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ABSTRACT 

A Left Ventricular Assist Device (LVAD) is a mechanical pump that provides temporary 

circulatory support when used as bridge-to-transplantation and relieves workload demand placed 

on a failing heart allowing for myocardia recovery when used as destination therapy. Stroke is 

the most devastating complication after ventricular assist device (VAD) implantation, with an 

incidence of 14-47% over 3-6 months, despite improvements in device design and 

anticoagulation. This complication due to thrombus formation and subsequent transport through 

the vasculature to cerebral vessels continues to limit the widespread implementation of VAD 

therapy. Patient-specific computational fluid dynamics (CFD) analysis may elucidate ways to 

reduce this risk. 

 A multi-scale model of the aortic circulation was employed to examine the effects 

on flow conditions resulting from varying the VAD cannula implantation location and angle of 

incidence of the anastomosis to the ascending aorta based on a patient-specific geometry 

obtained from CT scans. The purpose of this study is to numerically investigate tailoring cannula 

implantation with the aim of reducing the number of thrombi reaching cerebral vessels (vertebral 

and carotid arteries), thereby reducing incidence of stroke in LVADs. The multi-scale 

computation consists of a 0D lumped parameter model (LPM) of the circulation modeled via a 

50 degree of freedom (DOF) electrical circuit analogy that includes an LVAD model coupled to 

a 3D computational fluid dynamics model of the circulation. An in-house adaptive Runge-Kutta 

method is utilized to solve the 50 DOF LPM, and the StarCCM+ CFD code is utilized to solve 

the flow field. This 0D-3D coupling for the flow is accomplished iteratively with the 0D LPM 

providing the pulsatile boundary conditions that drive the 3D CFD time-accurate computations 
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of the flow field. The 0D-3D computations are carried out in a parallel environment on a multi-

node cluster computational platform. Investigated angle configurations include cannula 

implantations at 60° and 90° to the right lateral wall of the ascending aorta. We also considered 

placements of the VAD cannula along the ascending aorta in which distances of the VAD 

anastomosis is varied relative to the takeoff of the innominate artery.  We implemented a mixed 

Eulerian-Lagrangian particle-tracking scheme to quantify the number of stroke-inducing 

particles reaching cerebral vessel outlets and included flow visualization through streamlines to 

identify regions of strong vorticity and flow stagnation, which can promote thrombus formation. 

Thrombi were modeled as spheres with perfectly elastic interactions numerically released 

randomly in time and space at cannula inlet plane. Based on clinical observation of the range of 

thrombus sizes encountered in such cases, particle diameters of 2.0mm, 3.0mm and 5.0mm were 

investigated in our numerical computations. Pulsatile flow results for aforementioned angles 

suggest that a 90° cannula implementation causes flow impingement on the left lateral aortic wall 

and appears to be highly thrombogenic due to large momentum losses and zones of large re-

circulation and that shallow and intermediate cannula angles promote more regular flow carrying 

particles towards the lower body potentially reducing stroke risk. Results are presented from this 

detailed study accompanied with statistical analysis of the significance of stroke risk reduction 

under various implantation scenarios. Indications from this pulsatile numerical study suggest that 

up to a 50% reduction in stroke rate can be achieve with tailoring of cannula implantation. 

Results are consistent with significant reduction in stroke incidence achieved by tailoring 

cannula implantation as reported in previous steady flow computations carried out by our group. 
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As such, results of this study suggest that a simple surgical maneuver in the process of VAD 

implantation may significantly improve patient life.  
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1 CHAPTER 1: INTRODUCTION 

Among all possible malfunctions of bodily organs, heart failure, a condition wherein 

cardiac output cannot satisfy corporal requirement, is the most disconcerting. Dependent upon 

the condition of the heart, a by-pass is one consideration. In extremis, transplant becomes the 

best probable solution. Donor compatibility is necessary in order for this procedure to be 

successful leading to long wait times while seeking donor compatibility and availability. In such 

cases, a Ventricular Assist Device (VAD) can be implemented as a bridge to transplantation 

(Figure 1, a-b). Continuous flow pump have shown to be a promising and durable destination 

therapy. Depending on the workload they almost entirely nullify pulsatile effects, which have 

been a major cause to thrombo-embolism. In addition VADs been seen to allow room for 

myocardia recovery. While Ventricular Assist Devices are capable, their efficiency depends 

upon fluid composition and flow mechanics, and despite improved device design and anti-

coagulation treatment, a patient is likely to suffer a thrombo-embolism within a 6 months to a 

one-year period. 
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(a) 

 

(b) 

Figure 1 - (a) LVAD implantation, (b) LVAD thoracic location. 

Incidence of stroke can be reduced significantly by an adjustment of the VAD outflow 

cannula to direct possible thrombi away from the cerebral vessels towards the other parts of the 

vasculature where they would cause less harm. Steady flow Computational Fluid Dynamic 

 2 



(CFD) analyses have indicated reductions of stroke incidence by as much as 50% dependent 

upon cannula implantation configurations [1,2]. 

1.1 Vascular Organization 

 

An organism’s vasculature serves as a blood flow conduit, carrying oxygen and nutrients 

to the most basic units of the body, supporting additionally, the immune, reparative and other 

regulative processes. Despite complexity and scale variation, vasculature can be separated in 5 

categories: arteries, arterioles, capillaries, venules and veins (Figure 2). 

 

Figure 2 - Circulatory system. 
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In general, the systems is described as having a fractal structure [3]. In this study, the 

interest is focused on the arterial system specifically the aortic arch and its outlets to the upper 

and lower body (Figure 3). Carotid and vertebral arteries supply blood to the head, subclavian 

arteries carry blood to the arms, coronary arteries feed blood to the heart itself and the 

descending aorta supplies blood to the lower extremities. Cardiac output (volumetric flow rates) 

for a typical healthy adult averages at about 5 L/min in a relaxed condition.  

 
Figure 3 - Aortic arch and branching vessels (Layton, et al. 2006). 

A numerical representation of such a variable system (in its entirety) can be quite 

arduous. Hence, by a method of simplification, vessels are “lumped” into empirically derived 

representations such as the Windkessel Model to reduce a 3D problem into a 0D version [3,6]. 

This procedure is referred to as Lumped Parameter Method (LPM). Essentially the Windkessel 

Model draws an analogy between hydrodynamics (in a 3D scale) and electronics (purely in 0D), 

providing a simplified method to compute flow properties based on analogous equations and 

properties in each domain. 

Arterial walls follow a 3-layer pattern. The innermost wall (the intima), an intermediate 

layer (the media) and the adventitia. The intima is mostly composed of endothelial cells, collagen 

and adhesion cells, and is found to be smooth and non-thrombogenic. The intima represents, 
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also, the interface where fluid and structure interact. In the media, muscle fibers, which drive the 

motions of cross-sectional contraction and expansion, are found. The adventitia consists, mainly, 

of fibroplasts and is believed to act as a containment membrane [3].   

1.2 Vascular Diseases 

1.2.1 Heart Failure 

 

Heart failure (HF) occurs when the heart is unable to provide sufficient blood flow output 

to satisfy corporeal requirements. This condition, diagnosed by physical examination, is 

confirmed by echocardiography. Causes include may include heart attack, hypertension, valvular 

heart disease and cardiomyopathy. In general, it is possible to quantify heart failure by means of 

Ejection Fraction (EF), which simply relates the stroke volume (SV) to the end-diastolic volume 

(EDV) and end-systolic volume (ESV) as in Equation 1. 

 𝐸𝐸𝐸𝐸(%) =
𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆 100 (1) 

 𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐸𝐸𝑆𝑆 − 𝐸𝐸𝑆𝑆𝑆𝑆 (2) 

A typical healthy patient has values ranging from 50 – 70 %. An EF below this range 

represents a state of cardiomyopathy.  An individual’s EF tends to decrease gradually due to 

aging, as the heart's efficiency tends to decrease. However, impaired EF or a sharp inefficiency 

are consistent indicators of heart failure. A VAD device is usually implemented in this case to 

support the workload and supply the appropriate amount of blood to regulate bodily functions. 
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1.2.2 Thrombosis Induced Stroke 

 

Blood clotting, an essential occurrence for homeostasis is a normal process, but vessel 

deterioration and tissue malfunction can induce undesirable clotting, which may result in stroke, 

embolism or heart attack. Thrombi generate in two ways: rupture from arteriosclerotic plaques or 

coagulated masses and fatty deposits dislodged from implanted devices such as VADs (Figure 

4). 

 

Figure 4 - Blood cloths generation by arteriosclerotic plaques and blood cloths. 

When thrombi obstruct flow in key vessels, either can be fatal. A subject can suffer a 

stroke in which case cerebral vessels have been occluded or coronary flow is hindered leading to 

a heart attack. In depth understanding of both cases reveals specific flow patterns in regions of 

branching, bends, recirculation and low flow. A detailed flow analysis could help optimizing the 

implementation of VADs to reduce chances of stroke caused by thrombosis. 

1.3 Modeling 

1.3.1 Patient Specific Geometries 

 

In the past, hemodynamic analysis was carried out on idealized vessel structures whose 

results were sound, but limited in applications. With the advance of medical imaging techniques 

such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT scan) obtaining 

high resolution volumetric images of the vascular anatomy is now possible [3,4]. 

 6 



These geometries can be used to generate the required meshing to conduct a CFD 

analysis. Optimized mesh is generated by adaptive methods to reach grid independence and yield 

grater resolution in the regions of interest (branching and bend) [4]. 

1.3.2 Boundary Conditions 

 

In early 3D simulations, boundary conditions (BC) were prescribed for the model inlets 

and outlets in order for the converged solution to match desired conditions. The results, however, 

deviated from the patient measurements.  Modern alternatives are found in MRI that supply in 

vivo measurements for velocity profiles and pressures [6]. Another option to prescribe BC’s is to 

couple flow rate and pressure in the numerical domain through a 0D model which “lumps” 

vasculature also knows as Lumped Parameter Method [3,4]. By means of adaptive Runge-Kutta 

solver (RK – 4) the system can be tuned and implicitly solved to provide optimized inlet and 

outlet conditions to match patient specific measurements. A no-slip condition is applied at the 

boundary wall to ensure a characteristic viscous flow to ensure a zero velocity profile at lateral 

walls [3,4]. 

