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ABSTRACT
This paper presents the first attempt to design a reaching law-based discrete-time slidingmode con-
troller with a relative degree 2 switching variable. The current value of this variable is only affected
by the control signal and disturbance generated two time instants ago. It is demonstrated that the
new reaching law-based strategy offers a smaller quasi-slidingmode band width when compared to
a similar control schemewith relative degree 1 switching variable. This in turn leads to reduced system
output error in the control system proposed in the paper.

1. Introduction

Continuous time variable structure systems have been
a subject of extensive research since their introduction
in late 1950s (Emelyanov, 1967; Utkin, 1977). They pos-
sess several advantageous properties, such as computa-
tional efficiency and insensitivity with respect tomatched
disturbance (Draženović, 1969). As a result, they have
attracted the attention of various authors (Bartoszewicz,
& Nowacka-Leverton, 2009; DeCarlo, Żak, & Mathews,
1988; Edwards & Spurgeon, 1998; Gao & Hung, 1993;
S ̌abanovic, 2011). An important issue in continuous time
sliding mode control is the presence of high frequency
oscillations called ‘chattering.’ These undesirable oscilla-
tions can potentially damage the plant or cause energy
loss. Therefore, several approaches aiming at elimination
of chattering have been proposed, one of which is higher
order sliding mode control (Bartolini, Ferrara, & Usai,
1998; Levant, 1993). This approach aims at bringing the
value of the sliding variable and one ormore of its deriva-
tives to zero. Higher order slidingmode control proved to
be an effective method of eliminating undesirable oscil-
lations and became an object of further research for
various authors (Bartolini, Pisano, Punta, & Usai, 2003;
Boiko, Fridman, Pisano, &Usai, 2007; Fridman& Levant,
2002; Laghrouche, Plestan, & Glumineau, 2007; Levant,
2003; Moreno, 2012; Moreno & Osorio, 2008; Moreno &
Osorio, 2012).

Another development partly motivated by the prob-
lem of chattering was the introduction of discrete-time
quasi-sliding mode systems (Milosavljević, 1985; Utkin
& Drakunov, 1989). This led to many further advances in
the field. Various authors proposed strategies that drive
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the system state to a cone shaped sector in the state
space (Furuta, 1990) or strictly to a certain vicinity of the
switching plane (Gao,Wang, &Homaifa, 1995). Discrete-
time sliding mode controllers can be divided into
switching type ones, which drive the state to cross the
switching hyperplane in each step (Gao et al., 1995) and
non-switching type, which merely confine the state to
a certain band around the hyperplane (Bartolini, Fer-
rara, & Utkin, 1995; Bartoszewicz, 1998). The width of
the band was further investigated by Su, Drakunov, and
Ozguner (2000). A significant problem with practical
applications of sliding mode control is its need for full
information about the system state. Several approaches
were developed to address that issue, such as utilisation of
time-delay control concept (Corradini & Orlando, 1998),
implementation of observers (Chen, Komada, & Fukuda,
2000; Edwards & Spurgeon, 1996; Spurgeon, 2008) or
the multirate output feedback method (Janardhahan &
Kariwala, 2008; Janardhanan & Bandyopadhyay, 2006;
Mehta & Bandyopadhyay, 2008).

The classical approach to sliding mode controller
design involves stating the control law and then prov-
ing the stability of the sliding motion by selecting an
appropriate Lyapunov function. However, in this work
an alternative method called the reaching law approach
will be considered. This approach was first proposed
by Gao & Hung (1993) for continuous time systems
and by Gao et al. (1995) for discrete-time ones (see also
(Bartoszewicz, 1996) for further analysis). It consists
of stating the desired evolution of the sliding variable
in the form of a reaching law, and then synthesising
a feasible control strategy according to the evolution.
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Discrete-time reaching laws became an object of
extensive research (Bandyopadhyay & Fulwani, 2009;
Bartolini et al., 1995; Bartoszewicz, 1998; Bartoszewicz
& Leśniewski, 2014; Bartoszewicz & Żuk, 2009;
Chakrabarty, 2014; Chakrabarty & Bandyopadhyay,
2015; Chakrabarty & Bandyopadhyay, 2016; Golo &
Milosavljević, 2000; Mija & Susy, 2010; Niu, Ho, &Wang,
2010) and various authors proposed strategies that greatly
improved on the original constant plus proportional law
proposed by Gao et al.

In this paper, second order slidingmode control will be
considered in the context of discrete-time systems. A new
reaching law for discrete-time systems will be proposed
and applied to design a sliding mode control strategy.
The strategy will utilise a relative degree 2 (RD2) sliding
variable, which is only affected by disturbance and con-
trol signal from two time instants ago. It will be demon-
strated that the new reaching law confines the state to a
narrower band around the switching hyperplane than a
similar strategy for relative degree 1 (RD1) systems and
drives the output closer to its target value.

The remainder of the paper is organised in the follow-
ing way. Section 2 describes the considered systems in
detail and presents a general procedure of reaching law-
based controller design. In Section 3, the proposed reach-
ing laws are presented and their properties are discussed.
Section 4 shows the results of a simulation comparing the
proposed reaching law-based strategy for RD2 systems
with the one for RD1 plants. Section 5 presents the con-
clusions of the paper.

2. Preliminaries

Let us consider the following class of discrete-time
plants:

x(k + 1) = Ax(k) + bu(k) + bd(k)
y(k) = qx(k), (1)

where x is an n dimensional state vector, A is the n × n
state matrix, b is the input distribution vector, u is the
scalar control signal, d is the scalar disturbance, y is the
scalar system output and q is an n dimensional vector.
It is assumed that the disturbance affecting the system
is matched, which means it affects the plant through the
same input channel as the control signal. The disturbance
is also assumed to have lower and upper bounds dmin and
dmax for all k, i.e.

dmin ≤ d(k) ≤ dmax. (2)

In this paper, a discrete-time sliding mode control
strategy will be applied to system (1) in order to drive

its output from any initial position to zero. To obtain a
feasible sliding mode control strategy, the reaching law
approach will be used. Two reaching laws will be consid-
ered. The first one is a modified version of the conven-
tional switching type law proposed by Gao et al. (1995)
for RD1 systems. The second one, which is the main con-
tribution of this paper, leads to a novel controller design
procedure for RD2 systems. Properties of the two reach-
ing laws will be investigated and performance for both
cases will be compared. It will be demonstrated that the
proposed reaching law for RD2 systems drives the system
output closer to zero than the law for RD1 plants under
the same constraints. Furthermore, it will be shown that
both reaching laws ensure the same favourable properties
of the system.

