

International Journal of Mathematical Education in Science and Technology

ISSN: 0020-739X (Print) 1464-5211 (Online) Journal homepage: https://www.tandfonline.com/loi/tmes20

Inquiry as an entry point to equity in the classroom

Gail Tang, Houssein El Turkey, Emily Cilli-Turner, Milos Savic, Gulden Karakok & David Plaxco

To cite this article: Gail Tang, Houssein El Turkey, Emily Cilli-Turner, Milos Savic, Gulden Karakok & David Plaxco (2017) Inquiry as an entry point to equity in the classroom, International Journal of Mathematical Education in Science and Technology, 48:sup1, S4-S15, DOI: 10.1080/0020739X.2017.1352045

To link to this article: https://doi.org/10.1080/0020739X.2017.1352045

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

6

Published online: 26 Oct 2017.

Submit your article to this journal 🕝

View related articles 🖸

View Crossmark data 🗹

Citing articles: 5 View citing articles

∂ OPEN ACCESS

Check for updates

Inquiry as an entry point to equity in the classroom

Gail Tang ¹^{o^a}, Houssein El Turkey^b, Emily Cilli-Turner ¹^{o^c}, Milos Savic ¹^{o^d}, Gulden Karakok ¹^{o^e} and David Plaxco^d

^aDepartment of Mathematics/Physics/Computer Science, University of La Verne, La Verne, CA, United States of America; ^bDepartment of Mathematics and Physics, University of New Haven, New Haven, CT, United States of America; ^cDivision of Science and Mathematics, University of Washington, Tacoma, WA, United States of America; ^dDepartment of Mathematics, University of Oklahoma, Norman, OK, United States of America; ^eSchool of Mathematical Sciences, University of Northern Colorado, Greeley, CO, United States of America

ABSTRACT

Although many policy documents include equity as part of mathematics education standards and principles, researchers continue to explore means by which equity might be supported in classrooms and at the institutional level. Teaching practices that include opportunities for students to engage in active learning have been proposed to address equity. In this paper, through aligning some characteristics of inquiry put forth by Cook, Murphy and Fukawa-Connelly with Gutiérrez's dimensions of equity, we theoretically explore the ways in which active learning teaching practices that focus on inquiry could support equity in the classroom.

ARTICLE HISTORY

Received 7 May 2017

KEYWORDS

Active learning; equity; inquiry-based learning; inquiry-oriented instruction

1. Introduction

Many curriculum and policy documents, as well as research studies, highlight the importance of equity and caution educators of the possible consequences of not attending to those issues in teaching. For example, at the primary and secondary levels, the Principles for School Mathematics [1] provided by the National Council of Teachers of Mathematics have included Equity since the early 1990s as part of standards or principles of mathematics education. The Conference Board of the Mathematical Sciences reported in their Statement on Active Learning [2] that inequities and lack of access for students have been preventing or discouraging students from studying the science, technology, engineering and math (STEM) disciplines, long before they begin post-secondary studies. Most recently, the topic study group on Equity in Mathematics Education at the International Congress of Mathematics Education [3] raised the question: 'In the context of diversity of student populations in many classrooms around the world, how do we understand and promote equity that goes beyond mere academic and critical deliberations towards policy and practice? [p.3]. Similarly, Gutiérrez [4] indicated, 'Most members of the mathematics education research community would agree that equity is a valued goal ... However, much less consensus arises when the question is raised: how do you think we should address equity?' [p.2].

CONTACT Gail Tang 🖾 gtang@laverne.edu

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

Addressing equity in mathematics education is a multi-dimensional challenge (considering classroom, institutional and systemic issues) that may require multiple approaches. In this paper, we focus on teaching practices – a dimension that can be influenced by instructors in the classroom. We specifically explore 'inquiry'¹ teaching practices that could potentially address issues regarding equity [1,2]. Teaching using inquiry (e.g. inquiry-based learning (IBL) or inquiry-oriented instruction (IOI)) has been shown to have positive effects on:

- conceptual understandings of central ideas [5,6],
- affective traits such as all students' (but especially women's) confidence in doing and teaching mathematics, interests in pursuing mathematics, attitudes about mathematics, persistence [6], and self-, cognitive and social empowerment [7].