1.3.3 FSI Coupled with CFD 

 

Traditional research in cardiovascular mechanics employed models, which were 

idealized, rigid and incompressible. Arterial blood flow in particular has been described by 

incompressible Navier – Stokes equations in a fixed Eulerian frame of reference and the fluid as 

Newtonian [3,4,6]. Advances in computational efficiency allow improving inconsistencies by 

including more realistic flow conditions that account for pressure and velocity variations induced 

by motions of vascular structures.  
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This non – rigid structure can be characterized by a Lagrangian frame of reference and is 

the object of study in the field of Fluid Structure Interaction (FSI). A well-known technique to 

describe FSI is the Arbitrary Lagrangian – Eulerian formulation (ALE) where the Navier – 

Stokes equations (Equation 4) of a moving domain are solved with respect to the elastodynamics 

equations (Equation 5) of the vascular structure which update the computational grid. Kinematic 

and dynamics compatibility conditions control the process. This method accurately captures 

interactions between fluid and solid. It can incur time-consuming computations [4], however. 

 ∇�⃗�𝑥 ⋅ �⃗�𝑣 = 0 (3) 

 𝜌𝜌 𝜕𝜕�⃗�𝑣𝜕𝜕𝜕𝜕 |𝑥𝑥𝑜𝑜 + ∇�⃗�𝑥 ⋅ �𝜌𝜌�⃗�𝑣⨂(�⃗�𝑣 − 𝑣𝑣𝐺𝐺����⃗ )� = ∇�⃗�𝑥 ⋅ 𝜎𝜎 + 𝑓𝑓 (4) 

 𝜌𝜌𝑜𝑜 𝜕𝜕�⃗�𝑣𝜕𝜕𝜕𝜕 + ∇𝑜𝑜 ⋅ (𝜎𝜎𝐸𝐸−𝑇𝑇) = 𝑓𝑓𝑜𝑜���⃗  (5) 

An alternative to the ALE approach is the Coupled Momentum Method (CMM), which 

assumes small wall deformation eliminating grid updating. Fluid – structure interaction is 

enforced by a node – to – node compatibility between the fluid and the wall modeled as a simple 

membrane. This modification lumps elastodynamic equations and fluid dynamics equation 

together reducing the degrees of freedom of the problem. CMM is computationally less intensive 

and retains greater accuracy under the assumption of small deformations [3,4]. 

1.3.4 Lagrangian Method to Track Microscopic Particulate Flow 

 

Blood is not a monophasic fluid; in fact it presents a complex multiphase combination of 

cellular elements and plasma – water solution [5]. An interesting case of particulate is the blood 

clots that can cause stroke. An incompressible fluid whose properties are averages of clinical 

measurements typically approximates the liquid phase. Physical properties of the cellular 
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components can undergo changes due to FSI, hence, these microstructures can deform due to 

flow and flow is affected by the presence of these particles. This duality cannot be overlooked 

when accurately reproducing a patient’s hemodynamics. 

A CFD simulation alone is insufficient to model particle – fluid interaction which 

requires a separate approach. Basic components of thrombi are small enough to be represented 

by reactive particles whose structures are not important. Such particles can be modeled by the 

Discrete Element Method (DEM), which disregards fluid – solid interactions [5]. 

Using this model, thrombogenesis and thrombus transportation can be simulated in the 

form of mechanical interactions between flow and particles allowing the study of VAD 

implantations. While running a simulation is then possible tracking particles released in the 

domain, compute residence time and particle velocities, which can determine the validity of an 

implant for a patient specific geometry. 

1.4 Applications 
 

Combining CFD analysis with FSI to accurately model the fluid domain it is possible to 

match flow conditions found in patients. Adding DEM allows improving the model further 

including effect of particulate in blood. Such a realistic model applied to patient specific 

geometries can have vast medical applications in preventive medicine and surgery [4]. 

Specifically, in the case of LVAD implants, it is possible to potentially select the most 

appropriate implementation configuration. Considering that VAD became a destination therapy, 

device longevity is crucial. Given modern computing power and the numerical model described 

there is room for device design optimization. In depth study of fluid structure interaction and 

improvements in numerical computing methods various types of models such as CFD; FSI and 
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DEM can be implemented in a comprehensive procedure which accurately describe 

hemodynamics. 

In addition, progress in medical imaging techniques such as MRI and CT scan allow 

performing in – vivo material characterization and in – vivo fluid and solid BC which directly 

feed data to the numerical model, greatly reducing the error margin. 

Predictive medicine through numerical model results promising and far – reaching with 

plenty of future work to be done to further reduce inconsistencies such as the incompressible 

flow approximation and the Newtonian – fluid approximation.  
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2 CHAPTER 2: PROBLEM SET UP 

 

As a whole the problem set-up is meant to be divided in mainly two parts. The LPM 

section where given some initial conditions, the model solves a system of differential equations 

producing BC’s that then are fed to CFD that in turn solves the problem for the aortic channel in 

the fluid domain to return both IC and corrected systemic values for the LPM. This loop is 

required as an intermediate step in order to obtain a fully converged flow field in the aortic 

model, which can be used for thrombi Lagrangian tracking. Thrombi-embolism predictions can 

than be carried out by statistical methods over several heart cycles to obtain realistic data. 

The conditions under which the model is set to run are for a patient at rest with mild to 

severe heart failure. Of interest are the flow conditions caused by the LVAD implementation that 

drastically change flow patterns in the aortic channel. As a consequence thrombi travelling 

through this section may behave differently. The main point of this research is to capture this 

phenomenon and establish a predictive model. 

At rest the HR in average is of about 65 BPM (beats per minute). To simulate different 

acuteness of heart failure, a ratio of LVAD-AO (ascending aorta) flow rate in L/min is 

implemented. A mild-to-severe heart failure can be modeled as the heart provides partial support 

to the LVAD. A ratio of 4-1 (VAD to aortic outflow) is taken as a representative value of such a 

case. 
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Table 1 - Model operational parameters. 

Physiological parameter Value 

Heart rate 65 [bpm] 

LVAD-AO flow ratio 

Severe HF 4-1 [L min-1] 

 

2.1 Lumped Parameter Model 

 

The circuit model intends to model the circulatory system based on compliance, flow 

momentum and vaso-resistance, which give an acceptable approximation. In essence the initial 

3-D problem of modeling the total circulation can be reduced to a 50 degree of freedom (DOF) 

0-D problem. This model can be advantageous since it can be adapted to any patient specific 

geometry, given physiological data, free of expenses and can be run several times without any 

issues. In addition analogies between fluid mechanics and electronics allow manipulating and 

solving equations to obtain realistic results for comparison. 

In fluid mechanics, there are several quantities of interest; the two main ones are usually 

pressure and mass or volume flow rate, which allow (once obtained) deriving any other relevant 

result. Pressure in the study of fluid represents a potential that in electronic terms is defined by 

the voltage, similarly the amount of fluid per unit time, which is caused by a potential, can be 

represented by the current defined as the amount of charge per unit time. 

If we were to observe a simple duct, we would notice that the ducts are able to stretch in 

both axial and transversal direction, this is generally defined as vaso-compliance. Compliance 

limits the amount of fluid that a duct can contain. Capacitors in electronics are devices capable of 
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storing charge, then represent a potential for current flow. Hence when modeling compliance we 

use a capacitor in the electronic counterpart. 

In fluid mechanics, duct geometry and wall friction affects the flow, which in turn 

controls the pressures in the channel. Similarly resistors affect the flow of charges in a circuit by 

reducing the potential and obstructing charges, therefore resistors are used to model this physical 

phenomenon. When a fluid passes through a duct its own inertia prevents it from rapid changes 

in its momentum, for both magnitude and direction. This particular property of matter can be 

represented by an inductor which in practice is just a coiled wire, when circulated by a current 

generates a magnetic field that opposes the flow of current. 

Based on the hydraulic analogy it is now possible to design a circuit model, which 

reproduces the circulatory system. We can combine compliance, resistance and inertia effects 

altogether using separate components. Keep in mind that in reality all these flow aspects occur 

simultaneously and not in succession as represented by a circuit.  

 

Figure 5 - Basic circulatory circuit element. 

Following the Greenfield-Fry approach [1], the entire circulatory system can be modeled 

starting from one simple schematic shown above in Figure 5. In some cases either capacitors or 

inductors are omitted in order to simplify the model and reduce computational times, since a tube 

(for example small veins or capillaries) can be too small to account for compliance and inertia 

effects can be ignored for small systems (other forces are more influential). It must be noted 
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however that resistors can never be omitted as it accounts for the geometrical aspects of the 

model and friction losses, which must be considered at any scale. 

As mentioned before the capacitor represents compliance, the inductor inertia and the 

resistor geometrical induced drag. In the schematic provided above, the set up works in the 

following manner: 

1. At node 1, current comes in if it would be going directly towards node 2 it would 

encounter resistance hence it charges the capacitor first (generating a 

voltage/pressure potential); 

2. Once the capacitor if fully charged the discharge begins, current flows from node 

one to node2; 

3. At the resistor we have a drop in voltage (pressure); 

4. At the inductor the voltage drops once more due to change of current over time; 

5. The total change in pressure can be calculated between node 1 and 2. Refer to 

section 6 for evaluations. 

In essence, all the work done by the capacitor is counteracted by the combined efforts of 

resistor and inductor. 

2.2 Circulatory System Model 

 

Starting from the basic circuit model for any vascular vessel, it is now possible to 

generate the circulatory system in succession following the outlined steps. This is carried out for 

the left and right heart, pulmonary system, the aortic channel (region of interest), the arterial and 

venous beds and the cardiac pump. As mentioned earlier, in total this model accounts for a 
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system of the size a 50 DOF, which mainly focuses on the aortic section of the cardiovascular 

circulation. 

2.2.1 Step 1: Left Heart 

 

The heart in general is composed of 2 atria, 2 ventricles and 2 valves that deliver 

oxygenated blood to the rest of the upper and lower parts of the organism and receive 

deoxygenated blood that is supplied to the lungs for re-oxygenation. 

Since the heart is a specialized organ, this reflects on its electronic counterpart. To mimic 

the pumping function of the ventricle (contraction and relaxation), which characterizes a variable 

compliance, the capacitor in our model has to be time dependent as well. Hence a time variable 

capacitor is introduced which follows the inverse of an elastance function to reproduce the heart 

rate (Equation 1). A time dependent component is obtained from curve fitting data as 

 𝐸𝐸𝑛𝑛(𝜕𝜕𝑛𝑛) = 1.55 ∙ � � 𝜕𝜕𝑛𝑛
0.7
�1.9

1 + � 𝜕𝜕𝑛𝑛
0.7
�1.9� ∙ � 1

1 + � 𝜕𝜕𝑛𝑛
1.17

�21.9� (6) 
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Figure 6 - Elastance function waveform. 

