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ABSTRACT

Piezoelectric-based energy harvesting devices provide an attractive approach to powering

remote devices as ambient mechanical energy from vibrations is converted to electrical energy.

These devices have numerous potential applications, including actuation, sensing, structural health

monitoring, and vibration control – the latter of which is of particular interest here. This work seeks

to develop an understanding of energy harvesting behavior within the framework of a semi-active

technique for reducing turbomachinery blade vibrations, namely resonance frequency detuning.

In contrast with the bulk of energy harvesting research, this effort is not focused on maximizing

the power output of the system, but rather providing the low power levels required by resonance

frequency detuning. The demands of this technique dictate that harvesting conditions will be far

from optimal, requiring that many common assumptions in conventional energy harvesting research

be relaxed.

Resonance frequency detuning has been proposed as a result of recent advances in turbomachin-

ery blade design that have, while improving their overall efficiency, led to significantly reduced

damping and thus large vibratory stresses. This technique uses piezoelectric materials to control

the stiffness, and thus resonance frequency, of a blade as the excitation frequency sweeps through

resonance. By detuning a structure’s resonance frequency from that of the excitation, the overall

peak response can be reduced, delaying high cycle fatigue and extending the lifetime of a blade.
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Additional benefits include reduced weight, drag, and noise levels as reduced vibratory stresses

allow for increasingly light blade construction.

As resonance frequency detuning is most effective when the stiffness states are well separated,

it is necessary to harvested at nominally open- and short-circuit states, corresponding to the largest

separation in stiffness states. This presents a problem from a harvesting standpoint however, as

open- and short-circuit correspond to zero charge displacement and zero voltage, respectively, and

thus there is no energy flow. It is, then, desirable to operate as near these conditions as possible

while still harvesting sufficient energy to provide the power for state-switching. In this research a

metric is developed to study the relationship between harvested power and structural stiffness, and a

key result is that appreciable energy can be harvested far from the usual optimal conditions in a

typical energy harvesting approach. Indeed, sufficient energy is available to power the on-blade

control while essentially maintaining the desired stiffness states for detuning. Furthermore, it is

shown that the optimal switch in the control law for resonance frequency detuning may be triggered

by a threshold harvested power, requiring minimal on-blade processing. This is an attractive idea

for implementing a vibration control system on-blade, as size limitations encourage removing the

need for additional sensing and signal processing hardware.
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CHAPTER 1

INTRODUCTION

Innovation in turbomachinery blade construction has led to significant increases in their aerodynamic

efficiency, in addition to reduced part counts, weight, and complexity. There is, however, a cost

associated with these advances – namely, greatly reduced structural damping and in turn large

vibratory stresses. Over time, these stresses can cause a blade to succumb to high cycle fatigue,

potentially leading to crack propagation and ultimately catastrophic failure. In light of these issues,

a vibration reduction approach is desired to alleviate large vibratory stresses and thus increase

blade lifetime. One such approach, resonance frequency detuning, is of particular interest here.

Resonance frequency detuning uses piezoelectric materials to tailor a blade’s structural properties

in an effort to avoid resonance conditions, thus limiting vibratory response. Implementation of this

vibration reduction technique requires an on-blade power source to modify the electrical boundary

conditions on the integrated piezoelectric material. Conveniently, the same piezoelectric material

used for stiffness control may be used to harvest energy when the control system is not active. This

work focuses on understanding the behavior of piezoelectric energy harvesting systems within the

context of resonance frequency detuning. Note that this effort is currently being developed for the

turbofan and cold side of the compressor, due to both the temperature limitations of piezoelectric
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materials and the fact that the most significant issues with high cycle fatigue are observed in these

regions [1].

1.1 Energy Harvesting

As advances continue in wireless, remote, and low power electronics and sensors, a concurrent effort

focuses on developing methods that harvest energy in some form from the ambient environment and

convert to electrical energy in an effort to improve battery life and reduce maintenance costs. There

are a number of types of energy harvesting devices – photovoltaic, thermoelectric, hydroelectric, to

name a few, and the desired type of conversion depends on the environment and application. This

work is concerned with the conversion of mechanical energy from a vibrating source to electrical

energy. Focusing on vibration energy sources, there are again several methods of energy conversion –

including electromagnetic, electrostatic, and piezoelectric. Of these, piezoelectric-based techniques

are of particular interest due to their direct conversion of mechanical strain energy to electrical

energy and the relative simplicity of integrating piezoelectric materials in a structure. As such,

there has been a great deal of work on the optimization of piezoelectric-based vibrational energy

harvesting devices over the past decade, with a variety of different approaches to the problem being

taken – for example, through material advances, optimization of system parameters, advanced

harvesting circuitry, or seeking broadband solutions [2, 3, 4]. The energy harvesting aspect of this

work, however, differs from typical energy harvesting research. The power required to implement

resonance frequency detuning is minimal, as it only requires two switches per excitation. This
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is in contrast to many vibration damping approaches which require as many as four switches per

vibration cycle, a fact which may limit their use in the turbomachinery environment where excitation

frequencies can be very high. Thus, we seek not to optimize the power output of the system but

rather to develop an understanding of energy harvesting behavior under the conditions relevant to

this application. For example, it is ideal to harvest at nominally open- and short-circuit conditions

in resonance frequency detuning as this leads to the greatest vibration reduction, yet these cases are

ignored in conventional energy harvesting research due to the inherently low flow of energy. It is

therefore important to develop an understanding of the behavior of energy harvesting systems under

these conditions, a topic which is studied here.

Figure 1.1: Trends in battery and computer technology. From [5].
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Implementation of resonance frequency detuning in the rotating frame would require that the

power source be located on the blade. Clearly the needed energy is present on-blade, as the purpose

of this technique is to reduce blade vibrations and, conveniently, the piezoelectric material embedded

in the blade for stiffness control would naturally convert strain energy to electrical energy, thus

providing the required power source. An on-blade system also presents size limitations, making it

desirable to minimize the need for additional hardware for sensing and signal processing. A natural

solution would be to use the harvested energy, which must correlate with the blade vibrations due

to the coupled electromechanical nature of piezoelectric materials, as a proxy for knowledge of

the local vibration characteristics, thus eliminating the need for sensors and limiting any signal

processing.

1.2 Turbomachinery Blade Vibrations

High rotations speeds as well as rotor-stator aerodynamic interactions in turbomachinery passages

induce large periodic vibratory stresses, with the excitation frequency strongly dependent on the

rotation speed. The aerodynamic forces due to rotor-stator interactions arise from the force required

to turn the airflow as it moves alternatively between rotor and stator passages. Figure 1.2, a

flow visualization from a CFD simulation, depicts how the airflow turns as it passes through a

turbine. Other sources of periodic excitations include inlet guide vanes, or indeed any source of

circumferential pressure variation in the flow field.
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Figure 1.2: Characteristic flow through a turbomachinery rotor-stator passage. From [6].

Blade dynamics are further complicated by the effect of rotation speed on the blade resonance

frequency, through geometric stiffening and softening effects [7]. The complex interaction between

these effects is commonly displayed via the Campbell diagram, seen in Figure 1.3, where the blade

resonance frequencies as well as excitation frequencies are shown as a function of rotation speed [8].

At speeds where these frequencies match, resonant vibrations are induced on the blade, resulting in

large vibratory stresses. Turbomachinery are, of course, designed such that they do not nominally

operate at blade resonance conditions, however it is inevitable that a number of modes will be

excited as the rotation speed sweeps through a large range during start-up and shut-down. These

fleeting excitations can, over time, lead to high-cycle fatigue, eventually causing the initiation

and propagation of cracks, and ultimately catastrophic failure. An example of this can be seen in

Figure 1.4. Catastrophic failure in a stage one compressor blisk row resulted in the forced in-flight
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shut-down of an engine on a Saab 340B passenger aircraft [9]. The failure of the engine was related

to high-frequency vibratory aerodynamic loading of the stage one compressor blisk, which resulted

in the development of reverse-bending fatigue cracks in the blisk blades [9]. From examples such as

this the need for a vibration damping system is made clear. In addition, such a system would allow

for lighter and thinner blade construction due to reduced vibratory stresses over a blade’s lifetime,

and as a result an increase in aerodynamic efficiency and reduction in weight can be expected.

Figure 1.3: Variation of natural frequencies (solid lines) due to rotation speed for a representative

blade. Also depicted are the “speed lines,” denoted by their engine order (dashed gray lines).

From [8].
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Figure 1.4: Failed first stage compressor row. From [9].

1.2.1 Monolithic Bladed Disks

An effort to improve the aerodynamic efficiency of turbomachinery blades has led to their monolithic

construction. In this turbomachinery blade construction method, the blades and hub are constructed

as one piece; previously, the blades would be constructed separately from the hub and later attached

(see Figures 1.5 and 1.6). This technique has the benefit of reducing the parts count as well as

removing a source of drag where there would have previously been an attachment point; it does,

however, remove a significant source of damping. The surfaces at the interface between the hub

and the blade rub against one another, and the blade vibrations are damped as energy is dissipated

7



through friction. With monolithic blade construction this source of damping is removed; resonance

frequency detuning seeks to provide an additional source of damping.

Figure 1.5: Separate blade and hub construction. From [10].

Figure 1.6: Monolithic construction. From [11].
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1.3 Resonance Frequency Detuning

This research focuses on energy harvesting behavior in light of a vibration reduction technique

of interest for turbomachinery applications, resonance frequency detuning. As discussed in the

previous section, this vibration reduction effort is motivated in part by advances in turbomachinery

blade manufacturing that have led to their monolithic construction and, while there are many

advantages to this method of construction, it comes at the cost of significantly reduced damping due

to the removed interface. As a result these blades are susceptible to large, high frequency vibratory

stresses that can lead to high-cycle fatigue and ultimately catastrophic failure. Alternative methods

of reducing turbomachinery blade vibrations are therefore needed.

