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ABSTRACT
In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to
general linear differential-algebraic (DAE) systems. Geometric control theory is used toderive a linear-
algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal
bisimulation relation between two linear DAE systems. The general definition is specialised to the
case where the matrix pencil sE − A is regular. Furthermore, by developing a one-sided version of
bisimulation, characterisations of simulation and abstraction are obtained.

1. Introduction

A fundamental concept in the broad area of systems the-
ory, concurrent processes, and dynamical systems, is the
notion of equivalence. In general, there are different ways
to describe systems (or, processes); each with their own
advantages and possibly disadvantages. This call for sys-
tematic ways to convert one representation into another,
and formeans to determinewhich system representations
are ‘equal’. It also involves the notion of minimal system
representation.

Furthermore, in systems theory and the theory of con-
current processes, the emphasis is on determining which
systems are externally equivalent; we only want to distin-
guish between systems if the distinction can be detected
by an external system interacting with these systems. This
is crucial in any modular approach to the control and
design of complex systems.

Classical notions developed in systems and control
theory for external equivalence are transfer matrix equal-
ity and state space equivalence. Within computer sci-
ence the basic notion has been called bisimulation rela-
tion (Clarke, Grumberg, & Peled, 1999). An extension of
the notion of bisimulation to continuous dynamical sys-
tems has been explored before in a series of innovative
papers by Pappas and co-authors (Pappas, 2003; Tabuada
& Pappas, 2004). More recently, motivated by the rise of
hybrid and cyber-physical systems, a reapproachment of
these notions stemming from different backgrounds has
been initiated. In particular, it has been shown how for
linear systems a notion of bisimulation relation can be
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developed mimicking the notion of bisimulation relation
for transition systems, and directly extending classical
notions of transfermatrix equality and state space equiva-
lence (van der Schaft, 2004a). An important aspect of this
approach in developing bisimulation theory for continu-
ous linear systems is that the conditions for existence of a
bisimulation relation are formulated directly in terms of
the differential equation description, instead of the cor-
responding dynamical behaviour (the solution set of the
differential equations). This has dramatic consequences
for the complexity of bisimulation computations, which
reduce to linear-algebraic computations on the matrices
specifying the linear system descriptions, very much in
the spirit of linear geometric control theory (Basile &
Marro, 1992; Wonham, 1974). For extensions to nonlin-
ear systems exploiting corresponding nonlinear geomet-
ric theory we refer to van der Schaft, (2004a).

The present paper continues on these developments
by extending the notion of bisimulation relation to gen-
eral linear differential-algebraic (DAE) systems involv-
ing disturbances (capturing non-determinism). This is
well motivated since complex system descriptions usually
arise from interconnection of system components, and
generally lead to descriptions involving both differential
equations and algebraic equations. Indeed, network mod-
elling almost invariably leads to DAE systems. The aim of
this paper is to determine linear-algebraic conditions for
the existence of a bisimulation relation, directly in terms
of the differential-algebraic equations instead of comput-
ing the solution trajectories. The extension with respect
to van der Schaft, (2004a) (where the linear-algebraic
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conditions were derived in case of ordinary differential
equation models) is non-trivial because of the following
two reasons. First, since bisimulation is an equivalence
between system trajectories we need to characterise the
set of solution trajectories of DAE systems, involving the
notion of the consistent set of initial conditions. This is
fundamentally different from the scenario considered in
van der Schaft,(2004a) where the solutions of the differ-
ential equations exist for arbitrary initial states. In fact, in
this paperwe use geometric control theory, see in particu-
lar (Trentelman, Stoorvogel, & Hautus, 2001), in order to
explicitly describe the set of consistent states and the set of
state trajectories. This appears to be a new contribution to
the literature on DAE or descriptor systems (Armentano,
1986; Bernhard, 1982; Berger & Reis, 2013; Campbell,
1980; Dai, 1989; Karcanicas &Hayton, 1982; Lewis, 1986;
Trenn, 2013). Second, the notion of bisimulation between
state trajectories needs to be characterised in terms of
the differential-algebraic equations, containing the con-
ditions previously obtained in van der Schaft,(2004a) as a
special case.

As in previous work on bisimulation theory for input-
state-output systems (van der Schaft, 2004b), we explicitly
allow for the possibility of ‘ non-determinism’ in the sense
that the state may evolve according to different time-
trajectories for the same values of the external variables.
This ‘non-determinism’may be explicitlymodelled by the
presence of internal ‘disturbances’ or implicitly by non-
uniqueness of the solutions of differential-algebraic equa-
tions. Non-determinism may be an intrinsic feature of
the system representation (as due e.g. to non-uniqueness
of variables in the internal subsystem interconnections),
but may also arise by abstraction of the system to a lower
dimensional system representation. By itself, the notion
of abstraction can be covered by a one-way version of
bisimulation, called simulation, as will be discussed in
Section 5.

As a simple motivating example for the developments
in this paper let us consider two DAE systems (for sim-
plicity without inputs) given by

�1 :

⎡
⎣0 0 1
0 1 0
0 0 0

⎤
⎦ ẋ1 =

⎡
⎣0 1 0
0 0 1
2 −1 −1

⎤
⎦ x1 +

⎡
⎣1
1
0

⎤
⎦ d1,

y1 = [0 1 0] x1,

�2 :
ẋ2 = x2 +

[
1
1

]
d2,

y2 = [1 0] x2.

(1)

What is the relation between�1 and�2? Are the systems
�1 and �2 equivalent? At the end of Section 3.1 we will
provide an answer exemplifying some of the results that
have been obtained.

The structure of this paper is as follows. In Section 2,
we provide the theory concerning DAE systems which
will be used in the sequel. These DAE systems are given
in descriptor system format Eẋ = Ax + Bu + Gd, y =
Cx, with u, y being the external variables (inputs and
outputs), d the disturbances modelling internal non-
determinism, and x the (not necessarily minimal) state.
In Section 3, we give the definition of bisimulation rela-
tion for DAE systems, and a full linear-algebraic charac-
terisation of them, together with a geometric algorithm
to compute the maximal bisimulation relation between
two linear systems. In Section 4, we study the implication
of adding the condition of regularity to the matrix pencil
sE − A, and show how in this case bisimilarity reduces
to equality of transfer matrices. Finally, simulation rela-
tions and the accompanying notion of abstraction are dis-
cussed in Section 5.

