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ABSTRACT

Electrospray atomization is a method that uses electrical stresses as the means of generating

charged droplets. The fundamental working principles of electrospray have previously been ex-

tensively studied and demonstrated to have monodisperse droplet size distribution, good stability

and scalability. Electrospray is a bottom-up deposition method which opens up the possibility of a

roll-to-roll compatible process and is functional at regular atmospheric conditions. Due to this set

of positive qualities, this atomization method holds promise as a means of solution based material

processing that is cost effective and scalable. Conjugated polymers are among the solution pro-

cessable materials of most interest, poly(3-hexylthiophene)(P3HT) standing out as one of the most

extensively studied. Applications of P3HT as a p-type semiconductor have been demonstrated in

devices like organic solar cells, light emitting diodes and transistors. Improvements in the perfor-

mance of the mentioned devices have been correlated with a higher degree of crystallinity as well

as the film structure in the case of organic solar cells.

The effects of different electrospray process parameters are investigated and various P3HT film

structures are presented in this study. Electric repulsion present within the droplets in electrospray

and evaporation of the solvent were used to obtain high aspect ratio features on the P3HT films. A

clever design for the electrospray nozzle devised to improve the process stability is presented. Also,

the crystallinity of the films was characterized using grazing incidence x-ray diffraction (GIXRD)

and ultraviolet visible spectroscopy. All results in this study are presented as a comparison to

spin coated control process. The GIXRD results suggest that the electrospray process produces

crystallites that have an orientation opposite of the orientation observed in the spin coated process.

Analysis of the ultraviolet visible spectroscopy absorption spectrum shows a red-shift, signaling

an increase in the crystallinity. Lastly, good contact between the deposited P3HT and the substrate

was confirmed using conductive atomic force microscopy (CAFM).

iii



To my mother, the most influential person in my life and whose unconditional support has been

essential in all that I do.

iv



ACKNOWLEDGMENTS

I would like to thank Weiwei Deng and Danvers Johnston for their invaluable advisement and help

throughout this study.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1: INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . . . . 1

The Distinct Properties of Electrospray . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Anisotropic properties of P3HT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2: METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Characterization Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 3: PROCESS DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . 10

Cone-jet Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Morphology of P3HT Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Effects of Residence Time Varied by Changing Working Distance . . . . . . . . . . . . 18

CHAPTER 4: CHARACTERIZATION RESULTS . . . . . . . . . . . . . . . . . . . . . 23

Grazing Incidence X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Ultraviolet-visible Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



Conductive Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 5: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



LIST OF FIGURES

Figure 1.1: Schematic of chemical structure of P3HT. . . . . . . . . . . . . . . . . . . . 2

Figure 1.2: (a) Meniscus and (b) profile of electrospray in cone-jet mode. . . . . . . . . . 3

Figure 1.3: Schematics of P3HT crystals in (a)face-one orientation and (b)edge-on ori-

entation with lamellar, π − π latices and head to tail (conjugation length)

direction along polymer backbone. . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1: Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.1: (a) Initial state of electrospray using regualar 100µm outer diameter nozzle

and (b) build up of P3HT in the cone-jet after short time. . . . . . . . . . . . 11

Figure 3.2: Schematic and photograph of modified experimental setup including chloroben-

zene filled chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3.3: (a) Modified nozzle with concentric drillbit and (b) electrospray in stable

cone-jet mode using drillbit nozzle . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.4: In the left, droplet suspended in space where dashed line represents the cut-

away section used in the free body diagram on the surface of a charged

droplet represented in right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.5: Comparison of pure solvent vs polymer solution charged droplet undergoing

evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



Figure 3.6: 1 wt % P3HT, 100 µL
hr

, sample SEM image taken with 70o angle perspective.

(a) Low coating density sample and (b) high coating density sample. . . . . . 16

Figure 3.7: 1 wt % P3HT, 400 µL
hr

, sample SEM image taken with 70o angle perspective . 17

Figure 3.8: 0.1 wt% P3HT, 100 µL
hr

, sample SEM image taken with 70o angle perspective. 18

Figure 3.9: (a)Schematic of experimental setup with inclined substrate. (b) Photograph

of experimental setup illustrated in (a). (c) Magnified photograph of spray

profile after passing through middle electrode. . . . . . . . . . . . . . . . . . 21

Figure 3.10: SEM images of electrospray samples collect at a working distance of (a)=15.9

mm , (b)=17.8 mm , (c)=19.6 mm , (d)=21.4 mm , (e)=23.2 and (f)=25.0 mm. 22

Figure 4.1: Diagram demonstrating the diffraction of X-ray beams from a face-on ori-

ented P3HT crystal onto the 2D collector. . . . . . . . . . . . . . . . . . . . 24

Figure 4.2: (a) SEM images of 1 wt % P3HT in Cholorobenze solution spin coated at

1000 rpm and (b) the corresponding GIXRD 2D intensity plot. The white

line demonstrates the angles ω in which the polar profile cuts for figures 4.4

and 4.5 were taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.3: (a, c, e, g) SEM images of electrosprayed samples ES 1, ES 2, ES 3 and ES 4

respectively. (b, d, f, h) GIXRD 2D scattering intensity from samples ES 1,

ES 2, ES 3 and ES 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4.4: Polar profile cuts for all angles ω along radius pertaining to < 100 > lamellar

peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



Figure 4.5: Polar profile cuts for all angles ω along radius pertaining to < 010 > π − π

peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.6: Intensity profiles lamellar < 100 > peaks . . . . . . . . . . . . . . . . . . . 30

Figure 4.7: Intensity profiles π − π < 010 > peaks . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.8: Absorbance profile of P3HT in solution of chlorobenze . . . . . . . . . . . . 32

Figure 4.9: Absorbance profile of P3HT spin coated film and electrosprayed coated film . 33

Figure 4.10: Conductive Atomic Force Microscopy setup with P3HT structured film semi

saturated with PCBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.11: Dropcast setup for coating of PCBM in dichloromethane solution. Schematic

on the left and photograph in the right. . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.12: SEM image at (a) 20 KX and (b)100 KX magnification and 70o perspective . 37

Figure 4.13: SEM image at (a) 5 KX and (b)100 KX magnification and 70o perspective . 37

