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ABSTRACT 

Calcined coke is a high quality carbon material produced by calcining green petroleum coke. 

Calcining is the process of heating green petroleum coke in a kiln to remove excess moisture, extract 

all remaining hydrocarbons, and modify the crystalline structure of the coke into a denser, 

electrically conductive product. The final product, calcined coke, is primarily used to make carbon 

anodes for the aluminum industry and recarburizing agent for industries such as the steel industry. 

If not appropriately controlled, the calcining process could lead to excess production of particulate 

emissions from either handling or storing of raw coke, or from the stack emissions during the 

production of calcined coke. Though calcined coke has shown low hazard potential in human 

populations due to low volatile content, there remains some public health concern regarding the 

emissions from these facilities. This study is designed to evaluate the emissions of petroleum coke 

calcining facility and assess the public health concern from the processes engaged in the handling 

and storage of green coke as well as from the calcining process. The ambient air levels were 

measured from a calcining facility and compared with the standards promulgated by USEPA. The 

results showed that pollutant contribution from the facility, measured by monitoring carbon fraction 

of the emissions, was de-minimis. The current research also studied whether the exposure levels and 

health risks specified in various epidemiological studies correlate with the standards promulgated 

by USEPA to protect public health from petrochemical emissions. 
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CHAPTER ONE: 

INTRODUCTION 

 

Calcined coke is a carbonaceous product produced from the thermal treatment of raw 

petroleum coke. It is a sponge like material used in the production of anodes and in the aluminum 

industry to conduct electricity due to its porous structure. It is the primary raw material for aluminum 

smelter anodes, and a source of energy or fuel for power plants and cement kilns.  

 The processing of crude oil produces various by-products including petroleum coke (Figure 

1). Petroleum coke could broadly be categorized into green coke and calcined coke. Green petroleum 

coke, a black colored solid material, is produced from the thermal decomposition of heavy crude oil. 

When green coke is subjected to further thermal processing, i.e. removal of moisture and volatile 

matter, it results in the production of calcined coke (Figure 1). The primary difference between the 

green coke and calcined coke is in the proportion of constituent materials such as hydrocarbons, ash, 

and sulfur. Petroleum coke calcining involves multiple steps, including drying the raw coke, de-

volatization at high temperatures, and densification.  The initial drying process is a time-temperature 

function and is conducted in an atmosphere devoid of oxygen. To obtain the desired coke properties 

of higher density and conductivity it is subjected to higher temperatures, up to 1400° C. As 

mentioned, calcination of raw petroleum coke is done in two types of kiln, kettle kilns or rotary 

kilns. Whether heating of the raw materials indirectly (kettle kilns) or directly (rotary kilns) involves 

the use of pyro scrubber that is used to oxidize the carbon content of the raw petroleum coke 
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including the volatile organic materials in the coke. Further decomposition of the coke results in the 

product that has high carbon to hydrogen ratio. This results in the final product that has very small 

amounts of volatile organic compounds, metals, ash, or gaseous pollutants in the discharged product.  

The process converts the raw coke into a sponge like product that is used in the production of anodes 

in the aluminum industry. 

 

Source: CC BY-SA 3.0, http://creativecommons.org/licenses/by-sa/3.0/ 

Figure 1 Crude Oil Processing and By-Products 
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1.1 History of Calcined Coke Production 

 The use of petroleum coke as a filler in various carbon products is dated back to 1860’s. 

However, around 1920’s there was a sudden surge in the production of green or calcined coke a by-

product with comparatively higher carbon content using the delayed coking process (Edwards et al., 

2015). Since the inception of delayed coking process in 1920’s, the methods to produce calcined 

coke have almost remained the same for many years. Now for over a century, calcined coke has 

proved to be an ideal raw material for carbon anodes used in the electrolysis process (Hall-Heroult 

electrolysis) due to its favorable properties such as high carbon content, sponge like character, cheap 

and economical, as well as easy availability. As of 2013, around 115 million Dry Metri Tonne 

(DMT) of green petroleum coke was produced but only 1/4th of this raw material was used, 

highlighting the abundance and availability of raw material to produce the calcined coke.  

 There are primarily three processes used to produce petroleum coke; delayed coking, coking 

in fluidized bed without gasification, and coking in fluidized with gasification. The delayed calcined 

coke is the process, which on high temperatures converts the higher molecular weight hydrocarbons 

to low molecular weight carbons, which further undergo polymerization to produce a sponge-like 

high conducting material, green petroleum coke. Depending on the purity of this green petroleum 

coke, it could either be used as a fuel for power generation (higher sulfur (S) lower purity) or as a 

raw material in calcining industry for anodes, aluminum, and steel production (lower sulfur (S) 

higher purity). The green petroleum coke may be of three main types: needle coke, sponge coke, and 

shot coke (Figure 2). Needle coke (low S) is mainly used in arc furnaces for production of steel due 

to its low CTE (coefficient of thermal expansion). The sponge coke due to its intermediate CTE and 

high porosity is used in the anode production. Moreover, the porous structure of needle coke helps 

in adequate penetration during mixing and confers a strong property to the anode structure. The shot 
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coke due to its high CTE and S content is used as a fuel and in titanium oxide applications (Edwards 

et al., 2015).   

           
Figure 2 Different Types of Green Petroleum Coke (Edwards et al., 2015) Creative Commons 

Attribution License 

 In the calcining industries the green petroleum coke with low Sulfur content is then heat 

treated at very high temperatures for the production of anodes. The heating of green petroleum coke 

results in structural changes and hence a product with higher carbon content and conductivity, with 

low reactivity to O2 and CO2. This process also drives off the Volatile Matter (VM) and moisture 

content resulting in a high density product known as calcined coke.   

1.2 Physical and Chemical Properties of Green and Calcined Coke 

 Green coke and calcined coke vary in terms of their physical and chemical properties. 

Generally, the properties of calcined coke are dependent on the source of raw green coke as well as 

the refining process used to produce calcined coke. The physical and chemical properties are 

generally determined on the basis of ash content, metallic impurities such as nickel and zinc, and 

presence of volatile matter and moisture. Green coke has higher percentage of volatile matter, 
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moisture, and metal content compared to calcined coke (Table 1). Research indicates that the volatile 

content of raw green coke varies from 0.13 -0.20 % of the total coke weight and the moisture content 

varies from 0.28-0.33 % of total coke weight (Birghila et al., 2011).  

Table 1 Comparison Between Raw (Green) Coke and Calcined Coke 

Composition Green Coke Calcined Coke 

Volatile Matter, % 9.0 - 10.5 0.08-0.15 

Moisture, % 8.0- 14.0 0.2-0.4 

Ash content, % 0.09- 0.14 0.1-0.18 

Sulfur, ppm 0.7-0.85 0.7-0.78 

Nickel, ppm 180-200 200-220 

Iron, ppm 80-120 60-100 

Calcium, ppm 20-40 20-40 

Silicon, ppm 40-80 20-60 

          

 On the other hand, the calcined coke has low S content, low VM content, low metallic 

constituents, and lower ash content (Table 2). This type of coke is used in the aluminum industry for 

making anodes and in foundries as a carburizer. Some types of calcined coke have high ash content 

with more metallic impurities and are used as fuel rods for energy production. 

Table 2 Typical Specifications of the Calcined Petroleum Coke 

Property Typical  

Specification 

Broader Specification 

Moisture, % 0.3 0.5 

Ash, % 0.3 0.5 

Sulfur, % 3 3.5 

Nickel, ppm 250 300 

Iron, ppm 300 400 

Calcium, ppm 200 250 

Silicon, ppm 250 300 
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1.3 Calcining Process 

 The process of conversion of raw green coke to calcined coke involves multiple steps as 

shown in Figure 3. The initial step involves the transfer of raw coke into the calcining kilns, via the 

conveyer belts. Various types of kilns may be used for this step such as rotary kiln or hearth and 

shaft kiln. However, the rotary kilns are more common and are used worldwide but a few countries 

like China still use the shaft kilns (Hasanbeigi et al., 2013). The next step is heating of the petroleum 

coke (petcoke) at high temperatures in the kiln, between 1200 °C and 1350 °C (2192 to 2462 °F) to 

remove moisture, drive off volatile materials, increase the density of the coke structure, increase the 

physical strength, and increase the electrical conductivity of the material. This process also tends to 

result in the production of exhaust gases and particulate emissions in the atmosphere. To help 

maintain high temperatures during this process, natural gas or oil is used as a fuel which is later 

replaced by the self-combustion of the hydrocarbons with the addition of oxygen.  

 

 

  

 

 

 

 Figure 3 Calcination of Green Coke to Produce Calcined Coke (Edwards et al., 2015) Creative 

Commons Attribution License 
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Finally, the last step involves cooling of the calcined coke from high temperatures to about 200° C 

within hours, after which it is carefully handled and safely transported to storage facilities via trucks, 

shipping, or trains.  

1.4 Uses of Green Coke and Calcined Coke 

Petroleum coke (raw material for calcined coke) is widely used throughout the world as a 

fuel in thermoelectric power plants and as a raw material for cement industry including steal and 

lime industries, pig iron industry, cement kiln and power plants (Table 3) (Santos et al., 2015). On 

the other hand, calcined coke is the exclusive raw material for the fabrication and the production of 

aluminum anodes, with aluminum industries utilizing about 75 % of the total calcined coke. The 

calcined coke is also used as a recarburizing agent in steel industries, and in the production of 

titanium dioxide. Titanium dioxide is used in various household materials including paints, 

sunscreen, or as food coloring agents. The calcined coke is also used as a substitute for metallurgical 

coal in the production of coke batteries. A form of petcoke, needle coke, is the only compound that 

is used in the production of electrodes that are utilized in electric arc furnaces. Due to its low ash 

content, pet coke is also used in the glass and brick industries. 

Table 3 Applications to Green Petroleum Coke and Desired Quality of the Raw Coke 

Applications of the Green Coke Markets 

Raw material for calcination Aluminum and TiO2 

Carbon‐ based reducer Pig iron, Iron alloys, Carbides 

Raw material for coke kiln Foundry, Steel industries 

Fuel Cement kiln, Lime industries, Power plants 
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1.5 Variability in Emissions from Petrochemical and Calcining Industries 

 “Petroleum industries” is a broad term referring to the storage, transfer or the processing of 

petroleum products (Figure 1 for listing of all the major processes occurring in a petroleum plant); 

and hence involves use of various different raw and processed products such as 2-3 % of calcined 

coke and (Figure 4).  

                        

Figure 4 Percentage of Green Petroleum Coke Formed from crude oil (Edwards et al., 2015) 

Creative Commons Attribution License 

Furthermore, each raw/ processed product involved in these industries has a varied level of 

hazard potential (see section above for details, Clark et al., 2013). The last few decades have seen a 

surge in the extraction of crude oil due to higher market demands for gasoline and diesel, further 

resulting in greater processing of crude oil and production of by-products such as petroleum coke.  

On the other hand, the coke calcining industry usually refers to the standalone process of 

producing calcined coke from green coke. For most purposes, green coke is an inert substance and 

the health hazards assigned to green coke are mostly associated with the Particulate Matter (PM) 

exposures produced during calcination (McKee et al., 2014). The high temperatures required for the 
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process of calcination and the further processing of the gases in a combustion chamber, sometimes 

referred to as a pyro scrubber, provides sufficient heat that eliminates the majority of the emissions 

including volatile organic compounds and combustible particles. This process can result in emission 

of pollutants such as sulfur impurities in the air if the process and the conditions in the facility are 

not controlled properly. 

 Though calcined coke has shown low hazard potential in human populations due to low 

volatile content, there remains some public health concern regarding the emissions from these 

facilities.  Handling and storage of raw petcoke and calcined coke has the potential to produce 

particulate emissions due to the transfer of these materials and wind induced suspension of smaller 

particles.  If not appropriately controlled, the calcination process could lead to the excess production 

of particulate emissions from either handling or storage of raw coke, or from the stack gases during 

the production of calcined coke.   