 This elastance function abides the following relation: 

 𝐸𝐸(𝜕𝜕) =
𝐿𝐿𝑆𝑆𝐿𝐿(𝜕𝜕)𝐿𝐿𝑆𝑆𝑆𝑆(𝜕𝜕) − 𝑆𝑆0 (7) 

where, LVP(t) stands for left ventricular pressure, LVV(t) left ventricular volume and V0 is some 

reference volume at zero ventricular pressure. Referencing to the work by G. Faragallah (et. al), 

the elastance function that drives the circuit is then obtained by: 

 𝐸𝐸(𝜕𝜕) = (𝐸𝐸𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑛𝑛) ∙ 𝐸𝐸𝑛𝑛(𝜕𝜕𝑛𝑛) + 𝐸𝐸𝑚𝑚𝑚𝑚𝑛𝑛 (8) 

where, Emax and Emin are values referring to the end-systolic pressure volume and end-diastolic 

pressure volume relationships. In physiological observation, it is observed that the heart rate 

(HR) is tightly related to the cardiac cycle, in fact the in the expression for the elastance in 

Equation 2, the time variable tn is defined as: 

 𝜕𝜕𝑛𝑛 =
𝜕𝜕𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 (9) 

Where, tn is the time normalized by a time constant Tmax related to the HR as follows: 
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 𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 = 0.2 + 0.15 ∙ 𝜕𝜕𝑐𝑐 (10) 

 𝜕𝜕𝑐𝑐 =
60𝐻𝐻𝐻𝐻 (11) 

In addition, to ensure that the flow in unidirectional, two diodes are added in order to model the 

effective control of the flow by the heart valves.  

 

Figure 7 - Heart circuit scheme. 

 
Table 2 - Left heart parameters. 

Parameter Value Physiological meaning 

Resistance [mmHg s mL-1] 

Rla 8.90 10-5 Left atrial resistance 

Rlv 1.78 10-5 Left ventricular resistance 

Compliance [mL mmHg-1] 

cla 13.33 Left atrial compliance 

clv(t) Reciprocal of Elv(t) Left ventricular compliance 

Elastance constants 

Emin [mmHg mL-1] 0.049 Diastolic pressure-volume relationship 

Emax [mmHg mL-1] 2.49 Systolic pressure-volume relationship 

Tmax [s] 0.338 Normalized time 
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2.2.2 Step 2: CFD 

 

Throughout the aortic channel, following Figure 8, the model outlined in section 3.1 is 

repeatedly used to model each subdivision of the region. To maintain the outmost accuracy, 

compliance, resistance and inductance are kept for the largest vessels in the model. Compliances 

and inductances however will have static values obtained from physiological data. Resistances 

on the other hand attain invariance once the flow field is converged. 

 

Figure 8 - CFD circuit scheme. 

Hence as briefly outlined at the beginning section 3, the loop alternating LPM and the 

CFD simulation will provide accurate values for these resistances which will allow to proceed to 
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the particle tracking. In the following table, the resistance values of the tuned model to initiate 

the iterative process have been listed. 

Table 3 - CFD domain resistance parameters [mmHg s mL-1] for 4-1 LVAD-AO flow ratios. 

Parameters 4-1 Values Physiological meaning 

Rao 0.1147 Ascending aorta resistance 

Rrc 1.42 Right coronary resistance 

Rlc 0.964 Left coronary resistance 

Ria_cor 0.0054 Innominate to coronary resistance  

Rcan 0.0677 Cannula resistance 

Ria_vad 0.002 Innominate to cannula resistance 

Ria_rca 0.0198 Right carotid to innominate resistance 

Rrca 0.23 Right carotid resistance 

Ria_rsa 0.06 Right subclavian to innominate resistance 

Rrsa 0.176 Right subclavian resistance 

Rrver 0.939 Right vertebral resistance 

Rlca_ia 0.00381 Left carotid to innominate resistance 

Rlca 0.272 Left carotid resistance 

Rlsa_lca 0.0051 Left subclavian to left carotid resistance 

Rda_lsa 0.13 Descending aorta to left subcalvian 

resistance 

Rlsa 0.497 Left subclavian resistance 

Rlver 1.65 Left vertebral resistance 

Rda 0.006 Descending aorta resistance 
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2.2.3 Step 3: Arterial and Venus Beds 

 

Once done with the CFD section, it is necessary to add arterial and venous beds at each 

outlet. Since the part of interest is the CFD section (in our case the aortic arch), the rest of the 

system can be simply treated as a stack of arties, which bring oxygenated blood to the organs, 

and veins that carry the oxygen-poor blood back to the lungs. This part can then be simplified by 

two different versions of Figure 5. To model arterial beds, we utilize the complete circuit model. 

While for veins, since the amount of fluid is greatly reduced, for our purposes inertial effects can 

be neglected, we omit the inductor. Figure 9 has the circuit schematic. 

 

Figure 9 - Arterial and venous beds circuit scheme. 

The vascular model can be simplified if desired to reduce the amount of variables to 

monitor. To achieve this, each outlet maintains its own arterial bed while for paired vessels such 

as subclavians, carotids, vertebrals and coronaries the venous beds are combined. Each outlet can 

then be connected to a common node (joint node), which leads to the right heart section, closing 

the loop. In general this approximates the summation of upper and lower body venous flows that 

converge to the heart. 
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Table 4 - Parameters of arterial and venous beds at CFD outlets for 4-1 LVAD-AO flow ratio. 

Parameter 4-1 Values Physiological meaning 

Rrcora Rrcora(t)a Right carotid arterial resistance 

Rlcora Rlcora(t)a Left carotid arterial resistance 

Rcorvb 12.987 Coronary venous bed resistance 

Rrsb 3.679 Right subclavian arterial resistance 

Rlsb 3.679 Left subclavian arterial resistance 

Rdsb 4.599 Subclavian venous bed resistance 

Rrcb 3.318 Right carotid arterial resistance 

Rlcb 3.318 Left carotid arterial resistance 

Rdcb 4.313 Carotid venous bed resistance 

Rrvb 10.588 Right vertebral arterial resistance 

Rlvb 9.86 Left vertebral arterial resistance 

Rdvb 31.233 Vertebral venous bed resistance 

Rda_b 1.838 Descending aorta resistance 

Rivb 4.596 Lower body venous bed resistance 

Compliance [mL mmHg-1]   

crcora 0.01 Right carotid arterial compliance 

clcora 0.01 Left carotid arterial compliance 

ccorvb 0.19 Coronary venous bed compliance 

crsb 0.193 Right subclavian arterial 

compliance 

clsb 0.193 Left subclavian arterial 

compliance 

cdsb 0.097 Subclavian venous bed 

compliance 
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Parameter 4-1 Values Physiological meaning 

crcb 0.193 Right carotid arterial compliance 

clcb 0.2 Left carotid arterial compliance 

cdcb 0.1 Carotid venous bed compliance 

crvb 0.029 Right vertebral arterial compliance 

clvb 0.029 Left vertebral arterial compliance 

cdvb 0.015 Vertebral venous bed compliance 

cda_b 54.3 Descending aorta compliance 

civb 27.15 Lower body venous bed 

compliance 

Inductor [mmHg s2 mL-1]   

Lrsb 0.0214 Right subclavian arterial 

inductance 

Llsb 0.0214 Left subclavian arterial inductance 

Lrcb 0.0214 Right carotid arterial inductance 

Llcb 0.0214 Left carotid arterial inductance 

Lrvb 0.0107 Right vertebral arterial inductance 

Llvb 0.0107 Left vertebral arterial inductance 

Lda_b 0.0005 Descending aorta inductance 

a Refer to Equation 12 for the time dependent coronary arterial resistance function 

The coronary arteries represent an exception in the system. From a physiological 

perspective coronaries are the vessels that carry oxygenated blood to the myocardium. On the 

other hand vessels that remove the deoxygenated blood from the heart are known as cardiac 

veins. During systole (contraction) the coronary arteries are compressed due to high ventricular 
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pressures, which prevents blood flow; most of the perfusion occurs in the diastolic phase 

(relaxation). 

 

Figure 10 - 180° out of phase waveforms. 

Hence to model this phenomenon the coronary circulation has to be out-of-phase as 

shown in Figure 10. A simple expression based on the elastance function allows us to offset the 

coronary arterial vascular beds and adjust the magnitude of the waveform: 

 𝐻𝐻𝑐𝑐𝑜𝑜𝑐𝑐𝑚𝑚(𝜕𝜕) = �1.75 ∙ ��𝐸𝐸𝑙𝑙𝑙𝑙(𝜕𝜕)𝐸𝐸𝑙𝑙𝑙𝑙(0)
��2 + 6.796� ∙ 𝐻𝐻𝑓𝑓𝑚𝑚𝑐𝑐𝑓𝑓_𝑐𝑐𝑜𝑜𝑐𝑐 (12) 

where Rfact_cor is a scaling factor allows the user to tune the model. The venous bed is then 

modeled following the venous section of Figure 8. Resistance and compliance are listed in Table 

4. 

2.2.4 Step 4: Right Heart 

 

The right heart section can be handled in a similar fashion to the left heart, refer to 

section 2.2.1. Distinctions are made in terms of compliance, resistance and inductance, all 

dictated by physiological observation. In short, the left heart is due to provide enough pressure to 

satisfy the required blood supply in the upper and lower body, while the right heart is due to 

power circulation in the pulmonary system. Hence in magnitude, left heart compliance is greater. 
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To mimic such an observation, the elastance function expression presented earlier has its Emax 

and Emin values changed, updated values are found in the following table. 

Table 5 - Right heart parameters. 

Parameter Value Physiological meaning 

Resistance [mmHg s mL-1] 

Rra 5.94 10-5 Right atrial resistance 

Rrv 1.19 10-5 Right ventricular resistance 

Compliance [mL mmHg-1] 

cra 16.67 Right atrial compliance 

crv(t) Reciprocal of Erv(t) Right ventricular compliance 

Elastance constants 

Emin [mmHg mL-1] 0.0243 Diastolic pressure-volume relationship 

Emax [mmHg mL-1] 0.523 Systolic pressure-volume relationship 

Tmax [s] 0.338 Normalized time 

 

2.2.5 Step 5: Pulmonary System 

 

Keep in mind that physiologically, the lungs produce very little resistance to the blood 

flow since they oxygenate the blood. Due to this lungs have also little compliance. Hence when 

tuning the model one should understand that the parameters for the resistor and the capacitor will 

be kept smaller than other systemic parameters. 

The pulmonary beds are an exception to all others. Physiologically the pulmonary 

circulatory system is reversed as the pulmonary artery carries hypoxic blood and the pulmonary 

vein carries oxygen rich blood. Geometrically, these pulmonary veins are larger than any other 

 24 



veins; therefore inertial effects cannot be entirely neglected. Hence unlike section 3.3 the 

inductor in the venous bed circuit is not omitted.  

