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ABSTRACT
Estimation of physical parameters in dynamical systems driven by linear partial differential equations
is an important problem. In this paper, we introduce the least costly experiment design framework for
these systems. It enables parameter estimationwith an accuracy that is specifiedby the experimenter
prior to the identification experiment, while at the same timeminimising the cost of the experiment.
We show how to adapt the classical framework for these systems and take into account scaling and
stability issues. We also introduce a progressive subdivision algorithm that further generalises the
experiment design framework in the sense that it returns the lowest cost by finding the optimal input
signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant
problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face
experiments. We find good correspondence between numerical and theoretical results.

1. Introduction

Accurate estimation of key physical parameters in a sys-
tem is an important problem. We mention some exam-
ples: a material can be characterised by its conduc-
tivity and diffusivity constants in heat transfer studies
(Gabano & Poinot, 2009), realistic groundwater contami-
nation simulations require accurate estimates of diffusiv-
ity and advection constants (Wagner&Harvey, 1997; Yeh,
1986), permeability and porosity of rock aid in oil extrac-
tion from subsurface reservoirs (Mansoori, Van den Hof,
Janssen, & Rashtchian, 2014), etc. In this context, we con-
sider in this paper the problem of optimally designing the
identification experiment leading to the estimates of these
physical parameters. More particularly, we design the
least-intrusive excitation signal that nevertheless leads to
parameter estimates with variances that do not exceed
certain given (user-chosen) limits. Physical systems can
have different structures. In this paper, we are particularly
interested in those systems that can be described by linear
partial differential equations (PDEs) with spatially inde-
pendent coefficients.

Such systems are characterised by equations that
not only contain time derivatives but also spatial ones.
In the System Identification literature, they are usu-
ally referred to as distributed systems. The phenom-
ena described by such equations are quite pervasive in
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the physical world (convection, diffusion, diffusion–
advection–reaction, wave phenomena). Consequently, it
is of importance to be able to design experiments that
will allow identification of physical parameters in those
systems in an accurate manner. Unfortunately, as their
dynamics are described by PDEs, the classical optimal
experiment design1 techniques that have been developed
for systems described by ordinary differential equations
(ODEs) cannot be directly applied (see e.g. Bombois,
Scorletti, Van den Hof, & Hildebrand, 2006; Jansson &
Hjalmarsson, 2005). The classical approaches will, there-
fore, have to be adapted. This is one of the contributions
of the present paper. Moreover, the particular structure
of the systems described by PDEs allows us to analyse an
additional design aspect that is usually not considered in
optimal (least costly) experiment design: the location of
the actuator that will excite the system and the location
of the sensor that will measure the output of the system
for the purpose of identification. Indeed, as mentioned
in the recent book of Uciński (2004), most literature on
optimal sensor and actuator location in distributed sys-
tems deals with state estimation, but few works actually
address parameter identification. Yet, finding such loca-
tions can greatly improve the accuracy of the estimates, as
shown in Rensfelt, Mousavi, Mossberg, and Söderström
(2008). This paper addresses the problem of finding the
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optimal sensor and actuator locations as well as finding
the optimal spectrum of the input signal.

Before addressing optimal experiment design for sys-
tems described by PDEs, let us first discuss how we
will perform the identification of the physical param-
eter vector θ0 of such a system. Like all physical sys-
tems, the systems described by PDEs are continuous-
time systems. Since we assume linearity, the relation
between the continuous-time input and output is given
by a continuous-time transfer function G(s, θ0) in the
Laplace variable s (θ0 appears explicitly inG(s, θ0)). How-
ever, for systems described by PDEs, this continuous-
time transfer function is not rational in s (it can be,
for example, G(s) = cosh(

√
s)). A closed-form expres-

sion of G(s, θ0) can be derived if the PDE is analytically
tractable, although this is in general not possible for com-
plicated (high-order, coupled) systems. Because the data
that will be used for the identification are discrete, we
need a discrete-time representation ofG(s, θ0) that is also
explicit in θ0. However, such a representation does not
exist in practice (it would be of infinite order). To cir-
cumvent this problem, spatio-temporal discretisation is
generally applied and yields a finite-order approximation
G(z, θ0) of the discrete-time transfer function between
the discrete-time input and output data. The approxima-
tion consists of dividing the spatial dimension into a finite
number of intervals in which the states of the systems are
supposed constant. The order ofG(z, θ0) is then related to
the number of intervals in the grid. This spatio-temporal
discretisation yields a transfer function that is still explicit
in θ0. Different discretisation schemes exist. In this paper,
we propose to use the Crank–Nicolson stencil, which is
unconditionally stable, and also ensures that the finite-
order approximation G(z, θ0) is stable. Once we have the
description of the system in the form of the transfer func-
tionG(z, θ0), it is straightforward to use the input–output
data to identify the parameter vector θ0 using prediction-
error techniques.

A second method to simulate/identify the system
explicit in θ exists. When the PDE is analytically tractable
we canmake use of the linearity of the system to calculate
the system response (Ljung, 1999). However, this method
is only applicable for an input signal that is a superposi-
tion of sines.

These two approaches are not the only ones possi-
ble to identify the physical parameter vector θ0. Ratio-
nal or fractional black-box model can also be first iden-
tified and then the physical parameters be deduced from
the parameters of the black-box model (see, for instance,
Aoun, Malti, Levron, & Oustaloup, 2004; Gabano &
Poinot, 2001; Point &Trigeassou, 2003; Point, Trigeassou,
& Lin, 2002). However, these approaches require mod-
els with many parameters that are implicitly coupled to

the physical ones. As such, the identification procedure
will be numerically heavy. If the continuous-time trans-
fer function G(s, θ0) can be expressed in closed form,
frequency-domain approaches can also be used to iden-
tify θ0 from the collected data (see, for instance, Pintelon,
Schoukens, Pauwels, & van Gheem, 2005). Recently, a
nice instrumental variable method has also been pro-
posed in Schorsch, Garnier, Gilson, and Young (2013).
However, we have chosen the approach viaG(z, θ0) since
it is the most general, the most straightforward and nec-
essary for optimal experiment design.