2. Preliminaries on linear DAE systems

In this paper, we consider the following general class of
linear DAE systems:

� : Eẋ = Ax + Bu + Gd, x ∈ X , u ∈ U , d ∈ D
y = Cx, y ∈ Y,

(2)

where E,A ∈ Rq×n and B ∈ Rq×m,G ∈ Rq×s,C ∈ Rp×n;
X ,U ,D and Y are finite dimensional linear spaces,
of dimension, respectively, n,m, s, p . Here, x denotes
the state of the system (possibly constrained by linear
equations), u the input, y the output and d the ‘dis-
turbance’ acting on the system. Furthermore, q denotes
the total number of (differential and algebraic) equa-
tions describing the dynamics of the system. The allowed
time-functions x : R+ → X , u : R+ → U , y : R+ → Y ,
d : R+ → D, with R+ = [0, ∞), will be denoted by
X,U,Y,D. The exact choice of function classes is for
purposes of this paper not really important, as long
as the state trajectories x(·) are at least continuous.
For convenience, we will take U,D to be the class of
piecewise-continuous and X,Y the class of continuous
and piecewise-differentiable functions on R+. We will
denote these functions by x(·), u(·), y(·), d(·) , and if no
confusion can arise simply by x, u, y, d . We will primar-
ily regard d as an internal generator of ‘non-determinism’:
multiple state trajectories may occur for the same initial
condition x(0) and input function u(·) . This, for exam-
ple, occurs by abstracting a deterministic system; see the
developments in Section 5.

The consistent subset V∗ for a system � is given as the
maximal subspace V ⊂ Rn satisfying

(i) AV ⊂ EV + G
(ii) imB ⊂ EV + G (3)



INTERNATIONAL JOURNAL OF CONTROL 47

where G = imG, or is empty in case there does not exist
any subspace V satisfying Equation (3). It follows that
V∗ equals the set of all initial conditions x0 for which
for every piecewise-continuous input function u(·) there
exist a piecewise-continuous function d(·) and a contin-
uous and piecewise-differentiable solution trajectory x(·)
of � with x(0) = x0 .

Remark 2.1: The definition of consistent subset V∗ as
given above extends the standard definition given in the
literature on linear DAE and descriptor systems (see e.g.
Berger & Reis, 2013). In fact, the above definition reduces
to the definition in Berger and Reis,(2013) for the case
B = 0 when additionally renaming the disturbance d by
u . (Thus in the standard definition the consistent sub-
set is the set of initial conditions for which there exists
an input function u and a corresponding solution of the
DAE with d = 0 .) This extended definition of consis-
tent subset, as well as the change in terminology between
u and d , is directly motivated by the notion of bisim-
ulation where we wish to consider solutions of the sys-
tem for arbitrary external input functions u(·) ; see also
the definition of bisimulation for labelled transition sys-
tems (Clarke et al., 1999). Note that for B = 0 or void the
zero subspace V = {0} always satisfies Equation (3), and
thus V∗ is a subspace. However for B �= 0 there may not
exist any subspaceV satisfying Equation (3) in which case
the consistent subset is empty (and thus strictly speak-
ing not a subspace). In the latter case, such a system has
empty input–output behaviour from a bisimulation point
of view.
Remark 2.2: Note that we can accommodate for addi-
tional restrictions on the allowed values of the input func-
tions u , depending on the initial state, by making use of
the following standard construction, incorporating u into
an extended state vector. Rewrite system (2) as

�e :
[E 0]

[
ẋ
u̇

]
= [A B]

[
x
u

]
+ Gd

y = [
C 0

] [
x
u

] (4)

Denote by xe = [ xu ] the extended state vector, and define
Ee := [E 0 ],Ae := [A B ]. Then the consistent subspace
V∗
e of system (4) is given by the maximal subspace Ve ⊂

X × U satisfying

AeVe ⊂ EeVe + G (5)

It can be easily seen that V∗ ⊂ πx(V∗
e ), where πx is the

canonical projection of X × U on X . The case V∗ �

πx(V∗
e ) corresponds to the presence of initial conditions

which are consistent only for input functions taking value
in a strict subspace of U .

In order to analyse the solutions of the linear DAE (2),
an important observation is that we can always eliminate
the disturbances d . Indeed, given Equation (2) we can
construct matrices G⊥,G† and an q × q matrix P such
that

G⊥G = 0, G†G = Is, P =
[
G⊥

G†

]
, rank(P) = q (6)

(G⊥ is a left annihilator ofG of maximal rank, andG† is a
left inverse of G .) By pre-multiplying both sides of Equa-
tion (2) by the invertible matrix P it follows (Karcanicas
& Hayton, 1982) that system (2) is equivalent to

G⊥Eẋ = G⊥Ax + G⊥Bu
d = G†(Eẋ − Ax − Bu)

y = Cx
(7)

Hence, the disturbance d is specified by the second line of
Equation (7), and the solutions u(·), x(·) are determined
by the first line of Equation (7) not involving d . We thus
conclude that for the theoretical study of the state trajec-
tories x(·) corresponding to input functions u(·) we can
always, without loss of generality, restrict attention to lin-
ear DAE systems of the form:

Eẋ = Ax + Bu
y = Cx (8)

On the other hand, for computational purposes it is usu-
ally not desirable to eliminate d , since this will often com-
plicate the computations and result in loss of insight into
the model.

