
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2014 

Synthesis, Processing and Characterization of Polymer Derived Synthesis, Processing and Characterization of Polymer Derived 

Ceramic Nanocomposite Coating Reinforced with Carbon Ceramic Nanocomposite Coating Reinforced with Carbon 

Nanotube Preforms Nanotube Preforms 

Hongjiang Yang 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Yang, Hongjiang, "Synthesis, Processing and Characterization of Polymer Derived Ceramic 

Nanocomposite Coating Reinforced with Carbon Nanotube Preforms" (2014). Electronic Theses and 

Dissertations, 2004-2019. 4757. 

https://stars.library.ucf.edu/etd/4757 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F4757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4757?utm_source=stars.library.ucf.edu%2Fetd%2F4757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


SYNTHESIS, PROCESSING AND CHARACTERIZATION OF 

POLYMER DERIVED CERAMIC NANOCOMPOSITES COATING 

REINFORCED WITH CARBON NANOTUBE PREFORMS 

 

 

by 

 

 

HONGJIANG YANG 

B.S. Shanghai Maritime University, 2012 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science  

in the Department of Mechanical and Aerospace Engineering 

in the College of Engineering and Computer Sciences  

at the University of Central Florida 

Orlando, Florida 

 

 

Summer Term  

2014 

 

 

 

Major Professor: Jihua Gou  

 

 



 

 

 

 

 

 

©2014 Hongjiang Yang 

  

ii 

 



ABSTRACT 

Ceramics have a number of applications as coating material due to their high hardness, 

wear and corrosion resistance, and the ability to withstand high temperatures. Critical to 

the success of these materials is the effective heat transfer through a material to allow for 

heat diffusion or effective cooling, which is often limited by the low thermal conductivity 

of many ceramic materials. To meet the challenge of improving the thermal conductivity 

of ceramics without lowering their performance envelope, carbon nanotubes were selected 

to improve the mechanical properties and thermal dispersion ability due to its excellent 

mechanical properties and high thermal conductivity in axial direction. However, the 

enhancements are far lower than expectation resulting from limited carbon nanotube 

content in ceramic matrix composites and the lack of alignment. These problems can be 

overcome if ceramic coatings are reinforced by carbon nanotubes with good dispersion and 

alignment.  

 

In this study, the well-dispersed and aligned carbon nanotubes preforms were achieved in 

the form of vertically aligned carbon nanotubes (VACNTs) and Buckypaper. Polymer 

derived ceramic (PDC) was selected as the matrix to fabricate carbon nanotube reinforced 

ceramic nanocomposites through resin curing and pyrolysis. The SEM images indicates 

the alignment of carbon nanotubes in the PDC nanocomposites. The mechanical and 

thermal properties of the PDC nanocomposites were characterized through Vickers 

hardness measurement and Thermogravimetric Analysis. The ideal anisotropic properties 
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of nanocomposites were confirmed by estimating the electrical conductivity in two 

orthogonal directions.  
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Ceramic coating materials have drawn more attention than ever before in both academic 

research and industry manufacturing due to its excellent performance in high temperature 

and high stiffness with relatively low density. With those favorable properties, ceramic 

coating materials have been considered as a great thermal coating protection system 

candidate for gas turbine blade, air jet engine combustion shroud, atmospheric reentry 

vehicle and some other high temperature application. However, the brittleness of ceramics 

impedes its boarder usages as structural materials. This shortcoming has been greatly 

improved upon with the use of additives, among which, carbon nanotubes are particularly 

desirable as a reinforcement for ceramics due to its outstanding mechanical properties. The 

use of carbon nanotubes fillers is low cost and easy to conduct, but high content of carbon 

nanotube is hard to achieve due to the increased viscosity of the resin with the additives. 

Thus, limited improvement has been achieved with small amount of carbon nanotubes 

reinforcement.  

 

The low thermal conductivity is another disadvantage of ceramics. Many high temperature 

components failure is caused by the heat concentration on some localized spots resulting 

from low thermal conductivity of ceramics. Therefore, increasing its thermal conductivity 

is necessary in order to meet the long-term durability requirements of high-temperature 

applications. Carbon nanotube has high thermal stability and remarkable thermal 
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conductivity in its axial direction, which in theory could reach up to 3000 W/m•K [1]. 

Therefore, carbon nanotubes could be considered to be one of the most promising 

reinforcement for this purpose. However, random carbon nanotube fillers reinforced 

composite could not fully take advantage of the highly anisotropic properties of carbon 

nanotube. The alignment of carbon nanotube is critical in order to reclaim this highly 

desirable property.  

 

All above, the enhancement effect of carbon nanotube in ceramics matrix coating materials 

is limited if used as random fillers. In this study, instead of random fillers, we use carbon 

nanotubes as an aligned preform to increase the content of carbon nanotubes in 

nanocomposite and to form a known and preferably selective alignment, namely, vertically 

carbon nanotubes (VACNTs) and Buckypaper. Polymer derived ceramics (PDC) were 

selected to better take advantage of the high thermal conductivity of carbon nanotubes and 

the favorable heat-resistance of ceramics, because PDC is initially in liquid, which is ideal 

for composite manufacturing.  