 Most of the epidemiological studies have analyzed the ambient PM and its association with 

acute respiratory effects including asthma, exacerbation of asthma symptoms, increase or decrease 

in medication use, hospital or emergency ward admissions. In addition, majority of these 

epidemiological studies examined the effect of mixture of pollutants from a “petrochemical” 

industry and its effect on individual concentration and health effects. Both co-pollutant and multi-

pollutant methods have been utilized in the past to derive the exposure concentrations of such 

pollutants. Specifically, the studies examining the effect of multiple pollutants at a single period of 

time are plagued by various factors hampering the strength of association measured in the study. 

These include but are not limited to factors that affect pollutant inter and intra variations, unknown 

pollutant that may act as a confounder, multiple pollutants that may interact with each other and 

produce variable health effects, and exposure uncertainty. 
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1.6 Motivation of the Current Study 

This study was designed to evaluate the emissions of petroleum coke calcining facility and 

examine the public health concerns from the processes engaged in the handling and storage of green 

coke during the calcining process. Most of the previous studies have researched the risk from 

petroleum industries emissions and risk from calcining facility as a part of “petroleum industries” 

and not as a stand alone process. This research study is designed to characterize the risk specifically 

from calcining facility and processes involved in the facility.  

 

1.7 Aims and Hypothesis 

Aim 1: To examine whether the Particulate Matter generated from the calcining process in a 

petrochemical facility associated with any public health risks? 

Hypothesis 1: We hypothesized that the Particulate Matter produced during the calcining process 

would not pose threat to the public health. 

Aim 2: To examine whether the gaseous emissions of a calcining facility engaged in the handling and 

storage of green coke lead to any public health risks? 

Hypothesis 2: We hypothesized that the gaseous emissions from the calcining facility would not 

adversely effect the health of the public community. 

Aim 3: To examine whether the epidemiological studies investigating the effects of pollutant 

emissions from the petrochemical industries accurately represented the risk to the affected 

population, in terms of morbidity and mortality? 

Hypothesis 3: We expect that past epidemiological studies adequately represent the risk associated 

with petroleum industries in the affected population. 
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CHAPTER TWO: 

LITERATURE REVIEW 

 

 

2.1 Pollutant Constituents and the Regulatory Standards  

 

The National Ambient Air Quality Standards (NAAQS) are set up by regulatory agencies 

that estimate potential magnitude of ambient air pollutant levels leading to adverse health effects 

(morbidity and premature mortality), on exposed population. The standards are developed by the 

Environmental Protection Agency (EPA) to understand the potential impact of various pollutants 

and assess the risk from those pollutants. NAAQS include primary and secondary standards. Primary 

standards are meant for protection of sensitive populations including children, asthmatics and older 

population. Secondary standards are helpful for public welfare including protection to animals, 

crops, and buildings. Such standards help in obtaining estimates in risk assessment from the ambient 

air pollutants on the human and animal population. The standards are set for six pollutants, known 

as criteria pollutants that are revised and reviewed periodically. Four criteria pollutants (PM10, SO2, 

NO2, and CO) out of six were measured and compared for this research study. Table 4 shows the 

four criteria pollutants and regulatory standards used to compare with the measured concentration 

of the emissions from the calcining facility. 
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Table 4 National Ambient Air Quality Standards (NAAQS) for CO, NO2, PM10, and SO2 

Pollutant 

 

Primary/  

Secondary 

Averaging 

Time 

Level Form 

Carbon Monoxide (CO) 

 

Primary 8-hour 9 ppm Not to be exceeded more than once per 

year 

1-hour 35 ppm 

Nitrogen Dioxide 

 

 

Primary 1-hour 100 ppb 98th percentile of 1-hour daily maximum 

concentrations, averaged over 3 years 

Primary and 

Secondary 

Annual 53 ppb Annual Mean 

Particulate Matter 

(PM10) 

Primary and 

Secondary 

24-hour 150 μg/m3 Not to be exceeded more than once per 

year on  average over 3 years 

Sulfur Dioxide 

 

Primary 1-hour 75 ppb 99th percentile of 1-hour daily maximum 

concentrations, averaged over 3 years 

Secondary 3-hour 0.5 ppm Not to be exceeded more than once per 

year 

  

 2.1.1 Regulatory Standards for Particulate Matter (PM10) 

Particulate matter or PM is a mixture of particles and liquid droplets that are composed of 

multiple components including chemicals, metals, or dust particles. The PM is mostly classified on 

the basis of their aerodynamic properties since such properties ascertain the transport and removal 

of PM from air and govern the ability to deposit in the lungs. Particles are described according to 

their aerodynamic diameter, known as particle size. The potential to cause risk is directly 

proportional to the size and shape of the particles. There are two most commonly categorized types 

of PM. The particles with size range between 2.5 and 10 microns are known as “coarse particles” 

and those less than 2.5 microns are labelled as “Fine particles”. The inhalation to such particles is a 

health concern since particles of less than 10 microns have the ability to travel over long distances 
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and have the ability to lodge in deeper sections of the lungs with smaller size particles having more 

propensity to travel and deposit than the larger size particles. The smaller size particles largely 

consist of aerosol, metal particles, combustion emissions and organic vapors while the larger or 

coarse particles are largely composed of dust emissions from roads, agricultural and mining 

processes, and construction activity (WHO, 2005). The particles that are less than 2.5 µm in diameter 

are more likely to result in greater health risk since they have the ability to lodge in the deeper 

sections of the lungs than PM10 particles. Shwartz et al. 1996 conducted a study on the effect of 

PM2.5 and PM10 on the daily mortality in six US cities for 8 years. The study showed that though 

positive association was observed for exposure to PM10 and PM2.5, the strongest association was 

observed for PM2.5 and 10 µg/m3 increase in PM2.5 was associated with 1.5 % higher daily 

mortality. The study showed that particle size in the range of 2.5 µm is more specifically associated 

with health effects than larger size particles. The study done by Pope et al. 2002 showed that health 

effects including cardiopulmonary effects and carcinogenic potential were higher for increased 

exposure to PM2.5 than other size particles and mortality was not significantly associated with 

exposure to coarse particles.  

 The health effects from the particulate emissions is dependent upon the chemical 

composition as well as the size of the particle. Combustion of petroleum and petroleum products 

may produce coarse particles from the non-combustible products such as ash, vaporized metals, and 

secondary particles from the mixture of gases (SO2, NOx) released during the petroleum processes 

(WHO, 2003). The Coarse particles may be produced by multiple activities including inadequate 

storage and handling of raw materials, crushing and grinding operations and activities from roads 

and construction nearby the petroleum industries. The majority of particulate emissions from the 
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calcining facility are in the form of coarse particles with less propensity, than smaller fine particles, 

to travel over long distances and lesser ability to reach deeper parts of the lungs.  

Adequate information about particulate emissions and gaseous pollutant from the calcining 

facility may help in characterizing the toxicological properties of petroleum coke and its constituents 

and further evaluate the potential health risks. Since 1960, public health agencies have tried to 

develop approaches to establish regulatory standards for the protection from pollutant exposure that 

may lead to adverse health effects. The standards have since then been more focused on inhalable 

particles than total suspended particles (TSP). The formulation of standards has also taken into 

account the long term and short term exposures and variable health effects from such exposures. The 

standards developed by National Ambient Air Quality Standards are based on available toxicological 

and epidemiological studies, with latest standards devised from about 200 epidemiological studies 

from US population and from laboratory studies conducted on PM. These standards are revised every 

five years to promulgate public health protection, with an adequate margin of safety (USEPA, 2006). 

While EPA has established short term exposure standards for both PM2.5 and PM10, for long term 

exposures, the standards are based on PM2.5 exposures rather than PM10 since controlling PM2.5 

has been associated with higher exposure to total inhalable particles than PM10 (USEPA, 2006). In 

addition, WHO has framed Air Quality Guidelines (ACG) for exposures to PM and the safety values 

are derived from the lowest concentrations that were able to assign any statistically significant risk 

in the epidemiological studies. These studies provide a high level of margin of safety for health 

protection since different industrial processes require different sources and thus may produce varied 

quality and quantity of pollutant emissions. This approach is based on the thought that the regulatory 

standards are not meant to eliminate ‘all’ risks but represent an ‘acceptable’ risk margins.   
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The epidemiological studies that are conducted on populations (both small and large) present 

with a conundrum of observing the exposure values, with statistical significance, above which the 

adverse effects would be seen. Also, these studies often may be inadequate to observe the lowest 

values below which no effects would be observed. Thus these studies have limited statistical power 

to ascertain the ‘threshold’ concentration for the health effects from PM exposure. Multiple 

Epidemiological studies conducted on large population data (Pope et al. 2002, 2009; Dominici et al. 

2003) were not able to observe any low concentration threshold for low exposures to PM2.5 

exposures and in the absence of any threshold values, suggested that adverse health effects may be 

observed in populations that are exposed to low PM concentrations. In accordance with the 

uncertainty stated above, WHO have proposed that regulatory standards that are promulgated cannot 

lead to ‘absolute’ protection since the threshold values cannot be ascertained. Thus, the exposure 

levels cannot be observed as clear-cut definite values and other confounding factors (multi and co-

pollutants, inadequate housekeeping practices, external factors such as dusty roads, construction 

etc.) need to be considered when assigning health effects from the measured pollutant 

concentrations. 

 The standard concentration for PM10 for 24-hour averaging period is 150 µg/m3 not to be 

exceeded once per year averaged over 3 years, and an annual average of 50 µg/m3. This annual 

standard was revoked by EPA effective December 17, 2006 due to lack of evidence linking health 

problems to long-term PM10 exposure. This standard is still used in other regions, including South 

America. 
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2.1.2 Regulatory Standards for Gaseous (CO, NOx, SO2) Emissions 

 Along with Particulate Matter, the calcining facility may produce mixture of gaseous 

emissions of CO, SO2, and NOx. These gaseous emissions may become a precursor for the 

formation of acid compounds including nitrates and sulfates (USEPA 2004). Majority of the gaseous 

pollutants are produced during the thermal processing of the green (raw) coke. The regulatory 

standards as set up by EPA are presented in Table 4.  

2.2 Petroleum Coke Toxicity 

 Though petroleum coke is generally stable, the products from its combustion may be 

flammable and may produce emissions leading to adverse effects. The combustion of a petroleum 

coke may may lead to emissions including CO, CO2, SO2, NOx, PM, and heavy metals. The amount 

of emissions depends upon the type and composition of the green coke (raw material) and the 

calcined coke (final product). This is shown in Table 1.  

Various animal studies and occupational studies have been conducted to identify any adverse 

health effects from petroleum coke. The toxicity of petroleum coke is dependent upon the type of 

the constituents of the petroleum coke mixture. The toxicity potential of petroleum coke is different 

from other mixtures, where individual toxicity can be summed up to calculate final toxicity of the 

material. But in the case of petroleum coke, the individual components are bound together tightly in 

the carbonaceous matrix. Thus, the toxicity of individual components in the pure form may not be 

summed when combined in a petroleum coke matrix, and studies may underestimate or overestimate 

the risk from the coke exposure. This is shown by various epidemiological studies and animal 

toxicological studies which have demonstrated low toxicity potential even at higher doses and high 

toxicity potential even at low doses.  
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 2.2.1 Animal Studies 

 Animal studies not only help to assign an acute risk but it may also help to ascertain the long 

term effects of the raw petroleum coke. In addition, high doses may be administered to the animal 

that is not possible in human trials. Various animal studies have been done to assign a risk to the 

petroleum coke exposure. Klonne et al. (1987) administered very high doses of green coke to test 

population of rats and monkeys and measure health effects, including carcinogenicity from exposure 

to green coke. When exposed to doses of 10.2 and 30.7 mg/m3 for 6 hours/day, 5 hours/week for 2 

years, no higher incidence of cancer was observed. Though these levels are about 750,000 times the 

values observed in petroleum industries and about 6 times higher than the recommended limit, only 

lung blackening was observed along with mild inflammatory reaction to dust collection in the lungs. 