Though a number of both passive and semi-active vibration damping methods are well estab-

lished, many of these approaches are not well suited to the turbomachinery environment. Conven-

tional approaches include adding a layer of viscoelastic material to a structure; these materials act

as both a elastic solid and a viscous fluid – while they tend to retain a deformed configuration like

a viscous fluid, they ultimately return to their original state just as an elastic solid [12]. Under

ideal conditions viscoelastic materials provide a significant amount of damping, however their

effectiveness is heavily dependent on frequency and temperature, diminishing their effectiveness

in turbomachinery [13]. Passive piezoelectric-based approaches shunt the material with a circuit

designed to dissipate the converted electrical energy, for example a resistive shunt or a resistive-

inductive shunt [14, 15]. Effective performance of these approaches requires tuning the circuit

parameters to the mechanical excitation that is targeted, often requiring additional branches to be
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added to the circuit as additional modes are targeted. Turbomachinery blade vibration control sys-

tems must necessarily target a large number of modes, and the many additional circuit branches that

would be required make passive approaches not compatible with the size limitations for embedding

the device on-blade. Semi-active piezoelectric-based techniques can, however, provide significant

vibration reduction over a wide spectrum of excitation frequencies and yet often require very little

energy [13]. The drawback to many of these techniques is their complex switching requirements,

often requiring as many as four switches per vibration cycle (see, for example, the depiction of

state-switching in Figure 1.7) [16]. This high-frequency switching requires real-time detailed

knowledge system’s vibration characteristics, and the hardware required for sensing, processing,

and switching may be prohibitive in the turbomachinery environment.

Figure 1.7: State switching depicted through the displacement and piezoelectric voltage waveforms.

Initially at open-circuit (corresponding to a higher stiffness state), the material is short-circuited

(low stiffness) at peak displacement, and subsequently returned to open-circuit at equilibrium.

From [16].
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Figure 1.8: Illustration of resonance frequency detuning concept through a zoomed view of a

particular resonance crossing from Figure 1.3. The solid black line represents the resonance

frequency of the structure nominally corresponding to the optimal control law.

Resonance frequency detuning, proposed by Kauffman and Lesieutre, provides significant

vibration reduction while requiring only two switches per resonance frequency crossing, thus

alleviating the primary issues with many passive and semi-active approaches [8]. The purpose of

this technique is to limit resonant vibration response by detuning the resonant frequency of the blade

from that of the excitation through the inclusion of piezoelectric materials. Changing the electrical

boundary conditions on the piezoelectric material changes its stiffness and in turn that of the entire

structure and, as the resonance frequency is related to stiffness, the embedded piezoelectric material

can be used to control the resonance frequency of the blade.

Figure 1.8 focuses on the intersection of the two-stripe (2S) mode resonance frequency with the

N = 10 engine order excitation, and provides an instructive illustration of how resonance frequency

11



detuning works. As the resonance frequency approaches that of the excitation the structure has some

nominal stiffness, corresponding to the open-circuit condition on the piezoelectric material. Just

before the frequency crossing, the blade stiffness is suddenly shifted as the piezoelectric material is

short-circuited. Clearly there is still an intersection as the frequency change must occur continuously,

however the crossing is now nearly instantaneous and there is no appreciable increase in vibration

amplitude [13]. As the rotation speed continues to increase past the frequency crossing the blade is

returned to its original stiffness state, both to maintain the intended structural design and to prepare

for additional stiffness changes should future frequency crossings occur.

Figure 1.9: Resonance frequency detuning concept viewed in the frequency domain. The open-

circuit (OC) and short-circuit (SC) response curves are shown, as well as the optimal response,

with the optimal switch circled.

It is also constructive to view resonance frequency detuning in the frequency domain. Figure 1.9

shows the open-circuit and short-circuit frequency response curves, corresponding to the high and

low stiffness states, respectively. The purpose of this approach is to minimize blade vibrations, and
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it is clear that this is achieved by switching from open-circuit to short-circuit at the intersection of

the two curves, as indicated by the point circled in the figure. While this frequency domain analysis

inherently assumes harmonic motion, an assumption that is not valid for the frequency sweep

excitations considered in this work, it provides a qualitative understanding of resonance frequency

detuning and a baseline perspective with which to compare later results. Indeed, it is natural

to expect that the behavior observed under swept excitations will tend toward that of harmonic

excitations in the limit of slow sweeps. A further idealization made in this analysis is the use of

true open- and short-circuit conditions. While these conditions provide the best vibration reduction

performance, they present a problem from an energy harvesting perspective. Switching stiffness

states requires a small source of power, yet true open-circuit and short-circuit conditions correspond

to an infinite resistance (zero charge) and zero resistance (zero voltage) in the piezoelectric material,

and thus there is no energy flow. In practice, it will be necessary to use shunts with a very high and

very low resistance to approximate the true open- and short-circuit conditions, thus providing the

energy source required for state-switching while essentially maintaining the ideal stiffness states.

One topic of this thesis is to develop an understanding of energy harvesting capabilities under

these far-from-ideal conditions which are rarely, if ever, studied in conventional energy harvesting

research. Note that it should be possible to use multiple piezoelectric materials to implement this

method, one for vibration control and a second tuned to harvest energy efficiently, however using a

single piezoelectric material to accomplish both of these tasks reduces the size of the system and is

one of the attractive feature of resonance frequency detuning.
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1.4 Goals of Current Work

The goal of this research effort is to improve the understanding of piezoelectric-based energy

harvesting behavior in the context of the vibration reduction technique described above, namely

resonance frequency detuning. This technique reduces blade vibrations by detuning the resonant

frequency of the blade from that of the excitation through a shift in stiffness, essentially caused by

changing the resistance in the shunt circuit attached to the embedded piezoelectric materials [8].

Optimally the switch is from open-circuit to short-circuit, as this results in the largest shift in

stiffness and, in turn, resonance frequency. Practically, however, harvesting requirements dictate

that true open- and short-circuit conditions cannot be met, as there is no electrical energy flow in

these cases. Implementing resonance frequency detuning therefore requires that energy be harvested

very near open- and short-circuit, conditions which are far from optimal for harvesting and not

studied in conventional energy harvesting research. One aspect of this research will work to develop

an understanding of harvesting behavior under these non-optimal conditions – at the “margins.”

As having real-time knowledge of the system’s dynamics would be impractical when imple-

menting resonance frequency detuning in the turbomachinery environment, it is desirable to use

a quantity that is readily measurable on-blade, with minimal processing, as a proxy for the local

vibration characteristics. One such quantity is the harvested energy. A close correlation between the

harvested energy and vibration profile is anticipated as a result of the electromechanical coupling in

piezoelectric materials; it is therefore proposed that the harvested energy may serve as an indicator

of the optimal time to switch stiffness states in the resonance frequency detuning scheme. A metric
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is developed for selecting the optimal switch in terms of a nomdimensionalized harvested energy.

This metric is valid for a wide range of choices of open- and short-circuit shunt resistances, and its

dependence on key system parameters is examined.

Finally, the impact of the frequency sweep rate, α , is studied. This parameter, describing the rate

at which the excitation frequency is varying, does not appear in any conventional energy harvesting

research, which typically focuses on steady-state or chaotic excitations. It is therefore valuable

to explore this novel topic in energy harvesting; an understanding of the role of the sweep rate in

energy harvesting is developed in this work.

1.5 Thesis Structure

Chapter 2 provides a review of literature which is relevant to vibration reduction in the context of

resonance frequency detuning. It first discusses the nature of piezoelectricity and several important

properties of piezoelectric materials, such as how they may be used to tune the stiffness of a

structure. It also reviews past work in both energy harvesting and vibration reduction, to provide

the background upon which this work will build.

In Chapter 3, the theoretical framework for the following analysis is developed. It is shown

how the governing equations of motion arise out of a full blade dynamics model, explaining and

justifying any assumptions which were made to arrive at the final form of these equations. The

model is subsequently applied to the case of steady-state vibrations, deriving expressions for the

relationship between the power output of the harvesting system and the effective structural stiffness
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arising from the integration of piezoelectric materials. The chapter then discusses how a solution

may be obtained for transient vibrations through direct time integration, and, as this method turns

out to be computationally expensive, an analytic solution is then pursued.

Chapter 4 then uses this information to analyze the behavior that is of interest here. First the

power output of the harvesting system is examined in terms of the physical system parameters,

namely the coupling coefficient, excitation frequency, and modal damping ratio. The problem

is then reparametrized in terms of an effective structural stiffness, as is laid out in Chapter 3, a

process which indicates behavior that may surprise many conventional energy harvesting researchers.

Proceeding to the case of transient vibrations, the relationship between harvested energy and blade

vibrations is examined. In particular, the energy that has been harvested at the time of switching

between open- and short-circuit conditions is correlated with the peak vibration response of the

system, with the intent that the harvested energy may be used to trigger the optimal switch in

stiffness states. This chapter concludes by studying the effect of the frequency sweep rate on both

the harvested energy and vibration reduction. This is particularly important for resonance frequency

detuning, as it is a vibration reduction technique for systems with changing excitation frequencies,

and it is this sweep rate that describes the rate at which the frequency is changing.

Finally, Chapter 5 provides a review of the key findings of this research and discusses their

implications for resonance frequency detuning. The thesis concludes by presenting remaining

questions and how one may proceed in continuing this research effort.
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CHAPTER 2

REVIEW OF PREVIOUS WORK

The use of piezoelectric materials in intelligent systems has received significant attention over the

last several decades, with a number of applications studied. Despite the wide range of applications,

the principles applied in much of this work are the same, and it is important to understand the

breadth of past work and its implications, and thus build upon that foundation. Foremost, one must

understand the nature of piezoelectric materials and how they make this work possible.