The next important observation is that for theoretical
analysis any linear DAE system (8) can be assumed to be
in the following special form, again without loss of gen-
erality. Take invertible matrices S ∈ Rq×q and T ∈ Rn×n

such that

SET =
[
I 0
0 0

]
(9)

where the dimension na of the identity block I is equal
to the rank of E . Split the transformed state vector
T−1x correspondingly as T−1x = [ x

a

xb ], with dim xa =
na, dim xb = nb, na + nb = n. It follows that by pre-
multiplying the linear DAE (8) by S it transforms into an
equivalent system (in the new state vector T−1x) of the
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form:
[
ẋa

0

]
=

[
Aaa Aab

Aba Abb

][
xa

xb

]
+

[
Ba

Bb

]
u

y = [
Ca Cb ][ xa

xb

] (10)

One of the advantages of the special form (10) is that the
consistent subset V∗ can be explicitly characterised using
geometric control theory.

Proposition 2.1: The set V∗ of consistent states of Equa-
tion (10) is non-empty if and only if Bb = 0 and imBa ⊂
W(Aaa,Aab,Aba), where W(Aaa,Aab,Aba) denotes the
maximal controlled invariant subspace of the auxiliary sys-
tem

ẋa = Aaaxa + Aabv

w = Abaxa (11)

with state xa , input v , and output w. Furthermore, in case
V∗ is non-empty it is given by the subspace

V∗ =
{[

xa

xb

]
| xa ∈ W, xb = Fxa + z,

z ∈ kerAbb ∩ (Aab)−1W(Aaa,Aab,Aba)

} (12)

where (Aab)−1 denotes set-theoretic inverse, and where the
matrix F is a friend ofW(Aaa,Aab,Aba), i.e.

(Aaa + AabF )W(Aaa,Aab,Aba) ⊂ W(Aaa,Aab,Aba)

(13)

Proof: The first claim follows from the fact that the sub-
set V∗ of consistent states for Equation (8) is non-empty
if and only if, see Equation (3), imB ⊂ EV∗. The charac-
terisation of V∗ given in Equation (12) follows from the
characterisation of the maximal controlled invariant sub-
space of a linear system with feedthrough term as given,
e.g. in Trentelman et al., (2001, Theorem 7.11). �
Remark 2.3: The characterisation of the consistent sub-
space V∗ given in Equation (12), although being a direct
consequence of geometric control theory, seems relatively
unknown within the literature on DAE systems.

Remark 2.4: Usually, the maximal controlled invari-
ant subspace is denoted by V∗(Aaa,Aab,Aba) (see e.g.
Trentelman, Stoorvogel, & Hautus, 2001). However, in
order to distinguish it from the consistent subset V∗ we
have chosen the notationW(Aaa,Aab,Aba). In the rest of
the paper we will abbreviate this, if no confusion is possi-
ble, toW .

Based on Proposition 2.1 we derive the following fun-
damental statement regarding solutions of linear DAE
systems.

Theorem 2.1: Consider the linear DAE system (8), with
imB ⊂ EV∗. Then for all u(·) ∈ U continuous at t = 0
and for all x0 ∈ V∗ and f ∈ V∗ satisfying

E f = Ax0 + Bu(0) (14)

there exists a continuous and piecewise-differentiable solu-
tion x(·) of Equation (8) satisfying

x(0) = x0, ẋ(0) = f . (15)

Conversely, for all u(·) ∈ U every continuous and
piecewise-differentiable solution x(·) of Equation (8)
which is differentiable at t = 0 defines by Equation (15)
x0, f ∈ V∗ satisfying Equation (14).

Proof: The last statement is trivial. Indeed, if x(·) is a dif-
ferentiable solution of Eẋ = Ax + Bu then x(t ) ∈ V∗ for
all t , and thus x(0) ∈ V∗ and by linearity ẋ(0) ∈ V∗. Fur-
thermore, Eẋ(0) = Ax(0) + Bu(0).

For the first claim, take u(·) ∈ U and consider any
x0, f ∈ V∗ satisfying Equation (14). As noted above we
can assume that the system is in the form (10). Then by
Equation (12)

x0 =
[
xa0
xb0

]
, xa0 ∈ W, xb0 = Fxa0 + z0,

z0 ∈ kerAbb ∩ (Aab)−1W

f =
[
f a

f b

]
, f a ∈ W, f b = F f a + z f ,

z f ∈ kerAbb ∩ (Aab)−1W

(16)

Then consider the unique solution xa(·) of

ẋa = Aaaxa + Aab(Fxa + z) + Bau, xa(0) = xa0 (17)

where the constant vector z is chosen such that

Aaaxa0 + Aab(Fxa0 + z) + Bau(0) = f a. (18)

Furthermore, define the time-function

xb(t ) = Fxa(t ) + z0 + tz f (19)

Then by construction

x(0) =
[
xa(0)
xb(0)

]
=

[
xa0

Fxa0 + z0

]
= x0 (20)
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while[
ẋa(0)
ẋb(0)

]
=

[
Aaaxa0 + Aab(Fxa0 + z) + Bau(0)

Fẋa(0) + z f

]

=
[

f a

F f a + z f

]
=

[
f a

f b

]
.

�

By recalling the equivalence between systems with dis-
turbances (2) with systems without disturbances (8) we
obtain the following corollary.

Corollary 2.1: Consider the linear DAE system (2), with
imB ⊂ EV∗ + G. Then for all u(·) ∈ U, d(·) ∈ D, contin-
uous at t = 0 , and for all x0 ∈ V∗ and f ∈ V∗ satisfying

E f = Ax0 + Bu(0) + Gd(0) (21)

there exists a continuous and piecewise-differentiable solu-
tion x(·) of Equation (2) satisfying

x(0) = x0, ẋ(0) = f . (22)

Conversely, for all u(·) ∈ U, d(·) ∈ D every continuous
and piecewise-differentiable solution x(·) of Equation (2)
which is differentiable at t = 0 defines by Equation (22)
x0, f ∈ V∗ satisfying Equation (21).

3. Bisimulation relations for linear DAE systems

Now, let us consider two systems of the form (2)

�i :
Eiẋi = Aixi + Biui + Gidi, xi ∈ Xi, ui ∈ U , di ∈ Di
yi = Cixi, yi ∈ Y, i = 1, 2.