Figure 4.14: (a) Height and (b) electrical current CAFM data plots for sample presented

in figure 4.13. The voltage drop was set to 5 volts during the measurements. . 38

Figure 5.1: (a) SEM image of electrospray of 1 wt % of PBDTT-FTTE conjugated poly-

mer solution. (b) Higher magnification. . . . . . . . . . . . . . . . . . . . . 40

x



LIST OF TABLES

Table 4.1: Name designation and process conditions for electrosprayed samples used

for GIXRD analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



CHAPTER 1: INTRODUCTION AND BACKGROUND

Electrospray atomizers have drawn attention due to numerous characteristics that make it a promis-

ing method of deposition for solution based processing of materials. The droplet size and the uni-

formity are important due to their influence in the scale of the application and the uniformity. Keqi

Tang and Alessandro Gomez determined the droplets typically break up into two groups, the pri-

mary droplets and the satellite droplets that are in diameter roughly one third the size. Among the

primary droplets, which compose roughly 97% of the volume and 85% of the charge, the size distri-

bution is considered monodisperse. In addition to the monodispersity, droplets diameters ranging

from a few nanometers to tens of micrometers can be achieved[43][9]. The electrical charges also

present qualities useful for solution processing such as self dispersion and control over the path

of the droplets. Setting up an electrospray deposition system is relatively simple with the main

components being a needle, high voltage power supplies and a pump. Overall, the promise of elec-

trospray deposition relies on the simple operation and droplet characteristics. The great potential

of electrospray deposition of polymers was demonstrated by making spherical polymer particles

ranging form 600 nm to 2 µm[4]

P3HT forms part of a group of polymers referred to as conjugated polymers. More specifically,

P3HT is a monomer consisting of a thiphene ring and a alkyl side chain as illustrated in figure 1.1.

Conjugated polymers are semiconductors, stable in solution, and can also be photoactive. These

characteristics have led to applications common with other semiconductor material devices like

organic solar cells [48][13], light emitting diodes [39][36] and transistors [29]. In these devices,

P3HT is implemented as a p-type electron donor material and typically coupled with Phenyl-C61-

butyric acid methyl ester (pcbm) as the n-type semiconductor. In organic solar cell devices the

P3HT and the PCBM are deposited through spin coating as a blend resulting in a disordered het-

erojunction. However, spin coating is uncapable of delivering an the optimized ordered heterojunc-
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tion necessary to increase the efficiency [13]. Other methods of processing conjugated polymers

through inkjet printing [7] and screen printing [37].

Figure 1.1: Schematic of chemical structure of P3HT.

The Distinct Properties of Electrospray

For close to a century electrospray has been extensively studied since John Zeleny first explained

and photographed the effects of of applying an electric field onto a liquid meniscus [49] [50].

Before John Zeleny, more fundamental studies of the behavior of liquid jet breakup and effects of

electric charges on liquid droplets were conducted by Lord Rayleigh[35][34]. The electric field

at which the liquid meniscus is exposed to electrospray affects the shape of the meniscus. These

different meniscus shapes have been identified and are referred to as modes [49] [50][12]. In the

absence of an electric field, the meniscus will only drip at the low flow rates in which electrospray

works. As the electric field is gradually increased the dripping becomes faster until the meniscus

goes into pulsing mode, cone-jet mode and multi-jet mode sequentially. In the pulsing mode, the

meniscus appears as a blurred cone while in cone-jet mode it appears as a well defined sharp image

of a cone and the multi-jet appears as multiple jets ejecting from the meniscus. Note, that these

are not the only modes identified in electrospray but only the ones observed in this study. Of most
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interest is the cone-jet mode, also referred to as Taylor cone, in which the coulombic repulsion and

the surface tension are in balance and form a meniscus in the shape of a cone as shown in figure

1.2(a). In the apex of the cone, a jet emerges which breaks up into charged droplets downstream.

Figure 1.2 also shows the jet(a) and the resulting spray profile after the jet breaks up (b).

Figure 1.2: (a) Meniscus and (b) profile of electrospray in cone-jet mode.

The electric charges on the droplets distinguishes electrospray from other forms of atomization.

First, the repulsion between the droplets causes the spray to self disperse and prevent droplet to

droplet agglomeration. Also, the path of the droplets from the jet to the collecting substrate could

possibly be controlled by use of external electric fields as it is done in quadrupole mass spec-

troscopy. Control over the breakup of an electrospray jet using a lateral alternating electric fields

has already been demonstrated [47]. The material utilization efficiency is superior in electrospray

solution base processing since the charged droplets are guided onto the collecting substrate to dis-

charge. The degree to which the spray profile opens or closes can also be controlled by increasing

or decreasing the electric field. However, this is limited since the cone-jet mode will only remain

stable between a small range of voltages. The range of the electric field acting on the droplets

can be extended by adding an intermediate electrode, termed as an extractor, to isolate the electric

field near the meniscus[18][4]. Apart from the external effects of the electric charges, the droplets
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are also subject to coulombic repulsion of the charges within. This has been theoretically[35] and

experimentally[23] studied and demonstrated to lead to instabilities in the droplets. Also, the pres-

ence of electrical charges on a droplet has been demonstrated to improve the wetting as the droplets

impact an electrically conducting surface[17].

The balance of the coulombic repulsion and surface tension necessary to maintain a cone-jet out-

lines the importance of the conductivity of the liquid K and the surface tension γ as the two liquid

properties that play the most important role. Besides the stability, it is also of interest to know

which properties and parameters affect the droplet size of the spray. Equation 1.1 is a scaling law

for the diameter of the droplets d obtained theoretically and confirmed experimentally for electro-

spray in the cone-jet mode of various solvents[24].

d ∼
(

ρεoQ
3

γK

)

1/6

(1.1)

The flow rate is denoted by Q, the density of the solvent by ρ and εo the permittivity of the medium.

Note that for a particular solution and a medium, the only parameter that can be varied is the flow

rate. Also, the droplet size is independent of the the nozzle diameter and viscosity of the liquid

that is being electrospray. Although equation 1.1 is very useful to gain a sense of the effects of

changing the flow rate or the fluid properties mentioned, caution should be exercised when using

the equation to get definite values for the droplet diameter. It should be noted that equation 1.1 is

the result of a string of studies to determine the scaling laws of electrospray [15] [22] [8].