2.1 Piezoelectricity

Discovered by the physicists Jacques and Pierre Curie in 1880, piezoelectric materials have an

inherent coupling between their mechanical and electrical properties [17]. In what is known as the

direct piezoelectric effect, application of a mechanical stress to a piezoelectric material generates of

an electric field within that material. Conversely, the application of an electric field mechanically

deforms the material. The latter phenomenon, the indirect piezoelectric effect, was postulated by

Gabriel Lippmann after in-depth mathematical investigation of the thermo-mechanical behavior of

piezoelectric materials [17]. The existence of this indirect effect was then demonstrated in practice
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by the Curie brothers, who found that the application of a electric field does indeed produce a

mechanical deformation within the material [17].

2.1.1 Physical Origin

To understand the physical origin of both the direct and indirect piezoelectric effect, one must

consider the crystal lattice molecular structure of a material. Present in many classes of crystals,

piezoelectricity always arises in noncentrosymmetric crystals – those that lack a center of symme-

try [18]. As a characteristic example, Figure 2.1 shows the structure of a unit cell of calcium titonate

(CaTiO3). The unit cell has a non-zero net charge due to the titanium ion, and this ion’s off center

location effectively creates an electric dipole. On a macroscopic scale, these dipoles are naturally

oriented randomly, resulting in no net polarization. Through a poling process, depicted in Figure 2.2,

the many electric dipole moments in the material can be aligned, typically through the application

of a very strong electric field – a process similar to the magnetization of ferromagnetic materials.

Upon removing the material from the polarizing field there is a remnant polarization, which is

responsible for the macroscopic piezoelectric properties of a material [18]. Through the application

of a mechanical pressure, the structure begins to deform, causing a shift in the orientation of the

dipoles. As a result, a net electrical charge displacement is established within the material, thus

constituting an electric field. This process is known as the direct piezoelectric effect. In the case

of the indirect piezoelectric effect, the application of an electric field forces a reorientation of the

electric dipoles, thus displacing the ions within the material and causing the structure to deform.
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Figure 2.1: Structure of a unit cell of calcium titonate (CaTiO3). From [18].

Figure 2.2: Aligning of electric dipole moments before, during, and after the poling process.

From [18].
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A simple example is provided by Figure 2.3 to orient the reader toward this behavior. The poling

axis is indicated as positive down. Application of an electric field with the same polarity as that

of the material causes the material to expand along that axis. Similarly, application of an electric

field with the opposite polarity results in a contraction along that axis. Generalizing, we see that

application of a AC voltage along the poling direction results in a mechanical vibration with the same

period as that of the excitation. In a similar manner, a piezoelectric material with forced mechanical

vibrations will produce an internal AC voltage as mechanical pressure is periodically applied and

relieved. This behavior forms the basis for piezoelectric-based vibration energy harvesting, as

piezoelectric materials can be embedded within structures with externally forced vibrations, thus

generating a voltage within the material that can be used to power a device or stored for later use.

Figure 2.3: Depiction of the indirect piezoelectric effect. From [19].
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2.1.2 Constitutive Relations

The electromechanical coupling exhibited by piezoelectric materials can be expressed through

several constitutive forms, each having its own coupling coefficients. The linear stress-field form,

for example, takes the form
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relating S and D, the strain and electric displacement vectors, to (T ) and (E), the stress and electric

field vectors, through the elastic coefficients (c) , the electromechanical coupling coefficients (h),

and the permittivity (ε) [20]. Here t is the transpose operator, while the superscripts S and D denote

that a quantity is to be taken at constant strain and constant electric displacement, respectively. Note

that the coefficients in the coupling matrix can be found under other boundary conditions as well.

The matrix of elastic coefficients at constant electric field, for example, can be found by setting the

electric field, E, equal to zero in Equation (2.1):

[

cE
]

=
[

cD
]

−
[

ht
]

[

εS
]

[e] (2.2)

2.1.3 Electromechanical Coupling Coefficient

The coupled electrical and mechanical behavior of piezoelectric materials is more intuitively

expressed via the electromechanical coupling coefficient, k [20]. This coefficient provides a direct
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measure of a material’s ability to convert energy between mechanical and electrical forms. When

squared, as it more commonly appears in practice, this coefficient is defined as the ratio of the

energy converted to that imposed on the structure. Such a coefficient exists for each coupling mode,

where only a single stress or strain and a single electric field or displacement component is non-zero,

and for each vibrational mode, as the coupling coefficient is dependent on the excitation frequency.

Additionally, this coupling coefficient can be defined for a device with embedded piezoelectric

materials, potentially leading to higher coupling coefficients than for the material alone. In terms

of the various coefficients appearing in the constitutive relations described in the previous section,

the coupling coefficient can be expressed mechanically as the shift between the open-circuit and

short-circuit stiffness,

k2 ≡ cD − cE

cD
, (2.3)

and electrically as the shift between open-circuit and short-circuit permittivity,

k2 ≡ εT − εS

εT
. (2.4)

Using, for example, the scalar form of the result in Equation (2.2), this becomes

k2 ≡ h2εS

cE +h2εS
. (2.5)
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Another, perhaps more useful, expression for the coupling coefficient is found by writing Equa-

tion (2.3) in terms of the open-circuit and short-circuit resonance frequencies:

k2 =
ω2

oc −ω2
sc

ω2
oc

. (2.6)

A structure’s coupling coefficient can therefore be determined experimentally by simply measuring

the natural frequency at open-circuit and short-circuit boundary conditions.

2.1.4 Stiffness Control

The integration of piezoelectric materials in a structure allows for significant tailoring of structural

properties, due to the coupling between electrical and mechanical behavior. By comparing the

equations of motion governing the behavior of a simple energy harvesting device with those of the

canonical second order single-degree-of-freedom dynamic system, an expression for the effective

stiffness of a structure can be established [21]. This effective stiffness varies strongly with the

electrical impedance, with the magnitude of the shift in stiffness states from open- to short-circuit

dictated by the coupling coefficient, as can be seen in Figure 2.4.
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Figure 2.4: Variation of the effective structural stiffness with shunt circuit resistance, for coupling

coefficient k2 = 5%,10%,15%,20%,25%.

Keff = 1− k2

1+Ω2r2
(2.7)

Therefore, by switching between two resistive shunts near the open- and short-circuit conditions,

the stiffness of a structure can be shifted, in the process detuning the resonance frequency, as

desired. Note that the derivation of Equation (2.7) relies on harmonic analysis, and Ω and r are the

dimensionless frequency of excitation and shunt circuit resistance, respectively.
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2.1.5 Temperature Limitations

It is important to note that this research effort is currently intended for the turbofan and cold side of

the compressor, due in part to the temperature limitations of piezoelectric materials. At a material’s

Curie temperature, the crystal structure breaks down and a phase shift occurs, resulting in a crystal

structure that does not exhibit piezoelectricity. This temperature limit of the piezoelectric properties

can be seen in Figure 2.5; it is apparent that most materials lose their piezoelectric coupling in

the range of 200-350◦C. [22] There are, however, efforts to develop high temperature piezoelectric

materials, and it may be that this resonance frequency detuning approach can be extended further

into the engine in the future.

Figure 2.5: Degradation of piezoelectric effect with increasing temperature. Note that this is not a

theoretical limit, but simply the state-of-the-art for piezoelectric materials at the time of publication.

From [22].
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2.2 Energy Harvesting

There has been a significant effort to improve the performance piezoelectric-based vibrational energy

harvesting devices over the past few decades, with a variety of different approaches to the problem

being taken. Some researchers have worked to develop more effective piezoelectric materials by

either achieving higher coupling coefficients, reducing susceptibility to crack development, or

improving upon current temperature limitations. Taking another approach, many seek to understand

the role of key physical and geometric parameters so their optimal values may be chosen for

a particular system, thus optimizing the performance of the energy harvesting system. Finally,

advanced harvesting circuits have been developed by adding switching devices and inductors in

various configurations; the resulting voltage inversion often leads to a significant improvement in

performance.

Sodano et al. tested three common piezoelectric material configurations: a bimorph Quick

Pack actuator (QP), the piezoceramic material lead-zirconate-titanate (PZT), and a macro-fiber

composite (MFC) [23]. Each was subjected to several excitation conditions – resonant excitations,

random vibrations, and a 0−500 Hz chirp; it was found that in each case PZT exhibited a more

efficient energy conversion that the other configurations. Unfortunately, PZT is very brittle and

thus susceptible to fatigue cracking when subjected to high frequency excitations, limiting their

effectiveness for turbomachinery vibration reduction applications where high frequency excitations

are common. Attempting to alleviate this drawback, Sato et al. developed composite materials with
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embedded PZT fibers [2, 24]. PZT fibers, which can be produced via an electrospinning process,

exhibit a much lower bending stiffness, and are thus less susceptible to fatigue cracking [25].

Taking an alternative approach to improving the efficiency of piezoelectric energy harvesting

devices, some researchers have worked to optimize the physical parameters of the system, with a

particular focus on the dimensions of the piezoelectric material and the tip mass [26, 27]. A tip

mass is often included to reduce the resonance frequency of the first vibration mode – it is well

known that the power output of harvesting systems is increased at lower frequencies; increasing the

proof mass thus results in improved performance. [28]. It was found that matching the mechanical

impedance of the structure – dependent on the geometry of the device and Young’s modulus – to

that of the load led to a substantial improvement in the device’s effectiveness at converting energy.

Note that this concept – impedance matching – has an analog in several other disciplines – matching

the electrical impedance in electrical engineering, matching the index of refraction at an interface in

optics, and matching heat transfer coefficients at an interface, each of which increases the efficiency

of energy transfer.

Renno et al. studied the effect of the damping ratio on power optimality, setting up a nonlinear

optimization problem through a method similar to the method of Lagrange multipliers. They found

that, contrary to claims made in previous literature, the power output of the harvesting system begins

to decrease as the coupling coefficient increases past some optimal value [29]. Additionally, they

found that the optimal power output bifurcates as the damping ratio drops below what is termed the

bifurcation damping ratio – that is, below this value of the damping ratio there are two maxima in
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the power output at two distinct frequencies – the resonance and antiresonance. This trend toward a

bimodal distribution as the damping ratio decreases can be seen in Figure 2.6.