(23)
where Ei,Ai ∈ Rqi×ni and Bi ∈ Rqi×m,Gi ∈ Rqi×si,Ci ∈
Rp×ni for i = 1, 2 , with Xi,Di, i = 1, 2, the state space
and disturbance spaces, and U ,Y the common input and
output spaces. The fundamental definition of bisimula-
tion relation is given as follows.

Definition 3.1: A subspace

R ⊂ X1 × X2,

with πi(R) ⊂ V∗
i , where πi : X1 × X2 → Xi denote the

canonical projections for i = 1, 2 , is a bisimulation rela-
tion between two systems�1 and�1 with consistent sub-
sets V∗

i , i = 1, 2, if and only if for all pairs of initial con-
ditions (x1, x2) ∈ R and any joint input function u1(·) =
u2(·) = u(·) ∈ U the following properties hold:

(1) For every disturbance function d1(·) ∈ D1 for
which there exists a solution x1(·) of �1 (with
x1(0) = x1), there exists a disturbance function

d2(·) ∈ D2 such that the resulting solution trajec-
tory x2(·) of �2 (with x2(0) = x2) satisfies

(x1(t ), x2(t )) ∈ R, t ≥ 0, (24)

and conversely for every disturbance function
d2(·) for which there exists a solution x2(·) of �2
(with x2(0) = x2), there exists a disturbance func-
tion d1(·) such that the resulting solution trajec-
tory x1(·) of �1 (with x1(0) = x1) satisfies (24).

(2)

C1x1 = C2x2, for all (x1, x2) ∈ R. (25)

Using the geometric notion of a controlled invariant
subspace (Basile &Marro, 1992;Wonham, 1974), a linear-
algebraic characterisation of a bisimulation relation R is
given in the following proposition and subsequent theo-
rem.
Proposition 3.1: Consider two systems �i as in Equa-
tion(23), with consistent subsets V∗

i , i = 1, 2. A subspace
R ⊂ X1 × X2 satisfyingπi(R) ⊂ V∗

i , i = 1, 2, is a bisim-
ulation relation between �1 and �2 if and only if for all
(x1, x2) ∈ R and for all u ∈ U the following properties
hold:

(1) For every d1 ∈ D1 for which there exists f1 ∈ V∗
1

such that E1 f1 = A1x1 + B1u + G1d1 , there exists
d2 ∈ D2 for which there exists f2 ∈ V∗

2 such that
E2 f2 = A2x2 + B2u + G2d2 while

( f1, f2) ∈ R, (26)

and conversely for every d2 ∈ D2 for which there
exists f2 ∈ V∗

2 such that E2 f2 = A2x2 + B2u +
G2d2 , there exists d1 ∈ D1 for which there
exists f1 ∈ V∗

1 such that E1 f1 = A1x1 + B1u +
G1d1 while Equation(26) holds.

(2)

C1x1 = C2x2. for all (x1, x2) ∈ R (27)

Proof: Properties (2) of Definition 3.1 and Proposition
3.1, cf. (25) and (27), are equal, so we only need to
prove equivalence of Properties (1) of Definition 3.1 and
Proposition 3.1.

In order to do this we will utilise the fact (as explained
above) that theDAEs Eiẋi = Aixi + Biui + Gidi, i = 1, 2,
can be transformed, see Equation(7), to DAEs of the form
Eiẋi = Aixi + Biui, i = 1, 2, not containing disturbances.
Hence, it is sufficient to prove equivalence of Properties
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(1) of Definition 3.1 and Proposition 3.1 for systems �1
and�2 of the form (8). For clarity wewill restate Property
(1) in this simplified case briefly as follows:

Property (1) of Definition 3.1: For every solution x1(·)
of �1 with x1(0) = x1 there exists a solution x2(·) of �2
with x2(0) = x2 such that Equation(24) holds, and con-
versely.

Property (1) of Proposition 3.1: For every f1 ∈ V∗
1 such

that E1 f1 = A1x1 + B1u there exists f2 ∈ V∗
2 such that

E2 f2 = A2x2 + B2u such that Equation (26) holds, and
conversely.

‘Only if part’. Take u(·) ∈ U and (x1, x2) ∈ R, and let
f1 ∈ V∗

1 be such that E1 f1 = A1x1 + B1u(0) . According
to Theorem 2.1, there exists a solution x1(·) of �1 such
that x1(0) = x1 and ẋ1(0) = f1. Then, based on Property
(1) of Definition 3.1, there exists a solution x2(·) of �2
with x2(0) = x2 such that Equation (24) holds. By differ-
entiating x2(t )with respect to t and denoting f2 := ẋ2(0),
we obtain Equation (26). The same argument holds for
the case where the indices 1 and 2 are interchanged.

‘If part’. Let (x1, x2) ∈ R, u(·) ∈ U. Consider any solu-
tion x1(·) of�1 corresponding to x1(0) = x1 . Transform
systems �1 and �2 into the form (10). This means that
x1(·) = [ xa1(·)

xb1(·)
]
, t ≥ 0, is a solution to

�1 :

ẋa1(t ) = (Aaa
1 + Aab

1 F1)xa1(t ) + Aab
1 z1(t ) + Ba

1u(t ),
xa1(t ) ∈ W1

xb1(t ) = F1xa1(t ) + z1(t ),
z1(t ) ∈ kerAbb

1 ∩ (Aab
1 )−1W1, t ≥ 0

(28)
Equivalently, xa1(·), t ≥ 0, is a solution to

ẋa1(t ) = (Aaa
1 + Aab

1 F1)xa1(t ) + Aab
1 z1(t ) + Ba

1u(t ),
xa1(t ) ∈ W1

ż1(t ) = e1(t ), z1(t ) ∈ kerAbb
1 ∩ (Aab

1 )−1W1,

(29)
where e1(·) is a disturbance function, while additionally
xb1(t ) = F1xa1(t ) + z1(t ), t ≥ 0.

Similarly, the solutions x2(·) = [ x
a
2(·)
xb2(·) ], t ≥ 0, of�2 are

generated as solutions xa2(·) of

ẋa2(t ) = (Aaa
2 + Aab

1 F2)xa1(t ) + Aab
2 z1(t ) + Ba

2u(t ),
xa2(t ) ∈ W2

ż2(t ) = e2(t ), z2(t ) ∈ kerAbb
2 ∩ (Aab

2 )−1W2,

(30)
where e2(·) is a disturbance function, while additionally
xb2(t ) = F2xa2(t ) + z2(t ), t ≥ 0.