Note however that even though inductors in each basic circuit model are considered when 

it comes to their actual magnitude, they are basically unaccounted for. They only affect the 

systems in a small part since the values are several orders of magnitude smaller than resistors and 

capacitors. 

2.2.6 Step 6: LVAD 

 

A model for the LVAD was implemented following the work of G. Faragallah (et al.) 

where the combination of the LVAD pump circuit and the cardiovascular system circuit resulted 

in a 6th order circuit (Figure 19). In essence, the left heart is modeled in detail, following the 

CRL scheme. A general compliance, resistance and inductance approximate the aortic channel. 

A total resistance Rs then represents the rest of the systemic structure, which sums up the 

resistance offered by the arterial and venous beds. The only variable present in this particular 

model is the systemic resistance that can be estimated in terms of the LVAD pump flow, based 

on the observation that at rest the systemic resistance tends to be high and low when active. 
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Figure 11 - Closed loop circuit for LVAD implementation, G. Fargallah et. Al [8]. 

The pump is implemented into the circulatory system in parallel between the left 

ventricle and the initial node of the aorta as in Figure 11. The drop in pressure across the VAD is 

expressed by the equation derived by authors as: 

 𝐿𝐿𝑆𝑆𝐿𝐿(𝜕𝜕) − 𝐴𝐴𝐴𝐴𝐿𝐿(𝜕𝜕) = 𝐻𝐻∗𝑄𝑄 + 𝐿𝐿 𝑑𝑑𝑄𝑄𝑑𝑑𝜕𝜕 − 𝛾𝛾 𝑖𝑖(𝜕𝜕)𝑄𝑄  (13) 

From this equation, the most important parameter that allows the user to regulate the 

VAD flow rate is i(t), which represents the amount of current supplied to the pump. Hence by 

calibrating this unique constant flow conditions between ascending aorta and cannula inlet can 

be established. 
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Table 6 - Cardio vascular model parameters in the Faragallah et al. [8] model. 

Parameters Values Physiological meaning 

Resistance [mmHg s mL-1] 

RS 1.00 Systemic vascular resistance 

RM 0.005 Mitral valve resistance 

RA 0.001 Aortic valve resistance 

RC 0.0398 Characteristic resistance 

Compliance [mL mmHg-1] 

C(t) Reciprocal of Elv(t) Left ventricular compliance 

CR 4.40 Left atrial compliance 

CA 0.08 Aortic compliance 

CS 1.33 Systemic compliance 

Inductance [mmHg s2 mL-1] 

LS 0.0005 Inertia in blood in aorta 

 

Table 7 - LVAD parameters in the Faragallah et al. [8] model. 

Parameters Value Physiological meaning 

Cannula resistance [mmHg s mL-1] 

Ri 0.0677 Inlet cannula resistance 

Rp 0.1707 Pump resistance 

Ro 0.0677 Outlet cannula resistance 

Cannula inductance [mmHg s2 mL-1] 

Li 0.0127 Inlet cannula inductance 

Lp 0.02177 Pump inductance 

Lo 0.0127 Outlet cannula inductance 
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Table 8 - Variable in cardio vascular model. 

Variable Name Physiological meaning (units) 

x1(t) LVP(t) Left ventricular pressure [mmHg] 

x2(t) LAP(t) Left atrial pressure [mmHg] 

x3(t) AP(t) Arterial pressure [mmHg] 

x4(t) AoP(t) Aortic pressure [mmHg] 

x5(t) QT(t) Total flow [mL s-1] 

x6(t) QP(t) Pump flow [mL s-1] 

 

In our model, in order to attain the prescribed flow rates found in Table 1 the input 

current to the VAD was modified. For the 4-1-flow ratio case, this value was set to be 0.03825. 

Small adjustments are then performed to the global scaling factor to have a matching ventricular 

waveform with physiological data.  

2.2.7 Model Tuning 

In order to facilitate the process of tuning the model factors have been implemented to 

modify parameters such as compliances and resistances in bulk saving the user time. In principle 

the user must first set capacitance values according to parameters found in literature or through 

calculations based on physiological date for pressure and flow rates using Equation (24). Once 

these values have been established inductances can be set to relatively low values initially and 

finally resistance values can be added in a similar fashion as for capacitance. 

By means of the tuning parameters it is now possible to refine the model. Capacitance 

can be tuned to reach physiological waveforms that lie within a reasonable range as it 

manipulates vaso-compliance.  As the waveforms appear to lie in the same order of magnitude as 

 28 



a patient’s then the model can be finely tuned to replicate the physiological waveforms found in 

literature. Inductance provides an extra refinement tuning parameter once the model finalized. 

2.3 Generating System of Differential Equations 

 

To solve the given circuit, it is necessary to recall the analogy that can be made between 

electrical concepts and fluid concepts. In the following schematic there are represented all the 

equations. 

 

Figure 12 - Hydraulic analogy. 

By means of Kirchhoff’s node and loop laws which state that the sum of all currents 

entering and leaving the node has to be equal to zero and that the sum of all voltages in a loop 

has to be zero as well, it is possible to obtain the required differential equations. Performing this 

equilibrium equation at every node of the closed circulatory system we obtain a set of differential 

equations, which can be the solved using an adaptive Runge-Kutta, for voltages and currents. 

These results can then be converted to actual fluid parameters such as pressure and mass/volume 

flow output. 
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For consistency in the code, both voltage and current have been labeled a state variable 

‘y’. It is important to distinguish the difference between y-voltages and y-currents. In general, 

every ‘y’ at a node refers to a voltage while every ‘y’ accompanied by an arrows alludes to a 

current. It can be very helpful when deriving the equations, to couple your work with an 

extensive schematic in order to keep track. 

• Node Law: 

1. We can start from the concept stated earlier:  

 �𝐼𝐼 = 0 (14) 

2. Referring to Figure 8 and Figure 7 (node yi+2) one can perform the current 

equilibrium at the node as follows. 

 𝐼𝐼𝑚𝑚𝑛𝑛 + 𝐼𝐼𝐶𝐶 = 𝐼𝐼𝑜𝑜𝑜𝑜𝑓𝑓 (15) 

Which can then be written in a more extensive form. 

 𝑦𝑦𝑚𝑚+1 + 𝐶𝐶 𝑑𝑑𝑦𝑦𝑚𝑚+2𝑑𝑑𝜕𝜕 =
𝑦𝑦𝑚𝑚+2 − 𝑦𝑦𝑚𝑚+3𝐻𝐻  (16) 

That can be rewritten in terms of the derivative  

 �̇�𝑦𝑚𝑚+2 =
1𝐶𝐶 (𝐼𝐼𝑜𝑜𝑜𝑜𝑓𝑓 − 𝐼𝐼𝑚𝑚𝑛𝑛) → 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (17) 

• Loop Law: 

1. In this case the key idea is the following 

 �𝑆𝑆 = 0 (18) 
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2. In general for each elementary circuit loop in Figure 5 the previous expression 

can be then modified as 

 𝐶𝐶𝑉𝑉 + 𝐻𝐻𝑉𝑉 + 𝐼𝐼𝑉𝑉 = 0 (19) 

Or 

 𝐿𝐿 𝑑𝑑𝑦𝑦𝑚𝑚+1𝑑𝑑𝜕𝜕 = 𝑦𝑦𝑚𝑚 − 𝐻𝐻𝑦𝑦𝑚𝑚+1 − 𝑦𝑦𝑚𝑚+2 
(20) 

Now we need to isolate the differential variable 

 �̇�𝑦𝑚𝑚+1 =
1𝐿𝐿 (𝑦𝑦𝑚𝑚 − 𝐻𝐻𝑦𝑦𝑚𝑚+1 − 𝑦𝑦𝑚𝑚+2) → 𝐸𝐸𝐹𝐹𝐴𝐴𝐹𝐹 

(21) 

Using equations 1 and 2 that were just derived in a general form, modifying the 

subscripts appropriately one should be able to obtain a system of differential equations that can 

be solved using a 4th order adaptive Runge-Kutta method. 

To avoid any closure problems, at each node in the model, reference voltage are 

prescribed in order to obtained a closed formed system which can be readily solver by a number 

of numerical methods. Reference voltage are expressed as follows: 

 𝑆𝑆𝑐𝑐𝑟𝑟𝑓𝑓𝑖𝑖 = 𝑦𝑦 𝑙𝑙𝑜𝑜𝑙𝑙𝑓𝑓𝑚𝑚𝑣𝑣𝑟𝑟𝑏𝑏𝑟𝑟𝑓𝑓𝑜𝑜𝑐𝑐𝑟𝑟 𝑛𝑛𝑜𝑜𝑛𝑛𝑟𝑟 − ��𝑦𝑦 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑓𝑓𝑠𝑠𝑙𝑙𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑛𝑛𝑣𝑣 𝑛𝑛𝑜𝑜𝑛𝑛𝑟𝑟� ∙ 𝐻𝐻𝑏𝑏𝑟𝑟𝑓𝑓𝑜𝑜𝑐𝑐𝑟𝑟𝑛𝑛𝑜𝑜𝑛𝑛𝑟𝑟  (22) 

In addition to further simplify the system and reduce the algebraic load, expression for 

the currents are introduced. In Figure 13 there is a full representation of the LPM circuit 

excluding the LVAD circuit found in section 2.2.6, in the appendix there is an alternative 

representation that includes the LVAD portion of the circuit. The full set of differential equations 

can be found in the appendix in the form of a Mathcad spreadsheet snap shots. 
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Figure 13 - LVAD circuit LPM. 

2.4 Solver 

 

Initially the LPM was designed in Mathcad for simplicity, once the model was validated, 

it was translated into a much faster version in C++ programming language. In essence, the 

method implemented to solve the system of ordinary differential equations (ODEs), is an in 

house adaptive 4th order Runge-Kutta (RK-4). Given a set of initial condition for pressure and 

flow rates, an absolute error tolerance, an initial number of steps and the system of ODEs, the 

solver provides an output for however many heart cycle the user requires. This output represents 

the time-dependent BCs, required in the unsteady CFD model.  Reference to the appendix for the 

full code. 

A total of 11 time-varying BCs are generated which provide a waveform that drives the 

CFD solution to a settled flow field. As a validation procedure, the output waveform for the 
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ventricular pressure and aortic pressure are sampled in order to compare them to physiological 

data. In addition, LVAD-AO (ascending aorta) flow rates are monitored to ensure the prescribed 

flow ratios are maintained. 

2.5 CFD Simulation 

2.5.1 Fluid Domain 

 

The 3D computation fluid dynamics model is solved using StarCCM++ CFD code. The 

fluid domain is dictated by a geometry specific aortic channel provided by a patient CT scans 

(Figure 14), accordingly modified to fit the cannula of the assist device. The mesh was generated 

using PointWise.  