The biggest concern impeading the wide implementation of electrospray deposition on an indus-

trial scale is the low flow rates of operation for a single emitter. Efforts to increase the throughput

by increasing the amount of emitters, termed multiplex electrospray, have proven successful[30]

[18] [32] [19]. This scale up method is attractive since the flow rate per nozzle and by association

the droplet size are maintained constant as the total flow rate is scaled up. Also, the size of the
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multiplex emitters has been demonstrated to be very compact with the density of emitters being

an outstanding 11, 547 sources/cm2 [19]. Models for multiplex electrospray have been developed

along with design guidelines [47][16].

The Anisotropic properties of P3HT

P3HT has a tendency to aggregate into crystals as the concentration increases when the solvent

is evaporated [28][11]. These crystals become buried in a matrix of amorphous P3HT forming a

semi crystalline solid and have a tendency to align in the edge-on orientation when spin coated [29].

Figure 1.3 demonstrates a P3HT crystal in different orientations and depicts the different directions

with the notation in accordance with previous studies [26][2][25][38]. Note, in figure 1.3, that the

lamellar lattice across the alkyl chain and the π − π stacking lattice alternate directions from face-

on to edge-on alignment. Due to the significant difference in the different direction of the P3HT

crystals, the electrical properties become anisotropic. It has been determined that charge mobility

along the alkyl chains is roughly 3 orders of magnitude lower than along the conjugated backbone

and the π − π stacking [38]. Hence, referring to figure 1.3, in the face-on orientation the mobility

is higher normal to the plane and in edge-on orientation the mobility is higher along the plane.

Also, the charge mobility has been demonstrated to increase as the conjugation length increases

[6]. In order to improve the in-plane mobility for edge-one oriented devices, efforts to increase

the cojugation length have been effective. Studies have successfully demonstrated an increase in

the conjugation length through thermally annealing samples [10][45][20][28] by processing with

high boiling point solvents [11]. Other studies have demonstrated control over the orientation of

the P3HT crystals by using grids to induce face-on orientation of the crystals[26][2][25].
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Figure 1.3: Schematics of P3HT crystals in (a)face-one orientation and (b)edge-on orientation

with lamellar, π−π latices and head to tail (conjugation length) direction along polymer backbone.
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CHAPTER 2: METHODOLOGY

Figure 2.1 outlines the experimental setup with all the components, typical parameters and axis

of motion. The nozzle was directly connected to a 100µL glass Hamilton syringe and then to a

Chemyx nanojet syringe pump. With this size of the syringe, the resolution of the syringe pump is

about 0.5 nL. The nozzles used in this study were a 100µm outer diameter needle and a 27 gauge

needle with a 410µm outer diameter. A small sheet heater was wrapped around the glass syringe

to maintain a temperature of roughly 60oC. The syringe pump was fixed onto a 1D hand turned

motion stage to control the distance between the area where the spray is initiated and the collecting

substrate. White or green LED lights were used as back-light to obtain a shadow graph image

using a Cannon Rebel EOS camera with an attached and extended 10X magnification lens. The

camera was attached to a 3D Newport hand turned motion stage to position and focus the camera

field of view onto the nozzle tip. The high potential end of an Acopian (model P020HP1. 5M) high

voltage power supply was clipped to the nozzle while the ground was connected to the collecting

substrate. The substrate was attached to a Newport TS series liner motion stage. The motion stage

was controlled using a software package called EMC that allows programming of linear velocity,

acceleration and quantity of coatings.

Separate solutions were prepared using 1 wt% and 0.1 wt% P3HT in Chorobenzene. The solution

was filtered using at PTFE 0.22µm pore filter to eliminate undissolved P3HT aggregates. Tri-

flouroacetic acid and acetone were added by 1 % and 10 % by volume respectively in order to

enhance the electrical properties of the solution. The P3HT solution then had to be maintained at

60oC to maintain a stable solution without P3HT aggregation. The concentration of P3HT was

changed in order to change the size of the resulting P3HT films. A silicon wafer coated with a 300

nm copper film was used as the base to collect the P3HT particles and films. The copper coated

wafers were cleaned through a process that started dipping cleaved pieces of roughly 3x3cm into
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acetone, ethanol and DI water bath sequentially and allowing at least 30 minutes in each step.

A film of (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) PEDOT:PSS was then spin

coated onto the silicon wafers using a angular velocity of 2000 rpm for 45 seconds preceded by

500 rpm for 5 seconds resulting in a coating of about 50nm. The purpose of the PEDOT:PSS coat-

ing was to generalize the surface effects on all the samples. The water based PEDOT:PSS solution

was prepared for spin coating by first filtering the solution using a PES 0.22µm pore filter and

then adding Isopropanol alcohol in equal parts by volume to the filtered solution. The Isopropanol

alcohol was introduced to decrease the surface tension of the PEDOT:PSS solution and allow for

better coverage of the silicon wafer.

Figure 2.1: Experimental setup
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Characterization Methodology

The GIXRD measurements were carried out at the National Synchrotron light source at Brookhaven

National Laboratory. The scattered x-rays were collected in a 2D detector. The profile cuts across

the peaks presented in figures 4.6 and 4.7 were taken using Gwiddion software package. ImageJ

software was used for the polar profile cuts presented in figures 4.4 and 4.5. To measure the optical

transmission/absorbance spetrum of the films between 200 and 800 nm a Cary Win UV spectrom-

eter was utilized to obtain the transmission/absorbance spectrum of the samples between 200 and

800 nm. Both films were deposited on glass coated with fluorine doped tin oxide (FTO) and PE-

DOT:PSS with the same conditions detailed in section 3.2 substrate preparation. An additional film

of only FTO coated glass coated with PEDOT:PSS was prepared to subtract the background signal

from the absorbance measurement. The AFM used was a Veeco Manifold multimode model along

with a Conductive AFM module. The module consisted of a voltage actuator, a signal amplifier

and a current sensor. In order to use the CAFM module, the AFM was set in contact mode at

constant deflection and tip was an Olympus platinum coated silicon tip with a 28± 10nm diame-

ter. In this mode, this tool can reach spatial resolutions in the atomic scale. The samples for this

measurement needed an extra process which is detailed in Atomic Force Microscopy section of

the characterization chapter. Gwiddion was also used to plot the space and electrical current data.