Another study done by McKee and White observed no changes in physical properties and mortality 

rate in earthworms exposed to petcoke mixed with soil at 1:1000. Similarly, the tests done on plant 

growth (variety of corn, radish and soybean) showed no evidence of stunted growth when these were 

exposed to petcoke for a period of 21 days. (Mckee et al., 2014). In another study, when species of 

plants were exposed to pure petcoke and were exposed to real life scenario of exposure due to 

petcoke dispersal, no changes were observed on germination of seeds but stress symptoms were seen 

resulting in stunted growth and abnormal physical properties including lowered transpiration 

(Nakata et al., 2011). 

Another study was done with doses ranging from 23 to 199 mg/m3 and test animals were 

administered for 6 hours/day for 7 days. Exposure to green coke resulted in discoloration of the lung 

with mild hypertrophy of lung epithelium. Except for the effects mentioned, no other adverse health 

effects were observed in the test animals from exposure to green or calcined coke (Huntingdon Life 

Sciences 1999).  
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 Dermal exposure risk to green and calcined coke has also been studied by Hepler et al. 

(1982). The mice were exposed to 100 microliters of 25 % solution of green coke on the shaved skin 

of the animal, 3 times/week for a lifetime. Slight skin thickening along with pigmentation was 

observed in mice with no increase in skin carcinogenicity. To evaluate the carcinogenicity of the 

raw petcoke, inhalational studies were done on rats and monkeys (Klonne et al, 1987). When 

exposed to inhalational doses of 0, 10 and 30 mg/m3 for 6 hours/day for 5 days resulted in no excess 

in carcinogenic rate after 2 years. In another experiment dermal exposure to petcoke for thrice 

weekly and observed for 2 years resulted in no higher rate of tumor incidence (Hepler et al, 1982). 

These studies showed that petcoke exposure resulted in no higher carcinogenic rate.    

Tests were also conducted to ascertain the reproductive and developmental toxicity of 

petcoke in animals. Rats were exposed to inhalational micronized petcoke in doses of 0, 30, 100, 

and 300 mg/m3 for 6 hours/day for 2 weeks during periods of mating and gestation. The results 

showed that no adverse effects were seen in the animal population (Huntingdon Life Sciences, 

1999). The newborn also failed to show any developmental adverse effects when parents were 

exposed to inhaled petcoke. Similar tests were performed with same doses in parent rats and results 

showed that 3 out of 12 rats failed to conceive and one rat resulted in stillbirth (McKee et al., 2014). 

In another long term study for 2 years, monkeys and rats were exposed to raw petcoke and observed 

for 3, 6, 12 and 24 months. The results showed that no effects on body weight and mortality were 

observed in animal test subjects. Higher neutrophil and leucocytes count with lowering of 

lymphocytes was observed. These results were irreversible and dependent upon the duration and 

concentration of the dosage of raw petcoke Though some of the studies showed adverse effects, the 

majority of research studies concluded that exposure to petcoke does not possess any carcinogenic 

potential while observing low risk to developmental and reproductive effects.  
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 2.2.2 Occupational Studies 

 Majority of occupational studies have observed the effect of “petrochemical industries” 

while there is a lack of studies that have researched the risk of calcined coke on the workers 

employed in the petroleum industries. The research studies that have been published study the 

effect of all the pollutant emissions from the facility without regard to effect of individual 

constituent from the petroleum complex.  

 Various studies were conducted to observe the lung carcinogenic potential of coking process 

in cohort studies done in North America (Consantino et al., 1995; Lewis et al., 2003; Sakabe et al., 

1975; Wu, 1998; Chau et al 1993; Davies et al 1977; Hurley J.F. 1977). Table 5 shows the relative 

risk of lung and tracheal carcinoma in workers exposed to raw petcoke during the coking process. 

Higher risk of lung cancer was observed in worker studies in United States and China with Relative 

Risk (RR) ratio ranging from 2 to 4.4 but studies from UK, Japan and Netherlands observed lower 

RR that ranged from 0.8 to 1.4. Risk of prostatic cancer was highest in workers in studies done in 

US and Canada whereas no higher risk of carcinogenicity was observed in other countries (Caruso 

et al., 2015). Though as mentioned above volatile organic compounds are burnt during high 

temperatures that are employed in the calcining process, the workers employed in the process are 

still susceptible to gaseous emissions form the process itself. The workers that are employed at the 

top rather than workers who are employed at the side of the kiln are exposed to higher emissions 

exposure. 
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Table 5 Cohort Studies of Carcinogenic Potential of Coking Process in Workers 

Country No. of worker population Relative Risk 

US and Canada 15,818 2.0 

Canada 25,292 2.17 

Japan 2178 1.3 

China 21,995 4.4 

France 536 2.5 

UK 610 0.8 

 

 A study conducted by Divine et al. (1999a, b) observed the mortality from workers employed 

in the Texaco facility. The workers in the industry were exposed to multiple chemicals, including 

volatile organic compounds, petroleum coke dust and other heavy metals. The study subjects were 

refinery workers employed in the facility from 1947 till 1993 and increased cancer incidence was 

observed. The study showed that Standardized Mortality Ratios were slightly higher for workers in 

coking unit as compared to other workers though the result was not statistically significant.  In 

addition, no statistically significant results were observed in the workers employed in delayed coking 

units or in those who were employed in coking units for more than 5 years.  

Another study was done by Lipscomb and Lee (1983) of the workers employed in a 

petroleum coke facility in Port Arthur, Texas. 90 employees were recruited for spirometry and chest 

x-rays. Questionnaires were given to workers to report incidences of health effects. The results were 

compared with the area and personal samples of PM, silica dust and PAH’s. The average PM 

concentration and respirable dust concentration was 3.4 mg/m3 and 0.44mg/m3, respectively. Nine 

employees had abnormal spirometry function tests with 5 questionnaire reporting chronic bronchitis. 

The cancer deaths that were observed in the workers were not statistically significant. Though the 



 

 21 

study reported abnormal lung function tests, no control group was selected to compare observed 

lung effects in the unexposed population.  

 Though cigarette smoking is most commonly associated with certain lung diseases such as 

COPD, occupational exposures have been attributed in about 20 percent of the cases. One study 

observed the incidence of COPD in workers employed in the coking process. The results showed 

5.8 percent increase in risk of COPD in workers who were employed in the coking process (Hu, Y. 

et al., 2006). In another large cohort study done in United States, the incidence of non- malignant 

lung condition was observed. The study observed 2.2 times higher risk of lung conditions in workers 

in coke oven factories (Redmond C.K., 1983). 

 

2.3 Risk Assessed in Epidemiological Studies from Petrochemical Industries 

 Various studies have observed the effect of PM emitted from petrochemical industries on 

human health. These studies have included both acute as well as chronic effects on respiratory and 

cardiovascular health of the exposed populations. The studies have assessed the role of PM and 

gaseous pollutants from combustion and mobile sources in producing cardiovascular and respiratory 

health effects. Mortality studies have assessed the number of deaths occurring for particular time 

periods and the exposure levels during those periods. Morbidity studies have involved the study of 

hospital admission rates, symptoms, disease, levels of lung functions or restricted activity.  

 

2.3.1 Petrochemical Industry and Pollutant Emissions 

 The pollutant emissions (PM, VOC's or gaseous content) in an industrial area is not a 

function of presence or absence of the facility but is dependent upon various other factors including 

contribution by anthropogenic sources, effectiveness of control factors maintained by the facility 

etc. Various studies have examined the association of petrochemical industries in the residential 
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areas and the health effects in the respective population, including children. (Rovira et al., 2014; 

Mukesh et al., 2004; White et al., 2009; Smargiassi et al., 2009; Wichmann et al., 2009; Brunekreef 

B.et al., 1995; Gauderman et al., 2005). 

 Rovira et al. (2014) studied the effect of oil refinery emissions on the asthma symptoms and 

lung function in children residing near the petrochemical areas. The study showed that the population 

residing in the petrochemical areas had more episodes of respiratory symptoms (cough) and higher 

hospitalization rate as compared to the control population but no higher symptoms of asthma was 

noted.  Mukesh et al. (2004) observed the effect of PM10 and PM2.5 levels on the levels of FEV1 

and FVC in Kanpur, India. The study measured the lung functions from three different locations 

with varied exposure to PM. The PM concentration in these areas ranged from 184 to 295 µg/m3. 

The study showed that subjects in areas of higher exposure had more reduction in Peak Exploratory 

Flow Rate (PEFR) per unit increase in PM10. Gauderman et al. (2005) studied the effect of ambient 

air pollution on the growth of lung function and change in FEV1 among age groups of 10-18 years 

for a period of eight years. The study stated that exposure to ambient air pollution led to significant 

deficits in FEV1 in study population. Another study showed that with increase in air pollution levels, 

the prevalence of respiratory symptoms increased significantly in respiratory compromised patients 

though no such significance was found in the population without PEF variability (Boezen, 1998).  

 Wichmann et al. (2009) observed morbidity indicators namely asthma rates, asthma 

exacerbations, respiratory disease symptoms and decrease in lung function in residents surrounded 

by the petroleum complex. The study found a positive association between ambient air pollution and 

decrease in respiratory health.  Some studies though have related the association between pollutants 

and negative effects on lung functions, these do not describe to what extent exposed and unexposed 

are in contact with the air pollutant. Smargiassi et al. (2009) studied the effect SO2 from point 
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sources on asthma hospitalizations near petroleum refineries in Montreal, Canada. Though the study 

pointed out the short term exposure to SO2 led to higher rates of asthma hospitalization, the exposure 

group (children aged 2-4) did not represent the exposed groups in the study. The study is performed 

on the children who are presumed to be 'exposed' to the ambient air pollution. The very observation 

that the exposed group spent most of their time inside homes, it does not represent an actual exposure 

group which undermines the association derived in the study. White et al. (2009) studied the effect 

of vicinity to petrochemical refinery and the development of asthma symptoms. The study found 

that prevalence of asthma symptoms was higher in the children due to presence of the petroleum 

refinery in the area. In the study the groups of 'disease' and 'non disease' are framed on the 

questionnaire obtained from students. Such procedure of ‘measuring’ disease is not representative 

of the actual exposure and outcome and can under or over-estimates the outcome being measured. 

When the studies especially the cross sectional studies observe the association of one-time 

measurement of air pollution level with adverse health effects, they may be inadequate to quantify 

the levels of air pollutant associated with the health effects or quantify the threshold levels of PM 

which would result in changes in lung function.                

 

2.3.2 Single Pollutant and Multiple Pollutant Exposures  

 Ambient air pollution is due to conglomerate of multiple sources and pollutants. In the 

studies which have one pollutant models, the association may be of significance since they do not 

interact and act an independent risk factor but most of the pollutants do not act independently for 

the outcome and may have a correlation (positive or negative) with other pollutants.  Atkinson et al. 

(1999) noted that in one-pollutant models PM10, NO2 and SO2 were significantly associated with 

increase in asthma cases but when the pollutants were studied in a multi pollutant model i.e. when 
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the pollutants were added to another pollutant, statistical significance decreased thereby suggesting 

these pollutants may not act independently in the ambient atmosphere.  

  Some studies have tried to measure the individual effects of the air pollutants and their 

association with health effects. It is difficult to separate the health effects of the air pollutant 

individually because of correlation. This was observed by Ilabaca et al. (1999) study while observing 

the effects of the particulate fine particles on the respiratory health of children. The impact of the 

pollutant then cannot be observed in seclusion but the admission that multiple pollutants may act as 

confounders, is required while deriving outcomes of health effects.  