Now, the systems (29) and (30) with state vec-
tors

[ xa1(t )
z1(t )

]
, respectively

[ xa2(t )
z2(t )

]
are ordinary (no alge-

braic constraints) linear systems with disturbances e1
and e2 , to which the bisimulation theory of van der
Schaft (2004a) for ordinary linear systems applies. In

particular, given the solution xa1(·), z1(·), and corre-
sponding ‘disturbance’ e1(·) by Proposition 2.9 in van
der Schaft (2004a), Property (1) in Proposition 3.1
implies that there exists a disturbance e2(·) with e2(t ) =
e2(xa1(t ), z1(t ), xa2(t ), z2(t ), e1(t )) such that the com-
bined dynamics of (xa1, z1) and (xa2, z2) remain inR. This
implies Property (1) in Definition 3.1.

The same argument holds for the case where the
indices 1 and 2 are interchanged. �

The next step in the linear-algebraic characterisation
of bisimulation relations for linear DAE systems is pro-
vided in the following theorem.

Theorem 3.1: A subspaceR ⊂ X1 × X2 is a bisimulation
relation between �1 and �2 satisfying πi(R) ⊂ V∗

i , i =
1, 2, if and only if

(a) R +
[
E−1
1 (imG1) ∩ V∗

1
0

]

= R +
[

0
E−1
2 (imG2) ∩ V∗

2

]
,

(b)
[
A1 0
0 A2

]
R ⊂

[
E1 0
0 E2

]
R + im

[
G1 0
0 G2

]
,

(c) im
[
B1
B2

]
⊂

[
E1 0
0 E2

]
R + im

[
G1 0
0 G2

]
,

(d) R ⊂ ker
[
C1
... −C2

]
.

(31)

Proof: ‘If part’. Condition (27) of Proposition 3.1 follows
trivially from condition (31 d). From Equation (31 b,c) it
follows that for every (x1, x2) ∈ R and u ∈ U there exist
( f1, f2) ∈ R, and d1 ∈ D1, d2 ∈ D2, such that

[
E1 0
0 E2

] [
f1
f2

]
=

[
A1 0
0 A2

] [
x1
x2

]
+

[
B1
B2

]
u

+
[
G1
0

]
d1 +

[
0
G2

]
d2.

(32)

This implies πi(R) ⊂ V∗
i , i = 1, 2.

Now let (x1, x2) ∈ R and u ∈ U . Then as above,
by Equation (31 b,c), there exist ( f1, f2) ∈ R, and
d1 ∈ D1, d2 ∈ D2 such that Equation (32) holds. Now
consider any f ′

1 ∈ V∗
1 and d′

1 ∈ D1 such that E1 f ′
1 =

A1x1 + B1u + G1d′
1. Then f ′

1 = f1 + v1 for some v1 ∈
E−1
1 (imG1) ∩ V∗

1 . Hence by Equation (31 a) there exist
v2 ∈ E−1

2 (imG2) ∩ V∗
2 and ( f ′′

1 , f ′′
2 ) ∈ R such that

[
v1
0

]
=

[
f ′′
1
f ′′
2

]
−

[
0
v2

]
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with E2v2 = G2d′′
2 for some d′′

2 ∈ D2. Therefore,[
f ′
1
f2

]
=

[
f1
f2

]
+

[
v1
0

]
=

[
f1
f2

]
+

[
f ′′
1
f ′′
2

]
−

[
0
v2

]

=
[
f ′
1
f ′
2

]
−

[
0
v2

]
,

with f ′
2 := f2 + f ′′

2 . Clearly ( f ′
1, f ′

2) ∈ R. It follows that

E2 f ′
2 = E2 f2 + E2v2 = A2x2 + B2u + G2d′

2,

with d′
2 := d2 + d′′

2 . Similarly, for every f ′
2 ∈ V∗

2 and d′
2 ∈

D2 such that E2 f ′
2 = A2x2 + B2u + G2d′

2 there exist f ′
1 ∈

V∗
1 with ( f ′

1, f ′
2) ∈ R, while E1 f ′

1 = A1x1 + B1u + G1d′
1

for some d′
1 := d1 + d′′

1 . Hence, we have shown Property
(1) of Proposition 3.1.

‘Only if part’. Property (2) of Proposition 3.1 is trivially
equivalent with Equation (31 d). Since πi(R) ⊂ V∗

i for i
= 1, 2 we have[

A1 0
0 A2

]
R ⊂

[
E1 0
0 E2

]
R + im

[
G1 0
0 G2

]
(33)

and

im
[
B1
B2

]
⊂

[
E1 0
0 E2

]
R + im

[
G1 0
0 G2

]
. (34)

Furthermore, since Property (1) of Proposition 3.1 holds,
by taking (x1, x2) = (0, 0) and u = 0 , then for every d1
for which there exists f1 ∈ V∗

1 such that E1 f1 = G1d1 ,
there exists d2 and f2 ∈ V∗

2 such that E2 f2 = G2d2 , while
( f1, f2) ∈ R. Hence
[
f1
0

]
=

[
f1
f2

]
−

[
0
f2

]
∈ R +

[
0

E−1
2 (imG2) ∩ V∗

2

]
,

(35)

and thus[
E−1
1 (imG1) ∩ V∗

1
0

]
⊂ R +

[
0

E−1
2 (imG2) ∩ V∗

2

]
.

(36)

Similarly, one obtains
[

0
E−1
2 (imG2) ∩ V∗

2

]
⊂ R +

[
E−1
1 (imG1) ∩ V∗

1
0

]
(37)

Combining Equations (36) and (37) implies condition
(31a). �
Remark 3.1: In the special case Ei, i = 1, 2 , equal to
the identity matrix, it follows that V∗

i = Xi, i = 1, 2, and

Equation (31) reduces to

(a) R +
[
imG1
0

]
= R +

[
0

imG2

]
=: Re,

(b)

⎡
⎣A1 0

0 A2

⎤
⎦R ⊂ R + im

[
G1 0
0 G2

]
,

(c) im
[
B1
B2

]
⊂ R + im

[
G1 0
0 G2

]
,

(d) R ⊂ ker
[
C1
... −C2

]
.

