHNIQUES

Semi-active vibration reduction techniques switch a piezoelectric transducer between open cir-

cuit and a shunt circuit at strategic times to reduce vibration. Figure 2.1 illustrates the shunt

circuits for state switching, SSDS, and SSDI. Switching electrical boundary conditions enables

the manipulation of effective stiffness, electrical state, or both with a very low power requirement.

Furthermore, semi-active techniques that use only passive circuit elements are guaranteed to be sta-

ble because no energy is added to the system [20]. These techniques are more robust to unknown

system parameters than passive methods because the circuit elements of semi-active techniques do

not need to be tuned to the frequencies of the structure.

2.1 State Switching

State switching was the first concept to use piezoelectric material in a semi-active control scheme

for vibration reduction. This technique exploits the change in stiffness between open- and short-

circuit conditions to reduce the vibrational energy in the system [5]. The structure is left in the

high stiffness state (open circuit) while moving away from equilibrium, as a stiffer structure will

have less deformation than a more compliant structure. Then at peak displacement, the structure

8



is switched to the lower stiffness state (short circuit). Since the electrical switch is much faster

than the mechanical oscillation, it is assumed that there is no change in displacement during the

switch. Thus, the switch causes a decrease in elastic potential energy since the structure is at a

lower stiffness state. The structure stays in the short-circuit state for the next quarter-cycle until it

reaches the equilibrium position, where it switches back to an open circuit, allowing the process

to repeat. Figure 2.2 shows a typical displacement waveform and the associated voltage waveform

state switching generates.

State switching has similar performance as tuned resistive shunts, and offers a more robust

and low-power alternative to passive shunt damping [5]. Precise tuning of circuit elements is not

necessary, as the state switching shunt is simply a low resistance circuit to maximize the change

in stiffness between states. In addition, state switching has been shown to have good performance

away from resonance [5].

Piezo 
State Switching 

SSDS SSDI Switch 

Figure 2.1: Shunt circuits for state switching, SSDS, and SSDI

9



time

0 0.5 1 1.5 2 2.5 3

d
is

p
la

ce
m

en
t 

o
r 

v
o
lt

a
g
e

-4

-3

-2

-1

0

1

2

3

4

displacement

State Switching

SSDS

SSDI

Figure 2.2: Voltage waveforms for state switching, SSDS, and SSDI

2.2 Synchronized Switch Damping

Researchers improved the state switching technique with a switching law known as synchronized

switch damping (SSD), sometimes referred to as pulse switching. This class of techniques leaves

the piezoelectric transducer in an open circuit for the majority of the vibration cycle, and only

switches to the shunt circuit very briefly to perform a quick processing of the voltage before switch-

ing back to an open circuit. Similar to state switching, this switch to the shunt circuit occurs at

peak displacement, and the voltage is either shorted on a low resistance circuit (SSDS), inverted
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by an inductive circuit (SSDI), or otherwise altered with active circuitry. This processing results in

a much larger voltage amplitude compared to state switching.

2.2.1 SSDS

The synchronized switching technique started with SSDS [21]. In SSDS, the piezoelectric voltage

is shorted at every displacement peak, creating a phase shift between the voltage and displace-

ment. This phase shift ensures that the electrically-dependent piezoelectric forcing on the structure

always opposes the velocity, resulting in a reduction in vibration. In addition, the magnitude of

the voltage is greater than state switching since the transducer is kept in the open-circuit state for

the majority of the vibration cycle. Figure 2.2 illustrates the relative voltage magnitude of SSDS

compared to state switching.

Note that there is some ambiguity in the literature as to whether the shunt circuit for SSDS is a

resistive or purely short circuit. Some might say that “SSDS” should refer to switching to a short

circuit, and “SSDR” should refer to a resistive circuit. Others might refer to synchronized switch

damping on a short circuit as simply “SSD”. In any case, perhaps the greatest benefit to using

semi-active techniques is their lack of a need to tune circuit elements. At the heart of the SSDS

technique is the shorting of the voltage to zero, regardless of the circuit resistance. Therefore, this

work treats switching to a short circuit or a resistive circuit as the same technique, termed “SSDS”.

The general class of synchronized switch damping is labeled “SSD”.
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2.2.2 SSDI

Richard et al. significantly improved the synchronized switching concept by adding an inductor to

the shunt circuit [22]. Now the piezoelectric voltage is inverted by the inductive circuit (with some

loss factor) at every displacement extrema. At each switching event, the transducer is switched

to the inductive shunt for half of its resonant period, then switched back to an open circuit. The

implementation of SSDI specifies that the electrical resonant period must be much smaller than

the period of structural vibration. This requirement ensures that the voltage inversion occurs with

essentially no change in displacement, and the transducer can quickly switch back to open circuit

to allow greater voltage before subsequent switches. Furthermore, this requirement for a very small

electrical resonant period results in small inductors compared to passive inductive shunts, which

eases implementation for low-frequency vibrations. Altogether, SSDI acts in the same manner as

SSDS, only with a much larger voltage magnitude, as shown in Figure 2.2. In fact, SSDS can be

viewed as the case of SSDI where the inversion factor goes to zero.

2.2.3 Active Improvements

More recent research further improved SSD by adding active circuit elements to the shunt circuit.

For example, synchronized switch damping on a voltage source (SSDV) is essentially equivalent

to SSDI, but the effective inversion factor of the circuit is improved by the voltage source. Thus,

the circuit results in a larger voltage magnitude and better vibration reduction [23, 24]. Another
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extension of these techniques is synchronized switch damping on a negative capacitance [25]. In

this technique, the shunt contains an op-amp with appropriate resistors to create the effect of a

negative capacitance, which artificially increases the piezoelectric voltage. While these techniques

have better vibration reduction performance, they also require powered circuitry. One of the great-

est advantages of semi-active techniques is their extremely low power requirements, which lends

them to self-powered implementation. Thus, active improvements are often not as suitable for

implementation as those that switch between passive shunt circuits.

2.3 Self-Powered Implementations

The low power requirements of switch-based semi-active techniques enable the development of

self-powered, autonomous vibration reduction systems. Several researchers have developed self-

powered implementations for SSDI since it provides the greatest vibration reduction among the

semi-active techniques that employ only passive circuit elements. One such implementation by

Niederberger and Morari uses two collocated piezoelectric patches, with one as a sensor and the

other as an actuator in the control scheme [15]. First, they used a receeding horizon optimal

control approach to derive the SSDI control law. This control law mandates that the switch occur

one-quarter of the electrical resonant period before peak strain. Thus, the voltage inversion is

centered about the peak strain. As the electrical resonant period goes to zero, their optimal switch

time goes to exactly peak strain, which is the classical switch time for SSDI. To implement this

control law, the sensor voltage is processed by a low-pass filter such that the voltage will turn on

13



the field-effect transistors just before the next strain extremum, enabling current to flow through

the inductor. Thus, the processing of the voltage must predict the next switch moment, meaning

the switch may occur away from the designed moment. Once the switch is activated, the voltage

on the actuator is inverted by the inductor and the switch is deactivated by a diode when the current

changes sign. The circuit contains two branches; one for each direction of current flow. Figure 2.3

presents the circuit diagram for this implementation.

Lallart et al. developed a self-powered implementation of SSDI that uses a single piezoelectric

patch as the sensor and actuator [16]. Similar to Niederberger and Morari’s circuit, this circuit

contains two branches. Each branch generates a low time constant voltage envelope of the piezo-

electric patch voltage for either positive or negative voltage values. This voltage envelope forms a

signal that slightly lags the actual voltage. When the magnitude of the voltage envelope is greater

than the voltage, an extrema has been reached and the switch is activated. This circuit also con-

tains a voltage envelope with a large time constant that is used to ensure the technique only targets

the most active vibration modes under multiple-mode excitation. This method of peak detection

causes the switch to occur slightly after peak strain, as the voltage must be on its way back to zero

when the voltage envelope surpasses it. Figure 2.4 shows a block diagram representation of this

circuit.

Other researchers have proposed methods to improve the performance of these analog imple-

mentations. Ji et al. sought to address the extra switching that can occur when using a piezoelectric

patch to sense displacement extrema [26]. They showed that switching events generate noise in

the sensor, which can trigger undesired switching. Disabling the switch for a period of time after a
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switching event eliminates these noise-induced switches. Delpero et al. sought to improve Nieder-

berger’s shunt at low vibration amplitudes [27]. They added a diode bridge to harvest energy from

the sensor, which is used to power a comparator. This comparator converts the control signal from

a sinusoid to a square wave, which results in a more efficient activation of the switch. The im-

provement in switch efficiency improves the quality factor of the voltage inversion, especially at

low vibration levels, where the sinusoidal control signal causes high electrical losses.

Since control logic is limited by analog processing, Makihara et al. designed a digital imple-

mentation of SSDI [28]. In that case, the piezoelectric element powered a digital processor via

a diode bridge. The processor allows the implementation of more complex switching laws that

may improve peak sensing and better address multiple-mode excitation. However, the voltage am-

plitude is reduced due to the current draw of the processor. Also, the circuit cannot operate at

low vibration levels as there will not be enough harvested energy to power the processor, although

vibration reduction may no longer be necessary at these lower vibration levels.