 The epidemiological studies have assessed the role of acute exposure, and have related small 

time changes in exposure to the acute adverse effects. Maestrelli et al. (2001) showed that increase 

in PM10 concentrations was associated with increase in SGRQ and ACT scores in asthmatic 

patients. In addition, the presence of the facility by itself is not a risk factor for the occurrence of 

health effects observed in the population but it is dependent upon the amount of air ambient 

pollutants. It is important to recognize sources of those pollutants since it would help the regulatory 

agencies to localize the source and control the emissions. Loyo-Berríos, N.I. et al. (2006) noted that 

asthma cases living near the air pollution sources showed higher risk of asthma attacks, the odds 

ratio ranged from 1.28 and 1.44 for the asthmatic cases as compared to non-asthmatic controls. In 

the study, exposure group (cases) were asthmatic children whose asthma exacerbations were 

attributed to air pollution sources but no information was provided on the specific sources of 

pollution. Wichmann et al. (2009) specifically studied the role of PM and volatile organic 

compounds (VOC) in region of La Plata, Argentina. The study measured PM10 and VOC in the area 

for 4-week period in winter months of 2005 and 2006. The study found that children living near the 

petrochemical industrial areas had higher asthma rates and asthma exacerbations with lowered FEV1 
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than in the non-industrial areas. The study measured the total PM10 concentrations from all sources 

without individual contributions of the petroleum, industrial and human activity sources.  

 Jedrychowski et al. (1999) study in Poland found lowered lung growth and decrease in FEV1 

values in preadolescent children exposed to ambient air pollutants. Along with studying the outdoor 

pollution from sources such as traffic, indoor air pollutants were also studied including social factors 

such as gas fumes and tobacco smoke. The study showed higher proportion of test subjects which 

were exposed to outdoor and indoor air pollution had slower lung function growth.  

 Epidemiological studies have observed an exposure response characterization that may 

demonstrates higher morbidity rates at levels below current regulatory standards or an exposure 

response that can be used to inform risk assessment (Frye et al., 2003; Peng et al, 2009; Dominici et 

al., 2006). In addition, most of the epidemiological studies that measure the ambient surrounding 

attempt to recognize the importance of outdoor and indoor air quality in calculating the actual 

exposure. The risk assessment from these studies is dependent upon the average concentrations from 

multiple monitors installed at varied places. Such risk assessment studies may lead to under or over-

estimation of air pollution adverse effects. Also, it is difficult to assign the exposure to subjects who 

are divided into cases and controls in various epidemiological studies including the studies that 

utilize hospital admission rates as an outcome of ambient air pollution effect. Frye et al. (2003) 

observed the effect of air pollutants (Total Suspended Particles, SO2) on the school children residing 

in East Germany. The study subjects were school children from 6th grade and cross sectional surveys 

were undertaken from 1992- 1999. Annual mean concentration of TSP and SO2 were collected from 

monitors at 3 sites. Along with the respiratory tests, questionnaires were completed by parents 

recording adverse respiratory signs or symptoms. The study showed that decrease in air pollutant 

levels resulted in an improvement in lung function tests with lowering of FVC that was statistically 
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significant. No statistical significance was observed with effects on FEV1. Dominici et al. (2006) 

calculated the hospital admission rates associated with PM2.5 and found a positive association for 

respiratory diseases. The hospital admission rates measured by Dominici study though have 

estimated an association but such studies are confounded by multiple factors (publication bias, 

regional variability and misclassification of disease) and may not be adequate in assigning individual 

health exposures and risks. Also, it is debated as to what extent does exposure data represent the 

actual exposure to measure the outcome (changes in lung function, asthma exacerbations etc.) and 

how well does they represent the differences in the study population (cases or controls, exposed or 

non-exposed). Also, with inadequate assessment of the exposure, epidemiological studies vary on 

the methods on which the study populations are selected (depending upon the exposure), which may 

confound the association between exposure and the outcome. 

2.3.3 Petrochemical Industries and Study Protocols 

 Studies have often utilized questionnaires and other similar approaches (health insurance 

claims) to associate lung function tests and exposure to petrochemicals industries (Ware et al., 1993; 

Yang et al., 1998; Loyo-Berríos et al., 2007; Moraes et al., 2010; Rusconi et al., 2011). Ware J.H. et 

al. (1993) used questionnaire to study the incidence of respiratory symptoms in children residing in 

areas surrounded by petrochemical industries. The exposure was calculated for collective petroleum 

compounds specific to the industry. The study showed that higher emissions were associated with 

increased rates of respiratory symptoms. Yang et al. (1998) and Rusconi et al. (2011) compared the 

symptoms in children residing in areas surrounding petrochemical industries with children living in 

areas without petrochemical complex. The incidence was measured by questionnaire answered by 

the parents. The results showed that children living in areas with petrochemical complex had higher 

rates of respiratory symptoms. In another study done by Loyo-Berríos et al. (2007), health insurance 
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and medical insurance claims were compared with the population residing in the areas with 

petrochemical industries and showed that people living near petrochemical areas had higher 

incidence of asthma attacks.  

Epidemiological data from air pollution studies are plagued by unknown confounders while 

measuring exposures that skew the results of statistical analysis. When the epidemiological studies 

evaluate the effect of one-time measurement of air pollution levels, the data may be inadequate to 

quantify the amount of air pollutants which are associated with the health effects or levels which 

would result in change in lung functions. These studies, though have observed an association 

between pollutants and negative effects on lung functions, do not adequately describe to what extent 

‘exposed’ and ‘unexposed’ population are in contact with the pollutant. 
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CHAPTER THREE: 

METHODOLOGY 

 

3.1 Calcining Facility-Copetro    

 This research study was conducted to examine the risk associated with a calcining facility in 

a residential area and further evaluate the role of this facility on total pollutant load in the 

environment. Copetro plant is located within the port of La Plata in eastern Argentina and is 

surrounded by the residential communities of Ensenada and Berisso on west and southeast, 

respectively. The long and narrow property containing the facility abuts west side of the shipping 

canal and has a south-southwest to north-northeast orientation. From a turning basin at its south-

southwestern terminus, the shipping canal extends north-northeast to the city of Rio de la Plata 

(Figure 5).  

 

 

 

 

 

 

Figure 5 Copetro Calcining Facility Complex  
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 The facility produces about 444,000 short tons per year of calcined coke. The area also has 

an oil refinery that supplies green petroleum coke, Petroquiem (oil refinery), industrial ports and 

areas, with large population communities surrounding the facilities. We considered the 

meteorological data while evaluating the emissions of this facility. The general direction of the air 

flowing over the weather station located in the calcining facility is towards urban areas, and it first 

passes over the River Plate (influenced by its interaction with the water) and then, over a narrow 

surface on the shore, between the river and the weather station. The air towards the monitors flows 

first over the urban areas surrounding the facility. As mentioned previously in the paragraph, there 

is an oil refinery proximate to the area where the calciner resides and hence there are multiple sources 

of pollution in the area including the refinery, sand and gravel storage and transport, and other 

industrial activities. 

 

3.2 Measurement of Pollutants 

 

 The emission constituents that were evaluated included PM10 and gaseous emissions of CO, 

SO2, and NOx. Volatile Organic Compounds (VOC) were not recorded from the facility since the 

petroleum plant does not produce any semi-volatile organic compounds from the kiln stacks or from 

the raw petroleum coke. These semi-volatile compounds are efficiently combusted and destroyed 

during the calcining process. High temperatures from the gas burners lead to the combustion of the 

vaporized materials from the raw coke into an amorphous form.  

 Both measured and modeled emissions from the kiln stacks, as well as actual ambient air 

monitoring was conducted for the above mentioned pollutants. Ambient air quality PM10 

monitoring data was collected continuously by three tapered element oscillating microbalance 

(TEOM 1400) monitors, and one multi-angle absorption photometer (MAAP) monitor at various 
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locations surrounding the facility. Air data collection for year 2009 was conducted by the Center for 

Environmental Investigations (CIMA by its Spanish acronym). For the period of 2010 through the 

second quarter of 2013, air data was collected by the facility under the direct supervision of The 

Provincial Agency for Sustainable Development (which acts as the regulatory agency and is known 

as OPDS by its Spanish acronym). For the third quarter of 2013 through second quarter of 2014, air 

data was collected by the Geochronology and Isotopic Institute (INGEIS by its Spanish acronym). 

As part of the data collection activities, CIMA utilized three TEOM 1400 monitors, two 

HI-Vol PM10 monitors, and a MAAP monitor to measure the ambient air quality at various 

locations surrounding the calcining facility. The TEOM 1400s and MAAP monitors were used for 

PM10 monitoring by the calcining facility at various locations from 2010 through the first half of 

2013. INGEIS continued to use the same monitors at various locations around the facility for the 

second half of 2013 till the present date. The locations and distance of these monitors have varied 

over time with the nearest location just at the entrance of the facility and the furthest at 1,190 

meters from the calcining facility. TEOM monitors measure continuous ambient air quality values, 

while Hi-Vol samplers are based on 24-hour samples that are typically taken on 3 or 6 day 

intervals.   

Periodic stack testing was also done by the Calcining facility to monitor PM, NOx, CO and 

SO2 emission rates from the two ovens from 2011 through the third quarter of 2014. The kiln 

stack samples were collected using the EPA Conditional Test Method (CTM) 022/030. The rates 

of pollutant emissions were then input into an air dispersion model along with 5 years of 

meteorological data. The EPA’s AERMOD model (Version 07026) was used with hourly 

meteorological data to predict PM emission impacts at ground-level receptor locations for 24-hour 

averaging periods. AERMOD is a Gaussian plume model that calculates impacts at each receptor 
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for each hour in the meteorological data set (typically a full year of data) and it provides maximum 

ground-level concentrations for point sources such as the two Kiln stacks. It also predicts 

concentrations in the cavity zone and uses Building Profile Input Program (BPIP) data to simulate 

the influence of proximate structures to estimate the downwash effects. The results of the 

modeling were compared to the ambient air quality sampling efforts discussed above as well as 

local and USEPA ambient air quality standards. (EPA, 2004). The gaseous pollutants were 

modeled using AERMOD model to calculate 3-hour and 1-hour concentrations. 1-hour 

concentrations were compared with the USEPA and Argentina standards. 

The measured and modeled particulate levels in ambient air from the calciner facility were 

compared to standards protective of public health risk. For the year 2009, in addition to comparison 

with the USEPA regulatory standards, variable analysis by calculating minimum, maximum, and 

median values of the 24- hour PM10 concentrations was done. Similarly, for Year 2009 till third 

quarter of 2014, quarterly analysis by calculating minimum, maximum and average of monthly 

PM10 at monitors TEOM 3, 4 and 5 was done. Tabular analysis of PM10 values was also done that 

were higher than the regulatory standards of 150 µg/m3 at all three TEOM locations.  

3.3 Analysis of Epidemiological Risk Assessment Studies 

 The epidemiological studies examining the pollutant levels help in understanding pollutant 

exposure levels that may be expected to produce adverse health effects or demonstrate the levels at 

which higher risk may be expected. Majority of the epidemiological studies have examined the 

ambient PM and its association with acute respiratory effects including asthma, exacerbation of 

asthma symptoms, increase or decrease in medication use, hospital or emergency ward admissions. 

Epidemiological studies that have attempted to evaluate the effect of multiple pollutants, the 

correlation among these pollutants may change the power of association than when measured for 
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individual pollutants. Further, the air pollution studies are plagued by the presence of unknown 

confounders that may tend to skew the results of statistical analysis. Therefore, there is no one 

correct approach to assess the exposure levels of the individual pollutants that can appropriately 

assess the exposure-outcome association.  

We evaluated the epidemiological studies exploring the exposure levels of the modeled SO2, 

CO, NOx and PM10 concentrations from the calcining facility and assessed whether these levels fall 

below the public health air quality standards. The risk assessment of the ambient air emissions would 

depend upon a meaningful study population selection and clear diagnostic criteria which would have 

the analytic power in obtaining reliable exposure measurements. Thus, we carefully reviewed the 

epidemiological studies to assess if the levels that assign risk in these studies adequately correlate 

with the standards that are promulgated to protect public from adverse health effects from the 

petrochemical emissions. Inclusion criteria for the epidemiological study review included studies 

where the exposure was directly from the petrochemical industry and where risk was assessed in 

terms of adverse respiratory health effects (asthma incidence, asthma exacerbations, changes in lung 

function levels, other respiratory symptoms, lung cancer or mortality from lung cancer etc.). 

