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This paper presents a smooth control strategy for the regulation problem of an uncertain system, which assures uniform
ultimate boundedness of the closed-loop system inside of the zero-state neighbourhood. This neighbourhood can be made
arbitrarily small. To this end, a class of nonlinear proportional integral controllers or PI controllers was designed. The
behaviour of this controller emulates very close a sliding mode controller. To accomplish this behaviour saturation functions
were combined with traditional PI controller. The controller did not need a high-gain controller or a sliding mode controller
to accomplish robustness against unmodelled persistent perturbations. The obtained closed-solution has a finite time of
convergence in a small vicinity. The corresponding stability convergence analysis was done applying the traditional Lyapunov
method. Numerical simulations were carried out to assess the effectiveness of the obtained controller.

Keywords: uncertain system; sliding modes control; robust control; adaptive control; PI controller

1. Introduction

Many of the nonlinear systems used in actual applica-
tions are uncertain or partially known (Abdallah, Dawson,
Dorato, & Jamshidi, 1991; Bernhard, 2002; Grimble, 2006;
Lee & Cheng, 1996; Siqueira, Terra, & Bergerman, 2011;
Sira-Ramirez & Spong, 1988). Usually, these systems are
subject, both to external unknown or unmodelled sustained
perturbations and to the uncertainties produced by the mis-
matches and discrepancies between the system mathemati-
cal model and the actual plants (Fulwani, Bandyopadhyay,
& Fridman, 2012). The control approaches known as adap-
tive and as robust are frequently used to overcome these ob-
stacles. Essentially, the adaptive control approach consists
of design a controller able to figure out the actual values of
the uncertain terms (Krstic, Kokotovic, & Kanellakopoulos,
1995). On the other hand, a robust controller has a fixed
structure, which provides a decent performance for a fam-
ily of uncertain systems (Qu & Dawson, 1995; Spong &
Sira-Ramirez, 1986). These control approaches have their
own advantages; for instance, an adaptive controller can be
applied to a wider range of uncertainties than a robust con-
troller can (Pérez-Cruz, Ruiz-Velázquez, Rubio, & de Alba-
Padilla, 2012; Rubio, 2012; Wen & Moreno-Armendariz,
2005), though its implementation is much more difficult.
In addition, a robust controller does not need to be tuned
while an adaptive one does. A third strategy combines
both approaches to attempt a higher degree of robustness
(Abdallah et al., 1991; Bartolini, Ferrara, & Usai, 1997).
In Abdallah et al. (1991), an excellent motivation using
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the robust control approach can be found. In that study,
the robust control approach is divided into five categories:
linear multi-variable control, passivity, variable structure,
saturation, and robust and adaptive. Among these cate-
gories, the variable structure or sliding modes approach
may well be one of the most used nowadays. This ap-
proach ensures robustness against disturbances and parame-
ter variations, though having the inconvenience of produce
high-frequency violent control signals, known as chatter-
ing. In fact, the presence of chattering may excite unmod-
elled high-frequency dynamics, resulting in unforeseen in-
stability and damage to the actuators (Bondarev, Bondarev,
Kostylyeva, & Utking, 1985; Levant & Fridman, 2002; Rafi-
manzelat & Yadanpanah, 2004). In recent years, emphasis
has been placed on developing a technique to avoid this un-
desirable effect. Basically, there are three well-established
types of approaches to eliminate the chattering effects. Con-
tinuous approximations, as the saturation function, of the
sign function appearing in the sliding mode controllers are
used in the first approach (Burton & Zinober, 1986; Eker,
2006; Slotine & Li, 1991). Approaches based on observers
design are another way of overcoming the chattering; here,
the idea consists of by passing the plant dynamics by a
chattering loop, reducing the robust control problem to an
exact robust estimation problem (Rubio & Soriano, 2010;
Wen & Li, 2006). Unfortunately, the robustness with re-
spect to the plant uncertainties and disturbances is reduced
(Bondarev et al., 1985; Resendiz, Yu, & Fridman, 2008;
Sira-Ramirez, 1993). The third type of approach, based
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on the high-order sliding-mode method, guaranties conver-
gence to the origin of the sliding variable and its correspond-
ing derivatives. Here, the high-order sliding-mode algo-
rithms translate the discontinuity produced by the sign func-
tion to the higher order derivatives, producing continuous
control signals; however, these algorithms require an oner-
ous computing effort (Davila, Fridman, & Poznyak, 2006;
Levant, 1993, 2001; Polyakov & Poznyak, 2009; Santieste-
ban, Fridman, & Moreno, 2010). In addition to these three
approach types, the neural network-based techniques are
efficient to identify and control uncertain models. A full
review of these topic is beyond the scope of this introduc-
tion, but we refer the interested reader to the following
references (Wen & Poznyak, 1999; Wen, Poznyak, & Li,
2001).