Figure 2.3: Niederberger and Morari’s self-powered circuit (from [15])
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Figure 2.4: Block diagram of self-powered circuit designed by Lallart et al. (from [16])

2.4 Motivation for Knowledge of Off-Design Performance

None of these self-powered implementations can guarantee that the switch will occur at the de-

sired moment. Analog processing of a piezoelectric voltage for the detection of displacement

peaks is inherently susceptible to uncertainties caused by imperfect circuit components, influence

from modes other than the mode of interest, and electrical noise. Niederberger and Morari’s circuit

applies a phase lag to a sensor piezoelectric voltage to predict the next peak, meaning any variation

in excitation frequency will result in a switch that does not occur at the intended time [15]. In

addition, any influence in the voltage signal from other modes will affect the switch timing. Lal-

lart’s circuit is able to target only the most active vibration mode, but the peak detection method

causes the switch to always occur slightly after the peak displacement [16]. Some improvements

have helped to mitigate the uncertainties associated with these analog circuits, but they are not all-

encompassing solutions. Digital implementations offer much greater sensing capabilities, but their

power consumption reduces their vibration reduction potential, and peak sensing accuracy is still

subject to modeling errors. Kauffman and Lesieutre designed a semi-active control law that avoids

peak sensing issues altogether, but their technique is only applicable for swept excitation [6, 29].
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With all of these sensing uncertainties, it is important to know the level of performance degrada-

tion that occurs when the switching events occur away from the designed moment. Knowledge

of the worst expected performance is useful in the design of structures where size and mass are

important, such as aerospace applications.

2.5 Free Parameter Optimization

These switch-based control laws were all derived based on heuristics. State switching was designed

to manipulate stiffness in a way that, based on logic, would reduce potential energy. Synchronized

switching was developed as a way to increase energy conversion to the electrical domain (greater

voltage amplitude) and cause the piezoelectric force on the system to always oppose velocity. Ini-

tially, there was no mathematical proof that the designed switching sequence was truly optimal,

and analysis of the optimal switch timing is not straightforward since the discrete switching makes

the system nonlinear. Due to the vibration reduction performance of synchronized switch damping,

there has been significant effort towards characterizing the parameters that affect the performance

of these techniques. For SSDI, these parameters include the electromechanical coupling coeffi-

cient, viscous damping, shunt resistance and inductance, and switch timing.

Typically, the viscous damping of the structure is a given part of the vibration control problem,

and the inherently low viscous damping of many structures is the motivation behind implementing

semi-active control. It has been widely reported that a higher electromechanical coupling coeffi-

cient results in better performance for piezoelectric-based vibration reduction techniques, which
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makes sense since there is more energy being converted to the electrical domain [30]. Thus, the first

step in the design of a structure utilizing semi-active control is to maximize the coupling coefficient

within the constraints of the system. The optimization of piezoelectric transducer placement and

geometry to maximize electromechanical coupling has been investigated in the literature [4,31,32].

2.5.1 Optimization of Circuit Elements

With the damping and coupling fixed once the structure is assembled, the remaining parameters

relate to the quality of the shunt circuit and control law. An electrical resonance that is much faster

than the mechanical oscillation is a central factor in SSDI. However, Neubauer and Wallaschek

showed that there is relatively little effect on the voltage magnitude for moderate electrical to me-

chanical frequency ratios [19]. In fact, it may be beneficial to have a slower inversion to reduce

the higher harmonics that are excited by fast inversions [33, 34]. Ducarne et al. determined that

there is an optimal electrical damping factor (which primarily depends on the circuit resistance)

that results in the greatest total damping for free decay and lowest displacement for forced vibra-

tions [30]. This optimal electrical damping depends on the electromechanical coupling coefficient

and, for free vibration, the viscous damping. They also showed that a beating phenomena occurs

when the electrical damping is below the optimal value. Thus, it is necessary to have a shunt

resistance that is greater than the optimal value. However, Ducarne et al. assumed the electrical

resonance is much faster than the motion frequency, meaning their analysis cannot determine an

optimal inductance. In summary, a fast inversion produces a greater voltage magnitude and po-

18



tentially better vibration reduction, but at the expense of exciting higher harmonics. Also, higher

electrical damping reduces the inversion factor, but a minimum circuit resistance must be met to

avoid undesirable beating effects. Overall, there are trade-offs in the optimization of circuit ele-

ments that must be considered for the specific application.

2.5.2 Optimization of Switch Timing

Now the only free parameter that affects the vibration reduction performance is the switch timing.

Niederberger was the first to seek an optimal switching law for SSDI [18]. He used a receeding

horizon optimal control approach to show vibration reduction improves when switches to the shunt

circuit occur one-quarter of the electrical resonant period before each displacement extrema. Then

the switch back to open circuit should occur one-quarter of the electrical resonant period after each

displacement extrema. Thus, the piezoelectric transducer is connected to the shunt for one-half of

the RLC resonant period, which is equivalent to the heuristically derived method as it maximizes

the voltage inversion [35]. The new contribution of this optimal switch was that the switch occurs

slightly before peak displacement, rather than exactly at peak displacement. The effect of switching

in this manner is that the inversion process will be centered about the displacement peak. For a

perfect inversion, the voltage will cross zero at the same moment as the velocity. Thus, the sign

of the voltage will always be opposite that of the velocity, resulting in a piezoelectric force that

always opposes velocity. This strategy of manipulating the voltage to oppose velocity is at the

heart of the heuristic derivation of the classical switch timing at peak displacement, where the
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switch was thought to occur instantaneously. Therefore, Niederberger’s optimal control law can be

thought of as an extension of the classical switch timing method for SSDI when considering that

the voltage inversion occurs over a finite period of time. Figure 2.5 shows a detailed plot of the

voltage inversion for SSDI using this switch timing method.

Neubauer and Wallaschek sought to optimize the switch timing for the synchronized switch

damping techniques by maximizing the piezoelectric voltage amplitude [19]. Their analysis veri-

fied Niederberger’s switching law as the optimal switch timing for maximizing voltage. For switch-

ing back to open circuit, all signs point towards the closed time of the switch being equal to half

the electrical resonant period, maximizing the voltage inversion before current starts flowing in the

opposite direction. For the analysis in this work, this closed period of the switch is considered to

be a defining characteristic of these techniques. Thus, variation of the switch closed period implies

a fundamentally different control law, and is left for future study.

Up to this point, all research has indicated that the switch to the shunt circuit should occur

nominally at peak displacement. However, no analysis of the optimal switch timing has looked

at the influence of forcing frequency on the optimal switch for displacement reduction. Nieder-

berger’s switching law was derived based on free decay of a single mode, which is essentially

equivalent to resonance excitation since the decay occurs at the natural frequency [18]. Neubauer

and Wallaschek’s verification of Niederberger’s switching law maximized voltage rather than di-

rectly seeking to minimize displacement [19]. This thesis will show that the optimal switch timing

for state switching and the synchronized switch damping techniques depends on the excitation
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frequency relative to the resonance frequency of the system. Thus, switching nominally at peak

displacement is only optimal for excitation exactly at resonance.
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Figure 2.5: Detailed plot of voltage inversion with Niederberger’s optimal switch time
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CHAPTER 3

MODEL DEVELOPMENT & ANALYTICAL SOLUTION

Piezoelectric vibration reduction is often modeled with a lumped model containing two

degrees-of-freedom: displacement u and voltage V [36], as shown in Figure 3.1. This model is

valid for excitation near a single, well-separated vibration mode. The coupled equations of motion

of the lumped model are given as:

Mü+Cu̇+KEu = F −αV (3.1)

Ip = α u̇−CoV̇ (3.2)

Here, M, C, KE , and F are the lumped mass, damping, equivalent mechanical stiffness, and forcing,

respectively. The electrical terms are the piezoelectric current Ip, piezoelectric blocked capacitance

Co, and the piezoelectric force factor α . The electromechanical coupling of the system is evident

by the αV term that appears in the mechanical equation of motion. This term indicates that there

is a forcing term that is proportional to the voltage. Thus, processing the voltage in the right way

can lead to a force that will oppose motion and reduce the peak displacement of the mass.
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Figure 3.1: Lumped system model for piezoelectric-based vibration reduction

3.1 Switch Timing Procedure

A switch timing parameter must be defined to analyze the effect of switch timing on semi-active

vibration reduction techniques. This work employs a switch timing parameter τd referred to as

the switch delay. This switch delay represents the time shift of the switch relative to the classical

switch time (at peak displacement), normalized by the period of the forcing. Thus, τd = 0 refers to

the classical switch, positive τd refers to switching after peak displacement, and negative τd refers

to switching before peak displacement. By keeping the switch frequency the same as the response
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frequency, the periodicity of the system results in all possible switch delays being covered in the

range −0.25 < τd ≤ 0.25. In fact, for synchronized switch damping, τd = ±0.25 is equivalent to

leaving the transducer permanently in open circuit, as the voltage processing will occur at zero

displacement, where the voltage is zero. Furthermore, the switch for SSD is assumed to occur

instantaneously, so the system is immediately switched back to open circuit without any change in

displacement. Figure 3.2 provides a visualization of the switch timing for several values of τd .

The goal of this switch timing investigation is to determine at what moment in the vibration

cycle the switch should occur to minimize displacement. This study will not seek to optimize how

long the piezoelectric transducer should be connected to the shunt circuit. For SSD, the idea of

a quick processing of the voltage and immediately switching back to open circuit is maintained.