In addition, there are results that indicate active learning can benefit a greater range of students without negatively impacting traditionally high-achieving students [6], which addresses the 'excellence vs. equity debate' [8,p.148–149]. Such results, as well as our own classroom teaching experiences, encouraged us to explore the connections between equity and inquiry teaching practices theoretically. In this paper, we propose a theoretical framework to support and explore the effects of inquiry in relation to equity. With this framework, we claim that many of the characteristics of inquiry teaching put forth by Cook, Murphy and Fukawa-Connelly [9] align with the Four Dimensions of Equity proposed by Gutiérrez [10]. That is, we claim the four dimensions – access, achievement, identity and power– explicate how inquiry pedagogy could promote equity in mathematics courses.

2. Motivation

As part of a larger study concerning fostering mathematical creativity in the classroom, our research team conducted interviews in an undergraduate introduction-to-proofs course taught using IBL. The course was taught at a private Hispanic-Serving Institution in the United States where the student population is predominately female and/or first generation.²

During analysis of the interview data for one of the creativity research projects, the researchers noticed responses that were related to issues of equity in the classroom. Students mentioned voice (as a metaphor for expressing opinions or thoughts), questioning authority, confidence in mathematics and retention of information. For example (emphases added by the authors),

Vana: I saw the quieter ones also **get their** <u>voice</u> during the semester (Latina, adult learner, first-generation, university staff, biology (degree completed))

Ahn Pan³: [B]ecause of the nature of how the course was conducted, it encourages questions ... you know question authority and don't take anything for granted and, you know fight back. (Male, White and Asian, adult learner, chemistry (math minor)) Peyton: [B]ecause of the nature of this course, ... when I did finally understand something, I did feel like I had a way stronger, I had much more confidence in it than I do generally S6 👄 G. TANG ET AL.

and <u>I retained the information a lot more</u>. (Female, White, traditional-aged transfer, first-generation, economics major)

While the above quotes referenced the nature of the course, students also detailed specific characteristics of the instructor's IBL actions as they experienced them.

- Students presented and evaluated each other's work. Cargo: [H]aving my classmates just go up and share their work and their thought process helped me see things, I didn't notice. Even when I was up presenting, there was always one guy that would always just keep asking 'How did you get that?' And, because he kept asking that, I kept figuring out 'OK. I think I should probably put more details into my proofs' (Latino, traditional-aged, first generation, math major.)
- Students engaged in group and whole class discussions on tasks assigned by instructor. Alice: She would **assign homework** and then we'd always ... have those **class discussions** as well as like our **individual group discussions** that we had in class. (Latina, traditional-aged, first generation, math major.)
- Instructor had a modified role from the traditional lecturer. Vana: The instructor ... sat at the table and more was a <u>listener and a mediator</u>, like <u>a facilitator of our discussions</u> but she never really led the discussion. So it was a lot of you know <u>bouncing ideas off of students</u> and kind of <u>evaluating each other's work</u>. (Latina, adult learner, first-generation, university staff, biology (degree completed).)

These student responses motivated the research group to consider the connection between learning through inquiry and equity. To explore this possible connection, we examined definitions and frameworks for inquiry learning, which we share a summary of in the next section. In the subsequent section, equity teaching definitions and frameworks are presented.

3. Overview of inquiry learning

While this paper reports on teaching through inquiry, we see this pedagogy as a subset of a collection of pedagogies termed *active learning*. Pedagogical techniques used to engage students in active learning vary between instructors, including group work, think-pair-share, student presentations, project-based learning, 'worksheets or tutorials completed during class, use of personal response systems with or without peer instruction' [11,p.1] and many other teaching techniques. Freeman et al. [11] reported that active learning techniques have a strong positive impact on student learning. Similarly, Kogan and Laursen's [12] study indicates that active learning experiences provide lasting and significant benefits to some student groups without disadvantaging other groups.

Under the umbrella of active learning pedagogies, there have been numerous studies on the effects of IBL or IOI. Even though there is not a consistent definition of inquiry teaching, there are teacher and student practices in the classroom that are essential to inquiry. For example, the Academy of Inquiry-Based Learning describes the philosophy of this pedagogy through student actions: 'students (a) are deeply engaged in rich mathematical tasks, and (b) have ample opportunities to collaborate with peers (where collaboration is defined broadly)' [13].

