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In this paper, a multi-agent motion planner is developed for nonlinear Gaussian systems using a combination of probabilistic
approaches and a rapidly exploring random tree (RRT) algorithm. A closed-loop model consisting of a controller and
estimation loops is used to predict future distributions to manage the level of uncertainty in the path planner. The closed-loop
model assumes the existence of a feedback control law that drives the actual system towards a nominal system. This ensures
the uncertainty in the evolution does not grow significantly and the tracking errors are bounded. To trade conservatism
with the risk of infeasibility and failure, we use probabilistic constraints to limit the probability of constraint violation.
The probability of leaving the configuration space is included by using a chance constraint approach and the probability
of closeness between two agents is imposed using an overlapping coefficient approach. We augment these approaches with
the RRT algorithm to develop a robust path planner. Conflict among agents is resolved using a priority-based technique.
Numerical results are presented to demonstrate the effectiveness of the planner.
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1. Introduction

Motion planning is the key to the success of missions in-
volving autonomous vehicles (AVs), which have to deal
with different forms of uncertainties associated with per-
ception, localisation and situation awareness. The motion
planning algorithms must predict and take account of dis-
turbances to identify robust paths. The real world is full of
uncertainty and AVs are subject to physical constraints;
therefore, generating de-conflicting robust paths in real
time, for multi-agent systems in dynamic uncertain envi-
ronments, is a challenging task that we address in this paper.
In systems where the uncertainties are bounded, robustness
can be achieved by constraint tightening to ensure that states
do not leave the feasible spaces (Gossner, Kouvaritakis, &
Rossiter, 1997; Kuwata, Richards, & How, 2007). If the
disturbance is unbounded, probabilistic approaches can be
considered, which limit the violation probability to a spe-
cific value (Blackmore, 2006; Ono & Williams, 2008). We
will use such an approach to design probabilistically robust
paths.

Chance constraints have been used in stochastic pro-
gramming and stochastic receding horizon control (RHC)
(Blackmore, 2006; Li, Wendt, & Wozny, 2002; Pepy &
Lambert, 2006; van Hessem, 2004; Yan & Bitmead, 2005)
and they have recently received attention to stochastic path
planning problems because of their ability to provide a
trade-off between meeting the constraints and infeasibility.

∗Corresponding author. Email: ian.postlethwaite@northumbria.ac.uk

Blackmore (2006) developed a probabilistic path planning
algorithm, under the assumptions of Gaussian noise, to de-
sign an optimal sequence of control inputs for a linear
system in a non-convex environment such that the prob-
ability of constraint violation with an obstacle was upper
bounded. This was done using a disjunction of linear chance
constraints. The key step of the approach was to convert
chance constraints into deterministic constraints by con-
straint tightening and then to solve the problem using a
standard deterministic optimal solver. Recently, extensions
to the above approach have been proposed by Blackmore
and Ono (2009). Concurrent work has extended the chance
constraint optimisation framework to consider other kinds
of uncertainty, such as collision avoidance between uncer-
tain agents (Du Toit & Burdick, 2011).

When an AV is operating in a dynamic environment, it
has to avoid dynamic as well as static obstacles due to the
presence of other AVs. This imposes restrictions on the po-
sitions of AVs in space and time. Lambert, Gruyer, and St.
Pierre (2008) proposed a formulation to compute the prob-
ability of collision, which accounts for both robot and ob-
stacle uncertainty, and this was later generalised in Du Toit
and Burdick (2011). Typically, probabilistic formulations
are solved using optimisation algorithms, such as mixed-
integer linear programs or constrained nonlinear programs.
For motion planning problems (MPPs) involving complex
dynamics and/or high dimensional configuration spaces, the
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computational complexity of the optimisation algorithm is
not scalable. For such complex problems, sampling-based
approaches have been demonstrated to have several advan-
tages; see for example RRTs (LaValle, 2006). However,
the RRT does not explicitly incorporate uncertainty. Re-
cently, efforts have been made to extend the RRT algorithm
to an uncertain environment (Fulgenzi, Tay, Spalanzani,
& Laugier, 2008; Kewlani, Ishigami, & Iagnemma, 2009;
Melchior & Simmons, 2007). In this paper, we also propose
an extension of the RRT algorithm to handle uncertainty in
dynamic environments.

The paper is based on a chance constraint formula-
tion presented in Blackmore, Li, and Williams (2006). The
formulation was combined with an RRT algorithm in our
previous work (Kothari & Postlethwaite, 2013) to develop
a computationally efficient path planning algorithm for a
single vehicle system. Concurrently, in Vitus and Tomlin
(2011), the work of Blackmore et al. (2006) was extended
to manage closed-loop uncertainty for linear Gaussian sys-
tems. Our paper further extends the work to nonlinear
Gaussian systems and furthermore makes it applicable to
multi-agent systems through the use of another probabilis-
tic approach, called the overlapping coefficient. Combining
these approaches with the RRT algorithm, a robust com-
putationally efficient path planner for multi-agent systems
is developed to determine de-conflicting paths in uncertain
environments.

The rest of the paper is organised as follows. The motion
planning problem is formally stated in Section 2. Section 3
presents mathematical details required to evaluate proba-
bilistic constraints under the assumption of Gaussian noise.
Section 4 develops a real-time robust distributed motion
planning algorithm by extending an RRT algorithm and
combining probabilistic approaches. Numerical results are
presented in Section 5 to show the efficacy of the algorithm
and concluding remarks are given in Section 6.