Now we have defined our identification method and
we have an expression ofG(z, θ0) (which in general is also
a function of the sensor and actuator locations, or other
design variables), we can use classical optimal experi-
ment design techniques (Bombois et al., 2006; Jansson
& Hjalmarsson, 2005) to optimally design the input sig-
nal for the identification of the physical parameter vector
θ0. The to-be-designed optimal signal has to be parame-
terised. Generally, it is parameterised as a superposition
of sinusoids (e.g. a multi-sine) or a filtered white noise.
These parameterisations make the optimal experiment
design problem convex and finite dimensional. The trans-
fer function G(z, θ0) being generally of large order, it is
more practical to parameterise the to-be-designed opti-
mal input signal as a multi-sine (with fixed frequencies,
but free amplitudes). Indeed, in this particular case, only
the frequency response of the gradient of G(z, θ0) with
respect to θ0 is required for optimal experiment design.
(Note that to calculate this gradient, we indeed need
G(z, θ0) to be explicit in θ0.) In the case where a closed-
form expression ofG(s, θ0) exists, we also propose a sim-
pler approach. We indeed use the property that the fre-
quency responses of G(s, θ0) and of G(z, θ0) are equal in
the limit when the sampling time goes to zero, and almost
equal for small sampling times. The frequency response
of the gradient of the usually simpler continuous-time
transfer function G(s, θ0) can then be used in the opti-
mal experiment design procedure. The approach above
can be applied for each sensor/actuator location in a very
easy way and the optimal experiments for each loca-
tion can be compared, allowing to determine the optimal
locations.

We apply our methodology to one-dimensional (1D),
second-order linear PDEs with spatially independent
coefficients. Diffusion–advection–reaction processes in
real life can be modelled with this family of equations.
We stress that our methodology is applicable to higher
dimensional, higher order PDE systems with different
boundary conditions (as long as a discrete-time trans-
fer function between input and output can be deter-
mined). We introduce and scale the continuous-time
physical models in Sections 2 and 2.1. The unscaled
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physical model represents the (continuous-time) true
system which will be used to identify the physical param-
eters θ0 with the use of our optimal input signal. The
scaled model will be used for optimal input signal design
and in the identification procedure. This procedure,
together with the generation of discrete-time input and
output signals, is explained in Section 3. The identifi-
cation procedure requires simulation of the output as a
function of θ and is introduced in Section 3.2.1. The
experiment design framework is explained in Section 4
and shows how to generate the optimal input signal for
given choice of sensor and actuator locations. We gener-
alise the OED framework in Section 4.2, where now also
optimal sensor and actuator locations are computed. In
Section 5, we apply our methodology to a diffusion pro-
cess in which two material properties are identified with
a front-face experiment.

2. Diffusion–advection–reaction processes

The diffusion–advection–reaction equation typically
contains only a few key physical parameters, the most
important one being the so-called diffusivity parameter,
i.e. the hydraulic diffusivity parameter in flow through
porous media, the conductivity coefficient in conductive
heat transfer, the diffusion parameter in mass transfer,
etc. Although this lumped parameter is a function of
microscopic properties of the system, it characterises the
observed macroscopic dynamic behaviour of the system
effectively. Hence, using macroscopic measurements of
the system, it is possible to estimate such parameters.
We shall use the family of diffusion–advection–reaction
processes as a showcase of our methodology, but we
remind the reader that it is applicable to higher order
linear PDE processes. Furthermore, we make a particular
choice of boundary conditions, but many others exist
that can also be applied within our framework. How-
ever, it is important to note that we restrict attention to
systems with physical parameters that are not spatially
dependent.

Diffusion–advection–reaction processes are described
by the following family of second-order linear PDEs: 2

∂ f (x, t )
∂t

= θ1
∂2 f (x, t )

∂x2
+ θ2

∂ f (x, t )
∂x

+ θ3 f (x, t ),

(1)

where f(x, t) represents amacroscopic physical quantity at
continuous time t and continuous position x. The coeffi-
cients θ1 > 0, θ2, θ3 are physical parameters. The spatial
domain is defined byD = [0, L], where L is the total con-
sidered length.We assume zero initial conditions at t= 0.

The boundary conditions are

− θ4
∂ f (x, t )

∂x

∣∣∣∣
x=xu

= u(t ), ynf(t )

= f (xy, t ) and f (L, t ) = 0 ∀t. (2)

The physical parameters are collected in the vector θ =
(θ1, θ2, θ3, θ4)

T . The first boundary condition in (2) is of
the second kind, known as the Neumann boundary con-
dition. It expresses the flow rate across the boundary at
position x= xu induced by the influx u(t). We define u(t)
as the user-imposed (known) input signal to the physical
system and, therefore, call xu ∈ D the input location. The
second boundary condition defines the noise-free output
ynf(t) being equal to the physical quantity f(x, t) at out-
put measurement location x = xy ∈ D. We thus consider
a single-input, single-output system. The third boundary
condition states that the physical quantity f(x, t) at loca-
tion x = L is equal to zero at all times.

Definition 2.1: The data-generating system is defined by
Equations (1) and (2) and setting θ = θ0, where θ0 are the
true physical parameter values.

If the data-generating system is analytically tractable,
then a Laplace transform of Equations (1) and (2) allows
us to relate the input u(t) and output ynf(t) of the data-
generating system through

Ynf(s) = Gxu,xy (s, θ0)U (s), (3)

where s is the Laplace variable, Ynf(s) = L { f (xy, t )} the
Laplace transform of ynf(t),U (s) = L {u(t )} the Laplace
transform of u(t), and Gxu,xy (s, θ0) is defined as their
transfer function. The subscripts xu, xy indicate that
the transfer function depends on the input and output
locations. Hence, the above relation shows that the phys-
ical system may be interpreted as a linear, time-invariant
system defined through input U(s), output Ynf(s) and
transfer function Gxu,xy (s, θ0). As mentioned in Section
1, this transfer function will be irrational and of infinite
order in s.