The IOI description by Rasmussen and Kwon [5] encompasses teacher activity and student activity. With respect to teacher activity, teachers inquire into student thinking, which has three functions:

First, it enables teachers to construct models for how their students interpret and generate mathematical ideas. Second, it provides opportunities for teachers to learn something new about particular mathematical ideas, in light of student thinking. Third, it better positions teachers to build on students' thinking by posing new questions and tasks. [5,p.2]

Students, on the other hand, are inquiring into the mathematics through solving, discussing and presenting problems. Students may also come up with and prove conjectures during this inquiry process. This has two functions: 'to enable students to learn new mathematics through engagement in genuine argumentation' and 'to empower learners to see themselves as capable of reinventing mathematics and to see mathematics itself as a human activity' [5,p.2].

Although teacher actions and student actions are distinguished from each other above, we claim that it is not possible to describe students' potential actions independently from the instructor's role in designing and leading an inquiry-based course. This unifying feature of inquiry led Cook et al. [9] to identify six themes of such courses, which we discuss next in a different order than presented in the original paper, contextualizing each theme with excerpts from other researchers' work.

3.1. Six themes of inquiry

The first theme is *Student–Instructor Relationship* where the instructor asks about student thinking [14] and students can express their own ideas while the instructor listens [6]. Kuster et al. [14] argued that 'questions that require students to engage in problem solving activity affords the instructor opportunities to inquire into student thinking and reasoning' [p.8]. The second theme is *Doing Mathematics* where students participate in authentic mathematical experiences. Cook et al. [9] also describe a third theme called Student Ownership where learners are responsible for creating, generating and developing their own knowledge, either by themselves or with instructors' encouragement. This knowledge is built from their prior knowledge, which they labelled as new Knowledge Building. Kuster et al. [14] also see this as a fundamental part of IOI and they refer to it as 'building on student contributions' [p.6]. As part of knowledge creation, students are given opportunities to provide explanations and justifications of their thinking while others listen to and attempt to understand the ideas being discussed or presented, termed Peer Involvement by Cook et al. [9]. In [6], students in IBL courses reported participating in activities such as asking questions, evaluating other students' work and working together in class. Kuster et al. [14] also identified students 'being engaged in one another's thinking' as a characteristic of IOI. We would like to stress that *Peer Involvement* merely describes one part of inquiry learning, rather than representative of all the time spent in class. For example, the classes termed IBL in the Laursen et al.'s [6] were observed to engage in discussions, presentations, evaluations or other student-centred activities for over 60% of the class period, meaning that other time was engaged in other activities.

According to Cook et al.'s [9] exploration of existing studies, an outcome of their aforementioned features of inquiry is that it is better aligned with how people learn. They categorized this sixth theme as increased *Student Success*. For example, Laursen et al. [6] reported higher 'cognitive gains in understanding and thinking, affective gains in confidence, persistence, and positive attitudes about mathematics, collaborative gains in working with others, seeking help and appreciating different perspectives' [p.409] in students from IBL courses compared to those in non-IBL sections of the same courses. Notably, Laursen et al. [6] also found that in IBL courses, both men and women's attitudes about mathematics improved as well as their interest in pursuing mathematics, but the women had greater gains in these areas than men.

Note that engaging in inquiry learning does not mean constantly interacting with peers. For example, *Student–Instructor Relationship* requires instructors to be familiar with each individual's mathematical thinking. *Doing Mathematics* touches on the types of tasks students are engaged in, rather than with whom those tasks are completed. *Student Ownership* encourages students to go through the process of inventing or reinventing mathematics, whether this is on their own or with others. *Knowledge Building* mimics how knowledge is disseminated and built upon in the field of mathematics, which can happen through reading others' work, or listening to a presentation given by a peer. Finally, *Student Success* is a measure of individual success.

The above themes are not meant to be taken as an exhaustive list of features of IBL/IOI teaching practices; they are still under development and undergoing revisions. However, the broadness of Cook et al.'s [9] six themes has motivated us to use them in our preliminary theoretical framework that aims to explore the alignments between inquiry features and the Four Dimensions of Equity by Gutiérrez [10].