2. Problem formulation

Consider the following discrete-time nonlinear stochastic
system for the ith agent

xt+1 = f (xt , ut ) + wt (1)

where xt ∈ Rnx is the state vector, ut ∈ Rnu is the input
vector, and wt ∈ Rnw is a disturbance vector acting on the
system. We use superscripts to denote variables of an agent,
if there is no superscript then the ith agent is implicitly
assumed. The initial state is assumed to be a Gaussian
random variable x0 ∼ N(x̂0, �x0 ). The disturbance wt has
a known probability distribution wt ∼ N(0, �wt

). During
execution, partial and noisy measurements are sampled as

zt = h(xt ) + vt , (2)

where zt ∈ Rnz is the sampled output and vt ∈ Rnv is the
measurement noise associated with the sensor measurement
at time step t. The measurement noise has a zero mean
Gaussian distribution vt ∼ N(0, �vt

).
The system given in (1)–(2) is subject to two forms of

uncertainty: (i) localisation uncertainty in the initial state
x0 and (ii) process and measurement noise correspond-
ing to the model uncertainty and external disturbances,
or some combination of these, as long as they are in-
dependent. We assume that the covariances on the pro-
cess and measurement noise are time-invariant, such that
�wt

≡ �w,�vt
≡ �v∀t . There are also constraints acting

on the system. These are assumed to be decoupled, and can
be represented as

ut ∈ U (3)

Pr(xt �∈ Xfree) ≤ � (4)

Pr(C) ≤ �, (5)

where Xfree ≡ X \ {X1 ∪ X2 · · · ∪ XB} and U is the set
of feasible inputs. It is assumed that X ,X1, . . . ,XB are
convex polyhedra. The set X defines a set of time-invariant
convex constraints acting on the state, while X1, . . . ,XB

represent B convex obstacles to be avoided. Equation (4)
represents a probabilistic constraint on the states of the ith
agent, i ∈ {1, . . . , n}, and implies that the violation of the
constraint at each time step should occur below a prede-
fined value, �. This corresponds to avoidance of obstacles
with a known probability �. Equation (5) represents an-
other probabilistic constraint corresponding to inter-agent
collision avoidance on the states of the ith agent. It implies
that the probability of the state of the ith agent overlapping
with that of the jth agent, i, j ∈ {1, . . . , n}, at each time
step, should occur below a predefined value, �. This con-
straint is used to specify the minimum separation between
two agents for safe navigation. A collision between two
agents is specified by C, which represents an overlapping
distribution.

If we assume that each agent has a common objective,
namely to reach its corresponding goal region Xgoal ⊂ Rnx

in minimum time, then the planning problem for the ith
agent can be written as

tgoal = inf{t ∈ Z0,tf |xt ∈ Xgoal} (6)

while satisfying the constraints (3)–(5) for all time steps
t ∈ {0, . . . , tgoal}. In practice, since there is uncertainty in
the state, we assume it is sufficient for the distribution to
reach the goal region Xgoal. The motion planning problem
for the ith agent can now be defined.

Problem 1 (near minimum time motion planning):
Given the initial state x0 and constraint sets Xfree and U ,
compute the input control sequence ut , t ∈ Z0,tf , tf ∈ Z0,∞
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that minimises

J (u) = tgoal (7)

while satisfying (1)–(5) for all time steps t ∈ {0, . . . , tgoal}.

3. Mathematical details

This section details how to evaluate a-priori closed-loop
distributions of the system given in (1)–(2) and then shows
how to evaluate probabilistic constraints (4) and (5) for the
given uncertain system. The explicit expression for the dis-
tributions is derived using the Kalman filter theory and is
used in predicting future distributions of the sampled trajec-
tories by the path planner. By anticipating and accounting
for future information, the closed-loop motion planning
algorithm can manage uncertainty associated with the sys-
tem evolution and can trade off conservatism in the path
planner using probabilistic constraints. In a stochastic envi-
ronment, constraint satisfaction (corresponding to obstacle
avoidance and inter-agent collision) cannot be guaranteed
for all realisations of the states. Hence, in order to achieve
a desired trade-off there is a need to limit the probability of
constraint violation (for constraints (4) and (5)). The eval-
uation of the probabilistic constraint (4) is done using the
approach of chance constraints (Blackmore, 2006; Luders,
Kothari, & How, 2010; Ono & Williams, 2008), whereas the
evaluation of probabilistic constraint (5) is done using the
approach of overlapping coefficients (Lu, Smith, & Good,
1989).

3.1 A-priori closed-loop distributions

For a nonlinear Gaussian system, the unavailability of fu-
ture measurements means it is hard to compute a-priori
closed-loop distributions. One can consider multiple real-
isations of future measurements and can evaluate closed-
loop distributions, but such an approach requires Monte
Carlo simulations that are computationally intractable. To
address this issue, we assume that there exists a nominal
system corresponding to that given in (1)–(2) as

x∗
t+1 = f (x∗

t , u∗
t ) (8)

z∗
t = h(x∗

t ), (9)

which can track reference paths exactly in the absence
of disturbances and/or uncertainties. A modified track-
ing objective can be achieved by defining and driving
xe

t � xt − x∗
t close to zero. In order to do this, we derive

linearised error dynamics as follows

xe
t+1 = Atx

e
t + Btu

e
t + wt (10)

ze
t = Htx

e
t + vt , (11)

where At � ∂f
∂x

, Bt � ∂f
∂u

, Ht � ∂h
∂x

computed at (x∗
t , u

∗
t ),

and ue
t � ut − u∗

t . A feedback control law ue
t = κ(xe

t ) is
then designed to drive the error close to zero. Since there
are no measurements available during prediction, or with-
out executing a path, the true state xt and corresponding
deviation xd

t cannot be computed a priori. However, we can
predict future distributions of error dynamics following the
Kalman filter theory. The error dynamics evolve as follows

xe
t+1�t+1 = xe

t �t + Lt+1
(
zt+1 − Ht xe

t+1�t

)
(12)

�t+1�t+1 = (I − Lt+1 Ht+1) At �t+1�t , (13)

where t + 1 is the current time step, xe
t+1�t+1 is the up-

dated state given that the measurement at time step
t + 1 is included, I is the identity matrix and Lt+1 =
�t+1�tH

T
t+1(Ht+1�t+1�tH

T
t+1 + �v)−1. Substituting the ex-

pressions for zt + 1 and xe
t+1�t and carrying out the necessary

algebra, we obtain

xe
t+1�t+1 = (At−Lt+1Ht+1At )x

e
t �t+Btu

e
t + Lt+1Ht+1Atx

e
t

+Lt+1Ht+1wt+Lt+1vt+1. (14)

