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ABSTRACT
To control and observe spatially distributed thermal flow systems, the controllable field and observ-
able field around the actuator and sensor are of interest, respectively. For spatially distributed sys-
tems, the classical systems theoretical concepts of controllability and observability are, in general,
difficult to apply. In this study, sensitivity fieldswere used to analyse the behaviour from input to state
and from initial state to output. For the analysis of controllability and observability, a large-scale, bulk
storage facility with coupled thermal flow of air and agro-products was used. Analysis of this system
using the classical systems theory results in controllability and observability results that are depen-
dent on the step size of the spatially discretised system. Due to matrix multiplications, inaccurate
results are calculated if the step size is too small. Our findings indicate that input-state and initial-state
output sensitivity fields provide sufficient information about the controllability and observability of
large coupled spatially distributed systems, using finite-dimensional state space representation with
small discretisation steps.

Nomenclature

AAA State matrix
a a Diffusion coefficient in air
a p Diffusion coefficient in product
BBB Input matrix
CCC Output matrix
CCC Controllability matrix
c Convection coefficient in air
DDD Feed-forward matrix
h Step size
L Length
MMM Matrix
n Coordinates
OOO Observability matrix
P Péclet number
r Reaction coefficient
SSS Sensitivity field
T Temperature
t Time
T Final time
uuu Input vector
v Velocity

WWWc Controllability Gramian
WWWo Observability Gramian

XXX , xxx State vector
ẋxx Time differentiated state vector

CONTACT Karel J. Keesman karel.keesman@wur.nl

yyy Output vector
z Coordinates
α Input
� Laplace operator
κ Condition number
λ Eigenvalue
μ Weighted singular value
� Vector differential operator nabla
τ Response time
σ Singular value

1. Introduction

Convection–diffusion–reaction (CDR) equations are
used to describe the dynamic behaviour of mass and
energy in a wide range of physical systems, such as,
for instance, heat exchangers, flow systems, all types of
chemical reactors, but also bulk food-storage systems
(see e.g. Chourasia & Goswami, 2007; Garzon-Alvarado,
Galeano, &Mantilla, 2012; Lopes &Quita-Ferreira, 2011;
Nagarajan, Chen, Wang, & Ma, 2015). In these systems,
physical phenomena, such as the transfer of momen-
tum, mass, energy or other physical quantities, typically
occur within the system and through the system bound-
aries. To have some influence and information on these
systems they are controlled and observed (see e.g. Brecht,
Quanten, Zerihundesta, Buggenhout, & Berckmans,
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2005; Dochain, Couenne, & Jallut, 2009; Moham-
madi, Aksikas, Dubljevic, & Forbes, 2012). For proper
control and sensing of such systems, controllability and
observability play central roles (Storkaas & Skogestad,
2007; Varga, Hangos, & Szigeti, 1995).

This article focuses on systems theoretical properties
of one- and two-dimensional (i.e. 1D and 2D) thermal
flow in porous media, as in, for example, bulk food-
storage facilities (Grubben & Keesman, 2015). In such
systems, flow is often described by the law of conser-
vation of momentum, and continuity equation in one,
two or three dimensions (Chourasia & Goswami, 2007).
Other transport phenomena, such as mass and energy
transfer in the bulk, and between the food bulk and the
air, are described by the laws of conservation for mass
and energy, and constitutive laws. The modelling of such
dynamic- and spatially distributed systems most often
results in a set of coupled, non-linear, partial differential
equations (PDEs) that must be solved numerically.

In our specific example of a bulk food-storage facil-
ity used for the storage of potatoes, onion or wheat, the
practical goal is to maintain the quality of the food prod-
ucts at a certain level for a longer time. Due to the inter-
action between the climate in the facility and the food
product itself, the product quality is controlled by the cli-
mate, whereas the climate inside of the bulk is controlled
by forced- or natural convection of air. In practice, and in
the case of forced convection,most often, air with a piece-
wise constant flow rate is supplied. The air is streamed
from the bottom of the bulk, through the porousmedium
(bulk matter), to the top layer of the bulk. From there, it
either leaves the facility through an outlet or is recircu-
lated (Figure 1).

Figure . D configuration of a bulk storage facility. The cli-
mate is controlled by ventilating air from bottom to top through
the porous medium. Here, �a is the air domain, �a the pres-
sure chamber, �p the porous medium domain and �e the
environment.

In the following, only thermal flow due to forced
convection with zero or constant air velocity is consid-
ered. Hence, from a theoretical system perspective, a
piece-wise, linear time-invariant (LTI), 2D coupled CDR
system is obtained. The system states taken into consid-
eration are the temperature of the air (Ta) and the tem-
perature of the product (Tp), more precisely Ta(z, t) and
Tp(z, t), where z represents the spatial coordinate and
t time. From practice, it is known that these systems
are unstable, due to biological processes. For instance,
rotting- and ageing processes of the product are non-
reversible, although these processes can be stabilised
by recirculating air. State-of-the-art control in storage
facilities aims to maintain temperature, and sometimes
humidity, around a certain pre-specified level to prevent
rotting and to diminish moisture loss and the effects of
ageing. Novel control concepts, however, aim to control
product quality directly (Grubben & Keesman, 2015). In
addition, it is preferable to have a homogeneous quality in
the entire bulk, whilstminimising ventilation costs. These
requirements necessitate a model-based control strategy.
However, before designing such a control strategy, the key
question is: Can the internal states of the system, Ta and
Tp, move from any initial-state to any other final-state in
finite time? If this is the case, the system is referred to as
controllable.