4. Equity

In general, equity teaching promotes a mind-set where all students are capable of learning mathematics [8,15,16]. Equity research seeks to bring to the surface teaching practices that enable these mind-sets [8] among instructors and students alike [17]. It is important that instructors bracket prejudices about student participation and achievement levels based on race, gender, social class, proficiency in the dominant language, ethnicity or other characteristics [8]. Similarly, judgments based on a student's prior performance, particularly if they have performed poorly in the past, should not be seen as a personal weakness. Rather, we as instructors need to recognize that their level of performance could be a consequence of the complex social, economic and cultural factors [18] that affect individual experiences while learning mathematics.

For the purposes of this theoretical investigation, we utilize an equity framework used in previous studies [19]. Gutiérrez [10] argued that teaching for equity includes four dimensions arranged on two axes: *Access, Achievement, Identity* and *Power. Access* and *Identity* are considered precursors to *Achievement* and *Power*, respectively. On the dominant axis, *Access* can be seen as qualifying students to succeed in the current inequitable system. This dimension concerns resources that have been made available for students to participate in mathematics such as 'quality of teachers, adequate technology and supplies, classroom environment that invites participation, infrastructure for learning outside the classroom' [p.5]. Access also examines opportunities to draw upon their 'cultural and linguistic resources'

[p.5]. On the other end of the same axis, *Achievement* is an outcome affected by students' access to opportunities to learn and can be measured by 'participation in class, course-taking patterns, standardised test scores, majoring in math, having a math-based career' [p.5], or using mathematics to participate in society [19].

On the critical axis, *Identity* attends to the 'balance between self and the global society and ways students are racialized, gendered and classed' [10,p.5], where attention needs to be paid 'to whose perspectives and practices are "socially valorized" [p.5]. In this dimension, Gutiérrez stresses that mathematical learning experiences include reflections on oneself and others. Gutiérrez explained *Power* as students using their math knowledge to reach 'personal goals of excellence such as helping their community to solve a local problem' [p.6]. Adiredja et al. [19] added that learning focused on this dimension attends to 'disrupting the existing power distribution and dynamics in a society based on race, gender, and social class' [p.64]. To achieve this, students can be involved in decision-making on acceptance or rejection of mathematical knowledge presented during class, pacing of content [20] and starting points for curriculum [18]. This type of learning requires a social transformation measured by whose voice can be heard in the classroom, as well as analysing society using mathematics to justify critiques [10].

Gutiérrez [10] situated these four dimensions more broadly, namely, 'in society' or in a 'community' [p.6]. In discussion of power, Gutiérrez [8] positioned the distribution of power in the contexts of the classroom, future schooling, everyday life and the global society. In this paper, we focus on the classroom as a stepping-stone to discuss alignment of inquiry pedagogies to these dimensions of equity. We utilize these four dimensions as a framework to discuss how active learning pedagogies, and inquiry learning specifically, could have the potential to increase access, lead to higher achievement, provide opportunities for students to reflect on their identities and attune students to power dynamics in their mathematical community: the classroom. We acknowledge that just using inquiry learning alone may not fully address equity, especially if there are no changes to the system outside the classroom or if students do not have opportunities to question power distribution and dynamics in the greater society. The purpose of our theoretical exploration is to investigate inquiry learning as an entry point towards a more equitable classroom, ultimately to move towards a more equitable society.

5. Alignment of inquiry with the Four Dimensions of Equity

With this proposed framework, we put forth the claim that as a pedagogical practice, inquiry learning can be one approach to promote equity by providing students access and chances to explore their identities, with the hopes of a shift in both power and achievement in their courses. Our exploration originated from several reports, particularly Laursen et al.'s [6] assertion that IBL does not focus on fixing students, but instead addresses an inequitable system. Their study documented ways in which IBL can increase achievement in and positive attitudes of mathematics among students. To explicate how the described features of inquiry might provide a more equitable experience for students studying mathematics, we describe some features of inquiry and situate them relative to the Four Dimensions of Equity.

Table 1 shows a summary of the alignment. The first part of the sentence is housed under one of the six themes of inquiry; the sentence continues in the cell that represents

Table 1. Alignment of equity and inquiry.

