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ABSTRACT 

Signal detection theory (SDT) provides a theoretical framework for describing 

performance on decision making tasks, and fuzzy signal detection theory (FSDT) extends this 

description to include tasks in which there are levels of uncertainty regarding the categorization 

of stimulus events.  Specifically, FSDT can be used to quantify the degree to which an event is 

‘signal-like’, i.e., the degree to which a stimulus event can be characterized by both signal and 

non-signal properties.  For instance, an improvised explosive device (IED) poses little threat 

when missing key elements of its assembly (a stimulus of low, but not zero, signal strength) 

whereas the threat is greater when all elements necessary to ignite the device are present (a 

stimulus of high signal strength).  This research develops a link between key individual cognitive 

(i.e., spatial orientation and visualization) and personality (i.e., extroversion, conscientiousness, 

and neuroticism) differences among observers to performance on a fuzzy signal detection task, in 

which the items to be detected (IEDs) are presented in various states of assembly.  That is, this 

research relates individual difference measures to task performance, uses FSDT in target 

detection, and provides application of the theory to vigilance tasks.  In two experiments, 

participants viewed pictures of IEDs, not all of which are assembled or include key components, 

and categorize them using a fuzzy rating scale (no threat, low threat potential, moderate threat 

potential, or definite threat).  In both experiments, there were significant interactions between the 

stimulus threat level category and the variability of images within each category.  The results of 

the first experiment indicated that spatial and mechanical ability were stronger predictors of 

performance when the signal was ambiguous than when individuals viewed stimuli in which the 

signal was fully absent or fully present (and, thus, less ambiguous).  The second study showed 
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that the length of time a stimulus is viewed is greatest when the signal strength is low and there 

is ambiguity regarding the threat level of the stimulus.  In addition, response times were 

substantially longer in study 2 than in study 1, although patterns of performance accuracy, as 

measured by the sensitivity index d’, were similar across the two experiments.  Together, the 

experiments indicate that individuals take longer to evaluate a potential threat as less critical, 

than to identify either an absence of threat or a high degree of threat and that spatial and 

mechanical ability assist decision making when the threat level is unclear.  These results can be 

used to increase the efficiency of employees working in threat-detection positions, such as 

luggage screeners, provides an exemplar of use of FSDT, and contributes to the understanding of 

human decision making. 
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CHAPTER 1:  INTRODUCTION 

Signal detection theory can be used to quantify performance of a perceptual task, and 

differences in that performance vary across task domains and individuals.  The proposed research 

seeks to investigate a relationship between a person’s characteristics and performance of a signal 

detection task in which stimuli consist of both signal and non-signal characteristics, only parts of 

a signal are present, as well as to investigate the relationship between duration of stimulus 

viewing time and signal ambiguity.  A signal refers to a measurable event consisting of stimuli to 

be detected or discriminated.  For such tasks, it is generally assumed that the signal may be 

masked by environmental conditions, some of which may manifest in similar form to the signal, 

or that internal processes of the operator (such as psychological state, previous experience or 

lack thereof, or random sensory processes) may interfere with proper detection performance; in 

either case, these distractors are referred to as the ‘noise’ in which signals are embedded (Green 

& Swets, 1966/1988). 

Because one is trying to identify a particular object among many potential distractors, a 

model in which a signal is embedded in noise is an apt description for a variety of tasks that 

require one to distinguish signals from non-signals; examples include detection of defective 

products in an assembly line, a radar operator monitoring plane trajectories, or a doctor analyzing 

an x-ray to detect a cancerous growth.  A large body of research has been dedicated to refining 

the ways in which performance of such detection tasks can be analyzed and quantified in an 

effort to maximize performance as a function of environmental conditions (Green & Swets, 

1966/1988).  The present study seeks to add to the literature a consideration of how the 

characteristics of the human observer affect task performance.  A considerable number of studies 

have investigated the individual differences in human characteristics that may be related to 
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performance evaluated in a traditional signal detection theory paradigm (e.g., Cox-Fuenzalida et 

al., 2006; Cox-Fuenzalida, Swickert, & Hittner, 2004; Frenkel et al., 2009; Rose et al., 2002; 

Singh, Molloy, & Parasuraman, 1993; Szalma, 2009a; Szalma, Hancock, Dember, & Warm, 

2006; Szalma & Taylor, 2011). In many cases, the intention of this research is to identify the 

salient traits that may lead to efficacious screening procedures for employment of operators in 

the discrimination task, or for interface and training design (e.g., Szalma, 2009b). 

Overview of Signal Detection Theory 
 

In traditional signal detection theory, a decision is made regarding the presence or 

absence of a signal embedded in noise (e.g., an environment containing perceptual distractors).  

There are four possible outcomes of such a decision:  a hit (responding affirmatively when a 

signal is, in fact, present), a miss (failing to detect a signal), a false alarm (responding 

affirmatively when no signal is present), or a correct rejection (responding that there is no signal 

when it is not present).  Figure 1 is a representation of the described possible outcomes.  A more 

detailed discussion of signal detection theory and all its assumptions follow in the literature 

review section.   

 

 

 

 

 

 

 

Figure 1:  Four Outcomes of a SDT task. 
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Uncertainty in Signal Detection Tasks 
 

The observer in a signal detection task is asked to make a decision in a situation of 

uncertainty regarding signal absence/presence.  This uncertainty arises because one of the tenets 

of the traditional signal detection theory paradigm is that there is uncertainty along the evidence 

variable where the noise and signal-plus-noise distributions are represented (Wickens, 2002).  

The noise that is always present in the system may be perceived by the operator as a signal (see 

the outcomes in Figure 1), but the noise itself does not, in reality, possess the primary 

characteristics that define the signal.  While this certainly leads to a highly useful and accessible 

mathematical model, it fails to capture the reality of many of the situations the model is being 

used to quantify.   

Many situations that lend themselves to a signal detection analysis have a signal that is 

not rigidly defined, but is dynamic in its formation thereby forcing a somewhat arbitrary line to 

be drawn to define signal versus non-signal.  For example, the high breast density that is present 

in some women causes up to twenty percent of breast cancers to be missed during a diagnostic 

screening; on the other hand, tissue damage from previous biopsies or a patient’s family history 

of cancer may cause a diagnostician to declare the x-ray abnormal when no cancer is present 

(National Cancer Institute, 2010).  Thus, properties of the situation surrounding the decision 

(either external environmental properties or cognitive influences of the decision maker) 

introduce uncertainty by either camouflaging a legitimate signal or enhancing the signal-like 

properties of noise in such a way that the noise may be mistaken as a signal.  This uncertainty 

may be exacerbated in the case where a signal can be decomposed; that is, if elements of a signal 

can be separated and presented in combinations that do not comprise a complete signal, it may be 

more difficult for the decision maker to accurately determine that a signal has been presented.  In 
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these circumstances, which occur in many operational environments (such as airport luggage 

screening in which a weapon could be transported through security in a disassembled form), 

fuzzy signal detection theory can be used to provide a more complete model of the detection 

process. 

Fuzzy Signal Detection Tasks.  Fuzzy signal detection theory extends traditional signal 

detection theory by allowing one to model uncertainty in the signal observed, the response of the 

observer, or both.  Instead of stating that a signal is either present or absent, the perceiver has the 

option to state that the signal is present to varying degrees; that is, the human operator may 

characterize an event as being a ‘partial signal’, rather than being forced into the binary decision 

of signal or non-signal.  This allows the observer to characterize the event in a manner in keeping 

with his perception when the stimulus itself is fuzzy (e.g., when an object has uses as both a 

weapon and a non-weapon, such as a razor blade contained in luggage), or to capture perceived 

uncertainty when the stimulus is wholly a member of either the category signal or non-signal, but 

the observer is influenced by noise (either internal or external) as to the state of the signal (e.g., a 

shadow on an x-ray may indicate a structure that has both cancerous and noncancerous 

properties). 

The use of fuzzy signal detection theory to capture differing degrees of a signal has a 

wide variety of application, but has been limited to the contexts of vigilance (Stafford, Szalma, 

Hancock, & Mouloua, 2003), hazard perception (Lu, Hinze, & Li, 2011; Wallis & Horswill, 

2007), and air traffic control (Masalonis & Parasuraman, 2003).  The application of interest here 

is the use of signal detection theory to quantify performance of a threat detection task in which 

the potential “threat” itself has signal properties to differing degrees.  For instance, individuals 

may be screened for potentially lethal contraband when entering a government building or before 
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flying from an airport, but the military also screens environments for threats prior to entering an 

area.  Of particular interest to this research is identifying threats assembled from common 

devices, known as improvised explosive devices (IEDs), or threats that are designed to fit into 

their surroundings.  In these circumstances, individuals may need to recognize a threat based on 

its unassembled, constituent parts, which may not be present in totality; for example, Zorpette 

(2008) reported military raids in 2007 targeted at IED-making material (not the IEDs 

themselves).  Because such tasks have an inherent amount of uncertainty (e.g., when material 

could be used for an IED but also has alternate legitimate purposes), fuzzy signal detection 

theory offers a more descriptive approach to analysis. 

Individual Differences and the Proposed Experiments.  Excessive quantities of 

materials used to make IEDs, such as that reported by Zorpette (2008) may be relatively easy to 

identify as a threat, however a disassembled explosive hidden in luggage, or across different 

parts (temporally or spatially) may be much more difficult.  For instance, one could disassemble 

an explosive and store the pieces in separate parts of a room (or across multiple rooms or 

buildings); when viewed by a military search team, the observers may not be viewing these 

disassembled, separated pieces in the context in which they would normally be when assembled 

into a device.  A task in which one must recognize a signal based on the presence of parts of the 

signal, which may be separated spatially and rotated from a standard position, depends in large 

part on the perception, and the appraisal of that perception, by the human observer.  It is 

currently unknown whether two individuals would recognize such objects with equivalent speed 

and accuracy; consequently, performance of the task may vary as a function of individual 

differences among observers.  Spatial orientation and visualization are factors that may influence 

successful mental rotation and (mental) reassembly of a device from constituent parts in an 
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abnormal situation (either in position or state of assembly). Spatial orientation and visualization 

are, therefore, two of the specific individual difference measures that this research proposed to 

investigate. 

In keeping with the concept of affordance (Gibson, 2003) and the famous quote of the 

Rationalist thinkers of Architecture and Design (derived from the words of Louis Sullivan) that 

“form follows function”, many modern tools are designed in such a way that their purpose may 

be understood immediately by the user. When an object is disassembled, it may lose some key 

features that define the use of the object.  For example, a disassembled IED may be stored so that 

the trigger and wires are spatially separated, with one of the two components perhaps not even 

visible to the observer; similarly, when in separate parts, a disassembled handgun does not 

clearly indicate which aspect of the implement is to be held versus which is to be the projectile 

conduit.   

Costantini, Ambrosini, Scorolli, and Borghi (2011) concluded that object recognition is 

first conceived in terms of object use, which may be context dependent, but such isolated 

component presentation may detract from an individual’s ability to recognize the potential use of 

the object as part of an IED.  In fact, the more dissembled the presented object is, the more 

difficult it may be to recognize the threat.  The research of Castelhano and Heaven (2010) 

support this line of reasoning in that the researchers found that speed of recognition is improved 

when the key features that define a target are present; the presence of target-feature information 

improved recognition speed with greater significance than even the context of scene. Thus, the 

absence of key features may have a profound impact on threat detection in situations of 

disassembly, regardless of the level of actual threat in the environment.   
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  Further, Huang (2011) argues that object familiarity (e.g., knowing what a C4-

based IED looks like) does not aid recognition of that object’s individual constituent features; 

familiarity with the object, according to Huang, only contributes to recognition of an object as a 

whole. Compounding this potential for misidentification or lack of identification, Quinlan and 

Cohen (2011) demonstrated that response time is faster when more target features are present in 

the object to be inspected; in other words, the lower the number of available features (e.g., with a 

disassembled IED), the longer the response time necessary to identify that object.  In many 

situations of imminent threat, our goal should be to shorten identification time as much as 

possible.   Hollingworth and Henderson (2003) investigated the phenomenon that change 

detection is easiest when objects stand out from the scene and their results did not support use of 

short term memory, but rather the influence of context.  While Hollingworth and Henderson’s 

work may seem at first to contradict the findings of Castelhano and Heaven (2010), in fact it is 

supportive, pointing towards a hierarchy of contributive factors starting with key features of a 

target object, with contextual cues following, and most minimally the contribution of short-term 

memory.  

Stimulus Viewing Time and Fuzzy Signal Detection Tasks.  Arguments have been 

made that object categorization occurs simultaneously with object recognition (e.g., Grill-

Spector & Kanwisher, 2005).  However, de la Rosa, Choudhery, and Chatziastros (2010) 

asserted that there are differences in the response times associated with object detection, 

categorization, and identification.  With a threat detection task, individuals must not only 

recognize and categorize objects, but they must also make a decision regarding the perceived 

level of threat the object(s) pose.  For instance, it has been shown that dual target searches are 

less efficient than single target searches (Menneer et al., 2007); thus, one might speculate that, 
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when searching for components of a target, the response time might correlate with the number of 

components (or distractors) present.  Decision time regarding threat level may suffer 

considerably as a result.  One purpose for the proposed work is to investigate whether a 

relationship exists between the fuzzy membership level of a stimulus, the perceived fuzzy 

membership level of a stimulus, and response time. 

 

Spatial Orientation and Visualization and the Current Experiments   

When spatially separated, the components of an object being viewed may be interpreted 

as potentially belonging simultaneously to multiple categories.  It has been demonstrated that 

items near the boundaries of categories (such as faces and vowel sounds) have increased 

response time for discrimination (e.g., Bonnasse-Gahot and Nadal, 2011; Feldman, Griffiths, and 

Morgan, 2009; Kikutani, Roberson, & Hanley, 2008).  As noted previously, objects may initially 

be recognized in terms of their typical or conventional use; thus, when category membership of 

the object is uncertain, an individual may need to perform mental rotations or alignments in order 

to ascertain the use of the object.  Sun and Gordon (2010) demonstrated that spatial arrangement 

influences visual memory retrieval and change detection for an object’s features is influenced by 

the orientation of the object.  Smith and Dror (2001) speculated that individuals perform a 

piecemeal rotation of meaningful objects.  Such manipulations may be aided by a high 

proficiency in either spatial orientation by way of aiding with recognition of object components 

and use, or visualization through aiding with transformations. 

Spatial orientation and visualization were selected for the present investigation because 

both likely play a role in the ability to recognize objects that could be combined to create a 

threat.  That is, an operator may need to mentally rotate one or more objects to match a pre-
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formed or pre-trained template from a mental catalogue to see if it can be matched to a 

component of an IED or other threat; the degree to which one is able to perform such mental 

manipulation is reflected in an individual’s spatial orientation ability.  Because IEDs can be 

constructed from common materials (The National Academies and the Department of Homeland 

Security, 2003), it may not be sufficient to recognize only constituent parts.  An individual may 

need to mentally assemble the recognized parts of a threat to see whether they fit together in a 

way that would constitute a full signal or nearly a full signal; the degree to which one is able to 

perform a sequence of steps of cognitive processing is reflected in an individual’s visualization 

ability. 

Individual Differences in Personality Traits Related to the Task.  It has been 

previously established that certain personality traits interact with some cognitive task 

characteristics to influence performance (e.g., Szalma, 2008, discusses research linking 

pessimism, optimism, and extraversion to performance on stressful tasks).  Thus, the relation of 

both visualization and spatial orientation to performance may be influenced by specific 

personality traits, as well as the individual personality traits influencing performance; Finomore, 

Matthews, Shaw, & Warm (2009) adopting a resource theory perspective, suggest that 

personality traits that impact either resource availability (such as anxiety or extraversion) or 

voluntary commitment of resources (such as conscientiousness) may impact performance on a 

detection task.  Tasks of vigilance (e.g., baggage screening) have been shown to be very 

cognitively demanding, and well modeled by resource theory (Warm, Parasuraman, and 

Matthews, 2008), thus personality factors should be considered individually and as possible 

mediators when investigating primary individual difference measures (and see Szalma, 2009a). 
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Research Aims 
 

The purpose of the present research was to investigate the joint effects of fuzzy stimulus 

category and individual differences among participants that may affect performance of a signal 

detection task when the object representing a full signal is disassembled into its constituent parts, 

and all such parts may or may not be present when the stimulus is viewed; that is, the current 

study investigated three main issues:  Individual differences in threat detection performance, use 

of FSDT in target detection, and characteristics of stimulus variability and fuzzy membership 

that affect performance.  These studies analyze and describe performance on a fuzzy signal 

detection task with respect to both characteristics of the human operator and elements of the 

stimulus. 

A threat decomposed into its constituent parts could potentially pose substantial threat in 

a military theatre or terrorism screening operation.  For example, the safety of the general 

population is enhanced if airport screeners are able to identify individual parts hidden in carry-on 

luggage that can be assembled into a dangerous weapon; at the same time, it is a waste of 

resources to unnecessarily detain and search passengers when only a few of their possessions are 

able to be used as weapon parts, and not without vital components that are not present in their (or 

other passengers’) luggage.  Similarly, military personnel deployed in a foreign country may 

need to sweep a building for potential threats prior to entering; this may be accomplished either 

by sending troops into the building or through remote viewing with the aid of a robotic camera.  

Determining what areas of the building pose a substantial threat may be dependent upon 

correctly identifying pieces of weapons or IEDs that may be present in a cluttered environment.  

Thus, it is beneficial to know whether particular aspects of personality and/or cognitive ability 

are characteristic of an individual skilled in performance of such a fuzzy signal detection task. 
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In the present research, the task scenario depicted rooms in an office building which were 

swept for IED components using a simulated remote viewing device.  The components of the 

IEDs were viewed by participants with the IEDs in various stages of assembly; these components 

were presented as photographs of typical office surroundings (cluttered environments).  

Additional items that can serve as potential distractors were included.  Analyses of performance 

with regard to individual differences in visualization, spatial orientation, and three personality 

traits were performed.  Relationships between the length of viewing time and ambiguity of the 

signal were explored in a second experiment.  
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CHAPTER 2:  LITERATURE REVIEW 

The current study examines both fuzzy signal detection theory (FSDT) and aspects of 

individual differences in human performance.  Because fuzzy signal detection theory was 

derived from traditional signal detection theory, a brief discussion of the latter is warranted 

followed by a summary of FSDT.  This chapter will then conclude with a review of individual 

differences directly related to the current research. 

Signal Detection Theory 

According to Swets (1973), the origins of psychophysics lie in the work of Fechner’s 

measurement of the just noticeable differences (JNDs) between stimuli, the basic process of 

which was expanded by Thurstone (1927).  With the development of electronic communication 

devices came the difficulty of analyzing the effects of noise in the system, and statistical decision 

theory was applied to this task in the mid-twentieth century, most notably by Blackwell (as 

described in Swets, 1973; see also Peterson, Birdsall, & Fox, 1954), who introduced the notion 

of an observer’s use of a criterion in decision making.  Psychologists at the University of 

Michigan continued to refine this theory to quantify descriptions between a physical stimulus 

and the perception of that stimulus (e.g., Tanner & Swets, 1954; Swets, Tanner, & Birdsall, 

1961).  Thus, it was in the realm of psychophysics that signal detection theory (SDT) was first 

applied in psychology. 

Detection theory, as described by Green and Swets (1988/1966), involves dichotomizing 

the world into states of noise or signal plus noise; that is, human beings are inundated with 

sensory input, both internal and external, that in terms of performance of a specific task may be 

considered a distraction (or potential distraction) termed “noise”.  The noise present in any 

system is independent of the observer.  A signal represents an occurrence of an event which does 
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not occur in isolation but is embedded in the noise.  For each trial the observer must decide 

whether the stimulus presented is a signal.  Four outcomes are possible for each trial or 

observation (see Figure 1):  the participant may respond that there is a signal when one is present 

(a “hit”); the participant may decide that there is a signal when one is not present (a “false 

alarm”); the participant may state there is no signal when there is in fact a signal present (a 

“miss”); or the participant may decide there is no signal when there is none (a “correct 

rejection”).  Each of these outcomes has an associated probability:  the hit rate (HR), the false 

alarm rate (FAR), the correct rejection rate (CRR), and the miss rate (MR). 

Assumptions of Signal Detection Theory 

In the traditional signal detection model, noise is assumed to be omnipresent, and the 

noise may be internal or external to the observer; the noise is assumed to be a normally 

distributed random variable.  When a signal is present, the signal plus noise distribution retains 

the standard normal shape but is shifted along the sensory dimensions (see Figure 2); this is the 

equal variance assumption of SDT, i.e., that the variance of the signal and noise distribution is 

equal to that of the noise distribution.  Another assumption is that the perceiver is both a sensor 

and a decision maker:  When a stimulus is presented, the observer must accurately perceive the 

stimulus as either a signal or non-signal; but the observer also sets a criterion by which he will 

make his decision of signal or non-signal.  The sensitivity of the observer refers to his perceptual 

ability to distinguish the signal from the background noise; the most commonly used 

mathematical quantity representing the sensitivity is 𝑑′, defined as the distance (in standard 

deviations) between the noise curve and the signal plus noise curve.  Response bias refers to the 

observer’s willingness to label an event as signal present, and may vary as a function of the 

relative cost of misses and false alarms; for example, one may have a more liberal response bias 
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when evaluating spots on an x-ray as potentially cancerous growths figuring that a propensity to 

biopsy unnecessarily is a lesser evil than possibly missing a truly cancerous growth.  The 

parameter 𝛽 (or ln 𝛽) is used to represent the response bias although in some instances, such as 

vigilance, the criterion index c is superior to 𝛽 or ln 𝛽 (See, Warm, Dember, and Howe, 1997).  

In SDT, the sensitivity and response bias of the observer are assumed to be independent of one 

another.   

 

 

Figure 2:  Graphical representations of response categories for traditional SDT  

Retrived from http://www.nature.com/ncpneuro/journal/v4/n6/images/ncpneuro0794-f1.jpg 

 

Limitations of Signal Detection Theory 

SDT has proved to be a useful and appropriate tool for a variety of applications (Swets, 

Dawes, & Monahan, 2000).  However, there are some situations in which the theory does not 

capture the complexity of the stimulus and/or perceptual process.  A primary limitation of 

traditional SDT is that it forces both the state of the world and the response of the observer into 
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mutually exclusive categories, often the dichotomy of presence of signal or absence of signal.  

That is, an item that has properties of multiple categories cannot be easily represented in the 

traditional model; in the dichotomy, the item is either a signal or it is not, with no intermediary 

categories.  Forcing descriptions into mutually exclusive categories is not always reflective of 

occurrences in operational environments.  Many signals retain properties of a non-signal, such as 

a yellow traffic light that signals that one should be cautious (not that one should stop).  

Parasuraman, Masalonis, and Hancock (2000) developed Fuzzy Signal Detection Theory (FSDT) 

to address this limitation (and see Hancock, Masalonis, and Parasuraman, 2000). 

Fuzzy Signal Detection Theory 

FSDT is based on set theory principles developed in the application of fuzzy logic.  In 

traditional set theory, an item is either an element of a set or it is not; for example, ½ is an 

element of the set of “rational numbers” because it has a representation as the ratio of two whole 

numbers, whereas π is not an element of this set because it fails that criterion.  This is the 

approach adopted in traditional SDT—an item is either a member of the crisp set ‘signal’ or of 

the set ‘non-signal’.   

Elements of fuzzy sets, on the other hand, have degrees of membership to the set, rather 

than absolute classification of member or nonmember (Zadeh, 1965).  Applying this concept to 

signal detection theory, an item can simultaneously have properties of both a signal and a non-

signal, to varying degrees.  For example, explosive material paired with wires alone cannot be 

considered a complete IED if the detonator is missing; however, this is clearly not innocuous 

material.  Thus, that combination of items has certain properties of the set ‘signal’, without being 

a full signal.  The same set of items can also be considered to have properties of the set ‘non-

signal’ because it is missing the detonator.  The degree of membership in a set can be represented 
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with a number between zero and one, with zero corresponding to no membership and one 

corresponding to full membership in the set ‘signal’.  For example, explosive material paired 

with wires might be considered to have degree of membership 0.8 in the set ‘signal’ and 

membership 0.2 in the set ‘non-signal’ (numbers arbitrarily assigned for discussion purposes).  

This provides a numeric description that the combination of items discussed is much closer to 

being an actual IED than it is to being no threat whatsoever.  Such a numerical assignment of 

category membership can be carried out through use of a mapping function, example procedures 

for which are discussed by Parasuraman, Masalonis, and Hancock (2000).   

In addition to the properties inherent to the object that assign it category membership to 

varying degrees, the observer’s response is also not necessarily confined to being binary and may 

differ in perceived degree of signal from that assigned to the stimulus.  Specifically, participants 

are responsible for both sensing and categorizing the stimulus, but the categorization is no longer 

necessarily binary (although it can be — it should be noted that FSDT is also well suited for the 

case where the observer must make a binary choice (signal or non-signal) but the stimulus may 

be defined as a fuzzy set; Szalma & Hancock, 2013; Szalma, Oron-Gilad, Saxton, & Hancock, 

2006).  If the desired response is not binary, then observers in the signal detection task will need 

to assign a membership level to each observed stimulus along a range of values that can be 

transformed to numbers between 0 and 1, where 0 represents that the stimulus has no properties 

of a signal and 1 indicates that the stimulus is a signal with no membership in the non-signal 

category; that is, the observer is deciding signal membership along a continuum (that may be 

discrete or continuous, depending on the application).   

Because degrees of membership in the category ‘signal’ or ‘non-signal’ are allowed, 

Hancock, Masalonis, and Parasuraman (2000) redefined what constitutes the traditional four 
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outcomes of hit (H), miss (M), false alarm (FA), and correct rejection (CR).  When a stimulus 

belongs to the category signal with membership level s, 0 ≤ 𝑠 ≤ 1, and the perceiver responds 

that the stimulus belongs to the category signal with membership level r, 0 ≤ 𝑟 ≤ 1, then the 

four outcomes are calculated by the following formulae (mixed implication functions; 

Parasuraman et al., 2000): 
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An event in FSDT may have membership in more than one of the four categories of hit, 

miss, false alarm, and correct rejection.  For example, if a strong signal is present, but an 

observer identifies a weak signal as being present, then the observer has made a certain degree of 

hit (signal present) and a certain degree of miss (the stimulus was not perceived as being as 

‘signal-like’ as it actually is).  Parasuraman, Masalonis, and Hancock (2000) asserted that 𝛽 and 𝑑′ can be computed using the same formulae in both traditional SDT and FSDT, formulae which 

involve the hit rate and false alarm rate.  Murphy, Szalma, and Hancock (2003; 2004) 

demonstrated that FSDT provides a better description of an observer’s sensitivity and response 

bias than crisp SDT when the stimulus is not a member of a binary category (signal versus non-

signal; see also Szalma & Hancock, 2013; Szalma et al., 2006). 

As with traditional SDT, it is assumed that noise can be internal (to the system or 

individual) or external.  Also, both noise and signal plus noise have been shown to be normally 

distributed in FSDT (Murphy, Szalma, & Hancock, 2004; Szalma et al., 2006; Szalma & 

Hancock, 2013; Szalma & O’Connell, 2011).  Noise may occur in any sensory medium, but it is 

most troublesome when it manifests in the same sensory channel as the one used for the 
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detection task (e.g., a visual detection task is most disturbed by visual noise as opposed to 

auditory noise, except in that such may cause a break in visual attention), as this is a common 

component of many working memory models (e.g., the model of Baddeley and Hitch, 1974; 

1986).  In any detection task, the nature of the noise present in an event may contribute to a delay 

in response by the observer; the degree of membership of the stimulus in FSDT may allow some 

useful characterizations of the stimulus to be made. 

Fuzzy Membership Level and Observer’s Response Time  

Response time has importance in detection theory.  Hancock, Masalonis, and 

Parasuraman (2000) concluded, based on the research of Treisman and Gelade (1980), that it 

takes longer for the human cognitive system to reach a decision of non-signal than it does to 

reach the decision of signal, particularly when abundant noise is present within, or simultaneous 

to, a stimulus presentation.  The authors reasoned that SDT decisions made the most rapidly (on 

average across trials) would have the highest numbers of false alarms, decisions near the average 

decision time for the observer would have the highest numbers of hits, and the longest decision 

times would have the highest numbers of correct rejections and misses (though more correct 

rejections than misses).  Hancock, Masalonis, and Parasuraman asserted that the same pattern 

emerges in FSDT.   

The length of time until response in traditional SDT is related to the ambiguity of the 

stimulus; in FSDT, the fuzzy membership level reflects this property of the stimulus.  Thus, the 

time to decision in a detection task should be related to the degree of membership in the category 

signal that the participant perceives and/or the degree of membership in the category signal that 

the stimulus actually possesses, although the degree to which this relationship is evident may 

depend on the nature of the stimulus.  That is, a stimulus that has very low or very high 
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membership (or perceived membership) in the category signal may often be associated with a 

shorter response time by the observer than a stimulus that has (or is perceived to have) a signal 

membership closer to the 0.5 level. 

One can then speculate how such a relationship can be quantified.  The present research 

examined a specific instance with application:  when the stimulus is a decomposed IED, which 

may generalize to any decomposed weapon.  Should it prove to be the case that longer decision 

times are associated with somewhat strong signal membership, one application of this fact would 

be to design a system in which any rating that is abnormal for the given decision time would be 

flagged for further inspection of the stimulus or event.  Note that such a relationship would also 

have the benefit of providing an efficiency rating of the observer or system; any instance in 

which such abnormal ratings were routine would identify the system or observer as being in need 

of redesign or remediation, respectively. 