2.1. Reaching law-based controller design
procedure

The first step of controller design procedure is the selec-
tion of an appropriate sliding variable. The variable for
RD1 systems is chosen as

s1(k) = c1Tx(k), (3)

where c1 is a certain vector, which is selected by the
designer and satisfies c1Tb � 0. Then, a reaching law
which ensures the desired evolution of s1(k) is stated.
In the conventional approach (Bartoszewicz, 1998; Gao
et al., 1995), the following class of reaching laws

s1(k + 1) = f1[s1(k), dmin, dmax] + c1Tbd(k) (4)

is considered. In Equation (4), f1 is a certain function
selected to ensure the stability of the sliding motion. The
control law u(k) obtained from (4) has the following
form:

u(k) = (c1Tb)−1 {
f1[s1(k), dmin, dmax] − c1TAx(k)

}
.

(5)
However, in this paper an alternative approach will be
proposed taking RD2 systems into consideration. For
discrete-time objects, this property implies that the slid-
ing variable at time k is only affected by the control signal
generated at time k – 2. To ensure that (1) is an RD2 sys-
tem with respect to s, the variable is defined as

s2(k) = c2Tx(k), (6)
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where vector c2 is selected so that c2Tb= 0 and c2TAb� 0.
Then, the following form of the reaching law for discrete-
time RD2 systems is proposed

s2(k + 2) = f2[s(k), s(k + 1), dmin, dmax] + c2TAbd(k),
(7)

where f2 is a certain function, which again is selected to
ensure stability of the sliding motion. It must be noted
that for RD2 systems, exact value of the sliding vari-
able s2(k + 1) is known at the time instant k, and this
is why it can be used in the controller design proce-
dure. Indeed, substitution of x(k + 1) from (1) into (6)
yields

s2(k + 1) = c2TAx(k) + c2Tbu(k) + c2Tbd(k)
= c2TAx(k). (8)

Thus, the control signal u(k) and matched disturbance
d(k) have no effect on the sliding variable s2 in the sam-
pling instant k + 1. In order to derive the control signal
from the reaching law (7), s2(k + 2) is first obtained as

s2(k + 2) = c2TAx(k + 1)
= c2TA2x(k) + c2TAbu(k) + c2TAbd(k).

(9)

Substituting s2(k + 2) from (9) into (7) and solving for
u(k), we obtain

u(k) = (c2TAb)−1{ f2[s2(k), s2(k + 1), dmin, dmax]
− c2TA2x(k)

}
. (10)

Since c2TAb� 0, the expression (c2TAb)−1 in relation (10)
is properly defined and the strategy is applicable to RD2
systems. This concludes the general design procedure.

3. Proposed control strategy

In this section, reaching laws for RD1 and RD2 sys-
tems are presented and proven to ensure several desirable
properties of the systems. The considered strategies make
the sliding variable cross the switching manifold in finite
time and then cross it again in each subsequent sampling
instant. It will be further demonstrated that the strategy
for RD2 systems, which is the main contribution of this
paper, offers a reduced quasi-sliding mode band width
and drives the system output closer to zero than a sim-
ilar strategy for RD1 plants.

3.1. Strategy for relative degree 1 systems

Reaching law-based sliding mode control strategies for
discrete-time systems were introduced in the seminal
work of Gao et al. (1995). However, the constant plus pro-
portional method proposed in that paper resulted in a
large sliding variable rate of change at the beginning of the
control process, which often leads to unacceptable values
of the control signal and state variables. Therefore, a new
strategy that limits the sliding variable rate of change will
be introduced. In this paper, the following original reach-
ing law is proposed for RD1 systems

s1(k + 1) = h[s1(k)] · s1(k) − εsgn[s1(k)] − d̄1
− δd1sgn[s1(k)] + c1Tbd(k), (11)

where

d̄1 = 0.5 · c1Tb · (dmax + dmin) ,

δd1 = 0.5 · ∣∣c1Tb∣∣ · (dmax − dmin) (12)

are the mean of the disturbance and its maximum admis-
sible deviation from the mean. Function

h(s) =
{
1 for |s| ≥ s0
|s| /s0 for |s| < s0,

(13)

and s0 > 0, ε > 0 are the design parameters. Furthermore,
it is assumed that the sign function sgn(s) equals 0 for
s = 0. It is easy to notice that function h belongs to the
interval [0, 1]. Furthermore, when the sliding variable is
greater than or equal to s0, h is equal to 1. Consequently,
sliding variable rate of change will be limited by ε + δd1
when the variable is far off the switching plane s1(k) = 0.
Vector c1 for the reaching law (11) is selected to ensure
that the matrix Ac1 = A – b(c1Tb)−1c1TA is nilpotent
(Bartoszewicz & Żuk, 2009). In other words, it is chosen
to satisfy

det (λIn − Ac1) = det
[
λIn − A + b(c1Tb)

−1c1TA
]

= λn.