Formally, from a systems theory perspective, the sys-
tem is said to be controllable if, and only if, it is possi-
ble to transfer the system from the zero state x(t0), at any
initial time t0, to any terminal state x(t1) = x1 within a
finite time t1 − t0 (Kwakernaak & Sivan, 1972). For the
bulk storage system, this implies that at a specific time
instant, it would be possible to create an arbitrary tem-
perature profile, in, for instance, the vertical direction. In
bulk-food storage practices, however, such a requirement
is too strict. Therefore, the formal definition of controlla-
bility is not appropriate in this case.

To obtain current information about the states in the
system, some observations should be available. In systems
theory, a system is referred to as observable, if, and only
if, it is possible to determine any (arbitrary) initial state
x(t0)= x0 by using only finite output data records y(t) for
t0 � t� t1 (Friedland, 2005). For sensor location in a spa-
tially distributed system, however, the systems theoretical
concept of observability does not provide sufficient infor-
mation. In practice, for spatially distributed systems, the
observable field around the sensor would be of interest. In
conclusion, for practical insight into spatially distributed
systems, the systems theoretical concepts of controllabil-
ity and observability provide insufficient insight.

For relatively simple, linear CDR systems, infinite-
dimensional system theory (Curtain & Zwart, 1995)
could be used to analyse the controllability and

INTERNATIONAL JOURNAL OF CONTROL 1555



N. L. M. GRUBBEN AND K. J. KEESMAN

observability in depth (see Jai, Simon, Zerrik, &
Pritchard, 1995 and Amouroux, Jai, & Zerrik, 1994,
respectively). For coupled CDR systems, as in this case,
with complex coupled dynamics between air and prod-
uct in the storage facility, this theory is commonly not
applicable.

The objective of this paper is to provide more infor-
mation about the spatial distribution of air- and product
temperature in bulk storage facilities, for actuation and
sensing. The concepts of controllability and observability
are investigated by analysing the behaviour from input to
state and from initial-state to output of a dynamic, spa-
tially distributed system. The input-to-state analysis gives
the relation between the control input, generated by the
actuator, to the state variables over time, and over the
entire spatial domain. The initial-state-to-output analy-
sis provides the relation between the sensor output and
the initial-state over time, and over the entire spatial
domain. In the paper, these relationships are investigated
using sensitivity analysis (SA), see e.g. Tomovic (1963) or
Saltelli, Chan, and Scott (2000).

A local SAof ourCDR system, using partial derivatives
of the state-to-input or output-to-initial-state, led to the
study of in- and output sensitivity fields. By spatially dis-
cretising the set of partial differential equations, describ-
ing heat transfer in the bulk storage, a large set of ordinary
differential equations is obtained. In such a case, typically
a direct method (DM) SA (Dickinson & Gelinas, 1976)
can be carried out.

The outline of the paper is as follows. First, in
Section 2, some background on the systems theoretical
concepts of controllability and observability for CDR sys-
tems, using a state-space representation, is presented. A
singular value decomposition (SVD) of the resulting con-
trollability and observability matrices provides some fur-
ther insights compared to the conventional controllabil-
ity and observability analyses. However, the SVD-based
controllability and observability measures are numerical
measures, influenced by the discretisation step size. These
concepts are illustrated by an analysis of controllability
and observability, and singular values corresponding to
a 1D CDR system in Section 3. The main contribution of
the paper, however, is the construction of in- and output
sensitivity fields for CDR systems. First, in Section 4, a
single-state, 1D, CDR system is used to illustrate the the-
ory of in- and output sensitivity fields for CDR systems,
followed by a detailed analysis of a 2D, coupled, CDR sys-
tem in Section 5.

2. Systems theory

Classical systems theory can be applied to a wide range
of systems. However, for some applications, concepts in

systems theory are too strict, and additional informa-
tion is required. For instance, applying controllability and
observability theory on CDR models of temperature in a
bulk storage facility only gives a very initial impression of
the systems behaviour. In this section, conventional con-
trollability and observability theory, including the SVD
of the resulting controllability and observability matrices,
will be applied first on a 1D boundary controlled CDR-
system to demonstrate the limitations of this theory in
practice.

2.1 Controllability and observability for boundary
controlled CDR systems

Typically, a boundary controlled CDR system is charac-
terised by the partial differential equation:

(
∂XXX
∂t

+ vvv · �XXX
)

= a�XXX + rrrX in (0, t] × �d (1)

XXX = uuudirichlet on (0, t] × ∂�d1 (2)

∂XXX
∂n

= uuuneumann on (0, t] × ∂�d2 (3)

Thus, including Dirichlet (2) and Neumann (3)
boundary conditions, at the corresponding boundaries
��d1 and��d2, respectively. Here,XXX ∈ R

N is a state vec-
tor, t represents time, vvv is the velocity vector, c the diffu-
sion coefficient, rrrX a first-order reaction vector, uuudirichlet
is the input uuu on boundary ��d1 and uuuneumann the flux
through the boundary ��d2. For the three-dimensional
(3D) case;∇ = [ ∂

∂x
∂
∂y

∂
∂z ]

