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ABSTRACT
This paper is devoted to the motion planning problem for control-affine systems by using trigono-
metric polynomials as control functions. The class of systems under consideration satisfies the con-
trollability rank condition with the Lie brackets up to the second order. The approach proposed here
allows to reduce a point-to-point control problem to solving a system of algebraic equations. The
local solvability of that system is proved, and formulas for the parameters of control functions are
presented. Our local and global control design schemes are illustrated by several examples.

1. Introduction

The motion planning problem for nonlinear systems has
become an important research area over the last three
decades due to its significant geometric features and
applications in robotics. In spite of the number of stud-
ies, it still remains a challenging problem to construct
control laws for general classes of systems, and the devel-
opment of new approaches attracts considerable interest
from both theoretical and applied points of view.

Let us briefly overview some related results in this
area with a special emphasis on nonholonomic systems.
Brockett (1981) proposed an optimal control law that
steers first-order Lie bracket canonical systems. The
construction of such optimal controls is also shown in
the book by Bloch (2003). In Murray and Sastry (1990),
an open-loop algorithm for steering first- and higher
order chained-form systems using sinusoidal inputs has
been proposed. A related method has been described
in Sussmann and Liu (1991) for a more general class of
driftless systems. In Liu (1997), a family of highly oscilla-
tory high-amplitude inputs has been used for solving the
problem of approximate tracking for a driftless control
system. Highly oscillatory sinusoids are also applied
in Gurvits and Li (1993) to compute time-periodic
solutions for the nonholonomic motion planning prob-
lem with obstacle avoidance. A method for steering
chained-form systems by piecewise-constant inputs is
presented in Lafferriere and Sussmann (1991). Such type
of controllers are used for the case of nilpotent systems as
well as for the approximate steering problem of general
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nonholonomic systems. In Chumachenko and Zuyev
(2009), the steering problem is solved for several exam-
ples of nonholonomic systems with piecewise-constant
controls. Sinusoidal and polynomial inputs that steer a
three-input system in two-chained form are constructed
in Bushnell, Tilbury, and Sastry (1995). A globally con-
vergent steering algorithm, based on nilpotent approxi-
mations, is proposed in Chitour, Jean, and Long (2013)
and developed in the monograph by Jean (2014). The
concept of interpolation entropy is introduced in Gau-
thier, Jakubczyk, and Zakalyukin (2010) to measure the
asymptotics of the minimum length of admissible curves
connecting the endpoints for the motion planning prob-
lem. In particular, it is shown that the entropy of amotion
planning problem is equivalent to that of its nilpo-
tent approximation. Estimates of the entropy and the
metric complexity are obtained for generic motion
planning problems by constructing their nilpotent
approximations in Boizot and Gauthier (2013). A Lie
algebraic method for motion planning exploiting the
generalised Campbell–Baker–Hausdorff–Dynkin for-
mula is described in Duleba, Khefifi, and Karcz-Duleba
(2012).

To the best of our knowledge, only partial results
are available for the control design of control-affine
systems with drift. In Godhavn, Balluchi, Crawford,
and Sastry (1999), motion planning algorithms with
band-bang controls are presented for a class of
Lagrangian systems with a cyclic coordinate. Another
time-state controller for such type of systems is developed
in Kiyota and Sampeio (1998). In Bloch and Reyhanoglu
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(1990), open-loop controls are obtained for a small-
time locally controllable (STLC) system describing the
motion of a knife edge on a flat surface. The paper by
Matsuno and Saito (2000) is devoted to the study of a
class of control-affine systems with three states and two
inputs. To produce a control law, the authors use a special
chained-form transformation. The steering problem is
considered in Basto-Gonçalves (1999) for control-affine
systems under second-order STLC conditions. A discon-
tinuous control law is developed in ur Rehman (2005)
to steer a class of control-affine systems with zero drift
at the origin. In Michalska and Torres-Torriti (2003),
an approach for solving the stabilisation problem by
a time-varying feedback law is proposed with the use
of sampling strategy and nilpotent approximations of
control-affine systems. The time-varying feedback law
is constructed there by a concatenation of piecewise
constant controllers. The parameters of such piece-
wise constant controllers are obtained from solving the
‘satisficing problem’. An important step in this control
design scheme requires the knowledge of solutions to
the control-affine system with these parameters. Suffi-
cient Lie algebraic conditions for the stabilisability of
control-affine systems have been proposed in Tsinias and
Theodosis (2015) by using sampled-data feedback laws
and infinite partitions of the time interval.

In this paper, we consider a class of control-affine sys-
tems whose vector fields together with their first- and
second-order Lie brackets satisfy Hörmander’s condi-
tion. To solve a point-to-point control problem, we use
a Volterra series development for solutions of the system
with time-varying trigonometric inputs. The main con-
tribution of this work concerns the construction of steer-
ing controls in Sections 3 and 4. This construction allows
to compute the parameters of control functions in terms
of solutions to auxiliary algebraic equations (Theorems
3.1 and 4.1). To the best of our knowledge, no solv-
ability results have been available for this class of prob-
lems. Local solvability results (Theorems 3.2 and 4.2) are
proved by exploiting the degree theory, and solutions to
the approximate path-following problem are presented in
Theorems 2.1 and 4.3. In Section 6, the results obtained
are applied to solving the motion planning problem for
several mechanical examples. Some technical details are
presented in the Appendices.

2. Problem statement and approximation
theorem

Consider a control-affine system

ẋ = f0(x) +
m∑
i=1

ui fi(x), x ∈ D ⊆ R
n, m < n, (1)

where x = (x1,… , xn)∗ is the state vector,
u = (u1, . . . , um)∗ ∈ R

m is the control, and ‘∗’ denotes
the transpose. All vector fields fi : D → R

n are assumed
to be of class C3 in a domain D.

For x0 �D and an admissible control u : [0, τ ] → R
m,

we denote by x(t; x0, u) � D the solution of system (1)
with initial data x|t = 0 = x0 and control u = u(t), 0 �
t � τ . We also use the notation Bε(x) = {y ∈ R

n | ‖x −
y‖ < ε} for an ε-neighbourhood of a point x ∈ R

n,
ρ(x, γ ) = infy � γ ‖x − y‖, and Bϵ(γ ) = �y � γBϵ(y) for
an ε-neighbourhood of a set γ ⊆ R

n. Here, ‖ · ‖ is the
Euclidean norm on R

n. To study the local steering prob-
lem, we introduce the class K whose elements are con-
tinuous strictly increasing functions θ : R

+ → R
+ such

that θ(0) = 0, R+ = [0, +∞).
Problem 2.1 (Local approximate steering problem): For
a given xα � D, ϵ0 > 0, and xω ∈ Bε0 (xα) ⊂ D, the goal is
to construct a smooth control uxαxω

(t ) ∈ R
m, defined on

0 � t � τ = τ (xα , xω), such that the following conditions
hold

‖x(τ ; xα, ux
αxω

) − xω‖ ≤ r‖xα − xω‖, (2)

‖x(t; xα, ux
αxω

) − xα‖ ≤ θ (‖xα − xω‖)

for all t ∈ [0, τ ], (3)

with a constant r < 1 and a function θ ∈ K.

It is clear that if system (1) is locally controllable at
a point xα � D, then, for small enough ϵ0 > 0 and any
xω ∈ Bε0 (xα), there exists a control uxαxω ∈ L∞[0, τ ] such
that condition (2) holds with r = 0. However, in this
paper, we treat the construction of controllers in Prob-
lem 2.1 as an algorithm that computes a smooth function
uxαxω

(t ) in terms of solutions to certain algebraic equa-
tions whose coefficients depend on the vector fields f0(x),
f1(x),..., fm(x), and, possibly, their Lie brackets at a point
x = xα . We will also extend such an algorithm in order to
follow a given curve γ in the state space D.
Problem2.2 (Approximate path-following problem):For
a given curve γ�D with the endpoints x0 and xT, and
a given ε > 0, the goal is to construct a piecewise-
smooth control u : [0,T] → R

m such that ‖x(T; x0,
u) − xT‖ < ε and ρ(x(t; x0, u), γ ) < ε for all
t � [0, T].

For solving this problem, we use a partition π of γ

with a finite number of points xj � γ , j = 0, 1,… , N:
π : x0 ≺ x1 ≺ . . . ≺ xN = xT ,where ‘≺’ denotes the nat-
ural order on γ . We assume for the moment that there
are η > 0 and ϵ0 > 0 such that Problem 2.1 is solvable
for each xα � Bη(γ ) and xω ∈ Bε0 (xα) by a family of
controls {uxαxω

(·)}, and that the mesh of π , defined as
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Figure . Approximate path-following trajectory x(t)= x(t; x, uπ ).

�(π) = max1≤ j≤N ‖x j − x j−1‖, is small enough. Under
these assumptions, we introduce the following definition.
Definition 2.1: Aπ-approximating control is the function
uπ : [0,T] → R

m defined as follows:

uπ (t ) = ux
0x1 (t ) for t ∈ [t0, t1],
t0 = 0, t1 = τ (x0, x1),

uπ (t ) = ux
j
τ x j+1

(t − t j) for t ∈ (t j, t j+1],
t j+1 = t j + τ (x j

τ , x
j+1), j = 1, 2, . . . ,N − 1,

where the family of controls ux
j
τ x j+1

(t ) (0 ≤ t ≤
τ (x j

τ , x j+1)) solves Problem 2.1, T = tN, x0τ = x0, and
x j+1

τ = x(τ (x j
τ , x j+1); x j

τ , ux
j
τ x j+1

) for j = 0, 1,… , N − 1
(see Figure 1).

Aswewill show in the proof of Theorem 2.1, the above
construction is well defined if �(π) is small enough.
Theorem 2.1: Let γ�D be a curve with the endpoints
x0 and xT, and let positive numbers η, ϵ0 be such that
Problem 2.1 is solvable for each xα � Bη(γ )�D and xω ∈
Bε0 (xα) by a family of controls {uxαxω

(·)}. Assume, more-
over, that the constant r� (0, 1) and the function θ ∈ K in
formulas (2) and (3)may be chosen independently of xα �
Bη(γ ).

Then, for any ε > ε1 > 0, there exists a �̄ = �̄(ε, ε1) >

0 such that, for any partitionπ : x0 ≺ x1 ≺ . . . ≺ xN = xT

of γ with �(π) < �̄, the corresponding π-approximating
control uπ (t) is well defined on t � [0, T], and

‖x(t j; x0, uπ ) − x j‖ < ε1, j = 0, 1, . . . ,N, (4)

ρ(x(t; x0, uπ ), γ ) < ε, t ∈ [0,T], (5)

where tj and T are introduced in Definition 2.1.
Proof: Without loss of generality, we assume that

ε1 < min{ε0, η}, θ (ε1) < ε − ε1, (6)

otherwise, we take a smaller ε1 such that condition (6)
holds. As the continuous function θ ∈ K is strictly
increasing on R

+ and θ(0) = 0, then the inverse func-
tion θ−1(s) is well defined on some semi-interval s ∈

[0, ε̄), ε̄ ≤ +∞. We choose the following value for �̄ =
�̄(ε, ε1) > 0:

�̄ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
{(

1
r

− 1
)

ε1, ε0 − ε1

}
, if ε − ε1 ≥ ε̄,

min
{(1

r
− 1

)
ε1, ε0 − ε1,

θ−1(ε − ε1) − ε1

}
, if ε − ε1 < ε̄.