2.1 Non-dimensionalisation

An inherent feature of physical systems is the order-of-
magnitude difference between the input and output vari-
ables and the physical parameters. Numerical simulation
of the unscaled system (1)-(2) is prone to numerical dif-
ficulties, especially when considering the optimal exper-
iment design algorithm, which uses a covariance matrix
expression of the parameters.Without scaling, thismatrix
is usually ill-conditioned and consequently the algorithm
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cannot usually find a solution to the optimisation prob-
lem.

To avoid these difficulties, we non-dimensionalise
Equations (1) and (2) as follows:

(1) Scale parameter vector θ: θ̃ = �−1
s θ, where �s =

diag(θs,1, . . . , θs,4) is a diagonal matrix contain-
ing the scaling factors for each element θ i in the
vector θ,

(2) Non-dimensionalise all variables:

f̃ = f
fs

, ũ = u
us

, x̃ = x
xs

, t̃ = t
ts

, (4)

where fs, us, xs, and ts are as-of-yet undecided scal-
ing values,

(3) Rewrite Equations (1) and (2) in terms of the non-
dimensional parameters and variables defined in
steps (1) and (2):

∂ f̃ (x̃, t̃ )
∂ t̃

= θ̃1
θs,1ts
x2s

∂2 f̃ (x̃, t̃ )
∂ x̃2

+ θ̃2
θs,2ts
xs

∂ f̃ (x̃, t̃ )
∂ x̃

+ θ̃3θs,3ts f̃ (x̃, t̃ ), (5)

with boundary conditions

−θ̃4
θs,4 fs
usxs

∂ f̃ (x̃, t̃ )
∂ x̃

|x̃=x̃u= ũ(t̃ ), ỹnf(t̃ )

= f̃ (x̃y, t̃ ) and f̃
(
L
xs

, t̃
)

= 0 ∀t̃, (6)

(4) Select fs, us, xs and ts such that as many as pos-
sible terms in Equations (5) and (6) are solely a
function of θ̃, and therefore of O(1). The selec-
tion is not unique. One possible choice is to freely
choose fs and determine xs, ts and us as the solu-
tion of the following three equations: ts = x2s /θs,1,
xs = θ s, 2ts and us = θ s, 4fs/xs. This leads to xs =
θ s, 1/θ s, 2, ts = θs,1/θ

2
s,2 and us = θ s, 4θ s, 2fs/θ s, 1. If

some θ̃i are zero, more freedom is available.
Step (1) ensures that the dimensionless parameters are

O(1) (i.e. have a value in between [0, 1]), a necessary step
in order to apply experiment design. Although we do not
know the actual values of θ0, we do know their order of
magnitude. Consequently, each element in the scaled vec-
tor θ can be made of order one. Step (4) simplifies the
non-dimensional system and shows which processes (i.e.
diffusion, advection or reaction) are dominant.3 Substi-
tution of θ = θ0 in step (1) and following the scaling pro-
cedure then defines the scaled equivalent of the data −
generating system as detailed in Definition 2.1.

The relation between the scaled output ỹnf and scaled
input ũ(t̃ ) for the family of scaled physical systems reads

Ỹnf(s̃) = G̃x̃u,x̃y (s̃, θ̃)Ũ (s̃), (7)

where now Ỹnf(s̃) = L{ f̃ (x̃y, t̃ )}, Ũ (s̃) = L {ũ(t̃ )
}
and

s̃ = s ts. This equation is the scaled equivalent of Equation
(3) for θ̃ = θ̃0 ≡ �−1

s θ0.

3. Data generation and the identification
procedure

3.1 Data generation

In the previous sections, we have defined the continuous-
time data − generating system (see Definition 2.1). This
system represents the true physical process of which we
want to identify the physical parameters θ0. To accom-
plish this, we apply a continuous time (analogue) input
signal u(t) to the data-generating system leading to the
continuous noise-free output ynf(t). This output is mea-
sured with a sampling time Ts and corrupted by zero-
mean white noise with variance σ 2

e . The measurements
are thus given by

yD[n] ≡ ynf(nTs) + e(nTs). (8)

We will generally consider sinusoidal input signals (and
thus sinusoidal output signals). The sampling time is gen-
erally chosen in such a way that the Nyquist frequency
π /Ts is a decade above all dynamics of the system (i.e.
the system’s bandwidth). We shall denote ZN = {uD[n],
yD[n]}n = 1,… , N as the set containing the sampled input
and output data. The values uD will not always be used in
the identification procedure.

3.2 Identification procedure

We identify the physical parameter vectors θ0 using the
collected data. First, we scale the data-set ZN using Equa-
tion (4) to Z̃N = { uD[ j]

us
,
yD[ j]
fs

}
, where now our data points

are shifted in time to t̃ = jTs/ts. The scaled continuous-
time noise-free output ỹnf(t̃ ) is depicted in the right plot
in Figure 1 in black, whereas the scaled measured data
points yD[j]/fs are shown in red. Observe that due to
the time scaling, the temporal distance between the data
points has become T̃s = Ts/ts.