Figure 2.6: Magnitude of harvested power as a function the nondimensional frequency, Ω, at

different damping ratios, ζ . From [29].

Taking yet another approach to improving the performance of piezoelectric energy harvesting

devices, Badel et al. proposed several advanced harvesting circuits, termed synchronized switch

harvesting (SSH) and subsequently synchronized switch harvesting on an inductor (SSHI) [30, 31].

These methods improve upon standard energy harvesting configurations by adding a switching

device in parallel with the circuit; triggering the switch at peak displacement results in a voltage

inversion which increases the voltage amplitude on the piezoelectric material, thus improving the

performance of the device. Indeed, the power output was observed to increase by as much as 400%

as compared with a standard resistive shunt. In this analysis the authors make several assumptions
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which must be relaxed in portions of this work: they assume steady-state harmonic forcing, clearly

not valid for a system with frequency sweep excitations, and they assume the system is driven

near resonance, again, not valid in an approach where excitation conditions are changing time

and the precise goal is to avoid resonance conditions. Further, in assuming the system is driven

near resonance they make the assertion that the applied forced and velocity are in phase – a valid

assumption for undamped (or very lightly damped), single degree of freedom systems. Shu and

Lien, however, have challenged this assumption [3]. In their analysis, Shu and Lien found that

in-phase assumption is only valid for ] f rack2ζ ≪ 1, even when operating near resonance.

Figure 2.7: Circuit diagram and typical displacement and voltage waveforms for a synchronized

switch harvesting device. This particular setup includes an inductor to further enhance performance.

From [30].

2.3 Vibration Control

In a manner analogous to energy harvesting devices, piezoelectric energy conversion is commonly

used for vibration control. The energy can be stored or simply dissipated, for example though a
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resistor, effectively acting as a source of damping as mechanical energy is removed through the

harvesting system.

An early example of a passive vibration control system using piezoelectric materials was

presented by Hagood and von Flotow [14]. They investigated shunting the piezoelectric material with

both a lone resistor and a combined resistive-inductive circuit, finding that resistive shunting shows

behavior similar to that of viscoelastic materials, while shunting on a resistor and inductor produces

an electrical resonance which may be tuned to structural resonances to optimize performance.

Lesieutre et al. studied the damping associated with a piezoelectric-based energy harvesting system

under harmonic excitation conditions, finding that for their system the effective modal loss factor

depended on the electromechanical coupling coefficient as well as the voltage ratio of the bridge

rectifier [32].

Clark developed a semi-active vibration control system, taking advantage of the stiffness change

associated with changing the electrical boundary conditions on piezoelectric materials [16]. The

circuit is shorted at peak mechanical displacement (peak strain energy) and opened at peak kinetic

energy. It was found that, while a finely-tuned passive system may provide more effective vibration

reduction at resonance, the state-switching method is more effective away from resonance, requiring

no tuning and showing less sensitivity to changes in system parameters. Similarly, Richard et

al. proposed a technique called synchronized switch damping [33]. In this method, the circuit is

periodically switched between open- and short-circuit; however, the circuit is only shorted long

enough to dissipate the energy before returning to open-circuit. By introducing a phase lag between

the beam deflection and shunting frequency, the resulting damping was found to be twice as effective
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as a purely resistive passive shunt, while also being broadband. This approach was then enhanced by

adding an inductor to the shunt, resulting in a charge inversion that further improved performance

with proper tuning of the switching frequency [34].

While the vibration control approaches discussed have been shown to be very effective in many

applications, there are several factors that hinder their use in turbomachinery applications. In the

case of passive techniques, the system must be well tuned to the resonance of each targeted mode of

vibration to be effective. In turbomachinery, where a large number of modes with varying excitation

frequencies must be targeted, the scale of the vibration control system would quickly become

too large as additional branches are added to the circuit for each mode. Semi-active techniques,

while possessing the broadband damping capabilities needed for turbomachinery applications, have

potentially prohibitive switching requirements. Though very effective in low-frequency applications,

the need to switch states as many as four times per vibration cycle requires real-time detailed

knowledge of the structure’s motion in addition to an external power supply for the switching

device, each presenting problems for implementation in the frame of a rotating turbomachinery

blade. As a result a new vibration reduction approach, resonance frequency detuning, was proposed

by Kauffman and Lesieutre specifically for turbomachinery blades with transient excitations [35].

Kauffman and Lesieutre then studied the performance of piezoelectric-based vibration damping

and control techniques in structures subjected to frequency-sweep excitations [36], and considered

their feasibility for implementation in turbomachinery. A vibration control approach for turboma-

chinery blades would necessarily target multiple modes; it is then clear that passive approaches,

which must be finely tuned to the excitation condition of the targeted mode, are less practical.
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Kauffman and Lesieutre determined that state switching, synchronized switched damping, and

resonance frequency detuning are the most practical for this application, and that, while all three

methods are effective, synchronized switched damping achieves the greatest reduction in vibration.

Despite other approaches delivering slightly better performance, resonance frequency detuning

appears to be preferable for turbomachinery as the significantly reduced switching requirements

necessitate less power and less hardware than other semi-active approaches.
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CHAPTER 3

MODEL DEVELOPMENT

To pursue the desired analysis, a dynamics model for the blade and integrated piezoelectric materials

is required. The following section discusses how this model arises and, as even this low-order model

is unnecessarily complex for the analysis to follow, a number of simplifications and nondimension-

alizations are then proposed. The resulting set of nondimensional equations of motion are then

used to study both steady-state and transient energy harvesting behavior in the context of resonance

frequency detuning. An expression relating the effective structural stiffness to the key parameters

of the energy harvesting system is derived, and subsequently the power output of the harvesting

system is expressed in terms of this effective stiffness. Time-integration of the equations of motion

is then discussed for a treatment of transient vibrations, followed by an analytic solution that is

pursued in the interest of reducing computation time.

3.1 Discretized Equations of Motion

To conduct a transient analysis of the system, we must proceed in the time domain. Here we

begin with a low-order dynamics model of the turbomachinery blade and incorporated piezoelectric
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materials, which was previously developed using the assumed modes method: [37]
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ẅm

ẅe
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. (3.1)

Here wm and we, arising as the weights of the assumed mode shapes, become the generalized

mechanical and electrical coordinates, respectively, while M, C, K, and F are the various mass,

damping, stiffness, and forcing terms – see the appendix for full details. For an initial analysis of the

problem it is desirable to simplify the problem further, as a large number of parameters appear in

Equation (3.1). To this end several simplifying assumptions are made. We first assume an idealized

swept sinusoidal excitation of constant amplitude to represent the aerodynamic forces resulting

from rotor-stator interactions. Further, the geometric stiffness term, Ω
2Kg, is assumed constant and

incorporated in the mechanical stiffness. This assumption is justified by assuming a restricted range

of operating frequencies and thus that the stiffening (alternatively, softening) due to this term is

time independent. Finally, we assume a single degree of freedom for the mechanical and electrical

coordinates and, after nondimensionalization, arrive at the simplified equations of motion:

u′′+2ζ u′+u−q = sinφ(τ)

−k2u+q =U.

(3.2)

Here ζ is the modal damping ratio, while u, q, and U are the nondimensional displacement, charge

displacement, and voltage, respectively. Primed quantities indicate differentiation with respect to

the nondimensional time, τ . A full derivation is available in the appendix. The time-varying phase
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of excitation, φ(τ), is given by

φ(τ) =
α

2
τ2 +α0τ +ψ. (3.3)

Without a loss of generality, the constant part of the phase, ψ , is commonly taken to be zero.

In addition, we consider sweeps of zero initial frequency, such that α0 = 0. The instantaneous

frequency, or scaled time, is then given by ω = αt, where α is the frequency sweep rate, a quantity

of prime interest here.

3.2 Steady-State Analysis

In steady-state applications, the equations of motion can be simplified one step further, with the

phase of excitation reduced to φ(τ) = Ωτ , where Ω is the excitation frequency scaled by the

open-circuit natural frequency of the system. Equation (3.2) then becomes

u′′+2ζ u′+u−q = eiΩτ

−k2u+q =U.

(3.4)
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3.2.1 Resistive Shunt

Figure 3.1: AC Resistive Shunt.

Though a number of advanced harvesting circuits have been developed, there is no clear benifit

to their use in this application as these circuits are generally designed to increase power output,

which is of little concern here. Indeed, due to size limitations for a practical implementation of

resonance frequency detuning it is desirable limit any nonessential additional hardware. As a result

only resistive shunts, as in Figure 3.1, will be considered hereFigure 3.1. The dimensionless voltage

can then be determined via Ohm’s law:

U = IR =−q̇r. (3.5)
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Working toward an expression for the piezoelectric charge displacement, q, Equation (3.5) can be

used to replace U in the second equation in Equation (3.4):

− k2u+q =−q̇r =−iΩqr, (3.6)

Now, moving to the frequency domain, this becomes

q̃ =
k2

1+ iΩr
ũ, (3.7)

where i is the imaginary unit and tildes are used to indicate complex quantities. Substituting this

expression for the charge displacement in Equation (3.5), the (complex) voltage on the piezoelectric

patch is then

Ũ =−iΩq̃r =
−k2r

1+ iΩr
iΩũ. (3.8)

Equation (3.4) is then rearranged to yield an expression for ũ:

ũ =
1

−Ω2 +2iΩζ +1− k2

1+iΩr

(3.9)
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Taking the magnitude of ũ, the mechanical displacement is now known in terms of the key system

parameters:
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To this point the only assumptions that have been made are those which led to the dimensionless

equations of motion in Equation (3.4); namely, that harvesting occurs over a limited range of

rotation speeds, that the modes are well enough separated that a single degree of freedom can be

considered, and that the excitation is a constant magnitude sinusoid with a changing frequency.