(7)

Let π : x0≺x1≺…≺xN = xT be a partition of γ

such that �(π) < �̄. We prove by induction that the
π-approximating control uπ (t), introduced in Defini-
tion 2.1, is well defined. It follows from formula (7)
that ‖x0 − x1‖ < �̄ < ε0, and thus the control uπ (t ) =
ux0x1 (t ) is well defined for t � [0, t1], t1 = τ (x0, x1). We
denote x1τ = x(t1; x0, ux0x1 ) and observe that

‖x1τ − x1‖ ≤ r�(π) < r�̄ ≤ (1 − r)ε1 < ε1 (8)

because of inequality (2) and formula (7). Assume that
the control uπ (t) has been already defined for 0 � t �
tj, and that x j

τ = x(t j; x0, uπ ) ∈ Bε1 (x j) for some j � {1,
2,… , N − 1}. Then, the control ũ(t ) = ux

j
τ x j+1

(t ) is well
defined for 0 ≤ t ≤ τ (x j

τ , x j+1) as ε1 < η and

‖x j
τ − x j+1‖ ≤ ‖x j

τ − x j‖ + ‖x j − x j+1‖ < ε1 + �̄ ≤ ε0.

(9)

Now we extend uπ (t) to the segment 0 ≤ t ≤ t j+1 = t j +
τ (x j

τ , x j+1) by assuming uπ (t ) = ũ(t − t j) for t � (tj,
tj + 1]. Then, we estimate the distance between x j+1

τ =
x(t j+1; x0, uπ ) and xj + 1 by using inequalities (2), (9) and
formula (7):

‖x j+1
τ − x j+1‖ ≤ r‖x j

τ − x j+1‖ < r
(
ε1 + �̄

) ≤ ε1. (10)

Thus, by applying the above process for j = 1, 2,… , N −
1, we construct the control uπ (t) for all t � [0, T], T =
tN. Note that the corresponding solution x(t) = x(t; x0,
uπ ) of system (1) is well defined on t � [0, T] as x(t ) =
x(t − t j; x j

τ , ux
j
τ x j+1

) for t � [tj, tj + 1], and inequality (4)
follows from estimates (8) and (10).

To complete the proof, we consider an arbitrary t �
[tj, tj + 1] (0 � j � N − 1), and use the triangle inequality
together with inequalities (3), (4) and (9):

ρ(x(t ), γ ) ≤ ‖x(t ) − x j‖ ≤ ‖x(t ) − x j
τ‖ + ‖x j

τ − x j‖
< θ(‖x j

τ − x j+1‖) + ε1 < θ(ε1 + �̄) + ε1.
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Thus, to prove that ρ(x(t), γ )< ε, it suffices to show that

θ (ε1 + �̄) ≤ ε − ε1. (11)

If ε̄ = sups∈R+ θ (s) ≤ ε − ε1, then inequality (11) is
satisfied with any �̄ > 0. Otherwise, as the function θ ∈
K is strictly increasing on R

+, inequality (11) is equiv-
alent to �̄ ≤ θ−1(ε − ε1) − ε1. The above inequality is
satisfied, provided that condition (6) holds and �̄ > 0
is given by formula (7). As 0 � j � N − 1 and t �
[tj, tj + 1] may be taken arbitrarily, we have proved that
ρ(x(t), γ ) < ε for all t � [0, T]. �
Remark 2.1: The proof of Theorem 2.1 remains valid for
general systems of the form ẋ = f (x, u), x � D, u � U,
as the main idea is just based on the group property: the
translation of a trajectory is a trajectory for time-invariant
control systems.

As we see, Theorem 2.1 justifies the possibility of
reducing the approximate steering problem to succes-
sive concatenations of local controllers. Such local con-
trollers will be constructed in this paper by exploiting the
representation of solutions of system (1) by the Volterra
series. Namely, if u(t) (0 � t � τ ) is an admissible con-
trol for system (1), then the corresponding solution x(t;
x0, u) may be approximated by the Volterra series as fol-
lows (Lamnabhi-Lagarrigue, 1996; Nijmeijer & van der
Schaft, 1990):

x(t; x0, u)

= x0+
m∑
i=0

fi(x0)
t∫

0

ui(s)ds +
m∑

i, j=0

∂ fi(x)
∂x

f j(x)
∣∣∣∣
x=x0

×
t∫

0

s∫
0

ui(s)uj(p) dpds

+
m∑

i, j,l=0

∂

∂x

(∂ fi(x)
∂x

f j(x)
)
fl (x)

∣∣∣
x=x0

×
t∫

0

v∫
0

s∫
0

ui(v )uj(s)ul (p) dpds dv

+ R(t; x0, u), t ∈ [0, τ ], (12)

where we introduce an artificial control u0 � 1 for con-
venience of notation, ∂ fi(x)

∂x is the Jacobian matrix, and
R(t; x0, u) is the remainder.

In Sections 3 and 4, we will present solutions to the
local steering problem within the class of trigonometric
polynomials as control inputs. Then, we will show how
such controls can be used for solving the path-following
problem in Section 4.

3. Controllability conditions with the first-order
Lie brackets

For the local steering problem, our goal is to propose a
control algorithm that steers system (1) from a given ini-
tial point xα � D to a small neighbourhood of a target
point xω � D at some time τ > 0. In order to solve this
problem explicitly, we assume that there are sets of indices
S0�{1, 2,… ,m}, S1�{1, 2,… ,m}, and S2�{1, 2,… ,m}2

such that |S0|+ |S1|+ |S2|= n. Without loss of generality,
we assume that the elements of S2 are ordered such that i
< j for each pair (i, j) � S2.

Definition 3.1: Control system (1) satisfies the
(S0, S1, S2)-rank condition at a point x � D if

span
{
fi(x), [ f0, f j](x), [ fk, fl](x) | i ∈ S0,
j ∈ S1, (k, l) ∈ S2

} = R
n. (13)

Here, and in the sequel, [ fi, f j](x) = ∂ f j(x)
∂x fi(x) −

∂ fi(x)
∂x f j(x) denotes the Lie bracket of vector fields fi(x)

and fj(x).
Note that if system (1) satisfies the (S0, S1, S2)-rank

condition at a point xα � D and f0(xα) = 0, then sys-
tem (1) is STLC at xα due to Proposition 7.4 of Sussmann
(1987).

We consider the following family of controls:

uk(t ) =
∑
i∈S0

δkivi +
∑
i∈S1

δkiai sin
(
2πKit

τ

)

+
∑

(i, j)∈S2
ai j
{
δki cos

(
2πKi jt

τ

)

+ δk j sin
(
2πKi jt

τ

)}
, (14)

where k= 1, 2,… ,m, vi, ai, aij are real coefficients,Ki and
Kij are nonzero integers, and δki is the Kronecker delta.
For given xα , xω � D and τ > 0, we will define the vector
of coefficients

a = (
(vi)i∈S0, (ai)i∈S1, (ai j)(i, j)∈S2

)∗ ∈ R
n

and parameters K = (
(Ki)i∈S1, (Ki j)(i, j)∈S2

)∗ ∈
(Z \ {0})|S1|+|S2| for formula (14) by using the following
system of algebraic equations:

τ

⎛⎝ f0(xα ) +
∑
i∈S0

vi fi(xα )

⎞⎠+ τ 2

2
V20 + τ 2

2π
V21 = xω − xα

(15)
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with

V20 = ∂ f0(xα)

∂x
f0(xα)

+
∑
i∈S0

vi

(
∂ f0(xα)

∂x
fi(xα) + ∂ fi(xα)

∂x
f0(xα)

)

+
∑

(i, j)∈S02
viv j

∂ f j(xα)

∂x
fi(xα),

V21 =
∑

(i, j)∈S1×S0

v jai
Ki

[ fi, f j](xα)

−
∑
i∈S1

ai
Ki
[ f0, fi](xα) −

∑
(i, j)∈S2

ai j
Ki j

[ f0, f j](xα)

+
∑

(i, j,k)∈S2×S0

vkai j
Ki j

[ f j, fk](xα)

+ 1
2

∑
(i, j)∈S2

a2i j
Ki j

[ fi, f j](xα), (16)

where ∂ fi(xα )

∂x stands for the Jacobian matrix ∂ fi(x)
∂x evalu-

ated at x = xα .
To formulate the basic result concerning the local

steering problem, we need a non-resonance assumption
concerning integer parameters Kl and Kij.

Assumption 3.1: For each l, q � S1 and (i1, j1) � S2, (i2,
j2) � S2 such that l � q and (i1, j1) � (i2, j2), the following
inequalities hold: |Kl | �= |Kq| �= |Ki1 j1 | �= |Ki2 j2 |.

Theorem 3.1: Assume that, for xα , xω � D and posi-
tive numbers τ , ε, ε1, the vectors a ∈ R

n and K ∈ (Z \
{0})|S1|+|S2| satisfy the system of algebraic equations (15)
and Assumption 3.1, and that the following conditions
hold:

∥∥∥∥∂ fi(x)
∂x

∥∥∥∥ ≤ M1,

∥∥∥∥∂2 fi j(x)
∂2x

∥∥∥∥ ≤ M2,

for all x ∈ B̄ε(xα) ⊂ D, i = 0,m, j = 1, n,
(17)

M0

M1

{
eM1Ū − 1

2
(
(M1Ū + 1)2 + 1

)}
+ M2M2

0
√
n

4M3
1

{(
eM1Ū − 2

)2
+ 2M1Ū − 1

}
≤ ε1,

(18)

Ū ≤ 1
M1

ln
(
M1ε
M0

+ 1
)

, (19)

where

Ū =
⎛⎝1 +

∑
i∈S0

|vi| +
∑
i∈S1

|ai| + √
2
∑

(i, j)∈S2
|ai j|

⎞⎠ τ,

M0 = max
0≤i≤m

‖ fi(xα)‖. (20)

Then,‖x(τ ; xα, u) − xω‖ ≤ ε1 and ‖x(t; xα, u) −
xα‖ ≤ ε for all t ∈ [0, τ ], where the control u(t) (0 � t �
τ ) is given by formula (14).

Here, B̄ε(xα) stands for the closure of Bε(xα), and
∂2 fi j(x)

∂2x is theHessianmatrix of the j-th component of fi(x).
The proof of Theorem 3.1 is given in Section 5.

Remark 3.1: By using the Taylor expansion, we conclude
that condition (18) is equivalent to M0(M2

1+M2M0
√
n)

6 Ū 3 +
O(Ū 4) < ε1, for small values of Ū given by formula (20).