Individual Differences 

Sometimes two participants will perform differently on identical tasks, or provide 

different reactions to identical stimuli, because of different personality or cognitive traits that 

vary across individuals and influence perception and cognition.  In psychology, the study of 

these individual differences can improve explanation and prediction of performance (Cronbach, 

1957; 1975; Underwood, 1975).  As Cronbach (1956) described, “… personality theory is 

applied to weave nomothetic constructs into a construct of the individual’s personality structure, 

predictions are then derived by inferring how that structure will interact with the known or 

guessed properties of the situation” (p. 173).  In other words, Cronbach acknowledged that 

performance prediction is an interweaving of time, personality features, individual capacities for 

performance, and even such nuances as inclination to perform at a particular time, amongst other 
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factors.  The end result is the generalized ability to predict performance, which is, and must 

always be, a somewhat fluid and labile construct by its very nature, as there are too many 

confounds to performance to allow precision.  

Because of these individual differences, performance on a detection task varies not only 

with the nature of the task or the stimulus but also with the characteristics of the individual 

observer.  For instance, one observer may set a different criterion than another observer under 

the same task conditions, or there may be vast differences in the sensitivity of individual 

observers.  Such variations are nearly unavoidable, and while there will always be, where human 

performance is concerned, a deus ex machina that results in perturbations of expected 

performance despite all efforts to impose constraints, it appears the degree to which observers 

vary in their response bias or sensitivity is impacted significantly by relevant cognitive or 

personality traits.  These personal characteristics can be used to generate a model with reliable 

accuracy and predictive ability.  For these reasons, the present research is concerned with the 

influence of traits of personality as well as the cognitive abilities of visualization and spatial 

orientation on performance of an IED detection task. 

Personality traits.  Five emergent factors of personality were first identified by Tupes 

and Christal (1961/1992) and later replicated by Norman (1963).  The NEO Personality 

Inventory was developed as a measure to quantify an individual’s placement along the 

dimensions, and is widely used in clinical and research settings (Costa and McCrae, 1992) for 

both adolescents and adults (e.g., Decuyper, De Bolle, Boone, and De Fruyt, 2012; Langer, 2011; 

Betz and Borgen, 2010; Kotov, Gamez, Schmidt, and Watson, 2010; Hoffman, Buteau, and 

Fruzzetti, 2007).  The five factors of the model measured by the NEO-PI are extraversion, 

agreeableness, conscientiousness, neuroticism, and openness to experience.  Table 1 lists 
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adjectives McCrae and John (1992) identified to describe the positive poles of the personality 

scales.  Data from diverse populations indicate that the five-factor model is an apt representation 

of personality characteristics regardless of background and culture (McCrae and Costa, 1997).  

Three of the five factors (extraversion, conscientiousness, and neuroticism) will be measured for 

this research, as these are the traits that have been shown to influence performance on signal 

detection tasks, particularly in vigilance. 

 

Table 1.  Adjectives McCrae and John (1992) used to describe NEO-PI personality traits 

Personality Factor  Adjectives  

Extraversion “active, assertive, energetic, enthusiastic, outgoing, 
talkative” 

Agreeableness “appreciative, forgiving, generous, kind, sympathetic, 
trusting” 

Conscientiousness “efficient, organized, planful, reliable, responsible, 
thorough” 

Neuroticism “anxious, self-pitying, tense, touchy, unstable, worrying” 

Openness to Experience “artistic, curious, imaginative, insightful, original, wide 
interests” 

 

 

Personality and Vigilance.  Several studies have investigated the relationship between 

the five-factor model and performance in a vigilance or detection task.  Matthews and Campbell 

(2009) reported that standard personality traits are weak predictors of vigilance performance, 

with extroversion and neuroticism showing unique, but small, contributions to prediction of 

performance (see also Finomore et al., 2009).  Rose, Murphy, Byard, and Nikzad (2002), 

however, reported that both extraversion and conscientiousness correlated with performance 

while neuroticism correlated with aspects of perceived workload.  More recent evidence suggests 

that these effects may be linked to specific facets of the broader trait (Teo, Szalma, and Schmidt, 

2011).   
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Extraversion.  Davies and Parasuraman (1982) and Finomore, Matthews, Shaw, and 

Warm (2009) summarized research that indicates introverts tend to have more correct rejections, 

fewer false alarms, and experience less decrement in detections than extroverts; similar findings 

are summarized by Berch and Kanter (1984) who further cite research indicating introverts may 

have different sensitivity thresholds than extroverts.  In a task of auditory vigilance, it has been 

shown that performance decreases as workload decreases in extroverts, but the same decline in 

performance is not seen in introverts (Cox-Fuenzalida et al., 2006).  According to Eysenck 

(1989), who performed a summary of relevant literature investigating the relation of extraversion 

to vigilance, introverts generally outperform extroverts in vigilance tasks and tend to show a 

smaller vigilance decrement.   

Koelega (1992) performed a meta-analysis on the relationship between extroversion and 

vigilance performance and found that the literature suggests that extroverts underperform 

introverts.  It should be noted that there are instances in which no correlation between 

performance and introversion-extroversion was observed, such as Singh, Molloy, and 

Parasuraman (1993), where participants monitored for automation failure in either a fixed-rate or 

variable condition; in this study, performance was found to be related to complacency potential 

and energetic-arousal, however.  Szalma and Taylor (2011) also reported no performance effects 

for extroversion during a monitoring task with an automated aid. 

Neuroticism.  Cox-Fuenzalida, Swickert, & Hittner (2004) showed that high levels of 

neuroticism are associated with delayed reaction times in an auditory vigilance task.  

Additionally, individuals high in neuroticism exhibited a decline in performance when workload 

levels were increased.  Szalma and Taylor (2011) reported a similar drop in performance for 

individuals high on neuroticism.  Eysenck (1989), however, argued that there is little evidence 
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for the influence of level of neuroticism in task performance on a vigilance task, suggesting that 

the attentional differences between individuals high and low on neuroticism are not affected by 

the situational anxiety associated with a vigilance task. 

Conscientiousness.  Higher levels of conscientiousness have been associated with a 

conservative response style in signal detection tasks.  Rose et al. (2002) found that individuals 

high in conscientiousness tended to commit fewer false alarms and achieved greater perceptual 

sensitivity. Burton et al. (2010) investigated the effects of gender and personality on a vigilance 

task.  Across genders, the study demonstrated that higher conscientiousness was associated with 

more conservative response bias.  However, the relation of conscientiousness to cognition has 

not been explored as extensively as extraversion and neuroticism (Matthews, Deary, & 

Whiteman, 2009). 

Cognitive Abilities. The personality traits discussed may influence performance directly, 

or they may moderate the effects of cognitive abilities (e.g., Arana, Meilan, and Perez, 2008).  

The two cognitive abilities that may play an important role in the present research are spatial 

orientation and visualization.  Spatial orientation is identified as a possible predictor of 

performance when a task may require mental rotation and alignment to see if parts fit to a 

preprogrammed template.  Visualization is reflective of one’s ability to manipulate an object in 

an ordered sequence of steps, a skill necessary to correctly assemble devices from constituent 

parts.  Because the current research is focusing on performance of threat detection when various 

parts that can be used to assemble an IED are presented, both spatial orientation and visualization 

will be investigated to determine their relation to performance. 

Spatial cognition refers to an individual’s knowledge about the spatial properties of 

objects, locations, and events (Montello, 2001).  It is generally accepted that spatial ability is 
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composed of distinct factors (e.g., McGee, 1979), though it should be noted that an argument has 

been made to the contrary (e.g., Colon et al., 2001).  Spatial orientation and visualization, as 

measured by the Kit of Factor-Referenced Cognitive Tests (Ekstrom et al., 1976) are the factors 

of spatial ability adopted for the present research.  As shall be discussed, both factors may 

influence a task in which one is asked to assess a potential threat in its decomposed state (e.g., an 

unassembled IED). 

Spatial Orientation. It has been demonstrated that individuals high in visual working 

memory capacity differ in performance of a visual search when that search relied on top-down 

processing (Sobel, Gerrie, Poole and Kane, 2007).  Bottom-up attentional processes are involved 

when items stand out from their surroundings whereas top-down mechanisms access knowledge 

stores to draw attention to items important to the observer (Connor, Egeth, and Yantis, 2004).  

Because a detection task requires individuals to focus attention on specific object properties 

(rather than just the most salient feature), one might speculate that certain signal detection tasks 

(e.g., FSDT tasks) would demonstrate changes in sensitivity as a function of individual 

differences in visual working memory (as well as spatial processing and mental rotation).  For 

example, a significant difference may not exist in the case where an x-ray is being analyzed for a 

cancerous growth (parallel to bottom-up processing where one looks for an abnormality to 

present itself) but may be prevalent when searching for the components of a weapon that has 

been broken down and stored in luggage (requiring top-down processing where one must be able 

to detect objects key to the weapon assembly that may not necessarily be salient parts); 

additionally, in the latter the observer may need to perform mental rotation and reassembly of the 

components. 
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Before one could mentally reassemble the parts, however, those parts must be recognized 

within the scene by the observer.  Performance on this process of recognition may vary across or 

within individuals when the objects viewed are at dissimilar orientations to the templates they 

have stored in memory.  All theories of object recognition require that a match take place 

between the viewed image and an item in the individual’s knowledge store, but theories differ as 

to whether that recognition is viewpoint dependent.  Viewpoint invariant theories, such as 

Biederman’s (1987) theory of recognition by components, hold that object recognition will take 

place regardless of the observer’s viewing relation to the object, and some studies have 

supported such a theory (e.g., Biederman and  Gerhardstein, 1993).   

Evidence has been reported, however, for the contrary view—that recognition depends on 

the position and orientation of the object when viewed (e.g., Tarr, 1995; Tarr and Pinker, 1989; 

Willems and Wagemans, 2001).  Tarr and Pinker (1989) argued that evidence suggests that an 

individual must mentally rotate an object to match one of possibly several orientations of the 

object in memory in order for recognition to occur.  Even when objects are presented together, 

there is a time delay in matching rotated shapes; Shepard and Metzler (1971) identified a linear 

increase in time to recognition of objects as being the same with angular displacement between 

the representations in a matching task (not a recognition task) and Larsen and Bundesen (1998) 

demonstrated that individuals may mentally translate and rotate objects to determine sameness in 

a pattern matching task.  Thus, in a situation where one is attempting to mentally reconstruct an 

object from its constituent parts, if the positions of those parts are not aligned with the template, 

a mental rotation (and possible translation) may need to occur in order for the observer to 

recognize the object. 
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Interestingly, Manning and Leach (2002) found a negative correlation between spatial 

reasoning ability and diagnostic performance in a mammography screening task.  The 

researchers hypothesized that individuals high in spatial reasoning may have introduced more 

errors by attempting to manipulate the image being viewed. 

The task proposed in this research will require mental rotation and manipulation, should 

one attempt to mentally reconstruct the decomposed IED from the constituent parts presented.  

Thus, the assessment of spatial ability in this task needs to involve mental rotation.  The spatial 

orientation factor of the Kit of Factor-Referenced Cognitive Tests (Ekstrom et al., 1976) uses a 

card rotation test and a cube comparison test to assess one’s ability to spatially manipulate an 

object as a whole.  Hogan (2012) reported that these tests load on a single factor with acceptable 

reliability. 

Visualization. In addition to spatial orientation, visualization may affect performance in 

a task where one is required to recognize the parts necessary to make a potential threat function 

properly.  When an object is disassembled, it may take several sequential transformations of the 

components to mentally reassemble; when one or more components are absent, this mental 

reassembly may be necessary to determine whether enough of the object is present for it to retain 

its functional properties.  Cheung, Hayward, and Gauthier (2009) found that object recognition 

was dependent upon image features; thus, one may need to see, through mental manipulation, 

whether constituent parts fit together to form what resembles enough of an image to fit into the 

category.  That is, mental assembly of the object may be required to determine how much of a 

signal the decomposed, separated parts represent. 

Thus, individuals high in visualization ability may be better able to identify which parts 

fit together and whether those parts can be properly combined to assemble a weapon.  Spatial 
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visualization has been found to be related to mental animation (Hegarty and Sims, 1994) and 

evidence has been provided for mental simulation as a strategy in mechanical reasoning tasks 

(Hegarty, 2004).  Mechanical comprehension has already been demonstrated to correlate with 

performance in a weapons-handling task (Munnoch and Bridger, 2008); the task proposed in this 

research differs in that participants will not be directly instructed to assemble a weapon (in this 

case, an IED), though they may mentally do so in providing their ratings of the stimuli (in order 

to assist with template matching of threat level).  Thus, individuals high in visualization may 

possess a superior ability to run mental simulations (including ones involving object assembly) 

thus leading to better performance on the present detection task. 

The Kit of Factor-Referenced Cognitive Tests (Ekstrom, 1976) uses the form board test, 

paper folding test, and surface development test to measure the factor of visualization.  Carroll 

(1990) confirmed the Kit’s measures of two distinct factors in visualization and spatial 

orientation.  This instrument has been used in establishing the structure of the ASVAB, Armed 

Services Vocational Aptitude Battery (Augustin, Gillet, and Curran, 1989) as well as studies 

linking spatial ability to a performance measure (e.g., Pak, Rogers, and Fisk, 2006; Lee and Shin, 

2011). 

Current Study 

Performance of a signal detection task, where the signal is presented in constituent parts 

separated spatially and which may require rotation or physical manipulation to assemble, may 

vary as a function of individual differences in spatial orientation, visualization, the personality 

traits of extraversion and conscientiousness, or interactions between cognition and personality 

traits. Specifically, the literature indicates that individuals high in spatial orientation or 

visualization may outperform those low in these characteristics in correctly identifying 
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disassembled signals.  Further, because research has shown that extraversion and 

conscientiousness tend to correlate with performance on a signal detection task, it is believed that 

these factors may influence performance even among those high in spatial orientation or 

visualization.  Figure 3 provides a model of the hypothesized relationships among the variables. 

 

Figure 3.  Hypothesized SEM model for each individual cognitive trait 

H = High, M = Middle, L = Low, SD = Standard Deviation, e = error 

 

 

Additionally, it is hypothesized that a relationship exists between the level of fuzzy 

membership of a stimulus, the length of time a participant views the stimulus before response, 

and the hit and false alarm rate of the participant.  Specifically, it is conjectured that both stimuli 
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close to full membership in the  signal category (i.e., stimuli with a fuzzy membership close to 1) 

and stimuli close to no membership in the signal set (i.e., stimuli with a fuzzy membership in the 

category of signal close to 0) should require the least amount of viewing time and stimuli nearest 

to the middle (i.e., stimuli with a fuzzy membership in the category signal of close to 0.5) should 

require the greatest amount of viewing time prior to the participant’s response.  It is expected 

that a plot of average viewing time against fuzzy membership category across a range of stimuli 

can be fitted with a function whose maximum value is obtained when the stimulus is near a fuzzy 

rating of 0.5 (see Figure 4 for a sketch of the predicted model).  Based on the postulates of 

Hancock, Masalonis, and Parasuraman (2000), it is further conjectured that the greatest hit rate 

will occur during the middle viewing time and the extrema of the false alarm rate will occur near 

the longest and shortest viewing times. 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Hypothesized relationship between stimulus' signal membership and viewing time 
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In summary, it is hypothesized that performance on a threat detection task in which the threat 

is presented in a disassembled state: 

 May improve with spatial orientation, visualization, or both; 

 May be positively correlated with the personality trait of conscientiousness and 

negatively related to extroversion and neuroticism; 

 May further correlate with interactions between the above listed cognitive abilities and 

personality traits; 

 May be predicted in part by the ambiguity of the stimulus, and that this may be fitted with 

a quadratic or other curvilinear function. 

The first hypothesis was investigated using a customary time-restricted forced-response 

detection task (Experiment 1) whereas the second hypothesis was investigated using a forced-

response that was not time restricted (Experiment 2).  As such, the current research consisted of 

two separate experiments using the same stimuli.  The first experiment examined the relationship 

between performance and the previously identified individual differences.  The second 

experiment examined the relationship between viewing time of the stimulus and the participants’ 

response. 
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CHAPTER 3:  PREVIOUS EXPERIMENT 

Prior to the present work, an unpublished study was conducted in which mean ratings of 

threat level were obtained for the stimuli to be used in both experiments.  Approximately 242 

undergraduates at the University of Central Florida viewed the stimuli at three different 

durations, and provided a fuzzy response category rating of each photograph at each of the three 

speeds (700 ms, 1000 ms, and 1300 ms).  Participants were provided instructions similar to those 

described in Experiment 1.  Participants were also provided the visual color coding on the keys 

using the same categories as described in Experiment 1. 

This preliminary study employed the same stimuli used in experiments 1 and 2.  The data 

from that initial work were analyzed in terms of the mean fuzzy category rating and the 

variability associated with each photograph at each presentation duration.  The photographs were 

then grouped by mean and further subdivided by variability.  Four groups were thus created:  low 

stimulus mean (M = 1.298, SD = .112), middle low stimulus mean (M = 1.990, SD = .283), 

middle high stimulus mean (M = 2.945, SD = .294), and high stimulus mean (M = 3.726, SD = 

.114).  Definitions of low, medium, and high stimulus variability were dependent upon the 

stimulus mean category, as shown in Table 2. 

 

Table 2.  Range of Stimulus Standard Deviations by Mean Category 

 Low Mean 

Category 

Middle Low 

Mean Category 

Middle High 

Mean Category 

High Mean 

Category 

Low Variability 0.41 – 0.53 0.67 – 0.78 0.68 – 0.80 0.39 – 0.51 

Medium Variability 0.54 – 0.66 0.79 – 0.90 0.81 – 0.93 0.52 – 0.64 

High Variability 0.67 – 0.79 0.91 – 1.04 0.94 – 1.06 0.65 – 0.79 
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In this experiment, participants had four choices of response.  The instructions for the 

experiment (see Appendix A) explained that the lowest category represented a certainty that 

there was an absence of threat, the next category represented a low presence of threat, the next 

category a high level of threat, and the last category a definite presence of threat.  Thus, when 

stimuli were divided into low, middle low, middle high, and high categories, the divisions were 

intended to reflect the described threat levels.  Thus, an unequal partition of the stimulus mean 

ratings (1 – 4) was developed:  the low stimulus mean category consisted of pictures with means 

between 1.0 and 1.49, the middle low stimulus mean category had means between 1.5 and 2.49, 

the middle high stimulus mean category had means between 2.5 and 3.49, and the high stimulus 

mean category had means between 3.5 and 4.0.  Eight pictures were randomly selected from each 

of the twelve categories (mean by standard deviation) for use in the current study.  Response 

times from this previous study were also used to determine the viewing length in the first 

experiment of the current research.   
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CHAPTER 4:  RESPONSE SET DETERMINATION 

 

An initial study was conducted to investigate the number of response choices required to 

capture sufficient variability in the fuzzy signal detection task of IED ratings.  Response 

variability was evaluated by determining the effect of response set size on the discriminability 

among stimulus categories.  Participants were presented the set of pictures 3 times, and asked to 

rate them using 4, 7, and 10 response choices.  Participants were randomly assigned to one of the 

six possible orders of 4, 7, and 10 response choices.  A total of 33 individuals participated in this 

pilot study.  The results indicated that relatively comparable levels of discriminability were 

observed across the three response set sizes.  As a result, 4 category choices were used in 

subsequent studies. 

Methods 

 

Participants.  A total of 33 undergraduates (25 female, 8 male) at the University of 

Central Florida participated in the study, ranging in age from 18 to 29 (M = 19.12, SD = 0.376).  

All participants were recruited using the SONA system and were screened for normal or 

corrected-to-normal vision.   

Procedure.  Participants viewed 96 photographs of components (or distractors) of mock 

IEDs in a typical office building environment three times.  The Fuzzy membership category 

values for the stimuli were established in a previous study using mean ratings of 242 

undergraduate students at the University of Central Florida (see Chapter 3).  The photographs 

used from this previous study were representatives of both mean category rating, and standard 

deviation within that category as divided by three approximately equal intervals.  Within each of 

four mean categories, eight photographs of low standard deviation, eight photographs of medium 
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standard deviation, and eight photographs of high standard deviation were selected.  Each of 

those groups (containing the eight photographs) were further partitioned by the z-scores of the 

standard deviations from the mean standard deviation within the group in such a way that two 

photos with z-scores below -0.5, four photos with z-scores between -0.5 and 0.5, and two photos 

with z-scores above 0.5 were selected.  Stimuli were presented to the participants on a standard 

desktop computer.   

Participants completed an informed consent and a brief demographic questionnaire.  

Participants were then presented with a set of instructions describing the task and presented with 

the opportunity to ask questions.  Each image was presented for 1600 ms, a length slightly longer 

than the length used in the previous study and the length of viewing that was used in all 

subsequent experiments, and participants were instructed to rate the image on one of three scales 

(a 4 point scale, a 7 point scale, and a 10 point scale).  Each image was followed by a response 

screen that contained a visual image of the scale the participant was to use to rate the image.  

Participants were randomly assigned to one of the six possible ordering conditions of the three 

response scales.  At the conclusion of the experiment, the participants were debriefed. 

Results 

In analyzing the data, Greenhouse-Geisser was used to correct for violation of sphericity 

in all F tests involved; the uncorrected degrees of freedom are reported as well as the epsilon 

used for the correction.  Participant responses were analyzed with a three-way analysis of 

variance comprised of three levels of response choice (4 choices, 7 choices, 10 choices), three 

levels of stimulus variability (low, medium, high; see Table 2), and four levels of stimulus mean 

rating (1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0).  All main effects and interactions were 

statistically significant at the .05 significance level (see Table 3). 
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Table 3.  Omnibus ANOVA for Stimulus Ratings 

Effect 

 

df ε SS MS F p ηp
2 

Response Choices 2 .731 2288.604 1144.302 664.748 <.001 .954 

Error 

 

64  110.170 1.721    

Stimulus Mean 3 .617 3794.373 1264.791 314.939 <.001 .908 

Error 

 

96  385.535 4.016    

Stimulus Variability 2 .852 19.560 9.780 20.410 <.001 .389 

Error 

 

64  30.667 .479    

Response Choices*Stimulus 

Mean 

6 .450 625.910 104.318 183.895 <.001 .852 

Error 

 

192  108.916 .567    

Response Choices*Stimulus 

Variability 

4 .734 4.100 1.025 6.124 <.001 .161 

Error 

 

128  21.425 .167    

Stimulus Mean*Stimulus 

Variability 

6 .538 128.673 21.446 41.325 <.001 .564 

Error 

 

192  99.638 .519    

Response Choices*Stimulus 

Mean*Stimulus Variability 

12 .521 17.449 1.454 8.074 <.001 .201 

Error 384  69.154 .180    

 

 

Additional ANOVAs were computed to further investigate the observed interactions; a 4 

(stimulus mean rating:  1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0) x 3 (stimulus variability:  

low, medium, high) ANOVA was computed for each level of response choice (4 choices, 7 

choices, 10 choices).  The ANOVAs revealed significant main effects for stimulus mean, 

significant main effects for stimulus variability, and significant interactions of stimulus mean and 

stimulus variability across all response sets (see Table 4). 
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Table 4.  4 x 3 ANOVAs for Stimulus Ratings with Each Response Set Condition 

Effect Response 

Set Size 

F p ηp
2 ε 

Stimulus Mean 4 F(3, 96)=294.707 <.001 .902 .690 

 7 F(3, 96)=288.430 <.001 .900 .735 

 10 F(3, 96)=284.104 <.001 .899 .585 

Stimulus Variability 4 F(2, 64)=9.810 <.001 .235 .932 

 7 F(2, 64)=12.192 <.001 .276 .826 

 10 F(2, 64)=16.413 <.001 .339 .908 

Stimulus Mean*Stimulus Variability 4 F(6, 192)=28.874 <.001 .474 .520 

 7 F(6, 192)=29.354 <.001 .478 .595 

 10 F(6, 192)=26.696 <.001 .455 .656 

 

 

For each response set condition, the significant stimulus mean by stimulus variability 

interaction was explored by computing one-way ANOVAs of the effect of stimulus mean within 

each level of stimulus variability.  For each response set, there was a significant effect for 

stimulus mean across all conditions of stimulus variability (see Table 5).  To ensure adequate 

variability across response set conditions for the subsequent experiments, the two-way 

interaction was also analyzed by computing one-way ANOVAs on the effect of stimulus 

variability within each level of stimulus mean for each response set condition.  Although a 

nonstandard practice of analysis, it was deemed appropriate in this instance to explore the 

interactions in both directions in order to more fully evaluate the variability across the response 

sets.  Each response set showed a significant effect for stimulus variability across mean rating 

categories, with the exception of 7 response choices at the highest mean rating category (see 

Table 5). 
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Table 5.  One-way ANOVAs for Stimulus Rating within Each Response Set Size Condition 

Effect Condition Response 

Set Size 

F p ηp
2 ε 

Stimulus  Low Variability 4 F(3, 96) = 322.461 <.001 .910 .660 

Mean  7 F(3, 96) = 314.894 <.001 .908 .791 

  10 F(3, 96) = 276.041 <.001 .896 .651 

 Medium Variability 4 F(3, 96) = 202.079 <.001 .863 .831 

  7 F(3, 96) = 187.801 <.001 .854 .831 

  10 F(3, 96) = 202.371 <.001 .863 .647 

 High Variability 4 F(3, 96) = 133.711 <.001 .807 .813 

  7 F(3, 96) = 153.241 <.001 .827 .831 

  10 F(3, 96) = 177.841 <.001 .848 .766 

Stimulus  Mean 1.0 – 1.49 4 F(2, 64) = 23.600 <.001 .424 .687 

Variability  7 F(2, 64) = 34.360 <.001 .518 .801 

  10 F(2, 64) = 19.103 <.001 .374 .756 

 Mean 1.5 – 2.49 4 F(2, 64) = 20.637 <.001 .392 .786 

  7 F(2, 64) = 22.198 <.001 .410 .757 

  10 F(2, 64) = 42.729 <.001 .572 .891 

 Mean 2.5 – 3.49 4 F(2, 64) = 36.705 <.001 .534 .826 

  7 F(2, 64) = 38.491 <.001 .546 .929 

  10 F(2, 64) = 18.622 <.001 .368 .901 

 Mean 3.5 – 4.0 4 F(2, 64) = 5.497 .001 .147 .821 

  7 F(2, 64) = 1.701 .20 .050 .821 

  10 F(2, 64) = 4.258 .033 .117 .696 

 

 

The interaction between the number of choices and the stimulus mean rating is illustrated 

in Figure 5.  All response sets yielded increasing functions; as the stimulus mean category 

increased, the mean rating increased, a result to be both expected and desired.  It is notable that 

all three levels of response choices yielded similar patterns across the mean categories.  The 

effect sizes across the mean differences were calculated for 4, 7, and 10 choices and these data 

are presented in Table 6.  Note that large effect sizes were obtained across all comparisions 

within each response category.  
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Figure 5.  Mean Participant Rating as a Function of Stimulus Mean Rating  

Note:  Error bars are standard errors. 

 

 

Table 6.  Effect sizes across mean differences by number of response choices 

Stimulus Mean 

Comparison 

Cohen’s d 

4 choices 

Cohen’s d 

7 choices 

Cohen’s d 

10 choices 

1.0 – 1.49 to 1.5 – 2.49 1.823 2.023 1.869 

1.0 – 1.49 to 2.5 – 3.49 4.106 4.386 4.253 

1.0 – 1.49 to 3.5 – 4.0 5.108 5.445 5.413 

1.5 – 2.49 to 2.5 – 3.49 1.804 1.925 1.965 

1.5 – 2.49 to 3.5 – 4.0 2.596 2.787 2.920 

2.5 – 3.49 to 3.5 – 4.0 -0.980 1.071 1.131 

 

 

The interaction between the number of choices and the stimulus variablity is shown in 

Figure 6.  Again, we observe similar patterns across all three response conditions (4, 7, and 10).  

It does not appear that increasing the number of response categories results in an increase in 

sensitivity to the manipulation of the standard deviation of the stimuli.   
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Figure 6.  Mean Participant Rating as a Function of Stimulus Variability 

Note:  Error bars are standard errors. 

 

 

Figure 7, Figure 8, and Figure 9 depict the interaction between stimulus mean category 

rating and stimulus variability across the three sets of response choices. Once again, a similar 

pattern was observed across response set conditions.  Regardless of whether participants were 

provided response sets of 4, 7, or 10 choices, the mean ratings increased as the categories 

increased with similar functional patterns across variability conditions.  For example, perusal of 

the Figures reveals that the low variabilty condition produced a similar jump between the 1.5 – 

2.49 Mean and the 2.5 – 2.49 Mean across all response sets. 
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Figure 7.  Mean Participant Rating as a Function of Stimulus Mean Rating for 4 Response Choices 

Note:  Error bars are standard errors. 

 

 

  
Figure 8.  Mean Participant Rating as a Function of Stimulus Mean Rating for 7 Response Choices 

Note:  Error bars are standard errors. 
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Figure 9.  Mean Participant Rating as a Function of Stimulus Mean Rating for 10 Response Choices 

Note:  Error bars are standard errors. 