A Zeiss ULTRA-55 FEG Scanning Electron Mircroscope (SEM) was used in all the SEM images

presented in this study.
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CHAPTER 3: PROCESS DEVELOPMENT

Cone-jet Stabilization

Electrospray of pure solvents like ethanol is relatively simple to achieve and remains stable for long

periods of time. However, the process becomes many times more difficult when electrospraying

solutions of dissolved material or suspensions. The solid content in the solutions can give rise

to problems such as clogging or solidification of the cone-jet. The latter issue was present in

electrospraying of the P3HT solution as it is presented in figure 3.1(b). The initial state of the

electrospray was as demonstrated by figure 3.1 (a) but after some time, typically between 1 to 5

minutes, the cone-jet would evolved to that presented in figure 3.1(b). A hard shell of P3HT built

up in the cone-jet which prevented the smooth flow of the solution. This shell had negative effects

on the spraying process such as tilting the jet to the side as can be observed in the photograph.

Also, as the shell became bigger it eventually stopped the flow or would break off and disturb the

process. Furthermore, the build up of this shell consumed P3HT and therefore made it difficult to

know the actual flow rate of the P3HT material.

It was initially contemplated that the formation of the shell was caused by rapid drying in the

conejet. Therefore it was of interest to reduce the evaporation rate of the solvent caused on the

cone-jet by its near environment. As dictated by Fick’s first law, equation 3.1, the diffusion flux J

is calculated by the negative product of the diffusion coefficient D and the concentration gradient

∇φ. For the case of electrospray of the polymer solution, the diffusion flux corresponds to the

evaporation rate and the concentration gradient of interest is that of the chlorobenzene solvent.

J = −D∇φ (3.1)
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Figure 3.1: (a) Initial state of electrospray using regualar 100µm outer diameter nozzle and (b)

build up of P3HT in the cone-jet after short time.

Then, by equation 3.1, the evaporation rate can be lowered by decreasing the concentration gra-

dient of chlorobenzene. To achieve this task, the experiment setup illustrated in figure 3.2 was

constructed. This experiment setup is a modification of the setup presented in figure 2.1. The elec-

trospray was enclosed within a acrylic cylindrical chamber to ensure that the chlorobenzene vapor

did not escape the near environment. Also, an intermediate electrode with a slit in the bottom was

introduced to further enclose the near environment. On the top, the chamber was enclosed with

parafilm. A small hole was made on one side to allow for the visualization of the electrospray.

A heated vial filled with liquid chlorobenze was introduced inside of the chamber to ensure that a

large concentration of the solvent. It is likely that the chamber also affected the diffusion coefficient

D, but the effects are to lower the evaporation rate since it would eliminate any force convection

caused by the flow of the fumehood. After running the electrospray multiple times inside of the

chamber filled with chlorobenzene, the effects observed in figure 3.1 (b) still persisted. Since no
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substantial difference was noticed, it was determined that the solvent evaporation in the chamber

was not the cause for the P3HT aggregation shell in the cone-jet.

Figure 3.2: Schematic and photograph of modified experimental setup including chlorobenzene

filled chamber.

Studies have demonstrated experimentally[31] and through numerical simulation[27] that the sta-

bility of an electrospray in cone-jet mode can be improved by inserting a tip concentric with the

nozzle. The tip prevents the creation of recirculation cells that are present in cone-jet mode by

forcing the flow along the drillbit channels and the surface. In the case of the P3HT solution, the

recirculation cells allowed the solution to remain at temperatures below the temperature for which

the solution was stable. After some time, the P3HT present in the recirculation cells would drop

out of solutions and form the aggregations observed in figure 3.1 (a). To imitate the concentric tip

design, a drillbit of roughly 200µm was inserted in to 27 gauge needle as shown in figure 3.3. The

drill bit was a simple and effective solution since it was easy to align concentrically and provided
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channels for the flow. The drillbit was inserted into the needle by using tweezers to hold the needle

and the drillbit, a microscope to visualize and pliers to slightly deform the needle to press the drill-

bit in place. Figure 3.3 (b) demonstrates the electrospray using the nozzle with concentric drillbit

which remained stable for as long as the process required.

Figure 3.3: (a) Modified nozzle with concentric drillbit and (b) electrospray in stable cone-jet

mode using drillbit nozzle

Morphology of P3HT Films

Electrospray distinguishes itself from other atomizers in that the droplets are electrically charged

when they break apart from the jet. This introduces electric repulsion between the droplets as well

as within the particular droplets. The effects of repulsion within the droplet have been theoretically

studied by Lord Rayleigh where he determined that a droplet of diameter d can only contain a finite

amount of charge q before developing an instability. The instability develops as a result of the

electrical repulsion force overpowering the binding surface tension force in the liquid gas interface

of the droplet. Figure 3.4 illustrates a free body diagram of the surface of a droplet under the
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influence of surface charges. The charge quantity q is termed the Rayleigh limit and is dictated by

equation 3.2 where γ is the surface tension of the liquid of the droplet and ǫo is the permittivity of

the medium, air in this case.

q2 = 8π2ǫoγd
3 (3.2)

Figure 3.4: In the left, droplet suspended in space where dashed line represents the cutaway

section used in the free body diagram on the surface of a charged droplet represented in right.

The effects of electrical charges within a droplet have also been studied experimentally [23].

Alessandro Gomez and Keqi Tang determined that the instability happens when the charge of

the droplets is between 70% to 80% of the Rayleigh limit. The instability was visualized in a

process termed coulombic fission where a jet forms on the surface of the droplets and begins to

eject smaller droplets. In the case of electrospray, coulombic fission is approach as a result of

evaporation. As the droplet losses its mass the its diameter decreases exponentially but the charge

on the droplet remains constant. The decrease in diameter affects the right hand side of equation

3.2 and as that value approaches 70 % to 80% of the left hand side, coulombic fission will occur.
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The previously mentioned study by Gomez and Tang only considered the effects of electric charges

within a droplet composed of a single liquid with no solid content. The effects of coulombic fission

in droplets composed of poly(lactic-co-glycolic acid) (PLGA) solution have been demonstrated to

show unusual morphologies in the particles resulting after full drying[3]. The cause for the unusual

morphologies was the interactions between the individual PLGA chains creating a network, termed

polymer entanglement, and maintaining the droplets shape as the droplet approached coulombic

fission. Figure 3.5 explains the results by comparing the situation of a charged droplet of pure

solvent and one that contains polymer dissolved within it. As the solvent in the droplet evapo-

rates causing it to approach the Rayleigh limit, the polymers entangle and maintain the droplet

structure instead of splitting into multiple droplets. Contrarily, charged droplets generated through

electrospray of polymer solutions that do not reach coulombic fission have been shown to result

in spherical shapes and circular blobs [4] [5] [42] [33] [51]. The main parameters associated with

the resulting morphologies are the flow rate of the process and the polymer concentration in the

solution [3].