1.2 Research Method 

1.2.1 Anisotropic properties of materials  

In order to better design the nanocomposites coating material, we need to understand the 

need of heat transfer within the nanocomposite. In general, there are two kinds of heat 

diffusion pathway needed. The first one is of high thermal conductivity in thickness 

direction, while it has low in-plane thermal conductivity. This kind of material could solve 

2 

 



the problem of low cooling efficiency in gas turbine blade or van if the heat transfer 

pathway is along thickness direction. The ability of heat dissipation could be used in 

microprocessors or integrated circuit packages to overcome the risk of damage resulting 

from the high power of the circuitry elements [10]. The other anisotropic material has an 

orthogonal heat pathway to the previous one. On one hand, the high in-plane thermal 

conductivity could enable the in-plane heat have a better distribution, therefore, the risk of 

localized hot spots decreases which is a very important feature to increase the durability of 

high temperature applications. On the other hand, the low thermal conductivity in thickness 

direction serves as insulation to protect the substrate. This nanocomposies could be served 

as thermal barrier coating materials.  

1.2.2 Objective 

With a limited research achievement being done with the improvement to thermal 

properties and behavior of ceramic, the objective of this thesis is to synthesis, process and 

characterize a new ceramic nanocomposite. Previous work within the research group has 

shown that the addition of a carbon nanofibers, nanotubes, and other fillers can improve 

the thermal behavior of a composite significantly [2-5]. This leads to a novel idea of using 

different carbon nanotube preforms as heat transfer pathway in ceramic matrix 

nanocomposites. As a rule of thumb, desirable nanocomposite that could be able to protect 

the underlying substrate should, in one hand, have a selective pathway of heat dissipation 

and on the other hand, have a low thermal conductively in another desired direction. 

Simultaneously, intrinsic thermal stability, high mechanical performance, good corrosion 

and low density should be achieved.  
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This thesis demonstrated the advantages of using carbon nanotube preforms, namely 

VACNTs, Buckypaper and fuzzy fibers, over carbon nanotube random fillers as 

reinforcement in regarding increase of carbon nanotube content, mechanical properties 

improvement and highly anisotropic properties. 

1.3 Structure of the thesis 

 The main body of this thesis from Chapter 2 to Chapter 6 is organized by the following 

structure. Chapter 2 reviews some background of carbon nanotube, and the research on 

ceramic matrix composites using carbon nanotube as reinforcements. The physical 

properties, operation processing of polymer derived ceramics has been cover in this chapter 

as well. Base on the characters of carbon nanotube and ceramics, as well as the recent 

research development, three carbon nanotube preforms, namely VACNT, Buckypaper and 

fuzzy fibers, are proposed and characterized under scanning electron microscope in 

Chapter 3. Then, the discussion focus in Chapter 4 is the processing of carbon nanotube 

preforms and polymer derived ceramic. In Chapter 5, the manufactured materials, were 

then tested for thermal stability using a TGA. The anisotropic electrical conductivity is 

confirmed by electrical conductivity estimation in plane and through thickness direction. 

Mechanical properties of nanocomposite is characterized by hardness measurement. The 

thesis concludes in Chapter 6 with a summary of the achievement and future work planned to 

expand the data available on this new material, including the mechanical properties, thermal 

properties, and optimization of the manufacturing process.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Carbon Nanotube reinforced nanocomposite  

Carbon nanotubes are under radar in the last two decades due to their superior properties. 

Theoretical and experimental studies have proved that carbon nanotubes have remarkable 

mechanical properties [6-9].The axial thermal conductivity of CNTs was estimated at room 

temperature can reach up to 3000 W/m•K [10]. Besides excellent high thermal conductivity, 

the thermal stability of CNTs is impressive as well. The thermal stability of CNT is 

estimated to be up to 2800°C in vacuum and 750°C in air [11]. With these outstanding 

properties, CNTs are considered to be a great candidate as nanofillers which could be used 

to produce high-performance ceramic nanocomposite with multifunctional properties. 

Many research groups have investigated the mechanical properties enhanced by adding 

carbon nanotube into composites [12-15]. There are three major mechanical properties 

improvement mechanisms have been concluded: (1) The crack deflection, (2) Crack-

bridging, (3) CNT pull-out [16, 17]. Adding CNTs could not only fabric stronger and 

tougher ceramics, but also could increase the electrical and thermal conductivity of 

ceramics [55-58]. Since CNT possesses anisotropic properties, it naturally motivate 

researchers to fabric anisotropic materials by using CNTs as reinforcing elements. Recent 

study has shown that the thermal conductivity of CNT/Ceramic nanocomposites exhibits 

different thermal behaviors in different directions [10]. This makes potential materials for 

applications as thermal barrier layers in microelectronic devices, gas turbine blade and 

vanes, and so on.  
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2.1.1 VACNT reinforced composites 

The growth of CNTs has been developed over 30 years since their discovery, several 

approaches have been used, including arc discharge, laser-vaporization, and chemical vapor 

deposition. [18-22] Chemical vapor deposition (CVD) stands apart among these production 

methods for its ease of use and low cost. CVD also holds a special advantage in that it can be 

performed with a wider variety of substrates, even in-situ with other materials, such as ceramics. 