Let ξt = [xeT
t xeT

t �t ]T , then an augmented system can be
written as

ξt+1 = Ftξt + B̄tu
e
t + Gtst (15)

where Ft = [ At 0
Lt+1Ht+1At A − Lt+1Ht+1At

]
, B̄t = [ Bt

Bt

]
and Gt =[ I 0

Lt+1Ht+1 Lt+1

]
, and st = [wt vt + 1]T is Gaussian noise, st ∼

N(0, �s) and �s = diag(�w, �v). The mean and covariance
of system (15) can be determined as

ξ̂t+1 = Ft ξ̂t (16)

Mt+1 = FtMtF
T
t + Gt�sG

T
t (17)

Define � = [I 0 ], then a-priori distributions of the
closed-loop system at time step t can be computed by

x̂t � E[xt ] = E[x∗
t ] + E[xe

t ] = x∗
t + �ξ̂t (18)

�xt
� E

[
(xt − E[xt ])(xt − E[xt ])

T
] = �Mt�

T . (19)

Note that these expressions do not require true measure-
ments at each time step. The process simply computes
propagating disturbance free dynamics in (10)–(11), and
evaluates At, Bt and Ht at each time step and plugs these
into (18)–(19).

3.2 Chance constraint

The motion planning problem requires that the vehicle
does not leave some feasible region and therefore that the
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vehicle does not collide with any other obstacle while trav-
elling from its starting location to its final position. Let
Xfree be the feasible region and Pr(xt �∈ Xfree) be the prob-
ability that the vehicle leaves the feasible region during
the mission. The motion planning problem requires that
Pr(xt �∈ Xfree) is less than or equal to � as given in (4).
Here, we detail the main steps of the chance constraint for-
mulation presented in Blackmore and Ono (2009), Luders
et al. (2010).

Let us assume that an obstacle is represented by the
conjunction of no linear constraints. With this, the proba-
bility of a constraint violation by the ith vehicle is written
as

Pr(xt �∈ Xf ree) = Pr

(
no∧

k=1

aT
lkxt < blk

)
,∀l ∈ Z1,B .

(20)

Note that in order to limit the overall failure probability to
�, there is a need to limit the constraint violation probability
associated with each obstacle to �

B
. This is because there

are B obstacles and any collision is regarded as a failure.
Hence, the constraint violation probability is limited by

Pr

(
no∧

k=1

aT
lkxt < blk

)
≤ �

B
,∀l ∈ Z1,B . (21)

For more details on chance constraint formulations for mo-
tion planning see Blackmore and Ono (2009), Luders et al.
(2010) and the references therein. Now because

Pr

(
no∧

k=1

aT
lkxt < blk

)
≤ Pr

(
aT

lkxt < blk

)
(22)

if the constraint violation probability is required to be less
than �

B
, it is enough to show that one of the constraints for

the obstacle is satisfied with probability less than or equal
to �

B
i.e.

no∨
k=1

Pr
(
aT

lkxt < blk

) ≤ �

B
. (23)

Following the chance constraint formulation presented in
Blackmore et al. (2006), the univariate random variable
vlk is derived from the multivariate random variable xt as
follows

vlk = aT
lkxt − blk. (24)

It can be shown (e.g. Blackmore et al., 2006) that vlk ∼
N(v̂lk, �vlk

) is a univariate Gaussian random variable with
mean v̂ij and variance �vlk

, where

v̂lk = aT
lkx̂t − blk (25)

�vlk
=

√
aT

lk�xt
alk. (26)

Using this, the constraint (23) can then be shown to be
probabilistically satisfied, i.e. the probability of constraint
violation does not exceed �, through the modification

no∨
k=1

aT
lkx̂ ≥ blk + b̄lkt∀l ∈ Z1,B,∀t ∈ Z0,N (27)

b̄lkt =
√

2�vlk
erf−1

(
1 − 2

�

B

)
, (28)

where erf(·) denotes the standard error function. Here, the
true state xt, which is not known, is replaced by the con-
ditional mean x̂, which can be computed using (18). The
term b̄lkt represents the amount of deterministic constraint
tightening necessary to ensure probabilistic constraint
satisfaction.

3.3 Overlapping probability

In this section, we describe how to compute the probability
of two given multivariate distributions overlapping. The
probability of collision (overlapping) can be computed as

Pr (C) =
∫

f (x)dx, (29)

where C � f (x) is the overlapping probability distribution
function of two given distributions f1(x) and f2(x), x ∈ Rnx

and the integral is nx-fold. The overlapping distribution
represents the overlapping area between two distributions,
and therefore, the integral in (29) can be rewritten as

Pr (C) =
∫ ∞

−∞
min [f1(x), f2(x)]dx. (30)

This allows us to compute the probability of collision with-
out knowledge of the overlapping distribution. The inte-
gral in (30) is known as the overlapping coefficient (OVC),
defined as the common area under two probability den-
sity curves. It measures divergence (or closeness) between
two distributions. Computing (30) requires a numerical
approach and evaluating this constraint at each step in
real time may prove computationally intensive. In order to
quantify closeness, (30) can be approximated and several
measures have been proposed in the literature to compute
a closed-form solution, e.g. by Bhattacharyya, Matusita,
Morisita and Pianka as described in Lu et al. (1989). For
example, Bhattacharyya’s measure

∫ ∞
−∞

√
f1(x)f2(x)dx

� Pr(C) compares two distributions. It ranges between 0
and 1, where 0 indicates there is no overlap and 1 indicates
they are the same. Bhattacharyya’s original interpretation
of the measure was geometric, giving the cosine angle be-
tween two lines in nx-dimensional space. The measure is
easy to compute when the covariance matrices are the same;
otherwise, it is computationally expensive.
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We next show how to compute this measure of similarity
between two multivariate normal distributions in closed
form using the approach of overlapping coefficients. Let

I (r, s) =
∫ ∞

−∞
[f1(x)]r [f2(x)]sdx, r ≥ 0, s ≥ 0 (31)

be a general measure of similarity between two distributions

f1(x) � 1

|�1| 1
2 (2π )

p
2

exp

[
−1

2
(x − μ1)T �−1

1 (x − μ1)

]

f2(x) � 1

|�2| 1
2 (2π )

p
2

exp

[
−1

2
(x − μ2)T �−1

2 (x − μ2)

]

Using this, we derive two normalised quantities to measure
closeness, namely

J (r, s) = 2
I (r, s)

I (2r, 0) + I (0, 2s)
(32)

and

G(r, s) = I (r, s)√
I (2r, 0)I (0, 2s)

. (33)

We will now find bounds for J and G.