 

 

Figure 14 – Patient-specific geometries with LVAD configurations. 
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The walls of the model are considered rigid to reduce the number of degrees of freedom 

and simplify the system. However previous work carried out by Osorio et al. [1] in which the 

same problem was solved for steady state conditions, proved to output realistic solution. 

The Eulerian-Lagrangian modeling used has the particles modeled by the Lagrangian 

scheme and the continuous phase modeled by the Eulerian method. In the simulation blood is 

modeled as a Newtonian incompressible fluid with density 1060
𝐾𝐾𝑣𝑣𝑚𝑚3 and dynamic viscosity of 

0.004
𝑁𝑁𝑠𝑠𝑚𝑚2. Transient flow was modeled having 1

𝑙𝑙𝑚𝑚𝑚𝑚𝑛𝑛 emanating from the aortic root and 4
𝑙𝑙𝑚𝑚𝑚𝑚𝑛𝑛 from 

the LVAD. As previously mentioned, time-dependent BCs provided by the LPM in terms of 

pressures and flows are set at 2 inlets and 9 outlets in the form of tabulated files. 

Once the BC’s are correctly assigned, the model is set up following a necessary scheme 

based on the required time step and number of inner iterations. Initially to have an initialized 

flow field based on the BCs, the solver runs for 250 inner iteration. First freezing the time and 

letting the solver run until the residuals no longer varied determined this. As the initial flow is 

set, number of inner iterations is decreased to either 200 or lesser iterations, just enough to obtain 

accurately converged outputs. 

The necessary feedback to evaluate the new set of systemic resistances for the aortic 

channel are obtained by setting cross sectional plane monitors at each location representing a 

node found in the 0D model. 
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Figure 15 - Monitor crossection in CFD domain (left) and a close up of the upper aortic arch (right). 

The solver is set to run until the physical time is reached. At this point tabulated values 

for each cross-section are outputted. Once flow and pressure values are collected and time 

averaged it is possible to calculate resistance by 

 𝐻𝐻 =
𝐿𝐿𝑚𝑚 − 𝐿𝐿𝑚𝑚+1�̇�𝑚𝑚𝑚  (23) 

To evaluate compliance and inductance the following expression can be useful in case it 

may be necessary to check values measured from the simulation and compare them to the 

parameters in the LPM. 

 𝐶𝐶 =
�̇�𝑚𝑚𝑚 ∙ Δ𝜕𝜕𝐿𝐿𝑚𝑚 − 𝐿𝐿𝑚𝑚+1 (24) 

 𝐿𝐿 =
𝐿𝐿𝑚𝑚 ∙ Δ𝜕𝜕�̇�𝑚𝑚𝑚 − �̇�𝑚𝑚𝑚+1 (25) 

The fluid is modeled to be blood, hence the default properties of water in StarCCM were 

changed to fit blood specifications. 

 35 



2.5.2 Particles 

The Lagrangian tracking model entails solid spherical non-interacting particles modeled 

as point masses of set diameter of either 2.5mm or 3.5mm, which are released at the bottom 

portion of the cannula by an injection grid (Figure 16). The release randomness has been set to 

have 2 degrees of randomness in time and one degree of spatial randomness. 

Spatial randomness is dictated by a point inclusion probability that determines how many 

nodes in the grid will be injecting a particle at each time step. Randomness is time is introduced 

by generating a time-dependent particle release table. By means of a random number generating 

function in Excel with values bounded by 0 and 1 and an imposed time-step about 6 times 

smaller than the simulation time-step. At a randomized time step, the simulation releases a 

constant number of particles at random nodes of the grid, one or none per time-step. This ensures 

realistic statistical variance in the data collected. 

 

Figure 16 - Injection grid at the base of the inlet cannula. 

The specific Excel function used to produce random number was expressed as follows: 

 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑃𝑃𝜕𝜕𝐹𝐹𝑃𝑃𝑃𝑃𝑟𝑟(0,1) (26) 
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In order to have means of comparison with previous work [1-2] the particulate phase has a 

constant density of 1116.73
𝐾𝐾𝑣𝑣𝑚𝑚3  and interactions have been defined in for wall-to-particle 

interaction as having friction and fully elastic collisions. 

 

Figure 17 - Particle injection at LVAD inlet. 

As the model injects particles in the domain (Figure 17), they can be tracked throughout 

the model using built in track files, which allow the user to count detect particles at different 

outlets defined by specific boundaries. Simultaneously real-time plots can be generated to 

quantify the total amount of particles in the domain and the amount of particles leaving or 

entering the CFD domain at each boundary. These plots can then be tabulated and used for 

statistical analysis. 

2.6 Coupling 

 

As mentioned earlier, before initiating the Lagrangian particle tracking it is imperative 

for the flow domain to be converged. Hence the LPM and the CFD simulation need to be 

coupled over several cycles. In addition, to automate the procedure feeding BC’s to the 
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simulation and have the newly evaluated resistances returned to the solver, an intermediate 

program was added. 

The main tasks of this program are to handle the required tables for each iteration and 

prescribe the number of loops to perform, the number of heart cycles (for both the RK-4 and the 

CFD), number of steps and number of inner cycles to the RK-4 and CFD solvers.  

A schematic of the workflow is provided in Figure 18. 

 

Figure 18 - Coupling loop work flow. 

Once the set-up is completed. The entire system is initiated through STAR-CCM+, the 

Java coupling code is run directly into the simulation, and one iteration is represented by 3 to 5 

heart cycles. A certain amount of cycles are run to have converged flow results. Following the 

user may add however many extra cycles are needed to run particle tracking. A summary of the 

code is provided, in the appendix. 
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2.7 Statistical method 

In this study the statistical analysis was carried out in two steps: first the body of data 

relative to thrombus transport was generated to produce means and standard deviations to show 

consistency throughout runs and compare geometries then the pooled statistics were compared to 

similar solutions carried out with steady state simulations by means comparison. 

Each run produced concise tables of particle transition at every outlet including data 

recording particle injection into the domain. Particle percentages were then computed with the 

following expression: 

 𝐿𝐿𝑟𝑟𝑃𝑃𝜕𝜕𝑖𝑖𝑃𝑃𝐹𝐹𝑃𝑃% =
𝑟𝑟𝑃𝑃𝑚𝑚𝑟𝑟𝑃𝑃𝑃𝑃 𝐴𝐴𝑓𝑓 𝑝𝑝𝑟𝑟𝑃𝑃𝜕𝜕𝑖𝑖𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 𝑟𝑟𝜕𝜕 𝐴𝐴𝑃𝑃𝜕𝜕𝐹𝐹𝑃𝑃𝜕𝜕𝑟𝑟𝐴𝐴𝑚𝑚𝑟𝑟𝑃𝑃𝑃𝑃 𝐴𝐴𝑓𝑓 𝑝𝑝𝑟𝑟𝑃𝑃𝜕𝜕𝑖𝑖𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 𝑖𝑖𝑟𝑟𝑖𝑖𝑃𝑃𝑃𝑃𝜕𝜕𝑃𝑃𝑑𝑑 100 (27) 

Once all runs were analyzed, for each particle size and geometry means and standard 

deviation were evaluated for each outlet and specifically cerebral vessels a statistical method 

comparing two means was employed to compare steady state simulation and unsteady 

simulations results to determine whether steady modeling would suffice in order to engage in 

depth studies on stroke incidence. 

The Z-score was calculated based on the probability of a thrombus transitioning through 

carotid and vertebral arteries in the steady and unsteady cases as: 

 𝑍𝑍 =
𝜇𝜇1 − 𝜇𝜇2�𝑝𝑝 ∙ 𝑞𝑞 � 1𝑟𝑟1 − 1𝑟𝑟2� 

(28) 

Where 𝜇𝜇1 and 𝜇𝜇2 represent the means of the two populations, 𝑟𝑟1 and 𝑟𝑟2  represent the 

populations sizes, 𝑝𝑝 is the overall probability and 𝑞𝑞 = 1 − 𝑝𝑝. The Z-score is intended to quantify 

the amount of deviation from a mean based on standard deviations; in a normal distribution 68% 
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of a populations resides within a standard deviation, 95% of a population resides within two 

standard deviations and 99.7% of a population resides with three standard deviations. A 

representation of such a distribution in captured in Figure 19. 

 

Figure 19 - Normal distribution bell curve. 

In this study we employ a two-tailed, two means Z-score, which compares values from 

two different populations and determines criteria for comparison. A null hypothesis rests on the 

two populations being very similar, the alternative hypothesis having the two populations being 

different. A Z-score falling within the confidence interval dictated by standard deviation interval 

of choice would lead to the rejection of the alternative hypothesis. 
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3 CHAPTER 3: RESULTS 

 

3.1 LPM Outputs 

As aforementioned the LPM models the cardiovascular system and provides BC the CFD 

code requires to initiate the flow computations. A total of 11 BC are needed to fully define the 

fluid domain as displayed in the following table. 

Table 9 - Definition of BC at each boundary. 

Boundary Definition Quantity 

Ascending Aorta (AO) Stagnation inlet Pressure 

LVAD Mass flow inlet 

Mass flow 

 

Right Coronary (R_Cor) 

Mass flow outlet 

Left Coronary (L_Cor) 

Right Carotid (RCA) 

Left Carotid (LCA) 

Right Subclavian (RSA) 

Left Subclavian (LSA) 

Right Vertebral (R_Vert) 

Left Vertebral L(_Vert) 

Descending aorta (DA)   

 

In order to verify the BCs compare to actual patient measurements waveform at key 

locations have been produced and compared to values found in literature for mild and acute HF 

in vivo. This provides this portion of the study with additional validation considering the DOF 

present in the model. 
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Figure 20 – In vivo pressure waveforms for left ventricle and aorta by Adam R. Travis et. al [11]. 

 

Figure 21 - Pressure and flow rate waveform generated by LPM. 

Taking the plot in Figure 20 for high LVAD support and comparing to Figures 21 we see 

essentially the same wave patterns.  A large pressure differential caused by acute heart failure 

induced by the LVAD maintaining the homeostatic pressure in the aorta. Pressure magnitudes 

also fit in vivo measurements for both the ventricular pressure and the aortic pressure. Most 

importantly, physiologically coronaries experience blood flow that is out of phase from the 

cardiac cycle: flow occurs during the systolic phase. In each case the coronary waveform plotted 

in Figure 21 displays this trend.  
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These results validate the LPM we designed as our model closely matches in vivo 

measurements and realistically maintains physiological flow patterns. 

3.2 Flow Field Convergence 

For each patient-specific geometry the couple system was ran until a sustained solution 

was reached. The required iteration may differ based on geometrical and flow features. In the 

following sections results for the converged solutions will be provided for each case. 