Meanwhile, state switching is based on the concept of switching the electrical state for a quarter

cycle at a time, so this period of time in each state will not be altered. If the state period for state

switching was allowed to be altered, it is likely that the optimal switch time would converge to-

wards SSDS [18]. Since the timing of the switches are essentially centered about a nominal switch

time (peak displacement), it is assumed that the frequency-dependent optimal switch times in this

work represent a shift in the nominal switch time. Thus, the switches will be treated as instanta-

neous compared to the motion of the structure. This assumption will allow for a simplified model

and the formulation of an analytical solution for the synchronized switch damping techniques. It

is hypothesized that the optimal nominal switch time determined in this study can be extended to

real systems by centering the voltage inversion about the optimal switch time.
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Figure 3.2: Examples of several switch timing values τd

3.2 Non-Dimensionalization

It is desirable to derive a non-dimensional form of the coupled equations (3.1) and (3.2) to deter-

mine vibration reduction performance based on global, easily obtained parameters. First, normal-

ize time by the open-circuit natural frequency:

τ ≡

√

KE + α2

Co

M
t = ωoct (3.3)
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The true time derivative is related to the non-dimensional time derivative:

d

dt
=

dτ

dt

d

dτ
= ωoc

d

dτ
(3.4)

d2

dt2
=

d2τ

dt2

d2

dτ2
= ω2

oc

d2

dτ2
(3.5)

Write the original equations of motion in terms of τ , with ( )′ representing the non-dimensional

time derivative and ζ being the modal damping ratio:

u′′+2ζ u′+
KE

KE + α2

Co

u =
1

KE + α2

Co

(F −αV ) (3.6)

Ip = ωoc(αu′−CoV ′) (3.7)

The stiffness term in the mechanical equation of motion is the non-dimensional short-circuit stiff-

ness and is related to the electromechanical coupling coefficient:

KE

KE + α2

Co

= 1− k2 (3.8)

Next, assume the forcing on the structure is harmonic with frequency close to a single resonance

such that only one mode is excited:

F = fo sinωot = fo sin
ωo

ωoc
τ (3.9)

Define a non-dimensional frequency ω as the ratio of the forcing frequency and the open-circuit

natural frequency:

ω ≡
ωo

ωoc
(3.10)

Now normalize the displacement by its open-circuit static value:

x ≡
KE + α2

Co

fo

u (3.11)
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Substitute x and ωo into the equations of motion:

x′′+2ζ x′+(1− k2)x = sinωτ −
αV

fo

(3.12)

Ip = ωoc

(

α fo

KE + α2

Co

x′−CoV ′

)

(3.13)

Set V to zero to obtain the non-dimensional mechanical equation of motion for short-circuit elec-

trical boundary conditions:

x′′+2ζ x′+(1− k2)x = sinωτ (3.14)

Carrying on to determine the open-circuit equation of motion, normalize the voltage by its static

open-circuit (zero current) value:

v ≡
Co

α

KE + α2

Co

fo

V (3.15)

Now the electrical equation of motion becomes:

Ip =
foCoωock2

α
(x′− v′) (3.16)

There is no current flow when the system is in open circuit, so the electrical equation of motion

reduces to:

v′ = x′ (3.17)

Integrating this equation yields:

v = x+ c (3.18)

The integration constant c is related to the charge on the transducer at the moment when the system

is switched to an open circuit. This constant can be represented in terms of the the displacement
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xo and the voltage vo at the moment the switch is opened:

v = x− xo + vo (3.19)

The instantaneous switch assumption simplifies the determination of xo and vo. The initial dis-

placement when the switch is opened is simply equal to the displacement just before the switch.

The initial voltage when the switch is opened is related to how each technique processes the volt-

age. For state switching and SSDS, this initial voltage is zero. For SSDI, the voltage is inverted

with some inversion factor γ . Thus, vo is related to the voltage just before the switch vb by the

expression:

vo =−γvb (3.20)

Now, substitution of the simplified voltage expression into the mechanical equation of motion gives

the open-circuit mechanical equation of motion:

x′′+2ζ x′+ x = sinωτ + k2xo − k2vo (3.21)

These non-dimensional equations of motion clearly show that the response of these techniques

depends only on the electromechanical coupling (k2), viscous damping (ζ ), circuit quality (γ),

and switch timing (xo and vo). These non-dimensional equations of motion will be simulated to

quantify the effects of switch timing on state switching, SSDS, and SSDI. They will also be the

starting point in the derivation of an optimal value of τd for SSDS and SSDI.
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Figure 3.3: The piecewise constant forcing terms have a constant magnitude at steady state
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3.3 Analytical Solution

The first step in deriving an analytical solution for SSDS and SSDI is to convert the piecewise

constant forcing terms of equation 3.21 to a continuous form. Figures 3.3 and 3.4 illustrate the
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periodicity of the system at steady state. The magnitudes of xo and vo remain constant, resulting

in a square wave with frequency equal to the forcing frequency ω . This square wave has a phase

offset ϕs from the forcing that depends on the switch timing:

k2xo − k2vo =VMsquare(ωτ +ϕs) (3.22)

The magnitude of this square wave is equal to the magnitude of the sum of the constant forcing

terms:

VM = |k2xo − k2vo| (3.23)

Considering the periodicity of the system (illustrated in Figure 3.3), xo is related to vo via vb using

equations 3.19 and 3.20:

vb = (+|xo|)− (−|xo|)+(−γ(−|vb|)) =
2

1− γ
xo (3.24)

vo =−γvb =−
2γ

1− γ
xo (3.25)

Substitute this expression for vo into equation 3.23:

VM =

(

1+ γ

1− γ

)

k2|xo| (3.26)

Recall that γ = 0 refers to SSDS while SSDI allows γ in the open range of 0 to 1. The square wave

forcing that is generated by the synchronized switch damping techniques can be represented as a

summation of sinusoids by using Fourier series:

VMsquare(ωτ +ϕs) =
4

π
VM

∞

∑
n=1,3,5,...

1

n
sin(nωτ +ϕs) (3.27)

Thus, the square wave forcing contains frequency content at the external forcing frequency and

odd harmonics of that frequency. These odd harmonics will have a negligible influence on the
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displacement of the assumed single degree of freedom system with the assumption of excitation

near resonance. For extension to multiple degree of freedom systems, higher order modes that

coincide with odd harmonics of the forcing frequency can be excited by SSDS and SSDI. However,

the response will likely still be dominated by the forcing frequency since higher frequencies have

inherently lower displacement magnitudes. Also, the excitation of odd harmonics could be reduced

by increasing the inversion time of the circuit. Altogether, it is assumed here that only the first term

of the series has a significant contribution to the displacement, which enables the derivation of an

analytical solution. With this approximation, the equation of motion becomes:

x′′+2ζ x′+ x = sinωτ +
4

π
VM sin(ωτ +ϕs) (3.28)

Now the solution is obtained by a superposition of the contributions of the two harmonic forcing

terms. First, write the contribution of the external forcing to the displacement:

x1(τ) = Xoc sin(ωτ +ϕ) (3.29)

Here, the magnitude Xoc and phase ϕ are found using modal analysis, and they are a function of

known parameters:

Xoc =
1

√

(1−ω2)2 +(2ζ ω)2
(3.30)

ϕ = tan−1

(

−2ζ ω

1−ω2

)

(3.31)

The next step is to solve for the contribution of the second forcing term (x2). Since the second term

has the same frequency as the first, x2 is related to the modal solution of x1:

x2(τ) =
4

π
VMXoc sin(ωτ +ϕ +ϕs) (3.32)
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The total solution of the system is the summation of x1 and x2, resulting in a sinusoid with magni-

tude |X | and phase 6 X :

x(τ) = x1(τ)+ x2(τ) = |X |sin(ωτ + 6 X) (3.33)

Keeping in mind that the goal of this analysis is to capture the effect of the switch timing on the

displacement, the magnitude of the switch-induced forcing term must be written in terms of the

switch delay parameter τd . The unknown voltage magnitude VM is a function of known parameters

and |xo|. To determine the effects of switch timing, |xo| is written in terms of the total response

magnitude |X | and τd . When τd = 0, the position at the moment of the switch will be the peak

displacement, so |xo| = |X |. When τd = ±0.25, the switch occurs when the structure is at zero

displacement, or xo = 0. Over the range of τd , |xo| will vary in the same way that the displacement

varies over half a vibration cycle:

|xo|= |X |cos(2πτd) (3.34)

To simplify algebra, define the parameter Qc, which represents the quality of the coupling and

shunt circuit. In addition, define the parameter Q to represent the portion of the voltage magnitude

that depends on the quality of the circuit and the switch timing:

Q ≡ Qc cos(2πτd) =
4

π

(

1+ γ

1− γ

)

k2 cos(2πτd) (3.35)

Now express VM as a function of |X | and Q, which is a function of τd:

VM =
π

4
Q|X | (3.36)

To complete the process of writing the switch-induced forcing in terms of τd , the switch phase ϕs

needs to be derived as a function of τd . Since the switch is determined relative to the displacement,
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ϕs must be related to the total phase of the solution 6 X :

ϕs =−(
π

2
+2πτd)+ 6 X (3.37)

In this formulation of ϕs, the first term ensures that τd = 0 refers to switching at peak displacement.