Lemma 1: The quantities J and G lie within the ranges
0 ≤ J ≤ 1 and 0 ≤ G ≤ 1.

Proof: Let us consider two measurable functions F ≥ 0
and H ≥ 0, then

∫
[F − H ]2dx ≥ 0 (34)

and after simplifying and rearranging, we get

2

∫
F H dx∫

F 2dx + ∫
H 2dx

≤ 1. (35)

If we now take F(x) = (f1(x))r and H(x) = (f2(x))q, and
substitute in the above equation, we get

2
I (r, s)

I (2r, 0) + I (0, 2s)
= J (r, s) ≤ 1. (36)

It can be observed that J(r, s) = 0 if, and only if, f1(x)f2(x) =
0, ∀x; note that f1(x) �= 0, xr⊂x and f2(x) �= 0, xs⊂x. Hence,
0 ≤ J ≤ 1.

Next, let us consider

∫
[F + λH ]2dx ≥ 0. (37)

Again, after simplifying and rearranging, we get

λ2
∫

H 2dx + 2λ

∫
F H dx +

∫
F 2dx ≥ 0, (38)

which is quadratic in λ2 and from the Cauchy–Schwarz
inequality, we know that

[∫
F H dx

]2

≤
[∫

F 2dx

] [∫
H 2dx

]
(39)∫

F H dx√
[
∫

F 2dx][
∫

H 2dx]
≤ 1. (40)

Therefore, taking F(x) = (f1(x))r and H(x) = (f2(x))q, and
substituting in the above equation, we get

I (r, s)√
I (2r, 0)I (0, 2s)

= G(r, s) ≤ 1. (41)

Again G(r, s) = 0 if, and only if, f1(x)f2(x) = 0, ∀x; note
also that f1(x) �= 0, xr ⊂ x and f2(x) �= 0, xs ⊂ x. Hence,
0 ≤ G ≤ 1. �

Next, in the process of computing an expression for
these measures, we evaluate the integral in (31) for the
given f1(x) and f2(x).

Lemma 2: Let distributions of the ith and jth agents be
given as xi

t ∼ N(x̂i
t , �

i
xt

) and x
j
t ∼ N(x̂j

t , �
j
xt

) and assume

μ1 = x̂i
t , �1 = �i

xt
, μ2 = x̂

j
t and �2 = �

j
xt

. Then

I (r, s) = exp
[− 1

2 (μ1 − μ2)T ( 1
r
�1+ 1

s
�2)−1(μ1 − μ2)

]
(2π )p(r+s−1)/2|s�1+r�2|1/2|�1|(r−1)/2|�2|(s−1)/2

Proof: The product of Gaussian distributions is a weighted
Gaussian (e.g. Petersen & Pedersen, 2008), and therefore

r∏
z=1

Nz(μ1, �1) = β1N

(
μ1,

�1

r

)
(42)

s∏
z=1

Nz(μ2, �2) = β2N

(
μ2,

�2

s

)
, (43)

where β1 = 1
(2π)p(r−1)/2r1/2|�1|(r−1)/2 and β2 =

1
(2π)p(s−1)/2s1/2|�2|(s−1)/2 . Now applying the law again on
these two newly obtained Gaussian distributions, we get,

N

(
μ1,

1

r
�1

)
N

(
μ2,

1

s
�2

)
= β3N (μ,�) , (44)

where

β3 =
(r s)(1/2) exp

[− 1
2 (μ1 − μ2)T ( 1

r
�1 + 1

s
�2)−1(μ1 − μ2)

]
(2π )p/2|s�1 + r�2|1/2

(45)



2080 I. Postlethwaite and M. Kothari

and

μ = �

((
�1

r

)−1

μ1 +
(

�2

s

)−1

μ2

)
,

� =
[(

�1

r

)−1

+
(

�2

s

)−1
]−1

. (46)

Now defining β � β1 β2 β3, we get

β = exp
[− 1

2 (μ1 − μ2)T ( 1
r
�1 + 1

s
�2)−1(μ1 − μ2)

]
(2π )p(r+s−1)/2|s�1 + r�2|1/2|�1|(r−1)/2|�2|(s−1)/2

.

(47)
Then, because

∫ ∞
−∞ N (μ,�) dx = 1, we get the desired

result

I (r, s)=
∫ ∞

−∞
[f1(x)]r [f2(x)]sdx =

∫ ∞

−∞
βN (μ,�) dx = β.

(48)�
In this work, we choose Pianka’s measure (Lu et al.,

1989) to compute the overlap probability, which corre-

sponds to G(1,1). We define κ = |�1�2|
1
4

| 1
2 (�1+�2)| 1

2
for clarity and

then the probability of collision is given as

Pr(C) � G(1, 1)

= κ exp

[
−1

2
(μ1 − μ2)T (�1 + �2)−1(μ1 − μ2)

]
.

(49)

However, one can choose from a variety of measures that
perform similarly for the given Gaussian statistics. The
objective is to convert the probabilistic collision constraint
Pr(C) ≤ � into an equivalent deterministic constraint. For
this, we can carry out the necessary algebra to obtain

κ exp

[
−1

2
(μ1 − μ2)T

(
1

r
�1+1

s
�2

)−1

(μ1−μ2)

]
≤ �

⇐⇒ (μ1 − μ2)T
(

1

r
�1 + 1

s
�2

)−1

(μ1 − μ2)

≥ −2 ln

[
�

κ

]
(50)

The constraint in (50) is in the form of an ellipsoid around
each agent and each agent has to satisfy the constraint at
each time step to avoid collisions with other agents.