Many energy harvesting researchers, however, often make the additional assumption of operating

very near resonance (that is, Ω ≈ 1) [30]. This assumption leads to a simplified expression:

u =

[

2ζ +
k2r

1+ r2

]−1

. (3.11)

Guyomar at al. for example, arrive at this expression (though in terms of dimensional quantities

and using different notation) by making the assumption that the forcing and velocity of the beam

deflection are in phase at resonance, which appears to be a good assumption for low coupling [30].
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To understand how they arrive at this expression, start by rearranging Equation (3.9):

ũ =

[

Ω
2 +2iΩζ +1+

k2iΩr

1+Ω2r2
− k2r2

Ω
2

1+Ω2r2

]−1

(3.12)

The assumption that the forcing and velocity of the beam deflection are in phase at resonance

mathematically amounts to setting the real components of this expression equal to zero:

ũ =

[

2iΩζ +
k2iΩr

1+Ω2r2

]−1

(3.13)

Upon setting Ω = 1 and taking the magnitude of this expression, Equation (3.11) is recovered.

Interestingly, the same expression is not found by simply setting Ω = 1 in Equation (3.10) and using

the assumption of low coupling:

u =

[

1−2+4ζ 2 +1+
k2

1+ r2

(

k2 +2+4ζ r−2
)

]−1/2

(3.14)

=

[

4ζ 2 +
k2

1+ r2

(

k2 +4ζ r
)

]−1/2

(3.15)

=

[

4ζ 2 +
k4

1+ r2
+

4ζ k2r

1+ r2

]−1/2

(3.16)

≈
[

4ζ 2 +
4ζ k2r

1+ r2

]−1/2

(3.17)

≈
[

2ζ +
k2r

1+ r2

]−1

. (3.18)

The last step is only made clear by working backward: after taking the square of the last line, using

the assumption of low coupling to set higher order terms ( k4) to zero, and taking the square root of
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the result, the previous expression can be recovered. However, the purpose of this work is precisely

to develop an understanding of energy harvesting behavior far from optimal conditions, and this

assumption is not valid. The general expression given by Equation (3.10) will therefore be used in

further analysis.

Finally, the power dissipated in the resistive shunt is:

P =
ŨŨ∗

2r
=

k4
Ω

2r

1+Ω2r2

u2

2
(3.19)

=
k4

Ω
2r

2(1+Ω2r2)

[

Ω
4 −2Ω

2 +4ζ 2
Ω

2 +1+
k2

1+Ω2r2

(

k2 +2Ω
2 +4ζ Ω

2r−2
)

]

.

(3.20)

3.2.2 Effective Stiffness

Of interest in this work is understanding how changes in the stiffness near the open- and short-circuit

conditions affect the power output of the harvesting system. As such, it is useful to re-parametrize

the system in terms of an effective structural stiffness involving the key parameters of the harvesting

system; this is pursued here [14]. Equation (3.4), when expressed in the frequency domain, becomes

−Ω
2ũ+2ζ iΩũ+ ũ− q̃ = f̃

−k2ũ+ q̃ = Ũ .

(3.21)
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As in the previous section, the second equation is solved for q̃, while Ũ is replaced by Equation (3.8),

yielding:

q̃ = k2ũ− k2r

1+ iΩr
iΩũ. (3.22)

Upon substituting this expression in the first line of Equation (3.21), the coupled equations of

motion

−Ω
2ũ+2ζ iΩũ+ ũ− k2ũ+

k2r

1+ iΩr
iΩũ = f̃ (3.23)

−Ω
2ũ+2ζ iΩũ+ ũ− k2ũ+

k2iΩr

1+Ω2r2
− k2r2

Ω
2

1+Ω2r2
= f̃ . (3.24)

In the second line the complex denominator has been rationalized to facilitate the next step. After

regrouping terms appropriately,

−Ω
2ũ+

(

2ζ +
k2r

1+Ω2r2

)

iΩũ+

(

1− k2 + k2 Ω
2r2

1+Ω2r2

)

ũ = f̃ . (3.25)

By comparison with the canonical second order, single degree-of-freedom equation of motion as

expressed in the frequency domain, it is now apparent that an effective damping term is present

(note the similarity to Equation (3.11) – they are identical after setting Ω = 1!) ,

ζeff = ζ +
k2r

2(1+Ω2r2)
(3.26)

=
u−1

2

∣

∣

∣

∣

(3.11),Ω=1

(3.27)
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and an effective stiffness term,

Keff = 1− k2 + k2 Ω
2r2

1+Ω2r2

= 1− k2

1+Ω2r2
.

(3.28)

The latter quantity is presently of greater interest. At the short-circuit (r = 0) and open-circuit

(r → ∞) conditions, the effective stiffness takes on the limiting values:

Keff,sc = 1− k2 Keff,oc = 1. (3.29)

It is useful to study how a small shift in effective stiffness affects the power output near open-

and short-circuit conditions, as it is by operating near these conditions that resonance frequency

detuning is most effective. In light of this, the dependance of power output on this effective stiffness

is now derived. Rewriting Equation (3.25) in terms of the newly defined effective damping and

effective stiffness gives the equation

−Ω
2ũ+ i2ζeffΩũ+Keffũ = f̃ . (3.30)

An expression for the mechanical displacement can then be found by solving the above equation for

ũ and taking its magnitude:

u = |ũũ∗|=
[

Ω
4 −2Ω

2Keff +4Ω
2ζ 2

eff +K2
eff

]−1/2
. (3.31)
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Substituting this expression into Equation (3.19), the harvested power in terms of the effective

stiffness is

P =
k4

Ω
2r

2(1+Ω2r2)

[

Ω
4 −2Ω

2Keff +4Ω
2ζ 2

eff +K2
eff

]

. (3.32)

3.3 Transient Analysis

For transient analysis of the system dynamics, Equation (3.2) is integrated via a fourth-order

Runge-Kutta numerical integration scheme, in particular MATLAB’s built-in ode45 function. The

piezoelectric voltage and power output can be calculated from the numerical solution as:

U =−k2u+q (3.33)

and

P =
U2

r
. (3.34)

To orient the reader toward the behavior of a system with transient swept excitations, the character-

istic response and power output of the system are shown in Figure 3.2. Note in particular that the

resonant response is delayed compared to that of a system under harmonic excitations, and that there

is an oscillation in the envelope after passing through resonance. Examining these figures, several

possible methods of defining optimal resonance frequency detuning present themselves: one could

minimize the overall peak response magnitude, the time it takes for the subsequent oscillations in

the envelope to drop below a threshold value, or possibly a time-averaged response over the period
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of interest. The first metric is chosen here, both for its simplicity and intuitive nature – the goal of

resonance frequency detuning is to reduce resonant response, thus minimizing the peak response

seems natural.

3.3.1 Analytic Solution

Direct time-integration of the equations of motion can become very expensive computationally,

particularly for sweep rates α < 10−4 [38]. As a result, it would be advantageous to derive an

analytic solution, thus reducing the computational resources needed in future analysis. Markert

and Siedler presented an analytic solution for the response of a single-degree-of-freedom system

driven through resonance under constant angular acceleration [39]; an analogous solution for multi-

degree-of-freedom systems is sought here. In deriving the desired expression it is necessary to use

the matrix exponential. First the system is written in first-order form,

[A]{z′}+[B]{z}= { f}, (3.35)

where

{z}=










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
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
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
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. (3.36)
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(a) Response magnitude.

(b) Power output.

Figure 3.2: Response and power output of a system subjected to frequency sweep excitations, for

sweep rate α = 10−3, modal damping ratio ζ = 0.1%, and electromechanical coupling coefficient

k2 = 5.0%.
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Alternatively, Equation (3.35) can be rewritten as

{z′}+[C]{z}= { f}, (3.37)

where

[C] = [A]−1 [B], (3.38)

and it can be easily verified that

[A]−1 { f}= { f}. (3.39)

Using the method of integrating factors, a solution for this system can then be found:

{z(τ)}= e−[C]τ{z(0)}+ e−[C]τ
∫ τ

0
e[C]τ{ f}dτ. (3.40)

Here e[C]τ is the matrix exponential, and a solution for the integral is still required. As can be

verified by differentiation, this integral comes to

∫ τ

0
e[C]τ{ f}dτ = Im

{

√

−π

2iα
e

i
2α (2αφ−α2

0+2iα0[C]+[C]2) (3.41)

·
[

erf

(

[C]+ iα0√
−2iα

)

− erf

(

iατ +[C]+ iα0√
−2iα

)]}































1

0

0































. (3.42)
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Complications arise when taking the error function of the matrix [C], however. To see a possible

reason for this difficulty, consider the definition of the error function:

erf(x) =
2√
π

∫ x

0
e−t2

dt. (3.43)

The argument of the error function is thus the upper limit of an integral, and it is unclear how to

proceed when the upper limit of an integral is a matrix. One possibility is to diagonalize the matrix,

[C] = [V ][D][V ]−1 (3.44)

and then calculate the error function as

erf([C]) = [V ]erf([D])[V ]−1. (3.45)
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CHAPTER 4

RESULTS

This chapter begins by examining steady-state energy harvesting near the open- and short-circuit

conditions, as is required for effective implementation of resonance frequency detuning. The

results of this work are then verified through a simple experiment, with theory and experiment in

excellent agreement. Preceding to study energy harvesting behavior in a system with frequency

sweep excitations, the next section develops a metric for using the harvested energy as a proxy for

real-time knowledge of the blade vibration characteristics. Finally, as the frequency sweep rate does

not appear in conventional energy harvesting research, the role of this parameter is studied in detail.

4.1 Harvesting at the Margins

Of interest here is developing an understanding of energy harvesting far from conventional harvesting

conditions – that is far from resonance and near the open- and short-circuit conditions required for

effective resonance frequency detuning. Considering Figures 4.1 and 4.2, it is readily seen that

appreciable energy is a harvested over a small region of the R-Ω plane, as is well established in

the field of piezoelectric-based energy harvesting. Cross sectional slices of Figure 4.2 are given in

Figures 4.3 and 4.4. This result, it would seem, is rather discouraging for an application where we
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seek to operate far from this subspace of efficient harvesting conditions. Note that, as Renno et al.

discovered, the peak power output splits to a bimodal distribution as the damping ratio drops below

the bifurcation damping ratio [29]. This result will be particularly useful as the problem is recast in

terms of the effective structural stiffness derived in section 3.2.2.