Figure 3.5: Comparison of pure solvent vs polymer solution charged droplet undergoing evapora-

tion
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Figure 3.6: 1 wt % P3HT, 100 µL
hr

, sample SEM image taken with 70o angle perspective. (a) Low

coating density sample and (b) high coating density sample.

The phenomena illustrated in figure 3.5 applied to electrospray deposition of P3HT is presented

in figure 3.6. High aspect ratio pillar like features can be observed in the SEM image in figure

3.6 (a). The cause for the features observed in the image is attributed to coulombic fission as the

solvent evaporates. Although the morphology is not exactly consistent with those presented in the

study with PLGA solutions [3] the coulombic diffusion is still likely the cause of the elongation

of the features. These pillar like features, in figure 3.6, are roughly 3 µm in length, 500 nm in

width near the two extremes and 150 nm width in the center. This constitutes to an aspect ratio

ranging from roughly 6 in the extremes to 20 using the center width. Apart from the more notable

high aspect ratio pillars, there also appear to be some features that broke apart in the middle where

the pillars are the thinnest. These appear as rounded top cone like structures and are scattered
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throughout. Also, there are droplets that landed in liquid state present as disk like blobs laying flat

in the substrate. Another remarkable characteristic of the electrospray samples is the affinity of

the pillars to land vertically. Although we cannot claim that all particles are vertical, the majority

of the pillars are in the upright position. An easily observable exception is the particle near the

middle of the image in the top right quadrant. In figure 3.6 (b), a sample of the same electrospray

conditions is presented but with a higher quantity of P3HT. This was achieved through a higher

quantity of coatings at the same velocity. The features are no longer distinguishable due to the high

density of the P3HT. The sample in figure 3.6 (b) is a testament to the stability of the electrospray

through the coating process. Note that the images were taken with a 70o perspective and to more

accurately estimate vertical distances, the measurements must be divided by sin(70o).

Figure 3.7: 1 wt % P3HT, 400 µL
hr

, sample SEM image taken with 70o angle perspective

The ability to fabricate semi-smooth continuous films of P3HT using electrospray deposition is

evident by observing figure 3.7. This sample was fabricated at a volumetric flowrate that was 4

times greater than the samples presented in figure 3.6 leading to larger droplets. Due to the higher

quantity of solvent present in these droplets, the drying time is not sufficient to remove all of the

solvent. This leads to the droplets landing in the liquid phase and free to deform, resulting in thin

disk features with a diameter roughly 14 µm. Note that the SEM image was taken at a 70o angle
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perspective which gives the impression that the features are oval like.

As previously stated, the concentration of the polymer in the solution is one of two main parameters

that affects the morphologies. The sample presented in figure 3.8 was processed with a polymer

concentration that was 10 times less than the sample presented in figure 3.6. As expected, the

decrease in concentration results in features that are smaller in size. The height of the features is

roughly 150 nm and the width 200 nm. Note that in height, the pillar like features in figure 3.6 are

larger than the features in figure 3.8 but the widths are of comparable size. The cause for the non

presence of high aspect ratio features is likely that the concentration of polymer in the solution was

not enough to cause entanglement before coulombic fission allowing the droplets to freely break

into smaller droplets.

Figure 3.8: 0.1 wt% P3HT, 100 µL
hr

, sample SEM image taken with 70o angle perspective.

Effects of Residence Time Varied by Changing Working Distance

The working distance plays an important role in the electrospray deposition process since it is

coupled with drying time. A working distance that is too short will result in droplets still in the

liquid phase, due to short drying time, when reaching the substrate and proceed to deform into flat
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circular disk. On the other hand, a working distance that is too long will result in dry particles

reaching the substrate which will then become a collection of particles instead of a structured

film. The lifetime of a droplet τD to completely dry is dictated by equation 3.3 where do is the

initial droplet diameter and k is the evaporation rate [44]. Hence, if the drying time allowed by

the working distance is larger than τD, the droplets will land dry. Conversely, if the drying time

is shorter than τD the droplets will land wet and deform. Note, the drying time is not the only

parameter that is important for the total removal of the solvent. Other parameters like diffusion

constants and densities, embedded into the evaporation rate k, are also important. However, the

drying time is the only parameter being varied during the experiment by changing the working

distance.

τD =
d2o
k

(3.3)

It is important to determine the point at which the transition from wet to dry happens in the spray.

To do so, the experiment setup presented in figure 2.1 was modified by placing the collecting sub-

strate at an incline of 20o angle and an intermediate electrode, presented in figure 3.9. The modified

setup allowed the working distance to become variable with the lateral translation of the substrate

so that as the substrate marched to the right, the working distance would gradually increase. The

motion stage on which the substrate was placed was programmed to march 5 mm laterally and

pause for 10 seconds in a point of collection. The 5 mm lateral increments resulted in 1.82 mm

vertical increments in the working distance. In addition to the inclined substrate, an intermediate

electrode was place between the nozzle and the substrate. The purpose of the intermediate elec-

trode was to mask the circular spray profile into a thin slit so that a point of collection along the

inclined substrate would not interfere with the adjacent points of collection. This effect can be

observed in figure 3.9 (c) where the spray profile passing through the intermediate electrode is

photographed.