4. Algorithms

The mathematical details presented in the previous section
are generic and can be used with any path planning al-
gorithm to design a probabilistically robust path planner.

The RRT algorithm has been demonstrated to be a suc-
cessful planning algorithm for complex real-world systems
and allows a designer to choose problem-specific heuris-
tics to bias the growth of the tree to guide and improve the
search. Motivated by this, we will use the RRT algorithm in
conjunction with a number of heuristics to develop a com-
putationally efficient decentralised robust motion planning
algorithm for multi-agent systems. In the proposed algo-
rithm, each vehicle operates in a decentralised manner and
uses a look-ahead strategy to find its own path in real time.
Furthermore, each vehicle cooperates with other vehicles
when they are within communication range to avoid con-
flicts. A strategy based on a priority criterion is considered
for conflict resolution.

4.1 Tree expansion

This section details some key steps for exploring the en-
vironment quickly, combining RRT with the chance con-
straint approach to identify robust paths for each vehicle
without considering other vehicles in the environment. The
original RRT algorithm (LaValle, 2006) determines an ad-
missible path by growing a tree incrementally from a start-
ing location (node) to a goal location. A node’s likelihood of
being selected to grow the tree is proportional to its Voronoi
region for a uniform sampling distribution. As a result, the
RRT algorithm is naturally biased towards rapid exploration
of the state space. The RRT algorithm allows us to choose
problem specific heuristics that can bias the growth of the
tree and hence enable it to converge faster. This feature
has been extensively exploited and several variations of
the original RRT algorithm have been proposed to solve
different problems. In the probabilistic framework, the RRT
algorithm is extended to grow a tree of state distributions
that are known to satisfy an upper bound on the proba-
bility of constraint violation. The basic steps are given in
Algorithm 1. The heuristics deployed in Algorithm 1 are
briefly explained below. More details on the RRT can be
found in LaValle (2006), Kothari and Postlethwaite (2013),
Luders et al. (2010) and Kuwata et al. (2009).

The tree starts growing after setting the starting posi-
tion as the root of the tree (line 1). The expansion steps
continue until the time to expand runs out (lines 2–24). In
each iteration, a random sample is drawn (line 3) accord-
ing to some sampling strategy (e.g. global exploration and
biased exploration). A small bias towards the goal aids in
pulling the tree towards that goal. For the chosen sample,
the N nearest nodes are identified (line 4) using a prede-
fined metric and efforts are made to connect them to the
sample. In this process, potential candidate nodes are gen-
erated (line 6) from a nearest node to the chosen sample
to generate reference paths/waypaths that can be followed
by the vehicle. The next step is to predict distributions of
the vehicle using the closed-loop model for a given way-
path from the nearest neighbour to the potential node us-
ing the theory presented in Section 3. This requires a path
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Algorithm 1: Tree expansion for each agent

Input: starting condition x̂0, initial augmented state ẑ0, augmented covariance M0, goal region Xgoal, time window for tree expansion ta

1: T .ADD VERTEX(x̂0)
2: while t < ta do
3: xrand ← RANDOM VERTEX();
4: (xnear1 , . . . , xnearN ) ← NEAREST VERTEX(xrand, T );
5: for k = 1 to N do
6: xextend ← EDGE EXTEND(xneark , xrand);
7: xparent ← FIND PARENT (xneark );
8: (x∗

t , u
∗
t , x̂t , �t , ẑt , Mt ) ←− FIND STATE(xparent);

9: while (x̂t , �t ) is probabilistic feasible and x̂t �∈ Xextend do
10: u∗

t ← SELECT INPUT ((x∗
t , xparent , xneark );

11: x∗
t+1 ← UPDATE STATE(x∗

t , u
∗
t );

12: (x̂t+1, �t+1, ẑt+1, Mt+1) ← PROPAGATE STATE(x∗
t+1, ẑt , Mt );

13: t ← t + 1;
14: end while
15: if x̂t ∈ Xextend then
16: T .UPDATE COST ESTIMATE(xextend);
17: T .ADD VERTEX(xextend);
18: CONNECT TO GOAL(xextend);
19: if xextend is connected to Xgoal then
20: Update upper-bound cost-to-go of xextend and its ancestor
21: end if
22: end if
23: end for
24: end while

following control law to drive the vehicle close to the ref-
erence path. In this work, we use a combined pursuit plus
line-of-sight guidance law to generate nominal control com-
mands u∗

t (Kothari, Postlethwaite, & Gu, 2009) (line 10),
for disturbance-free dynamics (10)–(11). And, using a sim-
ilar approach, we design another control law that keeps the
actual vehicle close to the nominal trajectory. The details
of this are presented later in the paper. The closed-loop
prediction of future distributions is obtained by running the
nominal system and the augmented system with the path
following control laws until x̂t ∈ Xextend or the path be-
comes probabilistically infeasible (lines 9–14). Note that
the algorithm maintains three separate trees, one corre-
sponding to the reference trajectory, one to the nominal
trajectory generated from disturbance-free dynamics and
the final one for a simulated trajectory generated from the
actual system that contains information about the closed-
loop distributions. The function FIND ST AT E in step 8
retrieves initial conditions that are stored while growing
the tree and forward simulations are performed using these
initial conditions.

After predicting the state distribution (x̂t and �t)
at each time step t, probabilistic feasibility is evaluated
using inequalities (27). The criterion for a probabilisti-
cally valid path is that the disjunction of the constraints∨no

k=1 Pr(aT
lkx̂t < blk) ≤ �

B
should hold (i.e. at least one con-

straint should be satisfied) for all x̂t and for all l = 1, . . . ,
B. If the predicted path is found feasible, then an attempt is
made to connect the extended node directly to Xgoal at line
18. This allows the algorithm to find quickly a feasible path

to Xgoal. In addition to this, a branch and bound method is
used to avoid growing the whole tree as much as possible
by growing only the most promising nodes of the tree. The
more promising nodes are identified by maintaining two es-
timates of the optimal cost-to-go from each node to the goal
region (Frazzoli, Dahleh, & Feron, 2002). The lower-bound
cost-to-go under-approximates the cost using the Euclidean
norm metric ρ(x,Xgoal), which ignores dynamic and/or
avoidance constraints. The upper-bound cost-to-go identi-
fies the lowest-cost path from the root to the goal through
the node in question, taking the value + ∞ if no path to
the goal has yet been found. The branch and bound method
is executed when at least one path to the goal is identified.
Additionally, a branch-and-bound scheme is used to prune
portions of the tree of unpromising nodes, whose lower-
bound cost-to-go is larger than the upper-bound cost-to-go
of an ancestor. This is because none of these nodes could
possibly lead to a better solution than the complete feasible
solution (Frazzoli et al., 2002).