In order to test for convergence, for each cross-sectional monitor in the flow domain the 

tabular values have been averaged and plotted (a sample will be provided for each model for the 

Ascending Aorta section in Figure 22). Each plot shows the number of iterations required to 

reach a sustained flow field and provide proof of repeatability. 

 

Figure 22 - AO cross-section monitor plane. 

3.2.1 Shift up geometry 

With a mesh of about 3 million elements and due to low turbulence at the jet inlet in the 

aortic channel, this model presented with the fastest iterative rate. One heart cycle can be run in 

about 6 hours, while 3 heart cycles can take up to a day employing a total of 40 CPUs. 
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Figure 23 - AO averaged mass flow rate per iteration in shifted-up LVAD. 

From the calculations we recognize that at about the 13th iteration the flow field begins to 

settle to a unique solution. Major spikes in the percent change plot are present due to lack of 

inner iteration at particular time-steps, which would have required more, causing the solution to 

deviate. Such deviation were removed by implementing an adaptive iteration criteria that has the 

model move to the next time step only when residuals for x-momentum, y-momentum, z-

momentum, continuity and energy remain steady for several iterations. The plots show the model 

to be very stable once it reaches the settles flow field, and maintains the same field with 

negligible variations. 
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Figure 24 - Streamlines representation through one heart cycle. 
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Figure 25 - Vector flow field representation through one cycle. 

 
Figure 26 - Cardiac cycle. 

Figures 24-25 show flow field representation at key locations through the heart cycle, in 

systole and diastole for a sustained solution. Jet interaction with flow emitted from the aortic root 

are clearly modeled and represented. The cannula jet experiences slight impingement on the 

opposing interior aortic wall. Through a cardiac cycle the jet suffers minor fluctuations due to the 

interaction with the cardiac ejected flow. This phenomenon is to be expected given the pulsatile 
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nature of the flow. At the peak of the cycle this interaction also produces large areas or 

recirculation at the base of the innominate artery, which could potentially cause particle to 

stagnate and embolize to the cerebral vessels. A much smaller degree of recirculation is 

generated by the weak impingement in the aortic root. This could similarly cause embolization in 

the eventuality of a particle transitioning in the region. It is noted that we can observe the out of 

phase flow present in the coronary vascular bed. 

3.2.2 Perpendicular geometry 

In this case the grid converged mesh present about between 1-2 millions cells, and 

increased number of cells in the jet inlet was required due to high recirculation as the jet 

impinges onto the facing aortic wall. One heart cycle can be run in 12 hours and 3 cycles require 

about 2 days and a half when using 60 CPUs. Considering the turbulent phenomena the 

simulation proved to be fast-paced. 

 

Figure 27 - AO averaged mass flow rate per iteration in perpendicular LVAD. 
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Based on the above computations we recognize that at about the 15th iteration the flow 

field begins to settle to a unique solution. Once again major deviations are due to lack of inner 

iteration at particular time-steps, which would have required more, causing the solution to 

deviate. But the loop shows to converge fast right after. Just as for the shift-up geometry the 

perpendicular model demonstrates stability for the settled solution. 

 

 

Figure 28 - Streamlines representation through one heart cycle. 
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Figure 29 - Vector flow field representation though one heart cycle. 

 

Figure 30 - Cardiac cycle. 

As for the intermediate geometry, Figures 26-27 show a sustained flow field solution at 

key locations through the heart cycle, in systole and diastole. Jet interaction with flow emitted 

from the aortic root are clearly modeled and represented. Jet impingement is effectively 

represented in both visualizations. The strong impingement causes stagnant flow and major 

recirculation due to large losses in momentum in the continuous phase. Close inspection shows 
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that we find strong recirculation in the aortic root near the coronary arteries and in the upper 

portion of the aortic arch. This phenomenon can cause thrombi to experience increased residence 

period in sensitive areas at risk of occluding cerebral and cardiac vessels increasing potential 

morbidity due to the VAD implantation. In addition the aforementioned interaction causes 

cannula jet oscillations, which strongly indicate periodic flow patterns not captured in a steady 

state model. Again we can observe the out of phase flow present in the coronary vascular bed. 
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4 CHAPTER 4: DISCUSSION OF PARTICLE TARCKING RESULTS 

Various percentages for particles entering vertebral and carotid vessels are displayed in 

Table 9. In all cases thrombo-embolization tends to mainly occur in the carotid arteries. A more 

detailed summary of all collected data can be found in the Appendix C for each vessel and 

geometry. 

Table 10 - Percentages of particle entering cerebral vessels. 

 

Particle size 

 

Vertebrals Carotids Overall Overall 

Configuration 2.5mm 3.5mm 2.5mm 3.5mm 2.5mm 3.5mm Vertebrals Carotids Total 

Intermediate 3.59±1.52 3.53±1.33 24.98±1.44 25.70±3.19 28.57±1.27 29.23±4.48 3.87±0.57 25.99±1.89 28.81±2.03 

Perpendicular 0.94±0.92 0.78±0.70 8.22±1.53 10.93±2.97 9.16±0.69 11.71±3.02 0.95±0.64 8.99±1.17 10.33±1.33 

 

Embolization rates for cerebral vessels involving particles of size 2.5mm result 

significantly higher for the intermediate geometry in both vertebral and carotid arteries. This 

translates in increased stroke chances directly caused by this specific diameter. A similar fashion 

is observed for particles of 3.5mm diameter. 

Furthermore there seems to be a correlation between stroke rate probability and particle 

size. As particle size increases the embolization rate tend to rise as well. In the carotid vessels 

this occurs more markedly that in vertebral arteries. As aforementioned, the statistical 

comparison of means is obtained imposing a 95% confidence interval, and incurring in the null 

hypothesis when having equal means. The alternative hypothesis yields different means. 

Table 11 - Testing criteria for null hypothesis 𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟐𝟐 = 𝟎𝟎. 

Alternative hypothesis Reject null hypothesis if: 𝜇𝜇1 − 𝜇𝜇2 ≠ 0 Z > 1.96 or Z < -1.96 
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A Z-score between 1.96 and -1.96 would translate into the rejection of the alternate 

hypothesis and Z-score of 0 would prove equal means. 

Table 12 - Z-score of mean comparison between steady and transient models. 

 

Particle size 

  

Overall 

configuration Mode 2.5 3.5 

 

Vertebrals Carotids total 

Intermediate Unsteady 28.57±1.27 29.23±4.48 

 

3.87±0.57 25.99±1.89 28.81±2.03 

 

Steadya 18.44±0.76 11.11±1.19 11.15±2.36 1.39±1.18 12.17±1.42 13.56±1.59 

Z-score 

 

10.76 23.43 23.35 12.09 24.43 25.76 

Perpendicular Unsteady 9.16±0.69 11.71±3.02 

 

0.95±0.64 8.99±1.17 10.33±1.33 

 

Steadya 21.38±1.71 10.97±1.27 9.31±1.02 1.75±1.33 12.13±0.91 13.89±1.36 

Z-score 

 

-7.69 0.46 1.59 -1.97 -3.10 -3.31 

a Statistical data, means and standard deviation excerpted from Kassab et al. 2014[9]. 

 

In Table 12 the comparison of the transient solution to the steady state solution through 

the evaluation of the two population Z-score. For the intermediate geometry simulation releasing 

2.5mm particles we see that the means for the total amount of particles traveling to the cerebral 

vessels turn out to not to be comparable has the null hypothesis is rejected. This is mainly due to 

the fact that the interaction between the cannula jet and the aortic root flow do not behave 

similarly in either mode. For the transient case the jet experiences oscillations caused by the 

periodic aortic root flow, hence particles will not travel following similar patterns since 

pulsatility has been introduced. 

The perpendicular geometry on the other hand presents strong cannula jet impingement, 

which causes stagnation in the region. Due to the pulsatile nature of the flow entering from the 

aortic root, the jet tends to undergo marked fluctuations that can be clearly shown by the moving 

stagnation point on the aortic wall facing the cannula (Figure 26). These jet oscillations change 
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the flow pattern of the continuous phase but more importantly drastically affect particle 

transition in the region. Due to the smaller size of the particles, cloths appear to be more 

responsive to flow pattern changes. This phenomenon is reflected in the rejection of the null 

hypothesis. 

 

 
Figure 31 - Stagnation point migration through systolic  phase. 

 

Figure 32 - Cardiac cycle. 

When releasing 3.5mm particles implementing an intermediate VAD suture means do not 

compare. In fact the means for the transient model show an opposite, increasing trend to the 
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steady state case. This is dictated by a similar phenomenon to the oscillating jet in the case of the 

perpendicular geometry. To a small degree the cannula jet suffers a pulsatile push-and pull from 

the aortic root, which coupled to the increased particle, size results in increased stroke chances as 

the particles get pushed into the cerebral vessels. 

In a perpendicular geometry the mean for stroke induced by 3.5mm particle compares to 

the steady state case. Again the oscillating jet phenomenon is strongly present; the increased 

particle size causes cloths to be increasingly affected by the flow field. Due to the large amount 

of momentum loss induced by the constant jet impingement, particles for the steady case and the 

transient case behave in much the same way. A Z-score rejecting the alternate hypothesis 

supports this observation. 

The aim of this study is to quantify stroke rate for a transient model scheme and compare 

the results to a similar experiment carried out under steady state conditions. This study however 

brings to light another phenomenon, which could be of particular interest and deserves a great 

deal of attention.  

Table 13 - 3.5mm particle data for Ascending Aorta in the perpendicular geometry. 

run % 

1 23.53 

2 13.33 

3 29.37 

4 34.36 

5 26.18 

mean 25.35 

st dev 7.01 

variance 25.35±7.01 
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As shown in Table 13 for a perpendicular cannula configuration there is a significant 

amount of particles recirculating in the ascending aorta region as a result of strong jet 

impingement. This raises concerns as such particles can potentially occlude the coronary arteries 

at the root of the aortic arch causing a heart attack. Further investigation may reveal additional 

techniques that could mitigate the strong vorticity and recirculation observed.   
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5 CHAPTER 5 

5.1 Conclusion 

 

It was established clearly from the steady state CFD computations it was clear that VAD 

cannula angle orientation configuration can greatly affect the fraction of thrombi originating 

from the VAD embolizing in the cerebral vessels [9]. Proper adjustment of the cannula 

implantation can potentially reduce stroke risk. The introduction of pulsatile flow shows, 

however, a change in the predictions brought forth by the steady state models. Cannula jet 

oscillations cannot be neglected as they dramatically change the flow field transporting the 

particles. In addition to stroke risk computations this study brings forth the possibility of further 

investigation in likely event of occlusion in vessels supplying blood to the cardiac muscles that 

may lead to heart attack which is an equally fatal occurrence. 