 

Effect sizes were calculated within each response set size across the stimulus mean and 

stimulus variability conditions.  These data are presented in Table 7.  What is notable here is that 

although the pattern is similar across all response sizes, a few differences emerge.  In the 4 

response choices condition, there were larger effect sizes for larger stimulus mean ratings and for 

larger stimulus variability.  Additionally, as the stimulus mean increased, the effect sizes 

changed sign across all categories.  This indicates that at the lower stimulus mean categories, low 

variation images tend to be associated with a lower participant mean rating but at the higher 

stimulus mean categories, low variation images tend to have a higher partipant mean rating; that 

is, low variation images in the lower stimulus mean categories tend to be rated as a lower threat 

than more variable images and low variation images in the higher stimulus mean categories tend 

to be rated as a higher threat than more variable images.  It was anticipated that this pattern 

would be replicated in subsequent experiments. 
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Table 7.  Effect sizes by response choices across means and standard deviations 

Stimulus 

Mean 

Variability 

compared 

Cohen’s d 
4 choices 

Cohen’s d 
7 choices 

Cohen’s d 
10 choices 

1.0 – 1.49 Low to Medium 0.676 0.933 0.497 

 Low to High 1.382 1.386 1.077 

 Medium to High 0.568 0.320 0.454 

1.5 – 2.49 Low to Medium 0.186 0.223 0.225 

 Low to High 0.830 0.898 0.990 

 Medium to High 1.714 0.648 0.762 

2.5 – 3.49 Low to Medium -1.273 -1.068 -0.699 

 Low to High -1.194 -1.194 -0.738 

 Medium to High 0.052 -0.095 -0.038 

3.5 – 4.0 Low to Medium -0.769 -0.117 -0.316 

 Low to High -0.931 -0.246 -0.372 

 Medium to High -0.108 -0.163 -0.050 

 

 

Discussion 

 Based on the analysis, it was concluded that four response categories capture sufficient 

variability in ratings, as reflected in the magnitude of the effect sizes for the experimental 

manipulations, when participants were provided 4 response choices.  The patterns across the 

means and standard deviations are similar to those of the 7 and 10 response choice conditions, 

but the effect sizes are comparable or larger in the 4 response choice set.  For example, looking 

at a mean stimulus rating of 1.5 – 2.9 in Table 5, we see that the effect size comparing medium 

and high variability is much larger given a response set of 4 choices (1.714) than given a 

response set of 7 choices (0.648) or 10 choices (0.762).  A similar increase in effect size occurs 

in comparing low to medium variability when the mean is 2.5 – 3.49 and again when the mean is 

3.5 – 4.0.  Across all conditions, we see substantial effect sizes, so we obtain meaningful 

differences across mean categories and variability conditions regardless of response set size.  

Further, the interaction between mean category and variability condition is present across all 
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three response sets.  One might expect that increasing the number of response choices would 

result in capturing more variability, but the empirical evidence does not indicate that this is the 

case for the present stimuli.  Although the effect sizes are strong across all three response set 

conditions, we appear to gain little by increasing the response set size for participants.  The 

response set size of 4 was therefore retained for the subsequent studies.  Note that this was also 

the response set used in the previous studies that established the mean categories for the stimuli 

to be used in experiments 1 and 2. 
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CHAPTER 5:  STUDY 1 

Methods 

Participants.  Because of the use of structural equation modeling in this research, a 

direct power analysis was not performed, as too many arbitrary estimates were required.  Instead, 

charts relating power and sample size were referenced (G. R. Hancock and Freeman, 2001) but 

recommended sample sizes were beyond the scope of the present work.  To obtain a more 

tractable sample size, Kline (2011) recommends a minimum ratio for the number of participants 

to the number of parameters, based on the article of Jackson (2003).  Using this minimum 

recommendation, a minimum sample size of 190 established.  A total of 206 undergraduates (135 

female, 71 male) at the University of Central Florida participated in the study, ranging in age 

from 18 to 58 (M = 20.36, SD = 4.549).  Participants were recruited from undergraduate 

psychology courses through the SONA system, where they earned course credit for their 

participation.  The SONA system was used to screen all participants as having normal or 

corrected-to-normal vision.  All participants completed a brief demographic questionnaire (see 

Appendix B). 

Experimental Design.  Experiment 1 utilized a 3 (stimulus variability:  low, medium, 

high) x 4 (stimulus mean rating:  1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0) within subjects 

design.  Here, the stimulus rating level varied between 1 and 4 with 1 indicating that no threat 

was present and 4 indicating that a threat was definitely present.  The dependent variable was the 

threat level (fuzzy membership response category) of the stimulus. 

Materials.  A total of 96 photographs of components (or distractors) of mock IEDs in a 

typical office building environment were used.  The stimuli were previously normed in terms of 

their Fuzzy membership category using mean ratings of 242 undergraduate students at the 
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University of Central Florida (see previous study in chapter 3).  The photographs to be used were 

randomly selected representatives of both mean category rating, and standard deviation within 

that category as divided by three roughly equal intervals.  Within each of four mean categories, 

eight photographs of low standard deviation, eight photographs of medium standard deviation, 

and eight photographs of high standard deviation were used.  Each of those groups (containing 

the eight photographs) were further partitioned, prior to random selection of the photographs, by 

the z-scores of the standard deviations from the mean standard deviation within the group in such 

a way that two photos with z-scores below -0.5, four photos with z-scores between -0.5 and 0.5, 

and two photos with z-scores above 0.5 were selected (see Table 8). 

 

Table 8.  Categories of Variability for Selected Photographs 

 𝑧 < −0.5 −0.5 < 𝑧 < 0.5 0.5 < 𝑧 

Low Variability 2 photographs 4 photographs 2 photographs 

Medium Variability 2 photographs 4 photographs 2 photographs 

High Variability 2 photographs 4 photographs 2 photographs 

 

 

Stimuli were presented to the participants on a standard desktop computer.  A visual 

coding system (see Figure 12) was used to represent the response keys on the keyboard:  “no 

threat” was color coded with green (fuzzy response category 1), “unlikely threat” was color 

coded with yellow (fuzzy response category 2), “likely threat” was color coded with orange 

(fuzzy response category 3), and “definite threat” was color coded with red (fuzzy response 

category 4).  In addition to the color-coding with green, yellow, orange, and red, the keys also 

displayed the number of their rating (the green key had a 1 on it, the yellow key had a 2 on it, 

and so on). 
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Measures.  Subtests of the Kit of Factor-Referenced Cognitive Tests (Ekstrom, 1976) 

were used to measure spatial orientation and visualization, and 50 item domain scale (10 items 

per domain factor) from the International Personality Item Pool (IPIP; Goldberg et al., 2006) was 

used to measure personality traits.   

Procedure.  Participants were asked to complete an informed consent and a brief 

demographic form.  Participants then completed the tests from the Kit of Factor-Referenced 

Cognitive Tests and the IPIP (using pen and paper for the cognitive tests and a computerized 

version for the IPIP).  Participants then viewed several computer screens of instructions 

describing the task.  In these instructions, participants were told that they would be viewing 

images of a building that needs to be scanned for IEDs (see Figure 10 for example IEDs that 

were used).  The participants received the explanation that an uninhabited remote vehicle has 

been sent into the building to take photographs of rooms, and they were viewing these 

photographs on a computer monitor (see Figure 11 for example stimuli) for 1600 ms each.  They 

were instructed to respond to each image with a rating between 1 and 4, where 1 indicates that 

the room is free of threats and 4 indicates the room definitely contains a threat.  Participants 

received instructions that the colors on the response keys on the keyboard represent the different 

potential threat levels of the rooms.   

Participants were then given an example of the fuzzy ratings using a non-IED stimulus.  

Photographs of a model ship in different stages of assembly were shown to the participants, and 

they were told what rating the experimenter would assign to the photograph along with a brief 

explanation of the properties of the stimulus that indicate the rating is appropriate.  The detailed 

instructions are provided in the Appendix A.  Following the instructions, participants were asked 

if they have any questions regarding the task or the rating system. 
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Participants then viewed the pre-selected stimuli on a computer monitor for a duration of 

1600 milliseconds.  Following the stimulus, a screen requesting a rating was presented and the 

participant could not advance to the next trial until a rating had been entered.  The presentation 

of the stimuli was blocked so that images of low variability across all mean categories appear in 

one block, images of medium variability appear in a second block, and images of high variability 

appear in a third block.  Each block was separated by a masking screen, so that the participants’ 

ratings of individual pictures should not be influenced by the variability associated with the 

preceding picture.  The order of mean category block was randomized within each variability 

condition.  The order of variability block presentation was counter-balanced:  six configurations 

of the three blocks were possible, and each participant was randomly assigned to one of those six 

conditions.  The presentation order of the pictures within each block was predetermined by 

randomizing the sequence. 

At the conclusion of the experiment, participants were debriefed. 

 

    

Figure 10:  Types of IEDs. 
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Figure 11:  Example stimuli. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  Visual Coding System.  

No Threat Unlikely Threat 

Likely Threat Definite Threat 
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Results 

Mapping Functions.  Each stimulus in the study had a mean rating that fell into one of 

four categories:   low (1.0 – 1.49); medium low (1.5 – 2.49); medium high (2.5 – 3.49); or high 

(3.5 – 4).  These categorical values defined the state of the world for this study, and a mapping 

function is necessary to assign a fuzzy signal strength to each stimulus.  Initially, an equal 

interval linear mapping function that assigned fuzzy signal strength based on stimulus category 

mapping was explored; that is, all pictures with mean ratings from 1.0 – 1.49 were assigned a 

fuzzy signal strength of 0, all pictures with mean ratings from 1.5 – 2.49 were assigned a fuzzy 

signal strength of 1/3, all pictures with mean ratings from 2.5 – 3.49 were assigned a fuzzy signal 

strength of 2/3, and all pictures with mean ratings from 3.5 – 4 were assigned a fuzzy signal 

strength of 1.  However, it was apparent that a great deal of information was lost with such a 

mapping.  Using this strategy, fuzzy estimates could not be obtained for the low and high 

categories, as these contained no degree of hit or no degree of miss. 

 Thus, degree of signal was defined for each picture using the mapping 

𝑠 = 𝑝𝑖𝑐𝑡𝑢𝑟𝑒 𝑚𝑒𝑎𝑛 − 1.112.79  

where 1.11 is the minimum stimulus mean and 2.79 is the range of stimulus means.  Thus, the 

picture with the lowest stimulus mean was mapped to 𝑠 = 0 and the picture with the highest 

stimulus mean was mapped to 𝑠 = 1.  An equal interval linear mapping was used for the 

response:  a response of low was mapped to 𝑟 = 0; a response of medium low was mapped to 𝑟 = 1/3; a response of medium high was mapped to 𝑟 = 2/3; and a response of high was 

mapped to 𝑟 = 1.  

Preliminary Analysis.  In analyzing the data, Greenhouse-Geisser was used to correct 

for violation of sphericity in most F tests involved; where appropriate, the uncorrected degrees of 
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freedom are reported as well as the epsilon used for the correction.  The means and standard 

deviations of participant rating responses and participant median response times are provided in 

Table 9 and Table 10. 

 

Table 9.  Descriptive Statistics for Participant Rating Responses (N=206) 

Stimulus Mean Stimulus 

Variability 

Response 

Mean 

Response 

Standard 

Deviation 

1.0 – 1.49 Low 1.2364 .32569 

 Medium 1.4033 .41047 

 High 1.6474 .56065 

1.5 – 2.49 Low 2.1011 .60825 

 Medium 2.2223 .56672 

 High 2.5284 .53652 

2.5 – 3.49 Low 3.5041 .38909 

 Medium 2.9547 .47618 

 High 3.0130 .53693 

3.5 – 4.0 Low 3.8642 .20585 

 Medium 3.6387 .32154 

 High 3.7027 .27813 

 

 

Table 10.  Descriptive Statistics for Participant Response Times (N=206) 

Stimulus Mean Stimulus 

Variability 

Response 

Mean 

Response 

Standard 

Deviation 

1.0 – 1.49 Low 542.6796 324.82168 

 Medium 637.1553 467.01625 

 High 698.0801 493.81265 

1.5 – 2.49 Low 800.5534 562.79445 

 Medium 798.4369 649.87026 

 High 765.1820 513.00128 

2.5 – 3.49 Low 552.7840 341.94345 

 Medium 666.8010 385.79495 

 High 691.5340 469.64025 

3.5 – 4.0 Low 460.5801 270.74238 

 Medium 539.5194 285.37100 

 High 494.5583 273.50497 
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Participant responses were analyzed with a two-way analysis of variance having four 

levels of stimulus mean rating (1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0) and three levels of 

stimulus variability (low, medium, high).  All main effects and interactions were statistically 

significant at the .05 significance level (see Table 11).  Pairwise comparisons showed significant 

differences between each mean category and significant differences between each variability 

category. 

 

Table 11.  4x3 ANOVA of Participant Responses 

Effect 

 

df ε SS MS F p ηp
2 

Stimulus Mean 3 .772 1890.906 630.302 2996.658 <.001 .936 

Error 

 

615  129.356 .210    

Stimulus Variability 2 .966 12.421 6.210 40.973 <.001 .167 

Error 

 

410  62.144 .152    

Stimulus Mean*Stimulus 

Variability 

6 .800 68.245 11.374 147.471 <.001 .418 

Error 1230  94.868 .077    

 

 

Additional one-way ANOVAs were computed to further investigate the interactions.  

Tests of the effects of mean category at each level of signal variability indicated statistically 

significant main effects for stimulus mean at low stimulus variability, F(3, 615) = 2549.425, p < 

.001, ε = .763, ηp
2 = .926, at medium stimulus variability, F(3, 615) = 1712.750, p < .001, ε = 

.875, ηp
2 = .893, and at high stimulus variability, F(3, 615) = 1162.175, p < .001, ε = .935, ηp

2 = 

.850.  At low stimulus variability, there was a significant linear trend, F(1, 205) = 7851.697, p < 

.001, ηp
2 = .975, quadratic trend, F(1, 205) = 122.692, p < .001, ηp

2 = .374, and cubic trend, F(1, 

205) = 179.312, p < .001, ηp
2 = .467.  At medium stimulus variability, there was a significant 
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linear trend, F(1, 205) = 4105.893, p < .001, ηp
2 = .952, and quadratic trend, F(1, 205) = 8.607, p 

= .004, ηp
2 = .040.  At high stimulus variability, there was a significant linear trend, F(1, 205) = 

2611.664, p < .001, ηp
2 = .927, quadratic trend, F(1, 205) = 16.770, p < .001, ηp

2 = .076, and 

cubic trend, F(1, 205) = 33.905, p < .001, ηp
2 = .142. 

These interactions are depicted in Figure 13.  As expected, lower variability stimuli were 

associated with lower responses in the lower stimulus mean categories and higher responses in 

the higher stimulus mean categories.  Figure 13 shows that, as variability increases, ratings 

increase in the lower stimulus mean categories; however, there is not a similar trend in the higher 

stimulus mean categories. 

 

Figure 13.  Mean Participant Response as a Function of Mean Stimulus Category in Study 1  

Note:  Error bars are standard errors 
 

Participant median response times were analyzed with a two-way analysis of variance 

having four levels of stimulus mean rating (1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0) and three 

levels of stimulus variability (low, medium, high).  All main effects and interactions were 

statistically significant at the .05 significance level (see Table 12).   
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Table 12.  4x3 ANOVA of Participant Response Times 

Effect 

 

df ε SS MS F p ηp
2 

Stimulus Mean 3 .827 26079387.898 8693129.299 66.422 <.001 .245 

Error 

 

615  80489950.435 130877.968    

Stimulus Variability 2  2869702.904 1434851.452 4.188 .016 .020 

Error 

 

410  140478527.430 342630.555    

Stimulus 

Mean*Stimulus 

Variability 

6 .827 2721061.163 453510.194 5.453 <.001 .026 

Error 1230  102304089.504 83174.057    

 

 

Additional one-way ANOVAs were computed to further investigate the interactions.  

Tests for the effects of mean category at each level of signal variability indicated statistically 

significant main effects for stimulus mean at low stimulus variability, F(3, 615) = 52.650, p < 

.001, ε = .678, ηp
2 = .204, at medium stimulus variability, F(3, 615) = 21.553, p < .001, ε = .780, 

ηp
2 = .095, and at high stimulus variability, F(3, 615) = 27.046, p < .001, ε = .965, ηp

2 = .117.  At 

low stimulus variability, there was a significant linear trend, F(1, 205) = 44.471, p < .001, ηp
2 = 

.178, quadratic trend, F(3, 615) = 70.586, p < .001, ηp
2 = .256, and cubic trend, F(3, 615) = 

42.003, p < .001, ηp
2 = .170.  At medium stimulus variability, there was a significant linear trend, 

F(1, 205) = 15.339, p < .001, ηp
2 = .070, quadratic trend, F(3, 615) = 41.522, p < .001, ηp

2 = .168, 

and cubic trend, F(3, 615) = 8.836, p = .003, ηp
2 = .041.  At high stimulus variability, there was a 

significant linear trend, F(1, 205) = 46.333, p < .001, ηp
2 = .184, and quadratic trend, F(3, 615) = 

33.124, p < .001, ηp
2 = .139. 

Figure 14 shows the pattern of response time across conditions.  Across all levels of 

variability, there is an increase in response time at the middle low stimulus mean category, and 
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the fastest response time occurring in the high stimulus mean category.  Except in the middle low 

stimulus mean category, low variability pictures yield faster response times.   

 

 

Figure 14.  Mean Participant Response Time as a Function of Stimulus Mean Category in Study 1 

Note:  Error bars are standard errors. 
 

Personality and Cognitive Traits.  All cognitive tests penalized for incorrect answers; 

thus, negative scores were possible.  A perfect score on the ETS Card Rotation Test (S1) is 160 

and the lowest score possible is -160; a perfect score on the ETS Cube Comparison Test (S2) is 

42 and the lowest score possible is -42; a perfect score on the ETS Form Board Test (VZ1) is 48 

and the lowest score possible is -48; a perfect score on the ETS Paper Folding Test (VZ2) is 20 

and the lowest possible score is -20; and a perfect score on the ETS Surface Development Test 

(VZ3) is 60 and the lowest possible score is -60.  For the 50 item version of the International 

Personality Item Pool (IPIP), each factor has a max score of 50.  The means and standard 

deviations of participants’ performance on the cognitive tests and personality factors are shown 

in Table 13. 
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Table 13.  Descriptive Statistics for Cognitve and Personality Tests (N=206) 

Trait Mean Standard 

Deviation 

S1 93.75 35.847 

S2 13.33 10.504 

VZ1 2.35 16.250 

VZ2 5.37 6.838 

VZ3 16.78 24.220 

Extraversion 31.76 8.736 

Emotional Stability 30.94 8.031 

Conscientiousness 35.58 6.476 

Agreeableness 39.99 6.215 

Intellect/Imagination 36.83 5.927 

 

Correlations.  Correlations were run between the five cognitive tests (spatial ability:  

S1—ETS Card Rotation Test, S2—ETS Cube Comparison Test; visualization ability:  VZ1—

ETS Form Board Test, VZ2—ETS Paper Folding Test, VZ3—ETS Surface Development Test), 

average sensitivity (𝑑′), average response bias (c), and median average response time (RT).  

These correlations were run with the data collapsed over all signal variability categories.  All 

correlations were significant, except response time only had a significant correlation with S1 (see 

Table 14). 

Table 14.  Correlations of Cognitive Traits with SDT Measures 

 Correlation Coefficients 

 S1 S2 VZ1 VZ2 VZ3 𝑑′ C RT 

S1 1        

S2 .515** 1       

VZ1 .425** .609** 1      

VZ2 .402** .562** .641** 1     

VZ3 .481** .656** .713** .694** 1    𝑑′ .245** .264** .294** .288** .335** 1   

C .259** .257** .255** .243** .266** .366** 1  

RT -.236** -.078 .022 .027 .035 .104 -.010 1 

**𝑝 ≤ .01 
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Correlations were also computed between the personality characteristics (extraversion, 

emotional stability, and conscientiousness), average sensitivity, average response bias, and 

median average response time.  These correlations were also computed with the data collapsed 

over all signal variability categories.  Table 15 shows that extraversion correlated with both 

sensitivity and response time, such that higher extraversion scores were associated with lower 

sensitivity and longer response time.  Emotional stability also correlated positively with response 

time. 

 

Table 15.  Correlation of Personality Traits with SDT Measures 

 Correlation Coefficients 

 Extraversion Emotional 

Stability 

Conscientiousness 𝑑′ c RT 

Extraversion 1      

Emotional Stability .188** 1     

Conscientiousness .170* .191** 1    𝑑′ -.165* -.025 .038 1   

C -.030 .067 .036 .366** 1  

RT -.191** .146* .088 .104 -.010 1 

*𝑝 ≤ .05, **𝑝 ≤ .01 

 

Sensitivity.  Sensitivity was analyzed with a two-way analysis of variance having three 

levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating (1.0 – 

1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0).  All main effects and interactions were statistically 

significant at the .05 significance level, with ηp
2 values in the medium-to-large range (see Table 

16). 
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Table 16.  3 (Stimulus Variability) x4 (Stimulus Mean Category) ANOVA of Sensitivity 

Effect 

 

df ε SS MS F p ηp
2 

Stimulus Variability  2  14.154 7.077 29.827 <.001 .127 

Error 

 

410  97.280 .237    

Stimulus Mean 3 .891 81.322 27.107 89.896 <.001 .305 

Error 

 

615  185.449 .302    

Stimulus Variability 

*Stimulus Mean 

6 .899 48.186 8.031 48.590 <.001 .192 

Error 1230  203.295 .165    

 

 

The interaction between the stimulus variability and the stimulus mean category is 

illustrated in Figure 15.  As seen in the figure, both medium and high variability pictures resulted 

in greater values of 𝑑′ for the middle stimulus mean categories.  The pictures of low variability, 

however, showed a decline between the two middle categories, rising again for the highest mean 

category to approximately the same value as the lowest mean category.  Both the lowest mean 

category and the highest mean category have decreasing values of 𝑑′ across increasing variability 

of the stimulus, whereas the middle two mean categories both peak for medium variability 

pictures. 
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Figure 15.  Mean Sensitivity as a Function of Stimulus Mean Category in Study 1 

Note:  Error bars are standard errors. 
 

 

Additional one-way ANOVAs of mean category within each level of variability were 

computed to further investigate the interactions.  Tests of the effect of mean category at each 

level of signal variability indicated significant main effects for stimulus mean at low stimulus 

variability, F(3, 615) = 26.417, p < .001, ε = .935, ηp
2 = .114, at medium stimulus variability, 

F(3, 615) = 104.319, p < .001, ε = .874, ηp
2 = .337, and at high stimulus variability, F(3, 615) = 

68.509, p < .001, ε = .911, ηp
2 = .250.  At low variability, there was a significant linear trend, 

F(1, 205) = 8.062, p = .005, ηp
2 = .038, and cubic trend, F(1, 205) = 73.801, p < .001, ηp

2 = .265.  

At medium variability, there was a significant quadratic trend, F(1, 205) = 254.063, p < .001, ηp
2 

= .553.    At high variability, there was a significant linear trend, F(1, 205) = 13.918, p < .001, 

ηp
2 = .064, and quadratic trend, F(1, 205) = 157.379, p < .001, ηp

2 = .434. 

Response Bias.  Response bias was analyzed with a two-way analysis of variance having 

three levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating 
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(1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0).  All main effects and interactions were statistically 

significant at the .05 significance level (see Table 17). 

 

Table 17.  3 (Stimulus Variability) x4 (Stimulus Mean Category) ANOVA of Response Bias 

Effect 

 

df ε SS MS F P ηp
2 

Stimulus Variability  2  11.503 5.752 26.552 <.001 .115 

Error 

 

410  88.812 .217    

Stimulus Mean 3 .840 830.922 276.974 906.174 <.001 .816 

Error 

 

615  187.976 .306    

Stimulus Variability 

*Stimulus Mean 

6 .885 32.099 5.350 40.905 <.001 .164 

Error 1230  164.116 .133    

 

 Figure 16 shows the interaction between stimulus mean category and stimulus variability.  

As the mean category increases, response bias decreases across all levels of stimulus variability.  

Thus, there is an inclination towards responding signal absent for the lowest level of stimulus 

mean category (1.0 – 1.49 mean), little bias present at the next lowest level of stimulus mean (1.5 

– 2.49 mean), and a tendency to respond signal present at the higher levels of stimulus mean.  

Note that signals of lower variability are slightly more inclined to ilicit a stronger response bias 

at the medium high stimlulus mean category level (2.5 – 3.49 mean) than the other variability 

levels. 
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Figure 16.  Mean Response Bias as a Function of Stimulus Mean Category in Study 1 

Note:  Error bars are standard errors. 

 

 

 Tests of the effect of mean category at each level of variability were computed to further 

investigate the interactions.  The ANOVAs showed significant main effects for stimulus mean at 

low stimulus variability, F(3, 615) = 640.479, p < .001, ε = .923, ηp
2 = .758, at medium stimulus 

variability, F(3, 615) = 440.641, p < .001, ε = .932, ηp
2 = .682, and at high stimulus variability, 

F(3, 615) = 426.962, p < .001, ε = .857, ηp
2 = .676.  At low variability, there was a significant 

linear trend, F(1, 205) = 2184.355, p < .001, ηp
2 = .914, quadratic trend, F(1, 205) = 99.065, p < 

.001, ηp
2 = .326, and cubic trend, F(1, 205) = 49.673, p < .001, ηp

2 = .195.  At medium 

variability, there was a significant linear trend, F(1, 205) = 1002.519, p < .001, ηp
2 = .830, 

quadratic trend, F(1, 205) = 12.612, p < .001, ηp
2 = .058, and cubic trend, F(1, 205) = 34.937, p 

< .001, ηp
2 = .146.  At high variability, there was a significant linear trend, F(1, 205) = 807.754, 

p < .001, ηp
2 = .798, quadratic trend, F(1, 205) = 9.052, p = .003, ηp

2 = .042, and cubic trend, 

F(1, 205) = 40.265, p < .001, ηp
2 = .164. 
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Structural Equation Modeling with Cognitive Factors.  The results shown in Table 14 

indicated strong correlations between the cognitive measures implemented (two spatial tests, S1 

and S2, and three visualization tests, VZ1, VZ2, and VZ3).  Consequently, one model grouping 

these together as the common factor “cognitive skills” was developed (see Figure 17), and a 

reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = 1.016; RMSEA < .001, 90% CI (<  

.001, .029); AIC = 22.846; χ2(4) = .846, p = .932).  As seen in the model, the latent factor 

accounts for large portions of the observed variance. 

 

Figure 17. Model 1:  SEM Model of Single Cognitive Factor 

Note:  Standardized path coefficients shown.  R2 values are indicated next to each observed variable.  Observed variables not 

shown.   
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Model 1 groups all cognitive skills into one latent factor. A second latent structure was 

tested in which the cognitive skills were grouped by two factors:  spatial ability and visualization 

ability.  The basic structure provided a reasonable fit (CFI = 1.000; TLI ρ2 = 1.016; RMSEA < 

.001, 90% CI (< .001, .029); AIC = 22.846; χ2(4) = .846, p = .932).  However, the two factor 

model resulted in a poor fit when incorporated into a structural regression model for response 

time (CFI = .908; TLI ρ2 = .849; RMSEA = .088, 90% CI (.074, .103); AIC = 354.763; χ2(83) = 

214.763, p < .001) and for sensitivity (CFI = .844; TLI ρ2 = .790; RMSEA = .078, 90% CI (.064, 

.091); AIC = 330.427; χ2(101) = 226.427, p < .001), although an adequate fit was observed for 

response bias (CFI = .988; TLI ρ2 = .982; RMSEA = .031, 90% CI (< .001, .051); AIC = 

232.628; χ2(91) = 108.628, p = .100).  As a result, the latent structure of Model 1 was used to 

analyze the relation of the cognitive traits to performance. 

 A structural regression model (Model 2) was developed to analyze sensitivity as a 

function of the latent variable specified in Model 1.  Model 2 also proved to have a reasonable fit 

(CFI = .970; TLI ρ2 = .960; RMSEA = .034, 90% CI (< .001, .052); AIC = 228.779; χ2(101) = 

124.779, p = .054).  Figure 18, depicts the structure of Model 2. 
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Figure 18.  Model 2:  Latent Structure of SEM Model Analyzing d’ 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables not shown. 

 

  

 As seen in the model, Cognitive Skills accounts for more variability in sensitivity 

performance across the two middle mean categories, but cognitive skills were not strongly 

associated with performance in the two extreme category conditions.  Thus, the cognitive traits 

predict sensitivity in the conditions in which the stimulus category membership is more 

ambiguous.  
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 Model 3 analyzed variation in response bias as a function of the cognitive skills factor of 

Model 1.  Model 3 also has a reasonable fit (CFI = .991; TLI ρ2 = .985; RMSEA = .028, 90% CI 

(< .001, .049); AIC = 234.449; χ2(85) = 98.449, p = .151).  Figure 19, depicts the structure of 

Model 3. 

 

 

Figure 19.  Model 3:  Latent Structure of SEM Model Analyzing Index c 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables not shown. 
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Cognitive Skills accounts for more variability in criterion setting in the low mean 

categories compared to the high mean categories.  Higher cognitive skill was associated with 

greater conservatism in responding, but more so for stimuli with lower signal membership. 