(14)
Such a choice of vector c1 will prove helpful in ensuring
the smallest possible tracking error of the system output.
The reaching law (11) will now be applied to obtain the
control strategy for RD1 systems. Taking (5) into account,
the control law can be expressed as

u(k) = (c1Tb)−1{h[s1(k)] · s1(k) − εsgn[s1(k)]

− d̄1 − δd1sgn[s1(k)] − c1TAx(k)
}
. (15)

Next, it will be shown that with the proper choice of
design parameters s0 and ε, the proposed strategy ensures
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that s1(k) changes its sign in finite time and keeps chang-
ing the sign in every step afterwards. Moreover, the sys-
tem state will always be confined to a band around the
switching hyperplane s1(k)= 0. Finally, it will be demon-
strated that the proposed reaching law drives the system
output to an a priori defined vicinity of zero in finite time.
These properties will be formally proven in the following
three theorems.
Theorem 3.1: If the reaching law for system (1) is given
by (11), then the system state enters the quasi-sliding mode
band

B1 = {
x :

∣∣c1Tx∣∣ ≤ ε + 2δd1
}

(16)

in finite time and remains inside the band for all subsequent
sampling instants.
Proof: It will first be shown that for any state x(k) out of
the band (i.e. x(k) � B1), the system representative point
enters the band in finite time. Relation (12) implies∣∣∣c1Tbd(k) − d̄1

∣∣∣ ≤ δd1, (17)

Now let x(k) be such a state that s1[x(k)]> ε + δd1. Rela-
tions (11) and (17) give

s1(k + 1) = h[s1(k)] · s1(k) − ε − d̄1 − δd1 + c1Tbd(k)
≤ s1(k) − ε + δd1 − δd1 = s1(k) − ε. (18)

Therefore, for any positive s1(kT), the sliding variable will
decrease by at least ε in the next step. Furthermore, since
function h is always non-negative, one obtains

s1(k + 1) ≥ −ε − d̄1 − δd1 + c1Tbd(k) ≥ −ε − 2δd1.
(19)

Consequently, if s1(k) > ε + 2δd1, the state will always
enter the band (16) in finite time. Repeating derivations
(18) and (19) for the case of s1(k) < –ε – 2δd1, one
obtains

s1(k) + ε ≤ s1(k + 1) ≤ ε + 2δd1. (20)

Therefore, we conclude that for any initial state, the sys-
tem representative point will enter the band (16) in finite
time. Furthermore, relations (18) and (20) state that the
absolute value of the sliding variable will not increase
unless the sign of s1(k) changes in the next step. How-
ever, even if the variable changes its sign, relations (19)
and (20) imply that |s1(k)| will not exceed ε + 2δd1. Con-
sequently, once the system representative point enters the
quasi-sliding mode band (16), it will remain inside the
band for all subsequent sampling instants. �

It follows from (18) and (20) that from any initial posi-
tion x(0), the system representative point will reach the

band (16) in a finite number of steps not greater than

k0 =
⌈∣∣c1Tx(0)∣∣ − ε − 2δd1

ε

⌉
. (21)

It has already been demonstrated that the proposed
reaching law drives the system state to a band around
the switching hyperplane. However, since switching type
strategies are considered in this work, it must also be
shown that the reaching law makes the state cross the
hyperplane in each sampling instant after crossing it for
the first time. For that purpose, the following theoremwill
be proven.
Theorem 3.2: If the reaching law for system (1) is defined
by (11), x(k) belongs to the band (16), s1(k)� 0 and param-
eter s0 > (ε + 2δd1)2ε−1, then the system representative
point will cross the switching plane in the next sampling
instant, i.e. sgn[s1(k + 1)] = –sgn[s1(k)].
Proof: First, let x(k) be such a state that 0 < s1(k) �
ε + 2δd1. It will be shown that s1(k + 1) < 0. Since s0 >

(ε + 2δd1)2ε−1 > ε + 2δd1, relation (13) gives h[s1(k)]=
|s1(k)|/s0. Together with the fact that function h[s1(k)] is
non-decreasing for positive s1(k), relations (11) and (17)
give

s1(k + 1) = |s1(k)|
s0

· s1(k) − ε − d̄1 − δd1 + c1Tbd(k)

≤ s0−1(ε + 2δd1)2 − ε. (22)

Since s0 > (ε + 2δd1)2ε−1 implies s0−1 < (ε + 2δd1)−2ε,
one concludes from relation (22) that

s1(k + 1) <
ε

(ε + 2δd1)2
(ε + 2δd1)2 − ε = 0. (23)

Now let x(k) be such a state that 0 > s1(k) � –ε – 2δd1.
Performing derivations analogous to (22) and (23), it can
be easily shown that s1(k + 1) > 0. In conclusion, for any
state inside the quasi-sliding mode band (16) such that
s1(k) � 0, the sliding variable will change its sign in the
next sampling instant, i.e. sgn[s1(k + 1)] = –sgn[s1(k)].

�
Remark 3.1: Theorem 3.2 does not take into account the
case where s1(k)= 0, which is possible when the state x(k)
enters the band (16) for the first time. In this case, relation
(11) gives

|s1(k + 1)| =
∣∣∣c1Tbd(k) − d̄1

∣∣∣ ≤ δd1 < ε + 2δd1,
(24)

which means that the state will remain inside the band
in the next step. If it happens that the disturbance
is constantly equal to (c1Tb)−1d̄1, then the sliding
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Figure . Minimum value of s with respect to ε.

variable remains equal to zero and the ideal sliding
motion is achieved. On the other hand, if d(k) assumes
any value different from (c1Tb)−1d̄1 at time instant k,
then the variable s1(k + 1) becomes nonzero and satis-
fies conditions of Theorem 3.1, ensuring switching for all
future steps.

Considering Theorems 3.1, 3.2 and Remark 3.1, one
concludes that the system either exhibits the ideal sliding
motion or its representative point crosses the switching
plane in finite time, crosses it again in each subsequent
step and remains inside the quasi-slidingmode band (16).
Therefore, the motion ensured by the proposed strat-
egy strictly follows the sliding mode definition given by
Gao et al. (1995). Furthermore, Theorem 3.2 provides the
lower bound on the choice of design parameter s0 in rela-
tion to the freely chosen positive parameter ε. Figure 1
illustrates theminimumvalue of s0 for any given ε. Values
of both parameters are presented as a multiple of the con-
stant δd1. Since the lower bound of s0 tends to infinity as ε
approaches zero, small values of ε should be avoided. On
the other hand, excessive values of this parameter increase
the width of the boundary layer (16). Therefore, it is rea-
sonable to select value of ε in the vicinity of 2δd1.

It will now be shown that the proposed strategy drives
the system output to a strictly specified vicinity of zero in
finite time. In otherwords, it will be demonstrated that for
the vector c1 selected to ensure that matrix Ac1 is nilpo-
tent, there exists a finite k1 such that for every k � k1,
the absolute value of the output y(k) has a constant upper
bound. This property will be presented in the following
theorem.