The result obtained by using the modified experimental setup are presented in figure 3.10. The
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SEM images presented in figure 3.10 (a,b,c) show P3HT deposition samples that are overwhelm-

ingly composed of large circular features resulting from droplets landing wet. However, figure 3.10

(b,c) show small amounts of droplets that appear to have landed dry. The transition from mostly

wet to dry seems to occur in figure 3.10 (d), corresponding to a working distance of 21.4 mm,

where the majority of the particles seem to be dry. Figures 3.10 (e,f) continue to show mostly dry

particles with only a few spots in (e) that seem to be the result of droplets landing wet. Aside from

determining an optimal working distance, it is important to notice the stark difference between

figure 3.10 (c) and (d). Although the difference in the working distance is only 1.82 mm, (c) is

mostly composed of droplets that landed wet and (d) of droplets that landed mostly dried, meaning

that most droplets dried in nearly the same drying time. Since the drying time is directly related

to square of the diameter, equation 3.3, it can be concluded that the diameter of most droplets is

nearly the same.
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Figure 3.9: (a)Schematic of experimental setup with inclined substrate. (b) Photograph of exper-

imental setup illustrated in (a). (c) Magnified photograph of spray profile after passing through

middle electrode.
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Figure 3.10: SEM images of electrospray samples collect at a working distance of (a)=15.9 mm ,

(b)=17.8 mm , (c)=19.6 mm , (d)=21.4 mm , (e)=23.2 and (f)=25.0 mm.

22



CHAPTER 4: CHARACTERIZATION RESULTS

The crystallinity of the P3HT films was characterized through grazing incidence x-ray (GIXRD)

diffraction and UV-Visible spectroscopy. GIXRD is an effective tool to study the intermolecular

interactions of the P3HT polymers along the lamellar and π−π lattices and the crystal orientation.

Additionally, UV-Visible spectroscopy can be used to study the intramolecular interactions of the

P3HT monomer along the polymer backbone. Both techniques in conjunction provide a complete

picture of the orientation and size of the crytallites.

Grazing Incidence X-Ray Diffraction

In the GIXRD results the diffraction peaks are dictated by the Bragg equation, equation 4.1, where

n is a positive integer, λ is the wavelength of the incident wave, θ is the scattering angle, and d is

expressed by equation 4.2. The values of h, k and l represent the miller indices and a is the lattice

spacing. The value of d for a particular lattice spacing and orientation, will give a value of θ in

accordance to Bragg’s equation. That value of θ will correspond to the location of the intensity

peaks in the GIXRD plots.

2d sin θ = nλ (4.1)

d =
a√

h2 + k2 + l2
(4.2)

figure 4.1 shows a diagram how the x-rays are diffracted by the face on aligned P3HT crystal’s

latices and impact the sensor. In this orientation, the lamellar < 100 > lattice diffracts with a

preference onto qx axis and the π − π lattice will diffract on to the qz axis. If the crystals have

edge on orientation, the diffraction would be opposite where the lammellar and the π − π lattices

diffract onto the qz and the qx axis respectively.
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Figure 4.1: Diagram demonstrating the diffraction of X-ray beams from a face-on oriented P3HT

crystal onto the 2D collector.

The 2D intensity plots produced by a GIXRD instrument illustrated in figure 4.1 can be seen in

figures 4.2 and 4.3. In the case of figure 4.2, the sample is spin coated and results in a smooth thin

film. It is typical for spin coated samples of P3HT to exhibit edge-on orientation which is evident

in figure 4.2b where the < 100 >,< 200 > and < 300 > lamellar peaks are along the qz axis and

the < 010 > π− π peak along the qx axis. Note that this is the opposite situation as it is illustrated

by the diagram in figure 4.1 where the P3HT crystal is shown in the face-on orientation.

The electrosprayed samples and their corresponding process conditions are denoted by table 4.1

and the SEM images as well as the GIXRD intensity plots can be seen if figure 4.3. Unlike the

smooth uniform film resulting from spin coating illustrated in figure 4.2 (a), the electrospray films

are mostly compose of collection elongated pillars and round features. Sample ES4 stands out the
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most due to its larger features and the much higher concentration of round smooth edged disk like

features. The cause of the larger features is due to the higher flowrate of sample which leads to

larger droplet size. The disk like shaped particles are the droplets strike the collector partially wet

and are allowed to deform due to the higher amount of solvent present in larger droplets. Of more

interest are the contrast of the GIXRD intensity plots between the control spin coated sample and

the electrosprayed samples. When comparing the plots in figure 4.3(b,d,f,h) to that of figure 4.2(b)

there is a clear distinction of the position of the high intensity peaks corresponding to < 100 >

and < 010 >. In the spin coated sample, the < 100 >,< 200 > and < 300 > lamellar peaks are

positioned along the qz axis and the < 010 > π−π peak is position along the qx axis. The opposite

can be seen in the electrosprayed samples in figure 4.3(b,d,f,h) where the < 100 > lamellar peak

is now positioned in the qx axis and the < 010 > π − π peak in the qz axis. The < 200 >

and < 300 > lamellar peaks are also present in the electrosprayed samples but are barely visible

due to the low quantity of material of the electrosprayed samples leading to lower intensity of the

diffracted x-rays. This shift in the position of the lamellar and π − π peaks signals a shift in the

orientation of the crystals in the films.

Figure 4.2: (a) SEM images of 1 wt % P3HT in Cholorobenze solution spin coated at 1000 rpm

and (b) the corresponding GIXRD 2D intensity plot. The white line demonstrates the angles ω in

which the polar profile cuts for figures 4.4 and 4.5 were taken.
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Figure 4.3: (a, c, e, g) SEM images of electrosprayed samples ES 1, ES 2, ES 3 and ES 4 re-

spectively. (b, d, f, h) GIXRD 2D scattering intensity from samples ES 1, ES 2, ES 3 and ES

4.
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Table 4.1: Name designation and process conditions for electrosprayed samples used for GIXRD

analysis.

Figure 4.4: Polar profile cuts for all angles ω along radius pertaining to < 100 > lamellar peak

To better illustrate the difference in the orientation of the crystals in spin coated and electrospray

process, figures 4.4 and 4.5 show polar profile cuts along the lamellar < 100 > peak at q=0.38

Å−1 and the < 010 > π − π peak at q=1.64 Å−1 respectively. In figure 4.4, near ω = 0o, the

spin coated control sample shows a higher intensity and decays as ω increases. The opposite is

observed for the electrosprayed sample where the intensity in exponentially higher near ω = 90o.