[23] The inherent ability to grow aligned CNT “forests” has been exploited for the highly 

anisotropic properties.[24] Li, et al have shown the effects that the choice of the precursor has 

on the CNTs grown by CVD. [25] Castro, et al have studies the influence of the thermal 

gradient within the reactor on the rate of formation of catalyst and CNTs. [26] The effect of 

catalyst in VACNTs has been studied by Sato et al. as well. [27]  

 

The CNTs are densely packed while retaining the instrinsic properties of CNTs, such as 

high surface area, flexibility and thermal conductivity. This leads many researchers to have 

a depth investigation on utilizing VACNTs as reinforcement. For example, Fan, S. and his 

group fabricate thermal interfacial material combing VACNTs and epoxy, whose thermal 

conductivity could reach up to 6.5 𝑊𝑊𝑚𝑚−1𝐾𝐾−1. [28] Robert Cross et al. developed a 130µm 

thick thermal interface material by bonding VACNTs to metallized substrates which 

showed low thermal resistances as low as 10mm2𝑘𝑘𝑤𝑤−1. [29] Thermal conductivity of 

VACNTs has been estimated using a modern light flash device by Shaikh and colleagues. 

[30] However, polymer matrix, used in the majority of research, could only tolerant low 
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temperature range, therefore, we seek an alternative to take place of polymer in order to 

achieve high temperature application. Polymer derived ceramics has high temperature 

stability, high chemical resistance could be a great candidate matrix for VACNTs. This 

will be discussed in later sectors.  

2.1.2 Buckypaper reinforced composites 

The CNT Buckypaper, is a paper-like CNT film. It can be prepared by pressure chamber 

filtration or vacuum filtration of CNT dispersion or made of aligned carbon nanotubes by 

“domino pushing”, typically presents thermal conductivity around a couple of hundreds of 𝑊𝑊𝑚𝑚−1𝐾𝐾−1 in plane direction and low thermal conductivity in thickness direction [31-34]. 

This feature could be used to remove the localized hot spots in high temperature loading 

condition. Many research are focus on polymer matrix reinforced by Buckypaper [35-37], 

therefore, the composite can only be used at ambient and mild temperatures. To fulfill the 

high temperature application, ceramics with high melting temperature, low density and 

superior corrosion resistance is considered in this research.  

2.2 Polymer Derived Ceramic 

Polymer derived ceramics (PDCs) represent inorganic/organometallic materials convert 

from polymer molecules to ceramics by proper thermal treatment (curing and pyrolysis 

processes) under a controlled atmosphere. The development of pre-ceramic polymers to 

produce near-net shapes in a way not known from other techniques [38]. PDCs have drawn 

many research interest since its emergence for the following advantages: near net shape 

forming, low process cost, and the ability to achieve homogeneous enforcing elements 

distribution at molecular level [39-42]. There are a few groups of PDCs, and the 
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oversimplified general formula is presented in Figure 1 [43]. The variation of (X) results 

in different classes of Si-based polymers such as polysilanes with X = Si, polycarbosilanes 

with X = 𝐶𝐶𝐻𝐻2, polysiloxanes with X = O, and polysilazanes with X = NH. Typical polymer 

precursors commonly used include polycarbosilane (PCS), poysiloxane (PSO), and 

polysilazane (PSZ), producing amorphous Si-C, Si-O-Si and Si-C-N ceramics respectively 

upon pyrolysis.  

 

Figure 1 General simplified ceramic precursor formula 

In the 1958, Kumada et al. reported the method to synthesis of PCS [44], and then Yajima 

and his colleagues made a significant progress and presented SiC ceramic materials by the 

pyrolysis of polycarbosilanes [45, 46]. Now several ceramic precursors are commercially 

available due to its high ceramic yield and some other advantages.  

 

The processing of ceramic precursors could be divided into 4 segments including: 1) 

Shaping, 2) Polymer cross-linking, 3) Polymer-to-Ceramic conversion, 4) Ceramic 

crystallization. In each segment, the precursor undergoes different chemical reactions, 

oligomer evaporate and gas release at different temperatures, see in Figure 2. This process 

involves the initial cross-linking of polymer precursors followed by a thermal induced 

polymer to ceramic transformation by removing the polymer chains and leaving the 
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ceramic backbone. Major drawbacks of PDCs are large weight loss and shrinkage of 

ceramics during pyrolysis.  

 

Figure 2 Polymer to Ceramic transformation 

2.3 Carbon Nanotube preform reinforced Ceramic nanocomposite 

Ceramics are generally of low electrical conductivity and thermal conductivity. To improve 

its conductivity, conductive fillers are added into ceramics in the forms of fibers, yarns, 

mats, pellets and powder.[47-50] Most of researches using carbon nanotube as 

reinforcement, and properties are enhances from different aspects, such as mechanical 

properties, conductivity, and so on. [50, 51, 54] Despite the remarkable properties of CNTs, 

the reinforcing effect of CNTs in ceramics is far below the expectation. There are three 
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problems that needed to be solved: 1) inhomogeneous dispersion of CNTs within the 

ceramic matrix, 2) Inadequate densification of the composites, 3) poor wetting behavior 

between CNTs and the matrix [12]. These drive researchers looking for some other novel 

methods are proposed for instance: Higginbotham, Amanda L., et al use 30-40 W power 

input microwave to cure the PDCs with 0.75% load of CNTs, and the temperature could 

reach 1150°C in 7 minutes [52].  
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CHAPTER 3 CARBON NANOTUBE PREFORMS  

3.1 VACNT Array 

3.1.1 CNTs growth mechanism 

CNT growth mechanisms has been debated since its discovery in 1991 [18]. However, no 

single CNT growth mechanism is recognized by all researchers. Nevertheless, one of 

theories is widely accepted, which can be outlined as follows. The hydrocarbon firstly 

decomposes into carbon and hydrogen when it contact with metal catalyst at elevated 

temperature. Then, carbon would dissolved in metal nanoparticle. This process keeps 

happening until the carbon content reaches the carbon-solubility of the metal at that 

temperature. Then, the as-dissolved carbon precipitated out and crystallizes. Since the 

network of carbon is in cylindrical, it has no dangling bonds and hence it is in energetically 

stable. The CNT growth process ceases once the metal is saturate with carbon, its catalytic 

function stops and so does the CNT growth [59]. 