Hence we have additional insight on acceptable simplifications and required 

specifications that a predictive model would need in order to be reliable for medical applications. 

Depending on particle size and angle implementation, a steady state study may be sufficient 

while for other cases pulsatile flow is necessary to accurately depict flow pattern and 

embolization rates. 

5.2 Future Work 

 

The results provided by this procedure deemed to be quite realistic and provide a good 

approximation thrombo-embolization through particle tracking. As mentioned before, a 

particularity of this work was dictated by the lack of particle-to-particle interaction, which might 

reduce the degree of accuracy. However to reduce computational periods, this approximation 

was deemed necessary and appropriate. The next step to be taken is to consider partially elastic 
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wall-to-particle and particle-to-particle interactions dictated by restitution coefficients. This 

addition will ensure greater accuracy in the model. 

A further step will be to add fluid-to-structure interaction (FSI) that marks the transition 

between a rigid aortic model, to a compliant one. Such a degree of complexity will definitely set 

a new standard for circulatory modeling in the bioengineering field. In addition as a further 

method of validation, our group is currently working on a bench top model with compliant 

arterial and venous beds, which would closely match the simulated model discussed in this 

project. In order to implement compliance, Windkessels structures are included. The aortic artery 

will still be modeled having rigid walls; however adding bed compliance represents a definite 

step forward from previous work [1]. A pulsatile pump will generate a waveform and a 

continuous flow pump will simulate the LVAD. 
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APPENDIX A: EQUATIONS 
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(29) LPM ODEs D(y,t)=f 

In the following pages find the expression for the right hand side of equation 15. 
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(30) Auxiliary current and reference voltage equations 

 62 



 63 



 

  

 64 



APPENDIX B: FIGURES 
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Figure 33 - FULL LVAD circuit LPM 
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APPENDIX C: TABLES 
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Table 14 - 2.5mm particle data for each outlet for Intermediate geometry. 

run injected DA % L_Cor % L_Vert % LCA % LSA % R_Cor % R_Vert % RCA % RSA % 

1 343 171 49.85 0 0.00 14 4.08 32 9.33 39 11.37 3 0.87 6 1.75 46 13.41 58 16.91 

2 348 158 45.40 2 0.57 7 2.01 42 12.07 30 8.62 2 0.57 7 2.01 50 14.37 59 16.95 

3 369 176 47.70 2 0.54 3 0.81 45 12.20 39 10.57 3 0.81 2 0.54 48 13.01 50 13.55 

4 385 139 36.10 1 0.26 6 1.56 56 14.55 40 10.39 1 0.26 4 1.04 46 11.95 41 10.65 

5 337 176 52.23 1 0.30 6 1.78 41 12.17 42 12.46 0 0.00 8 2.37 40 11.87 43 12.76 

tot 1782 2 46.0 

 

0.34 

 

2.02 

 

12.12 

 

10.66 

 

0.51 

 

1.52 

 

12.91 

 

14.09 

mean 

  

46.26 

 

0.33 

 

2.05 

 

12.06 

 

10.68 

 

0.50 

 

1.54 

 

12.92 

 

14.16 

st dev 

  

5.56 

 

0.21 

 

1.09 

 

1.65 

 

1.26 

 

0.33 

 

0.66 

 

0.94 

 

2.45 

variance 

  

46.26±5.56 

 

0.33±0.21 

 

2.05±1.09 

 

12.06±1.65 

 

10.68±1.26 

 

0.50±0.33 

 

1.54±0.66 

 

12.92±0.94 

 

14.16±2.45 

 
Table 15 - 2.5mm particle count at cerebral vessels for Intermediate geometry. 

run Vertebrals % Carotids % Overall % 

1 20 5.83 78 22.74 98 28.57 

2 14 4.02 92 26.44 106 30.46 

3 5 1.36 93 25.20 98 26.56 

4 10 2.60 102 26.49 112 29.09 

5 14 4.15 81 24.04 95 28.19 

tot 

 

3.54 

 

25.03 

 

28.56 

mean 

 

3.59 

 

24.98 

 

28.57 

st dev 

 

1.52 

 

1.44 

 

1.27 

variance 

 

3.59±1.52 

 

24.98±1.44 

 

28.57±1.27 
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Table 16 - 3.5mm particle data for each outlet for Intermediate geometry. 

run injected DA % L_Cor % L_Vert % LCA % LSA % R_Cor % R_Vert % RCA % RSA % 

1 368 128 34.78 0 0.00 5 1.36 55 14.95 30 8.15 1 0.27 3 0.82 31 8.42 31 8.42 

2 341 190 55.72 4 1.17 9 2.64 48 14.08 34 9.97 0 0.00 7 2.05 45 13.20 40 11.73 

3 326 161 49.39 4 1.23 11 3.37 50 15.34 41 12.58 3 0.92 7 2.15 52 15.95 43 13.19 

4 383 187 48.83 2 0.52 5 1.31 44 11.49 45 11.75 1 0.26 6 1.57 45 11.75 48 12.53 

5 377 181 48.01 8 2.12 5 1.33 44 11.67 38 10.08 4 1.06 4 1.06 44 11.67 51 13.53 

tot 1795 

 

47.19 

 

1.00 

 

1.95 

 

13.43 

 

10.47 

 

0.50 

 

1.50 

 

12.09 

 

11.87 

mean 

  

47.34 

 

1.01 

 

2.00 

 

13.50 

 

10.51 

 

0.50 

 

1.53 

 

12.20 

 

11.88 

st dev 

  

6.85 

 

0.72 

 

0.85 

 

1.62 

 

1.54 

 

0.41 

 

0.53 

 

2.44 

 

1.83 

variance 

  

47.34±6.85 

 

1.01±0.72 

 

2.00±0.85 

 

13.50±1.62 

 

10.51±1.54 

 

0.50±0.41 

 

1.53±0.53 

 

12.20±2.44 

 

11.88±1.83 

 

 
Table 17 - 3.5mm particle count at cerebral vessels for Intermediate geometry. 

run Vertebrals % Carotids % Overall % 

1 8 2.17 86 23.37 94 25.54 

2 16 4.69 93 27.27 109 31.96 

3 18 5.52 102 31.29 120 36.81 

4 11 2.87 89 23.24 100 26.11 

5 9 2.39 88 23.34 97 25.73 

tot 

 

3.45 

 

25.52 

 

28.97 

mean 

 

3.53 

 

25.70 

 

29.23 

st dev 

 

1.33 

 

3.19 

 

4.48 

variance 

 

3.53±1.33 

 

25.70±3.19 

 

29.23±4.48 
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Table 18 - 2.5mm particle count at each outlet for Perpendicular geometry. 

run injected DA % L_Cor % L_Vert % LCA % LSA % R_Cor % R_Vert % RCA % RSA % 

1 182 119 65.38 1 0.55 0 0 8 4.40 4 2.20 0 0.00 0 0.00 10 5.49 16 8.79 

2 125 87 69.60 1 0.80 1 0.8 3 2.40 1 0.80 1 0.80 2 1.60 4 3.20 6 4.80 

3 122 78 63.93 1 0.82 0 0 6 4.92 9 7.38 2 1.64 1 0.82 5 4.10 8 6.56 

4 175 106 60.57 0 0.00 0 0 8 4.57 6 3.43 2 1.14 0 0.00 8 4.57 5 2.86 

5 67 44 65.67 0 0.00 0 0 5 7.46 7 10.45 0 0.00 1 1.49 0 0.00 2 2.99 

tot 671 

 

64.68 

 

0.45 

 

0.15 

 

4.47  4.02 

 

0.75 

 

0.60  4.02 

 

5.51 

mean 

  

65.03 

 

0.43 

 

0.16 

 

4.75 

 

4.85 

 

0.72 

 

0.78 

 

3.47 

 

5.20 

st dev 

  

2.92 

 

0.37 

 

0.32 

 

1.62 

 

3.55 

 

0.64 

 

0.69 

 

1.89 

 

2.25 

variance 

  

65.03±2.92 

 

0.43±0.37 

 

0.16±0.32 

 

4.75±1.62 

 

4.85±3.55 

 

0.72±0.64 

 

0.78±0.69 

 

3.47±1.89 

 

5.20±2.25 

 

 
Table 19 - 2.5mm particle count at cerebral vessels for Perpendicular geometry. 

run Vertebrals % Carotids % Overall % 

1 0 0.00 18 9.89 18 9.89 

2 3 2.40 7 5.60 10 8.00 

3 1 0.82 11 9.02 12 9.84 

4 0 0.00 16 9.14 16 9.14 

5 1 1.49 5 7.46 6 8.96 

tot 

 

0.75 

 

8.49 

 

9.24 

mean 

 

0.94 

 

8.22 

 

9.16 

st dev 

 

0.92 

 

1.53 

 

0.69 

variance 

 

0.94±0.92 

 

8.22±1.53 

 

9.16±0.69 
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Table 20 - 3.5mm particle count at each outlet for Perpendicular geometry. 

run injected DA % L_Cor % L_Vert % LCA % LSA % R_Cor % R_Vert % RCA % RSA % 

1 68 36 52.94 0 0.00 0 0.00 2 2.94 4 5.88 0 0.00 1 1.47 2 2.94 0 0.00 

2 57 21 36.84 0 0.00 0 0.00 4 7.02 1 1.75 0 0.00 0 0.00 3 5.26 1 1.75 

3 126 93 73.81 0 0.00 0 0.00 10 7.94 9 7.14 0 0.00 1 0.79 5 3.97 6 4.76 

4 61 46 75.41 0 0.00 0 0.00 4 6.56 2 3.28 0 0.00 0 0.00 2 3.28 4 6.56 

5 61 47 77.05 0 0.00 0 0.00 6 9.84 7 11.48 0 0.00 1 1.64 3 4.92 2 3.28 

tot 373 

 

49.59 

 

0.00 

 

0.00 

 

5.31 

 

4.69 

 

0.00 

 

0.61 

 

3.06 

 

2.65 

mean 

  

63.21 

 

0.00 

 

0.00 

 

6.86 

 

5.91 

 

0.00 

 

0.78 

 

4.07 

 

3.27 

st dev 

  

15.83 

 

0.00 

 

0.00 

 

2.26 

 

3.37 

 

0.00 

 

0.70 

 

0.90 

 

2.28 

variance 

  

63.21±15.83 

 

0.00±0.00 

 

0.00±0.00 

 

6.86±2.26 

 

5.91±3.37 

 

0.00±0.00 

 

0.78±0.70 

 

4.07±0.90 

 

3.27±2.28 

 

 
Table 21 - 3.5mm particle count at cerebral vessels for Perpendicular geometry. 

run Vertebrals % Carotids % Overall % 

1 1 1.47 4 5.88 5 7.35 

2 0 0.00 7 12.28 7 12.28 

3 1 0.79 15 11.90 16 12.70 

4 0 0.00 6 9.84 6 9.84 

5 1 1.64 9 14.75 10 16.39 

tot 

 

0.61 

 

8.37 

 

8.98 

mean 

 

0.78 

 

10.93 

 

11.71 

st dev 

 

0.70 

 

2.97 

 

3.02 

variance 

 

0.78±0.70 

 

10.93±2.97 

 

11.71±3.02 
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APPENDIX D: CODES 
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Coupling Code  

 
package macro; 

 

import java.nio.file.*; 

import static java.nio.file.StandardCopyOption.*; 

import java.nio.file.attribute.*; 

import static java.nio.file.FileVisitResult.*; 

import java.io.IOException; 

import java.util.*; 

 

import star.common.*; 

import star.base.neo.*; 

import star.vis.*; 

import java.io.*; 

import java.net.*; 

 

 

// Note: To get macro commands from the CFD simply hit the record button and save the Java file. Once you are done with the in software commands, hit stop and all the 

// commands will be saved in the Java file you created. These commands can be used below. 