	Access	Achievement	Identity	Power
Student-Teacher				
Relationship		- to a dama to d	ab	46
when instructors	students are	students	they may see	the power
are enabled to	given an access	learning,	students as	dynamic in the
have a deeper	point to learn	confidence,	mathematical	classroom
understanding of	because this	enjoyment of	learners, which	changes since the
student	helps instructors	mathematics	may impact how	instructor is
thinking	identify and	and	students see	concerned with
	address student	participation in	themselves as	student thinking
	concerns.	class may be	mathematical	and not just
		positively	learners.	covering material.
De in a Math		affected.		
When all students	thora is an	students may	students can	nowor chifts from
are invited to	unere is dif	students may	students can	instructor as the
are invited to	access point to	retain more	renect on their own	
participate in the	learn since they	content by	mathematical	only source of
mathematical	are given the	participating	Identities as a	knowledge to
classroom	chance to do,	and building on	member of the	students as
community	discuss and	others	community.	producers and
	present	contributions.		users of
Student	mathematics.			knowledge.
Ownership				
When all students	there is an	there may be	students can	power shifts
are encouraged to	access point to	gains in learning.	reflect on their	because students
create, generate	learn because	confidence.	experiences to	shape traditionally
and develop their	they can work in	mathematics	deepen how they	instructor-led
own knowledge	a way that is	enjoyment and	see themselves as	components
	different from a	class	mathematical	(pacing and
	nrescribed	narticination	learners	content delivery)
	manner.	puricipation.	icumers.	content denvery).
Knowledge-				
Building				
When all students	instructors	they add to	students can	power shifts since
are encouraged to	honour what	their own	reflect on their	the classroom is
use prior	students already	understanding,	mathematical	guided by what
knowledge to build	know,	which may lead	experiences	they already know
new knowledge	encouraging an	to gains in	because they can	as opposed to
	asset	learning,	see the progression	what instructors
	perspective	confidence,	in their	assume they
	instead of a	mathematics	construction of	know.
	deficit	eniovment and	knowledge.	
	perspective.	class		
	F	participation.		
Peer				
Involvement				
When all students	students are	students may	students'	the power
provide	given an access	achieve together	perceptions of their	dynamic changes
justifications while	point to learn	and carry that	abilities are	as students lead
others listen and	because they are	style of group	heightened as they	the class and ask
attempt to	exposed to other	learning to	observe how others	each other
understand	ways of thinking.	subsequent	react to their ideas.	questions, as well
		courses.		as asking the
Church and C				instructor.
Student Success	thoro is hused - "	students'	ctudante	dictribution of
Since IBL/IUI can	there is broader	students' career	students may	distribution of
lead to increased	access to	choice and	identify themselves	power in the
student success	learning for	course-taking	as more of a	global society may
	women, men,	patterns may be	mathematician or	change with a
	low-achieving	affected.	enjoy mathematics	more diversified
	and first year		more.	STEM force.

the intersection of the inquiry theme and the equity dimension. For example, we theorize that Student Ownership and Power are aligned because: 'When all students are invited to participate in the mathematical classroom community ... power shifts from instructor as the only source of knowledge to students as producers and users of knowledge.' We further explain parts of the table using some examples.

5.1. Access

Gutiérrez's [10] definition of equity included a 'classroom environment that invites participation' [p.5] as a tangible resource to access. Inquiry pedagogies revolve around a classroom environment that invites and encourages all students' participation in doing, discussing and presenting mathematics (*Peer Involvement*). When all students are given opportunities to be active participants in the mathematical community of the classroom (*Doing Math*), students are given an additional access point to learn because they are given the chance to provide explanations and justifications of their thinking processes. Others then listen and attempt to understand the ideas being discussed or presented, which can allow them to build their own mathematical knowledge (*Knowledge Building*). We believe that these opportunities give all students the chance to be exposed to other ways of thinking which can result in richer learning experiences for them.

Nasir et al. [21] provided characteristics of classroom practices that support equity: 'Powerful classroom practices include those that foster student-centred discourse, student exploration of mathematical ideas, and on-going feedback' [p.17]. Inherent in the on-going feedback is the *Student–Teacher Relationship*: the instructor's responsibility of inquiring into student thinking and 'fostering and facilitating productive student discourse' [21,p.17].