The present work presents a smooth control strat-
egy for the regulation problem of an uncertain system
where the origin is not an equilibrium point. Hence,
asymptotic stability of the closed-loop system cannot
be expected in a single point (Benabdallah, 2009). In-
stead, in the present study, attention is focused on as-
suring uniform ultimate boundedness within an arbitrar-
ily small neighbourhood of the zero state, which can be
made as small as needed (there exist other alternative
known as uniform stability, see Rubio & Pérez-Cruz, 2013;
Rubio, Plamen, & Pacheco, 2011; Rubio & Wen, 2007).
The idea behind this consists of shaping a class of nonlin-
ear PI-controllers, which approximately emulate a sliding
mode controller. This approach was accomplished using
a combination of saturation functions and a traditional PI
controller. The stability convergence analysis was carried
out using the traditional Lyapunov method. The obtained
continuous controller is quite robust against the unmodelled
and persistent perturbation without needing to dominate it
by a high-gain controller or by a sliding mode controller. In
addition, the obtained closed-solution has a finite time of
convergence in a small vicinity. As pointed out in Fulwani
et al. (2012), Santiesteban et al. (2010), this property is very
important. Examples of it can be found in many electro-
mechanical, robotics, and power converter systems, which
require a quick response without any overshoot. In this con-
text, it is important to mention that the obtained results were
based on the works of Santibanez, Kelly, Zavala-Rio, and
Parada (2008), Parra-Vega (2001) and Ortega, Astolfi, and
Barabanov (2002) and were designed to control generalised
uncertain systems of first or second orders.

The remainder of this work is organised as follows. In
Section 2, the robust PI controller motivation is introduced.
Some generalisations of this controller are developed in
Section 3, while Section 4 is devoted to the conclusions.
Convincing numerical simulations to assess the effective-
ness of the obtained results can be found throughout the,
where appropriated.

Notation: Let, x ∈ R, k ∈ (0, ∞), and sign() be the
standard sign function. The linear saturation function will

be refereed, as

Sk[x] = {x if |x| < k, otherwise k sign(x)}.

In a similar way, the symbol α(x) ∈ R indicates a sigmoidal
function; that is, α(x) is any smooth function with the prop-
erty of α(0) = 0, xα(x) ≥ 0 and, |α(x)| ≤ α for all x ∈ R, and
α(Lx) → αsign(x), as long as L → ∞. On the other hand,
α−1(s) indicates the inverse function of the corresponding
sigmoidal function.

2. Robust PI controller motivation

Consider the following control system:

.
y = u + ρ(y, t), (1)

where y ∈ R and u ∈ R are the system single state and the
system single input, respectively; ρ(∗) ∈ R is an unknown
continuous function, which satisfies |ρ(y, t)| ≤ r for all
t ≥ 0. It is well know that if we select u as

u = −ksign[y], k > r, (2)

then the state y globally converges on the origin in a finite
time. However, discontinuities presented in the proposed
controller lead to chattering. To overcome this drawback,
the following controller is introduced, which can be seen as
a generalisation of a PI -controller with variable gains or a
smooth approximated version of the twisting algorithm.