27



Furthermore, in figure 4.5 the same effect is observed for the < 010 > π − π peak. In this case,

the spin coated samples has higher intensities near ω = 90o and the electrosprayed samples near

ω = 0o. Both these observations indicate a shift in alignment from edge-on in the spin coated

samples to face-on in the electrosprayed samples in the majority of the crystals. There is not a

distinct difference between the electrosprayed samples and can therefore be said that the electric

field and the particle size does not significantly affect the orientation of the crystals in the presented

electroprayed samples. Other studies have demonstrated similar results using grids to induce face-

on orientation of the crystals [26] [2] [25].

Figure 4.5: Polar profile cuts for all angles ω along radius pertaining to < 010 > π − π peak

The size of the crystals in a particular direction can be estimated by using the Scherrer’s equation

(equation 4.3). Where τ is the mean size of the crystals, K is a dimensionless factor dependent of

crystal shape, θ is the Bragg angle and ∆(2θ) is the width of the peak at half the intensity.

τ =
Kλ

∆(2θ) cos θ
(4.3)
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In figure 4.6, the profiles of the < 100 > lamellar peaks can be seen for all the samples. The

small circles in the plot are placed to represent where the peaks reached half of their particular

intensity. Note, these profiles are different than the ones presented in figures 4.4 and 4.5 since

these cut across as apposed to along the peaks. The values for K and λ in equation 4.3 are the same

for all samples since all were tested at the same wavelength and the crystals are expected to have

the same shape. Also, the value of the Bragg angle θ remains the same for all samples since all

the profiles were taken for the < 100 > lamellar peak. Then, the value of ∆(2θ), which can be

obtained from the profile cuts, becomes the only variable to find the mean crystal size τ . Visually,

it is clear that the value of the ∆(2θ) is nearly the same for all samples including the spin coated

sample. The legend specifies the values of ∆(2θ) which range from 0.65o to 0.84o. Although the

values of ∆(2θ) are not the same, the difference is not sufficient to draw the conclusion that the

crystal size is different. The same is the case for the < 010 > π − π peak presented in figure 4.7.

It can then be concluded that the crystal size in the lamellar and π − π directions are similar for

the spin coated and the electrospray process. However, this conclusion does not exclude enhance

crystal growth along the polymer backbone.

Ultraviolet-visible Spectroscopy

Ultraviolet and visible light absorbance spectrum profiles were obtained for the P3HT in solution,

spin coated films and electrospray films. The absorbance spectrum is of interest due to the its rela-

tionship with the structure of the cystals. Two films of P3HT were prepared for the measurement,

one film was spin coated and the other film was electrosprayed with the same parameters as those

for the result presented in figure 3.6. As noted in the methods section, for this measurement the

films were prepared on glass coated with fluorine doped tin oxide (FTO) and PEDOT:PSS. The ab-

sorbance profiles for P3HT disolved in cholorobenzene is presented in figure 4.8 and the processed
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films are presented in figure 4.9.

Figure 4.6: Intensity profiles lamellar < 100 > peaks

During the solvent drying process as the films were prepared, the P3HT aggregates into crystals.

This aggregation will cause the absorption spectrum to shift from absorbing shorter high energy

waves peaking at 455 nm to absorbing longer low energy waves depending on the degree of crys-

tallization [14]. This shift in the absorption spectrum towards larger wavelengths is commonly

referred to as red-shift and the opposite is referred to as blue-shift. There are two observable dif-

ferences in the absorbance profiles of the spin coated films and the electrosprayed films in figure

4.9. Most noticeable is a 22 nm red-shift of the electrospray sample as compared to the spin coated

sample. As previously mentioned, the red-shift signals a higher degree of crystallization [14].

More specifically, the red-shift is interpreted as a higher degree of head to tail couplings along the

polymer backbone and a higher degree of planar crystals[46]. The opposite case would be would
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be a higher degree of head to head couplings along the polymer backbone leading to a blue-shift

and less planar crystals.

Figure 4.7: Intensity profiles π − π < 010 > peaks

To further support this claim, the intensity ratio between the A00 and the A01, A00

A01

, is analyzed. The

electrospray sample exhibits a A00

A01

ratio that is 31% larger than the spin coated sample. The A00

A01

is expressed by equation 4.4 where W is the exciton bandwidth and Ep is the main intramolecular

vibration energy [40]. This equation dictates that an increase in A00

A01

leads to a decrease in the

exciton bandwidth, W.

A00

A01

=
1− 0.24W/Ep

1 + 0.073W/Ep

(4.4)

A decrease in the exciton bandwidth is interpreted as an increase in the conjugation length and
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better intrachain order[11]. Hence, an increase in the A00

A01

ratio is the cause of longer conjugation

length and more planar crystals. The aggregation of the P3HT is a competition of stacks along

the π − π direction and the head to tail couplings along the conjugation length [41]. Meaning

that crystals with a larger conjugation length are expected to have less π − π stacks. However,

figure 4.7 demonstrates through Scherrer analysis that the length along the π − π stacks remains

roughly the same for electrosprayed samples and spin coated samples. As previously noted, studies

have successfully demonstrated an increase in the conjugation length through thermally annealing

samples [10][45][20][38]and processing in high boiling point solvents[11]. The charge mobility

has been demonstrated to increase as the conjugation length increases [6]. The increase in the

conjugation length for the mentioned studies is attributed to the longer processing times offered

by thermal annealing and high boiling point solvents which allows the crystallites to grow. This is

contrasting to the electrospray process where the solvent removal is fast and at room temperatures.

Figure 4.8: Absorbance profile of P3HT in solution of chlorobenze
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Figure 4.9: Absorbance profile of P3HT spin coated film and electrosprayed coated film

Conductive Atomic Force Microscopy

As mentioned previously in the Working distance section, it is important that the droplets make

good contact with the substrate. To claim that the results presented in figure 3.6 is a structured

film as oppose to a collection of particles, the electrical contact was characterized. Conductive

Atomic Force Microscopy (CAFM) was utilized as the characterization tool as illustrated in figure

4.10. Note that the sample in the figure is illustrated as a P3HT/PCBM sample. The PCBM was

introduced as a method to selectively transport current only through the P3HT. Since the work

function of Platinum is higher than the HOMO value of the PCBM, an energy barrier prevents

charge transport. To effectively conduct this measurement, it was necessary that the samples were
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such that the P3HT pillars would protrude a continuous film of PCBM as illustrated in figure 4.10

as the P3HT pillars in red and the PCBM film in gold.