This completes the steps in tree expansion. The motion
planner allocates a certain duration, ta, for tree expansion.
Based on the tree built in the interval, a path is chosen to be
followed. By the time an agent follows a portion of this path,
the tree can be further expanded and a complete path to the
goal location can be found. Next, we develop a distributed
path planning algorithm for generating de-conflicting paths.

4.2 Robust distributed path planner

For environments that are dynamic and uncertain, the RRT
may need to keep growing during the path following to
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account for changes in situational awareness. In this sec-
tion, we propose a motion planning algorithm for a team
of cooperative agents by embedding the RRT algorithm
in a framework that manages interactions among different
agents and uses a coordination strategy to resolve conflicts.
The strategy allows each agent to search for lower cost paths
independently and manages the order in which an agent re-
plans based on the priority of finding a new path. Because
of this, the resultant algorithm preserves the benefits of a
single agent system while avoiding conflicts. The steps are
presented in Algorithm 2.

Initially, the root of the search tree is created by assign-
ing the starting position of the vehicle. Then for the given
map and starting and goal positions, the tree of probabilis-
tically feasible trajectories is grown for the given time, tp
(line 2). If paths to the goal are found in this interval, then
the best path is selected for execution. Otherwise, a branch
of the trajectory is selected for execution based on a heuris-
tic (lines 4–8). While executing the selected path, the tree
continues to be grown either in search of lower cost paths or
complete paths to the goal location. If there are any agents
within communication range, then they have to coordinate
to generate de-conflicting paths. For this coordination, each
agent has to share its plan with its neighbours. Once an
agent receives the plans of other agents, it first determines
whether the received plans are in conflict with its own plan
and if so deploys a conflict resolution strategy. The man-
ner in which each agent resolves conflicts is controlled by
a coordination strategy, which enables each agent sequen-
tially to have a conflict-free path. The processes involved
in conflict resolution are presented next.

Coordination strategy: Once a conflict is detected
among neighbouring agents, each agent creates its own
conflict set N c

i and processes it sequentially to resolve con-
flicts. The conflict resolution strategy is based on a priority
criterion in which the agent with the highest (predefined)
token number does not change its plan and the other agents
have to change their plans in sequence to avoid conflicts.
We assume that each agent holds a token number based on
its priority and this is assigned by a higher level planner, the
details of which are not covered in this work. The ith agent
sorts N c

i in an descending order of priority and the sorted
set is called SN c

i
. In the next step, the algorithm compares

the first element of the set SN c
i

with its own token number.
If both are equal, then the ith agent does not need to find
an alternative path. If they are not equal, then it has to find
an alternative path. When the ith agent replans, it will need
to take account of paths of agents with higher priorities
compared to its own. This is because if it does not account
for these paths and plans independently then it is possible
that the new plan will be in conflict with the higher priority
agents. In such a case, agents may get stuck indefinitely
in resolving conflicts. If there are agents in N c

i that have
higher priorities, then the ith agent will not replan until it
receives plans for all of these agents. After receiving plans
from these agents, it includes them in a non-conflicting set
called Pnc

i and uses them while replanning. Once the ith
agent finds a conflict-free path, it broadcasts this path to
its neighbours so they can use it in replanning and conflict
detection by agents that have lower priorities. In this way,
the conflict resolution algorithm runs on each vehicle and
provides conflict free paths for all vehicles.

Algorithm 2: Multi-agent RRT algorithm

Inputs: a starting distribution (x̂I , �I ), goal region Xgoal, the environment (obstacles map), mission preparation time ts, the maximum
allowed failure probability �, the maximum allowed failure probability �
1: T .ADD VERTEX(x̂I )
2: T ← ROBUST RRT EXPANSION (T , x̂I , �I ,Xgoal, tp, �)
3: while x̂t �∈ Xgoal do
4: if PATH TO GOAL(T ) then
5: pathi ← CHOOSE PATH TO GOAL(T )
6: else
7: pathi ← CHOOSE PATH TOWARD GOAL(T )
8: end if
9: Xnext ←− NEXT WAYLOCATION (pathi)
10: tr ← TIME TO GO(Xnext)
11: while x̂t �∈ Xnext do
12: (Pi , Ni) ← FIND NEIGHBOUR(i)
13: (Pc

i , N
c

i ) ← FIND CONFLICT (Pi , Ni , �)
14: if N c

i �∈ ∅ then
15: pathi ← CONFLICT RESOLVE()
16: end if
17: T ← ROBUST RRT EXPANSION (T , x̂t , �t , Xgoal, tr, �)
18: Compute control and update the state
19: end while
20: Use measurements, if any, to re-propagate state distribution
21: T ←− CHECK PROB FEASI TREE(T )
22: end while
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The conflict resolution process also involves generat-
ing de-conflicting paths. This can be achieved either by
bypassing the conflict, generating a new path around the
conflicting trajectory, or by selecting an alternative path
from the existing tree, which is not in conflict. Once the
conflict is resolved, the process of execution is continued
until the vehicle reaches the goal region. In addition to this,
whenever measurements are received, the tree is updated
accordingly and any infeasible part of the tree is deleted.

5. Numerical results

In this section, we present numerical results to demonstrate
the effectiveness of the proposed approach in efficiently
computing paths for motion planning problems that satisfy
probabilistic constraints. The performance of the proposed
approach is demonstrated by three examples. The first ex-
ample considers the closed-loop prediction of a nonlin-
ear Gaussian system required to predict future trajectories.
The second example considers offline performance of the
path planner for a single vehicle system. This is useful to
demonstrate computational performance. The final exam-
ple demonstrates path planning capability for a multi-agent
system.