The first two terms ensure the desired phase covers the range from 0 to π . The final term ensures

that the timing is based on displacement instead of forcing. To simplify the analysis, define β as a

function of τd:

β =−(
π

2
+2πτd) (3.38)

Now the second forcing term is defined as a function of known parameters, the switch delay τd ,

and the magnitude |X | and phase 6 X of the final solution. Rewrite equation (3.32) in terms of these

parameters:

x2(τ) = |X |QXoc sin(ωτ +ϕ +β + 6 X) (3.39)

The rest of the analysis is greatly simplified by removing ϕ from the phases of x1 and x2, and

defining the resulting functions as x̃1 and x̃2. This step has no influence on the total magnitude, and

ϕ can be added back into the phase at the end to obtain the true solution:

x̃(τ) = x(τ −
ϕ

ω
) (3.40)

|X |= |x1 + x2|= |x̃1 + x̃2| (3.41)

6 X = 6 X̃ +ϕ (3.42)

x̃(τ) = Xoc sin(ωτ)+ |X |QXoc sin(ωτ +β + 6 X) (3.43)
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Substitute 6 X̃ for 6 X using equation (3.42):

x̃(τ) = Xoc sin(ωτ)+ |X |QXoc sin(ωτ +ϕ +β + 6 X̃) (3.44)

Now the magnitude |X | and angle 6 X̃ are found using a summing formula for sine waves of the

same frequency:

|X |=
√

X2
oc +Q2X2

oc|X |2 +2QX2
oc|X |cos(β +ϕ + 6 X̃) (3.45)

tan 6 X̃ =
QXoc|X |sin(β +ϕ + 6 X̃)

QXoc|X |cos(β +ϕ + 6 X̃)+Xoc

(3.46)

Now there are two nonlinear equations in two unknown variables, |X | and 6 X̃ . Only the tangent

of the phase is known, so it is not possible to obtain both sin 6 X̃ and cos 6 X̃ , but dropping ϕ from

the phases earlier allows for a convenient derivation of sin 6 X̃ . Applying the angle sum identity to

equation (3.46):

sin 6 X̃

cos 6 X̃
=

|X |QXoc

[

sin(β +ϕ)cos 6 X̃ + cos(β +ϕ)sin 6 X̃
]

|X |QXoc

[

cos(β +ϕ)cos 6 X̃ − sin(β +ϕ)sin 6 X̃
]

+Xoc

(3.47)

Algebra reveals:

sin 6 X̃ = |X |Qsin(β +ϕ) (3.48)

Use this equation to determine sin26 X̃ and cos26 X̃ :

sin26 X̃ = |X |2Q2 sin2(β +ϕ) (3.49)

cos26 X̃ = 1− sin26 X̃ = 1−|X |2Q2 sin2(β +ϕ) (3.50)

Now, square equation (3.45) and apply the angle sum identity:

|X |2 = X2
oc +Q2X2

oc|X |2 +2QX2
oc|X |cos(β +ϕ)cos 6 X̃ −2QX2

oc|X |sin(β +ϕ)sin 6 X̃ (3.51)
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Simplification yields the following expression:

[1−Q2X2
oc +2Q2X2

oc sin2(β +ϕ)]|X |2 −X2
oc = 2QX2

oc|X |cos(β +ϕ)cos 6 X̃ (3.52)

Since only cos26 X̃ is known, and not cos 6 X̃ itself, the equation must be squared again:

[1−2Q2X2
oc +4Q2X2

oc sin2(β +ϕ)+Q4X4
oc −4Q4X4

oc sin2(β +ϕ)+4Q4X4
oc sin4(β +ϕ)]|X |4

−2X2
oc[1−Q2X2

oc +2Q2X2
oc sin2(β +ϕ)]|X |2 +X4

oc

= 4Q2X4
oc|X |2 cos2(β +ϕ)−4Q4X4

oc|X |4 sin(β +ϕ)cos(β +ϕ)

(3.53)

Algebra and trigonometric identities simplify this expression to:

[1−2Q2X2
oc cos2(β +ϕ)+Q4X4

oc]|X |4 −2X2
oc[1+Q2X2

oc]|X |2 +X4
oc = 0 (3.54)

From here, use the quadratic equation to find two solutions for |X |2. Taking the square root of these

solutions results in four solutions for |X |, but two are negative and are immediately eliminated.

Carrying out this process results in the remaining two solutions:

|X |= Xoc

√

1+Q2X2
oc ±2Q2X2

oc cos2(β +ϕ)

1+Q4X4
oc −2Q2X2

oc cos2(β +ϕ)
(3.55)

Upon investigation, the “plus” solution is the only physically possible solution. Now the final

solution for the displacement magnitude under synchronized switch damping control is simplified

to:

|X |=
Xoc

√

Q2X2
oc −2QXoc cos(β +ϕ)+1

(3.56)

The phase of the solution is determined from the magnitude:

6 X = ϕ + 6 X̃ = ϕ + sin−1 [|X |Qsin(β +ϕ)] (3.57)
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A closed-form solution for the optimal switch timing τd is derived by writing equation (3.56) as an

explicit function of τd and squaring both sides of the equation:

|X |2 =
X2

oc

Q2
cX2

oc cos2(2πτd)−2QcXoc cos(2πτd)cos(−2πτd −
π
2
+ϕ)+1

(3.58)

The optimal switch is found by minimizing |X |2 with respect to τd:

∂ |X |2

∂τd

= 0 (3.59)

Taking this partial derivative and solving for τd results in:

τd,opt =
1

4π

[

π

2
− tan−1

(

QcXoc −2sinϕ

2cosϕ

)]

(3.60)

Thus, a closed-form solution for the optimal switch timing for synchronized switch damping has

been derived. This solution depends only on the electromechanical coupling, damping ratio, volt-

age inversion factor, and excitation frequency. The following chapter will use this solution to

investigate the behavior of the optimal switch based on these parameters, particularly frequency.

Furthermore, this solution will be verified against experimental and numerical studies.

3.4 Response to Initial Conditions

The closed-form displacement in equation (3.56) is a modal solution. However, if peak displace-

ment is a concern, the response to initial conditions is necessary. The solution to equation (3.21) is

found by adding the homogeneous and particular solutions, assuming the external forcing starts at
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time τ = 0:

x(τ) = Ae−ζ (τ−τo) sin(τ − τo +B)+Xoc sin(ωτ +ϕ)+ k2(xo − vo)
[

1− e−ζ (τ−τo) sin(τ − τo)
]

(3.61)

Here, A and B are unknown coefficients that are solved using the initial displacement and velocity

at time τ = τo. This solution is valid over the open-circuit region between switches. At each switch

time, the unknown coefficients are recalculated and xo and vo are updated. The initial voltage vo

for the nth switch is calculated from the constants at the previous switch:

vo(n) =−γ[xo(n)− xo(n−1)+ vo(n−1)] (3.62)

Define P as the particular solution, or the part of x(τ) that does not depend on A or B:

P ≡ Xoc sin(ωτ +ϕ)+ k2(xo − vo)
[

1− e−ζ (τ−τo) sin(τ − τo)
]

(3.63)

Now solve for the unknown coefficients in terms of the initial conditions xi and x′i at the start of

each open-circuit interval:

B = tan−1

[

(xi −P)

ζ xi + x′i −ζ P−P′

]

(3.64)

A =
ζ xi + x′i −ζ P−P′

cosB
(3.65)

With the response known for each open-circuit interval, the time of the next velocity zero-crossing

τpeak is calculated. The desired switch time τsw is calculated using the switch delay τd and the

forcing frequency:

τsw = τpeak +
2πτd

ω
(3.66)

The general response for a given τd is calculated with an iterative approach: determine the next

switch time, calculate the response over that interval, update constants, repeat. Figures 3.5 and 3.6
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illustrate the time response of the optimal switch and classical switch with forcing frequencies

equal to 0.95 and 1.05, respectively. Both cases have initial conditions x(τ = 0) = 10 and x′(τ =

0) = 20 with system parameters k2 = ζ = 1% and γ = 0.5. For both frequencies, the classical

switch timing has better transient performance than the steady-state optimal switch time. Thus, the

optimal switch timing sacrifices transient performance for better steady-state vibration reduction.

This piecewise analytical solution is useful for determining the peak response of the system for

any switch delay. Appendix C contains the MATLAB code used to evaluate the response of SSD

to initial conditions.
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Figure 3.5: SSDI response to initial conditions with ω = 0.95 (τd,opt = 0.10)
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CHAPTER 4

OPTIMAL SWITCHING FOR SEMI-ACTIVE TECHNIQUES

The previous section derived an analytical solution for optimal switching of synchronized

switch damping techniques. However, several assumptions were made to facilitate the analysis.

First, the lumped model assumed that only a single vibration mode is present. This assumption

is valid for many structures that are excited at a single frequency. Since the solution contains

only non-dimensional parameters, the analytical optimal switch time can be applied to any such

structural mode by using the coupling and damping values associated with that mode. Further

investigation is necessary for the case of multiple-mode excitation. However, if only one mode

is targeted, it may be possible to filter out the contribution of other modes and apply the optimal

switch to only the mode of interest.

The next assumption is that the electrical switch is very fast compared to the mechanical vibra-

tion. With this assumption, the piezoelectric voltage is approximated as a summation of a sinusoid

and a square wave. The sinusoidal portion of the voltage acts as an effective increase in stiffness

(the difference between open- and short-circuit stiffness). The final assumption is that the square

wave portion of the voltage can be approximated by taking only the first term of a Fourier expan-

sion. The higher frequency contributions to the displacement are assumed to be negligible, as the

response is dominated by frequency content near the forcing frequency. The validity of these as-
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sumptions is investigated through experimental testing of a cantilever beam, along with numerical

simulations of the lumped model.

4.1 Experimental Testing

A steel, bimorph cantilever beam was tested using state switching, SSDS, and SSDI control over

the range of possible switch times. Midé QP10N piezoelectric patches were attached approxi-

mately 2 mm from the base of the beam, as shown in Figure 4.1. Table 4.1 lists the geometric

and material properties of the beam and attached piezoelectric patches. The cantilever beam was

mounted to a Bruel & Kjaer Permanent Magnet Vibration Exciter type 4808, which was driven by

a 2100 E21 SmartAmp Power Amplifier. The data acquisition and control signals were managed

by LabVIEW and executed through an NI cDAQ-9188 chassis containing three modules. An NI

9263 module output the sinusoidal forcing signal sent to the amplifier and the switch control signal

to trigger the switch to the shunt circuit. An NI 9234 module measured two PCB Piezotronics

352A21 Accelerometer inputs: a base accelerometer to measure the system excitation and a tip

accelerometer to measure the beam displacement. Finally, an NI 9221 module measured the two

piezoelectric voltage signals along with the two output signals. Appendix A contains the block

diagram of the LabVIEW VI used in this study.