Informal PubMed search was conducted using terms: oil refinery, petrochemical industry, calcining, 

and petroleum coke workers with no filters for publication year. Additional studies were selected 

from the identified research studies references. Studies published in peer-reviewed journals and in 

English language only were included 
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CHAPTER FOUR:  

RESULTS 

 

4.1 Particulate Matter Emissions from the Calcining Facility 

          The PM10 concentration contributed by the Copetro facility was measured according to the 

wind speed and wind direction of the emissions from the facility. If the wind direction was in the 

way of the Copetro facility, such that the wind traversed the monitors, then the relative PM 

pollution was measured from the facility’s kiln, silos, loading-unloading of raw coke, and 

conveyor belts. If the wind did not traverse through the facility site location, then the facility 

contribution to the total PM concentration was assumed to be minimal.  

Table 6 24 –Hour PM10 levels for year 2008 
 

Location  Date  
 

Total   

Petrochemical 

industry wind  

contribution* 

Location  Date    Total  

Petrochemical 

industry wind 

contribution* 

Francia  

y  

Almafuerte 

  

  

6/13/2008  58.4  <1  
Entre Rios  

  

  

  

  

10/6/2008  81.5  14.6  

6/7/2008  54.5  31  6/14/2008  73.6  -  

6/14/2008  48.6  <1  11/26/2008     70.3  -  

5/31/2008  48.6  15  10/22/2008  61.2  41  

7/14/2008  45.2  43  11/27/2008  59.3  16  

  

San Luis  

  

  

  

  

10/6/2008  87.7  15  
Santa Fe  

  

  

  

  

11/6/2008  119.6  89.2  

10/11/2008  59.6  -  11/7/2008  107  63.7  

10/5/2008  55  3  11/8/2008  99.2  61.2  

10/9/2008  54.7  0  11/26/2008  93.1  69.7  

10/10/2008  43.4  0        

* Concentration in µg/m3 
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 The levels of PM10 for the year 2008 were monitored at four different locations, Entre Rios, 

Francia y Almafuerte, San Luis, and Sante Fe as shown in Table 6. The table shows that at the 

Entre Rios, Copetro contribution was about 18 % (14.6 µg/m3) to the highest PM10 concentration 

recorded at the site (81.5 µg/m3). For the 2nd highest PM10 concentration (73.6 µg/m3), Copetro 

contribution, in accordance to the wind direction, was negligible with less than 1 µg/m3. At Francia 

y Almafuerte and San Luis, Copetro contribution was 43 µg/m3 and 15 µg/m3 respectively, with 

respect to the highest PM10 concentrations recorded in the area. At Santa Fe, the highest PM 

contribution was 119.6 µg/m3 with Copetro contributing about 75 % of the emissions.  

Table 7 24-Hour PM10 Concentrations Measured by Hi-Vol and TEOM in 2009 

   Date Hi-Vol 

 

(µg/m3) 

TEOM 

 

(µg/m3) 

Calcining Facility 

Contribution 

(%) 

Non-Calcining 

Facility Contribution 

(%) 

Monitor 

164 m 

from 

facility 

(Site A) 

6/1/2009 219 92 38 62 

12/1/2009 124 79 75 25 

18/01/2009 115 56 98 2 

24/01/2009 145 88 48 52 

30/01/2009 19 30 64 36 

  5/2/2009 50 39 4 96 

  11/2/2009 55 62 70 30 

  18/02/2009 48 53 57 43 

  24/02/2009 65 51 43 57 

   Date Hi-Vol 

 

(µg/m3) 

TEOM 

 

(µg/m3) 

Calcining Facility 

Contribution 

(%) 

Non-Calcining 

Facility Contribution 

(%) 

Monitor 

485 m 

from 

facility 

(Site B) 

6/1/2009 167 75 49 51 

12/1/2009 122 49 33 67 

18/01/2009 71 38 94 6 

24/01/2009 94 46 23 77 

30/01/2009 24 25 46 54 

  5/2/2009 46 30 3 97 

  11/2/2009 56 42 70 30 

  18/02/2009 24 24 13 87 

  24/02/2009 42 34 29 71 

 

Table 7 shows the measured 24-hour ambient air quality concentrations for PM10 of Hi-Vol and 

TEOM samplers for the year 2009. The monitors (Hi-Vol and TEOM) were located at 164 meters 
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and 485 meters from the facility. Table 8 analyzes the concentrations of PM10 from Hi-Vol and 

TEOM samplers as measured in Table 7 and shows that highest concentration of 219 µg/m3 was 

recorded by Hi-Vol monitors while the highest concentration recorded by TEOM monitors was 92 

µg/m3. Similarly, for monitors installed at the distance of 485 m recorded highest concentration of 

167 µg/m3 at Hi-Vol monitors and 75 µg/m3 at TEOM monitors.  

Table 8 Analyses of 24-Hour PM10 Concentrations in 2009 

Site A 

Hi-Vol TEOM 

Site B 

Hi-Vol TEOM 

(µg/m3) (µg/m3) µg/m3 µg/m3 

        

Min 19 30 Min 24 24 

Max 219 92 Max 167 75 

Median 65 56 Median 56 38 

Half of Max 109.5 46 Half of Max 83.5 37.5 

Sqrt 14.8 9.5 Sqrt 12.9 8.7 

 

      Table 9 and figure 6 shows the PM10 concentrations as measured from 2009 through the 

3rd quarter of 2014 at TEOM 3 location. This monitor is located at the La Paz, Ensenada location 

which is about 889 meters from the calcining facility.  
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 Table 9 Monthly 24-hour Average of PM10 for TEOM 3 for Time Period-1st Quarter 2009 

Through 3rd Quarter 2014 

 
Period TEOM 3 

Year Quarter Avg. Min Max 75th 

  1st 28.9 2.4 103.6 35.3 

  2nd 37.6 6.3 177.2 45.7 

2009 3rd 26.3 7.8 124.3 30.2 

  4th 23.8 7.6 68.3 26.6 

  1st 23 7.6 57.4 29 

  2nd 26.1 6.1 80 32.1 

2010 3rd 28.5 3.5 92.7 33.2 

  4th 27.7 11.7 86.9 31.6 

  1st 23.9 11.4 53.2 27.5 

  2nd 39.9 9.2 210.3 50.2 

2011 3rd 38.9 9.4 133.6 60.3 

  4th 28.2 12.1 53.4 34.6 

  1st 26.6 10.1 65.8 31.1 

  2nd 30.7 6.8 70.6 38 

2012 3rd 25.5 5.4 61.1 27.4 

  4th 25 6.8 88.8 29.8 

  1st 21.5 5 50.8 24.9 

  2nd 28.3 7.3 65.8 34.5 

2013 3rd 26.2 8.6 79 36 

  4th 25.5 8.2 58.1 31.4 

  1st 20.2 6.5 48.3 24 

  2nd 29.1 10.5 71.9 37.1 

2014 3rd 29.9 13.2 105.4 34.1 

 

The observations were done every five minutes per monitor, thus averaging 288 observations 

for 24- hour period. The maximum 24-hour average PM10 concentration was 210.3 µg/m3 in year 

2011 while the average concentration for each quarter ranged from 23.0-39.9 µg/m3. 
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Figure 6 24-hour PM10 Average for TEOM 3 monitor 

Table 10 and figure 7 shows the PM10 concentrations as measured from 2009 through the 

3rd quarter of 2014 at TEOM 4 location. This monitor is located at the Puerto Puesto, Berisso 

location which is about 813 meters from the calcining facility. The observations were done every 

five minutes per monitor thus averaging 288 observations for 24- hour period. The maximum 24-

hour average PM10 concentration was 195.1 µg/m3 in year 2011 while the average concentration 

for each quarter ranged from 15.5-54.0 µg/m3. 

 

Table 10 Monthly 24-hour Average of PM10 for TEOM 4 for Time Period-1st Quarter 2009 

Through 3rd Quarter 2014 

                                            TEOM 4 

Year Quarter Avg Min Max 75th 

  1st 37.5 12.2 88.4 42.7 

  2nd 36.3 6.5 168.2 39.3 

2009 3rd 36.2 5 101.4 43.7 

  4th 34.2 12.8 63.5 37.6 

  1st 41.5 12.7 115.1 51.7 

  2nd 54 8.2 139.9 72.7 

2010 3rd 40.1 5.3 158.1 49.7 

  4th 40.3 16.4 85 50.2 
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   TEOM 4   

Year Quarter Avg Min Max 75th 

  1st 39.4 6.1 102.8 48 

  2nd 56.5 11.6 195.1 76.1 

2011 3rd 46.7 10.5 156.5 57.6 

  4th 28.3 6.7 155.1 36.7 

  1st 24.9 10 70 28.5 

  2nd 22.5 5.2 81 27.5 

2012 3rd 33 6.9 164.5 33.4 

  4th 33.2 5.5 122.2 45.2 

  1st 30.8 8.1 61.2 40.6 

  2nd 24.9 6.7 81.7 29.3 

2013 3rd 27.8 3.9 90 40.7 

  4th 28.2 5.5 182.9 32.2 

  1st 20 6.2 75.3 24.8 

2014  2nd 15.5 2.2 44.4 19.2 

 3rd 15.8 7.1 44.5 18.4 

 

 

Figure 7 The 24-hour PM10 average for TEOM 4 monitors 

 Table 11 and figure 8 shows the PM10 concentrations as measured from 2009 through the 

3rd quarter of 2014 at TEOM 5 location. This monitor is located at the Marina del sur, Berisso 
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location which is about 1190 meters from the calcining facility. The maximum 24-hour average 

PM10 concentration was 173.8 µg/m3 in year 2011 while the average concentration for each 

quarter ranged from 18.9-45.3 µg/m3. 

Table 11 Monthly 24-hour Average of PM10 for TEOM 5 for Time Period-1st Quarter 2009 

Through 3rd Quarter 2014 

                                           TEOM 5 

Year Quarter Avg Min Max 75th 

  1st 26.2 5.8 81.7 30.5 

  2nd 24.4 5.7 173.8 29.2 

2009 3rd 22 3.5 74.6 28.3 

  4th 24.3 9.1 78.5 27.4 

  1st 22.8 7.1 75.4 26.1 

  2nd 19.2 6.7 53.3 22.8 

2010 3rd 20.8 2.2 60.9 27.8 

  4th 26.6 8.7 95.7 31.3 

  1st 21.7 9.1 83.9 24.4 

  2nd 26.1 7.3 111.6 31.9 

2011 3rd 39.3 7.1 118.2 51 

  4th 39.2 6.9 147.7 38.2 

  1st 30.1 11 67.5 35.1 

  2nd 37 5.9 107.5 50 

2012 3rd 31.2 6.8 140 31.8 

  4th 33.3 5.8 88.3 40.5 

  1st 36.3 10.7 131.4 45.6 

  2nd 45.3 3.9 125.4 59.4 

2013 3rd 34.5 6.7 172 39.4 

  4th 24.7 6.5 60.6 28.3 

  1st 18.9 9.4 36.2 22.2 

  2nd 21.3 4 54.6 25 

2014 3rd 20.7 1.4 45.5 25.1 
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Figure 8 The figure shows the 24-hour PM10 average for TEOM 5 monitors. 

           Figure 9 shows the collective the quarterly average of 24-hour PM10 concentration for all 

three TEOM 3, 4, and 5 locations. None of the 24-hour average concentrations was more than the 

standard 150 µg/m3.  

 

Figure 9 Quarterly Average of 24-hour PM10 Concentration for TEOM 3, 4, and 5  
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 Table 12 shows the number of measured PM10 values that were over the NAAQS 24- 

hour standard of 150 µg/m3. Only three values were higher than the regulatory limit while in 

2011, five values were higher than the NAAQS standard. One reading was higher than 150 µg/m3 

in 2010 and 2012.  