Theorem 3.3: If the control strategy for system (1) is
defined by (15) with vector c1 selected according to (14),

then there exists a finite k1 such that for every k � k1

∣∣y(k)∣∣ = ∣∣qx(k)∣∣ ≤ υ1, (25)

where

υ1 =
∣∣∣(c1Tb)−1

∣∣∣ · (ε + 2δd1) ·
n−1∑
i=0

∣∣q(Ac1)
ib

∣∣
=

∣∣∣(c1Tb)−1
∣∣∣ · (ε + 2δd1)

·
n−1∑
i=0

∣∣∣∣q[A − b(c1Tb)
−1c1TA

]i
b
∣∣∣∣. (26)

Proof: Let k0 be the first sampling instant such that
|s1(k0)| � ε + 2δd1. It follows from Theorem 3.1 that
|s1(k)| � ε + 2δd1 for all k � k0. Substitution of (15) into
(1) yields

x(k + 1) = Ax(k) + bd(k) + b(c1Tb)−1 {h[s1(k)]s1(k)
− εsgn[s1(k)] − d̄1
− δd1sgn[s1(k)] − c1TAx(k)

}
=

[
A − b(c1Tb)

−1c1TA
]
x(k)

+ b(c1Tb)−1 {h[s1(k)]s1(k) − εsgn[s1(k)]
− d̄1 − δd1sgn[s1(k)] + c1Tbd(k)

}
=

[
A − b(c1Tb)

−1c1TA
]
x(k)

+ b(c1Tb)−1s1(k + 1)
= Ac1x(k) + b(c1Tb)−1s1(k + 1). (27)
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Consequently, for n = dim A

x(k + n) = (Ac1)
nx(k)

+
n−1∑
i=0

(Ac1)
ib(c1Tb)

−1s1(k + n − i).

(28)

Since vector c1 is selected according to (14), then the fol-
lowing property is ensured:

(Ac1)
n =

[
A − b(c1Tb)

−1c1TA
]n

= 0n×n. (29)

Substitution of (29) into (28) yields

∣∣qx(k + n)
∣∣ =

∣∣∣∣∣q
n−1∑
i=0

(Ac1)
ib(c1Tb)

−1s1(k + n − i)

∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣(c1Tb)−1s1(k + n − i)
∣∣∣ · ∣∣q(Ac1)

ib
∣∣.

(30)

Since |s1(k)| � ε + 2δd1 for all k � k0, one obtains

∣∣qx(k + n)
∣∣ ≤

∣∣∣(c1Tb)−1
∣∣∣ ·

n−1∑
i=0

(ε + 2δd1) · ∣∣q(Ac1)
ib

∣∣
=

∣∣∣(c1Tb)−1
∣∣∣ · (ε + 2δd1)

·
n−1∑
i=0

∣∣∣∣q[A − b(c1Tb)
−1c1TA

]i
b
∣∣∣∣. (31)

Thus, for every k � k1 = k0 + n, inequality (25) is satis-
fied. �

3.2. Strategy for relative degree 2 systems

It has been shown that the reaching law for RD1 sys-
tems presented in the previous section confines the sys-
tem state to a certain band around the switching hyper-
plane, and therefore ensures some degree of robustness
of the considered control system. However, further in
this paper, it will be demonstrated that better robustness
can be obtained by choosing such a sliding variable that,
with respect to this variable, the system has RD2. In this
section, a modified strategy will be proposed. In order
to obtain an RD2 system, vector c2 is selected so that
c2Tb = 0 and c2TAb � 0. Relation (9) demonstrates that
now the sliding variable s2(k) is only affected by distur-
bance d(k – 2) and control signal u(k – 2). The mean of
the disturbance affecting the variable and its maximum

admissible deviation from the mean are defined as

d̄2 = 0.5 · cTAb · (dmax + dmin) ,

δd2 = 0.5 · ∣∣cTAb∣∣ · (dmax − dmin) . (32)

It has already been stated that for RD2 systems, s(k + 1)
is exactly known at the time instant k and its value can
be used in the controller design procedure. With this
in mind, the reaching law which ensures advantageous
properties of the system will be proposed. In the initial
stage of the control process, i.e. before the switching plane
is crossed for the first time, the reaching law will ensure a
limited sliding variable rate of change. Furthermore, the
reaching lawwill guarantee that once the plane is crossed,
it will be crossed again in each subsequent time instant.
The reaching law is expressed as

s2(k + 2) = h[s2(k)] · h[s2(k + 1)] · s2(k + 1)
− 0.5 · {1 − h[s2(k)]} · εsgn[s2(k)]
− 0.5 · {1 + h[s2(k)]} · εsgn[s2(k + 1)] − d̄2
− δd2sgn[s2(k + 1)] + c2TAbd(k), (33)

where h is the function defined by (13) and s0 > 0,
ε > 0 are the design parameters. Vector c2 for this strat-
egy is selected to ensure that the matrix Ac2 = A –
b(c2TAb)−1c2TA2 is nilpotent. In other words, it is chosen
so that

det (λIn − Ac2)

= det
[
λIn − A + b(c2TAb)

−1c2TA2] = λn. (34)

The reaching law (33) will now be applied to design a
control strategy for RD2 systems. The design process is
described by relations (7)-(10) and the obtained control
law has the following form:

u(k) = (c2TAb)−1 {h[s2(k)] · h[s2(k + 1)] · s2(k + 1)
−0.5 · {1 − h[s2(k)]} · εsgn[s2(k)] −
0.5 · {1 + h[s2(k)]} · εsgn[s2(k + 1)] − d̄2
−δd2sgn[s2(k + 1)] − c2TA2x(k)

}
. (35)

The proposed reaching law shares many similarities with
the one defined by (11).However, before formally proving
favourable properties ensured by the strategy for RD2 sys-
tems, an important property related to matrices Ac1 and
Ac2 will be stated in the form of a lemma.

Lemma 3.1: If c1 is selected according to (14) and c2
according to (34), then Ac1 = Ac2.