T and� := ∇2 = [ ∂2

∂x2 + ∂2

∂y2 +
∂2

∂z2 ]. Discretisation in space results in a state vector X ∈
R

n containing the set of state variables X for every grid
point i = 1,… , I. In our example, vvv is constant and, thus,
the Equation (1) is approximated by a set of n = NI first-
order linear differential equations: extending the set of
differential equations with a set of algebraic output equa-
tions gives:

ẋxx(t ) = AAAxxx(t ) + BBBuuu(t )
yyy(t ) = CCCxxx(t ) +DDDuuu(t ) (4)

Here, xxx = [x1, x2, . . . , xn]T ∈ R
n is the spatially discre-

tised state vector of the system with x(0) = x0, uuu =
[u1, u2, . . . , um]T ∈ R

m is the input vector and yyy =
[y1, y2, . . . , yp]T ∈ R

p is the output vector. Furthermore,
the matrices AAA,BBB,CCC and DDD in the LTI system (4) are of
appropriate dimensions. As follows, the n × n system
matrix AAA requires special attention. If, however, vvv is not
constant, a linearisation step is needed, most often lead-
ing to a LTV (linear time-varying) system.
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The LTI system (4) is controllable, if, and only if, the
rank of the controllability matrix:

CCC = [BBB AAABBB AAA2BBB · · · AAAn−1BBB] (5)

is equal to n, so of full (row) rank (Kalman, 1959). The
controllability matrix multiplied with its transpose gives
the n × n controllability Gramian:

WWWc = CCCCCCT (6)

Similarly, an LTI system is observable, if, and only if,
the rank of the observability matrix:

OOO =

⎡
⎢⎢⎢⎢⎢⎣

CCC
CACACA
CACACA2

...
CACACAn−1

⎤
⎥⎥⎥⎥⎥⎦ (7)

is equal to n, so in this case of full (column) rank
(Kalman, 1959). The transpose of the observability
matrix post multiplied with OOO gives the n × n observ-
ability Gramian:

WWWo = OOOTOOO (8)

Consequently, given (1) with constant velocity vector vvv ,
state discretisation rank tests provide strict controllability
and observability information on the LTI system.

2.2 Singular value decomposition

Controllability and observability theory, as presented in
the previous section, gives satisfying information about
the relation between the inputs and states, and outputs
and states, but only in terms of true or false. As demon-
strated in the following, a numerical rank test on the con-
trollability and observability matrices will give further
insight. As such, a SVD of the Gramian of CCC andOOO may
give this additional information.

In general, the singular values of a rectangular matrix
provide a near-singularity measure. For instance, for a
non-squarematrixMMM the decomposition provides insight
in the contribution of each element in each direction,
determined by the left- and right singular vectors. The
SVD of an m̃ × ñmatrixMMM is defined as:

MMM =UUU


VVVT (9)

Here, UUU is a m̃ × m̃ orthogonal matrix (containing left
singular vectors), VVV is a ñ × ñ orthogonal matrix with
right singular vectors and


 is a m̃ × ñ pseudo-diagonal

matrix with the singular values σ i on the diagonal, which
are sorted as σ1 ≥ σ2 ≥ · · · ≥ σmin(m̃,̃n). The singular
values are the square-roots of the eigenvalues ofMMTMMTMMT :

σi =
√

λi(MMTMMTMMT ), i = 1, . . . ,min(m̃, ñ) (10)

The SVD of CCC andOOO, respectively, can be used to quan-
tify the controllable- and observable states. For example,
uncontrollable states, possibly after applying a state trans-
formation (Doren, Hof, Bosgra, & Jansen, 2013), can be
found from the null space of CCC, which is spanned by the
i-th columns ofVVV corresponding to the zero singular val-
ues σ i. Similarly, unobservable states can be found from
the null space ofOOO. Extending the tests to near-zero sin-
gular values allows the detection of states that are very dif-
ficult to control or estimate from observed input-output
data.

2.3 A 1D CDR system

For further insight into the controllability and observabil-
ity properties of a physical system for the heat transfer, an
air temperature balance of a porous medium with con-
vection, diffusion and reaction terms is used. In the first
analysis, the system is 1D and has a Dirichlet boundary
condition for z= 0 and a Neumann boundary conditions
for z = L. Hence, the complete system is defined by:

∂T
∂t

= a
∂2T
∂z2

− c
∂T
∂z

− rT

T (t, 0) = α,
∂T
∂z

(t, L) = 0 (11)

Here, T is the air temperature. For a specific, potato
bulk storage facility (see Grubben & Keesman, 2015,
Lukasse, deKramer-Cuppen, &Voort, 2007): a= 0.00002
(m2/s), c = 1 (m/s), r = 1 (1/s), α = 1 (K) and L =
1 (m). For relatively simple partial differential equations,
such as (11), linear infinite- dimensional system theory
(Curtain & Zwart, 1995) could be used. However, for
complex, coupled systems, analytical solutions become
intractable. Therefore, (11) and in the following equa-
tions, such as: (11), are discretised in space using central
difference methods, leading to:

Ṫ (t, zi) = a
T (t, zi−1) − 2T (t, zi) + T (t, zi+1)

�h2

−c
−T (t, zi−1) + T (t, zi+1)

2�h
− rT (t, zi)

(12)