The circuitry and period of time of each switch to the shunt circuit defines the differences

between the three techniques investigated in this study. For all the techniques, the switch control

signal was sent through a current amplifier circuit to give it enough power to activate a 9007-05-
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00 reed relay, which is a nominally open relay with a 5 V closing threshold voltage that requires

at least 10 mA of current to close. Figure 4.2 illustrates the circuit diagram for the experimental

setup. The switch signal was set to be a square wave with twice the frequency of the forcing signal,

and an offset equal to its amplitude. Thus, the signal is 0 V in its low state, and 6 V in its high state.

Consequently, the relay closes on the shunt circuit when the control signal is high (6 V) state, and

opens (open-circuit conditions) when the control signal is low (0 V). Now the duty cycle of the

square wave defines the amount of time the switch is closed. For state switching, the switch should

be closed for half of each half-period of vibration, so the duty cycle is set to 50% of the period.

For SSDI, the switch should be closed just long enough to invert the voltage. For the frequency

range considered, the duty cycle for SSDI was set to 1.9%, resulting in a nominally complete

inversion. However, variation of the frequency results in slightly different closed-switch periods,

which may result in a slight variation in the inversion factor γ . Thus, there will be some error in the

experimental data, but this work is not focused on circuit optimization, so the qualitative results

for the parameters of interest are not effected. To provide a direct comparison, the duty cycle for

SSDS was also set to 1.9%.

Table 4.1: Properties of cantilever beam used in experiments

Material xstart (mm) L (cm) w (cm) t (mm) Y E
11 (GPa) ρ (kg/m3) d31 (m/V) Co (nF)

Beam 0 23.0 1.93 0.88 200 7800 – –

Piezo 2 4.60 2.06 0.38 67 8000 -190 55
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Figure 4.1: Bimorph piezoelectric beam used for experimental testing

For all techniques, a 33 Ω resistor was placed in the shunt to ensure the relay did not exceed

its maximum allowable current. For SSDI, a 330 mH inductor was also included. This was the

smallest inductor that did not cause the electrical resonant period to be faster than the minimum

shut time of the relay, providing the closest possible approximation to an instantaneous switch.

To capture the effect of frequency on optimal switch timing, each technique was tested for

30 frequencies near the first resonance frequency of the system, which was approximately 15 Hz.

Each frequency was tested with 50 different switch delays for each technique along with the open-

and short-circuit cases for comparison. Thus, the test matrix included 3 techniques, 30 frequencies,

and 52 runs, resulting in 4680 total tests. Each test was allowed to reach steady state; the steady-

state displacement was calculated as the average peak displacement in the steady-state region. The

variation of switch delays for each test was accomplished by incrementing the phase of the square

wave control signal between 0 and 2π . With this method for varying the switch time, τd is not

known a priori. For each test, the time when the control signal becomes greater than 5 V (tswitch)

is subtracted from the last zero crossing of the measurement piezoelectric patch (t0). This time
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difference is divided by the forcing period (T = 1/ f ) then lessened by 0.25 to calculate the switch

delay for each test:

τd = (tswitch − t0) f −0.25 (4.1)

The non-dimensional system parameters were obtained from the frequency response function

near the first resonance. The damping ratio was found from the half-power bandwidth method to

be 1.5%. Peak picking was used for the open- and short-circuit natural frequencies, which were

15.03 and 14.98 Hz, respectively. The coupling k2 was calculated from these frequencies to be

0.66%. Finally, the inversion factor for SSDI was calculated from experimental measurements

of the voltage, and found to be 0.558. These three non-dimensional parameters fully define the

system in regards to the numerical and analytical models, and they will be used for comparison in

the following sections.

Control Signal 
(0 V or 6 V) 

+ 

˗ 
Piezo Relay 

R L 
+ 

˗ 
9 V 

Figure 4.2: The current amplifer circuit gives the control signal enough power to close the relay
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4.1.1 Time Domain Data

The first step in checking the viability of the experimental data is to look at the time-domain

response to make sure it matches the expected waveforms. Figure 4.3 shows the time-domain

response for state switching with three different switch delays. Here it is clear that the voltage is

in an open circuit for one-quarter of the period and short circuit for the following quarter-period

and consistently repeats this pattern. For the nominally classical switch time (τd = 0), the voltage

is shorted at peak displacement and opened at zero displacement. Similarly, Figures 4.4 and 4.5

display the time response for a few switch delays for SSDS and SSDI, respectively. The switch

shorts the voltage then opens after a short time at each switch time for SSDS, and closes the switch

long enough to invert the voltage for SSDI. For all three techniques, every switch in each test

occurs with the same delay with respect to peak displacement.

Another notable feature of the time domain response is the tip acceleration waveform. Every

time the switch goes from open circuit to the shunt circuit, there is an impulse of higher frequency

content in the accelerometer reading. Figure 4.6 shows a zoomed-in view of the acceleration at the

moment of a switch for SSDS, which clearly illustrates the acceleration impulse. Figure 4.7 shows

the Fast Fourier Transform of the acceleration, which indicates that the switches excite the structure

at the odd harmonics of the forcing frequency, consistent with the frequency content of a square

wave. Thus, representing the synchronized switching techniques with a square wave forcing term

appears to be a good approximation. Furthermore, the high frequency content of the acceleration

is no longer present after integrating twice to obtain displacement, indicating the assumption that
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the higher harmonics of the square wave do not influence displacement is valid, at least for this

structure.
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Figure 4.3: State switching time-domain signals
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Figure 4.4: SSDS time-domain signals
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Figure 4.5: SSDI time-domain signals
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4.1.2 Frequency Dependence of Optimal Switch

Next, this investigation evaluates the results over the frequency test range to see how frequency

affects the optimal switch time and performance away from the optimal switch. Figure 4.8 shows

the peak steady-state response normalized by the open-circuit response as a function of forcing

frequency and switch delay. It is immediately clear that vibration reduction performance and the

optimal switch time depend on frequency. In fact, the white lines in Figure 4.8 indicate the optimal

switch delay that results in the lowest peak displacement at each frequency.

Noise and uncertainties in the system cause some oscillation in the optimal switch, but it is clear

that there is a trend in the transition of the optimal switch for each technique. For state switching,

the optimal switch nominally coincides with the classical switch time at low frequencies. As

the frequency goes through resonance, the optimal switch transitions towards negative delays,

approaching τd = −0.25 at higher frequencies. This result is the exact opposite of conventional

state switching, as the switch from open- to short-circuit occurs at zero displacement and the switch

from short- to open- circuit occurs at peak displacement.

For SSDS and SSDI, the optimal switch and classical switch are only identical at the open-

circuit resonance frequency. At lower frequencies, the optimal switch occurs about one-eighth of

a cycle after peak displacement (τd,opt = 0.125). As the frequency increases and passes through

resonance, there is a transition in the optimal switch towards negative delays. Similar to state

switching, this transition in optimal switch results in a change in τd,opt of about -0.25, equivalent

to a 90◦ change in phase between the switch and the displacement. Thus, the optimal switch for
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synchronized switch damping techniques undergoes half the phase change with respect to displace-

ment as the phase change of displacement with respect to external forcing.

4.2 Comparison of Experimental, Numerical, & Analytical Results

The model derived in the Model Development section is tested, both numerically and analytically,

using the non-dimensional parameters of the experimental setup. The goal is to show that the

model provides a good representation of the physical system despite the assumptions that are not

exactly met in real implementations.

4.2.1 Numerical and Analytical Approaches

First, equations 3.14 and 3.21 are simulated in MATLAB using fourth-order Runge-Kutta integra-

tion. The testing matrix is similar to the experimental testing, as the three techniques are simulated

for a range of frequencies near resonance over the range of possible switch delays. Each simu-

lation is allowed to reach steady state, and the average steady-state peak displacement is used to

evaluate vibration reduction performance. Appendix B contains the MATLAB code used for the

state switching simulations.