Proof: Let us consider the control strategy for RD1 sys-
tems obtained from the rule s1(k + 1) = c1Tx(k + 1) = 0
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with vector c1 selected according to (14). The strategy is

u(k) = −(c1Tb)−1c1TAx(k) (36)

Assuming that the system is not perturbed (i.e. d(k)= 0),
substitution of (36) into (1) yields

x(k + 1) = [
A − b(c1Tb)

−1c1TA
]
x(k) = Ac1x(k).

(37)
Then, since vector c1 is chosen to ensure thatAc1 is nilpo-
tent, relation (29) implies x(k+ n)= 0 for any x(k), where
n= dimA. Now let us consider a similar strategy for RD2
plants obtained from the rule s2(k+ 2)= c2Tx(k+ 2)= 0,
where c2 is selected according to (34). The strategy can be
expressed as

u(k) = −(c2TAb)−1c2TA2x(k). (38)

Substituting (38) into (1) under the assumption that the
system is unperturbed, one obtains

x(k + 1) = [
A − b(c2TAb)

−1c2TA2]x(k) = Ac2x(k).
(39)

Since vector c2 is selected according to (34), the following
property is ensured:

(Ac2)
n = [

A − b(c2TAb)
−1c2TA2]n = 0n×n. (40)

Consequently, (39) implies x(k + n) = 0 for all x(k),
just like in the case of (37). However, there exists exactly
one control strategy which can drive the state of an n-
dimensional system from its initial conditions to 0 in
n time instants. Therefore, values of the control signal
obtained with strategies (36) and (38) must be equal to
each other for all k. This gives

c1T = αc2TA (41)

for a certain real α � 0. Relation (41) further implies

Ac1 = [
A − b(c1Tb)

−1c1TA
]

= [
A − bα−1(c2TAb)

−1
αc2TA2]

= [
A − b(c2TAb)

−1c2TA2] = Ac2.

(42)

Thus, if c1 and c2 are selected according to (14) and (34),
respectively, then Ac1 = Ac2. �

It should be noted that vectors c1 and c2 can be scaled
without altering the values of control signals (15) and
(35). Therefore, in all future derivations it will be assumed
that c1 and c2 are selected to ensure that parameter α in
relation (41) is equal to 1. This in turn gives c1T = c2TA,
d̄1 = d̄2 and δd1 = δd2. With this in mind, it can be
seen that when |s2(k)| and |s2(k + 1)| are greater than s0,

the sliding variable convergence rate is upper bounded by
ε + 2δd2. Therefore, reaching laws (11) and (33) limit the
sliding variable rate of change in a similar fashion when
the variable is far off the switching plane. It will now be
shown that, just like in the case of RD1 systems, the pro-
posed reaching law ensures that the variable changes its
sign in each sampling instant after changing it for the first
time. It will be further demonstrated that reaching law
(33) drives the system state to a narrower band around the
switching hyperplane than the reaching law (11) under
the same constraints. Finally, it will be shown that the
proposed reaching law confines the system output to a
smaller vicinity of zero than the law (11) for RD1 systems.
These properties will be formally proven in the following
theorems.
Theorem 3.4: If the reaching law for system (1) is defined
by (33), then the system representative point will either
cross the switching plane or arrive on it in finite time.
Proof: An inequality similar to (17) is first derived from
(32):

∣∣c2TAbd(k) − d̄2
∣∣ ≤ δd2 (43)

Now let x(k) be any state such that s2(k) > 0 and s2(k +
1) > 0. Since function h is upper bounded by 1, relations
(33) and (43) imply

s2(k + 2) = h[s2(k)] · h[s2(k + 1)] · s2(k + 1)
− 0.5 · 2 · ε − d̄2 − δd2 + c2TAbd(k)

≤ s2(k + 1) − ε + δd2 − δd2 = s2(k + 1) − ε.

(44)
Therefore, if x(k) is such a state that s2(k) > 0 and s2(k +
1) > 0, then the sliding variable will decrease by at least
ε in the next time instant. Thus, the variable will either
become negative or equal to zero in finite time. Now let
x(k) be such a state that s2(k)< 0 and s2(k+ 1)< 0. Simi-
larly as in (44), relations (33) and (43) give s2(k+ 2)� s2(k
+ 1) + ε. Consequently, the sliding variable will increase
by at least ε in the next sampling instant, which means
it is guaranteed to become 0 or positive in finite time. In
conclusion, for any state x(k), the variable s2(k) will be
reduced to 0 or change its sign in finite time. �

Next, it will be shown that after crossing the switching
plane for the first time, the system representative point
will cross it again in each subsequent time instant and
become confined to a layer around the switching surface.
A certain helpful property will be first brought up in the
form of a lemma.
Lemma3.2: If sgn[s2(k+ 2)]= –sgn[s2(k+ 1)], then |s2(k
+ 2)| � ε + 2δd2.
Proof: Let x(k) be any state such that s2(k) > 0 and
s2(k + 1) > 0. Since function h is non-negative, relations
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(33) and (43) give

s2(k + 2) = h[s2(k)] · h[s2(k + 1)] · s2(k + 1)
−0.5 · 2 · ε − d̄2 − δd2 + c2TAbd(k)
≥ 0 · s2(k + 1) − ε − δd2 − δd2 = −ε − 2δd2.

(45)
Furthermore, the assumption of the lemma states that
sgn[s2(k + 2)] = –sgn[s2(k + 1)], which together with
relation (45) gives 0> s2(k+ 2)� –ε – 2δd2. Through the
analogy with (45), if x(k) is such a state that s2(k)< 0 and
s2(k + 1) < 0, then taking the assumption of the lemma
into account one obtains 0 < s2(k + 2) � ε + 2δd2. Now
let x(k) be any state such that s2(k)> 0 and s2(k+ 1)< 0.
Relations (33) and (43) imply

s2(k + 2) = h[s2(k)] · h[s2(k + 1)] · s2(k + 1)
− 0.5 · {1 − h[s2(k)]} · ε + 0.5 · {1 + h[s2(k)]}
· ε − d̄2 + δd2 + c2TAbd(k) ≤ h[s2(k)]
· {h[s2(k+1)] · s2(k + 1) + ε} + 2δd2 ≤ ε + 2δd2.