Here, zi = i�h is the distance from z = 0, i = 0, 1, 2,… ,
I − 1 with I total amount of grid points and �h = L

I−1
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the step size with L total length. A central differential
method gives a more accurate solution compared to
the forward- or backward difference method, due to
the second-order accuracy on h (truncation error).
Notice that a � c, which results in a large Péclet number
Pe = cL

a and consequently, a large mesh Péclet number
P = c�h

a . This large Péclet number results in a non-
monotonous discretised state matrix AAA. In numerical
calculations, this may easily lead to oscillatory behaviour,
shown as follows. Rearranging the right-hand side
of (12):

a
�h2

[ (P
2

+ 1
)

(T (t, zi−1) − T (t, zi)) + h
(

−P
2

+ 1
)

×(T (t, zi+1) − T (t, zi)) − �h2

a
rT (t, zi)

]
(13)

A monotonous, tri-diagonal AAA matrix is obtained if
|P| < 2. To satisfy this condition for system (11), with
high convection and low diffusion rates, a very small step
size �h, (I = 25, 000) should be used. If this small step
size is used, numerical calculations of the system theory
result in numerical errors. Therefore, a step size should
be selected that is appropriate for the matrix calculations
and results in minimal oscillatory solution. Another,
but less accurate, method to avoid oscillations is to use
a central-upstream differential scheme (Lynch, 2005).
However, this method is not appropriate for our case,
due to the repetitive multiplications of the AAA matrix in
(5) and (7) for the controllability and observability tests.

3. Controllability and observability of a 1D CDR
system

The system theory discussed in Section 2 is now applied
to a 1D CDR system. The 1D system basically represents
the porous medium domain, as de-pictured in Figure 1,
with constant vertical flow.

3.1 Controllability and observability

Controllability and observability theory leads to a sep-
aration of the state space R

n into two spaces: the
controllable/observable and the non-controllable/non-
observable subspace. Commonly, these subspaces are
determined numerically and, thus, the result depends on
the numerical tolerance. For decreasing grid size steps,
the values in the tri-diagonal system matrix AAA increase,
which causes an increase in the dimension of the non-
controllable space. For instance, in Matlab R2015b, the
tolerance of the rank determination is calculated as: toler-
ance = max(size(CCC) ∗ eps(norm(CCC)), where norm is the
2-norm of matrix CCC (||CCC||2), and eps specifies the distance
from1.0 to the next largest double-precision number, that

is eps = 2(−52) � 2.22e(− 16). For the 1D CDR system (11)
with single-input and single-output (SISO):

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 2a
h2 + r − c

2h + a
h2 0 · · · 0

c
2h + a

h2 − 2a
h2 + r − c

2h + a
h2

...

h0h
. . . . . . . . . 0
... u

2h + a
h2 − 2a

h2 + r − c
2h + a

h2
0 · · · 0 2a

h2 − 2a
h2 + r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

BBB =

⎡
⎢⎢⎢⎣

α
( c
2h + a

h2
)

0
...
0

⎤
⎥⎥⎥⎦, CCC = [

0 · · · 1 0 0
]

(14)

where h = �h. For a = 0.00002 (m2/s), c = 1 (m/s),
r = 1 (1/s), α = 1 (K) and L = 1 (m), the controllability
and observability rank test gives full rank up to a discreti-
sation step size of L/12 and L/13, respectively:

rank(CCC) = [BBB AAABBB AAA2BBB · · · AAA11BBB] = 12

rank(OOO) =

⎡
⎢⎢⎢⎢⎢⎣

CCC
CACACA
CACACA2

...
CACACA12

⎤
⎥⎥⎥⎥⎥⎦ = 13 (15)

For a smaller step size of, for instance, L/16 rank(CCC) = 11
and rank(OOO) = 10.

3.2 Singular value decomposition ofW c andW o

A more detailed analysis can be performed by a SVD
of the Gramians of the controllability and observabil-
ity matrices. Zandvliet et al. (2008), for example, used a
SVD of the Gramians in the analysis of a single-phase
porous medium flow (LTI) system. Space discretisation
of the 1D CDR system, as in Section 2.3, results in a tridi-
agonal matrix with non-dominant diagonal and poten-
tially oscillating behaviour, if the step size chosen is
too large.With too small step size, the numerical SVDs
become unstable. The condition number ofWcWcWc andWoWoWo,
respectively, will give an indication which spatial discreti-
sation step size would be appropriate.

The condition number of the rectangular matrixMMM is
defined as the ratio of the maximum (σmax) and mini-
mum (σmin) singular value, that is

κ(MMM) = σmax(MMM)

σmin(MMM)
(16)
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A large condition number implies thatmatrixMMM is poorly
conditioned, and, thus, a small condition number implies
a well-conditioned matrix MMM. From numerical analysis,
it is known that if the condition number κ = 10k, then
up to k digits of accuracy can be lost (Cheney & Kin-
caid, 2008). It is possible that a large condition number
causes the matrix MMM to become non-invertible due to
errors in rounding-off. Hence, if large condition numbers
are obtained, small changes in the system parameter can
result in a non-invertible matrix. For a convection diffu-
sion system, as in (11) with a = 0.00002 [m2/s], c = 1
[m/s] and r = 1 [1/s], and step size of 1/12, the condition
numbers are:

κ(WcWcWc) = σmax(WcWcWc)