 Model 4 analyzed variation in response time as a function of the cognitive skills factor of 

Model 1.  Model 4 also has a reasonable fit (CFI = .976; TLI ρ2 = .959; RMSEA = .046, 90% CI 

(.025, .064); AIC = 260.005; χ2(81) = 116.005, p = .007).  However, cognitive skills did not 

significantly predict response time across levels of mean category.  Figure 20 depicts the 

structure of Model 4. 

 

Figure 20.  Model 4:  Latent Structure of SEM Model Analyzing Response Time 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables not shown. 
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Structural Equation Modeling Incorporating Personality Traits.  Structural 

regression analyses were conducted to analyze the effect of the three personality traits on d’, c, 

and response time (Models 5, 6, and 7, respectively) and a subsequent analysis illustrates the 

interaction between the cognitive and personality characteristics effect on these three 

performance criterions (Models 8, 9, and 10, respectively).  Analysis of sensitivity is shown in 

Model 5 (see Figure 21) and a reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = 1.025; 

RMSEA < .001, 90% CI (< .001, .035); AIC = 170.061; χ2(65) = 60.061, p = .650). 

 

Figure 21.  Model 5:  SEM of Personality Traits Analyzing d' 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables not shown. 
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The personality factors account for more of the variance in the extreme stimulus mean 

categories, having little effect on sensitivity in the middle categories.  Individuals high in 

conscientiousness are more discriminating than those low on the trait, but only in the low 

stimulus mean category.  Extroverts tend to be less discriminating, but only at the lowest threat 

level, the low stimulus mean category. 

Response bias was analyzed in Model 6 (see Figure 22).  A reasonable model fit was 

obtained (CFI = 1.000; TLI ρ2 = 1.002; RMSEA < .001, 90% CI (< .001, .043); AIC = 187.186; 

χ2(52) = 51.186, p = .506).  However, the personality traits did not significantly predict criterion 

setting across levels of mean category. 
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Figure 22.  Model 6:  SEM of Personality Traits Analyzing Index c 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables not shown. 

 

 

Response time was analyzed in Model 7 (see Figure 23), and a reasonable model fit was 

obtained (CFI = .970; TLI ρ2 = .934; RMSEA = .054, 90% CI (.030, .076); AIC = 220.797; 

χ2(48) = 76.797, p = .005). 
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Figure 23.  Model 7:  SEM of Personality Traits Analyzing Response Time 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for response time factors are not shown. 

 

 

 The personality factors accounted for the highest amount of variance in response time in 

the middle high stimulus mean category, but contributed substantially to each category.  

Extraverts tended to respond faster across all mean categories.  Individuals high in emotional 

stability and conscientiousness tended to have longer response times, but these differences were 

significant only  in the middle high and high stimulus mean categories. 

 Model 8 (Figure 24) illustrates the interaction between cognitive skills and extraversion 

on sensitivity performance.  A reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = 1.109; 
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RMSEA < .001, 90% CI (< .001, < .001); AIC = 154.007; χ2(65) = 44.007, p = .979).  As the 

model shows, however, the effect that the cognitive skills factor has on sensitivity does not 

depend on extraversion (i.e., the cognitive skills by extraversion interaction term was not 

significantly related to performance). 

 

 

Figure 24.  Model 8:  SEM Analysis of Extraversion Interacting with Cognitive skills for d' 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for sensitivity factors are not shown. 
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Model 9 (Figure 25) illustrates the interaction between cognitive skills and extraversion 

on response bias.  A reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = 1.006; RMSEA < 

.001, 90% CI (< .001, .040); AIC = 185.104; χ2(52) = 49.104, p = .588).  As the model shows, 

however, the effect that the cognitive skills factor has on criterion setting does not depend on 

extraversion. 

 

Figure 25.  Model 9:  SEM Model Analysis of Cognitive Skills Interacting with Extraversion for Index c 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for response bias factors not shown. 

 

Analysis of response time failed to converge to a solution using the same latent model 

structure as in the previous two models, so a path analysis was conducted.  Model 10 (Figure 26) 
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illustrates the interaction between cognitive skills and extraversion on response time.  A 

reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = .997; RMSEA = .037, 90% CI (< .001, 

.129); AIC = 53.821; χ2(3) = 3.821, p = .281).  As the model shows, however, the effect that 

extraversion has on response time does not depend on the cognitive skills factor. 

 

Figure 26.  Model 10:  Path Analysis of Cognitive Skills Interacting with Extraversion for Response Time 

Note:  Path coefficients are standardized.  R2 values for each observed variable for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category. 
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Model 11 (Figure 27) illustrates the interaction between cognitive skills and emotional 

stability on sensitivity.  A reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = 1.066; 

RMSEA < .001, 90% CI (< .001, .020); AIC = 161.504; χ2(65) = 51.504, p = .888).  As the 

model shows, however, the effect that the cognitive skills factor has on sensitivity does not 

depend on emotional stability. 

 

 

Figure 27.  Model 11:  SEM Analysis of Emotional Stability Interacting with Cognitive skills for d' 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for sensitivity factors are not shown. 
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Model 12 (Figure 28) illustrates the interaction between cognitive skills and emotional 

stability on response bias.  A reasonable model fit was obtained (CFI = .999; TLI ρ2 = .997; 

RMSEA = .011, 90% CI (< .001, .046); AIC = 189.199; χ2(52) = 53.199, p = .428).  For every 

increase of one unit in emotional stability the regression coefficient for the prediction of response 

bias by cognitive skills decreased by -0.20 (middle low mean category) and -0.15 (middle high 

mean category).  Stated another way, higher emotional stability tended to weaken the 

relationship between cognitive skills and response bias, but low emotional stability was 

associated with a stronger relationship of cognitive skills to criterion setting. 
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Figure 28.  Model 12:  SEM Analysis of Emotional Stability Interacting with Cognitive skills for Index c 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for response bias factors are not shown. 

 

 

Response time was again analyzed with a path analysis (Model 13).   A reasonable model 

fit was obtained (CFI = .999; TLI ρ2 = .992; RMSEA = .058, 90% CI (< .001, .143); AIC = 

55.090; χ2(3) = 5.090, p = .165).  Model 13 is depicted in Figure 29.  Higher emotional stability 

was associated with longer response time, but for the highest mean category this relationship was 

stronger for those lower rather than higher on the cognitive skills factor. 
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Figure 29.  .  Model 13:  Path Analysis of Cognitive Skills Interacting with Emotional Stability for Response Time 

Note:  Path coefficients are standardized.  R2 values for each observed variable for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category. 

 

 

Model 14 (Figure 30) illustrates the interaction between cognitive skills and 

conscientiousness on sensitivity.  A reasonable model fit was obtained (CFI = 1.000; TLI ρ2 = 

1.009; RMSEA < .001, 90% CI (< .001, < .001); AIC = 153.565; χ2(65) = 43.565, p = .981).  

Individuals with higher performance on the cognitive skills tests were more sensitive to the 
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ambiguous stimuli in the two middle categories, but for the middle low mean condition this 

relationship was stronger for those low in conscientiousness. 

 

 

Figure 30.  Model 14:  SEM Analysis of Conscientiousness Interacting with Cognitive skills for d' 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for sensitivity factors are not shown. 

 

 

Model 15 (Figure 31) illustrates the interaction between cognitive skills and 

conscientiousness on response bias.  A reasonable model fit was obtained (CFI = .996; TLI ρ2 = 

.992; RMSEA = .018, 90% CI (< .001, .049); AIC = 191.521; χ2(52) = 55.521, p = .344).  As the 



 

 

78 

 

model shows, however, the effect that the cognitive skills factor has on criterion setting does not 

depend on conscientiousness. 

 

 

Figure 31.  Model 15:  SEM Analysis of Conscientiousness Interacting with Cognitive skills for Index c 

Note:  Path coefficients are standardized.  R2 values for each latent factor for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category.  Observed variables for response bias factors are not shown. 

 

 

Response time was again analyzed with a path analysis (Model 16).   A reasonable model 

fit was obtained (CFI = 1.000; TLI ρ2 = .997; RMSEA = .033, 90% CI (< .001, .127); AIC = 

53.688; χ2(3) = 3.688, p = .297).  Model 16 is depicted in Figure 32.  As the model shows, 
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however, there was no significant interaction effect between conscientiousness and cognitive 

skills. 

 

 

Figure 32.  .  Model 16:  Path Analysis of Cognitive Skills Interacting with Conscientiousness for Response Time 

Note:  Path coefficients are standardized.  R2 values for each observed variable for performance values are provided next to their 

respective variable.  LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean 

Category, and HMC = High Mean Category. 
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Discussion 

 Ratings and Response Time.  The ANOVAs of participants’ responses (Table 11) 

indicated that both the mean stimulus rating and variability categories for the stimulus influenced 

participants’ responses.  Further exploration indicated that within the lower stimulus mean 

categories (1.0 – 1.49 and 1.5 – 2.49 mean), participants’ ratings of the stimulus increased as 

variability increased.  For the higher stimulus mean categories (2.5 – 3.49 and 3.5 – 4.9 mean), 

participants’ ratings were highest in the lowest stimulus variability category and lowest in the 

medium stimulus variability category.  In the lower categories, the higher stimulus variability 

categories are deviations from absence of threat and so it should make sense that these pictures 

would result in higher mean ratings from participants.   

In the upper categories, the higher stimulus variability categories are deviations from 

complete presences of threat; it’s interesting, however, that there was a consistent pattern among 

the two higher stimulus mean categories of stimuli of medium variability having lower 

participant rating scores than stimuli of high variability.  A possible explanation for this 

phenomenon is that, when faced with greater uncertainty in the presence of degree of threat, 

there is a natural inclination for perceived threat level to increase as the uncertainty grows (i.e., 

individuals erring on the side of caution).  If this were the case, why then would the lowest 

stimulus variability category be associated with the highest ratings?  Because it has the clearest 

degree of threat.  That is, the threat level of images within this category were more consistent 

than at medium or high variability. 

 Participants’ response times also varied as a function of both stimulus mean category and 

stimulus variability (see Table 12).  Pairwise comparisons revealed that within each stimulus 

variability category, response time increased significantly as the mean stimulus category 
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increased from low stimulus mean category to middle low stimulus mean category, and then 

decreased so that the high stimulus mean category was significantly lower than all other stimulus 

mean categories (however, there was not a significant difference between the response time in 

the low mean category and the medium high mean category).  Thus, participants were fastest 

responding to high level threats and were slowest when low level threats were presented.  This 

pattern suggests that it takes longer for an individual to respond when presented with a stimulus 

that is not an immediate threat, and this finding is explored in greater depth in Study 2. 

 FSDT Measures.  Figure 15 illustrates sensitivity effects of stimulus mean category 

within each variability category.  Pairwise comparisons indicated significant differences among 

all conditions with three exceptions (i.e., between the low stimulus mean category and high 

stimulus mean category for low and medium variability pictures and between the middle low 

stimulus mean category and middle high stimulus mean category for high variability pictures).  

The medium and high variability pictures evince the same pattern, but the low variability was 

associated with a more dramatic drop in sensitivity for the middle high stimulus mean category.  

Figure 15 also shows that individuals are more discriminating in the nebulous categories (the 

middle low and middle high stimulus mean categories) than in the extremes.  In part, this may be 

an artifact of the task:  the range of values possible in the middle categories was double that in 

the extreme categories, yet the same number of pictures were used in each category.  In other 

words, the pictures in the low and high categories had means that varied by at most 0.5 (1 – 1.49 

and 3.5 – 4.0, respectively) whereas the pictures in the middle low and middle high categories 

had means that varied by as much as 1.0 (1.5 – 2.49 and 2.5 – 3.49, respectively).  That 

limitation, may contribute to lower values of d’ in the low and high stimulus mean categories. 
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The higher discrimination in the middle mean categories may also be related to the 

response time.  The longest response time occurred in the middle low stimulus mean category 

(see Figure 14).  It may be the case that the higher discrimination was a result of participants 

taking longer to respond; that is, the participants may have more carefully considered the more 

nebulous stimuli.  In any event, it is unlikely that higher levels of uncertainty result in individuals 

being more discriminating and further exploration is warranted to determine if this result is an 

imbalance in width of the domain categories themselves, an artifact of the FSDT procedure itself, 

a result of mapping functions that fail to completely describe the process, or a by-product of the 

nature of a threat screening task. 

 Figure 16 shows that index c decreased across all stimulus mean categories; that is, 

participants became more lenient as threat level increased.  Considering only the two lower 

stimulus mean threat categories, higher variability was associated with lower values of index c; 

for the higher stimulus mean categories index c was highest in the medium variability category, 

but the lowest index c score switched from the low variability category to the high variability 

category between the two mean categories (pairwise comparisons revealed that there was not a 

significant difference in response bias in the high stimulus mean category between low 

variability pictures and medium variability pictures; all other mean differences were significant).  

In the lower stimulus mean categories, the higher variability pictures are deviations from absence 

of threat, so a propensity to become more lenient in the higher variability categories seems fitting 

in the context of the task.  In the higher stimulus mean categories, the higher variability pictures 

are deviations from complete presence of threat, so one might argue that the context of the task 

would lead individuals to become more conservative for stimuli of higher variability.  And while 

that is the case in the transition from low variability to medium variability, the opposite is true in 
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moving from medium variability to high variability.  A possible explanation for this phenomenon 

might again be that individuals are inclined to err on the side of caution (in this case, setting a 

more lenient criterion) in order to avoid missing a true high-level threat in the presence of 

increased uncertainty. 

 Individual Differences.  A general SEM model (Model 1) was developed to analyze the 

effects of visualization and spatial ability on task performance.  In this model, all predictors 

(performance on the five cognitive tests) were allowed to correlate because of the large amount 

of variance the traits shared, unrelated to the stimulus mean categories.  Model 2 analyzed the 

influence of the five cognitive skills on sensitivity.  As seen in Figure 18, higher scores on the 

cognitive traits were associated with improved sensitivity in the two middle stimulus mean 

categories but did not contribute significantly to the two extreme stimulus mean categories.  That 

is, in the presence of a clear threat or clear lack of threat, individuals with high and low 

visualization and spatial skills perform in keeping with one another.  However, when a partial 

threat exists, individuals high in either visualization or spatial ability achieved greater 

discrimination than those low in all such skills.  Thus, it may be the case that the cognitive skills 

factor assists individuals in evaluating ambiguous stimuli by facilitating recognition of key 

aspects of a stimulus that indicate presence or absence of threat.  It may be beneficial to rotate, 

realign, or attempt to mentally reassemble an IED in order to recognize high versus low level of 

threat when the object is presented in a disassembled state.  Note that this result is in keeping 

with previous studies that suggest that object rotation is necessary for recognition (e.g., Tarr and 

Pinker, 1989) and that recognition is dependent upon object features (e.g., Cheung, Hayward, 

and Gauthier, 2009). 
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 Model 3 analyzed the influence of the five cognitive skills on response bias.  As seen in 

Figure 19, both visualization and spatial ability result in an individual setting a more 

conservative criterion in the all but the high stimulus mean category.  That is, individuals high on 

the cognitive skills factor have a higher threshold for what constitutes a threat when only a 

partial signal is presented.  It may be the case that such individuals set a higher criterion because 

they are engaging in a mental reassembly process instead of deciding threat level purely on the 

basis of component recognition.  This result is similar to the finding of Larsen and Bundesen 

(1998) who also concluded that mental rotation and translation was used when matching an 

object to a template.  In performing such a mental manipulation, one may become aware of 

multiple uses for objects present (when not all necessary to construct an IED are present); as a 

result, one may become more cautious in deciding what constitutes a threat.  It is also worth 

noting that the cognitive factor was not significantly related to response time (Figure 20). 

 In terms of personality traits, only extraversion and conscientiousness were found to be 

significantly related to sensitivity, and only for performance in the low stimulus mean category 

(Figure 21).  Extraverts tended to be less discriminating and individuals high in 

conscientiousness tended to be more discriminating for very low threat levels.  While these 

findings are in keeping with previous research (e.g., Berch and Kanter, 1984; Rose et al., 2002), 

the restriction of the result to the lowest mean category level may be due to the nature of the task.  

In a threat detection task, as opposed to many traditional vigilance tasks (e.g., Becker, Warm, 

Dember, & Howe, 1994; Hitchcock et al., 2003; Szalma et al., 2004), there may be a certain 

amount of arousal that accompanies higher level threats causing a leveling in performance across 

different personality traits.  The personality traits did not seem to be related to response bias 

(Figure 22). 
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Model 7 (Figure 23) analyzed the influence of personality traits on response time, and it 

is here that personality traits had the largest effect on performance.  Across all stimulus mean 

categories, individuals high on extroversion responded faster than those low on extroversion.   

Those high on conscientiousness or high on emotional stability took longer to respond in the 

high and middle high stimulus mean categories.  Extroverts may respond faster because the 

nature of the task (sitting quietly) is contrary to their nature.  Humphreys and Revelle (1984) 

linked performance in extraverts to higher levels of impulsivity; that is, the classification of 

extraversion may be intertwined with a higher level of impulsivity that gears one to respond 

faster.  Conscientious individuals may spend longer evaluating the higher threat categories to 

ensure they are correctly analyzing the threat level (i.e., trying to minimize false alarms).  

Emotionally stable people may be simply be less reactive to perceived threats compared to those 

lower on this trait, but this finding is also in keeping with work showing that individuals low on 

neuroticism have a longer response time than those higher on the trait (e.g., Flehmig et al., 2010; 

Robinson & Tamir, 2005). 

 The interaction between extraversion and performance on the five cognitive tests was 

analyzed in Models 8 for sensitivity, Model 9 for response bias, and Model 10 for response time, 

and yielded no significant influence on performance.   

Models 11, 12, and 13 investigated the interaction between emotional stability and 

performance on the five cognitive tests.  Model 11 showed no significant effect of the interaction 

on sensitivity, but Models 12 and 13 resulted in significant interactions.  Figure 28 revealed that, 

in dealing with more ambiguous stimuli (i.e., in the middle low and middle high stimulus mean 

categories), individuals low on emotional stability showed a stronger relationship between 

cognitive skills and criterion setting.  Individuals high on emotional stability may experience less 
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arousal when presented with a threat and, thus, may require fewer cognitive resources in 

assessing that threat.  The work of Lommen, Engelhard, and van den Hout (2010) lends credence 

to this idea, a study in which individuals high in neuroticism were more lenient in declaring an 

ambiguous signal threatening only when given a longer time delay to avoid the threat.  Figure 29 

illustrates that higher performance on the cognitive skills attenuated the positive relationship 

between response time and emotional stability, but only for the highest threat level stimuli.  

Thus, it may be the case that faster responding to threat stimuli by those low in emotional 

stability as a result of increased emotional arousal can be dampened by higher levels of relevant 

cognitive skills.  Anxiety is known to impair performance on demanding tasks, and to be 

particularly hindering in the presence of a threat.  That is, lower performance by indviduals high 

on anxiety is generally attributed to a preoccupation of worries and self-referent thoughts 

(Matthews, 2008).  Thus, individuals low on emotional stability have more cognitive activity 

interfering with a threat detection task resulting in lower working memory and attentional 

resources (Matthews et al., 2000).  However, among those low on emotional stability, increased 

performance on the cognitive skills factor (the visualization and spatial ability) contributes more 

to criterion setting and response time.  Thus, individuals high on the cognitive skills factor are 

able to access alternate cognitive skills to perform the threat detection task.   

The interaction between conscientiousness and performance on the five cognitive tests 

was analyzed in Models 14, 15, and 16.  No significant interaction was found for response bias 

or reaction time, but Model 14 (Figure 30) indicates that individuals low on conscientiousness 

had a stronger relationship between higher performance on cognitive skills and increased 

sensitivity, but only in the middle low mean category of stimulus threat.  It may be the case that 

more conscientious individuals tend to more carefully inspect higher threat stimuli than lower 
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threat stimuli, but when threat levels are lower (i.e., low membership ambiguous stimuli), the 

tendency for conscientious individuals to inspect less carefully may be compensated for by 

higher cognitive skills. One problem with this interpretation, however, is that conscientious 

individuals tend to be generally more careful and detail-oriented in performing tasks (Matthews, 

Deary, & Whiteman, 2009), and would thus likely carefully inspect stimuli regardless of threat 

level.  It may be that those higher in conscientiousness adopt different strategies for effort 

allocation as a function of likelihood and ambiguity of threat. 
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CHAPTER 6:  STUDY 2 

Methods 

Participants.  A total of 212 undergraduates (131 female, 81 male) at the University of 

Central Florida participated in the study, ranging in age from 18 to 47 (M = 19.21, SD = 3.579).  

One female participant’s data was omitted because a computer malfunction prevented her from 

completing the experiment; total analyzed responses were N = 211.  Participants were recruited 

from undergraduate psychology courses through the SONA system, where they earned course 

credit for their participation.  The SONA system was used to screen all participants as having 

normal or corrected-to-normal vision.  All participants completed a brief demographic 

questionnaire. 

Experimental Design.  Experiment 2 utilized a 3 (stimulus variability:  low, medium, 

high) x 4 (stimulus mean rating:  1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0) within subjects 

design.  The dependent variables are the threat level (fuzzy membership response category) of 

the stimulus, length of time the stimulus is viewed prior to response, sensitivity (d’), response 

bias (index c). 

Materials.  The same photographs from experiment one were used again in experiment 

two.  Stimuli was presented to the participants on a standard desktop computer.  A visual coding 

system was used to represent the response keys on the keyboard and a visual reminder was 

located below the computer screen. 

Procedure.  Participants were requested to complete an informed consent and a brief 

demographic form.  Participants then read the same set of instructions as in experiment one.  

They also reviewed the same sample stimulus (model ship) and description of the ratings as in 

experiment one. 
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Participants then viewed the pre-selected stimuli on a computer monitor without time 

limit, as the image would advance only when a rating had been entered.  Note that this was the 

major difference in task structure between experiments 1 and 2.  In experiment 1, participants did 

not receive the subsequent trial until they entered a response, but the stimulus to be inspected 

was presented only for 1600 ms.  In experiment 2, the image remained on screen until the 

participant responded.  The time the participant took to respond to each image was recorded 

along with the rating assigned.  After a response was entered, participants were then presented 

with the next image.  The presentation of the stimuli was blocked by variability as in experiment 

one, and each block was separated by a screen instructing the participants to press the space bar 

on the keyboard to advance.  As in the first experiment, each participant was randomly assigned 

to one of the six conditions of order of presentation of the blocks of variability.  The order of the 

pictures in each block were predetermined by random assignment. 

At the conclusion of the experiment, participants were debriefed. 

Results 

In analyzing the data, Greenhouse-Geisser was used to correct for violation of sphericity 

in most F tests involved; where appropriate, the uncorrected degrees of freedom are reported as 

well as the epsilon used for the correction.  The means and standard deviations of participant 

rating responses and participant median response times are provided in Table 18 and Table 19. 
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Table 18.  Descriptive Statistics for Participant Rating Responses (N=211) 

Stimulus Mean Stimulus 

Variability 

Response 

Mean 

Response 

Standard 

Deviation 

1.0 – 1.49 Low 1.2322 .39432 

 Medium 1.4437 .49778 

 High 1.6481 .57514 

1.5 – 2.49 Low 2.0841 .65479 

 Medium 2.2293 .59482 

 High 2.6096 .56305 

2.5 – 3.49 Low 3.5089 .43592 

 Medium 3.0735 .52915 

 High 3.0344 .56088 

3.5 – 4.0 Low 3.8205 .33250 

 Medium 3.6795 .39921 

 High 3.7204 .33852 

 

 

Table 19.  Descriptive Statistics for Participant Response Times (N=211) 

Stimulus Mean Stimulus 

Variability 

Response 

Mean 

Response 

Standard 

Deviation 

1.0 – 1.49 Low 2037.0735 881.58361 

 Medium 2244.4194 1128.89580 

 High 2523.6327 1101.73353 

1.5 – 2.49 Low 2502.2204 1062.66543 

 Medium 2596.9408 1245.21107 

 High 2650.8863 1252.98769 

2.5 – 3.49 Low 2027.2867 1096.87902 

 Medium 2260.9100 1175.61936 

 High 2333.7180 1289.01850 

3.5 – 4.0 Low 1594.1043 861.10546 

 Medium 1884.2678 1034.76981 

 High 1796.4005 975.64152 

 

 

Participant Responses.  Participant responses were analyzed with a two-way analysis of 

variance having four levels of stimulus mean rating (1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0) 

and three levels of stimulus variability (low, medium, high).  All main effects and interactions 

were statistically significant at the .05 significance level, with ηp
2 values large (see Table 20).  
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Table 20.  4 (Stimulus Mean Category) x3 (Stimulus Variability) ANOVA of Participant 

Responses 

Effect 

 

df ε SS MS F p ηp
2 

Stimulus Mean 3 .708 1945.094 648.365 2133.467 <.001 .910 

Error 

 

630  191.458 .304    

Stimulus Variability 2  9.262 4.631 39.469 <.001 .158 

Error 

 

420  49.280 .117    

Stimulus 

Mean*Stimulus 

Variability 

6 .784 71.563 11.927 177.894 <.001 .459 

Error 1260  84.479 .067    

 

 

Additional one-way ANOVAs were computed to further investigate the interactions.  

Tests of the effects of mean category at each level of signal variability revealed statistically 

significant main effects for stimulus mean at low stimulus variability, F(3, 630) = 1979.507, p < 

.001, ε = .826, ηp
2 = .904, at medium stimulus variability, F(3, 633) = 1423.638, p < .001, ε = 

.754, ηp
2 = .871, and at high stimulus variability, F(3, 630) = 1147.826, p < .001, ε = .861, ηp

2 = 

.845.  At low stimulus variability, there was a significant linear trend, F(1, 210) = 4320.226, p < 

.001, ηp
2 = .954, quadratic trend, F(1, 210) = 120.179, p < .001, ηp

2 = .364, and cubic trend, F(1, 

210) = 216.291, p < .001, ηp
2 = .507.  At medium stimulus variability, there was a significant 

linear trend, F(1, 211) = 2481.852, p < .001, ηp
2 = .922, quadratic trend, F(1, 211) = 18.937, p < 

.001, ηp
2 = .082, and cubic trend, F(1, 211) = 10.416, p = .001, ηp

2 = .047.  At high stimulus 

variability, there was a significant linear trend, F(1, 210) = 2287.343, p < .001, ηp
2 = .916, 

quadratic trend, F(1, 210) = 30.646, p < .001, ηp
2 = .127, and cubic trend, F(1, 210) = 83.248, p < 

.001, ηp
2 = .284.  These interactions are depicted in Figure 33.  Note that these results replicated 

the findings of study 1. 
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Figure 33.  Mean Participant rating as a Function of Stimulus Mean Category in Study 2 

Note:  Error bars are standard errors. 
 

Median Response Time.  Median response times were analyzed with a two-way analysis 

of variance having four levels of stimulus mean rating (1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 

4.0) and three levels of stimulus variability (low, medium, high).  All main effects and 

interactions were statistically significant at the .05 significance level, with a large ηp
2 value for 

stimulus mean and smaller effects for stimulus variability and the interaction between the factors 

(see Table 21).  

Table 21.  4x3 ANOVA of Participant Median Response Times 

Effect 

 

Df ε SS MS F p ηp
2 

Stimulus Mean 3 .787 219490731.075 73163577.025 97.489 <.001 .317 

Error 

 

630  472801732.987 750478.941    

Stimulus Variability 2  36781663.927 18390831.963 8.620 <.001 .039 

Error 

 

420  896048649.282 2133449.165    

Stimulus 

Mean*Stimulus 

Variability 

6 .905 10925164.529 1820860.755 5.453 <.001 .025 

Error 1260  420740762.596 333921.240    
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Additional one-way ANOVAs were computed to further investigate the interactions.  

Tests of the effects of mean category at each level of signal variability indicated statistically 

significant main effects for stimulus mean at low stimulus variability, F(3, 630) = 63.710, p < 

.001, ε = .894, ηp
2 = .233, at medium stimulus variability, F(3, 633) = 35.887, p < .001, ε = .845, 

ηp
2 = .14), and at high stimulus variability, F(3, 630) = 64.896, p < .001, ε = .922, ηp

2 = .236.  

Note that in each case the effects were associated with a large ηp
2.  At low stimulus variability, 

there was a significant linear trend, F(1, 210) = 65.085, p < .001, ηp
2 = .237, quadratic trend, F(1, 

210) = 106.628, p < .001, ηp
2 = .337, and cubic trend, F(1, 210) = 23.116, p < .001, ηp

2 = .099.  

At medium stimulus variability, there was a significant linear trend, F(1, 210) = 27.798, p < .001, 

ηp
2 = .116, quadratic trend, F(1, 210) = 74.416, p < .001, ηp

2 = .261, and cubic trend, F(1, 210) = 

12.768, p < .001, ηp
2 = .057.  At high stimulus variability, there was a significant linear trend, 

F(1, 210) = 120.378, p < .001, ηp
2 = .364, and quadratic trend, F(1, 210) = 50.988, p < .001, ηp

2 = 

.195.  The interaction is depicted in Figure 34. 