(46)

The assumption sgn[s2(k + 2)] = –sgn[s2(k + 1)],
together with relation (46), gives 0 < s2(k + 2) � ε +
2δd2. Through the analogy with (46) if x(k) is such a state
that s2(k) < 0 and s2(k + 1) > 0, one obtains 0 > s2(k +
2) � –ε – 2δd2. In conclusion, if the switching plane has
been crossed between time instants k+ 1 and k+ 2, then
|s2(k + 2)| � ε + 2δd2. �

Theorem 3.5: If the reaching law for system (1) is defined
by (33), parameter s0 > (ε + 2δd2)2ε−1 and k0 is the
first time instant such that sgn[s2(k0 + 1)] = –sgn[s2(k0)]
then the system representative point will cross the switching
plane in each step after k0, i.e. for all k � k0 sgn[s2(k + 2)]
= –sgn[s2(k + 1)] is ensured.

Proof: To demonstrate that the representative point will
cross the switching plane again after crossing it for the
first time, it will be shown that if s2(k) and s2(k + 1)
have opposite signs, then s2(k + 1) and s2(k + 2) will
also have opposite signs. First let x(k) be such a state that
s2(k) > 0 and s2(k + 1) < 0. Then, Lemma 3.2 states that
s2(k+ 1)� –ε – 2δd2. It will be shown that s2(k+ 2)> 0,
which means that the sliding variable changes its sign
again after changing it in the previous step. Indeed, rela-
tion (33) gives

s2(k + 2) = h[s2(k)] · h[s2(k + 1)] · s2(k + 1) − 0.5
· {1 − h[s2(k)]} · ε + 0.5 · {1 + h[s2(k)]}
· ε − d̄2 + δd2 + c2TAbd(k)

≥ h[s2(k)] · {h[s2(k + 1)] · s2(k + 1) + ε} .

(47)

Since s0 > (ε + 2δd2)2ε−1 and function h is non-negative,
relation (47) further implies

s2(k + 2) ≥ h[s2(k)] ·
[
ε + 2δd2

s0
(−ε − 2δd2) + ε

]

= h[s2(k)] ·
[
− (ε + 2δd2)2

s0
+ ε

]

> h[s2(k)] ·
[
− (ε + 2δd2)2ε

(ε + 2δd2)2
+ ε

]
= 0.

(48)
Therefore, the variable will cross the switching plane
again if s2(k) > 0 and s2(k + 1) < 0. Now let x(k) be
such a state that s2(k) < 0 and s2(k + 1) > 0. Then,
Lemma 3.2 implies s2(k + 1) � ε + 2δd2. Similarly as in
relations (47) and (48), one obtains s2(k + 2) � 0. Thus,
the variable will cross the plane again if s2(k)< 0 and s2(k
+ 1) > 0. In conclusion, the system representative point
will keep crossing the switching plane in each step after
crossing it for the first time. �
Remark 3.2: Once again, the case where the sliding vari-
able reaches 0 will be analysed separately. First let s2(k) be
any real value and let s2(k+ 1)= 0. Since h[s2(k+ 1)]= 0
and sgn[s2(k + 1)] = 0, relation (33) gives

|s2(k + 2)| = | − 0.5 · {1 − h[s2(k)]} · εsgn[s2(k)]
− d̄2 + c2TAbd(k)| ≤ 0.5 · ε + δd2
< ε + 2δd2 (49)

Therefore, if s2(k+ 1)= 0, |s2(k+ 2)| is smaller than ε +
2δd2 and can potentially be 0. If the sliding variable equals
0 in two subsequent steps and it happens that the distur-
bance is constantly equal to (c2TAb)−1d̄2 , then the sys-
tem achieves the ideal slidingmotion. On the other hand,
if d(k) assumes a value different from (c2TAb)−1d̄2 in
finite time k, then the sliding variable s2(k + 2) becomes
nonzero. Now let s2(k + 1) = 0 and s2(k + 2) > 0. Since
h[s2(k + 1)] = 0 and sgn[s2(k + 1)] = 0, relation (33)
implies

s2(k + 3) = −0.5 · εsgn[s2(k + 2)] − d̄2
− δd2sgn[s2(k + 2)] + c2TAbd(k)

≤ −0.5 · ε + δd2 − δd2 = −0.5 · ε < 0.
(50)

Thus, the representative point will cross the switch-
ing hyperplane in the next step. Then, according to
Theorem 3.5, the hyperplane will be crossed in each sub-
sequent step afterwards. Likewise, if s2(k+ 1)= 0 and s2(k
+ 2)< 0, then through the analogywith relation (50), one
obtains s2(k+ 3)> 0, which also ensures that the switch-
ing hyperplane has been crossed.

It has been shown that the modified strategy for RD2
plants either makes the system achieve the ideal slid-
ing motion or drives its representative point to cross the
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switching plane in finite time and to cross it again in
each subsequent step. Next it will be demonstrated that
the proposed reaching law drives the system state to a
band around the switching hyperplane. Furthermore, the
width of the band obtained with the reaching law (33) is
strictly smaller than the one given by the strategy for RD1
systems (if c1 and c2 are selected to ensure δd1 = δd2).
The reduced width of the quasi-sliding mode band is an
essential advantage of the proposed reaching law for RD2
systems, and it will be reflected in a decreased system out-
put error.

Theorem 3.6: If the reaching law for system (1) is defined
by (33), parameter s0 > (ε + 2δd2)2ε−1 and the system
state belongs to the quasi-sliding mode band

B2 =
{
x :

∣∣c2Tx∣∣ ≤ 2δd2s0
s0 − ε

}
, (51)

in any two subsequent sampling instants, then the state will
remain inside the band for all future steps.