The analytical solution was also evaluated for SSDS and SSDI with the experimental parame-

ters. The steady-state peak displacement was calculated from equation 3.56. Figures 4.9 and 4.10

illustrate the numerical and analytical results in the same way that Figure 4.8 shows the experi-
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mental results. Overall, there is excellent qualitative agreement among experiments, simulations,

and analytical results. The simulations and analytical solution results are nearly identical. While

they slightly overpredict experimental vibration reduction, the model simulations and analytical

solution still accurately predict the frequency-dependence of the optimal switch. The experimen-

tal data shows the optimal switch is slightly shifted in the negative delay direction, which may

be due to the finite switch time of the circuit, variations in the circuit inversion factor, or a bias

in the way the experimental switch delay was calculated. Despite these slight discrepancies, the

model provides a good prediction of the optimal switch timing and expected performance based

on the excitation frequency. In particular, the analytical solution offers extremely fast performance

evaluation and calculation of the optimal switch.
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(a) state switching experimental (b) SSDS experimental

(c) SSDI switching experimental

Figure 4.8: Experimental normalized displacement x/xoc (colorbar) vs. switch delays and forcing

frequencies, with the optimal switch time indicated by the white line
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(a) state switching simulation (b) SSDS simulation

(c) SSDI switching simulation

Figure 4.9: Numerical simulation normalized displacement x/xoc (colorbar) vs. switch delays and

forcing frequencies, with the optimal switch time indicated by the white line
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(a) SSDS analytical (b) SSDI analytical

Figure 4.10: Analytical normalized displacement x/xoc (colorbar) vs. switch delays and forcing

frequencies, with the optimal switch time indicated by the white line

4.2.2 Summary of State Switching

Since no analytical solution was derived for state switching, its frequency-based characteristics

must be inferred from the experimental data and model simulations. Figures 4.8 and 4.9 indicate

that state switching actually increases the vibration amplitude compared to just the open-circuit

case for frequencies below the open-circuit resonance frequency. This increase in amplitude is

attributed to the fact that the short-circuit resonance frequency is lower than the open-circuit reso-

nance frequency and the system spends half of the vibration cycle in short circuit. It is interesting

to note that the classical switch time is only optimal in this region where state switching does not

56



offer any vibration reduction. However, it is possible that the τd = 0 switch does reduce vibration

for lower frequencies that were not captured in this study, as they would be further away from

the short-circuit resonance. Furthermore, state switching showed relatively low dependence on τd

compared to SSD.

When the forcing frequency is at or greater than the open-circuit resonance frequency, state

switching does provide some vibration reduction. Just above resonance, state switching with the

optimal switch timing results in similar vibration reduction as SSDS. As the frequency continues

to increase, state switching and SSDS continue to have similar optimal switch performance. How-

ever, no switch times for state switching cause the response to exceed the open-circuit response in

this region, whereas SSDS and SSDI both cause an increased response when τd is slightly greater

than zero. Furthermore, the optimal switch in this region of improved state switching performance

corresponds to the opposite of the heuristic control law. Overall, state switching does not per-

form as well as SSDS or SSDI at resonance, but has similar performance with less potential for

performance degradation away from the optimal switch for off-resonance excitation.

4.3 Parameter Study

Now that experimental data and numerical simulations have validated the analytical solution, this

work uses the solution to evaluate the frequency-dependent characteristics of synchronized switch-

ing techniques. The closed-form solution allows a quick evaluation of the performance and optimal

switch for many different parameter values. Thus, a search through the parameter space with the
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analytical solution quantifies the effect of each free parameter on vibration reduction and the opti-

mal switch time.

4.3.1 Classical Switch Performance

First, the classical SSDI control law (τd = 0) is evaluated with the analytical solution. Figure 4.11

shows the displacement normalized by the open-circuit displacement as the coupling is varied from

1% to 5% while holding the damping and inversion factor constant at 1% and 0.5, respectively. It

is clear that better electromechanical coupling results in better vibration reduction. Furthermore,

vibration reduction performance worsens as the frequency moves away from resonance.

Next, Figure 4.12 shows the normalized displacement when varying the damping ratio from 1%

to 5% while holding k2 and γ constant at 1% and 0.5, respectively. This figure indicates that SSDI

has the greatest relative vibration reduction (x/xoc) potential when there is low inherent damping in

the structure. Again, there is better relative vibration reduction at resonance than for off-resonance

excitation.

The only remaining free parameter is the inversion factor. It is important to note that the en-

tire range of inversion factors (0 to 1) will not be realizable under the assumptions made in this

model. First, larger inductors are needed to improve the inversion factor, which means a slower

inversion that will eventually break down the instantaneous inversion assumption. Also, high in-

version factors may imply that the electrical damping is below the optimal level, which would

cause beating [30]. The assumption that the response is the same frequency as the forcing makes
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the analytical model unsuitable for this situation. Keeping these limitations in mind, Figure 4.13

shows the normalized displacement with varying inversion factors while holding k2 and ζ constant

at 1%. The inversion factors are kept at moderate levels to avoid regions where the assumptions

fail. Increasing the inversion factor has a similar effect as increasing the coupling coefficient,

which is expected since both terms are lumped into Qc in the analytical model.
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Figure 4.11: Normalized displacement x/xoc for several k2 (ζ = 1%, γ = 0.5)
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Figure 4.12: Normalized displacement x/xoc for several ζ (k2 = 1%, γ = 0.5)
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Figure 4.13: Normalized displacement x/xoc for several γ (ζ = 1%, k2 = 1%)
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4.3.2 Optimal Switch

For the classical SSDI control law, maximizing k2 and γ provides the best vibration reduction.

Also, SSDI offers better relative vibration reduction for structures with lower inherent damping.

However, allowing the switching law to vary results in a frequency-dependent optimal switch. In

addition, this optimal switch depends on the other three parameters. Figures 4.14, 4.15, and 4.16

show the optimal switch time when varying k2, ζ , and γ , respectively. These figures indicate that a

slower transition in the optimal switch occurs for higher coupling, viscous damping, and inversion

factor. Regardless of system parameters, the optimal switch always coincides with the classical

switch at resonance.

Due to the sharper transition region for low coupling and low damping systems, the optimal

switch more rapidly deviates from the classical switch time away from resonance. In addition,

low damping structures are the typical target for semi-active control, and low coupling systems

have more to gain from optimizing switch timing since they do not convert as much energy to the

electrical domain. Thus, common implementations of SSDI could significantly benefit from the

implementation of this optimal switching control law.
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Figure 4.14: Optimal switch time τd for several k2 (ζ = 1%, γ = 0.5)
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Figure 4.16: Optimal switch time τd for several γ (ζ = 1%, k2 = 1%)

4.4 Performance Degradation

Now that the optimal switch timing has been evaluated based on the system parameters, it is de-

sirable to know how much benefit the optimal switch timing control law offers compared to the

classical control law. Also, since the switch timing of any semi-active control law is influenced by

noise and uncertainties, the expected degradation in vibration reduction for variations in switches

should be quantified.
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4.4.1 Optimal Switch vs. Classical Switch

First, the vibration reduction performance of the classical switch timing is compared to that of

the optimal switch. Figure 4.17 illustrates the frequency response of the optimal switch control

law and the classical control law for several coupling values with ζ = 1% and γ = 0.5. It shows

that the optimal switch offers slightly better vibration reduction than the classical switch, except at

resonance, where they are identical.

A performance degradation parameter D0 is defined to quantify the degradation in vibration re-

duction performance when using the classical switch timing rather than the optimal switch timing:

D0 =
x0 − xopt

xopt
(4.2)

Here, the subscript on the displacement x refers to the switch delay τd at which x is evaluated, where

τd = opt refers to the optimal switch time. Figure 4.18 shows D0 for several coupling values, again

with ζ = 1% and γ = 0.5. The performance degradation quickly increases moving away from

equilibrium, then tapers off and starts to decrease. For lower coupling, the initial increase in D0

occurs at a faster rate. However, higher coupling values have a greater maximum D0 and greater

degradation further away from resonance. Thus, there is more performance loss near resonance for

low coupling, while higher coupling causes more performance loss further away from resonance.

Figure 4.19 provides a surface plot of D0 to show how the coupling coefficient k2 affects frequency-

based degradation.

Figure 4.20 provides a surface plot of the maximum value of D0 based on coupling and damp-

ing. The maximum degradation appears to increase with the square root of the coupling k2. Fur-
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thermore, the degradation does not depend on viscous damping. The optimal switch timing can

achieve 10-15% better performance compared to the classical switch timing for typical coupling

values.

Overall, the performance degradation when using the classical switch can be calculated based

on the system parameters. The benefit of using the optimal switching law can be weighed against

challenges in implementation. Also, the expected frequency or frequencies of operation affect the

level of improved vibration reduction with the optimal switch.
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Figure 4.17: Frequency response of optimal switch (dashed lines) and classical switch (solid lines)

for k2 = 1%, 3%, and 5% (ζ = 1%, γ = 0.5)
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Figure 4.18: Performance degradation D0 for several k2 (ζ = 1%, γ = 0.5)
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4.4.2 Switching Slightly Away From Optimal Switch

Now the degradation in vibration reduction performance due to variations in the actual switch time

from the designed switch time is investigated. Figure 4.21 shows the frequency response of the

optimally switched control law along with the response when τd varies by ±0.05. There is a slight

increase in vibration magnitude when switching slightly away from the optimal switch.

The performance degradation parameter when switching slightly away from the optimal switch

Dopt is defined as:

Dopt =
xopt+d + xopt−d −2xopt

2xopt
(4.3)
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This performance degradation parameter represents the average performance loss when switching

±d away from the optimal switch. As d goes to zero, there is no performance degradation as there

will be no variation in switch time. Higher d represents more system uncertainty that may cause

the switches to deviate from the designed moment. Figure 4.22 shows Dopt with d = 0.05 for

several coupling values. It is apparent that the performance degrades the most at resonance, where

the optimal switch and classical switch coincide. Also, higher coupling values have greater Dopt

and a slower drop-off in degradation away from resonance.