To study the solvability of algebraic equations (15), we
introduce new variables

wi = τvi, ãi = − τ 2ai
2πKi

, ãi j = τ 2a2i j
4πKi j

, κi j =
√

|Ki j|,
(21)

and denote column vectors w = (wi)i∈S0 ∈ R
n0 , ã =(

(ãk)k∈S1
(ãi j )(i, j)∈S2

) ∈ R
n1 , ξ = (w

ã

) ∈ R
n, n0 = |S0|, n1 = |S1| +

|S2|. As each ϰij is the square root of a positive integer
in (21), we will use the notationκi j ∈ N1/2, whereN1/2 =⋃∞

k=1{
√
k}. We also introduce the n × n-matrix

A(xα) = (
( fi)i∈S0, [ f0, f j] j∈S1, [ fk, fl](k,l)∈S2

)
, (22)

whose columns are formed by the vector fields from the
rank condition (13) evaluated at x= xα . Then, we exploit
formulas (16) and (21) to rewrite algebraic equations (15)
in the following form:

A(xα)ξ

= xω − xα − τ f0 − τ 2

2
∂ f0
∂x

f0

− τ

2

∑
i∈S0

wi

(
∂ f0
∂x

fi + ∂ fi
∂x

f0
)

− 1
2

∑
(i, j)∈S02

wiw j
∂ f j
∂x

fi

+ 1
τ

∑
(i, j)∈S1×S0

w j ãi[ fi, f j] + τ√
π

∑
(i, j)∈S2

√|ãi j|
κi j

[ f0, f j]

− 1√
π

∑
(i, j,k)∈S2×S0

wk
√|ãi j|
κi j

[ f j, fk], (23)

where all fi(x),
∂ fi(x)

∂x , and [fi, fj](x) are evaluated at x= xα .
If ξ = (w

ã

) ∈ R
n is a solution of algebraic equation (23)
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with some ϰij > 0, then formula (21) implies that

vi = wi

τ
, ai = −2πKiãi

τ 2 ,

ai j = 2κi j
√

π |ãi j|
τ

sign ãi j, Ki j = κ
2
i j sign ãi j

satisfy Equation (15).
We will prove the following local solvability result for

system (23).

Theorem 3.2: Let the (S1, S2, S3)-rank condition (13) be
satisfied at a point xα � D, and let

‖A−1(xα )‖2 · ‖ f0(xα )‖ ·
⎛⎝ ∑

(i, j)∈S1×S0

‖[ fi, f j](xα )‖2
⎞⎠1/2

<
1
2
.

(24)
Then, for any small enough ϵ0 > 0 and any xω ∈ Bε0 (xα),
the system of algebraic equations (23)has a solution ξ ∈ R

n

with some τ = O(ϵ0) and κi j ∈ N1/2, (i, j) � S2 such that
‖ξ‖ = O(ϵ0) and

κi j �= κi′ j′ for each (i, j) �= (i′, j′) ∈ S2.

Proof: If the (S1, S2, S3)-rank condition (13) is satisfied,
then the matrix A(xα) given by (22) is nonsingular, and

‖A(xα)ξ‖ ≥ ‖ξ‖
‖A−1(xα)‖ ≥ c(‖w‖ + ‖ã‖),

c =
√
2

2‖A−1(xα)‖ , for all ξ = (
wã

) ∈ R
n.

(25)

In order to prove the solvability of equations (23), we
show that there exist positive numbers τ , ϵ0, κ̄, ϵw, ϵa such
that

c(‖w‖ + ‖ã‖) > ε0 + τk0 + τ 2k1 + τk2‖w‖
+ k3‖w‖2 + k5

τ
‖ã‖ · ‖w‖

+ (τk4 + k6‖w‖)

√
‖ã‖
κ̄

for all ξ ∈ ∂W, (26)

whereW = {ξ ∈ R
n | ‖w‖ < εw, ‖ã‖ < εa},

k0 = ‖ f0(xα)‖, k1 = 1
2

∥∥∥∥∂ f0(xα)

∂x
f0(xα)

∥∥∥∥ ,

k2 = 1
2

⎛⎝∑
i∈S0

∥∥∥∥∂ f0(xα)

∂x
fi(xα) + ∂ fi(xα)

∂x
f0(xα)

∥∥∥∥2
⎞⎠1/2

,

k3 = 1
2

⎛⎝ ∑
(i, j)∈S02

∥∥∥∥∂ f j(xα)

∂x
fi(xα)

∥∥∥∥2
⎞⎠1/2

,

k4 = |S2|1/4√
π

⎛⎝ ∑
(i, j)∈S2

∥∥[ f0, f j](xα)
∥∥2⎞⎠1/2

,

k5 =
⎛⎝ ∑

(i, j)∈S1×S0

‖[ fi, f j](xα)‖2
⎞⎠1/2

,

k6 = |S2|1/4√
π

⎛⎝ ∑
(i, j,k)∈S2×S0

‖[ f j, fk](xα)‖2
⎞⎠1/2

.

Let us first consider the limiting case κ̄ → ∞. Then,
inequality (26) takes the form

gτ (‖ã‖, ‖w‖) > ε0 + τk0 + τ 2k1, (27)

with gτ (p, q) = (c − τk2)q + cp− k3q2 − k5
τ
pq. To

show that inequality (27) holds for all ξ =
(

w
ã

)
∈ ∂W , it

suffices to find positive numbers τ , ϵ0, ϵw, ϵa such that

inf
ξ∈∂W

gτ (‖ã‖, ‖w‖) = inf
(p,q)∈lp∪lq

gτ (p, q) > ε0 + τk0 + τ 2k1,

(28)
where lp : p ∈ [0, εa], q = εw, lq : p = εa, q ∈ [0, εw].

We see that gτ (p, q) is increasing along lp and lq if

∂gτ (p, εw)

∂ p
= c − k5εw

τ
≥ 0 and

∂gτ (εa, q)
∂q

= c − τk2 − k5
τ

εa − 2k3q ≥ 0

for q ∈ [0, εw]. (29)

If these conditions are satisfied, then formula (28) is
reduced to

inf
(p,q)∈lp∪lq

gτ (p, q) = min
{
gτ (0, εw), gτ (εa, 0)

}
= min{(c − τk2)εw − k3ε2w, cεa} > ε0 + τk0 + τ 2k1.

(30)

In particular, condition (29) holds for

εw = c
k5

τ, εa = τ

k5

(
c − k2k5 + 2k3c

k5
τ

)
. (31)

With this choice of ϵa and ϵw, the inequalities
(c − τk2)εw − k3ε2w > ε0 + τk0 + τ 2k1 and cϵa > ϵ0 +
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τk0 + τ 2k1 from formula (30) will be satisfied if

d := c2

k5
− k0 > 0 (32)

and

τ − γ1τ
2 >

ε0

d
, τ − γ2τ

2 >
ε0

d
, (33)

where γ1 = k1k25+c(k2k5+k3c)
k25d

, γ2 = γ1 + k3c2
k25d

. Note that
condition (24) implies that d > 0 in formula (32).
To satisfy condition (33), we observe that τ − γ τ 2 >
τ
2 for τ ∈ (0, 1

2γ

)
, γ > 0. This inequality implies that

both conditions in (33) are satisfied for positive γ 1 � γ 2
if

ε0 <
1
2γ2

and
2ε0
d

≤ τ ≤ 1
2γ2

. (34)

We note also that ϵa and ϵw are positive in formulas (31)
if and only if

0 < τ <
ck5

k2k5 + 2k3c
. (35)

Thus, by putting together the inequalities in (34) and (35),
we conclude that, for any positive ϵ0 such that ε0 <

min
{ 1
2γ2

, d
4γ2

, dck5
2(k2k5+2k3c)

}
, inequality (28) holds with

τ = 2ε0
d and positive numbers ϵa, ϵw given by for-

mula (31). Itmeans also that property (26) is satisfied pro-
vided that

κ̄ >

√
εa(k4τ + k6εw)

δ
,

δ = min{(c − τk2)εw − k3ε2w, cεa}
− ε0 − τk0 − τ 2k1 > 0. (36)

Then, we choose the parameters κi j ≥ κ̄ such that κi j ∈
N1/2 for each (i, j)� S2 andκi j �= κi′ j′ whenever (i, j) �=
(i′, j′).

Under our choice of parameters ϵ0, τ , ϵa,
ϵw, ϰij, property (26) implies that ‖A(xα)ξ‖ >

�xω (ξ ), for each ξ ∈ ∂W, for each xω ∈ Bε0 (xα),
where �xω (ξ ) denotes the right-hand side of
Equation (23). Thus, the vector fields A(xα)ξ and
�(ξ ) = A(xα)ξ − �xω (ξ ) are homotopic on 	W, so
the rotation of �(ξ ) on 	W is equal to sign |A(xα)| �
0 (Krasnosel’skij & Zabrejko, 1984). Then, the principle
of nonzero rotation implies that there exists a ξ � W

such that �(ξ ) = 0 (Zabrejko, 1997, Theorem 1), which
completes the proof. �

4. Second-order rank condition: nonholonomic
systems

In this section, we consider a driftless control system

ẋ =
m∑
k=1

uk fk(x), x ∈ D ⊆ R
n, m < n. (37)

Although the solvability of motion planning problems
for nonholonomic systems has been already established
under rather general controllability assumptions (Jean,
2014; Liu, 1997), our aim is to propose an explicit control
design scheme and perform all necessary computations
analytically. For this purpose, we restrict our analysis to a
class of bracket-generating systems of step 3.

Let S2�{1, 2,… ,m}2 and S3�{1, 2,… ,m}3 be subsets
of indices such that |S2| + |S3| = n − m. Without loss
of generality, we assume that the elements of sets S2 and
S3 are ordered as j1 < j2 for all (j1, j2) � S2, and l1 < l2
whenever (l1, l2, l3) � S3.

Definition 4.1: Control system (37) satisfies the (S2, S3)-
rank condition at a point x � D if

span
{
fi(x), [ f j1, f j2 ](x),

[
[ fl1, fl2 ], fl3

]
(x) |

i = 1, 2, . . . ,m, ( j1, j2) ∈ S2, (l1, l2, l3) ∈ S3
} = R

n.

(38)

In order to solve Problem 2.1, we apply the following
family of control functions:

uk(t ) = ak+
∑

(i, j)∈S2
ai j
(

δki cos
2πKi jt

τ
+ δk j sin

2πKi jt
τ

)

+
∑

(i, j,l)∈S3
ai jl
(

δki cos
2πK1i jlt

τ
+ δk j sin

2πK2i jlt
τ

+ δklcos
2πK1i jlt

τ
sin

2πK2i jlt
τ

)
,

k = 1, 2, . . . ,m, t ∈ [0, τ ], (39)

where ak, aij, aijl are real coefficients, Kij, K1ijl, K2ijl are
nonzero integer parameters. To define the vector of coef-
ficients a=(ak|k∈{1,...,m} , ai j

∣∣
(i, j)∈S2 , ai jl

∣∣
(i, j,l)∈S3 )

∗∈R
n,

and parameters K = (Ki j
∣∣
(i, j)∈S2 , K1i jl,K2i jl

∣∣
(i, j,l)∈S3 )

∗ ∈
(Z \ {0})|S2|+2|S3| for formula (39), we introduce the
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following system of algebraic equations:

τ

m∑
k=1

fk(xα)ak + τ 2

4π

∑
(i, j)∈S2

[ fi, f j](xα)
a2i j
Ki j

+ τ 3

16π2

∑
(i, j,l)∈S3

[
[ fi, f j], fl

]
(xα)

a3i jl
K2
2i jl − K2

1i jl

+ τ 2

2
�(a, xα, τ ) = xω − xα, (40)

where the expression for � is given in Appendix 2. We
also need an extra non-resonance assumption on the fre-
quencies of the sine and cosine functions, so that there are
no low-order resonances among the frequency multipli-
ers Kij, K1ijl, K2ijl, and K1ijl ± K2ijl.