Let us introduce the following smooth bounded con-
troller:

u = −kpSM1 [γ (Ly)] + SM2 [z],
.
z = −kdSM1 [γ (Ly)] ,

(3)

where L, kp, kd, M1 and M2 are the positive gains to be
designed; γ (y) is defined as

γ (y) = α(y)α(y) = α(y)(β0 + β1y
2)κ ,

β0 > 0, β1 ≥ 0, κ ∈ R+. (4)

Hence, the closed-loop system, defined in (3) and (1), is
given by

.
y = −kpSM1 [γ (Ly)] + SM2 [z] + ρ(y, t),
.
z = −kdSM1 [γ (Ly)] .

(5)

In the following subsection, it is demonstrated that the above
system is globally ultimately stable.
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2.1 Boundedness of the closed-loop system

Proposing Vy = y2/2 and differentiating Vy around the tra-
jectories of (5), we obtain

.

V y = y
(−kpSM1 [γ (Ly)] + SM2 [z] + ρ(y, t)

)
≤ − |y| (kpSM1 [γ (L |y|)] − M2 − r

)
,

where kp, M1, and M2 must satisfy kpM1 > M2 + r + δ

with δ > 0. Obviously, if α(L|y|)β(y) > M1, then
.

V y < 0.
Hence, there exists a finite time, T0 > 0, after which,

γ (L |y|) < M1; ∀t ≥ T0, (6)

implying that

|y(t)| ≤ yM=̂ 1

L
α−1

(
M1

βκ
0

)
, ∀t ≥ T0. (7)

Note that in the case when kpγ (L |y|) > M2 + r + δ,
.

V y <

0 holds. That is, after some finite T0 > 0, |y| ≤ yM where
yM can be as small as desired. Having shown that y is ulti-
mately bounded, we proceed to show that z is also ultimately
bounded. To this end, the following auxiliary variable, w =
y − kpz/kd, with its time derivative is given by

.
w = SM2 [(y − w)k] + ρ(y, t), (8)

with k = kd/kp > 0 is used. Therefore, to compute the
confined region of w the following function Vw = w2/2 is
used where its time derivative, around the trajectories of
(8), produces the following relation:

.

V w ≤ wSM2 [k(y − w)] − r |w| . (9)

Remembering that |y(t)| ≤ yM for all t ≥ T0 (see the previous
discussion), it is enough to select M2 > r + 2kyM + δ with

δ > 0 for assuring that
.

V w < 0, if |w| > yM + r/k + δ.
This implies that, after some finite time, T1 ≥ T0, the fol-
lowing inequality holds

|w(t)| ≤ r/k + yM + δ, ∀t ≥ T1 ≥ T0.

Hence, substituting the inequality, |z/k| − |y| ≤ |w|, into the
above expression, we have

|z(t)| ≤ r + kyM + δ, ∀t ≥ T1.

Then, it can be concluded that both states, y and z, are
ultimately bounded.

It is noted here that the obtained bounds for y and z
are quite conservative, as the present paper is concerned
with showing that the whole state is bounded. However, the
following subsection is focused on finding a better bound
for the state variable, y.

2.2 Improving the estimation of the confined
region of the variable, y

In order to determine a good-estimation for the bound, y >

0, such that |y(t)| ≤ y < yM for all t > T∗ ≥ T2, we propose
the following Lyapunov function:

V (x) =
∫ y

0
SM1 [γ (Ls)] ds + 1

kd

∫ z

0
SM1 [s] ds. (10)

It must be stressed that the proposed function, V, is a strictly
positive and radially unbounded function, with a local mini-
mum at the origin (see Ortega, Loria, & Kelly, 1995). Thus,
its time derivative, around (5), satisfies the following in-
equality:

.