3.1.2 VACNT Growth 

In our case, VACNTs were grown using a CVD process as described in the literature review. 

The schematic figure of CVD setup is shown in Figure 3.  

11 

 



 

Figure 3 Schematic figure of CVD equipment setup 

This process was carried out using a precursor mixture composed of Ferrocene and Toluene. 

Ferrocene (Sigma-Aldrich, MO) is an organometallic compound with the formula 

Fe(C5𝐻𝐻5)2 , which is bright orange powder. It serves as catalyst in the CVD process, 

because it generates nanosize Fe particles at elevated temperature and become the 

basement of CNT growth.  

 

Toluene is clear, water-insoluble liquid with boiling temperature of 111 °C, serving as 

carbon source. Ferrocene was dissolved in toluene with the composition of 97.5% toluene 

and 2.5% ferrocene by mass. After adequately mixing, a reasonable amount of precursor 

could be transferred into a syringe which would be mounted on a programmable syringe 

pump. The CVD assembly is seen Figure 4  
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Figure 4 VACNT Manufacturing Configuration 

The injection rate of syringe was set to 10 mL/hour, and 20 mL of VACNT precursor was 

used in each run, and the growth duration was set as 2 hours at 750 °C for our application 

purpose. Evaporation temperature of toluene was only of 111 °C, in each process we could 

preheat the precursor above this temperature, so that the mixture would be evaporated into 

the tube. The preheat process is very important because the gas phase of precursor would 

largely improve the uniformness of distribution. The temperature cycle of tube furnace was 

set as shown in Figure 5.  
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Figure 5 VACNT temperature cycle chart 

Then, the VACNT precursor would be carried by a stable argon flow (2 L/min) in the 

reactor. Argon flow does not produce any pressure, yet only the inert atmosphere is 

necessary. The tube was flushed with argon until the furnace temperature cool down below 

300°C following the growth phase to prevent CNT from oxidation.  

 

This process produces a uniform array of VACNTs on the surface of the quartz substrate 

(See Figure 6), but also yields a large amount of CNTs on the surface of the reactor (quartz 

tube) walls. These CNTs, as with the VACNTs on the surface of the quartz substrate, 

always grow normal to the tube walls. These CNTs are the byproduct of VACNTs growth 

which could be used as fillers or in nanopaper fabrication.  
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Figure 6 (a) Top view of VACNT array (b) Side view of VACNT array  

CNTs grow perpendicular to substrate because the array is so dense that CNT pushes each 

other, and thus the only direction for them to form cylindrical structure is upward.  

3.1.3 Morphology of VACNT 

Aligned arrays were fabricated using chemical vapor deposition method. Morphology of 

the VACNT was shown by Scanning Electron Microscope (SEM). Dense VACNTs array 

could be observed with good uniformity. The average height is approximately 600 µm 

estimated from the cross section view (Figure 7). 

 

Figure 7 Cross-section of VACNTs array 
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It should be noted that the height of VACNTs array is controllable and we could achieve 

the VACNTs forest of 1.25 mm height, which is observable with naked eyes. As can be 

seen in Figure 8, the VACNTs array is detached from the substrate and the root portion is 

disordered resulting from the removal process. However, the upper part of VACNTs forest 

keeps its straight growth configuration and the uniformity retains. The estimated height is 

1.25 mm, and this achieved by using higher growth temperature (850°C). It is notable that 

the control of VACNTs height is not accurate, but it provides us a valuable factor that 

affects the quality of VACNTs growth.  

 

Figure 8 Cross-section of detached VACNT array 

More detailed VACNTs array SEM image is illustrated in Figure 9. Consistent diameter of 

CNTs throughout the height could be observed. The diameter of representative CNT is 

around 150 nm.  
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Figure 9 High magnification SEM images of CNTs 

3.2 Buckypaper 

As stated in the previous chapters, the purpose of fabricating the Buckypaper/Ceramic 

nanocomposite coating material onto the surface of a substrate is to take advantage of its 

in-plane high thermal conductivity to avoid localized hot spots, as well as its low thermal 

conductivity through thickness direction to insulate the surfaces of components from high 

temperature thermal load. This highly anisotropic functional coating material has potential 

applications in many industries, such as thermal coating system of atmosphere reentry 

vehicle and refractory materials.  

 

To fabricate carbon nanotube buckypaper, the carbon nanotubes were purchased from 

commercial company, CNano Technology (Zhenjiang) Ltd., China. The as-received 

carbon nanotubes were dispersed in 1000 ml distilled water with the aid of surfactant 

Triton-X100 (10 drops per 1000ml). The mixture was sonicated for an hour under 1500 
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watts power input. It should be pointed out that the more input power during the sonication 

process, the better dispersion quality could be obtained. However, carbon nanotube could 

be damaged if the input power was too strong or the sonication duration was too long. After 

the sonication process, the well dispersed suspension will be filtered through a hydrophilic 

filter (Millipore, MA) with the pore size of 0.45μm using pressure assistant filtration 

system (Figure 10). The suspension was poured into a pressure chamber right after 

sonication in order to keep its good mixing. The pressure was used to compress the 

excessive water penetrating the filter and leaving carbon nanotubes on the filter. The 

pressure used to assist filtration process was 100 psi. After the filtration, a diameter of 110 

mm and 1 mm thick buckypaper could be peeled off from the filter and could be dried in 

air or in open oven.  