The scaled true physical parameter θ̃0 = �−1
s θ0 can

now be estimated with the least-squares method:

ˆ̃
θN = argmin

θ̃

1
N

N∑
j=1

[
yD[ j]
fs

− ỹsim(θ̃)[ j]
]2

, (9)
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Figure . Left: unscaled continuous-timeoutput signal as a functionof time (black) and thenoise-corruptedmeasureddiscrete-time signal
(red). Right: scaled continuous-time output (black), scaled noise-corrupted measured discrete-time signal (red), and scaled simulated
output data (blue). Ts is the unscaled sampling time, ts the time scaling and T̃s the scaled sampling time.

where ỹsim(θ̃)[ j] is the sampled version of the output
ỹnf(t̃ of the scaled system (5) and (6) for an arbitrary θ̃

and yD[j]/fs is the scaled measured output from the data-
generating system. The unscaled estimate can then easily

be retrieved by calculating θ̂N = �s
ˆ̃
θN (cf Equation (4)).

It is apparent fromEquation (9) that we require an expres-
sion for ỹsim(θ̃) for estimation.

To simulate the noise-free scaled output ỹnf(t̃ ) (cf
Equation (6)) for arbitrary values of the physical param-
eters θ̃, we can use two methods.

(1) If the input signal is chosen to be a superposition
of sinusoids, its scaled form being

ũ(t̃ ) =
Q∑
l=1

Ãl sin(ωltst̃ ) =
Q∑
l=1

Ãl sin(ω̃l t̃ ),

(10)

where ω̃l = ωlts and Ãl = Al/us, then the
continuous-time simulated output reads (Ljung,
1999)

ỹsim(θ̃, t ) =
Q∑
l=1

Ãl |G̃x̃u,x̃y (iω̃l, θ̃)| sin(ω̃l t̃ + αl ),

(11)

where αl = ∠G̃x̃u,x̃y (iω̃l, θ̃), the transfer function
G̃x̃u,x̃y defined in Equation (7) and Q a positive
integer. Sampling this signal with the scaled sam-
pling time Ts/ts generates ỹsim(θ̃)[ j] that is used in
Equation (9).

(2) Discretise Equations (5) and (6) using a finite-
difference method which is detailed in Section
3.2.1. This method discretises time and space at
an interval of �t̃ and �x̃, respectively. The con-
stant �t̃ is called the time integration step. Let us
choose �t̃ = T̃s = Ts/ts. Then, we can apply an
arbitrary input signal u(t) to the data-generating
system. The sampled scaled input ũD from Z̃N can
then be used to simulate the output ỹsim(θ̃)[ j] of
which the samples are separated at an interval of
Ts/ts. The simulated points are shown in blue for
θ̃ = �−1

s θ0 and as can be observed, they occur at
the same time instance as the scaledmeasured out-
put data from Z̃N .

Method (1) can be only be used for sinusoidal input
signals and if a closed-form expression of G̃x̃u,x̃y exists.
Method (2) is themost generic one as it can be used when
the G̃x̃u,x̃y does not have a closed-form expression and/or
the input signal is not a sum of sinusoids. From now on,
we will consider method (2). We now show how to gen-
erate ỹsim(θ̃)[ j] for this method.

.. Simulation of the data-generating system using
a finite-difference scheme
In this section, we show how we generate the data points
of ỹsim(θ̃)[ j] in Equation (9). To this end, we discretise
the scaled PDE equations (5) and (6), which will serve
two purposes. On the one hand, it provides us a way to
generate ỹsim. On the other hand, the discretisation deliv-
ers a state-space model explicit in the physical parame-
ters, which in turn can be converted into a discrete-time
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transfer function that is required for optimal experiment
design.
PDEs like (5) and (6) are sometimes referred to as stiff
equations. Applying the wrong integration scheme can
result in exponential growth of numerical errors. Most
explicit methods, such as the forward Euler method, will
only provide a stable solution under restrictive condi-
tions on the spatial and temporal integration steps. To
avoid such issues, we have adopted the implicit Crank–
Nicolson algorithm, which is known to be uncondition-
ally stable regardless of the temporal and spatial integra-
tion steps. A second benefit of this method is that the
temporal truncation error is of (�t)2 instead of�t for the
Euler methods.

We recall that we will simulate a scaled version of the
data-generating system in Definition 2.1. The conversion
between the continuous-time physicalmodels (1)-(2) and
(5)-(6) is defined through Equation (4). Using these defi-
nitions, the scaled spatial domain becomes D̃ = [0, L

xs
],

which we discretise in M parts of size �x̃. This results
in a spatial resolution of �x̃ = L

xsM
. The time integra-

tion step is chosen equal to �t̃ = Ts
ts
4. The scaled time

is then represented by t̃ = j�t̃ , where j ∈ N
+. We use

index i ∈ N
+ to denote the position on the lattice, i.e.

xi = i�x̃. At location i�x̃ and at time j�t̃ , the input
and macroscopic field are ũ j

i = ũ(i�x̃, j�t̃ ) and f̃ ji =
f̃ (i�x̃, j�t̃ ), respectively. Using these definitions, the
scaling steps in Section 2.1, discretisation of Equations (5)
and (6) results in

f̃ j+1
i − f̃ ji

�t̃
= 1

2

∑
l={0,1}

(
θ̃1

f̃ j+l
i+1 − 2 f̃ j+l

i + f̃ j+l
i−1

(�x̃)2

+ θ̃2
f̃ j+l
i+1 − f̃ j+l

i−1

�x̃
+ θ̃3θs,3ts f̃

j+l
i

)
, (12)

ũ j
iu = −θ̃4

f̃ jiu+1 − f̃ jiu
�x̃

, ỹ jnf = f̃ jiy and f̃ jL/xs = 0 ∀ j,
(13)

where on the right-hand side (rhs) of the first equation
we took the average of a forward and backward Euler
methods to ensure stability of the simulation for any
�t̃ and �x̃ (it will also ensure stability of the trans-
fer function G that we will derive shortly). Lastly, ts
is defined in step (4) in Section 2.1. This discretisa-
tion method is known as the Crank–Nicolson method.
We remark that the actuator and sensor positions x̃u
and x̃y in Equation (6) determine the resolution �x̃ to
ensure that iu = x̃u/�x̃, iy = x̃y/�x̃ in Equation (13) are
integers.