5.2. Achievement

Gutiérrez [10] referred to Achievement as a measure of 'how well students can play the game called mathematics' [p.6]. In other words, this dimension relates not only to student performance on exams and standardized tests, but also considers a student's mathematical 'story.' This can refer to measures such as whether students continue taking mathematics courses or whether they choose a mathematical career.

When all students are encouraged to create, generate and develop their own knowledge (*Student Ownership*), confidence in doing mathematics and participation in class may be positively affected. Laursen et al. [6] demonstrated that students in IBL courses increased in student performance as well as other measures related to this definition of achievement. Additionally, they found that learning gains were found in IBL sections over non-IBL sections of the same course; not only improvements in course performance, but gains in confidence, persistence and enjoyment of mathematics (*Student Success*) [6]. Some of these outcomes may lead to Gutiérrez's [10] measures of Achievement, namely 'course taking patterns, majoring in math, and having a math-based career' [p.5]. Kogan and Laursen [12] also reported that students in IBL courses were positively impacted to enrol in more mathematics courses, which aligns with this dimension of equity.

5.3. Identity

We claim that the *Peer Involvement* theme of inquiry aligns with Gutiérrez's [10] definition of Identity. When students are actively engaged with each other and each other's thinking

S12 😔 G. TANG ET AL.

(*Peer-Involvement*), it can lead to a shift in mathematical identity. Hassi's [22] qualitative study of students reflecting on their IBL learning experiences supports our claim. In that study, students noted that the social environment of their IBL classes positively affected their self-esteem or self-confidence. In addition, Oppland-Cordell and Martin [17] write that:

The ways in which individuals continuously construct identities of participation and nonparticipation over time in [communities of practice] is related to how they position themselves, how others position them, and how such positionings are related to their histories and experiences in the broader contexts in which [communities of practice] are embedded. [p.24]

At the secondary level, Boaler and Greeno [23] contrasted students who learned by working through rote problems in a textbook with students who learned through mathematical discussions (*Peer Involvement*). They found that in discussion-based classes, students were required to contribute more attributes of themselves (as compared to nondiscussion-based classes), which can be done through reflecting on community participation and family relationships. Hassi and Laursen [7] claimed that when students present and evaluate each other's work, students have heightened perceptions of themselves as mathematical learners, and thus can develop their mathematical identities. This is further evidence for the connection between *Peer Involvement* and Identity.

5.4. Power

Gutiérrez [10] thinks of student voice as a fundamental part of the power dimension; inquiry is changing whose voice is primarily present in the classroom. Instructors are responsible for facilitating student discussion and presentation of the problems [24,25]. When given opportunities to provide explanations and justifications of their thinking while others listen to and attempt to understand the ideas being discussed or presented (*Peer Involvement*), power shifts to and is shared with the students because they decide on 'what counts as acceptable knowledge' [15,p.66]. Additionally, the power dynamic in the classroom changes because student learning is dictated by what they already know as opposed to what the instructors assume they know (*Knowledge-Building*).

The instructor is the primary architect of the problems worked on [20] and when the tasks assigned include problem-posing, students create and solve their own problems (*Doing Math*). In this way, the instructor enables students' investigations into their own problems. In this scenario, students have power in deciding parts of the curriculum.

The instructor's main role is not as a problem-solver, but as an expert participant that guides students to generate, create and develop their own knowledge (*Student Ownership*). As such, 'the pace of the course [is] set by students' movement through this sequence rather than pegged to a pre-set schedule' [16,p.iii]. In doing this, the instructor signals that the students' thoughts, beliefs and contributions are a valued part of the learning process and removes themself as the sole source of knowledge in the classroom. If we agree that *Doing Math, Peer Involvement, Student Ownership* and *Knowledge-Building* are components of inquiry teaching, then this represents a substantial shift in power sharing between instructor and students.