Assumption 4.1: If cij, c1ijl, … , c4ijl are any integers such
that

∑
(i, j)∈S2 |ci j| +∑

(i, j,l)∈S3 (|c1i jl | + |c2i jl | + |c3i jl | +
|c4i jl |) > 0 and

∑
(i, j)∈S2

ci jKi j +
∑

(i, j,l)∈S3

(
(c1i jl + c3i jl + c4i jl )K1i jl

+ (c2i jl + c3i jl − c4i jl )K2i jl
) = 0,

then,

( ∑
(i, j)∈S2

|ci j| +
∑

(i, j, l) ∈ S3,
1 ≤ ν ≤ 4

|cνi jl | > 3
)
or

( ∑
(i, j)∈S2

|ci j| +
∑

(i, j, l) ∈ S3,
1 ≤ ν ≤ 4

|cνi jl | = 3 and
∑

(i, j)∈S2
|ci j| > 0

)
.

Our basic result concerning solutions of the local steer-
ing problem for nonholonomic case is as follows.

Theorem 4.1: Assume that, for xα , xω � D and posi-
tive numbers τ , ε, ε1, the vectors a ∈ R

n and K ∈ (Z \
{0})|S2|+2|S3| satisfy the system of algebraic equations (40)
and Assumption 4.1, and that the following conditions
hold:

∥∥∥∥∂ fi
∂x

(x)
∥∥∥∥ ≤ M1,

∥∥∥∥∂2 fik
∂x2

(x)
∥∥∥∥ ≤ M2,

1
6

∑
|α|=3

∣∣∣∣ ∂3 fik(x)
∂xα1

1 · · · ∂xαn
n

∣∣∣∣ ≤ M3,

for all x ∈ B̄ε(xα) ⊂ D, 1 ≤ i ≤ m, 1 ≤ k ≤ n,
(41)

φ(Ū ) = √
nM0Ū 3(eM1Ū − 1)

{
M2

0M3(eM1Ū − 1)2

Ū 2

+
M0M1M2

(
eM1Ū − 1

)
(3n3/2 + 2M1Ū )

12Ū

+ M1(M2
1 + 2M0M2)

6

}
≤ ε1, (42)

Ū ≤ 1
M1

ln
(
M1ε

M0
+ 1

)
, (43)

where

Ū =
⎛⎝ m∑

i=1

|ai| + √
2
∑

(i, j)∈S2
|ai j| + 3

∑
(i, j,k)∈S3

|ai jk|
⎞⎠ τ,

M0 = max
1≤i≤m

‖ fi(xα)‖. (44)

Then,‖x(τ ; xα, u) − xω‖ ≤ ε1 and ‖x(t; xα, u) −
xα‖ ≤ ε for all t ∈ [0, τ ], where the control u(t) (0 �
t � τ ) is given by formula (39).

The proof of this result is given in Section 5.

Remark 4.1: For small values of Ū , condition (42) is
reduced to the following one:

φ(Ū ) =√
nM0M2

1 (2M2
1 + 12M2

0M1M3 + 4M0M2 + 3n3/2M0M1M2)

12
Ū 4

+ O(Ū 5) < ε1. (45)

A crucial assumption of Theorem 4.1 is that the coeffi-
cients of control (39) satisfy the system of algebraic equa-
tions (40). To prove the solvability of system (40), we
introduce new variables

ã=
(
ãk
∣∣
k∈{1,...,m} , ãi j

∣∣
(i, j)∈S2 , ãi jl

∣∣
(i, j,l)∈S3

)∗
∈R

n

andparametersK+ = (K+
i j |(i, j)∈S2,K+

1i jl,K
+
2i jl |(i, j,l)∈S3 )∗ ∈

N
|S2|+2|S3|, where

ãk = τak for k = 1, 2, . . . ,m,

ãi j = τ 2a2i j
4πKi j

for (i, j) ∈ S2,

ãi jl =
τ 3a3i jl

16π2
(
K2
2i jl − K2

1i jl

) for (i, j, l) ∈ S3,

K+
i j = |Ki j| for (i, j) ∈ S2,

K+
νi jl = |Kνi jl | for (i, j, l) ∈ S3, ν = 1, 2.
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In new variables, we write system (40) in the following
form:

m∑
k=1

ãk fk(xα) +
∑

(i, j)∈S2
ãi j[ fi, f j](xα)

+
∑

(i, j,l)∈S3
ãi jl
[
[ fi, f j], fl

]
(xα)

+ �̃(ã, xα) = xω − xα, (46)

where �̃(ã, xα) does not contain terms of order less than
4/3with respect to ã (seeAppendix 2).We assume that the
(S2, S3)-rank condition is satisfied, therefore, the matrix

F(xα) =
(
f1(xα), . . ., fm(xα), [ fi, f j](xα)

∣∣
(i, j)∈S2 ,[

[ fi, f j], fl
]
(xα)

∣∣
(i, j,l)∈S3

)
(47)

is nonsingular. Then, we define the integers K+
i j and

K+
1i jl,K

+
2i jl according to Assumption 4.1. Thus, if ã is a

solution of system (46) for given xα , xω � D, then the
components of a solution of system (40) are

ak = τ−1ãi for k = 1, 2, . . . ,m,

ai j = 2τ−1sign(ãi j)
√

πK+
i j |ãi j| for (i, j) ∈ S2,

ai jl = 2 3
√
2π2τ−1 3

√
(K+

2i jl
2 − K+

1i jl
2
)ãi jl

for (i, j, l) ∈ S3,
(48)

Ki j = K+
i j sign(ãi j) for (i, j) ∈ S2,

Kνi jl = K+
νi jl for (i, j, l) ∈ S3, ν = 1, 2, (49)

where sign(ãi j) = 1 if ãi j ≥ 0 and sign(ãi j) = −1 oth-
erwise. So, the solvability problem for system (40) is
reduced to the study of system (46). The formula for
�̃(ã, x) in Appendix 2 implies that there exists a function
C(x) > 0, which is continuous in D, such that

‖�̃(ã, x)‖ ≤ C(x)‖ã‖4/3 for all x ∈ D, ã ∈ B̄1(0) ⊂ R
n.

(50)
We derive the following corollary of Theorem 4.1 for

solving Problem 2.1.
Theorem 4.2: Assume that the rank condition (38) holds
at x= xα �Dand that inequality (41) is satisfied in B̄ε(xα)

for some ε > 0. Then, for any r � (0, 1) and τ > 0, there
exist ϵ0 > 0 and θ ∈ K such that:

(1) for any xω ∈ Bε0 (xα), there exists a solution a ∈
R

n of algebraic system (40) with some K ∈ (Z \
{0})|S2|+2|S3| that satisfy Assumption 4.1;

(2) if u(t) is the control given by formula (39) with the
above a ∈ R

n and K ∈ (Z \ {0})|S2|+2|S3|, then,

‖x(τ ; xα, u) − xω‖ ≤ r‖xα − xω‖, (51)

‖x(t; xα, u) − xα‖ ≤ θ (‖xα − xω‖)

for all t ∈ [0, τ ]. (52)

Proof: Let xα � D, ε > 0, r � (0, 1), and τ > 0 be given.
To prove assertion (1), we note that solutions of algebraic
systems (40) and (46) are related by transformation (48).
We choose a vector K+ ∈ N

|S2|+2|S3| in such a way that
Assumption 4.1 is satisfied. Then, we rewrite system (46)
as �(ã) = 0, where

�(ã)=ã+F−1(xα)(�̃(ã, xα)+xα−xω).

In the trivial case xω = xα , it is easy to see that ã = 0 ∈ R
n

is a root of algebraic equation (46). If ‖xα − xω‖ > 0 is
small enough, we will use the principle of nonzero rota-
tion to prove that the equation �(ã) = 0 has a root ã ∈
Bd(0) for some d > 0. For this purpose, we show that the
maps �(ã) and �(ã) = ã are homotopic on the sphere
Sd = 	Bd(0). A sufficient condition for the homotopy
equivalence reads as follows (cf. Krasnosel’skij & Zabre-
jko, 1984):

‖�(ã) − ã‖ < ‖ã‖ for all ã ∈ Sd. (53)

We estimate the left-hand side of inequality (53) by using
estimate (50) and assuming that d � 1:

‖�(ã) − ã‖
≤ ‖F−1(xα)‖(‖�̃(ã, xα)‖ + ‖xα − xω‖)
≤ ‖F−1(xα)‖

(
C(xα)d4/3 + ‖xα − xω‖

)
.

Thus, inequality (53) follows from the conditions

‖xα − xω‖ < μxα (d), d ≤ 1, (54)

where

μxα (d) = d
‖F−1(xα)‖ −C(xα)d4/3. (55)

We see that the functionμxα (d) is positive and increasing
on d � (0, dmax], where

dmax = min
{
d+
max, 1

}
,

d+
max =

(
3

4‖F−1(xα)‖C(xα)

)3

, μ′
xα (d+

max) = 0.

(56)
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Asμxα (d) is strictly concave onR
+ andμxα (0) = 0 , con-

dition (54) is satisfied with ‖xα − xω‖ = μxα (dmax)d
dmax

, 0 <

d < dmax, or, equivalently, if

d = dmax

μxα (dmax)
‖xα − xω‖ < dmax. (57)

Thus, we conclude that if

‖xα − xω‖ < μxα (dmax), (58)

then, condition (53) holds on the sphere Sd of radius d
given by formula (57). Thus, the maps �(ã) and �(ã) =
ã are homotopic on the sphere Sd, and the rotation of
�(ã) is equal to 1. Applying the principle of nonzero
rotation, we conclude that there exists an ã ∈ Bd(0)
such that �(ã) = 0 (see, e.g. Krasnosel’skij & Zabre-
jko, 1984). Then, we define the vectors a∈R

n and K ∈
(Z \ {0})|S2|+2|S3| by formulas (48) and (49) and observe
that the system of algebraic equations (40) and Assump-
tion 4.1 are satisfied. This completes the proof of asser-
tion (1).

Under our choice of the coefficients a ∈ R
n of con-

trol (39), the expression Ū in formula (44) is estimated
as follows:

Ū ≤
m∑
k=1

|ãk| + 2
√
2π

∑
(i, j)∈S2

√
K+
i j |ãi j|

+ 6 3
√
2π2

∑
(i, j,l)∈S3

3
√

(K+
2i jl

2 − K+
1i jl

2
)|ãi jl |

≤
m∑
k=1

|ãk|1/3 + 2
√
2π

∑
(i, j)∈S2

√
K+
i j |ãi j|1/3

+ 6 3
√
2π2

∑
(i, j,l)∈S3

3
√

(K+
2i jl

2 − K+
1i jl

2
)|ãi jl |,

where we have used formula (48) and the inequal-
ity ‖ã‖ < d ≤ 1. Furthermore, by applying Hölder’s
inequality with exponents

(
6, 6

5

)
and exploiting condi-

tion (57), we get

Ū ≤ C1‖ã‖1/3 ≤ C1d1/3 = C1d1/3max‖xα−xω‖1/3
μ
1/3
xα (dmax)

, (59)

C1 =
(
m + 29/5π3/5

∑
(i, j)∈S2

(K+
i j )

3/5

+ 28/536/5π4/5
∑

(i, j,l)∈S3
(K+

2i jl
2 − K+

1i jl
2
)
2/5
)5/6

, (60)

provided that condition (58) holds.