We rewrite the first of the above equations as

f̃ j+1
i − f̃ ji = λ̃1

(
f̃ j+1
i+1 − 2 f̃ j+1

i + f̃ j+1
i−1 + f̃ ji+1 − 2 f̃ ji + f̃ ji−1

)
+ λ̃2

(
f̃ j+1
i+1 − f̃ j+1

i−1 + f̃ ji+1 − f̃ ji−1

)
+ λ̃3

(
f̃ j+1
i + f̃ ji

)
, (14)

where the λ̃’s are defined as

λ̃1(θ̃) = θ̃1
�t̃

2(�x̃)2
, λ̃2(θ̃) = θ̃2

�t̃
2�x̃

, λ̃3(θ̃) = θ̃3θs,3ts
�t̃
2

,

(15)

where we recall that ts is defined in step (4) in Section
2.1. With these expressions, we will now show how to
approximate ỹnf(t̃ ) at discrete-time instances t̃ = jTs/ts
using the input we applied to the data-generating sys-
tem ũ j

iu . To this end, let us denote the vector f̃ [ j + 1] =(
f̃ j+1
0 , . . . , f̃ j+1

M

)
, which contains the value of themacro-

scopic field at locations i = 0,… , M at time j + 1. Simi-
larly, we define f̃ [ j] =

(
f̃ j0 , . . . , f̃

j
M

)
for time j. Lastly, we

let ũ[ j + 1] = ũ j+1
iu and ũ[ j] = ũ j

iu . Imposing the bound-
ary conditions (13) and grouping all terms of j + 1 in
Equation (14) on the left-hand side (lhs) and all terms at
time j at the rhs results in the descriptor state-space form:

Ẽ(θ̃) f̃ [ j + 1] = Ã(θ̃) f̃ [ j] + B̃(θ̃)
(
ũ[ j + 1] + ũ[ j]

)
,

(16)

ỹsim(θ̃)[ j] = C̃ f̃ [ j], (17)

in which

Ẽ(θ̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,0 w1 0 · · · · · · 0
w−1 w0,1 w1 0 · · · 0

0
. . . . . . . . . . . .

...
... 0

. . . . . . . . . 0
...

...
. . . w−1 w0,M−1 w1

0 0 · · · 0 w−1 wM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ã(θ̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w2,0 −w1 0 · · · · · · 0
−w−1 w2,1 −w1 0 · · · 0

0
. . . . . . . . . . . .

...
... 0

. . . . . . . . . 0
...

...
. . . −w−1 w2,M−1 −w1

0 0 · · · 0 −w−1 w2,M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)
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B̃(θ̃) = 2�x̃
θ̃4

(λ̃2 − λ̃1)
(
w3,0, w3,1, . . . , w3,M

)T
, and

C̃ = (δi,iy, δi,iy, . . . , δi,iy ). (19)

Matrices Ẽ and Ã are two (M+ 1)× (M+ 1)matrices,
B̃ a (M + 1) column vector and C̃ a (M + 1) row vector.
Furthermore,

w0,i = 1 + (2 − δi,iu )λ̃1(θ̃) − λ̃3(θ̃),

w1 = −λ̃1(θ̃) − λ̃2(θ̃), w−1 = −λ̃1(θ̃) + λ̃2(θ̃),

(20)

w2,i = 1 − (2 − δi,iu )λ̃1(θ̃) + λ̃3(θ̃), w3,i = δi,iu . (21)

In the expressions of w0, i, w2, i and w3, i the symbol δi,iu
is the Kronecker delta function, defined by δkl = 1 if k= l
and δdkl = 0 for k � l. It means that the values of w0, i,
w2, i and w3, i differ at the row index i = iu, which is
a consequence of the boundary conditions. We remark
that the matrices Ẽ and Ã are tri-diagonal since we are
dealing with a second-order PDE (cf Equation (1)). Con-
sequently, we can compute the vector f̃ [ j] with O(M)
complexity with Thomas’ algorithm (Thomas, 1949) (a
simplified version of Gaussian elimination that can solve
tri-diagonal systems of equations).

We now return to the problem of identification in Sec-
tion 3. To simulate the scaled continuous-time output
ỹnf(t ) defined in Equation (6), we first compute the vector
f̃ [ j] using Equations (16)–(21) and the scaled input data
points from Z̃N defined in Section 3, i.e. we compute the
macroscopic field f(x, t) at the discrete spatial locations
i�x̃ for i= 0,… ,M , and times j�t̃ = jTs/ts for j= 1,… ,
N. Equation (17) then takes the element of this vector cor-
responding to location x̃y. Indeed, ỹsim[ j] is then equiva-
lent to ỹsim[ j] = f̃ (x̃ = x̃y, t̃ = jTs/ts).We can now iden-
tify the physical parameters using Equation (9), the scaled
outputs from Z̃N and our simulated output ỹsim[ j]. This
way of simulating generates the entire macroscopic field
f̃ (x, t ) at discrete positions i�x̃. The computational time
scales linearly with �t̃ due to the tri-diagonal algorithm,
which allows for very high spatial resolution in the least-
squares identification method.