5.1 System description

In order to evaluate probabilistic constraints there is a need
to know the distribution of a vehicle’s state. As we are
planning in advance, the vehicle’s future state is required
to be known a priori. For this, we consider the following
simple kinematic model for a vehicle,

Xt+1 = f (Xt, ut ) + ηt , (51)

where Xt�[xt yt ψ t]T and

f (Xt, ut ) �

⎡
⎣ xt + dtv cos ψt

yt + dtv sin ψt

ψt + dt(ut + ηt )

⎤
⎦ .

Here dt = 0.1 s is the time step taken for discretising the
system dynamics, (xt, yt) is the vehicle position (in m), ψ t

is the vehicle heading (in radians), v is the speed (in m/s),
ut is the steering input (in rad/s) and ηt ∼ N(0, σ 2

u ) is a
disturbance (e.g. wind disturbance) (in rad/s) acting on the
heading dynamics. The bound on control is given as |ut| ≤
umax = v2/Rmin , where v = 13 m/s and Rmin = 40 m; and
hence umax = 4.25 m/s2.

The vehicle measures range and bearing with respect to
a beacon placed at the origin and using these noisy mea-
surements it localises itself. The measurements are sampled
at each time step as follows,

zt = h(Xt ) + υt , (52)

where

h(Xt, ut ) �
[ √

x2
t + y2

t

arctan(yt , xt )

]
,

and υt ∼ N

([
0
0

]
,

[
σ 2

r 0
0 σ 2

b

])
.

5.2 Closed-loop prediction

Having defined the model of the system, we check the per-
formance of the closed-loop prediction for path following.
This is important to evaluate because the path planner pre-
dicts future trajectories for the sampled waypaths to check
feasibility and these paths are only included in the tree when
the predicted trajectories are deemed feasible. If the predic-
tions are bad, then there is no way the path planner can
perform better. For the nominal system, we assume there
is no disturbance, this means ηt = 0 and υ t = [0 0]T, ∀t
in (51) and (52), respectively. Furthermore, we assume that
these states are measurable. For a given reference path, the
path following command is computed by combining pur-
suit guidance with line-of-sight guidance laws as follows
(Kothari et al., 2009)

u∗
t = k1d + k2ψ̄, (53)

where k1 > 0 and k2 > 0 are gains, d is the position error and
ψ̄ is the flight path angle error with respect to the reference
path. The same philosophy is used to compute the control
command for the error dynamics and is given as

ue
t = ke

1�d + ke
2�ψ, (54)

where ke
1 < 0 and ke

2 > 0 are gains, �d is the position er-
ror and �ψ is the flight path angle error with respect to the
nominal system. Using the details presented in Section 3, an
apriori closed-loop distribution is predicted for a path fol-
lowing scenario as shown in Figure 1. The waypath is made
by connecting waypoints [0,0], [100,100], [300,0], [100,
−100] and [0,0]. In the simulation, we choose σ u = 0.005,
σ r = 1 and σ b = 10. The dark line shows the reference paths
whereas the dashed and dotted lines show trajectories of the
nominal and actual systems, respectively. The uncertainty
ellipses are also shown in the same figure. It can be seen
that the actual system tries to follow the nominal system.
However, due to disturbances (that capture uncertainty and
modelling errors) there are discrepancies between the nom-
inal and actual trajectories. As the feedback control law is
able to keep the trajectory of the actual system close to that
of the nominal system, there is no significant growth in the
uncertainty ellipses. Hence, this allows us to manage the
level of uncertainty in the path planning.
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Figure 1. Closed-loop prediction for the waypath following. Un-
certainty ellipses are shown in black centred around the actual
trajectory.

5.3 Offline performance

The objective of this subsection is to demonstrate the com-
putational efficiency of the proposed path planning algo-
rithm. We have reported a similar analysis for a linear Gaus-
sian system in Kothari and Postlethwaite (2013); however,
that work does not consider a measurement model in the
prediction. Here, we evaluate performance of the algorithm
for similar scenarios as in Kothari and Postlethwaite (2013).
In the first set of simulations, we consider three cases for
the scenario shown in Figure 2 with three risks of collision,
� = 0.5, 0.3 and 0.1. Figure 2 shows the paths and it can
be seen that when the risk of collision with any obstacle is
reduced, the path moves away from the obstacles to maintain
a safe distance.

Figure 2. Paths for different cases using the closed-loop RRT
algorithm.

Figure 3. Sample tree with � = 0.5 generated by the closed-loop
RRT algorithm for a simple environment. Each node corresponds
to the state distribution mean; a 2 − σ uncertainty ellipse is centred
at each node. The mean is shown by ‘x’ in each ellipse.

In the second set of simulations, we show the distribu-
tion of the nodes during the expansion of the tree for two
cases. For the same scenario as in Figure 2 the sample trees
are now grown with � = 0.5 and 0.1 in Figures 3 and 4,
respectively. We can make some key observations. The first
observation is that in the first case the tree has nodes closer
to the obstacles. This is because we have a less stringent re-
quirement on safety compared to the second case. Second,

Figure 4. Sample tree with � = 0.9 generated by the closed-loop
RRT algorithm for a simple environment.
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Table 1. Simulation results, cluttered environment.

Computational time

Time per Node (ms) Time to find a path (s)

Number of Averaged Averaged
obstacles � Minimum Maximum over 10 runs Minimum Maximum over 10 runs

5 0.5 165.2 239.1 199.9 0.78 1.66 1.16
5 0.1 173.4 241.5 205.7 1.04 1.96 1.42
10 0.5 119.8 255.9 176.4 0.72 2.19 1.29
10 0.1 234.2 362.5 301.3 0.94 2.73 1.84
20 0.5 332.1 548.7 450.1 1.09 6.75 2.66
20 0.1 400.2 583.1 484.5 1.60 8.86 3.34

Figure 5. Computational performance.

it can also be seen that there are more uncertainty ellipses
in the passage for the first case. We will now show that the
algorithm scales up well with the number of obstacles.