 

Table 12 PM10 Values Higher than the NAAQS Standard of 150 µg/m3 

TEOM Year Month Day 24-HR 

Ave(µg/m3) 

Carbon 

Fraction 

Percent of 

Total 

3 2009 4 24 177.24 3.620 2.04 

3 2011 6 13 210.33 3.145 1.50 

4 2009 4 24 168.20 3.620 2.15 

4 2010 8 10 158.15 9.512 6.01 

4 2011 4 15 195.05 3.068 1.57 

4 2011 5 31 160.94 2.843 1.77 

4 2011 7 12 156.53 3.746 2.39 

4 2011 11 22 155.07 2.091 1.35 

4 2012 7 7 164.47 5.882 3.58 

4 2013 12 30 182.90 3.611 1.97 

5 2009 4 24 173.80 3.620 2.08 

5 2013 9 19 171.95 3.621 2.11 

 

             Table 13 shows the annual average PM10 concentration for year 1999-2000 and for year 

2004-2006. The annual averages decreased gradually from year 2004 to 2006 with highest 

average concentration (27.9 µg/m3) was observed in year 2004. 
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Table 13 Long-Term Annual Average PM10 Concentrations for Locations near the Copetro 

Facility 

 

Measure/Year PM10, μg/m3 

Annual Average (2004) 27.9 

Annual Average (2005) 26.0 

Annual Average (2006) 24.4 

Annual Average (1999-2000) (range) 25.7 (20.1 - 29.4) 

  

4.2 Black Carbon Emissions from the Calcining Facility 

 Figure 10 shows the average concentrations of the ambient black carbon, which are 

associated with the calcining facility fugitive and stack emissions.  The carbon fraction indicates 

the amount of emissions than can be assigned to the calcining facility since carbonaceous content 

is entirely from the facility and hence indicates the contribution of the calcining facility. The 

carbon concentrations are a small fraction of the overall concentrations seen in Table TEOM3, 4, 

5 for the ambient PM10 concentrations for the same time period.  

 

 

Figure 10 Black Carbon Monthly Average Concentration 
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4.3 Gaseous Emissions from the Calcining Facility 

Table 14 shows the modeled pollutant concentrations of NOx, CO, SO2 and PM10. The 

maximum potential emissions for all constituents from the facility were modeled using onsite 

meteorological data. The emission rates from stack test data for CO, NOx, SO2 and PM10 were 

scaled up to reflect the maximum production of the facility. The AERMOD dispersion model was 

used to determine offsite ambient concentrations. As presented in Table 14, all ambient 

concentrations were below local standards and EPA NAAQS levels.  

 

Table 14 Modeled Ambient Air Concentrations 

 

 

 

 

 

  
Averaging 

Period 

Modeled Concentration 

(µg/m³) 

Standard 

(µg/m³) 

 Pollutant 

NOx 

1hr 72.2 400 

Annual 2.15 100 

 

CO 

1hr 106.1 40,000 

8hr 79.2 10,000 

 3hr 365.4 1300 

SOx 24hr 215.5 365 

 Annual 11.8 80 

PM10 

24hr 2.8 150 

Annual 0.04 50 
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CHAPTER FIVE: 

 DISCUSSION 

 

 The primary purpose of the current study was to evaluate the emission risks from the 

calcining facility. Our results showed that both the normal and the maximum calcining facility 

operations, produced air emissions that were lower than the USEPA standards promulgated to 

protect the public health. The emissions included the actual facility emissions from the processing 

of green coke as well as the emissions from the handling and storage of raw materials at the facility.  

5.1 Particulate Matter from Calcining Process and Public Health Risks 

 Based on the results from figure 9, the emissions from the coke calcining facility under the 

normal conditions were below the public health standards set up by the regulatory agencies. These 

emissions were from the handling and the storage of raw material, green coke, as well as from the 

green coke processing to produce the final product, calcined coke. There was negligent amount of 

volatile organic compounds collected during the emissions sampling, as high temperatures of the 

calcining process destroyed about 99 % of the volatile compounds. The trend for the Hi-

Vol/TEOM measurements at site A and B in Table 8 suggested that the difference in the 

measurements from Hi-Vol and TEOM monitors could be assigned to the prevailing pollution 

conditions in the petrochemical complex. The Hi-Vol monitors usually record higher 

concentrations of PM10 compared to the TEOM monitors. It is due to the fact that the TEOM 

monitors heat up the filter destroying or repelling the semi-volatile organic mass.  In contrast, the 
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Hi-Vol monitors record both the semi-volatile materials as well as PM leading to higher 

concentrations recorded by the Hi-Vol compared to the TEOM monitors. Additionally, ammonia 

nitrates are among the most common volatiles removed by the TEOM monitors (Charron et al., 

2004). Ammonia nitrates are not processed/ produced in any calcining process indicating that the 

nitrates expelled by the monitors are mostly from external sources such as traffic emissions and 

other industrial activities.   

 In the current study, the very low reading of the TEOM monitor for PM10 concentrations 

indicated that the calcining facility produced emissions at much lower concentrations than the 

regulatory levels (150 µg/m3) established by USEPA to protect the public health. The 24-hour 

annual averages for the TEOMs 3, 4, and 5, were 34.61 µg/m3, 41.66 µg/m3, and 38.02 µg/m3, 

respectively, all below the average of 50 µg/m3 set up by the Argentinian regulatory agencies. The 

readings that exceeded the regulatory standards are from the TEOM monitors located 850 meters 

from the source calcining facility, Copetro. These ‘higher’ concentrations could have resulted 

from other sources of pollution such as garbage burning, traffic, or other industrial activity in the 

petroleum complex. Given the low measurements from the monitors at the calcining facility, we 

concluded that the contributions of the petroleum coke calcining facility, Copetro to the total 

emissions in the complex is de minimis.  

 Further, the calcining facility’s contribution to the total emissions in the area could also be 

estimated from the black carbon concentration in the measured PM10 levels. A shown in figure 

10, the carbon black concentration formed a miniscule fraction of the total overall PM10 

concentration. Additionally, it is important to mention that the black carbon concentration 

recorded by the monitors could not be solely attributed to the calcining facility as there are other 

sources of black carbon such as the diesel vehicular traffic. Given the low black carbon 
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concentration, it could be concluded that the calcining facility represented as a small contributor 

to the overall PM10 emissions. Table 11 indicated the PM10 measurements exceeding the 

regulatory standard of 150 µg/m3. For years 2008 – 2010 and years 2012 - 2014, TEOMs 3, 4, and 

5 readings did not exceed 150 µg/m3, thus satisfying the set standard of one measure allowed over 

the limit of 150 µg/m3 PM10 per year averaged over 3 years.  For years 2009 – 2011, 2010 – 2012, 

and 2011 – 2013, only one monitor (TEOM 4) had six readings that were over the limit of 150 

µg/m3 PM10 per year averaged over 3 years. Though the values from the TEOM 4 exceeded the 

set standards, the black carbon concentration representing the calcining facility contribution was 

less than 7 % of the total PM10 concentration. Thus, it could be concluded that the other sources 

of pollution in the industrial area contributed to the total PM10 concentrations.  

5.2 Gaseous Emissions from Calcination Process and Public Health Risks 

The modeled concentrations as shown in Table 13 were well below the standards set up by 

USEPA NAAQS. These emissions were measured from two kiln ovens on a monthly basis. The 

emissions from the calcining facility were scaled up to reflect maximum emissions from the facility. 

The AERMOD modeling suggested that any potential emissions from the calcining facility would 

be minimal and would represent only about 20 % of the standards.  

5.3 Epidemiological Review: Health risks from Petrochemical Emissions  

By the year 2000, around 730 refineries worldwide were producing about 4 billion tons of 

crude oil each year (Mudu et al., 2014). Multiple steps involved in the processing of crude oil 

including the handling and the storing of raw materials and processed products, have the tendency 

to produce chemical hazards and emit toxic pollutants in the surroundings. According to WHO, 

about 4.9 million deaths around the world have been attributed to exposure to chemical hazards from 
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industrial activities. Hence, there is an urgent need to accurately identify and characterize the risk 

and adverse health effects associated with the petrochemical emissions. 

The characterization of exposure from the industries requires comprehensive data on the 

trends (spatial and temporal) of the chemical and pollutants emitted from the industry. In addition, 

the assessment requires considering changing patterns such as climate variability and population 

mobility from one industrial setting to other diverse settings. Since two similar industries in two 

different settings could lead to varied emissions, the epidemiological studies must consider the 

confounding factors while determining the health risks from such industries. Additionally, a 

thorough and exhaustive assessment of the pollutant risk is essential as an expensive industrial clean-

up not only pushes the budgetary constrains but it also impacts the perception in the residents living 

in the vicinity of the facilities. Studies have shown that even the odor of the emissions from the 

industries influence the residents’ perceptions of health risk from the industries (Luginaah et al., 

2000). Petrochemical industries located near the residential areas pose a health hazard to the 

population residing in and around those areas, specially the susceptible populations including the 

children and the elderly. Studies have shown that the perceived health risk by the exposed population 

may impact their health, such as negative thoughts and stress about the industries’ emissions could 

lead to poor mental and physical health (Keller et al., 2012).  

 Various studies have evaluated the effect of petrochemical pollutants including the 

Particulate Matter on the human health. These studies have included both the acute as well as the 

chronic effects on respiratory and cardiovascular health of the exposed populations and 

have assessed the role of PM and gaseous pollutants from the petrochemical industries, and 

combustion and mobile sources in producing the adverse health effects. Mortality studies have 

assessed the number of deaths occurring during a specific time period and the exposure levels during 
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the time periods. Morbidity studies have involved the study of hospital admission 

rates, symptoms, disease, levels of lung functions, or restricted activity.   

 These studies have involved the subjects from all age groups including the susceptible 

populations such as children and older people. It is hard to separate and individualize various 

processes involved in the petroleum complex. There is a need to find a distinction between the 

petrochemical industries, oil refineries, and calcining industries. Petrochemical industries deal with 

various processes and include multitude of chemicals (benzene, ammonia etc.) while producing 

products such as solvents, fertilizers, plastics, and explosives. For example, oil refinery is the 

industrial complex where the crude oil is refined to produce gasoline or diesel, kerosene oil, 

lubricating oils, and petroleum coke. Calcining facility is an industry that converts the petroleum 

coke to calcined coke, which can be used in the aluminum and anode production.  

 

5.4 Review of Epidemiological Studies on Petrochemical Emissions  

 Various epidemiological studies have attempted to identify the adverse health risks 

associated with the petrochemical emissions (Ware et al.,1993; White et al., 2009; Wichmann et al., 

2009; Nilsa I Loyo-Berrios et al., 2007; Yang et al., 1998; Smargiassi et al., 2009; Rovira et al., 

2014; de Moraes et al., 2010; Chen et al., 1998; Liao et al., 2009; Meo et al., 2015; Wichmann et al., 

2009; Kaldor et al., 1984; Sans et al., 1995; Belli et al., 2004; Simonsen et al., 2010; Yang et al., 

1999; Passetto et al., 2008). However, there are contrasting results among the studies in terms of the 

health risks associated with various pollutants. The uncertainty from the epidemiological studies 

may be due to the inadequate exposure assessment, ubiquitous nature of pollutants, poor and limited 

emission data, single pollutant and co-pollutant variability, and varied adverse health response in 

diverse populations. Some epidemiological studies also undermined the additional health risks 
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already prevalent in the society (e.g. living close to highways or highly congested areas) or the health 

risks associated with a sub-population (children vs adults).  

 The complexity in determining the specific source(s) of air pollutants from one or multiple 

sources in the diverse environmental surroundings, and its varied degree of effect on the human 

health such as higher impact on susceptible populations, may lead to the mismatch between the risk 

from a specific source and the policy regulations imposed to amend the risk. Therefore, the last aim 

of the study was to compare the epidemiological studies conducted on the emissions from the 

petroleum complex in order to better understand the health risks associated with the pollutants. The 

epidemiology review will help adopt a more persistent approach to undertake more consistent policy 

responses and pollutant regulations.  