 

Figure 10 Schematic of pressure assistant infiltration system 

The quality of the Buckypaper made by the pressure assistant infiltration system is shown 

in 11. The thickness is uniform and the surface is very smooth. 

18 

 



 

Figure 11 Buckypaper 

3.3 Fuzzy Fiber 

Another carbon nanotube preform that we could extend from carbon nanotube growth is 

fuzzy fiber [60, 61]. Since the VACNTs were grown via floating catalyst chemical vapor 

deposition (VCCVD), catalyst is filled in the whole space of reactor. Inspired from carbon 

nanotube growth on the sidewall of quartz tube, the growth process should happen on any 

substrate as long as the substrate material has the ability to survive at 750°C.  

 

Continuous long fiber reinforcements are dominant in composite industry. However, the 

interface between fiber and matrix is somewhat weak in many cases, which negatively 

affect its mechanical properties. Not only that, the lack of interlayer bonding is another 

shortcoming, and this usually cause delamination under heavy load [62, 63]. In order to 

overcome these two challenges, modification of fiber surface is an option. As stated earlier, 

as long as the fiber could keep intact above 750°C, the carbon nanotube could grow on 

fibers using FCCVD.  
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In this study, we used alumina ceramic fibers as our fuzzy fiber substrate, which is suitable 

to high temperature application. The operating temperature and melting temperature of 

ceramic fibers are 1200°C and 1800°C respectively, therefore, it qualifies the temperature 

requirement. The temperature cycle of carbon nanotube growth on ceramic fibers is 

identical to that of VACNTs, and the shiny light color fibers turn into black dark fibers 

after the CNTs growth process (See Figure 12).  

                

Figure 12 (a) Ceramic fibers before CNTs growth (b) Fuzzy ceramic fibers 

SEM micrographs of CNTs grown on the bunch of carbon fibers are shown in Figure 13. 

It can be seen that a uniform anchoring of CNTs on ceramic fibers indicating that fiber 

surface equally attractive growth surface like quartz. It should be noted that the CNTs 

growth in some area are better than another. This is because the fibers are bundle together 

tightly on some part of surface, and these coved surfaces have no contact with catalyst as 
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well as carbon source. But overall, the bundle of fibers are covered with a great amount of 

CNTs (See Figure 14).  

 

Figure 13 SEM image of individual fuzzy fiber 

 

Figure 14 SEM image of fuzzy fibers 
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CHAPTER 4 SYNTHESIS OF POLYMER DERIVED CERAMIC 

NANOCOMPOSITES COATING REINFORCED WITH CARBON 

NANOTUBE PREFORMS 

4.1 Two types of ceramic precursors 

The ceramic matrix precursors we used were liquid polymers with low viscosity. It has 

many advantages, such as ease of use and near net shape manufacture. There are types of 

ceramic precursors we use – polysiloxane and polycarbosilane, and the detailed 

comparisons are shown in Table 1. Both these two ceramic precursors have high ceramic 

yields, high thermal stability and high purity. 

Table 1 Two types of ceramic precursors 

 Polysiloxane Polycarbosilane 

Denotation SPR-688/SPR-212 SMP-10 

Operating temperature 1100°C 1800°C 

Density 1.11 𝑔𝑔/𝑐𝑐𝑚𝑚3 0.998 𝑔𝑔/𝑐𝑐𝑚𝑚3 

Catalyst Platinum CAT-776 
Dicumyl Peroxide and 

toluene mixed 

 

The ceramic precursors convert into ceramics via three major temperature cycles, namely 

soft curing cycle, hard curing cycle (polymer cross-link) and pyrolysis cycle. The flow 

chart is shown in Figure 15. 
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Figure 15 Chart flow of curing and pyrolysis 

The soft curing cycle is shape forming process. The liquid polymer turns into clear glass-

like solid in a mold at a relatively low temperature with the present of catalyst. The soft 

cycle is very temperature sensitive, therefore the temperature ramp has to be controlled 

with caution. If the gradient of temperature is too high, crack will occur due to residual 

thermal stress. After the shape had formed, the part was put into oven without any molds 

or tooling at a higher temperature. The Hard curing cycle is less temperature sensitive, and 

used to fully crosslink the polymer matrix in preparation for the pyrolysis process. The 

pyrolytic conversion of the polymer precursor into the ceramic final product is carried out 

under an inert, argon atmosphere, and is carefully controlled to prevent any damage to the 

siloxane ceramic matrix as the volatile compounds pyrolyze. The results of the pyrolysis 

is a fully formed siloxane ceramic matrix that has a relatively high volumetric shrinkage 

during pyrolysis, but can be reinfiltrated to decrease any voids that form as a result of the 

conversion. The detailed temperature cycles for polysiloxane and polycarbosilane are 

shown in Table 2 and Table 3. 
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Table 2 Temperature cycles for polysiloxane 