This research effort is particularly interested in understanding how shifts in the effective stiffness

near the open- and short-circuit conditions affect the power output. This relationship is expressed

analytically in Equation (3.32) and plotted in Figure 4.5. Note the distinct change in the topology of

the solution when the problem is recast in terms of the effective stiffness: there is now a significant

region where appreciable energy is harvested. Indeed, a small shift in the effective stiffness near the

open- and short-circuit conditions has a dramatic impact on the power output of the system. This

is an excellent result for resonance frequency detuning, as it indicates that it will be possible to

operate very near the ideal conditions of open- and short-circuit, while still harvesting adequate

energy to trigger the change in stiffness states. While this result would very likely not be anticipated

by even the most experienced energy harvesting researchers – who would tend to expect something

of a bell curve – it is maybe not so surprising. To see why, consider Figure 2.4. Near the open-

and short-circuit conditions, a shift of several orders of magnitude in the shunt resistance has a

negligible on the effective stiffness, yet one would expect there to be an appreciable change in the

power output of the system; thus, one can change the shunt resistance substantially to improve the

power output while essentially maintaining the open-circuit and short-circuit stiffness states.
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Figure 4.1: Power output as a function of resistive load and frequency for ζ = 1.5% and k2 = 5%.

Figure 4.2: Power output as a function of resistive load and frequency for ζ = 0.6% and k2 = 5%.
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Figure 4.3: Power output as a function of excitation frequency normalized by optimal power output,

with ζ = 0.6% and k2 = 5%.

Figure 4.4: Power output as a function of resistive load normalized by optimal power output, with

ζ = 0.6% and k2 = 5%.
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Figure 4.5: Power vs. effective stiffness for several driving frequencies, normalized by the optimal

power output, with ζ = 0.6% and k2 = 5%.

4.1.1 Ultra Low Damping

In light of the previous discussion on monolithic blade construction, the case of ultra low damping

is of particular interest here. Figures 4.6 and 4.7 shows the power output for a (relatively) high

damping ratio and for a very low damping ratio (though certainly within the region of observed

values for a typical blade). We see that the power output is significantly increased in the low

damping case. More importantly, the peak power output has bifurcated, with the two peaks moving

near the margins – that is at high and low stiffness states, corresponding to approximately open- and
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short-circuit. As a result, the sensitivity of the power output to stiffness changes near the margins is

enhanced in the low damping case, behavior that can be taken advantage of in this application.

Figure 4.6: Power output as a function of effective stiffness, for Ω ∈ [0.5 : 1.5] and k2 = 5%.

(Relatively) high damping case, ζ = 6%. Note the difference in the scale on the vertical axis.
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Figure 4.7: Power output as a function of effective stiffness, for Ω ∈ [0.5 : 1.5] and k2 = 5%. Ultra

low damping case, ζ = 0.06%. Note the difference in the scale on the vertical axis.
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4.1.2 Experimental Validation

Though the focus of this work was theoretical, a brief experiment was performed to validate the

results of the model in this steady-state analysis.

4.1.2.1 Experimental Setup

Figure 4.8: Experimental setup.
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The experimental setup used to confirm the experimental results of the previous sections consisted

of a steel cantilever beam mounted to a rigid base structure. A pair of Midé qp10n piezoelectric

actuators were bonded near the base of the beam in a bimorph configuration and connected in

parallel to a resistive shunt attached to a breadboard. Each Midé piezoelectric element has a nominal

capacitance of Co = 55 nF. The experimental setup can be seen in Figure 4.8. For data acquisition,

MATLAB’s Data Acquisition Toolbox was used in conjunction with an NI-9234 DAQ device. The

acceleration of the beam was measured by an accelerometer attached at the tip, and the NI DAQ

device recorded the voltage across the piezoelectric element as well as the voltage associated with

the excitation.

Before conducting any experimental investigation, it was necessary to determine the coupling

coefficients k2, the damping ratios ζ , and the open-circuit natural frequencies fn of the first several

modes. To this end, the structure was excited at the base via an impact hammer, and a simple circle

fit along with the half-power bandwidth method sufficed to determine the damping ratios, the natural

frequencies at both open- and short-circuit, and thus the coupling coefficients (recall the definition

of the coupling coefficient given by Equation (2.6)). The results are displayed in Table 4.1.
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4.1.2.2 Experimental Results

Table 4.1: Modal Parameters

fn,oc [Hz] ζn k2

12.8 0.8% 2.5%

68.06 0.6% 0.5%

192.09 0.2% 0.1%

398.3 0.9% 0.7%

Seeking to validate the analytical results of Equation (3.19) (as seen in Figure 4.4), the structure was

excited at the resonance frequency of the second vibration mode, f2,oc = 80 Hz. These excitations

were generated by a shaker attached near the base of the beam (see Figure 4.8), and the second

mode was chosen because the relatively primitive shaker used was observed to produce the cleanest

signal near this frequency. The power dissipated across the shunt was calculated as the square of the

voltage measured across the resistor divided by the shunt resistance. By varying the shunt resistance

over a number of values between open- and short-circuit, the experimental dependence of the power

on shunt resistance was determined. Displayed in Figure 4.9, the theory and experimental results are

seen to agree quite well. For lack of a better method, the effective beam stiffness was then calculated

from the experimental values of k2, R, and Ω via the theoretical definition in Equation (3.28), in an

effort to validate the results of Figure 4.5. The results are displayed in Figure 4.10, and, again, close

agreement between theory and experiment is observed. This is particularly true near the open- and

short-circuit conditions – the “margins,” precisely the conditions which are of prime interest in this

research.
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This discussion would be incomplete without mentioning potential sources of error in this

experiment, of which there are several. One such source is the precision of the instruments used

for measurement – for example the DAQ device, the accelerometer, the interfacing between the

DAQ device and MATLAB. Another source of error comes from environmental factors – vibrations

in the building (particularly when not on the ground floor, as was the case in this experiment),

temperature fluctuations, someone bumping the table containing the experimental setup. Yet another

source of error arises from the fact that the theoretical model is derived from the assumption of

base excitations, which were not possible to reproduce in practice due to the limited equipment that

was available at the time – with a full scale shaker issue can be alleviated in the future. Finally,

one expects that there should be a more convincing method to determine the effective stiffness

experimentally, rather than relying on the theoretical result. It is no wonder that Figure 4.10 shows

close agreement between theory and experiment, as it is simply a reparameterization of the results

in Figure 4.9. One possibility would be to statically load the beam and record the tip deflection

for many shunt resistances, as the deflection should be proportional to the effective beam stiffness.

To accurately achieve this, however, it is important to have a structure with high coupling, as the

shift in stiffness between open-circuit and short-circuit needs to be of sufficient magnitude that the

variation in beam deflection is appreciable.

58



Figure 4.9: Comparison of analytical results with experiment for the dependence of power output

on shunt resistance, for k2 = 0.5%, ζ = 0.6%, and Ω = 1.

Figure 4.10: Comparison of analytical results with experiment for the dependence of power output

on effective stiffness, for k2 = 0.%5, ζ = 0.6%, and Ω = 1.
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4.2 Harvesting as a Proxy for Vibration Characteristics

A practical implementation of resonance frequency detuning in the turbomachinery environment

will allow for minimal on-blade sensing and processing, and a quantity readily measured on-blade

that can serve as a proxy for real-time knowledge of the local vibration characteristics is sought.

One such quantity that immediately presents itself is the harvested energy, which, by the nature of

the electromechanical coupling exhibited by piezoelectric materials, must be closely correlated with

the vibration history. It is already necessary to store the energy as it is being harvested, and it may

be that some threshold harvested energy can serve as a trigger for the optimal switch in the control

law inherent to resonance frequency detuning. This section seeks to minimize the response of the

system in terms of the harvested energy at the time of the switch, developing a metric for using

the harvested energy to optimally trigger the change in stiffness states with little signal processing

or additional hardware needed. Here the optimal switch is defined as that which minimizes the

peak response of the system, though there are several other possible definitions of optimality – for

example minimizing the total area under the response curve or maximizing the speed at which the

oscillations in the response envelope decrease below some threshold value.
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Figure 4.11: Response envelopes for a many switching times. The optimal (minimized) response

is given in red, as well as the peak response corresponding to each switch time, for α = 10−4,

k2 = 1.0%, ζ = 0.5%, roc,sc = 10±3.

Figure 4.12: Peak response vs. energy harvested at the time of the switch, for α = 10−4, k2 = 1.0%,

ζ = 0.5%, roc,sc = 10±3.
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In developing a proxy relationship between the harvested energy and mechanical response of

the blade, the system was first simulated for a number of different switch times, saving the energy

harvested at the time of the switch for each case. The response curves for each switch trigger are

shown in Figure 4.11, where black dots indicate the peak response of each case and the optimal

curve (minimal response) is in red. Each peak response is then plotted in terms of the energy

harvested at the switching time, as in Figure 4.12, essentially reparametrizing the problem in terms

of the harvested energy rather than the switch time. Figure 4.12 shows a clear minimum in the

response for a nondimensional energy of about 0.015, establishing that the harvested energy can

indeed be used to indicate the switch time which minimizes the peak response of the system. This

optimal switching energy is expected to depend on the key parameters of the system, namely the

coupling coefficient, the modal damping ratio, the sweep rate, and the open- and short-circuit shunt

resistances. Recall that true open- and short circuit conditions allow for no energy harvesting, and

when refered to in this context open-circuit and short-circuit refer to shunts which approximate these

conditions through very high and very low resistances, respectively. To clarify the notation used

in this section, roc,sc = 10±N refers to an open-circuit resistance of roc = 10N and a short-circuit

resistance of rsc = 10−N .