 

 

Figure 34.  Mean of Median Response Times as a Function of Stimulus Mean Category in Study 2 

Note:  Error bars are standard errors. 
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 Sensitivity.  Sensitivity was analyzed with a two-way analysis of variance having three 

levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating (1.0 – 

1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0).  All main effects and interactions were statistically 

significant at the .05 significance level, with large ηp
2 values for stimulus mean and the 

interaction effect (see Table 22).  

 

Table 22.  3 (Stimulus Variability) x 4 (Stimulus Mean Category) ANOVA of Sensitivity 

Effect 

 

Df ε SS MS F p ηp
2 

Stimulus Mean 3 .854 89.949 29.983 88.302 <.001 .296 

Error 

 

630  213.918 .3402    

Stimulus Variability  2  3.855 1.928 10.998 <.001 .050 

Error 

 

420  73.613 .175    

Stimulus Variability 

*Stimulus Mean 

6 .867 45.870 7.645 45.778 <.001 .179 

Error 1260  210.425 .167    

 

 

Additional one-way ANOVAs were computed to further investigate the interaction.  

Tests of the effects of mean category at each level of signal variability showed significant main 

effects for stimulus mean at low stimulus variability, F(3, 630) = 13.402, p < .001, ε = .920, ηp
2 = 

.060, at medium stimulus variability, F(3, 633) = 105.659, p < .001, ε = .831, ηp
2 = .334, and at 

high stimulus variability, F(3, 630) = 77.410, p < .001, ε = .874, ηp
2 = .269.  At low stimulus 

variability, there was a significant cubic trend, F(1, 210) = 32.915, p < .001, ηp
2 = .135.  At 

medium stimulus variability, there was a significant quadratic trend, F(1, 211) = 219.565, p < 

.001, ηp
2 = .510, and cubic trend, F(1, 211) = 22.987, p < .001, ηp

2 = .098.  At high stimulus 

variability, there was a significant linear trend, F(1, 210) = 20.119, p < .001, ηp
2 = .087, quadratic 
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trend, F(1, 210) = 158.491, p < .001, ηp
2 = .430, and cubic trend, F(1, 210) = 8.554, p = .004, ηp

2 

= .039.  The interaction between the stimulus variability and the stimulus mean rating is 

illustrated in Figure 35.  The results closely match those of study 1 

 

Figure 35.  Mean Sensitivity as a Function of Stimulus Mean Category in Study 2 

Note:  Error bars are standard errors. 

 

Response Bias.  Response bias was analyzed with a two-way analysis of variance having 

three levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating 

(1.0 – 1.49, 1.5 – 2.49, 2.5 – 3.49, 3.5 – 4.0).  All main effects and interactions were statistically 

significant at the .05 significance level and were associated with values of ηp
2 in the medium-to-

large range (see Table 23) 
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Table 23.  3 (Stimulus Variability) x 4 (Stimulus Mean Category) ANOVA of Response Bias 

Effect 

 

df ε SS MS F p ηp
2 

Stimulus Variability  2  8.867 4.433 24.985 <.001 .106 

Error 

 

420  74.527 .177    

Stimulus Mean 3 .854 851.419 283.806 780.293 <.001 .788 

Error 

 

630  229.142 .364    

Stimulus Variability 

*Stimulus Mean 

6 .919 33.839 5.640 45.680 <.001 .179 

Error 1260  155.564 .123    

 

 

 Additional one-way ANOVAs were computed to further investigate the 

interactions.  Tests of the effects of mean category at each level of signal variability showed 

significant main effects for stimulus mean at low stimulus variability, F(3, 630)=548.526, 

p<.001, ε=.948, ηp
2=.723, at medium stimulus variability, F(3, 633)=451.249, p<.001, ε=.909, 

ηp
2=.681, and at high stimulus variability, F(3, 630)=438.777, p<.001, ε=.870, ηp

2=.676. 

 At low stimulus variability, there was a significant linear trend, F(1, 210) = 1573.142, p < .001, 

ηp
2 = .882, quadratic trend, F(1, 210) = 90.387, p < .001, ηp

2 = .301, and cubic trend, F(1, 210) = 

65.613, p < .001, ηp
2 = .238.  At medium stimulus variability, there was a significant linear trend, 

F(1, 211) = 948.733, p < .001, ηp
2 = .818, quadratic trend, F(1, 211) = 30.010, p < .001, ηp

2 = 

.125, and cubic trend, F(1, 211) = 12.462, p = .001, ηp
2 = .056.  At high stimulus variability, 

there was a significant linear trend, F(1, 210) = 887.417, p < .001, ηp
2 = .809, quadratic trend, 

F(1, 210) = 16.007, p < .001, ηp
2 = .071, and cubic trend, F(1, 210) = 79.059, p < .001, ηp

2 = 

.274.  Figure 36 illustrates the interaction between stimulus mean category and stimulus 

variability 
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Figure 36.  Mean Response Bias as a Function of Stimulus Mean Category in Study 2  

Note:  Error bars are standard errors. 

Structural Equation Modeling.  In order to both compare performance patterns with 

Study 1 and to further explore the relationships among variables by examining their factor 

structure, the data were evaluated using structural equation modeling.  Sensitivity was analyzed 

in Model 17.  This model has a reasonable fit (CFI = .971; TLI ρ2 = .958; RMSEA = .035, 90% 

CI (< .000, .061); AIC = 146.043; χ2(46) = 58.043, p = .110).  Figure 37, depicts the structure of 

Model 17.  Stimulus mean category was associated with significant effects in increasing 

sensitivity in the middle high and middle low stimulus mean categories.  Increases in sensitivity 

were significantly related to stimulus mean category for all of the medium variability category. 
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Figure 37.  Model 17:  SEM Model Analyzing d' Under Unconstrained Time 

Note:  Path coefficients are standardized.  R2 values for each observed variable for performance values are provided next to their 

respective variable.  M = Mean, SD = Standard Deviation 

 

 

Model 18 analyzes response bias using the same latent structure as Model 17.  This 

model also has a reasonable fit (CFI = .982; TLI ρ2 = .969; RMSEA = .052, 90% CI (.023, .076); 

AIC = 163.225; χ2(38) = 59.225, p = .015).  Figure 38, depicts the structure of Model 18.  The 

interaction between stimulus mean category and stimulus variability was significantly related to 

response bias in every category. 

 



 

 

99 

 

 
Figure 38.  Model 18:  SEM Model Analyzing Index c Under Unconstrained Time 

Note:  Path coefficients are standardized.  R2 values for each observed variable for performance values are provided next to their 

respective variable.  M = Mean, SD = Standard Deviation 

 

 

The latent structure of the previous two models failed to converge to reasonable solution 

in analyzing response time.  Although the fit indices appeared reasonable (CFI = .995; TLI ρ2 = 

.987; RMSEA = .038, 90% CI (< .000, .072); AIC = 163.373; χ2(24) = 31.373, p = .143), illegal 

values of estimates were obtained (i.e., negative variances, correlations greater than 1; Kline, 

2011).  Restructuring by variability and collapsing across stimulus mean category yielded a 

model (Model 19) with a reasonable fit (CFI = .949; TLI ρ2 = .923; RMSEA = .094, 90% CI 

(.075, .114); AIC = 218.151; χ2(44) = 126.151, p < .001).  Figure 39, depicts the structure of 

Model 19.  The interaction between stimulus mean category and stimulus variability was 

significantly related to response time in every category. 
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Figure 39.  Model 19:  SEM Model Analyzing Response Time Under Unconstrained Time 

Note:  Path coefficients are standardized.  R2 values for each observed variable for performance values are provided next to their 

respective variable.  M = Mean, SD = Standard Deviation 

 

Discussion 

 A comparison of Figure 13 with Figure 33 shows that the pattern of participant responses 

was similar across Study 1 and Study 2.  The similarities are also seen in the analyses of 

sensitivity (Figure 15 with Figure 35) and response bias (Figure 16 with Figure 36).  Thus, 

performance outcomes were similar across the two studies, and the mean ratings corresponded to 

those of the participants in the preliminary study. 

 Model 17 (Figure 37) analyzes the effect of stimulus mean category on d’ with the time 

constraint of Study 1 removed.  Similar to Study 1, higher levels of sensitivity were obtained for 

the middle stimulus mean categories, and this is reflected in the higher regression weights of the 

model.  Thus, the results of this experiment again confirm the unexpected result of Study 1 that 
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discrimination is greater in the ambiguous categories (middle low and middle high stimulus 

mean categories) than in the crisp categories (low and high stimulus mean categories).   

 The analysis of response bias, Model 18 (Figure 38), shows that criterion setting is 

predicted by the stimulus mean category across all levels of stimulus variability, as all regression 

weights in the model were significant.   Model 19 (Figure 39) indicates that response time is 

predicted by stimulus variability across all levels of stimulus mean category, as all regression 

weights in the model were also significant.  

 It had been hypothesized that response times would follow an inverted-U shape, with the 

shortest response times occurring on the extremes (low stimulus mean category and high 

stimulus mean category) and the longest response times in the middle.  However, Figure 34 

shows that is not quite the case.  The high stimulus mean category did produce the shortest 

response times, but the low stimulus mean category had a higher than anticipated response time.  

In fact, pairwise comparisons indicated significant differences between each stimulus mean 

category except the low and middle high.  Although it was predicted that participants would take 

a roughly equal amount of time in the low stimulus mean category and high stimulus mean 

category, participants take longer to declare a complete absence of threat than to declare a 

complete presence of threat.  However, this result is in keeping with the assertion of Hancock, 

Masalonis, and Parasuraman (2000), based on the research of Treisman and Gelade (1980), that 

decision time is longer for a non-signal than for a signal, and is exacerbated by the presence of 

noise.  In fact, the results of this research show that decision time is longest when a partial signal 

is present, but the magnitude of that signal is low (the middle low stimulus mean category).  

Thus, the results obtained here provide additional evidence for that assertion.   
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CHAPTER 7:  GENERAL DISCUSSION 

 The present work establishes differences in performance based on individual 

characteristics (spatial ability, visualization ability, extraversion, emotional stability, and 

conscientiousness).  Just as importantly, however, this work also establishes differences in 

performance based on characteristics of the signal presented (i.e., signal membership and 

variability within that signal membership category), which has not been previously established in 

other signal detection tasks.  The use of FSDT allows the modeling of the ambiguity of the signal 

to be reflected in the signal membership category rather than the noise present, as is the case in 

traditional SDT.  In doing so, performance across studies varied as a function of both stimulus 

mean category and stimulus variability.  Future work in FSDT should take into account that the 

nature of the stimulus itself (signal membership and variability) will be a factor in performance 

measures.    

Study 1 provides a connection between individual difference measures and performance 

on a fuzzy signal detection task.  Individuals high in the cognitive traits factor (spatial ability and 

visualization) show increased sensitivity in the presence of ambiguous stimuli on a threat 

detection task.  Further, increased performance on the cognitive skills factor contributes to a 

more conservative criterion setting in all conditions but the most obvious presence of threat.  One 

direct application of this result is that threat screening situations can be optimized by selecting 

individuals high in spatial ability or visualization.  Additionally, performance can be improved 

by integrating technology into the process (e.g., implementing automated decision aids), 

particularly for low-level threats where individuals demonstrated the longest inspection time and 

performance varied greatly as a function of individual difference measures.  Further, monitoring 

levels of arousal that might influence impulsivity may be warranted in a threat screening task.  
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What is not addressed by this research is whether there are other characteristics that predict as 

well, or better, than these two cognitive traits.  Because both spatial ability and visualization can 

be learned, it may be the case that higher study skills, which aids learning, or general intelligence 

may predict the same outcomes. 

 In this particular threat detection task, personality characteristics did not influence 

performance to the extent anticipated.  However, because extraversion had a negative impact and 

conscientiousness had a positive impact on sensitivity for low threat levels, it would be 

appropriate to screen for these characteristics when assigning personnel to a threat detection task.  

Perhaps because of higher levels of impulsivity, extraverts are likely to answer quickly, and thus 

not discriminate well, when at very low levels of signal.  On the other hand, conscientious 

individuals are more likely to spend extra effort at the lower signal levels to identify anything 

that could potentially be a threat.  Together with the cognitive traits of visualization and spatial 

ability, all three personality traits (extraversion, conscientiousness, and emotional stability) had 

an effect on at least one measure of performance.   

  Study 2 demonstrated that, for a threat detection task involving ambiguous signals, 

individuals take more time to decide on a non-signal than they do on a signal, particularly when 

noise is present.  Further, the confirmation of results of Study 1 that Study 2 provided illuminates 

an interesting fact:  for a threat detection task involving ambiguous stimuli, unbounding stimulus 

presentation time does not affect performance on FSDT measures.  Prior to experimentation, it 

was expected that unbounding time would have increased sensitivity, but that did not prove to be 

the result.  It appears as though sensitivity and criterion setting are independent of time above a 

minimum level required for stimulus processing, indicating that the task may be in the data-

limited range of information processing (Norman & Bobrow, 1975).  Note that in experiment 1, 
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it was the stimulus presentation time that was limited.  The response window for each trial was 

unbounded in both studies.  Thus, differences in response time between the two experiments 

reflect time available for stimulus observation rather than time to respond, per se. 

 Additional research along these lines may answer several questions.  First, is the 

independence of time and both sensitivity and criterion setting unique to this context?  That is, 

what about the context of identifying decomposed IEDs in a natural setting lead to that result?  

The overall low levels of d’ in Study 2 indicate that the task itself was challenging by nature.  An 

unanswered question is whether increased time does not improve performance on all difficult 

signal detection tasks. 

 Additional mathematical questions surrounding this research remain open.  One question 

that developed from these experiments is whether the range of the values spanning the domain of 

the mapping functions needs to be consistent across categories in order to model a detection task 

adequately.  Note that a continuous mapping of participants’ responses would circumvent this 

problem; however, the question itself is theoretically interesting and has practical applications in 

situations, such as this research, where assigning stimuli into bins is necessary.  Is it the case that 

changing the bin width (of the stimulus domain) will affect analysis of the FSDT measures.  In 

general, additional work on mapping functions is needed.   

 In terms of response time, this research showed that the decision of non-signal takes 

longer than the decision of full signal.  An interesting question would be to investigate decision 

time related to transition of signals, similar to the transitioning signals used in Fortenbaugh et al. 

(2015).  That is, instead of transitioning from absence of signal to presence of signal, if 

participants were asked to categorize an item transitioning from one signal to another (e.g., a star 

transitioning into a planet in a video game, where both valuable signals in terms of scoring points 
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because each involves a different task), would response time now take on the inverted quadratic 

shape because both extremes are full presence of signal, or would the response time mimic the 

results found in Study 2, almost as though the participants were cognitively assigning one signal 

to the “non-signal” status and the other as “full signal” status? 

 Future research may answer the question of whether abilities underlying spatial abilities 

(such as general intelligence) have as strong of an effect on performance.  Similarly, a 

comparison of the effects of training with and without the identified cognitive traits on 

performance would prove a useful measure to ensure performance of a screening task is 

optimized.  Additionally, investigation into alternate cognitive characteristics that might improve 

performance on difficult detection tasks is warranted. 

 Some situations, such as threat detection, do not lend themselves to crisp categorizations 

of signal and non-signal.  FSDT provides a robust tool for decision analysis in the presence of 

such uncertainty.  The research conducted here links individual difference measures with 

performance on a fuzzy task and provides an application for FSDT analysis. 
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APPENDIX A:  EXPERIMENTAL INSTRUCTIONS 
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A1.  Study 1 Instructions 

For this experiment, you will be asked to evaluate images of improvised explosive 

devices (IEDs) or their parts and judge the degree of threat of the object based on how “bomb-

like” they look.  Here is the situation: 

Imagine that you are a new member of a military squad whose primary mission is to 

secure areas by identifying and removing all potential threats (e.g., guns, bombs, or parts thereof) 

so that the area may be repopulated by civilians.   Your squad has been called in to clear a local 

office building where terrorists used portions of the building as a cover for their operation.  The 

terrorists have been arrested by military police, and members of your squad will secure the 

building so that the civilians employed there may re-enter.  Your job is to view images projected 

by an unmanned ground vehicle that has been sent into the building and prioritize each situation 

into a category based on the perceived level of threat, or how “bomb-like” the components 

appear.  The ratings will be given to the members of your squad designated to enter the building, 

and they will use these ratings to visit the most critical situations first (the highest category, then 

proceeding down as time allows). 

The terrorists were constructing IEDs using some parts that might commonly be found in 

most homes or office buildings.   
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Here you see examples of the terrorists’ assembled bombs.  The parts that make the 

bombs are shown on the next several screens.  As you can see, the bombs are made from 

common parts but need a device that can trigger the bomb remotely, like a cell phone, and need a 

power source, such as a battery or an electronic device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wires:  Notice that, when viewed 
from a distance, these wires look 
very similar to wires commonly 
used to connect computer equipment 
(such as connecting a printer to a 
tower).  

Wires:  Notice that, when viewed 
from a distance, these wires look 
very similar to wires commonly 
used to connect phone lines to the 
main network in an office building. 
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Plastic explosive:  The only purpose of this object is to be used as an explosive device 

 

C-4:  This is another form of plastic explosive.  The only purpose of this material is to be 

detonated as a bomb. 

 

Power source:  This device is used to ignite the bomb.  Notice that this is constructed from 

common computer parts. 
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Remote triggering device:  A cell phone is used to remotely trigger the bomb.  It is common 

knowledge that a cell phone is a familiar device for an ordinary person to possess and people 

often leave their cell phones lying about their office. 

 

 

 

 

 

 

 

 

 

 

Calculator:  The calculator is used as a power source to ignite the bomb.  Be aware that it is not 

uncommon to find a calculator in an office environment. 
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Lead pipe:  This is used as casing for a bomb (e.g., “pipe bomb”).  In general, there would be no 

other purpose for this to be in an office building. 

 

 

Soda can:  This is used as casing for a bomb.  However, it is also common for people to drink 

soda at work, so you may find this left in an office environment. 

 

Objects can often be divided into several components.  When some of these components 

are missing, the purpose of the object may change and it may no longer be recognizable as that 

object.  For example, when we go to watch a movie, we expect to see certain critical pieces:  a 

plot, props, a leading actor, and a supporting actor.  Lacking some of these components, such as 

missing a supporting actor, may not make the movie seem less movie-like.  In fact, there could 

be an entire movie comprised only of a plot, props, and a single leading actor and we might 
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herald this film as a spectacular indie-style film.  However, lacking both a leading actor and a 

supporting actor makes the film considerably less movie-like.  Such a film could exist, perhaps 

as a documentary showing only still-life photos, but it would not be what we traditionally think 

of as a movie.  If we remove a different component, the plot, then a leading actor, a supporting 

actor and props alone do not make much of a movie at all.  These three objects alone would 

barely be reminiscent of a movie at all because they are lacking a very critical component. 

Some objects that are not IEDs (and therefore do not pose an immediate threat) still pose 

a degree of threat because they have features similar to IEDs.  Your job is to remotely view areas 

in the building and determine the threat level based on the contents of the room.  The rooms you 

will be viewing (without any IED parts present) are shown on the next several screens. 

General Office Space 

 

A Break Room 
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An Individual’s Office 

 

An Individual’s Office 

 

An Individual’s Office 
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An Individual’s Office 

 

For each image you inspect, you will rate the threat level.  You would rate a threat as 

high if you think that the room should be searched and cleared immediately (i.e., you are 

confident that the room contains bomb parts left by the terrorists) and you should rate a threat as 

low if you feel that the room can be searched last or not at all (i.e., you are confident that the 

room contains no bomb parts left by the terrorists).  The ratings you will use are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 

Green:  You are 
certain that no IED 
threat is present.  
The room is clear so 
the members of your 
squad do not need to 
visit the room. 

Yellow low 
priority:  A 
suspicious item or 
set of items is 
present, but do not 
appear to be an 
imminent threat at 
this time.  However, 
the room should be 
checked if time 
permits. 

Yellow high priority:  
A highly suspicious 
item or set of items is 
present; the room 
should be flagged for 
further inspection.  
After all rooms in the 
red category have been 
cleared, the squad 
members will search the 
rooms marked in this 
category and confiscate 
all suspicious items. 

Red:  You are certain 
that an immediate 
bomb threat is present.  
Rooms marked in this 
category will be the 
first to be searched by 
members of your 
squad, and the bomb 
or bomb materials will 
be rendered harmless. 
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The idea that objects are made of separate pieces that hold different levels of purpose for 

that object can be difficult to understand.  For example, if we were attempting to detect the 

presence of the pirate ship depicted above, and code that presence using the four categories 

described on the previous screen, we might provide the ratings shown on the following four 

screens. 

 

Red: In this picture, we see all of the necessary parts to label this a pirate ship (such as 

the assembled hull, mast, and sails), even though it is not a fully assembled pirate ship. 
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Yellow high priority: In this picture, we see most of the necessary parts to label this a 

pirate ship.  Here, we are missing the sails, preventing the ship from being able to take to sea.  

However, all other components are present. 

 

 

Yellow low priority: In this picture, we see that the object resembles a pirate ship.  Here, 

we have an assembled hull, which alone is not enough for the ship to take sail.  Further, this may 

not be the hull of a pirate ship, because the hull by itself does not signify that; it could be the hull 

of a battle ship or it could be used as a tugboat to bring in other ships. 
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Green: In this picture, we see the unassembled masts and sails of the pirate ship.  Alone, 

there is no indication that these parts are very related to a pirate ship at all. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remember that in this experiment, you are trying to decide how “bomb-like” an object is.  

Because many of the items are used in a common office environment, you should carefully scan 

the environment to determine if the presence of these items is a threat.  For example, if you had 

1 2 

3 4 
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been told that a television remote control could be used as a detonator but was commonly used in 

the office environment for the security cameras, then seeing a remote control by itself should not 

necessarily alarm you unless it is out of place relative to its surroundings (e.g., found outside of 

the security room) or paired with enough other materials that can be used to construct a bomb.  

Be aware that you may also see other innocuous personal items (e.g., cameras, umbrellas, 

medical supplies, food items, etc.) that individuals may bring into an office environment for 

various (nonthreatening) reasons. 

Rating the degree of threat of an object can be difficult.  Please ask your experimenter for 

clarification if any instructions are unclear.  When you feel confident that you understand the 

task, please press the space bar to view the first image.  After viewing the picture, press the key 

corresponding to the appropriate threat level (red, yellow high priority, yellow low priority, or 

green) when prompted.  Please wait for the prompt to enter your response. 

A2.  Study 2 Alternate Conclusion 

Rating the degree of threat of an object can be difficult.  Please ask your experimenter for 

clarification if any instructions are unclear.  When you feel confident that you understand the 

task, please press the space bar to view the first image.  For each picture, you should rate its 

threat level by pressing the key corresponding to the appropriate threat level (red, yellow high 

priority, yellow low priority, or green). 
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APPENDIX B:  DEMOGRAPHICS QUESTIONNAIRE 
  



 

 

120 

 

Participant Number:________________ 

 

Date:_______________ 

 

 

Demographic Questionnaire 

 

1. What is your gender? (circle one)  Male  Female 

 

2. What is your age?__________ 

 

3. How many hours do you work on a computer per day? (circle one) 

 

0 < 1 hour 1-2 hours 3-4 hours 5-6 hours 7+ hours 

 

4. How many hours a day to you play video games on average?  (circle one) 

 

0 < 1 hour 1-2 hours 3-4 hours 5-6 hours 7+ hours 

 

IF YOU DO PLAY VIDEO GAMES, please describe what type: 

 

________________________________________________________________________ 

 

________________________________________________________________________ 

 

5. Are you or have you ever been involved in a threat detection task? (circle one) 

 

Yes  No 

 IF YES, please describe:____________________________________________________ 

 ________________________________________________________________________ 

6. Do you have normal or corrected to normal vision? 

 

Yes  No 

 

IF NO, please describe:____________________________________________________ 

 

________________________________________________________________________ 
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APPENDIX C:  IRB DOCUMENTS 
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C1.  Informed Consent 

 

 

Detecting Threats from Constituent Parts:  A Fuzzy Signal Detection Theory Analysis 

of Individual Differences 

Informed Consent 

Principal Investigator(s):   Sidra Van De Car 

 

Faculty Supervisor:  James L. Szalma, Ph.D. 

 

Investigational Site(s):  University of Central Florida, Department of Psychology 

 

 

Introduction:  Researchers at the University of Central Florida (UCF) study many topics.  To do 

this we need the help of people who agree to take part in a research study.  You are being invited 

to take part in a research study which will include about 400 people at UCF.  You have been 

asked to take part in this research study because you are a current UCF student.  You must be 18 

years of age or older and have 20/20 vision (or corrected to 20/20 vision) to be included in the 

research study.   

 

The person doing this research is Sidra Van De Car of UCF, Department of Psychology.  

Because the researcher is a graduate student, she is being guided by James L. Szalma, a UCF 

faculty supervisor in Psychology. 

 

What you should know about a research study: 

 Someone will explain this research study to you.  

 A research study is something you volunteer for.  

 Whether or not you take part is up to you. 

 You should take part in this study only because you want to.   

 You can choose not to take part in the research study.  

 You can agree to take part now and later change your mind.  

 Whatever you decide it will not be held against you. 
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 Feel free to ask all the questions you want before you decide. 

 

Purpose of the research study:  The purpose of this study is to examine characteristics that may 

affect performance of a rating task.  Aspects of an environment perceived, as well as personality 

and cognitive characteristics of the perceiver, may influence judgements.  This research seeks to 

describe some of the aspects that may influence performance. 

 

What you will be asked to do in the study:  Participation will consist of filling out brief 

questionnaires and inventories then participating in a computer-based task where you will be 

asked to assign different categories to pictures.   You do not have to answer every question or 

complete every task. You will not lose any benefits if you skip questions or tasks. 

 

Location:  UCF Department of Psychology, PeRL lab. 

 

Time required:  We expect that you will be in this research study for 1.5 hours.  

 

Risks:  There are no reasonably foreseeable risks or discomforts involved in taking part in this 

study.  However, if at any time you feel uncomfortable, inform the researcher and the study will 

be terminated without penalty or loss of benefit.   

 

Benefits:  There are no expected benefits to you for taking part in this study.  

 

Alternatives:  Instead of being in this research study, your choices may include:  participating in 

other research studies announced through the SONA system or talking to your individual 

instructor about alternatives for course credit. 

 

Compensation or payment:  For your participation, you will receive 1.5 SONA credits. 

 

Confidentiality:  We will limit your personal data collected in this study to people who have a 

need to review this information. Our interest as researchers is in how people in general respond 

to the pictures, not how any one individual responds to the pictures.  For this reason, all data 

collected will be reported in aggregate form only and at no time will individual participant 

information be matched to data in any meaningful way through which identity might be divined.  

Although every effort will be made to maintain the confidentiality of your participation, should 

data be compromised you will be notified if you provide us contact information.  Further, you 

may refuse to answer any questions which make you uncomfortable.  We cannot promise 

complete secrecy.  Organizations that may inspect and copy your information include the IRB 

and other representatives of UCF.  

 

Study contact for questions about the study or to report a problem: If you have questions, 

concerns, or complaints, or think the research has hurt you, talk to: Sidra Van De Car, Graduate 
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Student, Applied Experimental and Human Factors Psychology Program, College of Sciences, (407) 582-

2032, sidra@knights.ucf.edu, or Dr. James L. Szalma, Faculty Supervisor, Department of Psychology 

at (407) 823-0920 or by email at james.szalma@ucf.edu.  

 

IRB contact about your rights in the study or to report a complaint:    Research at the 

University of Central Florida involving human participants is carried out under the oversight of 

the Institutional Review Board (UCF IRB). This research has been reviewed and approved by the 

IRB. For information about the rights of people who take part in research, please contact: 

Institutional Review Board, University of Central Florida, Office of Research & 

Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 32826-3246 or by 

telephone at (407) 823-2901. You may also talk to them for any of the following:  

 Your questions, concerns, or complaints are not being answered by the research team. 

 You cannot reach the research team. 

 You want to talk to someone besides the research team. 

 

C2.  Debriefing 

Post Participation Information 

 

Thank you for your participation in this study.  The purpose of this study was to examine 

characteristics that may influence performance of a rating task.  In this research, your ratings of 

different threat levels for various pictures of components of Improvised Explosive Devices 

(IEDs) were recorded.  Your responses, when combined with the responses of other participants, 

will allow us to determine an appropriate number of responses for participants, personality and 

cognitive characteristics that influence ratings, or properties of the stimulus that influence 

decision time.  This research will help in our understanding of what individuals use to assess 

situational threat. 