V (x) = −kpS2
M1

[γ (Ly)] + SM1 [γ (Ly)] ρ(y, t)
≤ −SM1 [γ (L |y|)] (

kpSM1 [γ (Ly)] − r
)
,

(11)

where the set of control parameters M1 and M2 must be
selected according to the previous discussion. Therefore,

from the last inequality,
.

V < 0 as long as α(L|y|)β(y) >

M1. Once again, inequality (6) is satisfied, implying that
there exists a finite time, T1 ≥ T0 such that SM1 [∗] works
in the lineal region. Consequently, inequality (11) converts
to

.

V (x) ≤ −γ (L |y|) (
kpγ (L |y|) − r

)
,

and, evidently,
.

V < 0, while

g(y) = kpγ (L |y|) − r > 0. (12)

Thus, there exists a time, t > T∗ ≥ T1 such that g(y(t)) ≤
0∀t > T∗. In other words, y is confined to moving inside of
the compact set, By , where

By = {y ∈ R : |y| ≤ y, with g(y) = 0 }.

It should be stressed that the confined region can be shrunk
by selecting the values of the control parameters, kp, kd, L,
β0 and β1, as conveniently large.

Remark 1: Evidently, y can be numerically computed by
plotting, y > 0, versus, g(y), and detecting the sign change
of g(y).

Henceforth, Q = {M1,M2, kp, kd, L, β0, β1, δ, κ} is
used to denote the set of positive control gains parameters.

Proposition 1: Consider the scalar uncertain system (1),
with the uncertain |ρ(y, t)| ≤ r , in closed-loop with

u = −kpSM1 [γ (Ly)] + SM2 [z] ,
.
z = −kdSM1 [γ (Ly)] ,

(13)
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where the set control parameters, Q, satisfies the restric-
tions

kpM1 > M2 + r + δ, M2 > r + 2kyM + δ, (14)

with

yM =̂ 1

L
α−1

(
M1

βκ
0

)
, k = kd

kp

. (15)

Then, the closed-loop system is uniformly ultimately
bounded. Besides, for some finite time, T > 0, |y(t)| ≤ y

for all, t > T > 0, where y is the single root of

g(y) = kpγ (L |y|) − r. (16)

The following properties help to stress some facts about the
proposed controller:

(P1) If ρ(y, t) = r, where r is a constant and, under the same
consideration in Proposition 1, we have that y → 0
and z → −r, as long as t → ∞.

(P2) Suppose that |ρ(y, t)| ≤ ρb(y) ≤ rb for all y ∈ R with
ρb(0) = 0 , and selecting α(Ly), β(y), and the set of
control parameters, Q, such that

kp

∣∣SM1 [γ (L |y|)]∣∣ > |ρb(y)| , ∀y ∈ R − {0}, (17)

with, M1 > M2 + rb + δ, it can be assured that
y → 0 and z → 0, as long as t → ∞.

The proofs of these facts are in the Appendix.
Based on the previous facts, Lemma 1 is established as

follows.

Lemma 1: Consider the closed-loop system (1) and (13),
and suppose that the uncertain term can be written as

ρ(y, t) = r0 + ρb(y),

where r0 is any fixed constant and ρb(y) satisfies P2. Tacking
r=rb + |r0| and restricting the set of control parameters Q,
according to (14), then we have y → 0 and z → −r0, as
long as t → ∞.

The above Lemma is a straightforward consequence of
properties P1 and P2.

Comment 1: The inequality (17) is quite easy to fulfil by
adequately fixing the set of parameters, Q. For instance,
suppose that

ρ(y, t) = sin(y)i , i ∈ N.

Hence, ρb(y) = |sin (y)|i with i ∈ N. Then, using the
following setup

γ (y) =
√

1 + y2 tan−1(y),

L = 2M2 = 2kp = 1δ = 10−1,

inequality (17) converts to

| sin(y)i | < SM2=2
[

tan−1(2 |y|)
√

1 + 4y2
]
,

∀y ∈ R − {0} ∧ i ∈ N ,

which always holds. In addition, note that the parameter L
does not needs to be too large.