Cycles Temperature Condition Atmosphere 

Soft curing 

RT-80°C Ramp Heat at 3°C/min 

Atmospheric 80°C Hold for 60 min 

80°C-RT Cool down at 3°C/min 

Hard curing 

RT-200°C Ramp Heat at 5°C/min 

Atmospheric 200°C Hold for 120 min 

200°C-RT Cool down at 5°C/min 

Pyrolysis 

RT-650°C Ramp Heat at 1°C/min 

Inert; Argon 

positive flow; 

atmospheric 

650°C-750°C Ramp Heat at 2°C/min 

750°C Hold for 120 min 

750°C-RT Cool down at 5°C/min 

 

Table 3 Temperature cycles for polycarbosilane 

Cycles Temperature Condition Atmosphere 

Soft curing 

RT-100°C Ramp Heat at 3°C/min 

Atmospheric 100°C Hold for 60 min 

100°C-RT Cool down at 3°C/min 

Hard curing 

RT-250°C Ramp Heat at 5°C/min 

Atmospheric 250°C Hold for 120 min 

250°C-RT Cool down at 5°C/min 

Pyrolysis 

RT-650°C Ramp Heat at 1°C/min 

Inert; Argon 

positive flow; 

atmospheric 

650°C-850°C Ramp Heat at 2°C/min 

850°C Hold for 120 min 

550°C-RT Cool down at 5°C/min 
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4.2 VACNT/Ceramic 

The matrix resin preparation was easy and straightforward. Ceramic precursor resin and 

catalyst were thoroughly mixed with a ratio of 49:1 by mass using a high-speed centrifuge 

machine. Degassing process was also conducted in order to achieve voids free resin. The 

VACNTs preform stands on quartz substrate, and then, the mixture was poured on the 

VACNTs preforms. The resin could penetrate the preform easily due to the effect of 

capillary force of VACNTs forest array. After hand layup process, the samples were put 

into a vacuum chamber for 30 minutes for further resin penetration in order to remove the 

air bubbles trapped inside the nanocomposite. In the vacuum chamber, the layer of air 

bubbles, arising from bottom of nanocomposite, would form about 2 minutes after vacuum 

was introduced. After this process, infiltration was conducted again. In order to obtain a 

dense composite, above processes were repeated for 3-4 times, and less air bubble could 

be observed after each process cycle. Excessive pure resin could be observed on the top of 

nanocomposite, which could cause curvature after pyrolysis. 

 

Then, the nanocomposite samples were cured and pyrolzed according to the temperature 

cycles of ceramic precursors. The nanocomposite could get off from substrate after soft 

cure cycle. The schematic of manufacturing process is shown in Figure 16.  
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Figure 16 Schematic of VACNT/Ceramic nanocomposite manufacturing process 

4.3 Buckypaper/Ceramic 

In order to fabric dense Buckypaper/Ceramic nanocomposite, the most widely used 

bagging technique was used with pressure and vacuum in autoclave. The layout of the 

tooling design is shown in Figure 17. A release agent was spread on the tooling surface to 

ensure that the nanocomposite part could be removed from tooling without damage the 

Buckypaper/Ceramic coating film. Then, a release film that has a slightly larger size was 

placed on top of release agent thin film. The ceramic precursor was evenly brushed on the 

release film. After reasonable amount of precursors covering the release film, a 

Buckypaper was placed on it, and the preloaded resin underneath the Buckypaper would 
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prevent Buckypaper from sliding and the bottom of Buckypaper would be fully immersed 

into precursor. Then, more precursor was hand layup on Buckypaper until it had a good 

impregnation. Another release film was covered on the preform before being bagged by a 

clear membrane. The clear membrane was tapped on the tooling via double-sided high 

temperature tape with good sealing. In the whole soft curing process, a 15 psi pressure and 

20 inHg vacuum was used in autoclave, see Figure 18. Using pressure and vacuum have 

two major advantages: 1) Making stronger interface between reinforcement and matrix, 2) 

Removing excessive polymer, which could avoid curvature during pyrolysis process.  

 

Figure 17 Schematic of bagging technique 

 

Figure 18 Autoclave tooling 
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The Buckypaper/Ceramic samples in shown in Figure 19. After pyrolysis, the shrinkage 

in-plane is 20.5% for both length and width direction. The mass fraction of carbon 

nanotube is 26.1%, and 46.6% of volume fraction was achieved. The density of 

Buckypaper/Ceramic samples is 2.32𝑔𝑔/𝑐𝑐𝑚𝑚3. 

 

Figure 19 Buckypaper/Ceramic nanocomposites 
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CHAPTER 5 CHARACTERIZATION AND TESTING 

Scanning electronic microscope was used to observe the microstructure of 

VACNT/Ceramic and Buckypaper/Ceramics nanocomposite. The thermal stability of 

nanocomposite was tested by a thermogravimetric analyzer (TA Instruments Q5000 IR) 

with sample weight of 40 mg to characterize its thermal stability. 

 

In order to reveal the anisotropic properties of carbon nanotube preforms reinforced 

ceramic nanocomposite, the electrical resistivity were measured in two orthogonal 

directions, namely in-plane and through thickness. The in-plane electrical resistivity of 

both VACNT nanocomposites and buckypaper nanocomposites were measured with a 

four-point apparatus (Signatone Quadpro System). The electrical resistivity through 

thickness was measured using Volt-Ampere law. The samples were painted with silver glue 

on both sides of sample. The DC power supply (MASTECH HY3005D) was used, the 

maximum voltage is 30 V. Additionally, the mechanical properties were characterized via 

hardness measurement.  