It remains to show that assertion (2) follows from
Theorem 4.1. Indeed, for given r � (0, 1) and ε > 0,
our goal is to find an ϵ0 > 0 such that the conditions of
Theorem 4.1 hold with ε1 = r‖xα − xω‖ if ‖xα − xω‖ <

ϵ0. Condition (43) follows from inequality (59) if

C1d1/3max‖xα − xω‖1/3
μ
1/3
xα (dmax)

≤ 1
M1

ln
(
M1ε

M0
+ 1

)
. (61)

It is easy to see that the function φ(Ū ), given by for-
mula (42), is increasing onR

+ (as all its Taylor coefficients
at Ū = 0 are non-negative). Hence, by exploiting inequal-
ities (58) and (59), we conclude that condition (42) holds
with ε1 = r‖xα − xω‖ if

φ

(
C1d1/3max‖xα − xω‖1/3

μ
1/3
xα (dmax)

)
≤ r‖xα − xω‖ < rμxα (dmax).

(62)

Let ε̄0 be the positive root of the equation 1
ε̄0

φ(
C1d1/3max ε̄

1/3
0

μ
1/3
xα (dmax)

)

= r. It follows from the Taylor expansion (45) that

ε̄0 ≈ 1728μ4
xα (dmax)

n3/2C12
1 d4maxM3

0M6
1
(
2M2

1 + 12M2
0M1M3 + 4M0M2 + 3n3/2M0M1M2

)3 r3 as r → 0.

Now, we choose

ε0 = min
{
ε̄0, μxα (dmax),

μxα (dmax)

M3
1C3

1dmax
ln3
(
M1ε

M0
+ 1

)}
> 0.

(63)

Let ‖xα − xω‖ < ϵ0, and let x(t; xα , u) be the solu-
tion of system (37) corresponding to the control u =
u(t) given by formula (39) with the coefficients a ∈ R

n

and parameters K ∈ (Z \ {0})|S2|+2|S3| from assertion (1).
The assumptions of Theorem 4.1 are satisfied because of
inequalities (61) and (62), which proves condition (51).
It is easy to see that estimate (52) is satisfied with the fol-
lowing function θ = θxα (s) of classK:

θxα (s) = M0

M1

(
exp

{
M1C1d1/3max

μ
1/3
xα (dmax)

s1/3
}

− 1

)
. (64)

Indeed, let us denote s = ‖xα − xω‖ < ϵ0, then Ū ≤
C1d1/3maxs1/3

μ
1/3
xα (dmax)

because of inequality (59), and condition (43) of
Theorem 4.1 holds with ε̄ = θxα (s). Thus, Theorem 4.1
implies that

‖x(t; xα, u) − xα‖ ≤ ε̄ = θxα (‖xα − xω‖)

for all t ∈ [0, τ ],

which completes the proof. �
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Wewill show below that the construction of local con-
trollers in Theorem 4.2 can be used to satisfy the condi-
tions of Theorem 2.1 for solving the approximate path-
following problem.

Theorem 4.3: Let γ�D be a curve with the endpoints
x0 and xT, and let the rank condition (38) be satisfied at
each x � γ . Then, for any τ > 0 and ε > ε1 > 0, there
exists a �̄ > 0 such that, for any partition π : x0 ≺ x1 ≺
. . . ≺ xN = xT of γ with�(π) < �̄, the correspondingπ-
approximating control uπ (t) is well defined on t � [0, T],
T = Nτ , and

‖x( jτ ; x0, uπ ) − x j‖ < ε1, j = 1, 2, . . . ,N, (65)
ρ(x(t; x0, uπ ), γ ) < ε, t ∈ [0,T]. (66)

Here, the control uπ (t) is constructed as in Definition 2.1 by
using the concatenation of local controllers u(t ) = uxαxω

(t )
of form (39) whose coefficients are defined by the system of
algebraic equations (40).

Proof: As the rank condition (38) holds on γ�D and all
the vector fields fi(x) are of classC3(D), there exists an η >

0 such that� = B̄η(γ ) ⊂ D and condition (38) also holds
at each x � �. For a compact subset � of domain D, we
choose a positive ε̄ such thatD0 = B̄ε̄ (�) ⊂ D. Then, the
numbers

M1 = max
i

(
sup
x∈D0

∥∥∥∥∂ fi
∂x

(x)
∥∥∥∥
)

,

M2 = max
i,k

(
sup
x∈D0

∥∥∥∥∂2 fik
∂x2

(x)
∥∥∥∥
)

,

M3 = 1
6
max
i,k

⎛⎝sup
x∈D0

∑
|α|=3

∣∣∣∣ ∂3 fik(x)
∂xα1

1 · · · ∂xαn
n

∣∣∣∣
⎞⎠ ,

1 ≤ i ≤ m, 1 ≤ k ≤ n, (67)

are finite by theWeierstrass theorem.We see that the con-
ditions of Theorem 4.2 are satisfied for each xα � � with
the above choice ofM1,M2, andM3. Let us now fix arbi-
trary r � (0, 1), τ > 0, and show that the number ϵ0 > 0
and function θ ∈ K in Theorem 4.2 may be chosen inde-
pendently of xα � �.

Since all the vector fields appearing in the rank
condition (38) are continuous on the compact ��D,
there exists a vector K+ ∈ N

|S2|+2|S3| satisfying Assump-
tion 4.1 such that the matrix F(xα) is nonsingular
for each xα � �. As in the proof of Theorem 4.2,
we fix such K+ ∈ N

|S2|+2|S3| and introduce the func-
tionμ(d) = d

c1
− c2d4/3,where c1 = supx∈� ‖F−1(x)‖ >

0, c2 = supx∈� C(x) > 0. It follows from the construc-
tion of μ(d) that

μ(d) ≤ μxα (d) for all xα ∈ �, d ≥ 0, (68)

and μ(d) > 0 is strictly increasing on d ∈ (0, d̄max],
d̄max = min

{
1,
( 3
4c1c2

)3}
. Following the proof of

Theorem 4.2 with the use of inequality (68), we con-
clude that its assertions (1) and (2) remain true for each
xα � � and xω ∈ Bε0 (xα) if, instead of formula (63), we
define

ε0 = min

{
ε̂0, μ(d̄max),

μ(d̄max)

M3
1C3

1 d̄max
ln3
(
M1ε̄

M0
+ 1

)}
> 0,

(69)
where ε̂0 is the positive root of the equation
1
ε̂0

φ
(
C1d̄1/3max ε̂

1/3
0

μ1/3(d̄max)

)
= r, the constants C1 and M1 are given

by formulas (60) and (67), respectively, and

M0 = max
1≤i≤m

sup
x∈�

‖ fi(x)‖ > 0. (70)

Thus, expression (69) defines the constant ϵ0 > 0 for
Theorem4.2 independently of xα ��. It remains to verify
that there exists a θ ∈ K such that the estimate

θxα (s) ≤ θ (s), s ∈ R
+, (71)

holds for each xα � � and θxα (s) given by formula (64).
Indeed, straightforward computations with the use of
inequality (68) show that the function

θ (s) = M0

M1

(
exp

{
M1C1d̂

μ1/3(d̄max)
s1/3

}
− 1

)
(72)

satisfies property (71), where M0 is defined in (70),
d̂ = min

{
1, 3

4 infx∈�(‖F−1(x)‖C(x))

}
> 0. Thus, we have

shown that formulas (69) and (72) define the constant ϵ0
> 0 and function θ ∈ K for Theorem 4.2 independently
of xα � �.

Now, the assertion of Theorem 4.3 follows from
Theorem 2.1. �

In Section 6, we demonstrate the approach of
Theorem 4.3 with several examples, where the system of
algebraic equations (40) will be solved numerically.
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5. Auxiliary results and proofs

To prove Theorem 3.1, we rewrite the Volterra series (12)
by using the first-order Lie brackets as follows:

x(t; x0, u)

= x0 +
m∑
k=0

fk(x0)
∫ t

0
uk(s)ds

+ 1
2

m∑
i, j=0

∂ f j(x0)
∂x

fi(x0)
∫ t

0
ui(s)ds

∫ t

0
uj(s)ds

+ 1
2

∑
i< j

[ fi, f j](x0)
∫ t

0

∫ s

0

{
uj(s)ui(v )

− ui(s)uj(v )
}
dv ds + R2(t ), t ∈ [0, τ ], (73)

where R2(t) is the sum of the last two terms of for-
mula (12).

We need two auxiliary lemmas, whose proofs can be
found in Zuyev (2016).

Lemma 5.1: Let D̃ ⊂ R
n be a closed convex domain, and

let x(t ) ∈ D̃, 0 � t � τ , be the solution of system (1) cor-
responding to initial value x(0) = x0 ∈ D̃ and control u
� C[0, τ ]. If the vector fields f0(x), f1(x),..., fm(x) satisfy
assumptions∥∥∥∥∂ fi(x)

∂x

∥∥∥∥ ≤ M1,

∥∥∥∥∂2 fi j(x)
∂2x

∥∥∥∥ ≤ M2,

i = 0,m, j = 1, n, (74)

in D̃ with some positive constants M1 and M2, then the
remainder R2(τ ) of the Volterra expansion (73) satisfies the
following estimate:

‖R2(τ )‖ ≤ M0

M1

{
eM1Uτ − 1

2
(
(M1Uτ + 1)2 + 1

)}
+ M2M2

0
√
n

4M3
1

{ (
eM1Uτ − 2

)2 + 2M1Uτ − 1
}

= M0(M2
1 + M2M0

√
n)

6
U 3τ 3 + O(U 4τ 4).

(75)

Here,M0 = max0≤i≤m ‖ fi(x0)‖, U = 1 + max0≤t≤τ∑m
i=1 |ui(t )|.

Lemma 5.2: Let x(t ) ∈ D̃ ⊂ R
n, 0 � t � τ , be a

solution of system (37) with a control u � C[0, τ ],
and let ‖ fi(x′) − fi(x′′)‖ ≤ M1‖x′ − x′′‖, M1 >

0, for all x′, x′′ ∈ D̃, i = 1, 2, . . . ,m. Then,

‖x(t ) − x(0)‖ ≤ M0

M1
(eM1Ũt − 1), t ∈ [0, τ ], (76)

where M0 = max1≤i≤m ‖ fi(x(0))‖, Ũ = max0≤t≤τ∑m
i=1 |ui(t )|.

Proof of Theorem 3.1: By substituting controls (14) into
formula (73) with x0 = xα � D and computing the inte-
grals, we obtain

x(τ ; xα, u) = xα + τ

⎛⎝ f0(xα) +
∑
i∈S0

vi fi(xα)

⎞⎠+ τ 2

2
V20

+ τ 2

2π
V21 + R2(τ ), (77)

where the terms V20 and V21 are given by formu-
las (16) provided that Assumption 3.1 holds. For given
xα , xω � D and τ > 0, we assume that the vector a =(
(vi)i∈S0, (ai)i∈S1, (ai j)(i, j)∈S2

)∗ ∈ R
n satisfies the system

of algebraic equations (15) and K ∈ (Z \ {0})|S1|+|S2| sat-
isfies Assumption 3.1. Then, formulas (15) and (77) imply
that x(τ ; xα , u)= xω + R2(τ ), where x(t; xα , u) is the solu-
tion of system (1) with the control u = u(t) of form (14).
Thus, it suffices to prove that

‖R2(τ )‖ ≤ ε1 (78)

and

‖x(t; xα, u) − xα‖ ≤ ε, t ∈ [0, τ ]. (79)

We estimate the sum of components |ui(t)| in for-
mula (14) as follows:

m∑
i=1

|ui(t )|

≤
∑
i∈S0

|vi| +
∑
i∈S1

|ai|
∣∣∣∣sin(2πKit

τ

)∣∣∣∣
+

∑
(i, j)∈S2

|ai j|
(∣∣∣∣cos(2πKi jt

τ

)∣∣∣∣+ ∣∣∣∣sin(2πKi jt
τ

)∣∣∣∣)
≤
∑
i∈S0

|vi| +
∑
i∈S1

|ai| + √
2
∑

(i, j)∈S2
|ai j|.