To fully capture the effect of system uncertainties on performance degradation, Figure 4.23

illustrates Dopt as d is varied from 0 to 0.10. As d increases, there is a significant increase in

Dopt near resonance, as well as a wider frequency range of significant degradation. For d approx-

imately less than 0.05, the performance degradation is about the same or less than the maximum

degradation from using the classical switch rather than the optimal switch. Thus, using the optimal

switching law can compensate for performance losses induced by sensing uncertainties. Con-

versely, increased sensing uncertainties caused by the implementation of the optimal switching

law may be overcome by the improved performance of the optimal switch.
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Figure 4.22: Performance degradation Dopt for several k2 (ζ = 1%, γ = 0.5)
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This information regarding performance degradation due to system uncertainties ensures that

a real implementation will meet the vibration reduction needs of the structure. The sensing uncer-

tainties and noise are approximated in d, enabling the development of a quantitative metric for loss

in performance (Dopt). This worst-case vibration reduction provides information on how accurate

the switch timing must be to meet the design requirements. There is improved vibration reduction

when using the optimal switching law, but this law may be associated with a greater uncertainty

in switch timing. Thus, the trade-off between improved vibration reduction and sensing uncer-

tainty can be evaluated to determine whether implementing the optimal switching law actually
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provides better performance. Altogether, the specific needs and constraints of a structure govern

the best implementation of semi-active techniques and whether a certain implementation can meet

the vibration reduction needs of the system.

4.5 Effective Natural Frequency

Another interesting outcome from the investigation of switch timing in synchronized switching

techniques is that the switch timing alters the effective natural frequency of the system. Figure 4.24

displays the frequency response of the structure for a variety of switch times. The peak response

only occurs at the open-circuit resonance frequency (ω = 1) when τd = 0. Figure 4.25 illustrates

the effective natural frequency based on τd for several coupling values. From this figure it is

clear that the effective natural frequency of the system can be controlled by the switch timing.

Furthermore, higher coupling results in a wider ranger of possible natural frequencies. Finally,

greater variation in the effective natural frequency is associated with greater vibration amplitude.

Recalling Figures 4.14, 4.15, and 4.16, it appears that the optimal switch time converges to-

wards 0.125 and -0.125 for ω << 1 and ω >> 1, respectively. According to Figure 4.25, these

switch delays also correspond to the greatest shift in effective natural frequency. Thus, the shift

in effective natural frequency dominates SSD vibration reduction when operating far away from

resonance. Altogether, the frequency dependence of the optimal switch time appears to be a com-

promise between energy dissipation and shifting the effective natural frequency. While the classical

switch timing (τd = 0) maximizes the dissipated energy [18], other switch times shift the effective
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natural frequency, reducing the amount of energy that is transferred from the forcing to the excited

vibration mode.
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Figure 4.24: Frequency response for varying τd (k2 = ζ = 1%, γ = 0.5)
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CHAPTER 5

CONCLUSION

Semi-active techniques utilize low-power switches on integrated piezoelectric transducers for

wideband vibration reduction. Their extremely low power requirements offer an advantage over

active techniques, while their ability to adapt to different frequencies provides an advantage over

passive techniques. However, the frequency-based tuning of circuit elements required for passive

techniques is replaced by precise tuning of switches in the time domain for semi-active techniques.

The techniques investigated in this study (state switching, SSDS, and SSDI) require four switches

per vibration cycle, which are timed relative to displacement extrema. This thesis quantifies the

effect of switching away from the classically-timed switch through experimental testing, numerical

simulations, and the development of an analytical solution.

5.1 Non-Dimensional Analytical Solution

A significant contribution of this work is the derivation of an analytical solution for the synchro-

nized switch damping techniques. The solution captures the effect of switch timing and forcing

frequency on vibration reduction performance. Furthermore, the frequency-dependent optimal

switch timing is determined by minimizing the analytical displacement with respect to the switch
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timing. The model is represented in terms of only non-dimensional, global parameters: coupling

coefficient k2, damping ratio ζ , and inversion factor γ . Thus, the expected vibration reduction is

quantified in terms of these convenient parameters. The SSD techniques offer more relative vibra-

tion reduction for higher coupling and inversion factor and lower viscous damping. Overall, the

analytical solution is a useful tool in designing and predicting performance of SSD implementa-

tions.

5.2 Frequency-Dependence of Optimal Switch

Another unique contribution of this investigation is that the optimal switch timing for state switch-

ing, SSDS, and SSDI depends on the operating vibration frequency, which is not what was clas-

sically thought. Previous attempts to derive the optimal switch timing for SSDI have focused on

excitation at resonance, neglecting off-resonance frequencies. Real structures may never be ex-

cited exactly at resonance, and implementation of the optimal switch control law could improve

performance even when the excitation varies only slightly from resonance.

With the rapid switching that is required in these techniques, switching away from the designed

moment is a strong possibility for real implementations. This work quantified the level of degra-

dation in vibration reduction performance given an expected worst-case variation in switch timing.

For all three techniques, the results show that certain combinations of frequencies and switch tim-

ings cause the displacement to exceed that of the purely open-circuit case. Thus, increasing sensing

uncertainties can result in implementations that actually increase motion rather than reduce vibra-
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tion. This potential to worsen vibration is another reason why the optimal switching law could be

beneficial, as variations in the switch time are less likely to reach the region that increases vibra-

tion. At the least, SSD implementations that still seek to switch nominally at peak displacement

can be designed to prefer positive delays for frequencies before resonance and negative delays for

frequencies after resonance. This biased switching would cause sensing uncertainties to push the

switch towards the optimal switch rather than the region of increased vibration.

5.2.1 Limitations and Future Work

Assumptions made in this analysis present some limitations in the applicability of the results. First,

the model is assumed to only excite one vibration mode. In real structures, switching techniques

may excite higher modes, particularly the odd harmonics of the operating frequency. Future work

could perform an experimental assessment of semi-active techniques on a structure that has higher

order natural frequencies that coincide with the odd harmonics of the first natural frequency. This

assessment would provide insight on how performance and optimal switch timing are affected

by higher modes. In addition to the effect of higher modes, this study did not consider external

forcing at multiple frequencies. Determination of an optimal switch time for multiple frequency

excitation is another area for future improvement. When multiple frequencies are present, it may

be possible to filter out the frequency content with lower vibration levels and only target the most

active frequency. With this process, the single-mode optimal switch time may be applicable to

multiple-frequency excitation.
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Another limitation of this work is the difficulty of using a frequency-dependent control law

in a self-powered implementation. First, the implementation would require information about the

natural frequency and the operating frequency of the system. Also, the switch trigger would need to

adjust based on the optimal switch time, which is not straightforward for analog implementations.

Ongoing work seeks to develop a control framework that searches through the possible switch

times to find the optimal switch for the current state of excitation. By searching for the switch

that best reduces displacement, no knowledge of the natural frequency or system parameters is

necessary. Ultimately, the frequency-dependent optimal switch will be far more widely applicable

if such a framework is developed in a self-powered implementation.

Altogether, this thesis analyzes semi-active vibration reduction techniques with respect to the

free parameters of the system. Special attention is paid to frequency and switch timing, which are

not varied in typical analyses. The outcome of this work is a clearer understanding of switch-based

techniques along with a model that is useful for rapid evaluation of vibration reduction performance

and optimal switch timing.
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APPENDIX A

LABVIEW CODE
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Figure A.1: Block diagram of LabVIEW VI used for experimental testing
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APPENDIX B

MATLAB CODE FOR STATE SWITCHING SIMULATION
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function [del,amps,amp,phase] = StateSwitching(w)

% Simulate state switching at given frequency (w)

% Output vectors: switch delays (del), normalized displacement (amps),

% displacement (amp), and phase (phase)

% Define free parameters

ksq = 0.0066;

zeta = 0.015;

gamma = 0;

% Inititialize

ff = w/(2*pi);

f period = 1/ff;

amp = [];

delay = [];

del = [];

phase = [];

amperr = [];

ampstd = [];

% Loop over range of switch delays

increment = 2;

for i = 1:increment:49

in = (i+1)/increment;

delay percentage = i;

delcurrent = delay percentage−25;
delay(i,1) = delcurrent;

if delay percentage < 25 % Switches occur before peak

td = f period*delay percentage/100;

elseif delay percentage > 25 % Switches occur after peak

td = f period*delay(i,1)/100;

else % Switches occur at peak

td = f period*0.001;

end

final = round(50/ff);

step = 0.001;

t start = 0;

tspan = (t start:step:final);

xi = 0;

initial = [xi 0 xi]';

options = odeset('Events',@events,'RelTol',0.000001,'AbsTol',1e−8);
test = false;

ie = 2;

iel = 3;

tout = 0;

yout = initial';

teout = [];

yeout = [];

global x0 V0;

x0 = 0;

V0 = 0;
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ieout = 0;

% Simulation until steady−state is reached

while test == false

[t,y,te,ye,ie] = ode45(@EOM,tspan,initial,options,zeta,ksq,...

w,t start,td,ie,iel,delay percentage);

% Store data

nt = length(t);

tout = [tout; t(2:nt)];

yout = [yout; y(2:nt,:)];

teout = [teout; te];

yeout = [yeout; ye];

ieout = [ieout; ie];

% Stop simulation after certain time has been reached

if tout(end) > round(100/ff)

test = true;

end

% Initialize for simulation to continue

initial = yout(end,:);

t start = tout(end);

final = t start+50*f period;

tspan = (t start:step:final);

ie = ieout(end);

iel = ieout(end−1);
if ie == 1 | | ie == 2

x0 = initial(1);

V0 = −gamma*initial(3);
initial(3) = V0;

end

end

dis = yout(:,1);

V = yout(:,3);