Lastly, we show how the descriptor state-space form
can be converted into a discrete-time transfer function.
First, we rewrite system (16)-(17) in its state-space form:

f̃ [ j + 1] = Ã(θ̃) f̃ [ j] + B̃(θ̃)ũD[ j]

ỹsim(θ̃)[ j] = C̃ f̃ [ j], (22)

where Ã(θ̃) = Ẽ−1Ã, B̃(θ̃) = Ẽ−1B̃(1 + z̃) and C̃ = C̃.
Here, z̃ = eiω̃T̃s . From this state-space form, we can triv-
ially compute the discrete-time transfer function (the
discrete-time equivalent of Equation (7)), being

G̃iu,iy (z̃, θ̃) = C̃[z̃I − Ã(θ̃)]−1B̃(θ̃). (23)

In this equation, I is the (M + 1) × (M + 1) identity
matrix, z̃ = eiω̃T̃s and ω̃ = ωts the scaled frequency. Note
that this transfer function is not causal. However, since
we only need its frequency response later, and u(t) is fully
known, this is not an issue. The discrete-time scaled input
and output signals are then related by

ỹsim(θ̃)[ j] = G̃iu,iy (z̃, θ̃)ũD[ j]. (24)

We recapitulate what we have done so far. We have
defined the data-generating system to which we apply an
analogue input signal, usually a superposition of sinu-
soids, and measure the noise-corrupted output at an
interval of Ts seconds. We have shown how to identify
the physical parameters by scaling the data-set ZN and
simulating the scaled continuous-timemodel of the data-
generating system as defined in Definition 2.1. What we
have not yet defined is how to design the input signal that
minimises the cost of the experiment while guaranteeing
user-imposed constraints on the variances of the physical
parameters. This question will be addressed in the next
section.

4. Least costly optimal experiment design

We recall that we wish to estimate the true,
κ-dimensional, parameter vector θ0 of the data-
generating system (see Definition 2.1) in such a way
that the cost of the experiment is minimal, while at the
same time guaranteeing with high probability that the
variances of the elements of our scaled estimate ˆ̃

θN remain
below certain user-defined constraints. The cost and the
constraints need to be a function of the to-be-designed
input signal in order to find the optimal one. We first
assume that the sensor and actuator locations iy and iu
are fixed. In all that follows, we consider the scaled sys-
tem, but conversion to the unscaled system is done with
Equation (4). We restrict our attention to a multi-sine
input signal.

4.1 Fixed sensor and actuator locations

We start by defining the constraints. The joint confidence
region containing an estimate ˆ̃

θN with a user-defined
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probability α is described by the ellipsoid

E : (θ̃ − θ̃0)
TP−1

θ̃
[�̃ũ](θ̃ − θ̃0) ≤ χ2

α(κ), (25)

in which χ2
α(κ) is the quantile of the chi-squared distri-

bution function for a probability α, κ = dim(θ̃). Further-
more, the inverse of the covariance matrix P−1

θ̃
when using

the scaled input signal ũD[n] with spectrum �̃ũ in the fre-
quency domain reads (Ljung, 1999)

P̃
−1
θ̃ [�̃ũ(ω̃)] = NT̃s

2πσ̃ 2
e

∫ π/T̃s

−π/T̃s

[
∂G̃iu,iy (eiω̃T̃s, θ̃)

∂ θ̃

]
θ̃=θ̃0

×
[

∂G̃iu,iy (e−iω̃T̃s, θ̃)

∂ θ̃

]T

θ̃=θ̃0

�̃ũ(ω̃) dω̃,

(26)

where σ̃ 2
e = σ 2

e / f 2s is the scaled noise variance,
G̃iu,iy (eiω̃T̃s, θ̃) the discrete-time transfer function defined
in Equation (23), T̃s the scaled sampling time and �̃ũ(ω̃)

the spectrum of input signal.
We now wish to limit the size of this ellipsoid

by containing it in a κ-dimensional box defined by
the user-defined constraints ∀i ∈ [1, . . . , κ] : [−�θ̃i +
θ̃0,i, �θ̃i + θ̃0,i] to ensure a particular accuracy. These
constraints translate into a required variance of the esti-
mates. Let the variance of element i in ˆ̃

θN,i be σ̃ 2
i = eTi P̃θ̃

ei,
where ei is the ith unit vector, then the constraints can be
written as

∀i ∈ [1, . . . , κ] : σ̃ 2
i = eTi P̃θ̃

ei ≤ (�θ̃i)
2

χ2
α(κ)

. (27)

The second component to formulate the least costly
experiment design problem is to define the cost of the
experiment. We define the scaled cost of the experiment,
denoted J̃cost, as the power of the as-of-yet undetermined
scaled input signal:

J̃cost[�̃ũ] = T̃s
2π

∫ π/T̃s

−π/T̃s
�̃ũ(ω̃) dω̃. (28)

The least costly experiment design problem is thus
formulated as

min
�̃ũ

J̃cost[�̃ũ] (29)

subject to the constraints (27):

∀i :

⎛
⎜⎝ (�θ̃i)

2

χ2
α(κ)

eTi

ei P̃
−1
θ̃ [�̃ũ]

⎞
⎟⎠ � 0. (30)

Observe that we have rewritten constraint (27) into (30)
by invoking Schur’s complement in order to ensure that
all constraints are linear in the spectrum �̃ũ, i.e. we have
linearmatrix inequalities (LMIs). Consequently, since the
cost is also linear in the spectrum, the optimisation prob-
lem (29)-(30) is linear in the design variable �̃ũ. The opti-
misation problem is thus convex. Its solution, denoted
�̃ũ,opt, is the spectrum thatminimises the cost while hon-
ouring the constraints. In order to solve this problem
numerically, we have to parameterise the input spectrum
�̃ũ(ω̃). To this end, we discretise the frequency domain
into Q ∈ N

+ parts. Defining ω̃ f = π

QT̃s
as the fundamen-

tal frequency, we have that ω̃l = lω̃ f , for l = 1,… , Qex,
where Qex � Q is the number of sinusoids used in exper-
iment design.5 Furthermore, we choose the spectrum to
be of the following form:

�̃ũ(ω̃) = π

2T̃s

Qex∑
l=1

Ã2
l
[
δ(ω̃ − lω̃ f ) + δ(ω̃ + lω̃ f )

]
,

(31)

corresponding to a QT̃s/2-periodic discrete-time
multi-sine

ũ[ j] = ũ( jT̃s) =
Qex∑
l=1

Ãl sin(lω̃ f jT̃s). (32)

Substitution of Equation (31) into the cost (29) and the
expression of the covariance matrix (26) gives