σmin(WcWcWc)
= 2.7 · 1025

κ(WoWoWo) = σmax(WoWoWo)

σmin(WoWoWo)
= 3.8 · 1018 (17)

The condition numbers of the controllability and observ-
ability matrix are very high, and, therefore, the matri-
ces are poorly conditioned. This poor condition is due to
the large Péclet number, which results in wiggles in the
discretised system. If the condition number approaches
the inverse of the floating point number of the machine
4.5e15 (inverse eps value), precision cannot be guaran-
teed (Moler, 2004). Hence, from the perspective of con-
dition number, a larger step size should be chosen, at the
expense of a larger discretisation error. Another option
to obtain a better conditioned system is to use a forward-
central discretzation method. A forward-central method
for systems with large Péclet number, in general, results
in a system with less wiggles. For further analysis of con-
trollability and observability properties, we will focus on
a singular value composition ofWcWcWc andWoWoWo, respectively.
In this case:UUU =VVV , an n × nmatrix.

The singular values (σ i) on the diagonal of the matrix



 (9) correspond to the i-th column of the left sin-
gular vector Ui. Consequently, every non-zero singu-
lar value corresponds to a set of weighting factors in
the controllable or observable spatially discretised state
space. The weighting factors define directions in the state
space. Hence, if, for instance, σ i = 0, the corresponding
weighting factors in the i-th column ofUUU (9) determine
the direction in state space, which is uncontrollable or
unobservable. Multiplying the singular value σ i with the
corresponding direction vector UUUi gives the contribu-
tion in the controllable or observable space, of every grid
point:

μμμi = σiUUUi (18)

Following vanDoren et al. (2013), the sum of the singular
value multiplied by the corresponding direction gives the
contribution of every grid point:

μμμ =
n∑

i=1

σiUUUi (19)

Applying this on the controllability (6) and observability
(8) Gramians of the CDR system (11), with L= 1 and h=
1/12 results inμμμc andμμμo respectively. From the controlla-
bility SVDof the controllability Grammian, it follows that
the contribution (μcμcμc) of the first eight states are the largest
and of the same order. Therefore, the first states are influ-
enced most by the input α. The observability SVD for a
sensor on z = 0.9 (m) show that the contribution (μoμoμo) of
the states six to ten are the largest and of the same order.
Therefore, these five states are best observable. In both
cases, the states that contribute most show some wiggling
behaviour. Hence, we have an initial impression of which
states are controllable and observable. However, the anal-
ysis does not provide a full quantitative information of the
spatial distribution of the input on the states or the output
measurement on the state observability.

4. Input and output sensitivities of 1D CDR
systems

For spatially distributed CDR systems, classical control-
lability and observability analysis, even extended with
an SVD, as in the previous section, may provide insuf-
ficient theoretical information of the system with bound-
ary control. The combination of diffusion, convection
and reaction terms of the physical system (11) with large
Péclet number causes the discretised system matrix AAA
(14) to have a non-monotonous tridiagonal form. As
already mentioned in Section 3.2, a non-monotonous
matrix potentially shows oscillating behaviour.

Furthermore, a system is said to be controllable, if it is
possible to transfer the system from any state to any other
state in finite time. And a system is said to be observable,
if it is possible to determine any (arbitrary) initial state by
using only finite output data records. However, the the-
ory does not give insight about the time afterwards, or
a quantity of the spatial distribution where the system is
controllable and observable. Input and output sensitivity
fields provide such information. Using a input sensitivity
field, the impact of the actuator on every state can be visu-
alised, or at least interpreted. The output sensitivity field
can give information about the domain that is observable,
given a specific sensor location.

For the LTI state space representation, as defined in
(4), the input and output sensitivity fields will be analysed
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Figure . Left, D input sensitivity field simulated for different diffusion coefficients without convection, thus c= . Right: D input sensi-
tivity field simulated for different convection coefficients, including diffusion (a= .).

in more detail form = p = 1, thus, the SISO case. All the
dynamic relations in the system are covered by (4), and by
taking derivatives of the state equation to input and the
output to the initial state sensitivities can be calculated in
each grid point. Therefore, the DM (Dickinson & Geli-
nas, 1976) are used to calculate the sensitivities, defined
by

SSSx �
(

∂xxx
∂u

)
, SSSy �

(
∂yyy
∂xo

)
(20)

4.1 Input sensitivity of 1D thermal flow in a bulk
storage facility

Adirect relation between the sensitivity of the state vector
(xxx) with respect to a constant input (u), and denoted asSSSx,
can be derived from the state equation in (4) and is given
by:

∂

∂u

(
dxxx
dt

)
= ∂

∂u
(AAAxxx + BBBu) , u := constant (21)

d
dt

(
∂xxx
∂u

)
= AAA

∂xxx
∂u

+ BBB (22)

ṠSSx = AAASSSx + BBB, SSSx(0) = 0 (23)

Consequently, SSSx(t ) = ∫ t
0 e

AAA(t−s)BBBds. SinceAAA is the given
systemmatrix andBBBdepends on the actuator location, the
influence of the actuator on every place in the grid on the
states in the grid can be determined.