 

If you have further questions about your participation in this study, please contact  

 

Sidra Van De Car 

Phone:  (407) 582-2032 

E-mail:  sidra@knights.ucf.edu 

 

or the faculty advisior 

 

James Szalma 

Phone:  (407) 823-0920 

E-mail:  James.Szalma@ucf.edu 

 

mailto:sidra@knights.ucf.edu
mailto:james.szalma@ucf.edu
mailto:sidra@knights.ucf.edu
mailto:James.Szalma@ucf.edu
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C3.  IRB Approval of Human Research 
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APPENDIX D:  TABLES 
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SEM Model 1:  Latent Factor Structure 

 
Table 24.  Regression Weights for SEM Model 1 

Path Estimate Standardized 

Estimate 

Standard Error p 

Cognitive Skills  S1 1.000 .532   

Cognitive Skills  S2 .407 .739 .050 < .001 

Cognitive Skills  VZ1 .692 .812 .091 < .001 

Cognitive Skills  VZ2 .280 .781 .038 < .001 

Cognitive Skills  VZ3 1.125 .885 .143 <.001 

 

Table 25.  Variances SEM Model 1 

 Estimate Standard Error p 

Cognitive Skills 361.618 93.284 < .001 

Error S1 917.141 95.714 < .001 

Error S2 49.899 5.810 < .001 

Error VZ1 89.481 11.750 < .001 

Error VZ2 18.166 2.232 < .001 

Error VZ3 126.203 22.787 <.001 

 

Table 26.  Squared Multiple Correlations SEM Model 1 

Factor S1 S2 VZ1 VZ2 VZ3 

Estimate .283 .546 .659 .610 .784 
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SEM Model 2:  Analysis of Sensitivity in Experiment 1 

 
Table 27.  Regression Weights for SEM Model 2 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Cognitive Skills  High Mean Category .001 .192 .001 .386 

Cognitive Skills  Middle High Mean 

Category 

.004 .377 .001 .002 

Cognitive Skills  Middle Low Mean 

Category 

.010 .445 .002 < .001 

Cognitive Skills  Low Mean Category .002 .231 .001 .066 

High Mean Category  d’ High Mean Low 

SD 

1.000 .179   

High Mean Category  d’ High Mean 

Medium SD 

1.837 .392 1.901 .334 

High Mean Category  d’ High Mean High 

SD 

1.080 .268 1.070 .313 

Middle High Mean Category  d’ Middle 

High Mean Low SD 

1.000 .390   

Middle High Mean Category  d’ Middle 

High Mean Medium SD 

2.728 .730 .652 < .001 

Middle High Mean Category  d’ Middle 

High Mean High SD 

2.108 .637 .494 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean High SD 

.477 .362 .118 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean Medium SD 

.971 .620 .188 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean Low SD 

1.000 .696   

Low Mean Category  d’ Low Mean Low 

SD 

1.000 .349   

Low Mean Category  d’ Low Mean 

Medium SD 

1.842 .722 .792 .020 

Low Mean Category  d’ Low Mean High 

SD 

1.219 .416 .419 .004 

Cognitive Skills  S1 1.000 .535   

Cognitive Skills  S2 .403 .735 .049 < .001 

Cognitive Skills  VZ1 .684 .808 .089 < .001 

Cognitive Skills  VZ2 .279 .782 .037 < .001 

Cognitive Skills  VZ3 1.119 .886 .141 <.001 
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Table 28.  Covariances SEM Model 2 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean ↔ Error Low 

Mean 

.018 .359 .009 .041 

Error High Mean ↔ Error Middle Low 
Mean 

.006 .241 .007 .379 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.083 .336 .021 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.041 .214 .015 .005 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-.017 -.145 .009 .060 

Error Low Mean High SD ↔ Error High 
Mean Low SD 

-.015 -.104 .010 .144 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-.041 -.204 .016 .011 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.042 -.218 .016 .009 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

.033 .171 .017 .048 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.026 .206 .009 .006 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Low SD 

-.040 -.191 .022 .072 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.030 .165 .015 .045 

Error Low Mean High SD ↔ Error Low 
Mean Low SD 

-.020 -.144 .013 .120 

Error S1 ↔ Error S2 45.568 .212 17.275 .008 
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Table 29.  Variances SEM Model 2 

 Estimate Standard Error p 

Cognitive Skills 366.298 93.582 < .001 

Error High Mean .005 .008 .531 

Error Middle High Mean .031 .013 .015 

Error Middle Low Mean .138 .036 < .001 

Error Low Mean .019 .011 .097 

Error High Mean High SD .077 .010 < .001 

Error Middle High Mean High SD .236 .039 < .001 

Error Middle Low Mean High SD .260 .028 < .001 

Error Low Mean High SD .141 .018 < .001 

Error High Mean Medium SD .094 .019 < .001 

Error Middle High Mean Medium SD .236 .057 < .001 

Error Middle Low Mean Medium SD .261 .039 < .001 

Error Low Mean Medium SD .062 .025 .014 

Error High Mean Low SD .154 .017 < .001 

Error Middle High Mean Low SD .202 .022 < .001 

Error Middle Low Mean Low SD .184 .035 < .001 

Error Low Mean Low SD .144 .017 < .001 

Error S1 912.461 95.130 < .001 

Error S2 50.417 5.818 < .001 

Error VZ1 91.228 11.728 < .001 

Error VZ2 18.104 2.210 < .001 

Error VZ3 125.442 22.161 <.001 
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Table 30.  Squared Multiple Correlations SEM Model 2 

Factor Estimate 

Low Mean Category .054 

Middle Low Mean Category .198 

Middle High Mean Category .142 

High Mean Category .037 

VZ3 .785 

VZ2 .611 

VZ1 .653 

S2 .541 

S1 .286 

d’ Low Mean Low SD .121 

d’ Middle Low Mean Low SD .484 

d’ Middle High Mean Low SD .152 

d’ High Mean Low SD .032 

d’ Low Mean Medium SD .521 

d’ Middle Low Mean Medium SD .385 

d’ Middle High Mean Medium SD .534 

d’ High Mean Medium SD .154 

d’ Low Mean High SD .173 

d’ Middle Low Mean High SD .131 

d’ Middle High Mean High SD .406 

d’ High Mean High SD .072 
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SEM Model 3:  Analysis of Response Bias in Experiment 1 

 

Table 31.  Regression Weights for SEM Model 3 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Cognitive Skills  High Mean Category .001 .151 < .001 .154 

Cognitive Skills  Middle High Mean 

Category 

.003 .229 .001 .010 

Cognitive Skills  Middle Low Mean 

Category 

.009 .367 .002 < .001 

Cognitive Skills  Low Mean Category .004 .412 .001 < .001 

High Mean Category  c High Mean Low 

SD 

1.000 .271   

High Mean Category  c High Mean 

Medium SD 

3.788 .696 1.265 .003 

High Mean Category  c High Mean High 

SD 

1.935 .409 .662 .003 

Middle High Mean Category  c Middle 

High Mean Low SD 

1.000 .530   

Middle High Mean Category  c Middle 

High Mean Medium SD 

1.744 .883 .302 < .001 

Middle High Mean Category  c Middle 

High Mean High SD 

1.150 .593 .165 < .001 

Middle Low Mean Category  c Middle 

Low Mean High SD 

.765 .629 .089 < .001 

Middle Low Mean Category  c Middle 

Low Mean Medium SD 

1.084 .827 .110 < .001 

Middle Low Mean Category  c Middle 

Low Mean Low SD 

1.000 .774   

Low Mean Category  c Low Mean Low 

SD 

1.000 .501   

Low Mean Category  c Low Mean 

Medium SD 

1.806 .695 .298 < .001 

Low Mean Category  c Low Mean High 

SD 

2.654 .796 .427 < .001 

Cognitive Skills  S1 1.000 .537   

Cognitive Skills  S2 .405 .742 .050 < .001 

Cognitive Skills  VZ1 .689 .816 .090 < .001 

Cognitive Skills  VZ2 .279 .785 .037 < .001 

Cognitive Skills  VZ3 1.104 .877 .140 <.001 
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Table 32.  Covariances SEM Model 3 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error High Mean ↔ Error Middle High 

Mean 

.016 .679 .006 .004 

Error High Mean ↔ Error Middle Low 
Mean 

.017 .466 .006 .007 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.077 .621 .017 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.021 .410 .006 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

.064 .807 .013 < .001 

Error Middle Low Mean Low SD ↔ Error 
Low Mean Low SD 

.018 .135 .012 .127 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

.009 .070 .016 .560 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

.024 .250 .016 .142 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

.012 .081 .014 .379 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

-.066 -.517 .015 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

.006 .065 .022 .794 

Error Low Mean High SD ↔ Error 
Middle Low Mean Low SD 

.048 .309 .018 .007 

Error Low Mean High SD ↔ Error 
Middle High Mean Medium SD 

.031 .283 .017 .070 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Low SD 

.070 .335 .018 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.049 .274 .016 .002 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.060 .330 .017 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.097 .477 .019 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.058 .341 .014 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Medium SD 

-.033 -.257 .013 .016 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

.029 .177 .014 .045 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

.067 .404 .015 < .001 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean High SD ↔ 
Error High Mean Medium SD 

-.003 -.018 .015 .859 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.022 -.187 .012 .059 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Medium SD 

.060 .496 .018 < .001 

Error Middle High Mean High SD ↔ 
Error Middle High Mean Low SD 

.050 .236 .020 .011 

Error High Mean High SD ↔ Error Low 
Mean Low SD 

-.019 -.153 .009 .029 

Error High Mean High SD ↔ Error 
Middle Low Mean Low SD 

-.041 -.294 .014 .004 

Error High Mean High SD ↔ Error Low 
Mean High SD 

.016 .111 .013 .231 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

.023 .175 .016 .141 

Error S1 ↔ Error S2 43.930 .207 17.191 .011 

 

Table 33.  Variances SEM Model 3 

 Estimate Standard Error p 

Cognitive Skills 368.167 93.977 < .001 

Error High Mean .007 .004 .076 

Error Middle High Mean .080 .023 < .001 

Error Middle Low Mean .193 .033 < .001 

Error Low Mean .033 .010 < .001 

Error High Mean High SD .132 .015 < .001 

Error Middle High Mean High SD .206 .026 < .001 

Error Middle Low Mean High SD .199 .023 < .001 

Error Low Mean High SD .162 .030 < .001 

Error High Mean Medium SD .108 .031 < .001 

Error Middle High Mean Medium SD .073 .034 .032 

Error Middle Low Mean Medium SD .121 .025 < .001 

Error Low Mean Medium SD .139 .020 < .001 

Error High Mean Low SD .089 .009 < .001 

Error Middle High Mean Low SD .217 .025 < .001 

Error Middle Low Mean Low SD .149 .023 < .001 

Error Low Mean Low SD .119 .013 < .001 

Error S1 910.593 95.170 < .001 

Error S2 49.399 5.763 < .001 

Error VZ1 87.897 11.589 < .001 

Error VZ2 17.868 2.205 < .001 

Error VZ3 135.224 22.745 <.001 
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Table 34.  Squared Multiple Correlations SEM Model 3 

Factor Estimate 

Low Mean Category .169 

Middle Low Mean Category .135 

Middle High Mean Category .052 

High Mean Category .023 

VZ3 .768 

VZ2 .616 

VZ1 .666 

S2 .550 

S1 .288 

c Low Mean Low SD .251 

c Middle Low Mean Low SD .599 

c Middle High Mean Low SD .281 

c High Mean Low SD .074 

c Low Mean Medium SD .483 

c Middle Low Mean Medium SD .683 

c Middle High Mean Medium SD .779 

c High Mean Medium SD .485 

c Low Mean High SD .634 

c Middle Low Mean High SD .396 

c Middle High Mean High SD .352 

c High Mean High SD .167 
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SEM Model 4:  Analysis of Response Time in Experiment 1 

 

Table 35.  Regression Weights for SEM Model 4 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Cognitive Skills  Low Mean Category -1.711 -.197 1.062 .107 

Cognitive Skills  Middle Low Mean 

Category 

.274 .037 1.076 .799 

Cognitive Skills  Middle High Mean 

Category 

1.278 .272 1.033 .216 

Cognitive Skills  High Mean Category -.865 -.192 .609 .156 

High Mean Category  Median RT High 

Mean Low SD 

1.000 .321   

High Mean Category  Median RT High 

Mean Medium SD 

1.190 .356 .473 .012 

High Mean Category  Median RT High 

Mean High SD 

1.439 .459 .680 .034 

Middle High Mean Category  Median RT 

Middle High Mean High SD 

1.756 .334 1.469 .232 

Middle High Mean Category  Median RT 

Middle High Mean Medium SD 

.441 .101 .534 .409 

Middle High Mean Category  Median RT 

Middle High Mean Low SD 

1.000 .265   

Middle Low Mean Category  Median RT 

Middle Low Mean High SD 

.211 .057 .240 .380 

Middle Low Mean Category  Median RT 

Middle Low Mean Medium SD 

2.913 .633 9.060 .748 

Middle Low Mean Category  Median RT 

Middle Low Mean Low SD 

1.000 .246   

Low Mean Category  Median RT Low 

Mean High SD 

.299 .099 .413 .469 

Low Mean Category  Median RT Low 

Mean Medium SD 

.574 .206 .713 .421 

Low Mean Category  Median RT Low 

Mean Low SD 

1.000 .506   

Cognitive Skills  S1 1.000 .529   

Cognitive Skills  S2 .408 .738 .051 < .001 

Cognitive Skills  VZ1 .696 .812 .092 < .001 

Cognitive Skills  VZ2 .283 .786 .038 < .001 

Cognitive Skills  VZ3 1.126 .882 .144 <.001 

 



 

 

138 

 

Table 36.  Covariances SEM Model 4 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean Low SD ↔ 
Error Low Mean Low SD 

92768.367 .601 14153.768 < .001 

Error Middle High Mean Low SD ↔ 
Error Low Mean Low SD 

56486.178 .624 8320.569 < .001 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

94537.975 .532 14401.405 < .001 

Error High Mean Low SD ↔ Error Low 
Mean Low SD 

47125.757 .666 6636.345 < .001 

Error High Mean Low SD ↔ Error 
Middle Low Mean Low SD 

65707.532 .474 11274.167 < .001 

Error High Mean Low SD ↔ Error 
Middle High Mean Low SD 

53357.225 .655 7078.387 < .001 

Error Low Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

8349.125 .034 13391.338 .533 

Error Low Mean Medium SD ↔ Error 
High Mean Low SD 

3804.189 .034 6466.286 .556 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

151.813 .001 10807.792 .989 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-7409.021 -.059 9038.325 .412 

Error Middle High Mean Medium SD ↔ 
Error Low Mean Low SD 

-3354.782 -.031 5836.086 .565 

Error Middle High Mean Medium SD ↔ 
Error High Mean Low SD 

-5426.136 -.056 5415.892 .316 

Error Middle High Mean Medium SD ↔ 
Error Low Mean Medium SD 

85193.630 .492 13678.345 < .001 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

145690.833 .763 19767.308 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

7205.453 .083 4292.993 .093 

Error High Mean Medium SD ↔ Error 
Low Mean Medium SD 

60902.694 .507 9832.917 < .001 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Medium SD 

88453.943 .666 13635.662 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

64351.159 .626 8748.292 < .001 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-14128.667 -.107 6565.593 .031 

Error Middle Low Mean High SD ↔ 
Error Low Mean Low SD 

-16323.571 -.114 7308.240 .026 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

127985.781 .506 19704.252 < .001 

Error Middle High Mean High SD ↔ -9318.983 -.039 12670.160 .462 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean Low SD 

Error Middle High Mean High SD ↔ 
Error Low Mean Medium SD 

10660.537 .054 9945.351 .284 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean Medium SD 

-1252.516 -.006 14180.316 .930 

Error Middle High Mean High SD ↔ 
Error High Mean Medium SD 

-1147.664 -.010 6423.704 .858 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

128828.818 .594 18184.732 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

142070.269 .630 19140.921 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Low SD 

-18008.942 -.138 7522.249 .017 

Error High Mean High SD ↔ Error 
Middle High Mean Medium SD 

6823.979 .075 4946.298 .168 

Error High Mean High SD ↔ Error Low 
Mean High SD 

53883.925 .460 9647.406 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

57010.912 .468 9977.768 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

63058.269 .603 9471.133 < .001 

Error S1 ↔ Error S2 46.731 .218 17.370 .007 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

194879.825 .872 24519.745 < .001 
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Table 37.  Variances SEM Model 4 

 Estimate Standard Error p 

Cognitive Skills 358.294 92.905 < .001 

Error High Mean 7040.753 4208.380 .094 

Error Middle High Mean 7306.425 6989.864 .296 

Error Middle Low Mean 19401.044 60873.508 .750 

Error Low Mean 26062.549 34299.277 .447 

Error High Mean High SD 56528.794 9253.562 < .001 

Error Middle High Mean High SD 193544.950 29398.257 < .001 

Error Middle Low Mean High SD 262855.529 25922.469 < .001 

Error Low Mean High SD 243151.401 24252.331 < .001 

Error High Mean Medium SD 71444.804 8813.683 < .001 

Error Middle High Mean Medium SD 147890.995 14883.422 < .001 

Error Middle Low Mean Medium SD 246784.887 513569.890 .631 

Error Low Mean Medium SD 202353.446 23242.866 < .001 

Error High Mean Low SD 63589.918 7360.809 < .001 

Error Middle High Mean Low SD 104262.144 12602.975 < .001 

Error Middle Low Mean Low SD 302611.692 67220.236 < .001 

Error Low Mean Low SD 78682.833 35189.990 .025 

Error S1 920.465 95.968 < .001 

Error S2 50.044 5.814 < .001 

Error VZ1 89.442 11.713 < .001 

Error VZ2 17.750 2.199 < .001 

Error VZ3 129.448 22.709 < .001 
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Table 38.  Squared Multiple Correlations SEM Model 4 

Factor Estimate 

Low Mean Category .039 

Middle Low Mean Category .001 

Middle High Mean Category .074 

High Mean Category .037 

VZ3 .778 

VZ2 .619 

VZ1 .660 

S2 .544 

S1 .280 

Median RT Low Mean Low SD .256 

Median RT Middle Low Mean Low SD .060 

Median RT Middle High Mean Low SD .070 

Median RT High Mean Low SD .103 

Median RT Low Mean Medium SD .042 

Median RT Middle Low Mean Medium SD .400 

Median RT Middle High Mean Medium SD .010 

Median RT High Mean Medium SD .126 

Median RT Low Mean High SD .010 

Median RT Middle Low Mean High SD .003 

Median RT Middle High Mean High SD .112 

Median RT High Mean High SD .211 
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SEM Model 5:  Analysis of Sensitivity Across Personality Traits in Experiment 1 

 

Table 39.  Regression Weights for SEM Model 5 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Conscientiousness Scale Sum  Low Mean 

Category 

.005 .207 .003 .037 

Conscientiousness Scale Sum  Middle 

Low Mean Category 

-.006 -.105 .005 .223 

Conscientiousness Scale Sum  Middle 

High Mean Category 

.004 .116 .003 .168 

Conscientiousness Scale Sum  High Mean 

Category 

.001 .126 .001 .549 

Emotional Stability Scale Sum  Low Mean 

Category 

-.002 -.088 .002 .331 

Emotional Stability Scale Sum  Middle 

Low Mean Category 

.006 .132 .004 .128 

Emotional Stability Scale Sum  Middle 

High Mean Category 

< .001 .009 .002 .912 

Emotional Stability Scale Sum  High 

Mean Category 

-.001 -.284 .001 .449 

Extraversion Scale Sum  Low Mean 

Category 

-.005 -.242 .002 .019 

Extraversion Scale Sum  Middle Low 

Mean Category 

-.005 -.111 .004 .200 

Extraversion Scale Sum  Middle High 

Mean Category 

-.002 -.102 .002 .224 

Extraversion Scale Sum  High Mean 

Category 

-.001 -.328 .001 .440 

High Mean Category  d’ High Mean Low 

SD 

1.000 .074   

High Mean Category  d’ High Mean 

Medium SD 

3.528 .314 4.465 .430 

High Mean Category  d’ High Mean High 

SD 

3.694 .381 4.629 .425 

Middle High Mean Category  d’ Middle 

High Mean High SD 

1.956 .626 .409 < .001 

Middle High Mean Category  d’ Middle 

High Mean Medium SD 

2.677 .779 .562 < .001 

Middle High Mean Category  d’ Middle 

High Mean Low SD 

1.000 .415   

Middle Low Mean Category  d’ Middle 

Low Mean High SD 

.627 .428 .137 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean Medium SD 

1.123 .654 .209 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  d’ Middle 

Low Mean Low SD 

1.000 .636   

Low Mean Category  d’ Low Mean High 

SD 

1.302 .512 .400 .001 

Low Mean Category  d’ Low Mean 

Medium SD 

1.371 .620 .419 .001 

Low Mean Category  d’ Low Mean Low 

SD 

1.000 .402   
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Table 40.  Covariances SEM Model 5 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean ↔ Error Low 
Mean 

.027 .010 .472 .005 

Error High Mean ↔ Error Middle Low 
Mean 

.004 .005 .373 .449 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.052 .015 .695 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.012 .005 .388 .013 

Error High Mean ↔ Error Middle High 
Mean 

.004 .005 .715 .429 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.079 .021 .316 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.034 .014 .193 .016 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-.018 .009 -.160 .039 

Error Low Mean High SD ↔ Error High 
Mean Low SD 

-.014 .010 -.101 .165 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-.041 .015 -.212 .007 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.042 .016 -.230 .007 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

.028 .018 .136 .120 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.020 .009 .169 .027 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Low SD 

-.063 .025 -.309 .012 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.022 .015 .126 .136 

Error Low Mean High SD ↔ Error Low 
Mean Low SD 

-.030 .012 -.231 .011 
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Table 41.  Variances SEM Model 5 

 Estimate Standard Error p 

Conscientiousness Scale Sum 41.729 4.122 < .001 

Emotional Stability Scale Sum 64.181 6.339 < .001 

Extraversion Scale Sum 75.948 7.502 < .001 

Error High Mean .001 .002 .690 

Error Middle High Mean .041 .015 .008 

Error Middle Low Mean .137 .036 < .001 

Error Low Mean .024 .012 .043 

Error High Mean High SD .071 .010 < .001 

Error Middle High Mean High SD .250 .033 < .001 

Error Middle Low Mean High SD .251 .027 < .001 

Error Low Mean High SD .127 .018 < .001 

Error High Mean Medium SD .100 .012 < .001 

Error Middle High Mean Medium SD .195 .045 < .001 

Error Middle Low Mean Medium SD .241 .038 < .001 

Error Low Mean Medium SD .080 .014 < .001 

Error High Mean Low SD .158 .016 < .001 

Error Middle High Mean Low SD .203 .022 < .001 

Error Middle Low Mean Low SD .211 .033 < .001 

Error Low Mean Low SD .138 .017 < .001 

 

Table 42.  Squared Multiple Correlations SEM Model 5 

Factor Estimate 

Low Mean Category .110 

Middle Low Mean Category .041 

Middle High Mean Category .024 

High Mean Category .204 

d’ Low Mean Low SD .162 

d’ Middle Low Mean Low SD .405 

d’ Middle High Mean Low SD .172 

d’ High Mean Low SD .006 

d’ Low Mean Medium SD .384 

d’ Middle Low Mean Medium SD .428 

d’ Middle High Mean Medium SD .607 

d’ High Mean Medium SD .098 

d’ Low Mean High SD .263 

d’ Middle Low Mean High SD .183 

d’ Middle High Mean High SD .392 

d’ High Mean High SD .145 
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SEM Model 6:  Analysis of Response Bias Across Personality Traits in Experiment 1 

 

Table 43.  Regression Weights for SEM Model 6 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Extraversion  High Mean Category < .001 -.051 .001 .579 

Extraversion  Middle High Mean Category -.001 -.044 .002 .557 

Extraversion  Middle Low Mean Category -.002 -.047 .004 .536 

Extraversion  Low Mean Category -.002 -.067 .002 .392 

Emotional Stability  High Mean Category -.001 -.133 .001 .176 

Emotional Stability  Middle High Mean 

Category 

< .001 .001 .003 .994 

Emotional Stability  Middle Low Mean 

Category 

.007 .130 .004 .088 

Emotional Stability  Low Mean Category .004 .148 .002 .067 

Conscientiousness  High Mean Category < .001 .011 .001 .906 

Conscientiousness  Middle High Mean 

Category 

.001 .033 .003 .652 

Conscientiousness  Middle Low Mean 

Category 

.001 .007 .005 .923 

Conscientiousness  Low Mean Category < .001 .009 .002 .904 

High Mean Category  c High Mean Low 

SD 

1.000 .265   

High Mean Category  c High Mean 

Medium SD 

3.704 .667 1.225 .002 

High Mean Category  c High Mean High 

SD 

2.068 .428 .708 .003 

Middle High Mean Category  c Middle 

High Mean Low SD 

1.000 .525   

Middle High Mean Category  c Middle 

High Mean Medium SD 

1.763 .887 .313 < .001 

Middle High Mean Category  c Middle 

High Mean High SD 

1.155 .590 .168 < .001 

Middle Low Mean Category  c Middle 

Low Mean High SD 

.781 .624 .092 < .001 

Middle Low Mean Category  c Middle 

Low Mean Medium SD 

1.148 .851 .123 < .001 

Middle Low Mean Category  c Middle 

Low Mean Low SD 

1.000 .749   

Low Mean Category  c Low Mean Low 

SD 

1.000 .497   

Low Mean Category  c Low Mean 

Medium SD 

1.873 .718 .314 < .001 

Low Mean Category  c Low Mean High 

SD 

2.598 .778 .428 < .001 
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Table 44.  Covariances SEM Model 6 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error High Mean ↔ Error Middle High 
Mean 

.016 .690 .006 .004 

Error High Mean ↔ Error Middle Low 
Mean 

.018 .479 .006 .006 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.082 .635 .018 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.024 .420 .007 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

.073 .821 .015 < .001 

Error Middle Low Mean Low SD ↔ Error 
Middle Low Mean Low SD 

.023 .167 .012 .051 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

-.002 -.021 .017 .887 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

.019 .220 .017 .261 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

.013 .080 .014 .368 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

-.062 -.452 .015 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

.008 .088 .022 .718 

Error Low Mean High SD ↔ Error 
Middle Low Mean Low SD 

.061 .364 .018 < .001 

Error Low Mean High SD ↔ Error 
Middle High Mean Medium SD 

.036 .325 .017 .035 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Low SD 

.070 .338 .018 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.051 .273 .016 .002 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.065 .341 .017 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.098 .484 .019 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.056 .332 .014 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Medium SD 

-.036 -.314 .014 .010 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

.027 .170 .015 .061 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

.066 .401 .015 < .001 

Error Middle Low Mean High SD ↔ < .001 .001 .015 .996 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error High Mean Medium SD 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.024 -.213 .012 .052 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Medium SD 

.061 .520 .018 < .001 

Error Middle High Mean High SD ↔ 
Error Middle High Mean Low SD 

.049 .233 .020 .013 

Error High Mean High SD ↔ Error Low 
Mean Low SD 

-.020 -.159 .009 .025 

Error High Mean High SD ↔ Error 
Middle Low Mean Low SD 

-.045 -.312 .015 .002 

Error High Mean High SD ↔ Error Low 
Mean High SD 

.016 .105 .014 .246 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

.028 .199 .016 .076 

 

Table 45.  Variances SEM Model 6 

 Estimate Standard Error p 

Extraversion Scale Sum 75.948 7.502 < .001 

Emotional Stability Scale Sum 64.181 6.339 < .001 

Conscientiousness Scale Sum 41.729 4.122 < .001 

Error High Mean .007 .004 .080 

Error Middle High Mean .082 .024 < .001 

Error Middle Low Mean .204 .036 < .001 

Error Low Mean .038 .012 < .001 

Error High Mean High SD .129 .015 < .001 

Error Middle High Mean High SD .206 .026 < .001 

Error Middle Low Mean High SD .199 .023 < .001 

Error Low Mean High SD .174 .031 < .001 

Error High Mean Medium SD .116 .029 < .001 

Error Middle High Mean Medium SD .070 .035 .048 

Error Middle Low Mean Medium SD .104 .026 < .001 

Error Low Mean Medium SD .130 .021 < .001 

Error High Mean Low SD .090 .009 < .001 

Error Middle High Mean Low SD .218 .025 < .001 

Error Middle Low Mean Low SD .163 .024 < .001 

Error Low Mean Low SD .120 .013 < .001 
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Table 46.  Squared Multiple Correlations SEM Model 6 

Factor Estimate 

Low Mean Category .027 

Middle Low Mean Category .019 

Middle High Mean Category .003 

High Mean Category .020 

c Low Mean Low SD .247 

c Middle Low Mean Low SD .561 

c Middle High Mean Low SD .275 

c High Mean Low SD .070 

c Low Mean Medium SD .516 

c Middle Low Mean Medium SD .725 

c Middle High Mean Medium SD .786 

c High Mean Medium SD .445 

c Low Mean High SD .605 

c Middle Low Mean High SD .390 

c Middle High Mean High SD .348 

c High Mean High SD .183 
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SEM Model 7:  Analysis of Response Time Across Personality Traits in Experiment 1 

 

Table 47.  Regression Weights for SEM Model 7 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Extraversion Scale Sum  High Mean 