Having established that the harvested energy does indeed seem to be a potential metric for the

optimal switch in resonance frequency detuning, the simulation was repeated for six sets of open-

and short-circuit shunt resistances ranging between roc,sc = 10±4 in an effort to understand how

this optimal switching energy depends on the shunt resistances. Proceeding in the same manner

as before, the peak response for each switch trigger is plotted against the harvested energy at the
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time of the switch in Figure 4.13; in each case it is clear that the response in minimzed at some

optimal switching energy. Seeking to remove the dependence on shunt resistance, both the vertical

and horizontal axes were then normalized. The peak response of each switch time was normalized

by the peak response of the unswitched system – that is, the system with no detuning applied, while

the harvested energy is normalized by a characteristic energy at the switching time. This quantity is

constructed as the product of the switching time and the instantaneous power at the switching time,

while this power is calculated as the square of the piezoelectric voltage at the switch divided by the

resistance immediatetly before the switch – that is, the open-circuit resistance. However, the same

switching times were used in the simulations for each set of open- and short-circuit resistances, and

the voltage is known at the time of the switch, therefore this charactersitic energy can simply be

written as a constant over the open-circuit resistance:

E∗ =
V 2

switch

roc
τswitch ∼

C

roc
(4.1)

Figure 4.14 shows the results of this normalization; observe that the six peak repsonse curves

have collapsed to a single curve, indicating that this normalized switching energy is independent

of the shunt resistance used. Note how, if the switch is applied too early, the peak response of the

detuned system can exceed that of the system with no switch; a proper selection of the swich time is

indeed very important.
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Figure 4.13: Peak response as a function of harvested energy at the time of the switch, for sweep

rate α = 10−4, modal damping ratio ζ = 0.1%, electromechanical coupling coefficient k2 = 5.0%,

and 6 different sets of shunt resistances ranging between roc,sc = 10±4 and roc,sc = 10±2.

Figure 4.14: Normalized peak response as a function of normalized harvested energy at the time of

the switch, for sweep rate α = 10−4, modal damping ratio ζ = 0.1%, electromechanical coupling

coefficient k2 = 5.0%, and 6 different sets of shunt resistances ranging between roc,sc = 10±4 and

roc,sc = 10±2.
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Having eliminated the optimal switching energy’s dependence on the shunt resistances, the

effects of changing the other key parameters – the coupling coefficient, sweep rate, and damping

ratio – are now investigated by repeating the process described above for a range of values of each

parameter: α ∈
[

10−5,10−3
]

, ζ ∈ [0.05%,1%], and k2 ∈ [1%,10%]. By varying each parameter

independently while holding the other parameters constant at the nominal values of α = 10−4,

ζ = 0.1%, and k2 = 1.0%, the effect each parameter has on the optimal switch energy was clearly

observed, as can be seen in Figures 4.15 to 4.17. For each of these cases the simulation was repeated

for the open- and short-circuit resistances roc,sc = 10±2 and roc,sc = 10±3 to confirm the above result

that the same optimal normalized switching energy is found for different choices of the shunt circuit

resistances.

Figure 4.15: Optimal switching energy vs. coupling coefficient, for α = 10−4, ζ = 0.5%.
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The effect of varying each of these parameters is now considered in turn. It is readily seen

in Figure 4.15 that increasing the coupling coefficient leads to an increased optimal switching

energy, behavior that can be understood intuitvely by considering that increased coupling means

the structure is able to convert more strain energy to electrical energy. As a result, more energy

will be harvested for a given switching time as the coupling coefficient increases. Figure 4.16

shows that increasing the sweep rate causes the optimal switching energy to quickly decrease, again,

behavior that makes sense. Increasing the sweep rate means that resonance is reached more rapidly,

thus less time is spent harvesting before the switch and the optimal switching energy accordingly

decreases. More precisely, one would expect the switch to occur at approximaetely the same

frequency (equivalently, the scaled time ατ) regardless of the sweep rate, thus the time the switch

occurs scales with α−1. Finally, Figure 4.17 shows that decreasing the modal damping ratio causes

the optimal switching energy to increase. Once again, this is logical bahavior. It is commonly

known that the mechanical response of a system increases for a decreasing damping ratio, therefore

more strain energy is present for the energy harvesting system to convert to electrical energy. As a

result, even if the switch time were independent of the damping ratio – which it is not – the energy

harvested at the time of the switch would increase for a decreased damping ratio [38].
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Figure 4.16: Optimal switching energy vs. sweep rate. k2 = 1.0% , ζ = 0.5%.

Figure 4.17: Optimal switching energy vs. modal damping ratio, for α = 10−4, k2 = 1.0%.

67



4.3 The Role of Sweep Rate

The frequency sweep rate, α , has been seen to have an impact on transient energy harvesting

behavior in the previous section, and its role is investigated in more detail here. As resonance

frequency detuning is formulated for systems with a changing excitation frequency, it is important

to understand the role of the sweep rate, the parameter that describes the rate at which the excitation

frequency changes. Considered here are only linear frequency sweeps, though higher order sweeps

could be handled analogously.

The nondimensional sweep rate used in this work, α , can be expressed for each vibration mode

in terms of the dimensional sweep rate and the resonance frequency of the mode of interest: [8]

α =
frate

2π f 2
n

(4.2)

This expression allows us to establish a typical range of sweep rates in turbomachinery applications.

Consider a machine with a rotation sweep rate of 3000 RPMs, corresponding to approximately 50

Hz/s. In exciting a resonance at 100 Hz, the sweep rate is α ≈ 10−3; in exciting a resonance at 1000

Hz, the sweep rate is α ≈ 10−5. Higher sweep rates can be generated through higher engine order

excitations (denoted by N in Figure 1.3), but this exercise establishes a baseline range to investigate.

To understand the role of the frequency sweep rate in transient energy harvesting systems, first

consider Figure 4.18, where the power output is plotted as a function of the resistive load and the

instantaneous excitation frequency. Several important observations can be made. The figure shows
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that as the sweep rate decreases the peak power output of the system increases and the peak becomes

much sharper. This behavior is reminiscent of the role the modal damping ratio plays in mechanical

systems, as a decreasing damping ratio leads to increased peak response as well as a sharper, more

narrow, peak. Drawing further analogy with the damping ratio, recall that Renno et al. found that

the optimal power output bifurcates as the damping ratio drops below a particular value, called the

bifurcation damping ratio [29]. Again, we see very similar behavior here. When the sweep rate

drops below α = 10−3, we begin to see two distinct maxima in the power output, corresponding

to the resonance and anti-resonance. We can then say there is a ‘bifurcation sweep rate,’ which

depends on the other key parameters of the system – the damping ratio and the coupling coefficient.
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(a) α = 10−2.5

(b) α = 10−3
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(c) α = 10−3.5

(d) α = 10−4

Figure 4.18: Power output vs. shunt resistance and instantaneous frequency (scaled time), for

ζ = 0.1% and k2 = 5%. Note the different scales on the vertical axes.
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To further develop an understanding of the effect of the sweep rate, now consider Figure 4.19.

Figure 4.19a is a bifurcation diagram showing how the optimal shunt resistance depends on the

sweep rate. For high sweep rates, there is a single optimal value of the resistance, corresponding of

course to the peak power output. As the sweep rate decreases, however, three distinct extrema arise:

two local maxima and a minimum. Refer to Figure 4.18d for a clear depiction of this behavior for

a particular value of the sweep rate (α = 10−4). Figures 4.19b and 4.19c show how the extremal

values of the power output and mechanical response vary with the sweep rate. The resonance and

anti-resonance show very similar behavior, with the resonance having a slightly larger value for

each the power output and mechanical response. The local minimum, however, seems to plateau to a

constant value as the sweep rate approaches zero. This observation may be justified by considering

that as the sweep rate approaches zero we expect to recover steady state behavior, and it seems that

the minimum is indeed converging toward some value as the sweep rate approaches zero.
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(a)

(b)

(c)

Figure 4.19: Depiction of local extrema for shunt resistance, power output, and mechanical

response as a function of the sweep rate, for ζ = 0.1% and k2 = 5%.
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CHAPTER 5

CONCLUSIONS

The purpose of this work was to improve the understanding of energy harvesting behavior in

the context of a vibration reduction method for turbomachinery bladed disks, namely resonance

frequency detuning. This method only requires a small amount of power to alter the boundary

conditions of the piezoelectric material, and thus this work differs from much energy harvesting

research in that it is not concerned with maximizing the power output of the system.

Resonance frequency detuning is most effective when the stiffness states are well separated,

a condition that is met when the open- and short-circuit boundary conditions are used. These

states correspond to zero charge displacement and zero voltage, however, and therefore no energy

flow. The first step was thus to examine energy harvesting behavior far from optimal harvesting

conditions – near open- and short-circuit. An expression relating the electrical impedance in the

harvesting circuit to the effective structural stiffness was developed, showing that a continuous

distribution of stiffness states is available by varying the impedance. The power output of the

system was then studied in terms of this effective structural stiffness, finding that a small shift in

stiffness near the open- and short-circuit conditions leads to a significant increase in power output.

Encouragingly, this effect is amplified in the case of ultra low damping, one of the precise conditions

that necessitates this vibration reduction technique.
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In considering practical on-blade implementation of resonance frequency detuning, size becomes

an important factor. With this limitation in mind, it is desirable to minimize the need for sensors

and on-blade signal processing, and, as the energy is harvested from the local vibrations, it is clear

that the harvested energy should be closely correlated with the vibration characteristics of the blade.

One distinct possibility is therefore to use the energy harvested as a proxy for knowledge of the

local vibration characteristics, a topic which was investigated in this work. Through time integration

of the equations of motion, it was established that the optimal switch in the control law inherent to

resonance frequency detuning could, at least in theory, be determined from the energy harvested.

As a result it may be possible to use threshold stored energy to trigger the switch in stiffness states,

eliminating the need for real-time knowledge of the mechanical behavior of the system as well as

requiring minimal signal processing. It was found that the harvested energy corresponding to the

optimal change in stiffness states is, after normalization, independent of the choice of open- and

short-circuit resistances, effectively reducing the parameter space for further parametric studies of

the relation between harvested energy and optimal switching for resonance frequency detuning.