Starting from Equation (11), two different cases can be
distinguished. First, we consider the case, in which dif-
fusion dominates, followed by the case, in which con-
vection dominates. For the first case, in which diffusion
dominates, four different diffusion rates a= 0.00002, a=
0.0002, a = 0.002, a = 0.02 (m2/s) were selected and, c =
0 (m/s), r = 1 (1/s) and α = 1 [°C]. For the second case,
in which convection dominates, a = 0.00002 (m2/s), r =

1 (1/s) and α = 1 [°C], and four different convection rates
c = 0.5, c = 1.0, c = 1.5, c = 2.0 (m/s) were selected. The
system has a Dirichlet boundary condition at z = 0 and a
Neumann boundary condition at the end (z = L) of the
profile. In Figure 2 for dominating diffusion (left) and for
dominating convection (right) the steady state values of
the sensitivity fields with a discretisation step of L/200 are
shown.

For the steady state simulations, as shown in Figure
2, a simulation time of ten seconds is used. From
the physical knowledge of the system to reach steady
state, this simulation time is long enough, due to the
large convection rate (1 (m/s)). Figure 3 shows the
change of input sensitivity over time in the first sec-
onds. From Figure 3, it can be seen that the sensitivity at
z= 0 ismore or less the same for every simulation time.At
time t= 5 (s), a steady state is obtained (using a= 0.00002
(m2/s), c= 1.0 (m/s), r= 1 (1/s),α = 1 [°C]), and sensitiv-
ity does not increases further. Hence, in this case, with u
piece-wise constant on a time interval of 10 (s), the input
sensitivity can be directly seen in the right panel of Figure
2. Notice that the steady state sensitivity of the actuator on

Figure . D input sensitivity field simulated for . to  seconds,
using a = . (m/s), c = . (m/s), r =  (/s), α =  (°C), L =
 (m) and grid size of�z= L/.
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the states can be checked from (23):

S̄̄S̄Sx = −AAA−1BBB (24)

The SA of a systemwith only diffusion-reaction processes
provides insight between the diffusion rate and the con-
trollability of the states. For smaller diffusion rates, the
effect of the input on the states fades out fast. So, there is
some influence from the input to the state only at small
distances from the actuator, see left panel of Figure 2.
Varying the convection rate in a CDR equation results in
comparable results, as a small convection rate results in
smaller sensitivities from the input to the state, see right
panel of Figure 2. From the results in Figure 2 (left panel),
we conclude that a tenfold increase of the diffusion rate
will lead to the same sensitivity at roughly three times of
the original distance. Doubling the convection rate results
in the same sensitivity at roughly two times of the original
distance (Figure 2, right panel).

As seen in the left and right panels of Figure 2, the sim-
ulations were not conducted for the same length. In the
diffusion-reaction case L = 1 (m), whilst in the CDR, a
length of L = 10 (m) was chosen. However, the results
show that the length used in different simulations does
not affect the magnitude of the steady state values of the
sensitivity field.

4.2 Output sensitivity of 1D thermal flow in bulk
storage facility

The output of (4) withDDD = 0 is given by:

yyy(t ) =CCCxxx(t ) (25)

The solution of an LTI system (4) withm= p= 1 (SISO),
u(t) = 0 for t <0, and D = 0 is given by:

y(t ) =CCC
[
eAAAtxxx(0) +

∫ t

0
eAAA(t−s)BBBu(s)ds

]
(26)

The relationship between the output y and the initial-state
xxx(0) can be derived directly from Equation (26). Taking
the derivative of the outputwith respect to the initial-state
(xxx(0) = xxx0), according to (20),

SSSy = dy(t )
dxxx0

=CCCeAAAt (27)

Hence, for asymptotic stable systems the sensitivity
from the output to the initial- state ranges from zero for
time to infinity. In the following, instead of SSSy, the Fisher
InfiniteMatrix (FIM) is introduced to allow a direct inter-
pretation of the uncertainty in the estimation of the states.

The FIM is given by sum of the dot product of the output
sensitivity for every time step on each grid point:

FIMSSSy =
∫ tt

0
SSSy(t )TSSSy(t )dt (28)

For the output SA, the diagonal of FIMSSSy is taken for
each simulation time tt. This diagonal contains informa-
tion of the sensitivity of the sensor output with respect
to the initial-state at every grid point. In the analysis, the
same cases as in Section 4.1 are studied. Hence, in the
first case, in which diffusion dominates the system, as
described in Equation (11), four different diffusion rates
a = 0.00002, a = 0.0002, a = 0.002, a = 0.02 (m2/s), and
c = 0 (m/s), r = 1 (1/s) and α = 1 (°C) are used. For the
second case, inwhich convection dominates the same sys-
tem, a = 0.00002 (m2/s), and four different convection
rates c = 0.5, c = 1.0, c = 1.5, c = 2.0 (m/s), and r = 1
(1/s) and α = 1 (°C) are used. In the first case, a length of
L = 1 is used, and in the second case L = 4 is used. For
both cases, the sensor is located at z = L − 0.1 (m). The
results for the output SA are shown in Figure 4. In the left
panel of Figure 4, the diagonal of FIMSSSy for the diffusion-
dominant case is shown. The right panel of 4 shows the
diagonal of FIMSSSy for the convection-dominant case.