(38)

Hence in this case Theorem 3.1 reduces to van der Schaft
(2004a, Theorem 2.10).

3.1 Computing themaximal bisimulation relation

The maximal bisimulation relation between two DAE
systems, denoted Rmax, can be computed, whenever it
exists, in the following way, similarly to the well-known
algorithm (Basile & Marro, 1992; Wonham, 1974) from
geometric control theory to compute the maximal con-
trolled invariant subspace. For notational convenience
define

E× :=
[
E1 0
0 E2

]
, A× :=

[
A1 0
0 A2

]
,

C× := [C1
... −C2], Ḡ× :=

[
G1 0
0 G2

]
,

G×
1 :=

[
E−1
1 (imG1) ∩ V∗

1
0

]
,

G×
2 :=

[
0

E−1
2 (imG2) ∩ V∗

2

]
. (39)

Algorithm 3.1: Given two systems �1 and �2 . Define
the following sequenceR j, j = 0, 1, 2, . . . , of subsets of
X1 × X2

R0 = X1 × X2,

R1 = {z ∈ R0 | z ∈ kerC×,R1 + G×
1 = R1 + G×

2 },
R2 = {z ∈ R1 | A×z ⊂ E×R1 + im Ḡ×,

R2 + G×
1 = R2 + G×

2 },
...

R j = {z ∈ R j−1 | A×z+ ⊂ E×R j−1 + im Ḡ×,

R j + G×
1 = R j + G×

2 }.

(40)

Proposition 3.2: The sequence R0,R1, . . . ,R j, . . . sat-
isfies the following properties.

(1) R j, j �= 0, is a linear space or empty.
Furthermore,R0 ⊃ R1 ⊃ R2 ⊃ · · · ⊃ R j ⊃
R j+1 ⊃ · · ·.

(2) There exists a finite k such thatRk = Rk+1 =: R∗,
and thenR j = R∗ for all j �= k .
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(3) R∗ is either empty or equals the maximal subspace
of X1 × X2 satisfying the properties

(i) R∗ +
[
E−1
1 (imG1) ∩ V∗

1
0

]

= R∗ +
[

0
E−1
2 (imG2) ∩ V∗

2

]
,

(ii)
[
A1 0
0 A2

]
R∗ ⊂

[
E1 0
0 E2

]
R∗

+ im
[
G1 0
0 G2

]
,

(iii) R∗ ⊂ ker
[
C1
... −C2

]
.

(41)

Proof: Analogous to the proof of van der Schaft (2004a,
Theorem 3.4). �

If R∗ as obtained from Algorithm 3.1 is non-empty
and satisfies condition (31 c) in Theorem 3.1, then it fol-
lows that R∗ is the maximal bisimulation relation Rmax

between�1 and�2 , while ifR∗ is empty or does not sat-
isfy condition (31 c) in Theorem 3.1 then there does not
exist any bisimulation relation between �1 and �2 .

Furthermore, two systems are called bisimilar if there
exists a bisimulation relation relating all states. This is for-
malised in the following definition and corollary.
Definition 3.2: Two systems �1 and �2 as in Equa-
tion (23) are bisimilar, denoted �1 ∼ �2 , if there exists
a bisimulation relation R ⊂ X1 × X2 with the property
that

π1(R) = V∗
1 , π2(R) = V∗

2 , (42)

where V∗
i is the consistent subset of �i, i = 1, 2 .

Corollary 3.1: �1 and �2 are bisimilar if and only ifR∗

is non-empty and satisfies condition (31 c) in Theorem 3.1
and equation (42).

Bisimilarity is implying the equality of external behav-
ior. Consider two systems �i, i = 1, 2 , as in Equation
(23), with external behavior Bi defined as

Bi := {(ui(·), yi(·)) | ∃xi(·),
di(·) such that (23) is satisfied}.

(43)

Analogously to van der Schaft (2004a) we have the fol-
lowing result.
Proposition 3.3: Let�i, i = 1, 2 , be bisimilar. Then their
external behaviors Bi are equal.

However, due to the possible non-determinism intro-
duced by the matrices G and E in Equation (2), two sys-
tems of the form (2) may have the same external behavior

while not being bisimilar. This is already illustrated in van
der Schaft (2004a) for the case E = I .

Example 3.1: Recall the example given in the Introduc-
tion, cf. (1). The maximal bisimulation relation between
�1 and�2 can be computed as the one-dimensional sub-
spaceR given by

R = span
(
1 1 1 1 1

)T
. (44)

Since V∗
1 = span

(
1 1 1

)T every trajectory of �1 is sim-
ulated by a trajectory of�2 . However, since V∗

2 = R2 the
two systems are not bisimilar.

3.2 Bisimulation relation for deterministic case

In this section, we specialise the results to DAE systems
without disturbances d . Consider two systems of the
form

�i :
Eiẋi = Aixi + Biui, xi ∈ Xi, ui ∈ U ,

yi = Cixi, yi ∈ Y, i = 1, 2, (45)

where Ei,Ai ∈ Rqi×ni and Bi ∈ Rqi×m,Ci ∈ Rp×ni for i =
1, 2. Theorem 3.1 can be specialised as follows.

Corollary 3.2: A subspace R ⊂ X1 × X2 is a bisimula-
tion relation between �1 and �2 given by Equation (45),
satisfying πi(R) ⊂ V∗

i , i = 1, 2, if and only if

(a) R +
[
kerE1 ∩ V∗

1
0

]
= R +

[
0

kerE2 ∩ V∗
2

]
,

(b)
[
A1 0
0 A2

]
R ⊂

[
E1 0
0 E2

]
R,

(c) im
[
B1
B2

]
⊂

[
E1 0
0 E2

]
R,

(d) R ⊂ ker
[
C1
... −C2

]
.