Hence, Uτ = (
1 + max0≤t≤τ

∑m
i=1 |ui(t )|)

)
τ ≤(

1 +∑
i∈S0 |vi| +∑

i∈S1 |ai| + √
2
∑

(i, j)∈S2 |ai j|
)
τ = Ū ,

where Ū is given in (20). As the right-hand side of
inequality (75) is strictly increasing with respect to
U ∈ R

+ and Uτ ≤ Ū , inequality (78) follows from con-
dition (18) because of Lemma 5.1 with D̃ = B̄ε(xα). To
show that inequality (79) holds, we apply a modification
of estimate (76) for system (1). Indeed, the assertion of
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Lemma 5.2 for system (1) can be formulated as follows:

‖x(t; xα, u) − xα‖ ≤ M0

M1
(eM1Ūt/τ − 1), t ∈ [0, τ ],

(80)

where Ū , M0, and M1 are defined in (17) and (20). Now,
inequality (79) follows from conditions (19) and (80). �

In order to prove Theorem4.1, we rewrite formula (12)
by using the Lie brackets as follows:

x(t; x0, u) = x0 +
m∑
k=1

fk(x0)
∫ t

0
uk(s)ds

+ 1
2

∑
i< j

[ fi, f j](x0)
∫ t

0

∫ τ

0
(uj(τ )ui(s)

− ui(τ )uj(s))ds dτ + 1
3

∑
i< j

m∑
l=1

[
[ fi, f j], fl

]
(x0)

×
∫ t

0

∫ τ

0

∫ s

0

(
ul (τ )

(
uj(s)ui(p)

− ui(s)uj(p)
))
dpds dτ+G(t )+R(t ). (81)

The proof of this fact is presented in Appendix 1 together
with the expression for G(t), and the remainder R(t) is
estimated by the following lemma.

Lemma 5.3: Let D̃ ⊂ R
n be a closed convex domain, and

let x(t ) ∈ D̃, 0 � t � τ , be a solution of system (37) cor-
responding to the initial value x(0) = x0 ∈ D̃ and control
u � C[0, τ ]. Assume that the vector fields f1(x),… , fm(x)
satisfy conditions∥∥∥∥∂ fi

∂x
(x)
∥∥∥∥ ≤ M1,

∥∥∥∥∂2 fik
∂x2

(x)
∥∥∥∥ ≤ M2,

1
6

∑
|α|=3

∣∣∣∣ ∂3 fik(x)
∂xα1

1 · · · ∂xαn
n

∣∣∣∣ ≤ M3, 1 ≤ i ≤ m, 1 ≤ k ≤ n,

(82)

with some positive constants M1, M2, M3, for all x ∈ D̃.
Then, the remainder of the Volterra expansion (81) satis-
fies the estimate

‖R(t )‖ ≤
√
nM0(eM1Ū − 1)

Ū

{
M2

0M3(eM1Ū − 1)2

Ū 2

+
M0M1M2

(
eM1Ū − 1

)
(3n3/2 + 2M1Ū )

12Ū
+

+ M1(M2
1 + 2M0M2)

6

}
U 4t4 if 0 ≤ Ut ≤ Ū ,

(83)

where M0 = max1≤i≤m ‖ fi(x0)‖, U = maxt∈[0,τ ](|u1(t )|
+ · · · + |um(t )|).
Proof: Let us denote by R(N+1)

i (x) the remainder term for
the N-th order Taylor expansion of fi(x) at a point x0 ∈
D̃. If fi(x) is of class CN + 1 in a convex domain D̃, then
R(N+1)(x)may be represented in the Lagrange form of the
remainder as follows:

R(N+1)
i (x) = 1

(N + 1)!

∑
|α|=N+1

∂ |α| fi(θ )

∂θ
α1
1 · · · ∂θ

αn
n

�x1α1 · · · �xnαn ,

�x j = x j − x0j , θ ∈ B̄‖�x‖(x0),

α = (α1, . . . , αn), |α| = α1 + · · · + αn. (84)

To prove the assertion of Lemma 5.3, we use the inte-
gral representation of system (37) with initial conditions
x(0) = x0 and the Taylor expansion for fik(x):

xk(t ) = x0k +
m∑
i=1

∫ t

0
ui(v ) fik(x(v ))dv = x0k

+
m∑
i=1

∫ t

0
ui(v )

{
fik(x0) + ∂ fik(x)

∂x

∣∣∣∣
x=x0

×
( m∑

j=1

∫ v

0
uj(s)

(
f j(x0) + ∂ f j(x)

∂x

∣∣∣∣
x=x0

×
( m∑

l=1

∫ s

0
ul (p)

(
fl (x0) + R(1)

l (x(p))
)
dp
)

+R(2)
j (x(s))

)
ds
)

+ 1
2

⎛⎝ m∑
j=1

∫ v

0
uj(s)

(
f j(x0)

+ R(1)
j (x(s))

)
ds
)∗ ∂2 fik(x)

∂x2

∣∣∣∣
x=x0

×
⎛⎝ m∑

j=1

∫ v

0
uj(s)

(
f j(x0) + R(1)

j (x(s))
)
ds

⎞⎠
+R(3)

ik (x(v ))

}
dv, (85)

where the gradient ∂ fik(x)
∂x is treated as a row vector.

After several transformation, expression (85) takes the
form (12) with

Rk(t ) =
m∑
i=1

∫ t

0
R(3)
ik (x(v ))ui(v )dv +

m∑
i, j=1

∂ fik(x)
∂x

∣∣∣∣
x=x0

×
∫ t

0

∫ v

0
R(2)

j (x(s))ui(v )uj(s)dsdv

+
m∑

i, j,l=1

∂ fik(x)
∂x

∂ f j(x)
∂x

∣∣∣∣
x=x0

∫ t

0

∫ v

0

∫ s

0
R(1)
l (x(p))
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× ui(v )uj(s)ul(p)dpdsdv

+
m∑

i, j=1

f ∗
j (x

0)
∂2 fik(x)

∂x2

∣∣∣∣
x=x0

∫ t

0

(∫ v

0
uj(s)ds

)

×
( m∑

l=1

∫ v

0
ul (s)R(1)

l (x(s))ds

)
ui(v )dv

+ 1
2

m∑
i=1

∫ t

0

⎛⎝ m∑
j=1

∫ v

0
uj(s)R(1)

j
∗
(s)ds

⎞⎠
× ∂2 fik(x)

∂x2

∣∣∣∣
x=x0

⎛⎝ m∑
j=1

∫ v

0
uj(s)R(1)

j (s)ds

⎞⎠
× ui(v )dv . (86)

By estimating the absolute value of Rk(t) term-by-term
in (86) with the use of (84), we get

|Rk(t )| ≤ M3‖�x(t )‖3Ut + M1M̄2

2
‖�x(t )‖2U 2t2

+ M3
1

6
‖�x(t )‖U 3t3 + M0M1M2

3
‖�x(t )‖U 3t3

+ M2
1M2

6
‖�x(t )‖2U 3t3, (87)

where M̄2 = 1
2 supx∈D̃

∑
|α|=2

∣∣∣ ∂2 fik(x)
∂xα1

1 ···∂xαn
n

∣∣∣ . The Cauchy–
Schwarz inequality implies that

M̄2 ≤ n
√
n

2
M2. (88)

The norm of �x(t) = x(t) − x0 is estimated by
Lemma 5.2 as follows:

‖�x(t )‖ ≤ M0

M1

(
eM1Ut − 1

)
, t ≥ 0. (89)

As the function ψ(β) = eβ − 1 is convex, it follows
from (89) that

‖�x(t )‖ ≤ M0(eM1Ū − 1)
M1Ū

Ut, 0 ≤ Ut ≤ Ū . (90)

Component-wise estimates (87) together with inequali-
ties (88) and (90), andU 2t2 ≤ ŪUt , 0 ≤ Ut ≤ Ū imply
estimate (83) for the Euclidean norm of R(t). �

Proof of Theorem 4.1: By substituting the control u
= u(t) of form (39) into the Volterra series (81) with

x0 = xα � D, we get

x(τ ; xα, u) = xα + τ

m∑
k=1

fk(xα)ak + τ 2

4π

×
∑

(i, j)∈S2
[ fi, f j](xα)

a2i j
Ki j

+ τ 3

16π2

×
∑

(i, j,l)∈S3

[
[ fi, f j], fl

]
(xα)

a3i jl
K2
2i jl − K2

1i jl

+ τ 2

2
�(a, xα, τ ) + R(τ ), (91)

provided that Assumption 4.1 is satisfied (the explicit for-
mula for � is in Appendix 2). It is easy to see that the
system of algebraic equations (40) is equivalent to the fol-
lowing condition in terms of representation (91):

x(τ ; xα, u) = xω + R(τ ).

Therefore, if the vectors a ∈ R
n andK ∈ (Z \ {0})|S2|+2|S3|

satisfy the system of algebraic equations (40) and
Assumption 4.1, then it remains to show that

‖R(τ )‖ ≤ ε1 and
M0

M1
(eM1Ut − 1) ≤ ε, t ∈ [0, τ ],

(92)

because of Lemma 5.2 with D̃ = B̄ε(xα), where
U = max1≤i≤m

∑m
i=1 |ui(t )| ≤ Ū/τ, the constants Mi

are given in formulas (41) and (44). To complete the
proof, we conclude that conditions (92) follow from
Lemma 5.3 and inequalities (42) and (43). �

6. Examples

6.1 Ball on the plane

Consider a unit ball rolling on the plane. As it was shown
in Li and Canny (1990), the kinematic equations take the
following form:

ẋ = u1 f1(x) + u2 f2(x), (93)

where x = (x1, x2, x3, x4, x5)∗, f1(x) = (
0, sec x1,

− sin x5, − cos x5, tg x1)∗, f2(x) = (−1, 0, − cos x5,
sin x5, 0)∗. Here, (x1, x2) ∈ R

2 and (x3, x4) ∈ R
2 define

the Gaussian frames, and x5 ∈ (−π
2 , π

2 ) is the angle of
contact. The controls u1 and u2 are related to components
of the angular velocity. By computing the first- and the
second-order Lie brackets, we observe that

span{f1(x), f2(x), [f1, f2](x), [[f1, f2], f1](x),
[[ f1, f2], f2](x)} = R

5,
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Figure . (a)–(e) Components xi(t) of the solution of system () with the initial condition x()= xα and controls (); (f ) time-plot of ‖x(t)
− xω‖.

for all x ∈ R
5 such that x1 �= π

2

(
modπ

)
. Thus, the

(S2, S3)-rank condition (Definition 4.1) is satisfied with
S2 = {(1, 2)} and S3 = {(1, 2, 1), (1, 2, 2)} for all x �
D,D = {x ∈ R

5 | |x1| < π/2}. Following the approach of
Section 4 for steering system (93) from xα � D to xω �
D, we use controls of the form (39):

u1(t ) = a1 + a12 cos
2πK12t

τ
+ a121

(
1 + sin

2πK2121t
τ

)
× cos

2πK1121t
τ

+ a122 cos
2πK1122t

τ
,

u2(t ) = a2 + a12 sin
2πK12t

τ
+ a121 sin

2πK2121t
τ

+ a122
(
1 + cos

2πK1122t
τ

)
sin

2πK2122t
τ

, (94)

with the coefficients a = (a1, a2, a12, a121, a122)∗ ∈ R
5

and parameters K = (K12,K1121,K2121,K1122,K2122)
∗ ∈

(Z \ {0})5. For any xα � D and xω � D such that ‖xα −
xω‖ is small enough, there exists a solution a ∈ R

5 of
the system of algebraic equation (40) with some K ∈
(Z \ {0})5 satisfying Assumption 4.1 by Theorem 4.2.