 The epidemiological studies assessing the respiratory risk from the petrochemical industries 

are summarized in Table 14.  The specific respiratory conditions examined in the studies were 

asthma (Ware et al.,1993; White et al., 2009; Wichmann et al., 2009; Nilsa I Loyo-Berrios et al., 

2007; Yang et al., 1998; Smargiassi et al., 2009), hospitalization rates from respiratory signs and 

symptoms (Rovira et al., 2014), other respiratory symptoms such as wheezing, shortness of breath 

(de Moraes et al., 2010; Chen et al., 1998; Liao et al., 2009), lung functions (Meo et al., 2015; 

Wichmann et al., 2009), and incidence/ mortality of lung cancer (Kaldor et al., 1984; Sans et al., 

1995; Belli et al., 2004; Simonsen et al., 2010; Yang et al., 1999; Passetto et al., 2008).  

 Majority of the studies calculated the odds ratio to determine the association between the 

respiratory risk and the petrochemical emissions. Specifically, the odds ratio (OR) of asthma or 

asthma exacerbation from the petrochemical emissions varied from as low as 0.08 to 1.01 (Chen et 

al. 1998), 1.06 (White et al., 2009), 1.27 (Ware et al. 1993), 1.44 (Loyo-Berrios et al., 2007), and 

finally as high as 2.01 (de Moraes et al., 2010) and 2.76 (Yang et al., 1998). All these studies were 
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conducted in children below 17 years of age and had utilized parent questionnaires, and hospital and 

emergency visits to measure the exposed populations. Further, in terms of studies on adult 

population, Meo et al. (2015) and Maestrelli et al. (2001) observed lower lung functions in the 

industry workers at Saudi Arabia and Italy petrochemical industry. Simonsen et al. (2010) and Belli 

et al. (2004) examined an odds ratio of lung cancer in residents exposed to the petrochemical 

industries, with 1.45 odds ratio for residents living within 0.8 km (Simonsen et al., 2010) to 3.1 for 

residents living within 3 km of the petrochemical industry (Belli et al., 2004). Majority of the studies 

mentioned had an adequate study design (ecological, cross sectional or cohort studies) and disease 

measures (respiratory symptoms, lung function volumes lung cancer), but the studies did not report 

the length of time the petrochemical industry was operational and the subsequent duration of 

exposure from the specific industrial source.  This may confound one of the most important factor 

in risk characterization, namely the exposure assessment. All of the studies mentioned in Table 14 

have little information of the specific exposure from the source(s) and no description of the exposure 

patterns or changes over time. These studies have thus undertaken a pre-conceived notion of higher 

risk with proximity to the location of the source i.e. the petrochemical industry.  
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Table 15: Review of Epidemiological Studies on Petrochemical Emissions 

Study Study 

population 

Type of study Study methods/Emissions analyzed Results 

Ware et al. (1993), 

USA 

Children Cross-

sectional study 

Children studying in schools within the vicinity of 

petroleum complex (in valley) compared to students 

outside the valley. Pollutants analyzed were: 5 petroleum-

related compounds, and combination of10 compounds 

specific to industrial processes. 

School children in the valley had higher rates of asthma 

(OR = 1.27) and a higher rate of chronic lower 

respiratory symptoms (OR = 1.13), than school children 

outside valley.   

Rovira et al. (2014), 

Spain 

Children Cross-

sectional study 

Respiratory health of children residing in petrochemical 

complex areas compared with children residing in low 

pollution level areas.  

Children residing near petrochemical areas had higher 

prevalence of hospitalization rate (prevalence rate 

=1.49) and cough (PR=1.29) than children living in low 

pollution areas 

White et al. (2009), 

South Africa 

Children Cross-

sectional study 

Occurrence of respiratory symptoms were compared with 

meteorologically estimated exposure (MEE), and with 

simple distance from the refinery 

Asthma incidence was associated with simple distance 

from the refinery, OR= 1.06 while higher asthma 

association was observed with meteorologically 

associated exposure, OR=1.81 

Wichmann et al. 

(2009), Argentina 

Children Cross-

sectional study 

Occurrences of asthma rates, asthma exacerbations, 

respiratory disease symptoms compared in children 

residing near a petrochemical complex, near traffic areas 

and two unpolluted regions 

Children living near the petrochemical plant had higher 

asthma rates (OR= 2.76), higher asthma exacerbations 

(OR=1.88) and higher wheezing incidence (OR=1.93), 

and lower lung function (>13% decrease in FEV1 

percent predicted) than those living in other regions 

Loyo-Berrios et al. 

(2007), Puerto Rico 

Children 

under 17 

years 

Nested case 

control study 

Risk of asthma compared in children residing in air 

pollution areas with control 

The study noted higher asthma attacks in children living 

near a grain mill (odds ratio (OR) = 1.35), petroleum 

refinery (OR = 1.44) 
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Study Study 

population 

Type of study Study methods/Emissions analyzed Results 

Yang et al. (1998), 

Taiwan 

Children Cross-

sectional study 

Children residing in petrochemical areas compared to 

children in non-petrochemical areas 

The children residing in the petrochemical complex had 

rate of asthma (OR =2.76) and higher rate of upper 

respiratory symptoms (OR= 1.51) 

de Moraes et al. 

2010, Brazil 

Children (0-

14 years) 

Cross sectional Children living within 5 km of petrochemical complex 

compared with non-exposed reference communities 

Statistically significant associations was observed for 

wheezing and living in exposed communities (OR=2.01) 

Smargiassi et al., 

2009, Canada 

Children (2-4 

years) 

Case cross-

over study 

Children residing within 7.5 km of the petroleum 

complex/ Risk of asthma compared with the short term 

changes in SO2 levels 

Days with higher SO2 peaks were associated with 

asthma related visits (OR= 1.10) and hospital 

admissions (OR=1.42) 

Meo et al., 2015, 

Saudi Arabia 

Workers in 

petroleum 

industry 

Cross sectional Lung function values were measured in exposed workers 

and compared to control population 

Lowered lung function volumes including lower FEV1, 

FEV1/FVC Ratio, PEF, FEF 25 %, FEF-50 % among oil 

refinery workers compared to their controls.  

Chen et al., 1998, 

China 

Children Cross-

sectional study 

Children residing in petrochemical areas and urban 

locations compared to children in rural areas/ 

Questionnaire were filled by parents to assess children 

respiratory symptoms 

OR for occurrence of shortness of breadth in three 

Petrochemical locations were 1.01, 1.05, and 0.08 and 

OR for chronic cough was 1.26,.0.88, and 1.08. OR for 

bronchitis for 3 locations were 1.23, 1.01, and 1.17.  

Liao et al., 2009, 

China 

Children Cross-

sectional study 

Respiratory symptoms compared in children residing in 4 

locations: petrochemical complex, close to wasteland, 

coastal area, other parts of the country 

Children residing in petrochemical complex had higher 

rates of dry cough (3.6%) and prevalence of wheezing 

(3.7 %)  

     

Table 15 (Continued) 



 

 53 

Table 15 (Continued) 

Study Study 

population 

Type of study Study methods/Emissions analyzed Results 

Maestrelli et al. 

(2001), Italy 

Adults Cohort study Association of changes in asthma and lung function with 

changes to PM10, PM2.5 exposure over 2-year period 

An increase in SGRQ scores and lowered ACT scores 

were associated with 10 μg/m3 increase in PM10 

personal exposure. No association with changes in 

FEV1 with PM10 

Kaldor et al. (1984), 

USA 

Adults Ecological 

study 

Rates of lung cancer in populations residing at four 

locations: Without industrial exposure, 2 locations with 

industrial exposure without petrochemical exposure, 4th 

location with petrochemical exposure 

Males exposed to petrochemical emissions exposure had 

higher prevalence of lung cancer than non exposed. No 

association in females 

Sans et al. (1995), 

United Kingdom 

Adults Mortality 

study 

Mortality rates observed in residents within 7.5 km of 

petrochemical complex 

Standardized Mortality Ratio (SMR= 1.07) was 

observed in adults residing within 3 km of the 

petrochemical complex 

Belli S., et al. 

(2004), Italy 

Mortality  Case control 

study 

Cancer mortality was observed with increasing distance 

from the petrochemical plant 

Lung cancer in residents living within 3km of 

petrochemical plant, OR =3.1 

Simonsen et al. 

(2010), USA 

Adults Population-

based case-

control study 

Lung cancer incidence was observed in residents living in 

vicinity of petrochemical plant 

Residents living within 0.8 km had higher incidence of 

lung cancer (OR=1.45) 

Yang et al. (1999), 

China 

Adults Population-

based case-

control study 

Lung cancer incidence was observed in residents living in 

vicinity of oil refinery 

Standardized Mortality ratio (SMR=144.5) in residents 

after living for 37 years in the vicinity of the 

petrochemical complex 

Passetto R et al. 

(2008), Italy 

Workers form 

petroleum 

industry 

Cohort study Mortality rates from lung cancer observed in workers in 

petrochemical complex  

The rate ratio of lung cancer in workers was observed to 

be 1.66 (90 % CI- 1.07-2.58) 
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5.5 Critique on Ambient Air Pollution Epidemiological Studies 

 The association between the emissions from pollutant sources (e.g. petrochemical 

industries) and their adverse health effects (e.g. asthma, lung cancer) are dependent upon multiple 

factors including the individual properties of the pollutants, interactions of the pollutant with other 

co-existing pollutants in the air, varied exposure patterns and pathways, and lastly the diverse 

social and economic factors of the population at risk for exposure. Few selected studies have 

examined the effect of air pollutants in the residential areas, i.e. the effects on the health of the 

residents, mainly the children. (Rusconi et al., 2011; White et al., 2009; Smargiassi et al., 

2009; Wichmann et al., 2009). Though these authors drew conclusions regarding the potential 

association of the particulates and their respiratory health outcomes, none of these studies were 

able to demonstrate specific diagnostic criteria in subjects to provide an objective diagnosis of the 

disease. Additionally, none of these studies were able to determine that the petrochemical 

industries were the sole source of exposures measured in the studies. Smargiassi et al. (2009) 

studied the effect of SO2 from point sources on asthma hospitalizations of children near petroleum 

refineries in Montreal, Canada. Though the study pointed out that short term exposure to SO2 led 

to the higher rates of asthma hospitalization, the exposure group (i.e. children between 2 and 4 

years) was an inadequate representation of the exposed population. The study assumed that the 

children were 'exposed' to the ambient air pollution. However, the observation that the exposed 

group spent the majority of their time inside their houses, emphasis that children were not a true 

exposure group and hence, it undermines the associations derived in the study. Additionally, the 

authors were unable to locate the specific sources of emissions and failed to ascertain the exposure 

levels of the subjects. This further questions the association drawn in the study regarding the actual 
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potential risk from the suspected exposures. Below, we have provided a brief review of the 

epidemiological studies. 

 The use of qualitative assessment techniques such as questionnaires to determine the ill-

effects of air pollutants, especially in high pollution areas, is inadequate and generally obscures 

the outcomes or results of the study. Most of the studies utilize the questionnaires to report changes 

in health symptoms/ signs experienced by the exposed population. In such scenarios, the exposed 

group might overestimate the health effects and report a mere discomfort as ‘increase in 

symptoms’, indicating that the air pollutant has a negative effect on the exposed group compared 

to the unexposed group. However, these self-reports of ‘increased symptoms’ are unreliable as 

they are not equivalent to medically monitored/ examined symptoms. White et al. (2009) studied 

the effect of vicinity to a petrochemical complex on the respiratory health of children including 

their asthma exacerbations. The study indicated a higher prevalence of asthma symptoms in 

children residing in the vicinity of the petroleum industry. Moreover, the study grouped the 

children as 'diseased' and 'non diseased' based on the responses of the study questionnaire. Similar 

procedures of measuring or surveying disease is not representative of actual exposure and 

outcome, as there is a huge risk of under-estimation or over-estimation by the study participants. 

Another study examined the effect of oil refinery pollution on the asthma symptoms and lung 

function in children and adults residing near petrochemical industries (Rusconi et al., 2011). The 

study showed that lowering of the lung functions along with bronchial inflammation in the exposed 

population was associated with residing near the petrochemical areas as compared to the non 

exposed population. However, it is interesting to note that the selection of ‘exposure and non 

exposure population’ was determined by the responses on a questionnaire regarding the respiratory 

symptoms and associated risk factors. Overall, we can say that the studies employing 
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questionnaires as the singular means of obtaining information about an exposure group, may fail 

to adequately ascertain the reports for ‘increased symptoms’ to the nearby pollution sources (i.e. 

petrochemical complex).  