(46)

Corollary 3.2 can be applied to the following situation
considered in van der Schaft (2004a). Consider two linear
systems given by

�i :
ẋi = Aixi + Biui + Gidi,
yi = Cixi.

(47)

By multiplying both sides of the first equation of (47)
by an annihilating matrix G⊥

i of maximal rank one
obtains the equivalent system representation without dis-
turbances

G⊥
i ẋi = G⊥

i Aixi + G⊥
i Biui,

yi = Cixi,
(48)
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which is of the general form (45); however, satisfying the
special property V∗

i = Xi. This implies thatR is a bisim-
ulation relation between �1 and �2 given by Equation
(47) if and only if it is a bisimulation relation between
�1 and �2 given by Equation (48), as can be seen as fol-
lows. As already noted in Remark 2.6 a bisimulation rela-
tion between �1 and �2 as in Equation (47) is a sub-
spaceR ⊂ X1 × X2 satisfying Equation (38). Now letR
satisfy Equation (38). We will show that it will satisfy
Equation (46) for systems (48). First, since Vi = Xi and
kerEi = kerG⊥

i = imGi we see that Equation (46 a) is
satisfied. Furthermore, by pre-multiplying both sides of
Equation (38 b,c) with

[
G⊥
1 0
0 G⊥

2

]
, (49)

we obtain
[
G⊥
1 A1 0
0 G⊥

1 A2

]
R ⊂

[
G⊥
1 0
0 G⊥

2

]
R,

im
[
G⊥
1 B1

G⊥
2 B2

]
⊂

[
G⊥
1 0
0 G⊥

2

]
R,

(50)

showing satisfaction of Equation (46 b,c). Conversely, let
R be a bisimulation relation between �1 and �2 given
by Equation (48), having consistent subsets V∗

i = Xi,

i = 1, 2. Then according to Equation (46) it is satisfying

(a) R +
[
kerG⊥

1
0

]
= R +

[
0

kerG⊥
2

]
,

(b)
[
G⊥
1 A1 0
0 G⊥

1 A2

]
⊂

[
G⊥
1 0
0 G⊥

2

]
R,

(c) im
[
G⊥
1 B1

G⊥
2 B2

]
⊂

[
G⊥
1 0
0 G⊥

2

]
R,

(d) R ⊂ ker
[
C1
... −C2

]
.

(51)

Using again imGi = kerG⊥
i it immediately follows that

R is satisfying Equation (38), and thus is a bisimulation
relation between the systems (47).

4. Bisimulation relations for regular DAE
systems

In this section, we will specialise the notion of bisimu-
lation relation for general DAE systems of the form (2)
to regular DAE systems. Regularity is usually defined for
DAE systems without disturbances

� : Eẋ = Ax + Bu, x ∈ X , u ∈ U
y = Cx, y ∈ Y,

(52)

Hence, the consistent subset V∗ is either empty or
equal to the maximal subspace V ⊂ X satisfying AV ⊂
EV, imB ⊂ EV .
Definition 4.1: The matrix pencil sE − A is called regu-
lar if the polynomial det(sE − A) in s ∈ C is not identi-
cally zero. The corresponding DAE system (52) is called
regular whenever the pencil sE − A is regular.

Define additionally V∗
0 as the maximal subspace V ⊂

X satisfying AV ⊂ EV . (Note that if there exists a sub-
space V satisfyingAV ⊂ EV, imB ⊂ EV then V∗

0 = V∗.)
Then (Armentano, 1986)

Theorem 4.1: Consider Equation (52). The following
statements are equivalent :

(1) sE − A is a regular pencil,
(2) V∗

0 ∩ kerE = 0.

Regularity thus means uniqueness of solutions from
any initial condition in the consistent subset V∗ of Equa-
tion (52). We immediately obtain the following conse-
quence of Corollary 3.2.

Corollary 4.1: A subspace R ⊂ X1 × X2 is a bisimu-
lation relation between �1 and �2 satisfying πi(R) ⊂
V∗
i , i = 1, 2, if and only if

(a)
[
A1 0
0 A2

]
R ⊂

[
E1 0
0 E2

]
R,

(b) im
[
B1
B2

]
⊂

[
E1 0
0 E2

]
R,

(c) R ⊂ ker
[
C1
... −C2

]
.

(53)

In the regular case, the existence of a bisimulation rela-
tion can be characterised in terms of transfer matrices.

Theorem 4.2: Let R be a bisimulation relation between
regular systems �1 and �2 given in Equation (45), then
their transfer matrices Gi(s) := Ci(sEi − Ai)

−1Bi for i =
1, 2 are equal.

Proof: LetR be a bisimulation relation between �1 and
�2 thus it is satisfying Equation (53). According to Equa-
tions (53 a) and (53 b), for (x1, x2) ∈ R and u ∈ U , there
exist (ẋ1, ẋ2) ∈ R such that

[
E1 0
0 E2

] [
ẋ1
ẋ2

]
=

[
A1 0
0 A2

] [
x1
x2

]
+

[
B1
B2

]
u. (54)

Taking the Laplace transform of Equation (54), we have

[
X1(s)
X2(s)

]
=

[
(sE1 − A1)

−1B1
(sE2 − A2)

−1B2

]
. (55)
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Since Equation (53 c) holds and taking Laplace transform,
we have

C1(sE1 − A1)
−1B1 = C2(sE2 − A2)

−1B2. (56)
�

The converse statement holds provided thematrices Ei
are invertible.
Theorem 4.3: Assume Ei, i = 1, 2 , is invertible. Then
there exists a bisimulation relation R between �1 and
�2 if and only if their transfer matrices Gi(s) := Ci(sEi −
Ai)

−1Bi for i = 1, 2 are equal.