[maximum,err,xstd] = peakav(dis(end−round(0.7*length(dis)):end,1));
% Calculate phase

done = 0;

k = round(0.7*length(dis));

while done == 0

if dis(k−1) < 0 && dis(k) > 0

ind = k;

done = 1;

end

k = k+1;

end

f = sin(w*tout);

done = 0;

k = ind;

while done == 0

if f(k−1) < 0 && f(k) > 0

indf = k;

done = 1;

end
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k = k+1;

end

dT = tout(indf)−tout(ind);
ph = 360*dT/f period;

if ph > 180

ph = ph−360;
end

% Generate output values

phase(in,1) = ph;

amp(in,1) = maximum;

amperr(in,1) = err;

ampstd(in,1) = xstd;

del(in,1) = delcurrent;

end

% Find open−circuit displacement

final = round(100/ff)+1;

step = 0.001;

t start = 0;

tspan = (t start:step:final);

td = 0;

xi = 0;

initial = [xi 0 xi]';

options = odeset('RelTol',0.000001,'AbsTol',1e−8);
test = false;

ie = 2;

tout = 0;

yout = initial';

teout = [];

yeout = [];

ieout = ie;

y max = [];

t max = [];

x0 = 0;

V0 = 0;

while test == false

[t,y] = ode45(@OC,tspan,initial,options,zeta,ksq,...

w,t start,td,ie,iel,delay percentage);

nt = length(t);

tout = [tout; t(2:nt)];

yout = [yout; y(2:nt,:)];

if yout(end) > 10000

test = true;

result = 'diverge'

elseif tout(end) > round(100/ff)−1
test = true;

end

initial = yout(end,:);

t start = tout(end);

final = t start+50*f period;

tspan = (t start:step:final);
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end

dis = yout(:,1);

V = yout(:,3);

maximum = peakav(dis(end−round(0.7*length(dis)):end,1));
ocmax = maximum;

ocerr = err;

% Calculate normalized displacement

amps = amp./ocmax;

% Equation of motion for input to ode45

function RHS = EOM(t,x,zeta,ksq,w,t start,td,ie,iel,delay percentage)

if ie == 1 % Short−circuit
Vdot = 0;

xddot = sin(w*t)−2*zeta*x(2)−(1−ksq)*x(1);
else

Vdot = x(2); % Open−circuit
xddot = sin(w*t)−2*zeta*x(2)−x(1)+ksq*x0−ksq*V0;

end

RHS = [x(2) xddot Vdot]';

end

% Events function to stop simulation at each switch

function [value,isterminal,direction] = events(t,x,zeta,ksq,w,...

t start,td,ie,iel,delay percentage)

diff = t−t start;

if ie == 3 % Switch timing event occured last;

sw = diff−td; % simulate until delay time is reached

sw2 = 0;

elseif ie == 1 % Wait 1/4 cycle then switch back to open−circuit
sw = 0;

sw2 = diff−pi/(2*w);
else

sw = 0; % Wait for next switch timing event to trigger

sw2 = 0;

end

if delay percentage < 2

event = x(1); % Switch timed based on zero displacement

else

event = x(2); % Switch timed based on zero velocity

end

value = [sw sw2 event]';

isterminal = [1 1 1]';

direction = [0 0 0]';

end
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% Short−circuit equation of motion

function RHS = SC(t,x,zeta,ksq,w,t start,td,ie,iel,delay percentage)

RHS = [x(2) sin(w*t)−2*zeta*x(2)−(1−ksq)*x(1) 0]';

end

% Open−circuit equation of motion

function RHS = OC(t,x,zeta,ksq,w,t start,td,ie,iel,delay percentage)

RHS = [x(2) sin(w*t)−2*zeta*x(2)−x(1) x(2)]';

end

end
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APPENDIX C

MATLAB CODE FOR SSD WITH INITIAL CONDITIONS
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% SSD response to ICs

clear all

close all

set(0,'DefaultAxesFontSize',12,'DefaultTextFontSize',12,...

'DefaultAxesFontName','Times','DefaultTextFontName','Times',...

'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...

'DefaultLineLineWidth',2,'DefaultLineMarkerSize',6,...

'DefaultFigureColor','w','DefaultFigurePosition',[100 100 0.4*[1600 1200]]);

% Define parameters

ksq = 0.01;

zeta = 0.01;

gamma = 0.5;

omega = 1.05;

% Calculate optimal switch delay

Xoc = 1/sqrt((−omegaˆ2+1)ˆ2+(2*zeta*omega)ˆ2);
fi = atan2(−2*zeta*omega,(−omegaˆ2+1));
Qc = 4*((1+gamma)/(1−gamma))*ksq/pi;
tdopt = (1/(4*pi))*(pi/2−atan2(Qc*Xoc−2*sin(fi),2*cos(fi)))
td = tdopt;

% k = 1 for optimal switch, k = 2 for classical switch

for k = 1:2

if k == 2

td = 0;

end

dt = 2*pi*td/omega; % Time delay of switch from zero velocity

t = 0;

tend = 100;

tinc = 0.01;

xi = 10; % Initial displacement

xip = 20; % Initial velocity

x = xi;

xp = xip;

v = xi;

xon = xi;

xonm1 = 0;

von = xi;

vonm1 = 0;

it = 0;

Av = [];

Bv = [];

% Each iteration of loop finds solution for one open−circuit interval

while it < 100

tau = linspace(t(end),t(end)+2*pi/omega,5001)';

P = Xoc*sin(omega*tau+fi)+...

ksq*(xon−von)*(1−exp(−zeta*(tau−t(end))).*sin(tau−t(end)));
Pp = omega*Xoc*cos(omega*tau+fi)+...

ksq*(xon−von)*(−exp(−zeta*(tau−t(end))).*cos(tau−t(end))+...
zeta*exp(−zeta*(tau−t(end))).*sin(tau−t(end)));

B = atan2((x(end)−P(1)),zeta*x(end)+xp(end)−zeta*P(1)−Pp(1));
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A = (zeta*x(end)+xp(end)−zeta*P(1)−Pp(1))/(cos(B));
xpt = A*exp(−zeta*(tau−t(end))).*cos(tau−t(end)+B)−...

A*zeta*exp(−zeta*(tau−t(end))).*sin(tau+B)+Pp;
xpt1 = xpt(2+80:end,1);

xpt2 = xpt(1+80:end−1,1);
zxpt = find(xpt1.*xpt2<0,1)+80; % Find next zero velocity point

% Need to find second zero velocity point for negative delays

if td < 0 && it > 0

zxpt2 = find(xpt1(zxpt+80:end).*xpt2(zxpt+80:end)<0,1)+80;
zxpt = zxpt+zxpt2+80;

end

tsw = tau(zxpt)+dt;

% Find second zero velocity point if negative delay requires

% switch to occur before tau=0

if tsw <= t(end)

tau = linspace(tau(zxpt)−dt,tau(zxpt)+4*pi/omega−dt,5001)';
P = Xoc*sin(omega*tau+fi)+...

ksq*(xon−von)*(1−exp(−zeta*(tau−t(end))).*sin(tau−t(end)));
Pp = omega*Xoc*cos(omega*tau+fi)+...

ksq*(xon−von)*(−exp(−zeta*(tau−t(end))).*cos(tau−t(end))+...
zeta*exp(−zeta*(tau−t(end))).*sin(tau−t(end)));

B = atan2((x(end)−P(1)),zeta*x(end)+xp(end)−zeta*P(1)−Pp(1));
A = (zeta*x(end)+xp(end)−zeta*P(1)−Pp(1))/(cos(B));
xpt = A*exp(−zeta*(tau−t(end))).*cos(tau−t(end)+B)−...

A*zeta*exp(−zeta*(tau−t(end))).*sin(tau+B)+Pp;
xpt1 = xpt(2+80:end,1);

xpt2 = xpt(1+80:end−1,1);
zxpt = find(xpt1.*xpt2<0,1)+80;
tsw = tau(zxpt)+dt;

end

% Now the next switch time is known (tsw)

% Calculate response over this interval

tau = [t(end):tinc:tsw]';

P = Xoc*sin(omega*tau+fi)+...

ksq*(xon−von)*(1−exp(−zeta*(tau−t(end))).*sin(tau−t(end)));
Pp = omega*Xoc*cos(omega*tau+fi)+...

ksq*(xon−von)*(−exp(−zeta*(tau−t(end))).*cos(tau−t(end))+...
zeta*exp(−zeta*(tau−t(end))).*sin(tau−t(end)));

B = atan2((x(end)−P(1)),zeta*x(end)+xp(end)−zeta*P(1)−Pp(1));
A = (zeta*x(end)+xp(end)−zeta*P(1)−Pp(1))/(cos(B));
xpt = A*exp(−zeta*(tau−t(end))).*cos(tau−t(end)+B)−...

A*zeta*exp(−zeta*(tau−t(end))).*sin(tau+B)+Pp;
xt = A*exp(−zeta*(tau−t(end))).*sin(tau−t(end)+B)+P;
vt = xt−xon+von;
t = [t; tau(2:end,1)];

x = [x; xt(2:end,1)];

xp = [xp; xpt(2:end,1)];

v = [v; vt(2:end,1)];

% Update xo(n), xo(n−1), vo(n), vo(n−1)
xonm1 = xon;

xon = x(end);

88



vonm1 = von;

von = −gamma*(xon−xonm1+vonm1);
it = it+1;

Av(it,1) = A;

Bv(it,1) = B;

end

% Generate response envelope

xenv = xi;

tp = 0;

for kp = 2:length(x)−1
if x(kp) > 0

if x(kp) > x(kp−1) && x(kp) > x(kp+1)

xenv = [xenv; x(kp)];

tp = [tp; t(kp)];

end

end

end

if k == 1

figure; plot(t,x)

hold on; plot(tp,xenv)

else

hold on; plot(t,x)

hold on; plot(tp,xenv)

end

end

xlabel('\tau')
ylabel('x')

legend('\tau d=\tau d , o p t','\tau d=\tau d , o p t envelope',...

'\tau d=0','\tau d=0 envelope')

xlim([0 200])
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