6. Future steps

The theoretical framework we put forth in aligning inquiry pedagogies to equity teaching is our attempt to understand some explicit ways of achieving equity in classrooms. We aim to corroborate the proposed alignments through empirical studies, by learning from students' and teachers' experiences in classrooms that implement inquiry pedagogies, as well as non-inquiry pedagogies. With the understanding that achieving equity in the mathematics classroom is a multi-dimensional challenge that requires a multi-dimensional solution approach, we would like to look at other non-inquiry factors that could affect equity. For example, students in the class presented in Section 2 engaged in activities that do not fall into the inquiry descriptions above. In that class, students were encouraged to explore mathematical creativity using the Creativity-in-Progress Rubric on Proving [26,27]. Students were also required to write weekly reflections on topics such as importance of discussions, effects of IBL on student achievement, mathematical creativity and their perceptions of their performance in the course. The inquiry descriptions above require opportunities to collaborate, but they do not specify how these collaborations are determined. In this course, the instructor grouped the students based on her perceived notions of their empathy, friendships and whether they were more introverted or extroverted, rather than randomly or by ability. We also acknowledge that inequities may arise in the Peer Involvement component of inquiry [28] as students are interacting with each other. Finally, we surmise that instructor beliefs could impact equity. Thus, further research needs to be done on possible inequities of inquiry learning.

As a starting point, however, the theoretical framework we put forth could help describe equitable experiences for all our students regardless of race, gender, ethnicity, social class, sexual orientation or language. We believe, '[e]quitable classrooms are reflections of a pedagogical, political, and moral vision' [29,p.526]. Hence, to deepen equity in the field of mathematics, we aim to explore more implementation of inquiry pedagogical techniques that integrate content allowing students to use mathematics to critically analyse social justice issues. We believe this particular content consideration with the intent to extend our theoretical frameworks will help achieve equity beyond the classroom and towards the global society.

For instructors who are not ready or cannot (fully) change the curriculum of their class, we claim that by merely engaging in practices of inquiry, we can start to move towards teaching for equity and thinking about students in a more equitable way. That is, engaging in practices of inquiry is an entry point towards engaging in equitable practices.

Notes

- 1. We recognize that 'inquiry' is a term that encapsulates several pedagogical approaches. However, we have chosen to use it throughout this paper because we focus on the characteristics that make inquiry classrooms different from traditional pedagogical techniques.
- 2. Though the definition varies, we use the meaning that no earlier generations have received a college degree from any institution in the world.
- 3. These are either self-chosen pseudonyms or chosen by researchers when there was no indicated pseudonym.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Gail Tang http://orcid.org/0000-0003-2208-5167 Emily Cilli-Turner http://orcid.org/0000-0002-1237-2157 Milos Savic http://orcid.org/0000-0002-7123-9946 Gulden Karakok http://orcid.org/0000-0002-8676-6108

References

- [1] National Council of Teachers of Mathematics. Principles to actions: ensuring mathematical success for all. Reston (VA): NCTM; 2014.
- [2] Conference Board of the Mathematical Sciences. Active learning in post-secondary mathematics education. Available from: http://www.cbmsweb.org/Statements/Active_Learning_ Statement.pdf
- [3] Atweh B, Becker JR, Grevholm B, et al. A discussion paper on the state of research on equity in mathematics education and arising challenges. Paper presented at: 13th International Congress of Mathematics Education; 2016 Jul 24–31; Hamburg.
- [4] Gutiérrez R. Context matters: equity, success, and the future of mathematics education. In: Lloyd GM, Wilsin M, Wilkins JLM, et al., editors. Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education; Oct 25–28; Lake Tahoe, NV. Reno (NV): University of Nevada; 2007. p. 1–18.
- [5] Rasmussen C, Kwon ON. An inquiry-oriented approach to undergraduate mathematics. J Math Behav. 2007;26(3):189–194.
- [6] Laursen SL, Hassi ML, Kogan M, et al. Benefits for women and men of inquiry-based learning in college mathematics: a multi-institution study. J Res Math Educ. 2014;45(4):406–418.
- [7] Hassi ML, Laursen SL. Transformative learning: personal empowerment in learning mathematics. J Transform Educ. 2015;13(4):316–340.
- [8] Gutiérrez R. Enabling the practice of mathematics teachers in context: toward a new equity research agenda. Math Think Learn. 2002;4(2-3):145-187.
- [9] Cook S, Murphy S, Fukawa-Connelly T. Divergent definitions of inquiry-based learning in undergraduate mathematics. In: Fukawa-Connelly T, Infante NE, Keene K, et al., editors. Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics Education; 2016 Feb 25–27; Pittsburgh, PA. p. 660–665. Available from: http://sigmaa.maa.org/rume/RUME19v3.pdf
- [10] Gutiérrez R. Framing equity: helping students 'play the game' and 'change the game.' Teach Excellence Equity Math. 2009;1(1):5–7.
- [11] Freeman S, Eddy SL, McDonough M, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Nat Acad Sci. 2014;111(23):8410–8415.
- [12] Kogan M, Laursen SL. Assessing long-term effects of inquiry-based learning: a case study from college mathematics. Innovative High Educ. 2014;39(3):183–199.
- [13] inquirybasedlearning.org [Internet]. San Luis Obispo (CA): AIBL; [cited 2017 Apr 23]. Available from: http://www.inquirybasedlearning.org/
- [14] Kuster G, Johnson E, Keene K, et al. Inquiry-oriented instruction: a conceptualization of the instructional components and practices. PRIMUS. 2017 [cited 2017 Apr 23]; Available from: http://dx.doi.org/10.1080/10511970.2017.1338807
- [15] Bullock EC. Conducting 'good' equity research in mathematics education: a question of methodology. J Math Educ Teach Coll. 2012;3(2):30–36.
- [16] Jett CC. 'Don't just talk about it; be about it': doing equity work in mathematics education. J Math Educ Teach Coll. 2012;3(2):25–29.
- [17] Oppland-Cordell S, Martin DB. Identity, power, and shifting participation in a mathematics workshop: Latin@ students' negotiation of self and success. Math Educ Res J. 2015;27(1):21– 49.
- [18] Frankenstein M. Critical mathematics education: an application of Paulo Freire's epistemology. J Educ. 1983;165(4):315–339.