Proof: Let G1(s) = G2(s) . Then

R := im
[
E−1
1 B1 E−1

1 A1E−1
1 B1 (E−1

1 A1)
2E−1

1 B1 · · ·
E−1
2 B2 E−1

2 A1E−1
2 B2 (E−1

2 A2)
2E−1

2 B2 · · ·
]
(57)

satisfies Equation (53). �

The following example shows that Theorem 4.3 does
not hold if Ei is not invertible.
Example 4.1: Consider two systems, given by

�1 :

[
1 0
0 0

]
ẋ1 =

[
1 0
0 1

]
x1 +

[
0
1

]
u1,

y1 = [
1 1

]
x1,

�2 :

[
0 0
0 1

]
ẋ2 =

[
1 0
0 1

]
x2 +

[
1
0

]
u2,

y2 = [
1 1

]
x2.

Systems�1 and�2 are regular and their transfermatrices
are equal. However, there does not exist any bisimulation
relationR satisfying Equation (53), since in fact the con-
sistent subsets for both system are empty.

5. Simulation relations and abstractions

In this section, we will define a one-sided version of the
notion of bisimulation relation and bisimilarity.

Definition 5.1: A subspace

S ⊂ X1 × X2, (58)

with πi(S ) ⊂ V∗
i , for i = 1, 2 , is a simulation relation of

�1 by �2 with consistent subsets V∗
i , i = 1, 2 if and only

if for all pairs of initial conditions (x1, x2) ∈ S and any
joint input function u1(·) = u2(·) = u(·) ∈ U the follow-
ing properties hold:

(1) for every disturbance function d1(·) ∈ D1 for
which there exists a solution x1(·) of �1 (with

x1(0) = x1), there exists a disturbance func-
tion d2(·) ∈ D2 such that the resulting solution
trajectory x2(·) of �2 (with x2(0) = x2) satisfies
for all t ≥ 0

(x1(t ), x2(t )) ∈ S, (59)

(2)

C1x1 = C2x2, for all (x1, x2) ∈ S. (60)

�1 is simulated by �2 if the simulation relation S sat-
isfies π1(S) = V∗

1 .

The one-sided version of Theorem 3.1 is given as fol-
lows.

Proposition 5.1: A subspace S ⊂ X1 × X2 is a simula-
tion relation of �1 by �2 satisfying πi(S ) ⊂ V∗

i , for i = 1,
2 if and only if

(a) S +
[
E−1
1 (imG1) ∩ V∗

1
0

]
⊂ S

+
[

0
E−1
2 (imG2) ∩ V∗

2

]
,

(b)
[
A1 0
0 A2

]
S ⊂

[
E1 0
0 E2

]
S + im

[
G1 0
0 G2

]
,

(c) im
[
B1
B2

]
⊂

[
E1 0
0 E2

]
S + im

[
G1 0
0 G2

]
,

(d) S ⊂ ker
[
C1
... −C2

]
.

(61)

The maximal simulation relation Smax can be com-
puted by the following simplified version of Algorithm
3.1.

Algorithm 5.1: Given two dynamical systems �1 and
�2 . Define the following sequenceS j, j = 0, 1, 2, . . . , of
subsets of X1 × X2

S0 = X1 × X2,

S1 = {
z ∈ S0|z ∈ kerC×,S1 + G×

1 ⊂ S1 + G×
2
}

S2 = {
z ∈ S1|A×z+ ⊂ E×S1 + im Ḡ×,

S2 + G×
1 ⊂ S2 + G×

2
}
,

...
S j = {

z ∈ S j−1|A×z+ ⊂ E×S j−1 + im Ḡ×,

S j + G×
1 ⊂ S j + G×

2
}
. (62)

Recall the definition of the inverse relation T −1 :=
{(xa, xb) | (xb, xa) ∈ T }. We have the following facts.



INTERNATIONAL JOURNAL OF CONTROL 55

Proposition 5.2: Let S ⊂ X1 × X2 be a simulation rela-
tion of�1 by�2 and letT ⊂ X2 × X1 be a simulation rela-
tion of �2 by �1 . Then R := S + T −1 is a bisimulation
relation between �1 and �2 .
Proof: Let S satisfy Equation (61) and let T satisfy Equa-
tion (61) with index 1 replaced by 2. Define R = S +
T −1, then we have properties (31 a). Similarly, R satis-
fies (31 b,c,d). �
Proposition 5.3: Suppose there exists a simulation of �1
by�2 , and a simulation of�2 by�1 . LetSmax ⊂ X1 × X2
denote the maximal simulation relation of �1 by �2 , and
T max ⊂ X2 × X1 the maximal simulation relation of �2
by �1 . Then Smax = (T max)−1 = Rmax, with Rmax the
maximal bisimulation relation.
Proof: Analogous to the proof of van der Schaft (2004a,
Proposition 5.4). �

Simulation relations appear naturally in the context of
abstractions (see e.g. Pappas, 2003). Consider the DAE
system

� : Eẋ = Ax + Bu + Gd, x ∈ X , u ∈ U , d ∈ D,

y = Cx, y ∈ Y,
(63)

together with a surjective linear map H : X → Z , Z
being another linear space, satisfying kerH ⊂ kerC. This
implies that there exists a unique linear map C̄ : Z → Y
such that

C = C̄H. (64)

Then define the following dynamical system on Z

� : Ēż = Āz + B̄u + Ḡd, z ∈ Z, u ∈ U , d ∈ D,

y = C̄z, y ∈ Y (65)

whereH+ denotes theMoore–Penrose pseudo-inverse of
H , Ē := EH+, Ā := AH+, B̄ := B, and

Ḡ := [G
...E(kerH)

...A(kerH)],

is an abstraction of � in the sense that we factor out the
part of the state variables x ∈ X corresponding to kerH .
SinceH+z = x + kerH , it can be easily proved that S :=
{(x, z) | z = Hx} is a simulation relation of � by �̄.

6. Conclusions

In this paper we have defined and studied by meth-
ods from geometric control theory the notion of bisim-
ulation relation for general linear DAE systems, includ-
ing the special case of DAE systems with regular matrix
pencil. Also the one-sided notion of simulation relation

related to abstraction has been provided. Avenues for fur-
ther research include the use of bisimulation relations
for model reduction, the consideration of switched DAE
systems, as well as the generalisation to nonlinear DAE
systems.
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