Proof: Let x(k) be such a system state that |s2(k)| and |s2(k
+ 1)| are not greater than 2δd2s0(s0 – ε)−1. It will be
shown that for any j � 2, |s2(k + j)| also does not exceed
that value. The proof will only be conducted for the case
where s2(k) > 0 and s2(k + 1) < 0, since the analysis for
the reverse case is almost identical. Relation (33) implies

s2(k + 2) = h[s2(k)] · {h[s2(k + 1)] · s2(k + 1) + ε}
− d̄2 + δd2 + c2TAbd(k)

≤ h[s2(k)] · ε + 2δd2 ≤ 1
s0

∣∣∣∣2δd2s0s0 − ε

∣∣∣∣ · ε + 2δd2

= 2δd2ε
s0 − ε

+ 2δd2 = 2δd2ε + 2δd2s0 − 2δd2ε
s0 − ε

= 2δd2s0
s0 − ε

. (52)

Therefore, s2(k + 2) � 2δd2s0(s0 – ε)−1. Furthermore,
Theorem 3.5 implies that s2(k + 2) > 0. Consequently,
relation (33) gives

s2(k + 3)
= h[s2(k + 1)] · {h[s2(k + 2)] · s2(k + 2) − ε}

− d̄2 + δd2 + c2TAbd(k)

≥ h[s2(k)] · (−ε) − 2δd2 ≥ 1
s0

∣∣∣∣2δd2s0s0 − ε

∣∣∣∣
· (−ε) − 2δd2

= − 2δd2ε
s0 − ε

− 2δd2 = −−2δd2ε − 2δd2s0 + 2δd2ε
s0 − ε

= −2δd2s0
s0 − ε

. (53)

Since Theorem 3.5 implies that the variable changes its
sign in each step, repeating the derivation (52) for j = 4,
6, 8, … and the derivation (53) for j = 5, 7, 9, … , one
obtains |s2(k + j)| � 2δd2s0(s0 – ε)−1 for any j � 2. Thus,
the state remains confined to the band (51) for all future
steps.

It will now be demonstrated that the quasi-sliding
mode band (51) is always reached. To that end, the fol-
lowing theorem will be proven. �
Theorem 3.7: If the reaching law for system (1) is defined
by (33) and parameter s0 > (ε + 2δd2)2ε−1, then the sys-
tem state will approach the quasi-sliding mode band (51)
at least asymptotically.

Proof: Let x(k) be such a state out of the band (51) that
|s2(k)| < ε + 2δd2 and sgn[s2(k)] = −sgn[s2(k + 1)].
The existence of such a state for a finite k is ensured by
Theorem 3.4 and Lemma 3.2. Let pj denote |s2(k + 2j)|
for j= 0, 1, 2, … , whichmeans that p0 = |s2(k)|. Relation
(33) implies

|s2(k + 2)| = |h[s2(k)]
{
h[s2(k + 1)] · s2(k + 1)

− εsgn[s2(k + 1)]
} − d̄2 + δd2

+ c2TAbd(k)|
≤ h[s2(k)] · ε + ∣∣−d̄2 + δd2 + c2TAbd(k)

∣∣
≤ p0

s0
· ε + 2δd2. (54)

Lemma 3.2 and Theorem 3.5 imply that |s2(l)|< ε + 2δd2
for all l > k. Therefore, one obtains

|s2(k + 2 j)| ≤ h[s2(k + 2 j − 2)] · ε + |d̄2 + δd2
− c2TAbd(k + 2 j − 2)|

≤ p j−1

s0
· ε + 2δd2. (55)

Thus, pj can be estimated in the following way:

p j ≤ p j−1
ε

s0
+ 2δd2 ≤ p j−2

ε2

s02
+ ε

s0
2δd2 + 2δd2 ≤ . . . ≤

≤ p0
ε j

s0 j
+ ε j−1

s0 j−1 2δd2 + · · · + ε

s0
2δd2 + 2δd2.

(56)
Since p0 is constant and ε < s0, one obtains

lim
j→∞

|s2(k + 2 j)| = lim
j→∞

p j ≤ lim
j→∞

(
p0

ε j

s0 j
+

j−1∑
i=0

εi

s0i
2δd2

)

=
(
1 − ε

s0

)−1

2δd2 = 2δd2s0
s0 − ε

. (57)

Therefore, the state x(k) always converges from x(0) to the
band (51) at least asymptotically. �
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It should be noted that the band B2 presented in
Theorem 3.4 is always strictly smaller than the band B1
ensured by strategy (11) for RD1 systems. Indeed, since
s0 > ε + 2δd2, keeping inmind that δd1 = δd2 one obtains
the difference between the width of the two bands as

(ε + 2δd1) −
(
2δd2s0
s0 − ε

)
= ε − 2δd2ε

s0 − ε

> ε − 2δd2ε
ε + 2δd2 − ε

= 0. (58)

It has been demonstrated that the proposed strategy for
RD2 systems drives the sliding variable into a narrower
band than a similar strategy for RD1 plants. It will now
be shown that the control strategy (35) confines the sys-
tem output to a certain vicinity of 0. Furthermore, the size
of the vicinity will be strictly smaller than the one given
in Theorem 3.3 for RD1 systems. This property will be
demonstrated in the following theorem.

Theorem 3.8: If the control strategy for system (1) is
defined by (35) with vector c2 selected according to (34),
then for any γ > 0 there exists a finite k2 such that

|y(k)| = |qx(k)| ≤ υ2 = ∣∣(c2TAb)−1∣∣ ·
(
2δd2s0
s0 − ε

+ γ

)

·
n−1∑
i=0

∣∣q(Ac2)
ib

∣∣
= ∣∣(c2TAb)−1∣∣ ·

(
2δd2s0
s0 − ε

+ γ

)

·
n−1∑
i=0

∣∣∣∣q[A − b(c2TAb)
−1c2TA2

]i
b
∣∣∣∣. (59)

Proof: Let γ be any arbitrarily small positive number.
Theorem 3.7 states that for any initial state, the absolute
value of the sliding variable s converges to 2δd2s0(s0 –
ε)−1 at least asymptotically. Thus, there exists k0 such that
|s2(k)| � 2δd2s0(s0 – ε)−1 + γ for all k > k0. Substitution
of (35) into (1) yields

x(k + 1) = Ax(k) + bd(k) + b
(
c2TAb

)−1 {h[s2(k)]
· h[s2(k + 1)] · s2(k + 1) − {1 − h[s2(k)]}
· sgn[s2(k)] − {1 − h[s2(k)]} · sgn[s2(k + 1)]
− d̄2 − δd2sgn[s2(k + 1)] + c2TA2 x(k)} .