 

5.1 Scanning Electron Microscopy  

Aligned arrays were fabricated using floating catalyst chemical vapor deposition method. 

The microstructure was observed using Zeiss ULTRA-55 FEG SEM. The configuration of 
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VACNT was retained and the alignment was still observable in nanocomposite. The 

thickness of nanocomposite is about 1mm, see Figure 20.  

 

Figure 20 Cross-section of VACNT/Ceramic before pyrolysis 

Good bonding between carbon nanotube and ceramic could be observed in Figure 21. The 

carbon nanotubes were covered by ceramics, which could provide good mechanical 

properties. 

 

Figure 21 High magnification of VACNT/Ceramic 
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In Figure 22(a), it shows a very interesting phenomenon that cracks developed after 

ceramic pyrolysis, and the majority of cracks are perpendicular to the axis of carbon 

nanotube. The crack propagation is perpendicular to carbon nanotube could be observed in 

Buckypaper/Ceramic nanocomposite as well, and the only difference is that the crack is 

patterned in-plane instead of in the cross-section in VACNT/Ceramic nanocomposite. 

Even with the presence of crack and porosity, the nanocomposite comes in a whole unit. 

This is because the cracks are bridged by carbon nanotubes, and this phenomenon could be 

observed in Figure 22(b).  

   

Figure 22 (a) Crack in VACNT/Ceramic (b) Carbon nanotube bridging 

 

The Buckypaper/Ceramic nanocomposite was fabricated using bagging technique. All the 

carbon nanotube are well dispersed, and no agglomeration could be found (Figure 23). 
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Figure 23 Buckypaper/Ceramic surface 

As stated in the previous section, the crack developed during high temperature pyrolysis 

could be found in SEM images. The crack propagations have curtain pattern in-plane, and 

all the cracks are perpendicular to carbon nanotube alignment (See Figure 24). However, 

no crack could be found on the cross section surface. This feature could suggest that 

majority of carbon nanotubes are distributed in transverse plane. The crack pattern looks 

like an orthogonal network, which indicates that the assumption of uniformly distributed 

carbon nanotube in-plane is solid. The factors causing crack formation is still under 

investigation, but here we propose possibilities: 1) The evaporation of oligomer and gas 

release 2) The thermal residual stress developed during pyrolysis 3) The large shrinkage of 

during conversion from polymer to ceramic. Again, owing to carbon nanotubes bridging, 

the sample could be a complete piece nanocomposite even with the present of many micro 

cracks.  
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Figure 24 (a) Crack pattern on top surface of Buckypaper/Ceramic (b) High magnification fracture surface 

of Buckypaper/Ceramic 

 

5.2 Thermogravimetric Analysis (TGA) 

The thermal stability of samples was tested by a thermogravimetric analyzer in argon 

atmosphere with a temperature rate at 10 °C/min. The result indicates its high thermal 

stability, as can be seen in figure 25. In thermogravimetric figure, there is a relative high 

weight loss at round 98 °C, this is due to the moisture (water vapor) evaporation. After that, 

the weight is very stable and no additional mass loss at temperature from 200 °C to 640 °C. 

Then, the first stage of decomposition is expected because starting at 640 °C, the weight 

starting decrease at a relatively higher rate. However, when the temperature reaches 700 °C, 

99.75% of mass still remains. Therefore, a good thermal stability of VACNT/ceramics 

composite coating materials was obtained.  
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Figure 25 Thermogravimetric analysis of VACNT/Ceramic 

5.3 Electrical Conductivity 

5.3.1 In-plane  

The electrical conductivity of both VACNT/Ceramic and Buckypaper/Ceramic 

nanocomposites were measured with a four-point probe apparatus, which consisted of a 

combination of four probes in a straight line with a constant inter-probe spacing (S) of 1.56 

mm. Figure 26 shows a schematic representation of rectangular sample preparation for 

conductivity measurements. Uniformly distributed five points were selected, and on each 

spot, two perpendicular directions of electrical conductivity were measured. The in-plane 

electrical conductivity of VACNT/Ceramic sample could not be measured due to its large 

resistivity. However, the Buckypaper/Ceramic nanocomposite sample shows a much better 

conductivity. Both sides of Buckypaer/Ceramic nanocomposite were conducted 

conductivity measurements and the results are shown in Figure 27. For the rough surface, 

the fifth point has a large resistance, which could due to the excessive ceramic layer coving 

that spot. After excluding the fifth spot on the rough surface, the resistivity is consistent on 
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both sides. For the smooth, the resistivity is around 65Ω•cm while that of rough surface is 

about 58 Ω•cm. 

 

Figure 26 Schematic representation of sampling points 

 

Figure 27 Electrical conductivity of sampling points on both sides of sample.  

5.3.2 Through thickness  

All the samples are painted with silver glue on both sides in order to avoid contact 

resistance. A linear relationship between voltage and ampere could be seen in Figure 29. 

According to the resistance, the dimension of samples and the paint area, the electrical 

conductivity could be calculated by the following equation: 
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Where, L is the thickness of sample; A represents the area of silver painting area, and R is 

the resistance of the sample. The electrical conductivity of Buckypaper/Ceramic could not 

be measured due to its large resistance through thickness direction. While that of 

VACNT/Ceramic is 80.1 s/m, which indicates highly anisotropic properties of two 

different carbon nanotube preforms reinforced ceramic.  