Category 

-4.606 -.335 1.595 .004 

Extraversion Scale Sum  Middle High 

Mean Category 

-10.433 -.606 2.219 < .001 

Extraversion Scale Sum  Middle Low 

Mean Category 

-12.138 -.383 4.000 .002 

Extraversion Scale Sum  Low Mean 

Category 

-8.785 -.417 2.284 < .001 

Emotional Stability Scale Sum  High 

Mean Category 

3.367 .225 1.610 .036 

Emotional Stability Scale Sum  Middle 

High Mean Category 

6.408 .342 2.134 .003 

Emotional Stability Scale Sum  Middle 

Low Mean Category 

7.037 .204 4.088 .085 

Emotional Stability Scale Sum  Low Mean 

Category 

3.907 .170 2.425 .107 

Conscientiousness Scale Sum  Low Mean 

Category 

4.964 .174 3.016 .100 

Conscientiousness Scale Sum  Middle 

Low Mean Category 

2.113 .049 4.962 .670 

Conscientiousness Scale Sum  Middle 

High Mean Category 

5.777 .249 2.576 .025 

Conscientiousness Scale Sum  High Mean 

Category 

5.114 .276 2.058 .013 

High Mean Category  Median RT High 

Mean Low SD 

1.000 .448   

High Mean Category  Median RT High 

Mean Medium SD 

1.042 .432 .292 < .001 

High Mean Category  Median RT High 

Mean High SD 

.948 .422 .276 < .001 

Middle High Mean Category  Median RT 

Middle High Mean High SD 

.772 .248 .249 .002 

Middle High Mean Category  Median RT 

Middle High Mean Medium SD 

.979 .376 .246 < .001 

Middle High Mean Category  Median RT 

Middle High Mean Low SD 

1.000 .441   

Middle Low Mean Category  Median RT 

Middle Low Mean High SD 

.286 .155 .181 .114 

Middle Low Mean Category  Median RT 

Middle Low Mean Medium SD 

.720 .309 .314 .022 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  Median RT 

Middle Low Mean Low SD 

1.000 .488   

Low Mean Category  Median RT Low 

Mean High SD 

.406 .151 .268 .130 

Low Mean Category  Median RT Low 

Mean Medium SD 

.516 .205 .286 .071 

Low Mean Category  Median RT Low 

Mean Low SD 

1.000 .563   

 

Table 48.  Covariances SEM Model 7 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean Low SD ↔ 
Error Low Mean Low SD 

80853.735 .607 13199.861 < .001 

Error Middle High Mean Low SD ↔ 
Error Low Mean Low SD 

47646.386 .579 7606.855 < .001 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

81467.508 .540 13299.474 < .001 

Error High Mean Low SD ↔ Error Low 
Mean Low SD 

42784.967 .665 6217.472 < .001 

Error High Mean Low SD ↔ Error 
Middle Low Mean Low SD 

59142.212 .502 10613.426 < .001 

Error High Mean Low SD ↔ Error 
Middle High Mean Low SD 

48898.179 .672 6575.972 < .001 

Error Low Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

2274.723 .010 12965.027 .861 

Error Low Mean Medium SD ↔ Error 
High Mean Low SD 

4498.287 .042 6253.127 .472 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-4005.860 -.024 10420.140 .701 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-7423.043 -.051 8726.644 .395 

Error Middle High Mean Medium SD ↔ 
Error Low Mean Low SD 

-2584.636 -.026 5703.030 .650 

Error Middle High Mean Medium SD ↔ 
Error High Mean Low SD 

-1382.660 -.016 5288.766 .794 

Error Middle High Mean Medium SD ↔ 
Error Low Mean Medium SD 

84214.949 .514 13312.331 < .001 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

140403.396 .633 19170.168 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

10646.694 .134 4266.076 .013 

Error High Mean Medium SD ↔ Error 60039.117 .509 9709.681 < .001 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Low Mean Medium SD 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Medium SD 

85297.883 .534 13422.234 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

60523.400 .642 8320.699 < .001 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-14245.276 -.112 6433.216 .027 

Error Middle Low Mean High SD ↔ 
Error Low Mean Low SD 

-13600.226 -.100 7170.461 .058 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

122777.062 .497 19320.601 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean Low SD 

-7008.154 -.031 12023.558 .560 

Error Middle High Mean High SD ↔ 
Error Low Mean Medium SD 

14453.744 .071 9472.028 .127 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean Medium SD 

5176.932 .019 12793.323 .686 

Error Middle High Mean High SD ↔ 
Error High Mean Medium SD 

-234.870 -.002 5929.519 .968 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

123403.831 .559 17761.843 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

135838.962 .596 18671.809 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Low SD 

-15704.427 -.131 7350.055 .033 

Error High Mean High SD ↔ Error 
Middle High Mean Medium SD 

4158.897 .047 4541.070 .360 

Error High Mean High SD ↔ Error Low 
Mean High SD 

52019.559 .437 9453.912 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

53466.507 .435 9723.525 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

59175.545 .538 9142.405 < .001 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

194622.662 .701 24503.704 < .001 
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Table 49.  Variances SEM Model 7 

 Estimate Standard Error p 

Extraversion Scale Sum 75.948 7.502 < .001 

Emotional Stability Scale Sum 64.181 6.339 < .001 

Conscientiousness Scale Sum 41.729 4.122 < .001 

Error High Mean 10884.563 4321.525 .012 

Error Middle High Mean 10200.800 5438.695 .061 

Error Middle Low Mean 61814.086 34974.639 .077 

Error Low Mean 25909.625 18124.614 .153 

Error High Mean High SD 59282.592 6895.131 < .001 

Error Middle High Mean High SD 203786.943 20743.908 < .001 

Error Middle Low Mean High SD 254568.750 25583.094 < .001 

Error Low Mean High SD 239324.108 23952.575 < .001 

Error High Mean Medium SD 67887.956 8147.535 < .001 

Error Middle High Mean Medium SD 130989.067 14347.045 < .001 

Error Middle Low Mean Medium SD 375663.966 42244.236 < .001 

Error Low Mean Medium SD 204978.579 21053.192 < .001 

Error High Mean Low SD 56894.152 7098.329 < .001 

Error Middle High Mean Low SD 93195.562 10841.150 < .001 

Error Middle Low Mean Low SD 243830.232 42388.540 < .001 

Error Low Mean Low SD 72747.179 19614.242 < .001 

 

Table 50.  Squared Multiple Correlations SEM Model 7 

Factor Estimate 

Low Mean Category .233 

Middle Low Mean Category .191 

Middle High Mean Category .547 

High Mean Category .240 

Median RT Low Mean Low SD .317 

Median RT Middle Low Mean Low SD .239 

Median RT Middle High Mean Low SD .194 

Median RT High Mean Low SD .201 

Median RT Low Mean Medium SD .042 

Median RT Middle Low Mean Medium SD .095 

Median RT Middle High Mean Medium SD .141 

Median RT High Mean Medium SD .186 

Median RT Low Mean High SD .023 

Median RT Middle Low Mean High SD .024 

Median RT Middle High Mean High SD .062 

Median RT High Mean High SD .178 
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SEM Model 8:  SEM Analysis of Extraversion Interacting with Cognitive Skills for d’ in 

Experiment 1 

 

Table 51.  Regression Weights for SEM Model 8 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Cognitive Skills x Extraversion  Low 

Mean Category 

< .001 -.044 < .001 .630 

Cognitive Skills x Extraversion  Middle 

Low Mean Category 

< .001 -.045 < .001 .585 

Cognitive Skills x Extraversion  Middle 

High Mean Category 

< .001 -.066 < .001 .414 

Cognitive Skills x Extraversion  High 

Mean Category 

< .001 -.071 < .001 .646 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.002 .193 .001 .059 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.009 .399 .002 < .001 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.004 .327 .001 < .001 

Cognitive Skills (Mean Centered)  High 

Mean Category 

< .001 .151 < .001 .452 

Extraversion (Mean Centered)  Low Mean 

Category 

-.004 -.198 .002 .054 

Extraversion (Mean Centered)  Middle 

Low Mean Category 

-.002 -.042 .004 .606 

Extraversion (Mean Centered)  Middle 

High Mean Category 

-.001 -.041 .002 .610 

Extraversion (Mean Centered)  High Mean 

Category 

-.002 -.331 .002 .341 

High Mean Category  d’ High Mean Low 

SD 

1.000 .100   

High Mean Category  d’ High Mean 

Medium SD 

2.089 .248 2.192 .340 

High Mean Category  d’ High Mean High 

SD 

3.209 .443 3.219 .319 

Middle High Mean Category  d’ Middle 

High Mean Low SD 

1.869 .630 .379 < .001 

Middle High Mean Category  d’ Middle 

High Mean Medium SD 

2.470 .759 .501 < .001 

Middle High Mean Category  d’ Middle 

High Mean High SD 

1.000 .435   

Middle Low Mean Category  d’ Middle 

Low Mean High SD 

.582 .426 .125 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  d’ Middle 

Low Mean Medium SD 

.977 .611 .175 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean Low SD 

1.000 .683   

Low Mean Category  d’ Low Mean High 

SD 

1.275 .477 .413 .002 

Low Mean Category  d’ Low Mean 

Medium SD 

1.514 .652 .510 .003 

Low Mean Category  d’ Low Mean Low 

SD 

1.000 .382   
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Table 52.  Covariances SEM Model 8 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean ↔ Error Low 
Mean 

.022 .396 .009 .014 

Error High Mean ↔ Error Middle Low 
Mean 

.003 .253 .004 .407 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.049 .645 .014 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.011 .368 .005 .020 

Error High Mean ↔ Error Middle High 
Mean 

.005 .687 .005 .326 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.078 .314 .021 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.037 .202 .014 .010 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-.017 -.147 .009 .051 

Error Low Mean High SD ↔ Error High 
Mean Low SD 

-.015 -.105 .010 .144 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-.039 -.194 .016 .011 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.043 -.222 .016 .006 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

.020 .102 .018 .267 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.019 .163 .009 .042 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Low SD 

-.069 -.348 .024 .004 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.024 .131 .015 .115 

Error Low Mean High SD ↔ Error Low 
Mean Low SD 

-.026 -.194 .012 .031 
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Table 53.  Variances SEM Model 8 

 Estimate Standard Error p 

Cognitive Skills x Extraversion 23403.643 2311.647 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Extraversion (Mean Centered) 75.948 7.502 < .001 

Error High Mean .001 .003 .612 

Error Middle High Mean .041 .015 .006 

Error Middle Low Mean .138 .035 < .001 

Error Low Mean .022 .012 .056 

Error High Mean High SD .066 .012 < .001 

Error Middle High Mean High SD .247 .032 < .001 

Error Middle Low Mean High SD .251 .027 < .001 

Error Low Mean High SD .132 .018 < .001 

Error High Mean Medium SD .104 .011 < .001 

Error Middle High Mean Medium SD .209 .043 < .001 

Error Middle Low Mean Medium SD .264 .036 < .001 

Error Low Mean Medium SD .074 .016 < .001 

Error High Mean Low SD .157 .016 < .001 

Error Middle High Mean Low SD .199 .022 < .001 

Error Middle Low Mean Low SD .188 .033 < .001 

Error Low Mean Low SD .140 .017 <.001 

 

Table 54.  Squared Multiple Correlations SEM Model 8 

Factor Estimate 

Low Mean Category .079 

Middle Low Mean Category .163 

Middle High Mean Category .113 

High Mean Category .138 

d’ Low Mean Low SD .146 

d’ Middle Low Mean Low SD .467 

d’ Middle High Mean Low SD .189 

d’ High Mean Low SD .010 

d’ Low Mean Medium SD .425 

d’ Middle Low Mean Medium SD .373 

d’ Middle High Mean Medium SD .576 

d’ High Mean Medium SD .062 

d’ Low Mean High SD .227 

d’ Middle Low Mean High SD .182 

d’ Middle High Mean High SD .397 

d’ High Mean High SD .196 
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SEM Model 9:  SEM Model Analysis of Cognitive Skills Interacting with Extraversion for 

Index c in Experiment 1 

 

Table 55.  Regression Weights for SEM Model 9 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Extraversion (Mean Centered)  High Mean 

Category 

-.001 -.058 .001 .524 

Extraversion (Mean Centered)  Middle 

High Mean Category 

< .001 -.009 .002 .898 

Extraversion (Mean Centered)  Middle 

Low Mean Category 

.001 .026 .004 .720 

Extraversion (Mean Centered)  Low Mean 

Category 

< .001 .005 .002 .942 

Cognitive Skills (Mean Centered)  High 

Mean Category 

.001 .133 < .001 .175 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.003 .212 .001 .008 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.009 .345 .002 < .001 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.004 .387 .001 < .001 

Cognitive Skills x Extraversion  High 

Mean Category 

< .001 .027 < .001 .765 

Cognitive Skills x Extraversion  Middle 

High Mean Category 

< .001 -.036 < .001 .622 

Cognitive Skills x Extraversion  Middle 

Low Mean Category 

< .001 -.047 < .001 .518 

Cognitive Skills x Extraversion  Low 

Mean Category 

< .001 .039 < .001 .604 

High Mean Category  c High Mean Low 

SD 

1.000 .272   

High Mean Category  c High Mean 

Medium SD 

3.688 .682 1.218 .002 

High Mean Category  c High Mean High 

SD 

1.962 .417 .668 .003 

Middle High Mean Category  c Middle 

High Mean Low SD 

1.000 .531   

Middle High Mean Category  c Middle 

High Mean Medium SD 

1.739 .883 .300 < .001 

Middle High Mean Category  c Middle 

High Mean High SD 

1.150 .594 .165 < .001 

Middle Low Mean Category  c Middle 

Low Mean High SD 

.762 .628 .089 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  c Middle 

Low Mean Medium SD 

1.081 .826 .110 < .001 

Middle Low Mean Category  c Middle 

Low Mean Low SD 

1.000 .775   

Low Mean Category  c Low Mean Low 

SD 

1.000 .500   

Low Mean Category  c Low Mean 

Medium SD 

1.812 .696 .299 < .001 

Low Mean Category  c Low Mean High 

SD 

2.659 .797 .428 < .001 

 

Table 56.  Covariances SEM Model 9 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error High Mean ↔ Error Middle High 

Mean 

.016 .682 .006 .004 

Error High Mean ↔ Error Middle Low 
Mean 

.018 .475 .006 .006 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.078 .622 .017 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.022 .417 .006 < .001 

Error Middle Low Mean ↔ Error Low 

Mean 

.066 .815 .014 < .001 

Error Middle Low Mean Low SD ↔ Error 
Low Mean Low SD 

.018 .133 .012 .134 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

.010 .075 .016 .535 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

.023 .248 .016 .143 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

.013 .086 .014 .344 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

-.065 -.505 .015 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

.007 .079 .022 .743 

Error Low Mean High SD ↔ Error 
Middle Low Mean Low SD 

.047 .306 .018 .008 

Error Low Mean High SD ↔ Error 
Middle High Mean Medium SD 

.030 .281 .017 .072 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Low SD 

.070 .335 .018 < .001 

Error Middle Low Mean High SD ↔ .048 .269 .016 .003 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Low Mean High SD 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.059 .325 .017 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.097 .479 .019 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.058 .342 .014 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Medium SD 

-.033 -.261 .014 .015 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

.029 .176 .014 .048 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

.066 .402 .015 < .001 

Error Middle Low Mean High SD ↔ 
Error High Mean Medium SD 

-.003 -.021 .015 .833 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.023 -.189 .012 .055 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Medium SD 

.060 .500 .018 < .001 

Error Middle High Mean High SD ↔ 
Error Middle High Mean Low SD 

.050 .235 .020 .011 

Error High Mean High SD ↔ Error Low 
Mean Low SD 

-.019 -.150 .009 .033 

Error High Mean High SD ↔ Error 
Middle .Low Mean Low SD 

-.042 -.298 .014 .004 

Error High Mean High SD ↔ Error Low 
Mean High SD 

.017 .116 .013 .212 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

.023 .174 .016 .136 
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Table 57.  Variances SEM Model 9 

 Estimate Standard Error p 

Extraversion (Mean Centered) 75.948 7.502 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Cognitive Skills x Extraversion  23403.643 2311.647 < .001 

Error High Mean .007 .004 .075 

Error Middle High Mean .081 .023 < .001 

Error Middle Low Mean .196 .034 < .001 

Error Low Mean .034 .010 < .001 

Error High Mean High SD .131 .015 < .001 

Error Middle High Mean High SD .206 .026 < .001 

Error Middle Low Mean High SD .200 .023 < .001 

Error Low Mean High SD .161 .030 < .001 

Error High Mean Medium SD .112 .030 < .001 

Error Middle High Mean Medium SD .073 .034 .031 

Error Middle Low Mean Medium SD .122 .024 < .001 

Error Low Mean Medium SD .139 .019 < .001 

Error High Mean Low SD .089 .009 < .001 

Error Middle High Mean Low SD .217 .025 < .001 

Error Middle Low Mean Low SD .148 .023 < .001 

Error Low Mean Low SD .119 .013 <.001 

 

Table 58.  Squared Multiple Correlations SEM Model 9 

Factor Estimate 

Low Mean Category .152 

Middle Low Mean Category .122 

Middle High Mean Category .046 

High Mean Category .022 

c Low Mean Low SD .250 

c Middle Low Mean Low SD .601 

c Middle High Mean Low SD .282 

c High Mean Low SD .074 

c Low Mean Medium SD .484 

c Middle Low Mean Medium SD .682 

c Middle High Mean Medium SD .779 

c High Mean Medium SD .465 

c Low Mean High SD .635 

c Middle Low Mean High SD .394 

c Middle High Mean High SD .353 

c High Mean High SD .173 
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SEM Model 10:  Path Analysis of Cognitive Skills Interacting with Extraversion for 

Response Time in Experiment 1 

 

Table 59.  Regression Weights for SEM Model 10 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Extraversion (Mean Centered)  High Mean 

Category 

-1.598 -.144 .763 .036 

Extraversion (Mean Centered)  Middle 

High Mean Category 

-2.621 -.181 .993 .008 

Extraversion (Mean Centered)  Middle 

Low Mean Category 

-2.445 -.162 1.037 .018 

Extraversion (Mean Centered)  Low Mean 

Category 

-1.830 -.175 .719 .011 

Cognitive Skills (Mean Centered)  High 

Mean Category 

-.426 -.079 .370 .250 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.159 .023 .481 .741 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.174 .024 .502 .730 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.089 .018 .348 .799 

Cognitive Skills x Extraversion  Low 

Mean Category 

.021 .035 .041 .611 

Cognitive Skills x Extraversion  Middle 

Low Mean Category 

.022 .026 .059 .706 

Cognitive Skills x Extraversion  Middle 

High Mean Category 

.029 .035 .057 .608 

Cognitive Skills x Extraversion  High 

Mean Category 

.005 .008 .043 .907 
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Table 60.  Covariances SEM Model 10 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle High Mean ↔ Error Low 
Mean 

11054.298 .995 1094.872 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

11389.063 .981 1136.048 < .001 

Error Middle High Mean ↔ Error Middle 
Low Mean 

15589.273 .973 1561.486 < .001 

Error High Mean ↔ Error Low Mean 6982.046 .817 770.898 < .001 

Error High Mean ↔ Error Middle Low 

Mean 

10036.867 .814 1110.150 < .001 

Error High Mean ↔ Error Middle High 
Mean 

9986.598 .847 1079.507 < .001 

 

Table 61.  Variances SEM Model 10 

 Estimate Standard Error p 

Extraversion (Mean Centered) 75.948 7.502 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 <.001 

Cognitive Skills x Extraversion 23403.643 2311.647 <.001 

Error High Mean 9072.846 896.152 <.001 

Error Middle High Mean 15338.235 1515.003 <.001 

Error Middle Low Mean 16743.360 1653.791 < .001 

Error Low Mean 8054.722 795.589 <.001 

 

Table 62.  Squared Multiple Correlations SEM Model 10 

Factor Estimate 

Low Mean Category .032 

Middle Low Mean Category .028 

Middle High Mean Category .035 

High Mean Category .027 
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SEM Model 11:  SEM Analysis of Emotional Stability Interacting with Cognitive Skills for 

d’ in Experiment 1 

 

Table 63.  Regression Weights for SEM Model 11 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Cognitive Skills x Emotional Stability  

Low Mean Category 

< .001 -.088 < .001 .344 

Cognitive Skills x Emotional Stability  

Middle Low Mean Category 

< .001 -.142 < .001 .077 

Cognitive Skills x Emotional Stability  

Middle High Mean Category 

< .001 -.108 < .001 .186 

Cognitive Skills x Emotional Stability  

High Mean Category 

< .001 .347 < .001 .700 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.002 .211 .001 .049 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.010 .416 .002 < .001 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.004 .339 .001 < .001 

Cognitive Skills (Mean Centered)  High 

Mean Category 

< .001 .149 < .001 .713 

Emotional Stability (Mean Centered)  Low 

Mean Category 

-.001 -.060 .002 .508 

Emotional Stability (Mean Centered)  

Middle Low Mean Category 

.008 .145 .004 .070 

Emotional Stability (Mean Centered)  

Middle High Mean Category 

.001 .050 .002 .530 

Emotional Stability (Mean Centered)  

High Mean Category 

-.001 -.295 .001 .702 

High Mean Category  d’ High Mean Low 

SD 

1.000 .034   

High Mean Category  d’ High Mean 

Medium SD 

6.463 .262 16.791 .700 

High Mean Category  d’ High Mean High 

SD 

9.728 .457 25.107 .698 

Middle High Mean Category  d’ Middle 

High Mean High SD 

1.872 .632 .378 < .001 

Middle High Mean Category  d’ Middle 

High Mean Medium SD 

2.458 .756 .497 < .001 

Middle High Mean Category  d’ Middle 

High Mean Low SD 

1.000 .435   

Middle Low Mean Category  d’ Middle 

Low Mean High SD 

.568 .425 .118 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  d’ Middle 

Low Mean Medium SD 

.964 .611 .162 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean Low SD 

1.000 .695   

Low Mean Category  d’ Low Mean High 

SD 

1.322 .466 .437 .002 

Low Mean Category  d’ Low Mean 

Medium SD 

1.677 .681 .598 .005 

Low Mean Category  d’ Low Mean Low 

SD 

1.000 .361   
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Table 64.  Covariances SEM Model 11 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean ↔ Error Low 
Mean 

.020 .391 .009 .017 

Error High Mean ↔ Error Middle Low 
Mean 

.002 .382 .004 .701 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.048 .643 .014 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.010 .357 .005 .025 

Error High Mean ↔ Error Middle High 
Mean 

.002 .777 .005 .699 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.077 .310 .021 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.037 .204 .014 .009 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-.017 -.145 .009 .052 

Error Low Mean High SD ↔ Error High 
Mean Low SD 

-.014 -.097 .010 .170 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-.040 -.195 .016 .010 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.041 -.210 .016 .008 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

.021 .110 .018 .231 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.020 .171 .009 .031 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Low SD 

-.069 -.350 .024 .004 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.024 .132 .015 .109 

Error Low Mean High SD ↔ Error Low 
Mean Low SD 

-.024 -.171 .012 .052 
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Table 65.  Variances SEM Model 11 

 Estimate Standard Error p 

Cognitive Skills x Emotional Stability 18303.108 1807.852 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Emotional Stability (Mean Centered) 64.181 6.339 < .001 

Error High Mean < .001 .001 .847 

Error Middle High Mean .041 .015 .006 

Error Middle Low Mean .135 .033 < .001 

Error Low Mean .020 .011 .069 

Error High Mean High SD .066 .011 < .001 

Error Middle High Mean High SD .246 .032 < .001 

Error Middle Low Mean High SD .252 .027 < .001 

Error Low Mean High SD .135 .018 < .001 

Error High Mean Medium SD .104 .011 < .001 

Error Middle High Mean Medium SD .211 .043 < .001 

Error Middle Low Mean Medium SD .268 .035 < .001 

Error Low Mean Medium SD .069 .018 < .001 

Error High Mean Low SD .159 .016 < .001 

Error Middle High Mean Low SD .200 .022 < .001 

Error Middle Low Mean Low SD .184 .032 < .001 

Error Low Mean Low SD .142 .016 < .001 

 

Table 66.  Squared Multiple Correlations SEM Model 11 

Factor Estimate 

Low Mean Category .056 

Middle Low Mean Category .214 

Middle High Mean Category .129 

High Mean Category .230 

d’ Low Mean Low SD .130 

d’ Middle Low Mean Low SD .484 

d’ Middle High Mean Low SD .190 

d’ High Mean Low SD .001 

d’ Low Mean Medium SD .464 

d’ Middle Low Mean Medium SD .374 

d’ Middle High Mean Medium SD .572 

d’ High Mean Medium SD .069 

d’ Low Mean High SD .217 

d’ Middle Low Mean High SD .181 

d’ Middle High Mean High SD .399 

d’ High Mean High SD .209 
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SEM Model 12:  SEM Model Analysis of Cognitive Skills Interacting with Emotional 

Stability for Index c in Experiment 1 

 

Table 67.  Regression Weights for SEM Model 12 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Emotional Stability (Mean Centered)  

High Mean Category 

-.001 -.127 .001 .186 

Emotional Stability (Mean Centered)  

Middle High Mean Category 

.001 .037 .003 .614 

Emotional Stability (Mean Centered)  

Middle Low Mean Category 

.011 .177 .004 .013 

Emotional Stability (Mean Centered)  Low 

Mean Category 

.005 .183 .002 .017 

Cognitive Skills (Mean Centered)  High 

Mean Category 

.001 .130 < .001 .182 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.004 .223 .001 .005 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.010 .361 .002 < .001 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.005 .400 .001 < .001 

Cognitive Skills x Emotional Stability  

High Mean Category 

< .001 -.018 < .001 .837 

Cognitive Skills x Emotional Stability  

Middle High Mean Category 

< .001 -.150 < .001 .047 

Cognitive Skills x Emotional Stability  

Middle Low Mean Category 

-.001 -.197 < .001 .006 

Cognitive Skills x Emotional Stability  

Low Mean Category 

< .001 -.106 < .001 .151 

High Mean Category  c High Mean Low 

SD 

1.000 .267   

High Mean Category  c High Mean 

Medium SD 

3.780 .686 1.243 .002 

High Mean Category  c High Mean High 

SD 

1.997 .416 .682 .003 

Middle High Mean Category  c Middle 

High Mean Low SD 

1.000 .534   

Middle High Mean Category  c Middle 

High Mean Medium SD 

1.721 .878 .292 < .001 

Middle High Mean Category  c Middle 

High Mean High SD 

1.150 .598 .164 < .001 

Middle Low Mean Category  c Middle 

Low Mean High SD 

.763 .633 .088 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  c Middle 

Low Mean Medium SD 

1.077 .827 .105 < .001 

Middle Low Mean Category  c Middle 

Low Mean Low SD 

1.000 .779   

Low Mean Category  c Low Mean Low 

SD 

1.000 .508   

Low Mean Category  c Low Mean 

Medium SD 

1.770 .690 .287 < .001 

Low Mean Category  c Low Mean High 

SD 

2.635 .801 .414 < .001 

 

Table 68.  Covariances SEM Model 12 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error High Mean ↔ Error Middle High 
Mean 

.016 .695 .006 .004 

Error High Mean ↔ Error Middle Low 
Mean 

.017 .500 .006 .006 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.075 .617 .016 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.021 .401 .006 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

.062 .804 .013 < .001 

Error Middle Low Mean Low SD ↔ Error 
Low Mean Low SD 

.015 .116 .012 .190 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

.012 .087 .015 .452 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

.023 .242 .016 .137 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

.012 .075 .014 .409 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

-.065 -.510 .015 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

.007 .076 .022 .749 

Error Low Mean High SD ↔ Error 
Middle Low Mean Low SD 

.047 .305 .017 .007 

Error Low Mean High SD ↔ Error 
Middle High Mean Medium SD 

.032 .294 .017 .056 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Low SD 

.070 .336 .018 < .001 

Error Middle Low Mean High SD ↔ .048 .269 .016 .003 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Low Mean High SD 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.060 .333 .017 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.097 .478 .019 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.057 .339 .014 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Medium SD 

-.032 -.249 .013 .019 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

.029 .181 .014 .042 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

.066 .403 .015 < .001 

Error Middle Low Mean High SD ↔ 
Error High Mean Medium SD 

-.002 -.014 .015 .890 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.026 -.216 .012 .027 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Medium SD 

.061 .493 .018 < .001 

Error Middle High Mean High SD ↔ 
Error Middle High Mean Low SD 

.049 .231 .019 .013 

Error High Mean High SD ↔ Error Low 
Mean Low SD 

-.018 -.143 .009 .043 

Error High Mean High SD ↔ Error 
Middle .Low Mean Low SD 

-.040 -.289 .014 .005 

Error High Mean High SD ↔ Error Low 
Mean High SD 

.018 .125 .013 .179 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

.026 .198 .016 .090 
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Table 69.  Variances SEM Model 12 

 Estimate Standard Error p 

Emotional Stability (Mean Centered) 64.181 6.339 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Cognitive Skills x Emotional Stability 18303.108 1807.852 < .001 

Error High Mean .007 .004 .077 

Error Middle High Mean .080 .022 < .001 

Error Middle Low Mean .183 .031 < .001 

Error Low Mean .033 .010 < .001 

Error High Mean High SD .131 .015 < .001 

Error Middle High Mean High SD .205 .026 < .001 

Error Middle Low Mean High SD .199 .022 < .001 

Error Low Mean High SD .159 .030 < .001 

Error High Mean Medium SD .111 .030 < .001 

Error Middle High Mean Medium SD .076 .033 .022 

Error Middle Low Mean Medium SD .123 .024 < .001 

Error Low Mean Medium SD .142 .019 < .001 

Error High Mean Low SD .090 .009 < .001 

Error Middle High Mean Low SD .216 .025 < .001 

Error Middle Low Mean Low SD .148 .022 < .001 

Error Low Mean Low SD .118 .013 < .001 

 