An increase in the diffusion rate, as well as an increase
in the convection rate, will give an increase of the output
sensitivity over length (L). The increasing output sensi-
tivity over the whole length for increasing diffusion and
convection rates results in a decreasing output sensitiv-
ity around the point the sensor is located. The sensitiv-
ity between the initial-state and the output grows in the
first few seconds, but converges to zero for time to infin-
ity. This dynamic behaviour is shown in Figure 5. Notice
from Figure 5 that the sensitivity from initial-state-to-
output on the interval z� [0, 1.5] is very small. Hence, to
obtain reliable state estimates on this interval, an accurate
and sensitive sensor should be used. The sensitivity from
the initial state to the output Sy for z= 0 (m) and t= 3 (s)
is equal to 0.1. Since, Sy is much bigger compared to the
tolerances of the numerical errors, changes in the initial
state can be observed in the output.

4.3 Non-linear 1D CDR sensitivity fields

So far, a constant air velocity, (c) in Equation (11) is
assumed. If the air velocity is not constant, a set of non-
linear differential equations result. Hence, instead of an
LTI system (4), a non-linear state spacemodel is obtained.
The calculation of the sensitivity fields, however, can be
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Figure . Left, D output sensitivity field simulated for different dominant diffusion rates. Right: D output sensitivity field simulated for
different dominant convection rates. The sensors are placed at z= L− ..

directly extended to the non-linear case:

ẋxx = f (xxx,uuu), xxx(0) = xxx0
yyy = g(xxx,uuu) (29)

The corresponding input (SSSxu) sensitivity equations are
given by:

ṠSSxu = ∂ f
∂x SSSxu + ∂ f

∂u (30)

SSSyu = ∂g
∂xSSSxu + ∂g

∂u (31)

Here, SSSxu :� ∂x
∂u is the input sensitivity. The sensitivities

from the initial states to the output (SSSyx0 ) are found from:

ṠSSxx0 = ∂ f
∂x SSSxx0 + ∂ f

∂x0
, SSSxx0 (0) = 1 (32)

SSSyx0 = ∂g
∂xSSSxx0 + ∂g

∂x0
(33)

Here, SSSxx0 := ∂x
∂x0

, and ∂ f
∂x0

= ∂g
∂x0

=0. Furthermore, in both
cases, we define the matrices AAA := ∂ f

∂x , and CCC := ∂g
∂x ,

whilst in (30) and (31) we define BBB := ∂ f
∂u , andDDD := ∂g

∂u

5. Input and output sensitivities of 2D coupled
thermal flow in bulk storage facilities

Coupled CDR equations typically describe the dynamics
of post-harvest storage processes. However, these equa-
tions are also used in a wide range of other processes that
utilise the laws of conservation of heat and mass (see, for
instance, Hsieh & Yang, 2010; Vali, Simonson, Besant, &
Mahmood, 2009; Zambra, Munoz, & Moraga, 2015). In

Figure . Development in time of D output sensitivity field simulated for bulk storage facility, with a= . (m/s), c=  (m/s), r= 
(/s), α =  (°C), L=  (m) and�z= L/.
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Table . Paremeter values of the system as in ().

Parameter Value Unit

aax , aay . (m/s)
cx  (m/s)
cy . (m/s)
apx , apy . (m/s)
ra  (/s)
rp . (/s)

the porous medium of a bulk food-storage facility, inter-
action between the product and the air induces the cou-
pling between the CDR equations that describe tempera-
ture in the air and in the food product. For amore detailed
analysis of the influence of the actuator and sensors on the
states, a 2D simulation will be performed. As before, tem-
perature balances will be used, and these are defined in
the spatial coordinates x and y on a [0, L]x[0, L] domain:

∂Ta
∂t

= aax
∂2Ta
∂x2

+ aay
∂2Ta
∂y2

−cx
∂Ta
∂x

− cy
∂Ta
∂y

− raTa + raTp

Ta(x, 0, t ) = α, for x ∈
[
0,

L
2

]
,

Ta(x, 0, t ) = 0, for x ∈
[
L
2
, L

]
,

∂Ta
∂x

(x, L, t ) = 0,

∂Ta
∂y

(0, y, t ) = 0,
∂Ta
∂y

(L, y, t ) = 0

∂Tp

∂t
= apx

∂2Tp

∂x2
+ apy

∂2Tp

∂y2
− rpTp + rpTa

∂Tp

∂x
(0, y, t ) = 0,

∂Tp

∂x
(L, y, t ) = 0,

∂Tp

∂y
(x, 0, t ) = 0,

∂Tp

∂y
(x, L, t ) = 0 (34)

Here, Ta is the air temperature, Tp the product tempera-
ture, aax, aay the diffusion coefficient of air in x direction
and y direction respectively, cx, cy the convection coeffi-
cient of air in x direction and y direction respectively, apx,
apx the diffusion coefficient of the product in x direction
and y direction respectively, and ra and rp a reaction coef-
ficient expressed as a heat transfer coefficient.

For the simulations of the system (34), the parameters,
as in Table 1, are used. Notice that the system has relative
fast (air-) and slow (product-) properties, which will have
influence on the simulations.

For the evaluation of the input sensitivity of the
2D system, the actuator is, as in the 1D case, located
at the bottom of the configuration at y = 0 (see

Figure . D configuration of the porous medium. Located at the
bottom the inlet of the bulk system is one actuator on the left-
hand side. The sensors are placed in the centre of the bulk.