As an example, let us fix xα = (
0, 0, π

36 ,
π
36 ,

π
36

)∗, xω =(
π
36 ,

π
36 , 0, 0, 0

)∗, and τ = 1. It is easy to check that
Assumption 4.1 is satisfied with

K12 = 1, K1121 = 3, K2121 = 5, K1122 = 12, K2122 = 19,
(95)

and a numerical solution of the system of algebraic equa-
tion (40) with these parameters is

a1 ≈ 0.07, a2 ≈ −0.08, a12 ≈ −0.56, a121 ≈ −7.7,
a122 ≈ −0.37. (96)

To illustrate that the above controls solve the local
approximate steering problem (Problem 2.1), we solve
the Cauchy problem for system (93) numerically with the
initial condition x(0) = xα and the controls represented
by (94)–(96) (see Figure 2).

The value of ‖x(τ )− xω‖ from Figure 2(f) can be used
to evaluate the relative accuracy of our local steering algo-
rithm: r̃ = ‖x(τ ) − xω‖/‖xα − xω‖ ≈ 0.027 < 1. Note
that a theoretical upper bound for r̃ is given by the r con-
stant in (2) (Problem 2.1 formulation). This constant can
be estimated from Theorem 4.1 as r = φ(Ū )/‖xα − xω‖,
where the computation of φ(Ū ) by formula (42) is based
on the coefficients a of the control (94) and the upper
bounds of the derivatives of fi(x). Similarly, the maximal
overshoot is estimated by inequality (3): ‖x(t) − xα‖ �
θ(‖xα − xω‖) for all t � [0, τ ], where the right-hand side
can be estimated as θ (s) = θxα (s) by formula (64) from
the proof of Theorem 4.2.

6.2 Rigid bodywith oscillators

Consider a control system

ẋ1 = u1, ẋ2 = u2, ẋ3 = x22u1 − x21u2, x ∈ R
3, u ∈ R

2.

(97)
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Figure . The trajectory of system () with controls () (left figure) and the helix γ (right figure).

These equations describe the motion of a planar
rigid body with two oscillators (Carinena, Clemente-
Gallardo, & Ramos, 2003; Yang, Krishnaprasad, &
Dayawansa, 1996). The vector fields of system (97) are:
f1(x) = (1, 0, x22)∗, f2(x) = (0, 1, −x21)∗, [ f1, f2](x) =
(0, 0, −2(x1 + x2))∗, [[ f1, f2], f1](x) = (0, 0, 2)∗. As
one can see, the first-order Lie bracket does not gen-
erate the remaining direction if x1 = −x2. However,
control system (97) satisfies the (S2, S3)-rank condition
(Definiton 4.1) with S2 = ∅ and S3 = {(1, 2, 1)}:

span{ f1(x), f2(x), [[ fi, f j], fl](x) | (i, j, l) ∈ S3} = R
3

for all x ∈ D = R
3.

In this section, we apply controls (39) to solve the
approximate path-following problem for system (97)
from the point x0 = (1, 0, 0)∗ to xT = (1, 0, 5π)∗ along
the helix γ = {(cos s, sin s, s)∗ | s � [0, 5π]}. The con-
ditions of Theorem 4.3 are satisfied, and we illustrate its
assertion for τ = 1 and a uniform partition of the curve γ

withN= 200, such that xj = (cos (0.025π j), sin (0.025π j),
0.025π j)∗, j = 0, 200. For this purpose, we construct the
π-approximating control for t � [0, 200] in the sense of
Definition 2.1 and Theorem 2.1:

uπ (t ) = ux
0x1 (t ) for t ∈ [0, 1],

uπ (t ) = ux
j−1
τ x j

(t − j + 1) for t ∈ ( j − 1, j],
j = 2, 200, (98)

where ux
j−1
τ x j

(t ) are defined by formula (39) with K1121 =
2, K2121 = 3, for all j ∈ 1, 200:

ux
j−1
τ x j

1 (t ) = a j
1 + a j

121 cos 4πt
(
1 + sin 6πt

)
,

ux
j−1
τ x j

2 (t ) = a j
2 + a j

121 sin 6πt, t ∈ [0, 1].

Here, a j
1, a

j
2, a

j
121 satisfy algebraic equation (46), that

is,a j
1 = x j

1 − x j−1
1 , a j

2 = x j
2 − x j−1

2 , and a j
112 is a real solu-

tion of the following cubic equation:

x j
3 − x j−1

3 = a j
1x

j−1
2

2 − a j
2x

j−1
1

2 + a j
1a

j
2
(
x j−1
2 − x j−1

1
)

+ a j
112

π

(a j
1

3
− 3a j

2

5

)(
x j−1
1 + x j−1

2
)

+ 1
3
a j
1a

j
2(a

j
2 − a j

1) + a j
112

π

(
a j
1 + a j

2
)

×
(
a j
1

6
+ a j

2(5 − 12π)

40π

)

+ a j
121

2

π2

(
11a j

1

192
− 381a j

2

1600

)
+ a j

121
3

40π2 .

Figure 3 illustrates the nature of assertions of
Theorems 2.1 and 4.3: the trajectory of system (97) with
controls (98) remains in some small ε-neighbourhood of
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Figure . Components of the solution of system () with the control u= uπ (t): (a) (x(t), x(t), x(t)), (b) (t, x(t)), (c) (t, x(t)), (d) (t, x(t)).

the helix γ for all t � [0, T], and closely approaches the
target xT at T = 250.

6.3 Underwater vehicle

In this subsection, we illustrate the possibility of using
local controllers of Section 3 for the control design
scheme described in Theorem 2.1. For this purpose, we
consider the equations of motion for an autonomous 3D
underwater vehicle:

ẋ = f0(x) + f1(x)u1 + f2(x)u2 + f3(x)u3,
x = (x1, . . . , x6)∗ ∈ R

6, u = (u1, u2, u3)∗ ∈ R
3, (99)

where x1, x2, x3 are the coordinates of the centre of mass,
and x4, x5, x6 specify the Euler angles,

f0(x) = (0, 0, 0, u0 cos x4tg x5,−u0 sin x4, u0 cos x4 sec x5)∗,
f2(x) = (0, 0, 0, 1, 0, 0)∗,
f1(x) = (cos x5 cos x6, cos x5 sin x6,− sin x5, 0, 0, 0)∗,
f3(x) = (0, 0, 0, sin x4tg x5, cos x4, sin x4 sec x5)∗.

Note that system (99) is a modification of the equations
considered in Nalamura and Savant (1991) for the case
when the angular velocity component along the x3 axis is
not controlled (u0 = const). Therefore, our controls are
the translational velocity u1 = v along the Ox1 axis and
two angular velocity components: u2 = ω1 and u3 = ω2.

It is easy to see that

span{ f1(x), f2(x), f3(x), [ f0, f1](x), [ f1, f3](x),
[ f2, f3](x)} = R

6,

for all x∈R
6 such that x5 �=π

2

(
modπ

)
, so that the (S0,

S1, S2)-rank condition (Definition 3.1) holds with S0 =
{1, 2, 3}, S1 = {1}, S2 = {(1, 3), (2, 3)} for all x ∈ D = {x ∈
R

6 | |x5| < π
2 }. We illustrate the possibility of solving the

path-following problem (Problem 2.2) for system (99) by
using controls of the type (14):

u1(t ) = v1 + a1 sin
(
2πK1t

τ

)
+ a13 cos

(
2πK13t

τ

)
,

u2(t ) = v2 + a23 cos
(
2πK23t

τ

)
,

u3(t ) = v3 + a13 sin
(
2πK13t

τ

)
+ a23 sin

(
2πK23t

τ

)
,

(100)

with the vector of coefficients a =
(v1, v2, v3, a1, a13, a23)∗ ∈ R

6 and parameters K =
(K1,K13,K23)

∗ ∈ (Z \ {0})3.
In particular, to steer system (99) with u0 = 0.25 from

the origin to the target point xT = (0, 0, 1, 0, 0, 0)∗

along the segment γ = {(0, 0, x3, 0, 0, 0)∗ | x3 � [0, 1]},
we construct the control uπ (t) as in Definition 2.1 and
Theorem 2.1 for the partition of γ with xj = (0, 0, j/4, 0,
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0, 0)∗, j = 0, 4. At each step j = 1, 2, 3, 4, we apply con-
trols of the form (100) for (j− 1)τ < t� jτ , τ = 0.1, with
the following parameters:

Step j = 1 : v1 = 0, v2 ≈ 0.087, v3 ≈ 0.001,

a1 = 0, a13 ≈ −17.724, a23 ≈ 8.395;

Step j = 2 v1 ≈ 0.766, v2 ≈ 0.072, v3 ≈ −0.0003,

a1 ≈ 2.781, a13 ≈ −17.336, a23 ≈ 7.879;

Step j = 3 v1 ≈ 0.772, v2 ≈ 0.077, v3 ≈ 0,

a1 ≈ 4.923, a13 ≈ −17.312, a23 ≈ 7.924;

Step j = 4 v1 ≈ 0.771, v2 ≈ 0.076, v3 ≈ 0,

a1 ≈ 8.713, a13 ≈ −17.313, a23 ≈ 7.923.

The above parameters are obtained by solving the system
of algebraic equation (15) with xα = x((j − 1)τ ), xω = xj,
and the integer parameters being chosen as K1 = 3, K13
= 1, K23 = −2 (these parameters clearly satisfy Assump-
tion 3.1). We see in Figure 4 that the controller proposed
is able to solve the approximate path-following problem
for system (99) with the accuracy ‖x(T) − xT‖ < ε1 

0.002 at the final time T = 0.4.