J̃cost[�̃ũ] = 1
2

Qex∑
l=1

Ã2
l (33)

and

P̃
−1
θ̃ = N

2σ̃ 2
e

Qex∑
l=1

Ã2
l Re

{[
∂G̃iu,iy (eilω̃ f T̃s, θ̃)

∂ θ̃

]
θ̃=θ̃0

×
[

∂G̃iu,iy (e−ilω̃ f T̃s, θ̃)

∂ θ̃

]T

θ̃=θ̃0

⎫⎬
⎭ . (34)

The above two equations show that the cost and covari-
ance matrix are now linear in the amplitudes Ã2

l . Sub-
stitution into the optimisation problems (29) and (30)
then yields a convex finite-dimensional problem in Ã2

l .
The integer Q determines the accuracy of the solution.
In Appendix 3, we show how to compute the gradient
∂G̃iu,iy/∂ θ̃ efficiently. The solution to the optimisation
problem generates the set {Ãl,opt}l=1,...,Qex . Substitution
of these amplitudes in Equation (32) then delivers the
scaled optimal input signal ũopt[ j]. The unscaled opti-
mal input signal is easily retrieved via Equation (4), i.e.
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Al,opt = Ãl,optus and ωl = ω̃l/ts. The resulting unscaled
signal is the analogue equivalent of Equation (32).

We finish this part with some remarks.
First, observe that the constraint (27) and the inverse

of the covariance matrix (26) depend on the unknown
true parameter values θ̃0. Stated otherwise: to design the
optimal input signal that identifies the parameters we
already need to know them. This so-called chicken-and-
egg problem is in practice circumvented by replacing θ̃0

in these equations by an initial guess, θ̃g. Admittedly,
this will by definition result in different experiment costs
and different parameter variances. Nevertheless, under
equal input power, the framework can deliver signals that
result in variances of the parameters that are lower than
obtained with an arbitrary input signal. An illustration
will follow in Section 5.

Second, we mentioned in the introduction that scal-
ing is of importance in the least costly experiment design
framework for physical systems. We comment further
on this now. Suppose we want to identify two physical
parameters, denoted θ1 and θ2. Their values can easily
differ by 10 orders of magnitude, resulting in variances
(that are on the diagonal of Pθ ) that differ by 20 orders
of magnitude. Consequently, the matrix P−1

θ is ill-posed,
and the convex methods can no longer solve such prob-
lems. However, with scaling, the parameters are of the
same order, resolving the badly scaled matrix.

Third, the LMI optimisation problem can be solved in
polynomial time. The number of decision variablesQex is
not big, as well as the number of to-be-identified param-
eters. This leads to rather quick solutions.

Lastly, we mention that in the numerical procedure
we require an expression for ∂G̃iu,iy (z̃, θ̃0)/∂ θ̃. The trans-
fer function G̃iu,iy (z̃, θ̃0) being of high order for fine spa-
tial grids, this can lead to a heavy computational load.
Note that nevertheless, as previouslymentioned, this load
can be eased by the method described in Appendix 3.
Moreover, it is also to be noted that this gradient com-
putation can be achieved prior to the resolution of the
LMI problem. Finally, this load becomes negligible if
an explicit continuous-time expression for G̃iu,iy (iω̃, θ̃0)

exists. Indeed, the discrete-time transfer function in
Equation (26) can then be replaced by its much sim-
pler continuous-time equivalent. We give an example in
Section 5.

4.2 Actuator and sensor locations as
design variables

In the previous section, we formulated the least-costly
experiment design (LCED) framework but assumed that
the actuator and sensor locations iu and iy were given.

Since the derivatives of G̃iu,iy (23) depend explicitly on
the actuator and sensor locations, we can also attempt
to decrease the cost even further by optimally choos-
ing these locations. Due to the explicit dependence of
the derivatives on the locations, the optimal frequencies
change with the locations. Consequently, we have to solve
the LCED optimisation problem formulated in the previ-
ous section for many combinations of iu and iy.

Set Nsim as total number of iterations;
Set α and �θi’s to set constraints;
Set Q determining the lowest frequency ω f = π

QTs
;

Set array Ãopt = [Ãl]l=1,...,Qex ;
Set array x̃opt = [x̃u, x̃y];
Set cost J̃opt = 1 × 108 (a high value);
x̃u,sub = 1

2 , x̃y,sub = 1
2 ;

k = 0;
while k < Nsim do

�xu,k = x̃u,sub,�xy,k = x̃y,sub;
for i = 1 to 2 do

xu = (i − 1)�xu,k + 1
2�xu,k;

for j = 1 to 2 do
xy = ( j − 1)�xy,k + 1

2�xy,k;
Solve Equations (29) and (30) using
Equation (31) and use solution
Ã =

{
Ãl

}
l=1,...,Qex

to compute cost J̃cost[Ã]

(28);
if J̃cost[Ã] < J̃opt then

x̃u,sub = xu, x̃y,sub = xy;
Ãopt = Ã;
J̃opt = J̃cost;

end
end

end
xopt = [xu,sub, xy,sub];
k = k + 1;

end
Algorithm 1: Progressive subdivision algorithm that
finds the minimal experiment cost by designing the
optimal input spectrumandoptimal sensor and actu-
ator locations.

The solution of this algorithm is given by the set of val-
ues {x̃opt, Ãopt, J̃opt} containing the optimal actuator and
sensor location, as well as the optimal amplitudes and
the optimal cost. Conversion to the unscaled signal is
described in the previous section.

The algorithm makes use of progressive subdivision.
The algorithm starts by dividing the (xu, xy)-plane into
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four equally sized squares. For each square, the optimisa-
tion problem is solved at the coordinates that correspond
to the centre of the square. From these four solutions
the one that delivers the smallest cost Jcost is selected.
At step k + 1, that square is subsequently divided into
four equally sized squares for which we again find the
least costly solution. This procedure is repeated untilNsim
divisions have taken place. This subdivision algorithm is
important if the number of variables such as x̃u and x̃y
increases. The algorithm is easily adapted if only one spa-
tial degree is considered (only input or output location).