Numerical example: In order to test the effectiveness of
the proposed control law strategy (13), for the uncertain
system (1), we run a numerical simulation for the unknown
term, ρ(y, t) = 0.5sin (t/4) + sin (y). The control objective
was to follow the reference signal, sin (t/2). The system
was initialised at 0.2 rads; the control function was γ (y) =√

1 + y2 tan−1(y), with L = 50, kp = 3, kd = 1, M1 = 3 and
M2 = 2. The corresponding results can be seen in Figure 1.
From this figure it can be seen that the proposed control
law effectively makes the uncertain system to follow the
selected reference in a very short period of time.

3. Some generalisations of the proposed control
scheme

The proposed scheme can be also extended for the case
where the uncertain term is unbounded. Suppose that the
uncertain term can be upper-bounded by some nonlinear
strictly positive function, as

|ρ(y, t)| ≤ rρu(y), (18)

where r > 0 and ρu(y) is any strictly positive non-bounded
function (for instance, ρu(y) = 1 + |y| 1

2 + |y|2). Then, the
following proposition is fulfilled:

Proposition 2: Consider the scalar uncertain system (1),
where the uncertainty fulfils the inequity (18), in closed-
loop with

u = −kpρu(y)SM1 [γ (Ly)] + ρu(y)SM2 [z] ,
.
z = −kdρu(y)SM1 [γ (Ly)] ,

(19)

where control parameters are selected according to (14)
and (15). Then, the closed-loop system is uniformly ulti-
mately bounded. That is, |y(t)| ≤ y, for t > T > 0, where y

is the single root of (16).
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Figure 1. Close-loop response of the uncertain first-order system.

Proof: First of all, we must recall that the closed-loop sys-
tem, defined by (1) and (19), is

.
y = −kpρu(y)SM1 [γ (Ly)] + ρu(y)SM2 [z] + ρ(y, t),
.
z = −kdρu(y)SM1 [γ (Ly)] ,

(20)
where |ρ(y, t)| ≤ rρu(y). Following the same steps as in
Proposition 1 is easy to see that this closed-loop system
is stable. Now, to estimate a convenient bound for y, we
use the proposed function, V, given in (10). Hence, the
time derivative of, V, around the trajectories of (20) can be
upperbounded by

.

V (x) ≤ −ρ(y)SM1 [γ (L |y|] (
kpSM1 [γ (Ly)] − r

)
.

Now from the restriction that kpM1 > M2 + r + δ for some
finite time,

γ (Ly) < M1.

Once again,
.

V < 0 as long as g(y) = kpγ (L |y|) − r > 0,
implying that |y| ≤ y for a finite time.

3.1 Controlling a second-order uncertain system

Suppose that we have the following uncertain second-order
nonlinear system:

.
x1 = x2,
.
x2 = ρ(x, t) + bu,

(21)

where x = (x1, x2) ∈ R2 is the vector state, u ∈ R is the control
action, and ρ(∗) is a scalar uncertain nonlinear function,
provided that

|ρ(x, t)| ≤ kb + ka ‖x‖ , ka, kb ≥ 0, (22)

with 0 < b ≤ b ≤ b. The control objective is to render the
states x1 and x2 to the origin by using a continuous con-
troller. To accomplish this, the auxiliary variable, σ (x) =
λx1 + x2, with λ > 0, is forced to move very close to the
origin in a finite time. Roughly speaking, it is attempted to
make variables σ (.) and

.
σ (.) almost zero in a finite time.