Table 70.  Squared Multiple Correlations SEM Model 12 

Factor Estimate 

Low Mean Category .205 

Middle Low Mean Category .201 

Middle High Mean Category .073 

High Mean Category .033 

c Low Mean Low SD .258 

c Middle Low Mean Low SD .607 

c Middle High Mean Low SD .285 

c High Mean Low SD .071 

c Low Mean Medium SD .476 

c Middle Low Mean Medium SD .683 

c Middle High Mean Medium SD .771 

c High Mean Medium SD .471 

c Low Mean High SD .642 

c Middle Low Mean High SD .400 

c Middle High Mean High SD .357 

c High Mean High SD .173 
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SEM Model 13:  Path Analysis of Cognitive Skills Interacting with Emotional Stability for 

Response Time in Experiment 1 

 

Table 71.  Regression Weights for SEM Model 13 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Emotional Stability (Mean Centered)  

High Mean Category 

1.813 .150 .824 .028 

Emotional Stability (Mean Centered)  

Middle High Mean Category 

2.373 .151 1.084 .029 

Emotional Stability (Mean Centered)  

Middle Low Mean Category 

2.522 .154 1.127 .025 

Emotional Stability (Mean Centered)  Low 

Mean Category 

1.621 .142 .785 .039 

Cognitive Skills (Mean Centered)  High 

Mean Category 

-.276 -.051 .367 .451 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.363 .052 .483 .452 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.378 .052 .502 .451 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.230 .045 .350 .511 

Cognitive Skills x Emotional Stability  

Low Mean Category 

-.051 -.076 .047 .273 

Cognitive Skills x Emotional Stability  

Middle Low Mean Category 

-.086 -.088 .067 .197 

Cognitive Skills x Emotional Stability  

Middle High Mean Category 

-.074 -.079 .064 .252 

Cognitive Skills x Emotional Stability  

High Mean Category 

-.101 -.141 .049 .039 
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Table 72.  Covariances SEM Model 13 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle High Mean ↔ Error Low 
Mean 

11139.069 .995 1103.235 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

11425.248 .981 1139.607 < .001 

Error Middle High Mean ↔ Error Middle 
Low Mean 

15632.753 .973 1565.914 < .001 

Error High Mean ↔ Error Low Mean 6956.637 .817 767.744 < .001 

Error High Mean ↔ Error Middle Low 
Mean 

9939.411 .814 1099.799 < .001 

Error High Mean ↔ Error Middle High 
Mean 

9944.355 .847 1074.705 < .001 

 

Table 73.  Variances SEM Model 13 

 Estimate Standard Error p 

Emotional Stability (Mean Centered) 64.181 6.339 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Cognitive Skills x Emotional Stability 18303.108 1807.852 < .001 

Error High Mean 8923.490 881.399 < .001 

Error Middle High Mean 15451.687 1526.209 < .001 

Error Middle Low Mean 16716.283 1651.117 < .001 

Error Low Mean 8117.718 801.811 < .001 

 

Table 74.  Squared Multiple Correlations SEM Model 13 

Factor Estimate 

Low Mean Category .028 

Middle Low Mean Category .034 

Middle High Mean Category .032 

High Mean Category .045 
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SEM Model 14:  SEM Analysis of Conscientiousness Interacting with Cognitive Skills for 

d’ in Experiment 1 

 

Table 75.  Regression Weights for SEM Model 14 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Cognitive Skills x Conscientiousness  Low 

Mean Category 

< .001 -.034 < .001 .704 

Cognitive Skills x Conscientiousness  

Middle Low Mean Category 

-.001 -.223 < .001 .007 

Cognitive Skills x Conscientiousness  

Middle High Mean Category 

< .001 .064 < .001 .417 

Cognitive Skills x Conscientiousness  

High Mean Category 

< .001 .109 < .001 .585 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.002 .229 .001 .034 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.009 .410 .002 < .001 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.004 .336 .001 < .001 

Cognitive Skills (Mean Centered)  High 

Mean Category 

< .001 .170 < .001 .524 

Conscientiousness (Mean Centered)  Low 

Mean Category 

.004 .158 .002 .109 

Conscientiousness (Mean Centered)  

Middle Low Mean Category 

-.004 -.072 .005 .369 

Conscientiousness (Mean Centered)  

Middle High Mean Category 

.004 .133 .003 .104 

Conscientiousness (Mean Centered)  High 

Mean Category 

< .001 .017 .001 .902 

High Mean Category  d’ High Mean Low 

SD 

1.000 .077   

High Mean Category  d’ High Mean 

Medium SD 

2.642 .243 3.752 .481 

High Mean Category  d’ High Mean High 

SD 

4.373 .467 6.060 .471 

Middle High Mean Category  d’ Middle 

High Mean High SD 

1.889 .627 .383 < .001 

Middle High Mean Category  d’ Middle 

High Mean Medium SD 

2.554 .770 .514 < .001 

Middle High Mean Category  d’ Middle 

High Mean Low SD 

1.000 .429   

Middle Low Mean Category  d’ Middle 

Low Mean High SD 

.621 .435 .127 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  d’ Middle 

Low Mean Medium SD 

1.077 .641 .178 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean Low SD 

1.000 .653   

Low Mean Category  d’ Low Mean High 

SD 

1.320 .473 .432 .002 

Low Mean Category  d’ Low Mean 

Medium SD 

1.629 .672 .558 .004 

Low Mean Category  d’ Low Mean Low 

SD 

1.000 .368   
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Table 76.  Covariances SEM Model 14 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle Low Mean ↔ Error Low 
Mean 

.021 .420 .008 .014 

Error High Mean ↔ Error Middle Low 
Mean 

.003 .283 .004 .496 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.047 .699 .013 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.010 .356 .004 .024 

Error High Mean ↔ Error Middle High 
Mean 

.004 .630 .005 .472 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.076 .306 .021 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

.037 .203 .014 .010 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

-.017 -.142 .009 .058 

Error Low Mean High SD ↔ Error High 
Mean Low SD 

-.015 -.101 .010 .157 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-.041 -.206 .015 .008 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.039 -.209 .015 .010 

Error Middle High Mean Low SD ↔ 
Error Middle Low Mean Low SD 

.023 .113 .018 .198 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.020 .178 .009 .029 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Low SD 

-.065 -.320 .024 .006 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.023 .128 .015 .117 

Error Low Mean High SD ↔ Error Low 
Mean Low SD 

-.025 -.180 .012 .041 
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Table 77.  Variances SEM Model 14 

 Estimate Standard Error p 

Cognitive Skills x Conscientiousness 16953.833 1674.580 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Conscientiousness (Mean Centered) 41.729 4.122 < .001 

Error High Mean .001 .002 .711 

Error Middle High Mean .039 .014 .006 

Error Middle Low Mean .117 .030 < .001 

Error Low Mean .020 .011 .063 

Error High Mean High SD .065 .013 < .001 

Error Middle High Mean High SD .249 .032 < .001 

Error Middle Low Mean High SD .248 .027 < .001 

Error Low Mean High SD .134 .018 < .001 

Error High Mean Medium SD .105 .011 < .001 

Error Middle High Mean Medium SD .203 .043 < .001 

Error Middle Low Mean Medium SD .251 .035 < .001 

Error Low Mean Medium SD .071 .017 < .001 

Error High Mean Low SD .158 .016 < .001 

Error Middle High Mean Low SD .201 .022 < .001 

Error Middle Low Mean Low SD .203 .030 < .001 

Error Low Mean Low SD .141 .016 < .001 

 

Table 78.  Squared Multiple Correlations SEM Model 14 

Factor Estimate 

Low Mean Category .078 

Middle Low Mean Category .223 

Middle High Mean Category .135 

High Mean Category .041 

d’ Low Mean Low SD .135 

d’ Middle Low Mean Low SD .426 

d’ Middle High Mean Low SD .184 

d’ High Mean Low SD .006 

d’ Low Mean Medium SD .451 

d’ Middle Low Mean Medium SD .411 

d’ Middle High Mean Medium SD .593 

d’ High Mean Medium SD .059 

d’ Low Mean High SD .224 

d’ Middle Low Mean High SD .190 

d’ Middle High Mean High SD .393 

d’ High Mean High SD .218 
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SEM Model 15:  SEM Model Analysis of Cognitive Skills Interacting with 

Conscientiousness for Index c in Experiment 1 

 

Table 79.  Regression Weights for SEM Model 15 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Conscientiousness (Mean Centered)  High 

Mean Category 

< .001 -.009 .001 .914 

Conscientiousness (Mean Centered)  

Middle High Mean Category 

.002 .043 .003 .559 

Conscientiousness (Mean Centered)  

Middle Low Mean Category 

.004 .050 .005 .495 

Conscientiousness (Mean Centered)  Low 

Mean Category 

.002 .052 .002 .484 

Cognitive Skills (Mean Centered)  High 

Mean Category 

.001 .131 < .001 .176 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.003 .218 .001 .007 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.009 .348 .002 < .001 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.004 .394 .001 < .001 

Cognitive Skills x Conscientiousness  

High Mean Category 

< .001 .104 < .001 .263 

Cognitive Skills x Conscientiousness  

Middle High Mean Category 

< .001 -.013 < .001 .858 

Cognitive Skills x Conscientiousness  

Middle Low Mean Category 

< .001 -.027 < .001 .714 

Cognitive Skills x Conscientiousness  Low 

Mean Category 

< .001 -.097 < .001 .195 

High Mean Category  c High Mean Low 

SD 

1.000 .274   

High Mean Category  c High Mean 

Medium SD 

3.758 .701 1.252 .003 

High Mean Category  c High Mean High 

SD 

1.860 .398 .637 .003 

Middle High Mean Category  c Middle 

High Mean Low SD 

1.000 .525   

Middle High Mean Category  c Middle 

High Mean Medium SD 

1.767 .885 .309 < .001 

Middle High Mean Category  c Middle 

High Mean High SD 

1.148 .587 .167 < .001 

Middle Low Mean Category  c Middle 

Low Mean High SD 

.762 .627 .089 < .001 
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Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Middle Low Mean Category  c Middle 

Low Mean Medium SD 

1.090 .829 .111 < .001 

Middle Low Mean Category  c Middle 

Low Mean Low SD 

1.000 .772   

Low Mean Category  c Low Mean Low 

SD 

1.000 .511   

Low Mean Category  c Low Mean 

Medium SD 

1.802 .707 .291 < .001 

Low Mean Category  c Low Mean High 

SD 

2.566 .784 .404 < .001 

 

Table 80.  Covariances SEM Model 15 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error High Mean ↔ Error Middle High 
Mean 

.016 .672 .006 .004 

Error High Mean ↔ Error Middle Low 
Mean 

.017 .457 .006 .007 

Error Middle High Mean ↔ Error Middle 
Low Mean 

.076 .619 .017 < .001 

Error Middle High Mean ↔ Error Low 
Mean 

.021 .402 .006 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

.067 .813 .014 < .001 

Error Middle Low Mean Low SD ↔ Error 
Low Mean Low SD 

.018 .133 .012 .134 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

.006 .048 .016 .694 

Error Middle High Mean Medium SD ↔ 
Error Middle Low Mean Medium SD 

.023 .252 .016 .149 

Error High Mean Medium SD ↔ Error 
Middle High Mean Low SD 

.013 .087 .014 .345 

Error High Mean Medium SD ↔ Error 
Middle Low Mean Low SD 

-.066 -.519 .015 < .001 

Error High Mean Medium SD ↔ Error 
Middle High Mean Medium SD 

.007 .078 .022 .759 

Error Low Mean High SD ↔ Error 

Middle Low Mean Low SD 

.050 .313 .018 .004 

Error Low Mean High SD ↔ Error 
Middle High Mean Medium SD 

.032 .294 .017 .055 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Low SD 

.069 .333 .018 < .001 

Error Middle Low Mean High SD ↔ .051 .276 .016 .002 
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Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Low Mean High SD 

Error Middle High Mean High SD ↔ 
Error Low Mean High SD 

.063 .335 .017 < .001 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.096 .474 .019 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.058 .342 .014 < .001 

Error High Mean High SD ↔ Error 
Middle Low Mean Medium SD 

-.032 -.258 .013 .015 

Error High Mean High SD ↔ Error 
Middle Low Mean High SD 

.028 .174 .014 .046 

Error High Mean High SD ↔ Error 
Middle High Mean High SD 

.066 .400 .014 < .001 

Error Middle Low Mean High SD ↔ 
Error High Mean Medium SD 

-.003 -.021 .015 .841 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Low SD 

-.024 -.199 .012 .048 

Error Middle Low Mean High SD ↔ 
Error Middle High Mean Medium SD 

.059 .498 .018 < .001 

Error Middle High Mean High SD ↔ 
Error Middle High Mean Low SD 

.050 .238 .020 .010 

Error High Mean High SD ↔ Error Low 
Mean Low SD 

-.019 -.155 .009 .028 

Error High Mean High SD ↔ Error 
Middle .Low Mean Low SD 

-.041 -.289 .014 .004 

Error High Mean High SD ↔ Error Low 
Mean High SD 

.015 .096 .013 .281 

Error Low Mean High SD ↔ Error High 
Mean Medium SD 

.022 .162 .016 .163 
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Table 81.  Variances SEM Model 15 

 Estimate Standard Error p 

Conscientiousness (Mean Centered) 41.729 4.122 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Cognitive Skills x Conscientiousness 16953.833 1674.580 < .001 

Error High Mean .007 .004 .074 

Error Middle High Mean .079 .022 < .001 

Error Middle Low Mean .194 .033 < .001 

Error Low Mean .035 .010 < .001 

Error High Mean High SD .133 .015 < .001 

Error Middle High Mean High SD .207 .026 < .001 

Error Middle Low Mean High SD .199 .022 < .001 

Error Low Mean High SD .171 .030 < .001 

Error High Mean Medium SD .106 .032 < .001 

Error Middle High Mean Medium SD .072 .034 .038 

Error Middle Low Mean Medium SD .120 .025 < .001 

Error Low Mean Medium SD .135 .019 < .001 

Error High Mean Low SD .089 .009 < .001 

Error Middle High Mean Low SD .218 .025 < .001 

Error Middle Low Mean Low SD .150 .023 < .001 

Error Low Mean Low SD .118 .013 < .001 

 

Table 82.  Squared Multiple Correlations SEM Model 15 

Factor Estimate 

Low Mean Category .168 

Middle Low Mean Category .125 

Middle High Mean Category .049 

High Mean Category .028 

c Low Mean Low SD .261 

c Middle Low Mean Low SD .596 

c Middle High Mean Low SD .275 

c High Mean Low SD .075 

c Low Mean Medium SD .500 

c Middle Low Mean Medium SD .688 

c Middle High Mean Medium SD .783 

c High Mean Medium SD .491 

c Low Mean High SD .615 

c Middle Low Mean High SD .393 

c Middle High Mean High SD .345 

c High Mean High SD .159 
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SEM Model 16:  Path Analysis of Cognitive Skills Interacting with Conscientiousness for 

Response Time in Experiment 1 

 

Table 83.  Regression Weights for SEM Model 16 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

Conscientiousness (Mean Centered)  High 

Mean Category 

1.442 .097 1.034 .163 

Conscientiousness (Mean Centered)  

Middle High Mean Category 

.814 .042 1.356 .549 

Conscientiousness (Mean Centered)  

Middle Low Mean Category 

.396 .019 1.413 .779 

Conscientiousness (Mean Centered)  Low 

Mean Category 

.447 .032 .982 .649 

Cognitive Skills (Mean Centered)  High 

Mean Category 

-.276 -.051 .371 .458 

Cognitive Skills (Mean Centered)  Middle 

High Mean Category 

.353 .050 .487 .468 

Cognitive Skills (Mean Centered)  Middle 

Low Mean Category 

.354 .048 .507 .486 

Cognitive Skills (Mean Centered)  Low 

Mean Category 

.222 .044 .353 .530 

Cognitive Skills x Conscientiousness  Low 

Mean Category 

-.053 -.076 .049 .274 

Cognitive Skills x Conscientiousness  

Middle Low Mean Category 

-.081 -.081 .070 .247 

Cognitive Skills x Conscientiousness  

Middle High Mean Category 

-.075 -.077 .067 .268 

Cognitive Skills x Conscientiousness  

High Mean Category 

-.044 -.059 .051 .394 
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Table 84.  Covariances SEM Model 16 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Error Middle High Mean ↔ Error Low 
Mean 

11332.195 .995 1122.304 < .001 

Error Middle Low Mean ↔ Error Low 
Mean 

11643.797 .981 1161.225 < .001 

Error Middle High Mean ↔ Error Middle 
Low Mean 

15953.097 .973 1597.388 < .001 

Error High Mean ↔ Error Low Mean 7129.984 .821 784.755 < .001 

Error High Mean ↔ Error Middle Low 
Mean 

10239.379 .820 1128.125 < .001 

Error High Mean ↔ Error Middle High 
Mean 

10189.355 .850 1099.047 < .001 

 

Table 85.  Variances SEM Model 16 

 Estimate Standard Error p 

Conscientiousness (Mean Centered) 41.729 4.122 < .001 

Cognitive Skills (Mean Centered) 323.634 31.966 < .001 

Cognitive Skills x Conscientiousness 16953.833 1674.580 < .001 

Error High Mean 9140.455 902.830 < .001 

Error Middle High Mean 15731.993 1553.896 < .001 

Error Middle Low Mean 17072.633 1686.314 < .001 

Error Low Mean 8250.212 814.898 < .001 

 

Table 86.  Squared Multiple Correlations SEM Model 16 

Factor Estimate 

Low Mean Category .009 

Middle Low Mean Category .009 

Middle High Mean Category .010 

High Mean Category .015 
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SEM Model 17:  Analysis of Sensitivity in Experiment 2 

 

Table 87.  Regression Weights for SEM Model 17 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

High Mean Category  d’ High Mean Low 

SD 

1.000 .262   

High Mean Category  d’ High Mean 

Medium SD 

1.617 .464 .800 .043 

High Mean Category  d’ High Mean High 

SD 

1.538 .557 .841 .067 

Middle High Mean Category  d’ Middle 

High Mean High SD 

1.716 .706 .277 < .001 

Middle High Mean Category  d’ Middle 

High Mean Medium SD 

1.662 .708 .269 < .001 

Middle High Mean Category  d’ Middle 

High Mean Low SD 

1.000 .533   

Middle Low Mean Category  d’ Middle 

Low Mean Low SD 

1.000 .550   

Middle Low Mean Category  d’ Middle 

Low Mean Medium SD 

1.288 .596 .220 < .001 

Middle Low Mean Category  d’ Middle 

Low Mean High SD 

1.114 .656 .181 < .001 

Low Mean Category  d’ Low Mean Low 

SD 

1.000 .150   

Low Mean Category  d’ Low Mean 

Medium SD 

2.825 .467 1.228 .021 

Low Mean Category  d’ Low Mean High 

SD 

6.028 .944 3.226 .062 
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Table 88.  Covariances SEM Model 17 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Middle High Mean Category ↔ Middle 

Low Mean Category 

.070 .748 .016 < .001 

High Mean Category ↔ Middle High 

Mean Category 

.003 .104 .003 .370 

Low Mean Category ↔ Middle Low 
Mean Category 

.011 .531 .006 .080 

Low Mean Category ↔ Middle High 

Mean Category 

.005 .267 .003 .114 

Error Low Mean Medium SD ↔ Error 
Low Mean Low SD 

.038 .279 .010 < .001 

Error Low Mean High SD ↔ Error 
Middle High Mean Low SD 

-.031 -.547 .011 .004 

Error High Mean Medium SD ↔ Error 
Low Mean Low SD 

.035 .306 .009 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

.021 .230 .008 .007 

 

Table 89.  Variances SEM Model 17 

 Estimate Standard Error p 

High Mean Category .008 .007 .212 

Middle High Mean Category .074 .020 < .001 

Middle Low Mean Category .118 .032 < .001 

Low Mean Category .004 .004 .295 

Error High Mean High SD .044 .012 < .001 

Error Middle High Mean High SD .219 .033 < .001 

Error Middle Low Mean High SD .194 .026 < .001 

Error Low Mean High SD .017 .041 .672 

Error High Mean Medium SD .080 .015 < .001 

Error Middle High Mean Medium SD .203 .031 < .001 

Error Middle Low Mean Medium SD .355 .043 < .001 

Error Low Mean Medium SD .111 .014 < .001 

Error High Mean Low SD .115 .012 < .001 

Error Middle High Mean Low SD .186 .021 < .001 

Error Middle Low Mean Low SD .272 .031 < .001 

Error Low Mean Low SD .168 .016 < .001 
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Table 90.  Squared Multiple Correlations SEM Model 17 

Factor Estimate 

d’ Low Mean Low SD .023 

d’ Middle Low Mean Low SD .302 

d’ Middle High Mean Low SD .284 

d’ High Mean Low SD .069 

d’ Low Mean Medium SD .218 

d’ Middle Low Mean Medium SD .355 

d’ Middle High Mean Medium SD .501 

d’ High Mean Medium SD .216 

d’ Low Mean High SD .891 

d’ Middle Low Mean High SD .430 

d’ Middle High Mean High SD .498 

d’ High Mean High SD .310 
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SEM Model 18:  Analysis of Response Bias in Experiment 2 

 

Table 91.  Regression Weights for SEM Model 18 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

High Mean Category  c High Mean Low 

SD 

1.000 .416   

High Mean Category  c High Mean 

Medium SD 

2.021 .725 .409 < .001 

High Mean Category  c High Mean High 

SD 

1.504 .609 .316 < .001 

Middle High Mean Category  c Middle 

High Mean High SD 

.877 .728 .082 < .001 

Middle High Mean Category  c Middle 

High Mean Medium SD 

1.074 .831 .088 < .001 

Middle High Mean Category  c Middle 

High Mean Low SD 

1.000 .780   

Middle Low Mean Category  c Middle 

Low Mean Low SD 

1.000 .826   

Middle Low Mean Category  c Middle 

Low Mean Medium SD 

.972 .819 .074 < .001 

Middle Low Mean Category  c Middle 

Low Mean High SD 

.837 .782 .071 < .001 

Low Mean Category  c Low Mean Low 

SD 

1.000 .511   

Low Mean Category  c Low Mean 

Medium SD 

1.686 .648 .208 < .001 

Low Mean Category  c Low Mean High 

SD 

2.657 .929 .373 < .001 
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Table 92.  Covariances SEM Model 18 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

Middle High Mean Category ↔ Middle 
Low Mean Category 

.204 .788 .029 < .001 

High Mean Category ↔ Middle High 
Mean Category 

.061 .792 .014 < .001 

Low Mean Category ↔ Middle Low 
Mean Category 

.099 .807 .018 < .001 

Low Mean Category ↔ Middle High 
Mean Category 

.054 .520 .012 < .001 

High Mean Category ↔ Middle Low 
Mean Category 

.047 .516 .012 < .001 

Low Mean Category ↔ High Mean 
Category 

.010 .265 .004 .012 

Error Middle High Mean High SD ↔ 
Error Middle Low Mean High SD 

.065 .451 .013 < .001 

Error Low Mean Medium SD ↔ Error 
Low Mean Low SD 

.054 .328 .013 < .001 

Error Middle Low Mean High SD ↔ 
Error Middle Low Mean Low SD 

-.030 -.216 .013 .019 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

.042 .254 .013 .001 

Error Low Mean High SD ↔ Error 
Middle High Mean Low SD 

-.042 -.482 .013 < .001 

Error Middle Low Mean Medium SD ↔ 
Error Middle High Mean Low SD 

-.032 -.223 .012 .011 

Error High Mean High SD ↔ Error Low 
Mean Low SD 

-.025 -.212 .009 .004 

Error Middle Low Mean Medium SD ↔ 
Error High Mean Low SD 

-.025 -.185 .011 .019 

Error Middle High Mean Medium SD ↔ 
Error High Mean Low SD 

-.023 -.188 .010 .029 

Error High Mean Medium SD ↔ Error 
Low Mean Low SD  

-.022 -.191 .009 .016 
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Table 93.  Variances SEM Model 18 

 Estimate Standard Error p 

High Mean Category .027 .010 .007 

Middle High Mean Category .220 .034 < .001 

Middle Low Mean Category .306 .044 < .001 

Low Mean Category .049 .013 < .001 

Error High Mean High SD .103 .013 < .001 

Error Middle High Mean High SD .150 .017 < .001 

Error Middle Low Mean High SD .137 .017 < .001 

Error Low Mean High SD .055 .027 .042 

Error High Mean Medium SD .099 .016 < .001 

Error Middle High Mean Medium SD .114 .016 < .001 

Error Middle Low Mean Medium SD .142 .018 < .001 

Error Low Mean Medium SD .192 .021 < .001 

Error High Mean Low SD .129 .014 < .001 

Error Middle High Mean Low SD .141 .018 < .001 

Error Middle Low Mean Low SD .142 .020 < .001 

Error Low Mean Low SD .139 .014 < .001 

 

Table 94.  Squared Multiple Correlations SEM Model 18 

Factor Estimate 

c Low Mean Low SD .261 

c Middle Low Mean Low SD .683 

c Middle High Mean Low SD .609 

c High Mean Low SD .173 

c Low Mean Medium SD .420 

c Middle Low Mean Medium SD .670 

c Middle High Mean Medium SD .690 

c High Mean Medium SD .526 

c Low Mean High SD .863 

c Middle Low Mean High SD .611 

c Middle High Mean High SD .530 

c High Mean High SD .370 
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SEM Model 19:  Analysis of Response Time in Experiment 2 

 

Table 95.  Regression Weights for SEM Model 19 

Path Estimate Standardized 

Estimate 

Standard 

Error 

p 

High SD  Median RT High Mean High SD 1.037 .833 .098 < .001 

Medium SD  Median RT Middle High 

Mean Medium SD 

1.525 .931 .150 < .001 

Low SD  Median RT Low Mean Low SD 1.000 .643   

High SD  Median RT Middle High Mean 

High SD 

1.394 .845 .131 < .001 

Medium SD  Median RT High Mean 

Medium SD 

1.131 .803 .114 < .001 

Medium SD  Median RT Low Mean 

Medium SD 

1.000 .617   

High SD  Median RT Low Mean High SD 1.000 .683   

Low SD  Median RT High Mean Low SD 1.108 .755 .115 < .001 

Low SD  Median RT Middle High Mean 

Low SD 

1.463 .766 .150 < .001 

High SD  Median RT Middle Low Mean 

High SD 

1.375 .825 .106 < .001 

Medium SD  Median RT Middle Low 

Mean Medium SD 

1.290 .743 .104 < .001 

Low SD  Median RT Middle Low Mean 

Low SD 

1.440 .792 .145 < .001 
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Table 96.  Covariances SEM Model 19 

Path Covariance 

Estimate 

Correlation 

Estimate 

Standard 

Error 

p 

High SD ↔ Medium SD 280648.775 .522 55731.833 < .001 

Low SD ↔ Medium SD 176181.886 .425 41872.831 < .001 

Low SD ↔ High SD 179953.291 .414 41451.046 < .001 

Error Middle Low Mean Medium SD ↔ 
Error Low Mean Medium SD 

335603.499 .442 60736.178 < .001 

Error Low Mean Medium SD ↔ Error 

Low Mean Low SD 

221944.515 .352 44347.058 < .001 

Error High Mean Medium SD ↔ Error 

High Mean Low SD 

192321.892 .573 31565.984 < .001 

Error High Mean High SD ↔ Error 
Middle High Mean Low SD 

260372.849 .709 37923.611 < .001 

Error Middle High Mean High SD ↔ 
Error Middle High Mean Low SD 

311312.981 .661 48294.366 < .001 

Error Middle Low Mean Medium SD ↔ 
Error Middle Low Mean Low SD 

134192.884 .251 40770.445 < .001 

Error Middle Low Mean High SD ↔ 
Error Low Mean High SD 

170121.713 .300 52390.196 .001 

 

Table 97.  Variances SEM Model 19 

 Estimate Standard Error p 

High SD 563300.177 103561.385 < .001 

Medium SD 512599.985 104320.804 < .001 

Low SD 335786.593 65148.229 < .001 

Error High Mean High SD 266293.200 38448.601 < .001 

Error Middle High Mean High SD 437828.743 66472.640 < .001 

Error Middle Low Mean High SD 497915.243 65908.910 < .001 

Error Low Mean High SD 644763.907 68878.292 < .001 

Error High Mean Medium SD 361662.354 47014.054 < .001 

Error Middle High Mean Medium SD 183250.304 55720.289 .001 

Error Middle Low Mean Medium SD 692590.594 77756.007 < .001 

Error Low Mean Medium SD 834241.406 84959.467 < .001 

Error High Mean Low SD 311118.394 39010.368 < .001 

Error Middle High Mean Low SD 506475.710 63781.946 < .001 

Error Middle Low Mean Low SD 413483.739 55608.086 < .001 

Error Low Mean Low SD 475722.316 52206.680 < .001 
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Table 98.  Squared Multiple Correlations SEM Model 19 

Factor Estimate 

Median RT Low Mean Low SD .414 

Median RT Middle Low Mean Low SD .627 

Median RT Middle High Mean Low SD .587 

Median RT High Mean Low SD .570 

Median RT Low Mean Medium SD .381 

Median RT Middle Low Mean Medium SD .552 

Median RT Middle High Mean Medium SD .867 

Median RT High Mean Medium SD .645 

Median RT Low Mean High SD .466 

Median RT Middle Low Mean High SD .681 

Median RT Middle High Mean High SD .714 

Median RT High Mean High SD .695 
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