5.1 Recommended Future Work

There are always opportunities to pursue further research, and this work would be incomplete without

mentioning several possibilities. In continuing the study of energy harvesting “at the margins,” a

next step is to develop the circuitry needed to combine open- and short-circuit harvesting in a single

system, allowing for control of the electrical boundary conditions and thus the stiffness states. It
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has been shown that sufficient energy to change stiffness states is available under these non-optimal

harvesting conditions; it now remains to accommodate both conditions in a unified approach. It

would also be valuable to allow for other boundary conditions, as it may be found that it is necessary

to alter the stiffness state slowly and continuously to avoid exciting higher modes – a sudden change

in stiffness states may just as well push another vibration mode closer to resonance. Furthermore,

as resonance frequency detuning is inherently an approach for control of transient vibrations, this

analysis will need to extend to systems with a changing excitation frequency. It is anticipated that

the sensitivity of power output near the open- and short-circuit conditions will remain a feature of

systems with transient vibrations; however, this belief should be confirmed.

Several assumptions are made in this analysis for simplicity, providing several further topics for

study as each of these assumptions are relaxed. It was idealized that the change in stiffness states

occurs instantaneously, with the effect of continuous change in stiffness states over a finite time

being neglected. It would be interesting to observe what effect such a switch has on the mechanical

response of the system. In reducing the full blade dynamics model to the simplified equations of

motion used throughout this work, a single-degree-of-freedom assumption was made, neglecting

the effect state switching might have on exciting other vibration modes; in the future this analysis

should extend to multi-degree-of-freedom systems.

An additional application of these results would be to detune a simple cantilever beam with

base excitations as it passes through resonance, using the energy stored on a capacitor to trigger the

switch as some threshold value is reached. This experiment would require developing the circuitry

needed to process the harvested energy and trigger the change in boundary conditions in real time.
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Given full knowledge of the system parameters, which is of course practical in the lab setting, the

results of this work could be used to determine the optimal switching energy for a particular system.

This approach is not realistic for actual implementation of resonance frequency detuning, however,

particularly as many of the parameters are frequency dependent and thus constantly changing, and a

deeper parametric study of the relationship between the harvested energy and the optimal switch is

needed to develop a uniform metric for predicting the optimal switch trigger.
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APPENDIX A

DERIVATION OF NONDIMENSIONAL EQUATIONS OF MOTION
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The simplified equations of motion are derived from the full blade dynamics model:
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. (A.1)

Several assumptions are then made: the modes are assumed to be well separated and thus the

mechanical and electrical degrees of freedom can be considered as scalar quantities; the mechanical

excitation is idealized as a swept sinusoidal force with constant amplitude; finally, the range of

operating frequencies is restricted such that the geometric stiffening term is assumed to be constant

in time. With these assumptions and some rearranging, we have,

Mẍ+Cẋ+Kocx−KcQ = f sin(ωt)

−Kcx+
1

Co
Q =V

(A.2)

Under short-circuit conditions (that is, V = 0), the second equation reduces to

Q = KcCox. (A.3)

Upon substituting this expression in the first line of Equation (A.2), we have a form of the canonical

second-order ordinary differential equation:

Mẍ+Cẋ+(Koc −K2
c Co)x = f sin(ωt). (A.4)
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The short-circuit stiffness is therefore given by:

Ksc = Koc −K2
c Co. (A.5)

Now, under short-circuit conditions (that is, Q = 0), Equation (A.2) becomes

Mẍ+Cẋ+Kocx = f sin(ωt)

−Kcx =V.

(A.6)

From this, the natural frequency at open-circuit is:

ωoc =

√

Koc

M
. (A.7)

Further, under static conditions ẍ = ẋ = 0, Equation (A.6) reduces to

Kocx = f

−Kcx =V.

(A.8)

Equation (A.2), in the (static) blocked case, becomes

−KcQ = f

1

Co
Q =V,

(A.9)
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and by first eliminating the charge displacement from either equation, the the static blocked voltage

and static blocked charge displacement are found to be:

Vo =
f

KcCo
Qo =CoVo =

f

Kc
. (A.10)

We are now in a position to write an expression for the dimensionless mechanical displacement,

charge displacement, voltage, time, and natural frequency:

u =
x

f/Koc
q =

Q

f/Kc
U =

KcCo

f
V τ = ωoct Ω =

ω

ωoc
. (A.11)

The nondimensional form of the equations of motion then drops out after these quantities are

substituted back into Equation (A.2):

u′′+2ζ u′+u−q = eiΩτ

−k2u+q =U.

(A.12)

Derivatives with respect to the dimensionless time, τ , are denoted by primed quantities, while the

modal damping ratio ζ and the electromechanical coupling coefficient k are defined as:

ζ =
2C√
KocM

k2 =
ω2

oc −ω2
sc

ω2
oc

=
Koc −Ksc

Koc
=

K2
c Co

Koc
. (A.13)
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While not appearing explicitly in this derivation, it is important to define the dimensionless power

and resistance in terms of dimensional quantities:

R =CoωocR̄ P =
KcCo

f 2ωoc
P̄. (A.14)

Here the dimensional quantities are denoted by an overline, such as R̄.
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APPENDIX B

MATLAB CODE
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B.1 Resistive Shunt

function dx = ode_r(t,x,zeta,a,a0,psi,ks,r)

% ODE_R: ODE file for resistive shunt time integration

% INPUTS

% t : current time

% x : system state vector

% zeta : modal damping

% a : linear sweep rate

% a0 : initial frequency

% psi : initial phase

% ks : electromechanical coupling coefficient (squared)

% r : shunt resistance

% OUTPUT

% dx : time derivative of the state vector, x

% USAGE

% [T,X] = ode45(@ode_r,TIME,X0,OPTIONS,Z,A,A0,PSI,KS,R);

% where X = [x’,x,q]

% EOM

% x’’ + 2 Z x’ + x - q = sin(A T^2/2 + A0 T + PSI)

% R q’ - KS x + q = 0

%

dx = zeros(size(x));

dx(1) = -2*zeta*x(1)- x(2) + x(3) + sin(a/2*t^2 + a0*t + psi);

dx(2) = x(1);

dx(3) = 1/r*(ks*x(2) - x(3));

end

B.2 Resistive-Inductive Shunt

function dx = ode_rl(t,x,zeta,a,a0,psi,ks,r,l)

% ODE_RL: ODE file for resistive-inductive shunt time integration

% INPUTS

% t : current time

% x : system state vector

% zeta : modal damping

% a : linear sweep rate

% a0 : initial frequency
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% psi : initial phase

% ks : electromechanical coupling coefficient (squared)

% r : shunt resistance

% l : shunt inductance

% OUTPUT

% dx : time derivative of the state vector, x

% USAGE

% [T,X] = ode45(@ode_rl,TIME,X0,OPTIONS,Z,A,A0,PSI,KS,R,L);

% where X = [x’,x,q’,q]

% EOM

% x’’ + 2 Z x’ + x - q = sin(A T^2/2 + A0 T + PSI)

% L q’’ + R q’ - KS x + q = 0

%

dx = zeros(size(x));

dx(1) = -2*zeta*x(1)- x(1) + x(4) + sin(a/2*t^2 + a0*t + psi);

dx(2) = x(1);

dx(3) = 1/l*(-r*x(3) + ks*x(2) - x(4));

dx(4) = x(3);

end

B.3 Simulation of Resonance Frequency Detuning

function [t_sw,E_sw,V_sw,U_max,U_env,T] = RFD_sim(t_sw,ks,zeta,a,a0,psi)

% RFD_SIM: function to simulate RFD system

% INPUTS

% t_sw : (requested) switching time

% ks : electromechanical coupling coefficient (squared)

% zeta : modal damping

% a : linear sweep rate

% a0 : initial frequency

% psi : initial phase

% OUTPUTS

% t_sw : actual switch time (may not exactly equal input due to the

% discrete nature of the calculation)

% E_sw : energy harvested up to the switch time

% V_sw : voltage at the time of the switch

% U_max : Peak response

% U_env : response envelope at times T
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% T : integration time series

r_oc = 1E2; % Open-circuit shunt resistance

r_sc = 1E-2; % Short-circuit shunt resistance

N = 1000000; % Number of time steps for integration

X0 = [0 0 0]; % Initial condtions

T = linspace(0,2/a,N); % Time span for integration

T_OC = T(T<t_sw); % OC time span

T_SC = T(T>t_sw); % SC time span

% Simulate at open-circuit

[t_oc,x_oc] = ode45(ode_r,T_OC,X0,zeta,a,a0,psi,ks,r_oc);

X0 = x_oc(end,:); % set intitial condition for sc integration

% Simulate at short-circuit

[t_sc,x_sc] = ode45(ode_r,T_SC,X0,zeta,a,a0,psi,ks,r_sc);

T = zeros(N-1,1);

T = [t_oc’ t_sc(2:end)’];

X = [x_oc’ x_sc(2:end,:)’];

% Displacement, Charge displacement:

u = X(2,:);

q = X(3,:);

dt = diff(T);

% Voltage, Power:

V = (ks*u-q);

P_oc = V(T<t_sw).^2/r_oc;

P_sc = V(T>t_sw).^2/r_sc;

P = [P_oc P_sc];

% Energy:

E = zeros(length(T),1);

for i = 2:length(T)

E(i) = E(i-1) + P(i-1)*dt(i-1);

end

% Find energy harvested up to switching time:

t_temp = T(T<t_sw);
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t_sw = t_temp(end);

E_sw = E(T==t_sw);

V_sw = V(T==t_sw);

% Response Envelope

[tu_temp,U_temp] = peakpick(T,u,0);

U_env = interp1(tu_temp,U_temp,T,’spline’);

% Peak Response:

U_max = max(U_env);

end
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