7. Conclusion

In this paper, we have proposed an explicit reduction
of the motion planning problem to systems of algebraic
equations for classes of bracket-generating systems of
steps 2 and 3. To the best of our knowledge, no general
results concerning the solvability of such algebraic sys-
tems of an arbitrary dimension have been published so
far. On the one hand, it has been already proved in Liu
(1997) that any trajectory of the Lie bracket extension
can be approximated by trajectories of the original sys-
tem with highly oscillatory inputs. On the other hand,
we do not use any sequence of trigonometric polynomi-
als with unbounded amplitudes and frequencies here. It
should be also emphasised that our construction provides
explicit formulas for controls and does not use any spe-
cific changes of coordinates (e.g. canonical coordinates
corresponding to the P. Hall basis). Thus, our solvabil-
ity result provides a novel contribution towards the jus-
tification of the use of trigonometric controls for local
and global steering problems. Note that the proofs of
Theorems 3.2 and 4.2 are based on the degree theory, as
the standard implicit function theorem is not applicable
(the nonlinear part of the corresponding vector function
is not differentiable at ã = 0).
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Appendices

A.1 Representation of the Volterra series using the
Lie brackets

Lemma A1: Formula (12) for the solution of system (37)
with initial condition x|t = 0 = x0 can be rewritten in the
form (81) with

G(t ) = 1
2

m∑
i, j=1

∂ fi(x)
∂x

f j(x)
∣∣∣∣
x=x0

∫ t

0
ui(s)ds

∫ t

0
uj(s)ds

+ 1
6

m∑
i, j,l=1

∂

∂x

(
∂ fi(x)

∂x
f j(x)

)
fl (x)

∣∣∣∣
x=x0

∫ t

0
ui(s)ds

×
∫ t

0
uj(s)ds

∫ t

0
ul (s)ds+1

6

∑
i< j

m∑
l=1

×
(

∂ fl (x)
∂x

[ fi, f j](x) + 2
∂

∂x
(
[ fi, f j](x)

)
fl (x)

)∣∣∣∣
x=x0

×
∫ t

0
ul (s)ds

∫ t

0

∫ τ

0
(uj(s)ui(p)

− ui(s)uj(p))dpds. (A1)

Proof: Indeed, straightforward computations show that

m∑
i, j=1

∂ fi(x)
∂x

f j(x)
∫ t

0

∫ τ

0
ui(τ )uj(p)dpdτ

= 1
2

m∑
i, j=1

∂ fi(x)
∂x

f j(x)
∫ t

0
ui(s)ds

∫ t

0
uj(s)ds

+1
2

m∑
i, j=1

∂ fi(x)
∂x

f j(x)
∫ t

0

∫ τ

0

(
ui(τ )uj(p) − uj(τ )ui(p)

)
dpdτ

= 1
2

m∑
i, j=1

∂ fi(x)
∂x

f j(x)
∫ t

0
ui(s)ds

∫ t

0
uj(s)ds

+1
2

∑
i< j

[ fi, f j](x)
∫ t

0

∫ τ

0

(
uj(τ )ui(s) − uj(τ )ui(p)

)
dpdτ.

Analogously, using the formula

6
∫ t

0

∫ τ

0

∫ s

0
ui(τ )uj(s)ul(p)dpdsdτ

=
∫ t

0
ui(s)ds

∫ t

0
uj(s)ds

∫ t

0
ul (s)ds+

∫ t

0
uj(s)ds

×
∫ t

0

∫ s

0

(
ui(s)ul(p) − ul (s)ui(p)

)
dsds
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+
∫ t

0
ul (s)ds

∫ t

0

∫ s

0

(
ui(s)uj(p) − uj(s)ui(p)

)
dsds

+ 3
∫ t

0

∫ τ

0

∫ s

0
ui(τ )

(
uj(s)ul (p)−ul (s)uj(p)

)
dpdsdτ

+
∫ t

0

∫ τ

0

∫ s

0
uj(τ )

(
ul (s)ui(p)−ui(s)ul(p)

)
dpdsdτ

+
∫ t

0

∫ τ

0

∫ s

0
ul (τ )

(
uj(s)ui(p)−ui(s)uj(p)

)
dpdsdτ ,

we transform the remaining part of (12) and obtain
expression (81) with G(t) defined by (11). �

A2. Formulas for�(a, x, τ) and �̃(ã, x)

�(a, x, τ ) =
m∑

i, j=1

∂ fi(x)
∂x

f j(x)
{
aia j +

∑
(q,r)∈S2

aqr
πKqr

(aiδ jr

− a jδir)+
∑

(q,r,s)∈S3

aqrs
π

(
ai
(

δ jr

K2qrs
+ δ jsK2qrs

K3qrs

)

− a j

(
δir

K2qrs
+ δisK2qrs

K3qrs

))}
+ τ

2

m∑
i, j,l=1

× ∂

∂x

(∂ fi(x)
∂x

f j(x)
)
fl (x)

{
2
3
aia jal

+
∑

(q,r)∈S2

(
aqr

π2K2
qr

σ
(2)
1 (a) + aqr

πKqr
σ

(2)
2 (a)

+ a2qr
4π2K2

qr
σ

(1)
1 (a) + a2qr

2πKqr
σ

(1)
2 (a)

+
∑

(k,p)∈S2
(k,p) �=(q,r)

(
aqr

πKqr

akp
πKkp

σ
(1)
3 (a)

+ aqrakp
π2 σ

(1)
4 (a)

))
+ 1

π2

∑
(q,r,s)∈S3

×
(
aqrsσ (2)

3 (a) + a2qrsσ
(1)
5 (a)

+
∑

(k,p,z)∈S3
(q,r,s) �=(k,p,z)

aqrsakpzσ (1)
6 (a)

)
+ 1

π2

×
∑

(q,r)∈S2
(k,p,z)∈S3

akpz
(
aqr
Kqr

σ
(1)
7 (a) + aqrKqrσ

(1)
8 (a)

+aqrσ (1)
9 (a)

)}
,

whereK3qrs = K2
2qrs − K2

1qrs, σ
(2)
k are quadratic forms with

respect to ai, and σ
(1)
s are linear forms with respect to ai,

i = 1,m:

σ
(2)
1 (a) = aia jδlq + a jalδiq − 2aialδ jq,

σ
(2)
2 (a) = aia jδlr − a jalδir,

σ
(2)
3 (a) = aia j

(
δlq

K2
1qrs

+ πδlr

K2qrs
+ πδlsK2qrs

K3qrs

)

+ a jal

(
δiq

K2
1qrs

− πδir

K2qrs
− πδisK2qrs

K3qrs

)
−2aialδ jq

K2
1qrs

,

σ
(1)
1 (a) = ai(δ jqδlq + 3δ jrδlr) + al (δiqδ jq + 3δirδ jr)

− 2a j(δiqδlq + 3δirδlr),

σ
(1)
2 (a) = ai(δ jrδlq − δ jqδlr) + al (δirδ jq − δiqδ jr),

σ
(1)
3 (a) =

K2
kpδ jr

K2
kp − K2

qr
(aiδl p − alδip) − a jδirδl p,

σ
(1)
4 (a) = aiδ jqδlk − alδiqδ jk

K2
kp − K2

qr
,

σ
(1)
5 (a) = 1

4K2
1qrs

(aiδ jqδlq + alδiqδ jq − 2a jδiqδlq)

+ 3
4K2

2qrs
(aiδ jrδlr + alδirδ jr − 2a jδirδlr)

+ δ jr

4K2
2qrs − K2

1qrs
(aiδls + alδis)

−K2
1qrs + 5K2

2qrs

8K3qrs
(aiδ jsδls + alδisδ js − 2a jδisδls)

− 3δ jsK2
2qrs

K3qrs(K1qrs2 − 4K2
2qrs)

(aiδlr + alδir)

− a j

K3qrs
(δirδls + δisδlr),
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σ
(1)
6 (a) = δ jq

K2
1kpz − K2

1qrs
(aiδlk + alδik) + δ jrK2kpz

K2qrs(K2
2kpz − K2

2qrs)
(aiδl p + alδip)

+ K2kpz(
(K1kpz + K2kpz)2 − K2

2qrs
)(

(K1kpz − K2kpz)2 − K2
2qrs
) (δ jr(K3kpz − K2

2qrs)

K2qrs
(aiδl p

+ alδip) −
δ jzK2qrs(3K2

1kpz + K2
2kpz − K2

2qrs)

K3kpz
(aiδlr + alδir)

)
+ δ jsK2kpz

2
(aiδlz + alδiz)

×
(

(K1qrs−K2qrs)
2−K3kpz

(K1qrs−K2qrs)
(
(K1kpz+K2kpz)2−(K1qrs−K2qrs)2

)(
(K1kpz−K2kpz)2−(K1qrs−K2qrs)2

)
+ (K1qrs+K2qrs)

2−K3kpz

(K1qrs+K2qrs)
(
(K1kpz+K2kpz)2−(K1qrs+K2qrs)2

)(
(K1kpz−K2kpz)2−(K1qrs+K2qrs)2

))

− a j

(
δirδl p

K2qrsK2kpz
+ δisδlzK2qrsK2kpz

K3qrsK3kpz
+ K2kpz(δirδlz + δizδlr)

K2qrsK3kpz

)
,

σ
(1)
7 (a) = δ jrK2kpz

K2
2kpz − K2

qr
(aiδl p + alδip) − δ jrK2kpz(K2

qr − K3kpz)(
(K1kpz+K2kpz)2−K2

qr
)(

(K1kpz−K2kpz)2−K2
qr
) (aiδlz

+ alδiz) − a j

(
K2kpz

K3kpz
(δirδlz + δlrδiz) + δirδl p + δlrδip

KqrK2kpz

)
,

σ
(1)
8 (a) = δ jp

K2kpz(K2
qr − K2

2kpz)
(aiδlr + alδir)

−
δ jzKqrKkpz(3K2

1kpz + K2
2kpz − K2

qr)

K3kpz
(
(K1kpz+K2kpz)2−K2

qr
)(

(K1kpz−K2kpz)2−K2
qr
) (aiδlr + alδir),

σ
(1)
9 (a) = ai(δ jqδlk − δlqδ jk) + al (δ jqδik − δiqδ jk)

K2
1kpz − K2

qr
.

The expression for �̃(ã, x) is as follows:

�̃(ã, x) =
m∑

i, j=1

∂ fi(x)
∂x

f j(x)
{
ãiã j

2
+

∑
(q,r)∈S2

|ãqr|1/2√
πKqr

(ãiδ jr − ã jδir)

+
∑

(q,r,s)∈S3
ã1/3qrs

3

√
π2

2
K+
3qrs

(
ãi

(
δ jr

K+
2qrs

+ δ jsK+
2qrs

K+
3qrs

)
− ã j

(
δir

K+
2qrs

+ δisK+
2qrs

K+
3qrs

))⎫⎬⎭
+

m∑
i, j,l=1

∂

∂x

(∂ fi(x)
∂x

f j(x)
)
fl (x)

⎧⎨⎩1
6
ãiã j ãl +

∑
(q,r)∈S2

(
sign(ãqr)|ãqr|1/2

2(πK+
qr )

3/2 σ
(2)
1 (ã)

+ |ãqr|1/2

2
√

πK+
qr

σ
(2)
2 (ã) + |ãqr|

4πK+
qr

σ
(1)
1 (ã) + ãqr

2
σ

(1)
2 (ã) +

∑
(k,p)∈S2
(k,p)�=(q,r)

( |ãqrãkp|1/2
π
√
K+
qrK+

kp

σ
(1)
3 (ã)

+ sign(ãqrãkp)|ãqrãkp|1/2
π
√
K+
qrK+

kp

σ
(1)
4 (ã)

))
+

∑
(q,r,s)∈S3

(
ã1/3qrs

3

√
K+
3qrs

4π4 σ
(2)
3 (ã) + ã2/3qrs

3

√
4K+

3qrs
2

π2 σ
(1)
5 (ã)

+
∑

(k,p,z)∈S3
(q,r,s)�=(k,p,z)

ã1/3qrs ã
1/3
kpz

3

√
4K+

3qrsK
+
3kpz

π2 σ
(1)
6 (ã)

)
+

∑
(q,r)∈S2
(k,p,z)∈S3

ã1/3kpz

6

√
4K+

3kpz
2

π5

( |ãqr|1/2√
Kqr

σ
(1)
7 (ã)

+ |ãqr|1/2K+
qr
3/2

σ
(1)
8 (ã) + sign(ãqr)|ãqr|1/2

√
K+
qrσ

(1)
9 (ã)

)}
, where K+

3qrs = (K+
2qrs)

2 − (K+
1qrs)

2.
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