- [19] Adiredja A, Alexander N, Andrews-Larson C. Conceptualizing equity in undergraduate mathematics education: lessons from K-12 research. In: Fukawa-Connelly T, Infante NE, Keene K, et al., editors. Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics Education; 2016 Feb 25–27; Pittsburgh, PA. p. 60–73. Available from: http://sigmaa.maa.org/rume/RUME19v3.pdf
- [20] Laursen S, Hassi ML, Kogan M, et al. Evaluation of the IBL mathematics project: student and instructor outcomes of inquiry-based learning in college mathematics. Boulder (CO): Colorado University; 2011.
- [21] Nasir NS, Shah N, Gutiérrez J, et al. Mathematics learning and diverse students. Paper presented at: National Research Council's Workshop on Successful STEM Education in K-12 Schools; 2011 May 10-11; Washington, DC.
- [22] Hassi ML. Empowering undergraduate students through mathematical thinking and learning. A declaration of numeracy: empowering adults through mathematics education. Proceedings of the 15th International Conference of Adults Learning Mathematics (ALM); 2009 Jun 26–29; Limerick, Ireland. p. 53–69. Available from: http://www.almonline.net/images/ALM/proceedings/alm-07-proceedingsalm14.pdf
- [23] Boaler J, Greeno JG. Identity, agency, and knowing in mathematics worlds. In: Boaler J, editor. Multiple Perspectives on Mathematics Teaching and Learning. Westport (CT): Ablex Publishing; 2000; p. 171–200.
- [24] Yoshinobu S, Jones MG. The coverage issue. PRIMUS. 2012;22(4):303–316.
- [25] Cirrillo M. What does the research say the benefits of discussion in mathematics class are. Res Brief. 2013;19:1–6.
- [26] Savic M, Karakok G, Tang G, et al. Formative assessment of creativity in undergraduate mathematics: using a creativity-in-progress rubric (CPR) on proving. In: Leikin R, Sriraman B, editors. Creativity and giftedness: interdisciplinary perspectives from mathematics and beyond. Cham: Springer; 2017. p. 23–46.
- [27] Karakok G, Savic M, Tang G, et al. A rubric for creativity in writing proofs. MAA Focus. 2016;36(1):42–43.
- [28] Esmonde I. Ideas and identities: supporting equity in cooperative mathematics learning. Rev Educ Res. 2009;79(2):1008–1043.
- [29] Lotan R. Teaching teachers to build equitable classrooms. Theor Pract. 2006;45(1):32–39.