5.3.1 Computational performance

The computational complexity of the closed-loop RRT al-
gorithm mainly depends on the number of obstacles. In this
section, we show how the runtime of the proposed algorithm
scales with the number of obstacles and we advocate the
potential of the algorithm for use in real time. We consider
the following six scenarios, with 10 trials performed for
each scenario with randomly generated starting and goal
locations:

(1) Five obstacles, closed-loop RRT with � = 0.5
(2) Five obstacles, closed-loop RRT with � = 0.1
(3) Ten obstacles, closed-loop RRT with � = 0.5
(4) Ten obstacles, closed-loop RRT with � = 0.1
(5) Twenty obstacles, closed-loop RRT with � = 0.5
(6) Twenty obstacles, closed-loop RRT with � = 0.1

Figure 6. Probability of collision.

The tree is grown until a probabilistically feasible path
is found. Table 1 summarises the minimum, maximum and
average runtimes per node and per path, and the same data
are plotted in Figure 5. It can be seen from the figure that
the minimum and average runtimes increase almost linearly

Figure 7. Agents moving towards each other for three different
cases.
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Figure 8. Sample trees.

with the number of obstacles, whereas the maximum run-
times show some marked changes. The analysis provides
empirical evidence that the computational time needed for
the closed-loop RRT scales approximately linearly with the
number of obstacles. Hence, the algorithm would appear to
be suitable for real-time applications.

Remark 1: The path planner works in a decentralised man-
ner and the computational time needed for the closed-loop
RRT scales approximately linearly with the number of ob-
stacles as mentioned above. However, if there are many
vehicles, they have to communicate to resolve conflicts. In
the absence of constraints, the performance of the algo-
rithm does not suffer. But in practice there will be limited
bandwidth for communication and therefore the algorithm’s
performance may deteriorate for large systems. Figure 9. Searched path (solid) and tracked trajectory (dashed).
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Figure 10. An example scenario of conflict resolution in an uncertain dynamic environment. (a) Agents moving towards their goal
positions while avoiding conflict. (b) Probability of collision.

5.3.2 Overlapping probability measure

In this set of simulations, we compute overlapping prob-
abilities for three difference cases where two vehicles are
moving ‘towards’ each other with a vertical separation.
Figure 6 shows the collision probability corresponding to
the cases shown in Figure 7. It can be seen that when the
vehicles are at the same level, as shown in Figure 7(a), the
probability of collision is higher than when they are not,
as in Figure 7(b) and, Figure 7(c), where the distributions
are not overlapping significantly. Hence, we can specify
a desired safe separation between vehicles by assigning a
suitable probability of overlap.

5.4 Online implementation

In this subsection, we show how the tree grows in real time
to find a path to a goal location while satisfying proba-
bilistic constraints. The real-time implementation adopts a
look-ahead strategy in which the tree is grown during the
given time window and then the best branch from the exist-
ing tree is chosen for execution. In this example, the sample
tree shown in Figure 8(a) is grown for 0.5 sec and a branch
is chosen using a heuristic if no path to the goal location
is found. The heuristic selects a branch that has the least
cost, the cost of the path so far combined with the lower-
bound cost-to-go as described in Section 4. The algorithm
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explores the configuration space to find a complete path
or paths with lower cost while tracking the current path.
The decision to follow a new path can be made at different
time instants based on the time window duration; however,
in this example we allow the tree to expand until a vehi-
cle finishes executing the current branch. This is because
the vehicle is subject to a turn radius constraint and fre-
quent turning may cause damage to the vehicle. However,
the proposed framework allows flexible decision-making to
suit the user. Figure 8(b) shows the sample tree after execu-
tion of the first waypath. The algorithm finds several paths
to the goal location and the minimum cost path is selected
for execution. The process of exploration with emphasis
on optimisation is continued until the vehicle reaches the
goal location. Figure 8(c) and 8(d) show sample trees after
executing various waypaths. The searched path and tracked
path are shown in Figure 9. It can be seen that the vehi-
cle stays away from the obstacles even during transitions,
which are anticipated. Note that during motion the vehi-
cle communicates with neighbouring vehicles, if they are
within a communication range, to avoid conflicts. In the
next scenario, we show how conflicts can be resolved.

In this set of simulations, we consider the case of two
vehicles in conflict. The motion planning scenario is shown
in Figure 10(a) for two vehicles. Initially, probabilistically
robust paths have been determined for each vehicle without
considering the other vehicle in the environment; however,
they appear to be in conflict. The conflict is resolved by
forcing one vehicle to make a detour. The probability of
collision with and without conflict is shown in Figure 10(b).
It can be seen when the conflict is resolved the probability
of collision is very low (order of 10−48). This demonstrates
the potential of the approach for determining paths while
accounting for uncertainties.

6. Conclusions

In this paper, we have proposed an algorithm for multi-
agent robust path planning in uncertain environments. The
path planning process has to deal with two main types of
uncertainties: (i) localisation uncertainty due to uncertainty
in the initial state and process noise, and (ii) uncertainty in
predicting future trajectories from current measurements.
In order to take account of these uncertainties we have
proposed a method that uses a closed-loop model to pre-
dict future information. The closed-loop model derives the
most likely measurements and predicts a-priori distribu-
tions of the vehicle’s states. Since these distributions are
more relevant than open-loop distributions, we have been
able to manage the level of uncertainty in the path planning
process. Because of this, the planned and executed paths
are closer indicating that the planner effectively uses the
anticipated information during the planning process.

Also, by introducing the probability constraints, it is
possible to manage the feasibility of a solution. We use

a chance constraint and the method of overlapping coef-
ficients. The probability of feasibility can be used as a
tuning parameter to adjust the level of conservatism in the
planning process. Numerical results have been presented
to demonstrate the algorithms. In future, the work will be
extended to large systems (with many vehicles) where com-
munication can be an issue if agents have to communi-
cate to avoid conflicts. The framework can be further de-
veloped for multi-target tracking applications in uncertain
environments.
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