Now, this control problem is solved, taking advantage of
the previously proposed robust control scheme, leading to
the following controller:

u = −kpSM1 [γ (Lσ )] ρl(x) + SM2 [z] ρl(x),
.
z = −kdSM1 [γ (Lσ )] ρl(x),

(23)

where ρ l(x) = (kb + λ|x2| + ka‖x‖), and for simplicity,

σ = λx1 + x2, λ > 0. (24)

From the above relation, after some simple algebra,
.
σ , may

be written as

.
σ = bρl(x)

(−kpSM1 [γ (Lσ )] + SM2 [z] + p(x, t)
)
,

.
z = −kdSM1 [γ (Lσ )] ρl(x), (25)

where p(x, t) lumped all the uncertain terms, defined by

p(x, t) = λx2 + ρ(x, t)

bρl(x)
.

Then, the parameter r is redefined as

max |p(x, t)| ≤ r = 1

b
, (26)

and selecting the control parameters M1and M2 according
to (14) and (15), respectively. It is easy to check whether σ

and z are bounded (see the previous section). In fact, from
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the first equation of (25), there is T0 > 0, such that

|σ (t)| ≤ σM = 1

L
α−1

(
M1

βκ
0

)
, ∀t ≥ T0. (27)

Now in order to determine a good-estimation for the bound,
σ > 0, such that, |σ (t)| ≤ σ ≤ σM , from the above restric-
tion, we have that SM1 [] works in the linear region, after t ≥
T0. Therefore, the following Lyapunov function can be pro-
posed:

V (σ, z) =
∫ σ

0
γ (Lσ (s))ds + b

kd

∫ z

0
SM2 [s] ds, (28)

where the time derivative around of the trajectories of (25)
leads to

.

V (σ, z) = −b(kpρl(x)γ 2(Lσ ) + γ (Lσ )p(x, t)). (29)

After some simple algebra, it is easy to show that
.

V can be
upperbounded by

.

V (σ, z) ≤ −bρl(x)γ (L |σ |)(kpγ (L |σ | − r).

In addition, evidently,
.

V < 0, as long as

g(y) = kpγ (L |σ |) − r > 0.

Consequently, there exists a finite time T1 ≥ T0 > 0, after
which |g(σ )| ≤ g(σ ), where σ is the single root of g(y). This
section is ended by introducing the following proposition,
which summarises the above developments.

Proposition 3: The second-order nonlinear system (21) in
closed-loop with (23), where the saturation function level
parameters were selected according to (14) and (15), is
uniformly ultimately bounded. That is, |σ | ≤ σ for all t >

T > 0, where σ is the single root of (16).

3.2 Stabilisation of a class of nonlinear systems

It is well known that many mechanical systems admit the
following cascade form:

.
x1 = x2,
.
x2 = x3 + f (x) + d1,
.
x3 = x4,
.
x4 = u + d2,

(30)

where x = [x1, x2, x3, x4] is the state, u ∈ R is the controller,
f: R4 → R and b: R4 → R are nonlinear smooth functions,
d1 and d2 are bounded perturbations, and, f and di satisfy
the following:

|f (x)| ≤ κ ‖x‖ ; |di(t)| ≤ di .

The control objective is to render the state x to one small
vicinity at the origin by using a continuous controller. Sim-
ilarly to before, the variable σ is selected as

σ (x) = x4 + λ1x1 + λ2x2 + λ3x3,

where the set of constants λi > 0 will be selected below.
Therefore, its corresponding time derivative is

.
σ (x) = u + Kx + λ2f1(x) + f2(x) + d0,

where d0 = d1 + λ2d1 and Kx =λ1x2 + λ2x3 + λ3x4. Now,
using simple algebra, the last equation can be rewritten as

.
σ (x) = ρl(x)

(
u + Kλx

ρl(x)
+ p(x, t)

)
, (31)

where ρ l(x) and p(x, t) are defined by

ρl(x) = k
(
d1 + λ2d2 + (λ2κ1 + κ2) ‖x‖)

p(x, t) = f2(x) + d0

ρl(x)
,

with k > 1. Again, using simple algebra, |p(x, t)| ≤ r =
1/k.