 

public class FontanCoupler extends StarMacro 

{ 

  // USER_TODO: Change the following configuration variables; Note that these variables must match the configuration of the RK solver 

   

  // Number of heart cycles to run 

 public int num_cycles = 10; 

   

  // Number of time steps per heart cycle (CFD) 

 public int steps_per_cycle = 1200; 

 

  // Number of time step per heart cycle (LPM) 

 public int LPM_steps_per_cycle = 8000; 

 

  // Heart rate 

 public double heart_rate = 80.0; 

  

  // Number of solver iterations per solver timestep (i.e. 50 iterations/time step)  

 public int iters_per_step = 250; 

 public int iters_per_step_final = 200; 

  

  // Absolute file path of the compiled RK executable 

   

 //public String rkExePath = "/New_Fontan_RK/BIN/RK_Fontan.exe";   

 public String rkExePath = "C:\\Users\\ra400879\\Desktop\\New_Fontan_RK_Ray\\BIN\\RK_Fontan.exe"; 

 //public String rkExePath = "/share/CERT/Fontan_Models/Baseline_Batch_Testing/New_Fontan_RK/BIN/RK_Fontan.exe.lnk"; 

  

  // Absolute file path of the table output by the RK executable 
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 //public String rkOutputTablePath = "/New_Fontan_RK/BIN/Outputs/Fontan.csv"; 

 //public String rkOutputTablePath = "c:/Users/ra400879/Desktop/New_Fontan_RK_Ray/BIN/Outputs/LVAD.csv"; 

 public String rkOutputTablePath = "/share/CERT/Ray_Thesis/New_Fontan_RK_Ray/BIN/Outputs/LVAD.csv"; 

 

  // Absolute file path of the sim file 

 //public String simPath = "/Baseline_Simulation_V2.0/Basline-V2.2_Copy.sim"; 

 public String simPath = "/share/CERT/Ray_Thesis/StarCCM_Simulation/LVAD_Unsteady_CO_4_1_perpendicular.sim"; 

   

 //public String simPath = "/share/CERT/Ray_Thesis/StarCCM_Simulation/LVAD_Unsteady_CO_4_1_perpendicular.sim"; 

  

  // Absolute file path of the table output from Star-CCM+ that is used by the RK solver for coupling 

 //public String cfdOutputTablePath = "/New_Fontan_RK/BIN/PressOut.csv"; 

 public String cfdOutputTablePath = "C:/Users/ra400879/Desktop/New_Fontan_RK_Ray/BIN/CFDOut.csv"; 

   

 //public String cfdOutputTablePath = "/share/CERT/Ray_Thesis/New_Fontan_RK/BIN/Outputs/CFDOut.csv"; 

 

  // USER_TODO: End changing configuration variables 

  

  // Calculated time step length 

 public double dt = 60.0/heart_rate/steps_per_cycle; //  (60.0 s)/HR/NUM_STEPS 

 

 public void execute() 

 { 

  // Set the time step length based on the value calculated above 

  setTimestep(); 

 

  for(int i = 0; i < num_cycles; i++) 

  { 

   runRK(); 

  

   // Run a CFD/LPM steps per cycle 

 

   mFile(); 

     

   runSim(); 

            

        // Output values from Star-CCM+ for coupling 

   updateRKInputs(); 

    

      // Backup the simulation's state after each cycle 

   backupCycle(i); 

 

  } 

 } 

  

 public void setTimestep() 

 { 

  // Set the time step length based on the value calculated above 

 74 



  Simulation sim = getActiveSimulation(); 

  ImplicitUnsteadySolver unsteadySolver = (ImplicitUnsteadySolver) sim.getSolverManager().getSolver(ImplicitUnsteadySolver.class); 

 

  unsteadySolver.getTimeStep().setValue(dt); 

 } 

 

 public void runRK() 

 { 

  try 

  { 

 

   // Define the location of the RK solver executable 

   File rkExe = new File(rkExePath); 

 

   ProcessBuilder rkpb = new ProcessBuilder(rkExe.getAbsolutePath()); 

 

   // Define the working directory of the RK solver 

   rkpb.directory(new File(rkExe.getParent())); 

 

   System.out.println("About to start RK solver"); 

    

   Process rkp = rkpb.start(); 

 

   // This is the waiting function that will wait for your RK Solver to finish before starting the sim 

    

   InputStream in = rkp.getInputStream(); 

   in.close(); 

   OutputStream out = rkp.getOutputStream(); 

   out.close(); 

   InputStream error = rkp.getErrorStream(); 

   error.close(); 

   rkp.waitFor(); 

   rkp.destroy(); 

    

 

   System.out.println("Finished RK solver"); 

  } 

  catch(Exception e) 

  { 

   System.out.println("Error while running RK solver: " + e.toString()); 

  } 

 } 

  

 public static void mFile()  

 {   

         try  

  {    
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              // File (or Directory) to be moved   

              Path src_Path = Paths.get("c:\\Users\\ra400879\\Desktop\\New_Fontan_RK_Ray\\BIN\\Outputs\\LVAD.csv");   

   

              // Destination directory   

              Path dest_Path = Paths.get("z:\\CERT\\Ray_Thesis\\New_Fontan_RK_Ray\\BIN\\Outputs\\LVAD.csv");  

    

   // Move file to a new directory 

   Files.copy(src_Path, dest_Path, REPLACE_EXISTING); 

    

   System.out.println("Move successful");   

   

         } 

  catch (Exception ex) 

  {   

              System.out.println(ex);   

         }   

    } 

 

 public void runSim() 

 { 

  Simulation sim = getActiveSimulation(); 

  Solution solution_0 = sim.getSolution(); 

  solution_0.clearSolution(Solution.Clear.History); 

  System.out.println("History cleared"); 

 

 // This is where the CFD solver updates its boundary conditions based on the table of outputs that the RK solver writes out, The actual file that the RK solver 

puts out needs 

 // to be set up in the CFD, under Tools.Tables , In this instance the Table is named BCs 

  FileTable bcs = (FileTable) sim.getTableManager().getTable("LVAD"); 

  bcs.setFileName(rkOutputTablePath); 

  bcs.extract(); 

 

 // Run one timestep in the CFD 

  InnerIterationStoppingCriterion innerIters = (InnerIterationStoppingCriterion) 

(sim.getSolverStoppingCriterionManager().getSolverStoppingCriterion("Maximum Inner Iterations")); 

 

  innerIters.setMaximumNumberInnerIterations(iters_per_step); 

  sim.getSimulationIterator().step(1); 

 

  innerIters.setMaximumNumberInnerIterations(iters_per_step_final); 

  sim.getSimulationIterator().run(); 

 

   

 } 

 

 // Backs up the current version of the simulation in a new folder 

   // called "<sim's parent directory>- Cycle #" 

 public void backupCycle(int cycleNum) 
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 {  

  System.out.println("Started backup of cycle #" + cycleNum);   

  File simFile = new File(simPath); 

 

  Path srcDir = Paths.get(simFile.getParent()); 

  Path destDir = Paths.get(simFile.getParent() + String.format("- Cycle %d", cycleNum)); 

   

  try 

  { 

   copyDirRecursive(srcDir, destDir); 

 

   System.out.println("Finished backup of current cycle"); 

  } 

  catch(Exception e) 

  { 

   System.out.println("Error occured while backing up current cycle: " + e); 

  } 

 } 

  

  

 // Program to update the Lumped model with new resistances for the Lumped parameter model (RK solver) 

 public void updateRKInputs() 

 { 

  Simulation sim = getActiveSimulation(); 

 

        // grabs the Table that starccm creates in the softwares itself. In this instance the name of the table is "PressOut" 

        // This PressOut is located in the plots sections of the CFD 

  MonitorPlot plot = ((MonitorPlot) sim.getPlotManager().getObject("CFDOut")); 

 

        // takes that table and outputs to a csv file 

  plot.export(resolvePath(cfdOutputTablePath), ","); 

 } 

 

 // Recursively copies the contents of srcDir to destDir 

 public void copyDirRecursive(final Path srcDir, final Path destDir) throws IOException 

 { 

  EnumSet options = EnumSet.of(FileVisitOption.FOLLOW_LINKS); 

 

  if(Files.isDirectory(srcDir)) 

  { 

   Files.walkFileTree(srcDir, options, Integer.MAX_VALUE, new FileVisitor<Path>() { 

 

    @Override 

    public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException  

    { 

     return FileVisitResult.CONTINUE; 

    } 
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    @Override 

    public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs)   

    { 

     CopyOption[] opt = new CopyOption[]{COPY_ATTRIBUTES,REPLACE_EXISTING}; 

 

     Path newDirectory = destDir.resolve(srcDir.relativize(dir)); 

 

     try 

     { 

      Files.copy(dir, newDirectory, opt); 

     } 

     catch(FileAlreadyExistsException x) 

     { 

 

     } 

     catch(IOException x) 

     { 

      return FileVisitResult.SKIP_SUBTREE; 

     } 

 

     return CONTINUE; 

    } 

 

    @Override 

    public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException  

    { 

        copyFile(file, destDir.resolve(srcDir.relativize(file))); 

            return CONTINUE; 

    } 

 

    @Override 

    public FileVisitResult visitFileFailed(Path file, IOException exc) throws IOException  

    { 

     return CONTINUE; 

    } 

   }); 

  } 

 } 

 

 public static void copyFile(Path src, Path dest) throws IOException 

 { 

        CopyOption[] options = new CopyOption[]{REPLACE_EXISTING,COPY_ATTRIBUTES}; 

        Files.copy(src, dest, options); 

    } 

} 
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