(60)

Taking into account (33), relation (60) can be rewritten
as

x(k + 1) = [
A − b(c2TAb)

−1c2TA2]x(k)
+b(c2TAb)−1s2(k + 2)
= Ac2x(k) + b(c2TAb)−1s2(k + 2).

(61)

Consequently, for n = dimA

x(k + n) = (Ac2)
nx(k) +

n−1∑
i=0

(Ac2)
ib(c2TAb)−1

× s(k + n − i + 1) (62)

Substitution of (40) into (62) yields

∣∣qx(k + n)
∣∣ =

∣∣∣∣∣q
n−1∑
i=0

(Ac2)
ib(c2TAb)

−1s2(k + n − i + 1)

∣∣∣∣∣
≤

∣∣∣(c2TAb)−1
∣∣∣ ·

n−1∑
i=0

∣∣q(Ac2)
ibs2(k + n − i + 1)

∣∣
(63)

Since s2(k) � 2δd2s0(s0 – ε)−1 + γ for all k > k0, one
obtains

|y(k)| = |qx(k + n)| ≤ |(c2TAb)−1|

·
(
2δd2s0
s0 − ε

+ γ

) n−1∑
i=0

∣∣q(Ac2)
ib

∣∣ = υ2 (64)

Therefore, there exists k2 = k0 + n such that inequality
(59) holds for all k � k2. �

Since vectors c1 and c2 are selected to ensure δd1 = δd2
and Lemma 3.1 states that Ac1 = Ac2, the bound (59) can
be rewritten as

υ2 = ∣∣(c2TAb)−1∣∣ ·
(
2δd2s0
s0 − ε

+ γ

) n−1∑
i=0

∣∣qAc2
ib

∣∣

= ∣∣(c1Tb)−1∣∣ ·
(
2δd2s0
s0 − ε

+ γ

) n−1∑
i=0

∣∣qAc1
ib

∣∣. (65)

Relation (58) illustrates that ε + 2δd1 is greater than
2δd2s0(s0 – ε)−1. Thus, since γ is arbitrarily small, one
obtains

υ2 = ∣∣(c1Tb)−1∣∣ ·
(
2δd2s0
s0 − ε

+ γ

) n−1∑
i=0

∣∣qAc1
ib

∣∣

<
∣∣(c1Tb)−1∣∣ · (ε + 2δd1)

n−1∑
i=0

∣∣qAc1
ib

∣∣ = υ1. (66)

On the right hand side of relation (66), one observes the
bound (25) formerly presented in Theorem 3.3 for RD1
systems. One concludes from relations (65) and (66) that
the bound (59) given in Theorem 3.8 is strictly smaller
than the bound (25). Therefore, the proposed strategy for
RD2 systems ensures reduced system output error when
compared with the strategy for RD1 plants.
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Figure . Sliding variable.

4. Simulation example

The strategies for RD1 andRD2 systemswill nowbe com-
pared by means of simulation example. The following
continuous time system will be considered

ẋ(t ) = Acx(t ) + bcu(t ) + bcd(t )
y(t ) = qx(t ),

Ac =
⎡
⎣0 1 0
0 0 1
0 −1 −0.5

⎤
⎦ , bc =

⎡
⎣0
0
1

⎤
⎦ , qT =

⎡
⎣1
0
0

⎤
⎦ .

(67)

The system is subject to disturbance d(t) = (–1) �t/10�+1

and the goal is to drive its state from its initial position
x(0)= [20 0 0]T to zero. To that end, the continuous time
plant (67) is first discretisedwith a sampling periodT= 1.

Consequently, it can be expressed as a discrete-time sys-
tem (1) with the following parameters

A =
⎡
⎣1 0.8592 0.3929
0 0.6071 0.6627
0 −0.6627 0.2757

⎤
⎦ , b =

⎡
⎣0.1408
0.3929
0.6627

⎤
⎦ ,

qT =
⎡
⎣1
0
0

⎤
⎦ . (68)

Strategies (15) and (35) will now be applied to the dis-
cretised plant. First, vectors c1 and c2 for both strate-
gies are selected according to (14) and (34), respectively,
which gives c1 = [3.199 3.06 1] and c2 = [3.199 –0.139
–0.597]. Consequently, relation (12) gives d̄1 = 0 and
δd1 = 2.315. Parameters for both strategies are selected as

k
0 10 20 30 40 50

x 1
(k

)

-5

0
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10

15

20

Figure . System output.
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Figure . Control signal.

ε = 2δd1 = 6.94 and s0 = 27.77, which satisfies assump-
tions of Theorems 3.2 and 3.5. Figure 2 illustrates the evo-
lution of the sliding variable for both strategies, Figure 3
shows system output and Figure 4 illustrates the control
signal. In all figures, the blue dashed line represents the
result for strategy (15) and the solid red line for strategy
(35).

It can be seen from Figure 2 that strategy (35) drives
the state to a narrower band than the strategy (15).
Indeed, strategy (15) confines the state to a band limited
by ±9.26, exactly as stated in Theorem 3.1. On the other
hand, strategy (35) drives the state to a band limited by
±6.173, which is consistent with Theorem 3.6. Figure 3
shows that strategy (35) drives the system output to a nar-
rower vicinity of its target value than strategy (15). For
strategy (15), |y(k)| is not greater than 2.895 as stated in
Theorem 3.3. For strategy (35) it is smaller than 1.929,
which is consistent with Theorem 3.8. Finally, Figure 4
illustrates that the strategy for RD2 systems requires less
control effort in the sliding phase.

5. Conclusions

In this paper, switching type reaching law-based con-
trol strategies for discrete-time systems have been con-
sidered. Rather than following classic sliding mode
controller design methodology, the case of RD2 systems
has been considered and a design procedure for such
plants has been presented. Then, a new reaching law for
RD2 systems has been introduced and shown to ensure
several desirable properties of the system. The new reach-
ing lawhas been comparedwith a similar strategy forRD1
systems. It has been demonstrated that the strategy for
RD2 systems offers a reduced quasi-sliding mode band
width and system output error.
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