Figure 6). Notice that the actuator acts only on the
left half. The actuator operates at a constant velocity
and input temperature. The actuator only acts on the
air domain, and by the interaction between the air and
the product the temperature in the product domain
is affected. Hence, a Dirichlet boundary condition is
prescribed at y = 0. At all other boundaries, a Neumann
boundary condition is prescribed (Figure 6). A grid of
30 × 30 is used for the calculations. Due to the coupling
between air and product, a systemmatrix of 1800× 1800
(30·30·2 = 1800 states) is produced. In the simulation
only, the air temperature at y = 0 can be influenced. As
the sensitivities are time-dependent, different simulation
times could be taken to investigate the influence of the
input on the states. The steady state value of the sensitiv-
ity field is reached as time (t) goes to infinity. A large sim-
ulation time gives a good approximation of steady state
value, hence a simulation time of t = 400, with steps of
0.001 (s) is taken.

The result of the steady state SA of the actuator on the
states is shown in Figure 7. As expected, the state is most
sensitive at the bottom, where the actuator is located.
The sensitivities show a homogeneous profile in the x-
direction for x ∈ [0, L

2 ]. Despite the velocity component
d in horizontal direction, the sensitivity of the state for
x ∈ [ L2 , L] is very small. In the y-direction, an exponen-
tial decrease is obtained. Likewise as in the 1D case, the
total sensitivity of the input on the states is increased for
longer time periods.

For the analysis of the output, sensitivity fields initially
the sensors are place in the air domain at y = 1.8 and for
x ∈ [ L3 ,

2L
3 ], see Figure 6. As follows, a simulation of time

of 15 seconds with steps of 0.001 (s) and a grid of 12× 12
are used. The results are shown in Figure 8. Notice that at
the bottom (y= 0), the sensitivity is very small, but larger
than one. Around the sensor location, the highest sensi-
tivities are obtained. Despite the low horizontal velocity,
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Figure . Input sensitivity field of the coupled D CDR-system, t=  (s) and x grid. Left, D input sensitivity field related to Ta. Right,
D input sensitivity field related to Tp.

also in horizontal direction a relatively high sensitivity is
obtained.

Figures 7 and 8 show results where in some areas and
on a specific time instant the input or output sensitivity
is close to zero and thus indicating locally uncontrollable
or unobservable states. The results also indicate that for
larger simulation time the input sensitivity and diagonal
element of the FIM will increase. However, in practice,
the dominant response time of the system (τ ) leads. For
the air domain, we would typically act or sample ever
0.1–0.2τ . Thus, if, for instance, the input or output
sensitivity are close to zero on a time range [0 , 0.2τ ], the
controlled or observed system can be practically consid-
ered as uncontrollable or unobservable.

The results of this section can lead to more efficient
ventilation strategies in bulk storage facilities, as the actu-
ator and sensor locations can be re-designed by the sensi-
tivity results. For example, the actuator location can be
chosen such that the input has a stronger influence on

the states in the whole domain. In the y-direction with
the actuator located at ([0, L

2 ],0), small sensitivities are
obtained in the top layer. To gain more influence on the
states in the top layer the geometry of the storage facil-
ity, or the actuator functionality should be re-designed.
In practice a better performance could be obtained, for
instance, if the fan depicted in Figure 1 switches after a
certain time period from blowing to suction.

From the results of the output sensitivity field, the
observable region inside the bulk is known. From
Figure 8, it can be seen that in case of an air
temperature sensor also a relatively large sensitivity for
the product temperature is obtained. Thus, for climate
controlled bulk facilities, the results give supporting
information on the number, the best location and the
choice of the sensors. Also, for the implementation of
model-based quality control in bulk storage facilities,
input and output sensitivity fields are of great interest for
the choice of actuators and sensors and their location.

Figure . Output sensitivity field of the coupled D CDR-system. Left, D output sensitivity field related to Ta. Right, D output sensitivity
field related to Tp.
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On nD domains, with n � 3, SVD of the sensitiv-
ity matrices may be helpful to support the interpreta-
tion of the sensitivity fields. For more complex problems
in higher dimensions, we also foresee numerical issues
that need to be tackled. For further understanding and
application of the theory presented in the article, further
research on sensitivity fields for special classes of infinite-
dimensional systems is needed.

6. Conclusion

In this paper, we analysed the controllability and observ-
ability properties of spatially distributed thermal flow
in bulk storage facilities. The classical system theory
concepts, controllability and observability, not only pro-
vide limited, but crucial, information, but also unreliable
results, due to matrix multiplications of the discretised
system with fine mesh. The information from a con-
trollable or observable analysis is insufficient because in
practice, we are only interested to find out if it is possible
to have some influence on a certain state, or if a certain
state can be observed during a certain time period. The
SVD gives additional information on which states are
controllable/uncontrollable or observable/unobservable.
However, due to the matrix computations, small
discretisation steps result in numerical errors in the
singular values.

By introducing input and output sensitivity fields,
whilst using the discretised state space representation,
the aforementioned problems are avoided. The sensitiv-
ity field of the input to state gives information about the
influence, and thus practical controllability, of the input
on a state for a specific time period. Changing the time
period results in other controllable/uncontrollable states.
The sensitivity field of the output to state gives informa-
tion about the practical observability of the each state over
a specific time period. Likewise, as for controllability, a
increase or decrease of the time period results in other
observable/unobservable states. In conclusion, sensitiv-
ity fields, provide, from a practical perspective, valuable
information about the influence of the input-to-state and
the initial-state on the output, respectively.
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