Based on Proposition 3, u is introduced as

u = ρl(x)
(−kpSM1 [γ (Lσ )] + SM2 [z]

)
,

.
z = −kdSM1 [γ (Lσ )] ρl(x).

(32)

Note that the proposed controller (32) in closed-loop with
(31) corresponds to the previously obtained system (25).
Therefore, following similar steps as before, after some
finite time, t ≥ T0,

|σ (t)| ≤ σM = 1

L
α−1

(
M1

βκ
0

)
, ∀t ≥ T0.

Even more, there exists some time, T1 ≥ T0, such that
|g(σ (t))| ≤ g(σ ) for all t ≥ T1, where σ is the single root of
g(y) (e.g. (16)). Hence, |σ (t)| ≤ σ , where σ can be forced
to be very close to zero. This means that

x4 = −λ1x1 − λ2x2 − λ3x3 + δ(t), (33)

where |δ(t)| ≤ σ for all t ≥ T1. Observe that the first three
differential equation of system ( 30) are globally Lipschitz.
That is, the states {x1, x2, x3} cannot have a finite time of
scape (Khalil, 2002). Therefore, after some finite period
of time, T1 > t, these last three equations of (30) can be
rewritten as

.
q = Aλq + d(q, t), (34)
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Figure 2. Close-loop response of the uncertain inverted pendulum attached to a DC-motor.

where

Aλ =
⎡
⎣ 0 1 0

0 0 1
−λ1 −λ2 −λ3

⎤
⎦ , q =

⎡
⎣x1

x2

x3

⎤
⎦ ,

B(q, t) =
⎡
⎣ 0

β(t)
δ(t)

⎤
⎦ ,

where |β(t)| ≤ d1 + σ + κ(1 + λ) ‖x‖ with
λ = max{λi}i={1,2,3}. Now, to ensure the ultimate
boundedness of system (34), matrix Aλ has to be Hurwitz,
and the system has to be asymptotically and exponentially
stable if d1 = 0 and σ = 0. It can be easily solved invoking
Khalil’s vanishing perturbation theorem (see Khalil, 2002).
To achieve this, it is enough to satisfy the following
inequity:

κ ≤ λmin(Q)

2λmax(P )(1 + λ)
, (35)

where Q and P satisfy the following Lyapunov equation:

PAλ + AT
λ P = −Q, (36)

where Q > 0 and P > 0. That is to say, if Aλ is selected
such that the expressions (35) and (36) are fulfilled, the state
q exponentially decayed to zero. However, considering the
perturbations d1 �= 0 and δ1 �= 0, it is easy to see that the
state q is ultimately bounded. This means that |q| ≤ δ(λ,L),
where the constant δ can be as small as needed.1 According
to the above discussion, the following proposition gives
sufficient conditions to ensure the ultimately boundedness
of system (30) in closed-loop with (32).

Proposition 4: Let us consider the nonlinear system (30)
in closed-loop with (32), under the assumptions that Aλ

is selected according to (35) and (36), and the saturation
function level parameters were selected according to (14)
and (15). Then, there exists a finite time T > 0 where the
state x is ultimately bounded, with |x| ≤ x(λ,L), where x

can be as small as needed, selecting adequately λ and L.

3.3 Numerical example

To show the effectiveness of the proposed controller (23),
it was applied it to the well-known inverted pendulum at-
tached to a DC-motor, whose state model is given by

ẋ1 = x2, ẋ2 = 1

J
u − MgL

2J
sin(x1) + ρ(t),

where x1 and x2 are the pendular angle position and the
pendular angle velocity, respectively; the control signal u
corresponds to the motor torque. The parameters M, L, g
and J are the pendulum mass, the pendulum arm length, the
gravity constant and the arm inertia, respectively, while ρ is
a bounded perturbation. Assuming that physical parameters
are partially known and ρ given by

1

J
= 0.8 ± 0.2,

MgL

2J
= 1 ± 0.25, ρ(t) = 1 + 0.1 sin(t/5).