 The presence of an industrial complex (petrochemical, calcining facility) does not 

automatically indicate increased emission risk to the residents of the area. The ill-effects from the 

emissions of an industrial complex (such as Particulate matter, VOC's or gaseous content) is not 

solely guided by the presence or absence of the facility but by various other contributing factors 

such as the anthropogenic sources, as well as the control measures employed by the facility. 

Wichmann et al. (2009) studied the role of petrochemical industry as a contributing factor in the 

exacerbations of asthma and other respiratory symptoms in children residing in the area. The study 

reported that the presence of the main petrochemical complex in the residential area indicates a 

'higher risk' of respiratory symptoms and asthma exacerbations. However, we would like to rebut 

that the mere presence of the facility is an indicator of ill-effects, instead the level of air pollutants 

in the area are equally important. More importantly, it is essential to recognize the sources of these 

pollutants as it would help the regulatory agencies to localize the source and control the emissions.  

 There are various other sources of Particulate Matter and gaseous pollutants in the air 

including the motor vehicles, unpaved roads, and fuel combustion at homes especially during 

winters as the combustion rates are higher in winters. The amount of pollutants emitted from these 

additional sources may differ in amount (though not in quality) and thus may contribute to the 

health effects.   

  Majority of the epidemiological studies examine the effects of a mixture of pollutants by 

determining the individual pollutant concentration. Both co-pollutant and multi-pollutant methods 

have been utilized in the past to derive the exposure concentrations of the pollutants. The studies 
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examining the effects of multiple pollutants at a single period of time are generally plagued by 

various factors which may effect the strength of associations measured in the study. These include 

but are not limited to the inter and intra variations of the pollutant, unknown pollutant acting as a 

confounder, interactions among the pollutants while producing the health effects, and the 

exposure uncertainty. Loyo-Berrios et al. (2006) noted that the asthmatics living near the sources 

of air pollution have higher risk of asthma attacks, the odds ratio were found to be between 1.28 

and 1.44 for the asthmatics as compared to the non-asthmatics. However, in this study, the asthma 

exacerbations were attributed to the air pollution sources without providing any information on 

the specific sources of pollutants.  

Ambient air pollution is a result of conglomerate of multiple sources and pollutants. In the 

studies including single pollutant models, the association may be significant if the pollutant does 

not interact with other pollutants in the air and instead, acts as an independent risk factor. However, 

majority of the pollutants do not act independently and usually correlate (positively or negatively) 

with other pollutants. For example, the gaseous pollutants such as NOx, SO2, CO are known to 

cause adverse health effects similar to those caused by the Particulate Matter. Hence, it would be 

difficult to ascertain the effects of these gaseous pollutants on human health as they have a high 

degree of correlation with the Particulate Matter in the ambient environment. It is even more 

relevant when the PM, VOC's or gaseous pollutants have common sources of emission. 

Additionally, PM, SO2 and CO are produced from both, motor vehicles combustion as well as 

from petro chemical industries. Assigning the pollutant to a particular source is difficult in the 

actual environmental conditions and hence, it would be difficult to determine the actual risks of a 

petrochemical industry.  
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 On the other hand, the epidemiological studies analyzing the effects of multiple pollutants 

along with their correlations, fail to consider the power of association of individual pollutants. 

Some studies have attempted to measure the individual effects of the air pollutants and their 

association with health effects. Atkinson et al. (1999) noted that in one-pollutant models PM10, 

NO2, and SO2 were significantly associated with the increase in asthma cases but when the 

pollutants were studied in a multi pollutant model i.e., when the pollutants were added to another 

pollutant, the statistical significance decreased thereby suggesting that these pollutants can not act 

independently in the ambient atmosphere. Usually, it is difficult to separate the health effects of 

the air pollutant individually because of the existing correlations. This was observed by Ilabaca et 

al. (1999) while observing the effects of the particulate fine particles on the respiratory health of 

children in Santiago.  

The impact of the pollutants cannot be observed in seclusion but the admission that the multiple 

pollutants may act as confounders, is required while deriving the outcomes on human health. 

Wichmann et al. (2009) derived an association between the multiple pollutants and the respiratory 

health effects by monitoring the daily ambient air pollutants for four weeks. This association needs 

to be understood by acknowledging the possible interactions among various pollutants. The results 

thus obtained from similar studies would be unable to assign a specific role of each pollutant, as 

well as unable to identify the source of the pollutant. This highlights the fact that there is no one 

correct approach to assess the exposure levels of the individual pollutants that can appropriately 

assess the exposure-outcome association.   

 Majority of the epidemiological studies have examined the association of ambient 

Particulate Matter with acute respiratory effects including the exacerbation of asthmatic attacks/ 

symptoms, increase or decrease in medication use, and hospital or emergency ward 
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admissions. Although most of the studies obtained an association between PM and respiratory 

symptoms including chest tightness, cough, difficulty breathing and rhinitis, majority of these 

associations were not statistically significant.  

According to American Thoracic Society, FEV1 and FVC values are considered 'normal' 

if the values are above 80 %. The pulmonary defects due to lowered lung function is a useful tool 

if the spirometry values of FVC, FEV1, FEV1/FVC, and TLC are below the 5th percentile of the 

normative data. However, if the values are close to the upper or the lower limits of the normal 

values, then the literal interpretation of the results is difficult along with accurate estimation of the 

lung functions. In these situations, further assessment is required to label a lung function as 

‘abnormal’. Commonly FEV1 values less than 80 % and FEV1/FVC values lower than 0.7 are 

used as standards while assessing the lung functions, and values below these are considered ‘below 

normal’. Wichmann et al. (2009) stated that although the air pollutant levels showed evidence of 

airway obstruction, the spirometric values of the participants were above the normal limits. 

Specifically, in this study, the lung functions were above 80 % (mean predicted percent of FVC 

was 107.4 and for FEV1 was 91.4), both of which are considered 'healthy' in normal population. 

On the other hand, children with 'lowered' levels of lung function may not represent a part of 

'diseased' or ‘effected’ population of the study. As mentioned above, the lung function tests are 

used to describe the lung functionality and the subject values are compared with the predicted 

values obtained from the healthy population of comparable age, gender, ethnicity, and height. 

The normality and abnormality of the lung function tests also depend upon the number and 

type of the lung function tests. Though the use of fewer tests while assessing the lung function is 

economical and time-efficient, it increases the chances of false positives. Hence, the spirometry 

tests conducted in exposed subjects could be misinterpreted, especially if performed without the 
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knowledge of prior disease in the patient. A study done by Vedal et al. (1983) showed that when 

few tests (FVC, FEV1 FEV1/FVC) were performed, about 10 % of the study participants had at 

least one abnormal test performance. When full 14 spirometry tests were performed, about 24 % 

of the subjects had at least one abnormal test result, with each test having a 5 % false positive rate. 

Boezen et al. (1998) study showed that with increase in air pollution levels, the prevalence of 

respiratory symptoms increased significantly in respiratory compromised patients though no such 

significance was found in population without respiratory complications. Another study by 

Knudson et al. (1976) noted that when one of the respiratory parameter was abnormal, the entire 

flow volume curve was effected. Overall, the appropriate use of the pulmonary function tests 

depends upon the accurate interpretation of the tests and not merely on the percentage values of 

the lung functions.    

The epidemiological studies have assessed the role of air pollutants in relation to population 

exposure. The studies which have assessed the role of acute exposure, have related the small time 

changes in exposure to the acute adverse effects. Typically, the exposure is estimated as an ambient 

air exposure and not the personal exposure. Gauderman et al. (2005) studied the effect of ambient 

air pollution on the growth of lung function and change in FEV1 for population ranging from 10 

to 18 years for a period of eight years. The study stated that the exposure to ambient air pollution 

led to significant deficits in the FEV1 values of 18-year-old subjects. Similarly, Jedrychowski et 

al. (1999) study in Poland found lowered lung growth and decreased FEV1 values in the pre-

adolescent children exposed to the ambient air pollutants. 

 Majority of the epidemiological studies have failed to consider a threshold value, beyond 

which the air pollutants are bound to adversely effect the human health such as their mortality rate. 

A study by Cakmak et al. (1999) attempted to detect the threshold values for the ambient air 
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pollutants in time series studies, which have measured the association of the air pollutants with the 

adverse health effects. The study reported an uncertainty in estimating the threshold with an 

increased degree of error. Watt M et al. (1995) studied the differences in personal exposure and 

the ambient air pollutant concentration in the two groups of traffic wardens exposed to air 

pollution. The study found significant difference between the personal exposure and the area 

exposure levels and concluded that measuring the ambient air concentrations would be of limited 

value when evaluating the effects of exposure on the individual health effects. Moreover, based on 

the conditions, there might be varied threshold levels of adverse health effects from the ambient 

area concentrations. Epidemiological studies have also demonstrated that the inadequate exposure 

measurements may lead to differential effect estimates, especially in the studies utilizing fewer 

monitors in selected locations and presuming it to represent a larger geographical area with varied 

population statistics. Goldstein and Landovitz, 1997 recommended that using a single monitoring 

station is inadequate to measure the short term variations in the air pollution. Most epidemiological 

studies including the Wichmann et al. (2009) study evaluated the relationship of daily average 

variations in pollutants using limited monitors, which is not representative of a wide geographical 

region. 

 

 5.6 Conclusion 

 The current study concluded that the emissions from a calcining facility (Copetro) are well 

below the standards laid down by the regulatory agencies to protect the public health. Further, if 

the calcining facility is operated and maintained within the specified control measures, it is a de 

minimis contributor of air emissions in the community. It is likely that the epidemiological studies 
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assigning higher risk to the emissions from a calcining facility, might have included other sources 

of pollution such as automobiles, construction sites etc.  

Air pollution studies are plagued by the presence of unknown confounders in the air which 

might skew the statistical analysis and results of the studies. Studies, especially with a cross-

sectional design perform one-time measurement of an air pollutant, and are thus inadequate to 

quantify the amount of air pollutants such as particulate matter associated with the adverse health 

effects such as changes in lung functions. In other words, although these studies have reported on 

the associations between air pollutants and their respective ill-effects, the studies failed to describe 

the extent of contact with air pollutants in the exposed and unexposed population. Furthermore, it 

is difficult to assign the exposure to subjects divided into cases and controls and may thus lead to 

misclassification of ‘disease’ and ‘non-disease’ rates in the community. Peng et al. (2009) found 

that PM2.5 is the major constituent of the Particulate matter responsible for higher hospitalization 

rates reported in the epidemiological studies. Dominici et al. (2006) calculated the hospital 

admission rates associated with PM2.5 and found a short term positive relationship with the 

prevalence of respiratory diseases. However, similar studies encounter various confounders 

(publication bias, regional variability and misclassification of disease) and are thus questionable 

while assigning the individual health exposure and risk. Overall, it is difficult to assign specific 

ill-effects to a particular source such as Petrochemical industry, since we cannot ascertain the 

individual exposure. In this case, further information is required to study the emissions from the 

source to associate it with the respiratory health effects. As noted above, the levels of emissions 

from the Calcining industry are below the regulatory limits and it is difficult to demonstrate any 

threshold limit to the air pollutants, as definite association of air pollution from Petrochemical 

industry with adverse respiratory effects is inconsistent. It has been usually debated as to what 
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extent the exposure data represent the actual exposure to outcome indicators (change in lung 

function, asthma exacerbations) as well as the differences in the study population (cases or 

controls, exposed or non-exposed). In addition to inadequate assessment of the exposure, the 

epidemiological studies also vary on the methods for the study population selection (depending 

upon the exposure), which may further confound the association between the exposure and the 

outcome. The risk assessment of the air pollutants would depend upon the meaningful and clear 

diagnostic criteria which would have the analytic power in obtaining reliable exposure 

measurements. 
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