 

Figure 28 Schematic Resistance measurement device 

 

Figure 29 Voltage-Ampere characteristic figure 

5.4 Hardness measurement 

The hardness measurements were performed on a LECO Vickers Hardness Tester LV 700 

using ASTM C1327-08 standard for advanced ceramic material under HV1/15 (1 Kg load, 

and the dwell is 15 seconds) loading condition [53].  
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The testing samples were firstly immersed in liquid phase epoxy resin for sample 

preparation purpose. After epoxy fully cured, the surface was polished using 600 grit 

sandpaper in order to make sure the sample surface was exposed, flat and smooth (See 

Figure 30). 

 

Figure 30 Prepared hardness measurement sample 

The hardness could be estimated using the equation as follows: 

𝐻𝐻𝐻𝐻 = 0.0018544 � 𝑃𝑃𝑑𝑑2�, 

Where P = load, N 

            d = average length of the two diagonals of the indentation, mm 

The length of diagonals could be measured using the indentation images, and calculated 

from the standard equation. Alternately, the hardness could be read direction from the 

Vickers hardness tester by using the built-in microscope right above the sample fixture.  

 

One VACNT/Ceramic sample, two Buckypaper/Ceramic composite from the same part but 

different sides and pure ceramic sample were measured. One side of Buckypaper/Ceramic 

nanocomposite has more excessive ceramic than another due to the manufacture process. 
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The hardness measurement is conducted on 10 isolated points on each sample, and 5 

preferably indentations are used in calculation. The hardness results could be seen in table 

4.  

Table 4 Hardness results 

Samples Hardness (GPa) 

Buckypaper + SMP-10 1.9 

Buckypaper + SMP-10 (more PDC) 2.5 

VACNT + SPR-688 1.85 

Pure SPR-688 8.5 

 

The pure ceramic has hardness of 8.5 GPa, while the hardness of ceramic decreases after 

reinforced by carbon nanotube preforms. The hardness of VACNT/Ceramic is lower than 

that of Buckypaper/Ceramic is unexpected because the load is in the carbon nanotube axial 

direction which should have the improvement. However, the porosity and crack in 

nanocomposite introduced by VACNTs is dominated, which could be noticed in SEM. For 

Buckypaper/Ceramic, no hardness promotion is achieved because the load direction is in 

transverse direction of carbon nanotube, in which there is no hardness enhancement.  
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CHAPTER 6 CONCLUTION AND FUTURE WORK 

This thesis proposed three carbon nanotube preforms for different application purposes, 

including VACNTs, Buckypaper, and fuzzy fibers. There are three major advantages over 

random carbon nanotube fillers via those preform: 1) Increase the content of carbon 

nanotube within the composite, 2) An alternative way to avoid the agglomeration of carbon 

nanotube, 3) Anisotropic properties of nanocomposite coating materials with alignment.  

 

The VACNTs growth was processed using FCCVD method, and the alignment was 

confirmed with SEM analysis. The height of VACNT array is controllable and the height 

range is from 5µm to 1300µm. This led us to use ceramic fiber as substrate to fabric fuzzy 

fibers that have potential to possess a better performance in mechanical properties and 

thermal and electrical conductivity than neat fiber reinforcement. Buckypaper was 

fabricated using pressure assistant infiltration system, and its ability to conduct heat at a 

lower rate in thickness direction than in-plane direction is important to dissipate heat to 

avoid localized hot spots or to insulate the surface of substrate from high temperature 

laoding condition.  

 

The high thermal stability of carbon nanotube preform reinforced ceramic matrix 

composite was proved using Thermogravimetric analysis, which suggests its availability 

for high temperature applications. An electrical conductivity of VACNT/Ceramic through 

thickness of 6.6 s/m was measured, yet the in-plane electrical resistant was too large to 
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estimate. The similar phenomenon has been observed in Buckypaper/Ceramic, on the plane 

which is dominated by uniformly distributed carbon nanotube in plane, electrical 

conductivity is of 0.161 s/m, but in the direction perpendicular to the plane, the electrical 

resistance is too large to measure. The anisotropic electrical conductivity has been shown, 

which could potentially predict that the thermal conductivity would vary in different 

direction as well. 

 

Mechanical properties of carbon nanotube preforms reinforced ceramic nanocomposite 

was estimated via hardness measurement. The results along with scanning electronic 

microscopic images suggest that crack and porosity has been developed within the 

nanocomposite after pyrolysis.  

 

All the work have done leads us to next investigation in future work. Firstly, the detachment 

of carbon nanotube from subtract is needed, otherwise, the mismatch thermal expansion 

coefficients between matrix and substrate would cause residual stress within the body, 

which is considered to be one of the major factor inducing cracks in nanocomposite. 

Besides, injection mold technique is necessary in PDC cure cycle due to the large shrinkage, 

which could help further dense the nanocomposite by consistent PDC resin feeding. 

Polymer infiltration and pyrolysis (PIP) would be conducted in order to avoid the crack 

and voids in nanocomposites.  
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Thermal conductivity in different directions needs to be measured to further confirm its 

anisotropic character and functionality of carbon nanotube preforms reinforced ceramic 

nanocomposite. Additionally, higher temperature thermal stability could be studies to 

exploit its better performance. 
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