The objective is to drive the tracking errors e1 = x1 − xr

and e2 = x2 − .
xr close enough to the origin. That is, e1

∼=
0 and e2

∼= 0. Thus, defining σ = e1 + e2 and repeating
similar steps as before, the following controller

u = −kpSM1 [γ (Lσ )] ρl(e1) + SM2 [z] + ẍr ,

ż = −kdSM1 [γ (Lσ )] ρl(e1), ρl(e1) = 1 + |e2| ,

assures that both errors can be as small as desired if the
set of control parameters satisfies the conditions (14) and
(15). In order to achieve a good performance, the control
parameters were fixed as

γ (σ ) =
√

L + σ 2

L2
tan−1(σ ) kp = 5 kd = 1

M2 = 2.78 M1 = 3 k = 0.2,

where r = 2.7 and σ M = 68 × 10−4 (see (26) and (27),
respectively). By numerical computation, it is easy to see
that the steady-state error of ‘σ ’ is given by σ ∼= 1.1 ×
10−3, implying that |e1| ≤ σ .

Figure 2 shows the closed-loop response of both track-
ing errors and the corresponding controller. From this
figure, it is clear that the proposed controller effectively
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renders the errors close enough to the origin in about
2.25 s.

4. Conclusions

A smooth control strategy for the regulation problem of an
uncertain system was obtained. This strategy assures uni-
form ultimate boundedness of the closed-loop system inside
of the zero-state neighbourhood, which can be made arbi-
trarily small. To accomplish this, a class of nonlinear PI con-
trollers was designed. This controller behaves as if it were a
sliding mode controller. This behaviour approximation was
in turn achieved using a combination of saturation func-
tions and a traditional PI controller. The controller robust-
ness against unmodelled and persistent perturbations did
not need a high-gain controller or a sliding mode controller
to dominate it. In addition, the obtained closed-solution has
a finite time of convergence in a small vicinity. To perform
the corresponding stability converge analysis the traditional
Lyapunov method was used. Finally, the effectiveness of the
obtained controller was validated by numerical simulations,
which demonstrated clearly the controller is able to render
the system to a small vicinity of the origin. It is worth
mentioning that the obtained controller was designed for a
generalisation of uncertain systems of first or second order.
However, a generalisation for systems of higher order can
be obtained.
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Appendix A

Proof of property in P1
If ρ(y, t) = r with r being constant, then the single equilibrium
point given by x = (y = 0, z = −r) is asymptotically and globally
stable for the system (5). Under the assumption in Proposition 1,
y and z are globally stable in a Lyapunovian sense. However, to
assure convergence at x, we must use the following function:

V1(x) = V (x) + rz, (1)

where V(x) > 0 was previously defined in (10). Evidently, its time
derivative of around (5) leads to

.

V 1(x) = −kpS2
M1

[γ (Ly)] ≤ 0. (2)

Since, V1(x), is bounded from below and,
.

V 1(x), is semi-definite
negative, then global stability of x = (y, z) is once again as-

sured. However, remarking that
.

V 1(x) = 0, if and only if y = 0,
straightforwardly proves global asymptotic stability of the equi-
librium point, (y = 0, z = −r), via LaSalle’s theorem (see Khalil,
2002). �

Proof of property in P2
From the previously-defined Lyapunov function, V(x) > 0, defined
in (10), its corresponding time derivative is around the trajectories
of (5) (for more detail, review the first expression of (11)), and after
substituting, |ρ(y, t)| ≤ ρb(y), the following expression holds:

.

V (x) ≤ −SM1 [γ (L |y|)] (
kpSM1 [γ (L |y|)] − |ρb(y)|) .

Now, from the assumption (17), it can be assured that
.

V (x) < 0,
for all y ∈ R − {0}. After using LaSalle’s theorem, it is easy to
show that both variables, y and z, asymptotically converge on the
origin. �
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