Figure 4.10: Conductive Atomic Force Microscopy setup with P3HT structured film semi satu-

rated with PCBM

To fabricate the sample illustrated in figure 4.10, a dropcasting method was utilized to coat the

PCBM after the samples were electrospray coated with P3HT. Dropcasting is a simple process

where a drop of solution is deposite wet onto a substrate to make a film. Figure 4.11 illustrates a

schematic and photograph of the dropcast setup utilized. The PCBM was processed as a solution

in dichloromethane since it dissolves PCBM but not P3HT. The dichloromethane presented chal-

lenges due to its low boiling point (39.6oC) which makes it a very volatile solvent. The fast evapo-

ration of dichloromethane caused cooling of the substrate leading to condensation of the moisture

in the air. The condensation on the substrate and the fast evaporation of the solvent resulted in very

rough and discontinuous films. To increase the evaporation time, the dropcast process was perform

on top a surfaced cooled to roughly 10oC by use of a thermoelectric module. A large heat sink was

necessary to be placed on the hot side of the thermoelectric to achieve a sufficient heat rate and

maintain the cool side at low temperatures. A small clear plastic enclosure with a nitrogen feed

was added to allow the process to take placed in a moisture free environment. The coating process
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that minimizes moisture exposure is detailed in the following steps.

• Place sample on top of the cool side of the thermoelectric module, seal with clear plastic

enclosure and open nitrogen feed.

• Allow 5 minutes for the nitrogen to remove all the moisture from the enclosed space, turn on

the thermoelectric module and wait for the power supply to reach a steady desired voltage.

• Close the nitrogen feed, quickly insert the needle and deposit the solution on top of the

sample.

• Wait for the solvent to dry.

• When the solvent is observably dried, open the nitrogen feed for roughly 1 minute.

• Power off the themoelectric module and wait 2 minutes to allow sample to reach room tem-

perature.

• Open the enclosure and remove the sample.

Another factor to take into consideration is the leveling of the setup. If the sample well leveled, the

liquid will accumulate in one side.

The samples resulting the the process described above are presented in figures 4.12 and 4.13 at

different magnifications. The quality of the samples in the film continuity and protrusion of the

P3HT pillars depends mostly on the density of the P3HT deposition and the concentration of the

PCBM solution being deposited. A P3HT coating density that was low would typically result

in samples that had discontinuities in the PCBM coating. A low concentration of PCBM in the

dropcast solution would also result in discontinuities. However, a PCBM concentration that was

too high would result in a smooth thick film of PCBM completely enclosing the P3HT pillars. It
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was determined that a concentration of 0.5 wt % yielded the best results as presented in figures

4.12 and 4.13. Near the top of figure 4.12(a) the noted discontinuities in the film can be observed.

However, the sample presented in figure 4.13 appears to be fully continuous. The difference in the

two samples is the density of P3HT features with the sample in figure 4.13 having twice the density

of P3HT. Note that the sample in figure 4.12 would still be useful for the CAFM measurement but

a location continuous PCBM would first need to be located.

Figure 4.11: Dropcast setup for coating of PCBM in dichloromethane solution. Schematic on the

left and photograph in the right.

As mentioned, the importance of fabricating the P3HT samples semi saturated in PCBM was to

selectively record a electrical current response through the P3HT to confirm its contact with the

substrate. The topography and the electrical current of the sample presented in figure 4.13 was

characterized simultaneously using the CAFM. The height and current results presented in figure

4.14 shows the similarity of the both sets of data for the same spot in the sample. It can be observed

that both the height and the current have the same peaks present in the same positions. Also, the

electrical current is only conducted through the peaks meaning that the peaks are the only places

36



where P3HT is expose. Most importantly, the presence of an electrical signal through the P3HT

confirms that the pillars have good contact with the substrate. Hence, this result confirms that the

samples presented can be considered structured films.

Figure 4.12: SEM image at (a) 20 KX and (b)100 KX magnification and 70o perspective

Figure 4.13: SEM image at (a) 5 KX and (b)100 KX magnification and 70o perspective
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Figure 4.14: (a) Height and (b) electrical current CAFM data plots for sample presented in figure

4.13. The voltage drop was set to 5 volts during the measurements.

38



CHAPTER 5: CONCLUSION

In this study the ability of electrospray to process P3HT solutions into films of different morpholo-

gies has been demonstrated. Of most importance are the films with the high aspect ratio features

presented in figure 3.6. Also, the nozzle design using the drillbit can be considered a simple so-

lution to a significant problem with the electrospray stability. The simplicity of the solution and

the ready availability of the components make it easy to replicate and will hopefully help future

similar studies. In addition to the results presented in the process development, the crystallinity

and the orientation of the P3HT crystals within the amorphous matrix of P3HT was demonstrated

to be affected by the electrospray process. These effects of the electrospray on the crystals are

attributed to the large degree of surface area of the droplets present during the spray process. Other

studies have demonstrated an enhancing effect of the surface on the crystallinity and orientation

of polyimide [21] and P3HT [29]. Although, the observations of the mentioned studies were on a

smooth silicon interface. Of most relevance is the demonstratio of a new effect electrospray has on

the crystallinity.

Future research is recommended for a new generation of conjugated polymers. Figure 5.1 shows

the results of electrospray deposition of a conjugated polymer known as PBDTT-FTTE. In the ap-

plication of organic solar cells, this material has demonstrated a power efficiency of 10.3% [1] in

comparison to a 5.6% reported for P3HT [13]. The preliminary results in figure 5.1 show structures

that could enhance organic solar cells by approaching the ideal ordered bulk heterojunction struc-

ture [13]. It is recommended that the crystallinity be characterized in the same manner presented

in this study to determine if the results are applicable to multiple materials. Also, solar cells could

be fabricated and tested to observe the end results of the electrospray process on a device.
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Figure 5.1: (a) SEM image of electrospray of 1 wt % of PBDTT-FTTE conjugated polymer

solution. (b) Higher magnification.
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