The algorithm speed can be improved drastically in
cases where dim(θ) ≤ 2, for which we derived analytical
solutions in Potters, Forgione, Bombois, and van den Hof
(2015) and a novel analytical solution in Appendix 2. A
properly chosen frequency grid can further improve the
speed.

.. Example: estimating the dispersion coefficient
and reaction rate in a tracer experiment
As the first numerical illustration of our result, let us con-
sider a 1D river containing a homogeneous fluid (Didier-
jean, Maillet, & Moyne, 2004). For the sake of brevity, we
will directly consider the scaled system. The river is mod-
elled as an infinite medium with a constant flow speed
ṽ0 = 3. Following Didierjean et al. (2004), we consider
the following experiment: we inject a tracer with a rate
q̃(x̃, t̃ ) in the river (on, for example, a boat) at a station-
ary position x̃ = x̃u andmeasure the tracer concentration
c̃(x̃, t̃ ) (with, for example, another boat) downstream at
position x̃ = x̃y ≥ x̃u. The input ũ(t̃ ) = q̃(x̃u, t̃ ) and the
output ỹ(t̃ ) = c̃(x̃y, t̃ ).

The dynamics are governed by Equation (5) where
the profile f̃ (x̃, t̃ ) is here the concentration c̃(x̃, t̃ ), and
parameter θ̃1 is the so-called dispersion coefficient η̃, θ̃2
the flow speed ṽ and θ̃3 the reaction rate ξ̃ . The bound-
ary conditions involves the tracer injection rate q̃(x̃u, t̃ )
and are a bit different than in Equation (6) (see Didier-
jean et al., 2004). Among the three parameters, the flow
speed ṽ is generally not identified from data, but mea-
sured. Consequently, our aim will be to identify the two
remaining parameters: the dispersion coefficient and the
reaction rate of the tracer. Note that the dispersion coef-
ficient represents the combined effect of molecular diffu-
sion and hydrodynamic transport.

As shown in Didierjean et al. (2004), one can deduce
a closed form of the continuous-time transfer function
between the input and output. After scaling, we obtain

G̃l̃ (s̃, θ̃) =
[
A(s̃, θ̃)

Z−∞(θ̃)
+ B(s̃, θ̃)

Z−∞(θ̃)Z+∞(θ̃)
+C(s̃, θ̃)

+ D(s̃, θ̃)

Z+∞(θ̃)

]−1

exp

(
ṽ l̃
2η̃

)
, (35)

where l̃ = x̃y − x̃u is the distance between the measure-
ment and actuator location, and

A(s̃, θ̃) =
[
cosh

(
k̃l̃
)

− ṽ

2k̃η̃
sinh

(
k̃l̃
)]

,

B(s̃, θ̃) = 1

k̃η̃
sinh

(
k̃l̃
)

, (36)

C(s̃, θ̃) = s̃

k̃
sinh

(
k̃l̃
)

, D(s̃, θ̃)

=
[
cosh

(
k̃l̃
)

+ ṽ

2k̃η̃
sinh

(
k̃l̃
)]

, (37)

Z±∞ = 1

k̃η̃ − ṽ/2
, k̃(s̃, θ̃) =

√
s̃ − ξ̃

η̃
+ ṽ2

4η̃2 . (38)

Observe that the transfer function is only a function of the
relative distance of the actuator to the sensor. This makes
sense, as it should not matter where we inject the tracer
in an infinitely long river.

Let us define the data-generating system with the
parameter vector θ̃ = [η̃0, ξ̃0] = [1.0, −0.1] and assume
that ṽ0 = 3. Our objective is to estimate θ̃0. The scaled
measurement noise is assumed to be σ̃ 2

e = 0.01; the
experiment length is set to N = 9000 samples. We wish
to identify θ̃ with the least powerful input signal, yet
ensuring that the parameter variance constraints σ̃ 2

η̃
≤

( 0.01
3 )

2 and σ̃ 2
ξ̃
≤( 0.02

3 )
2 are satisfied. To this end, we also

optimise the distance l̃ between the actuator and the
sensor.

The distance l̃ is a scalar variable, hence Algorithm 1
need not be used to determine the optimal distance. We
instead solve the optimisation problems (28)–(30) for the
values l̃ = 0, 0.05, 0.1, . . . , 1.5. Since only two parame-
ters are identified, we can use the analytical solution in
Appendix 2 to solve the problem for all these values of l̃.
However, we could of course also have used the LMI opti-
misation.

Using this procedure, the least powerful excitation sig-
nal is found for a distance l̃opt = 1.0. For this value, the
least powerful excitation signal is given by

ũ(t̃ ) = Ãopt sin(ω̃optt̃ ), (39)

where Ãopt = 7.54, ω̃opt = 0.31.
The optimal (scaled) amplitude is thus equal to 7.34

for l̃opt. For l̃ = 0, the amplitude that is required to fulfil
the variance constraints is 15.16, i.e. twice as much. For
distances exceeding l̃opt, the amplitude also increases sig-
nificantly. This shows the advantage of optimising the dis-
tance between the sensor and actuator in this experiment.
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Figure . Sketch of the experimental set-up. The actuator location is indicated with xu, the sensor location with xy. The left end of the rod
with length L is put at x= .

In the next section, we consider a more detailed exam-
ple and compare our results with existing ones in the
literature.

5. Case study: estimation of diffusivity and
conductivity parameters in front-face
experiments

In this section, we apply the optimal experiment design
framework to the identification of thermal parameters
with a front-face experiment. The experimental set-up is
inspired by work of Gabano and Poinot (2009) and sim-
ulated with the computer. We first introduce the data-
generating system and its scaled equivalent in Section
5.1. We then set up the experiment and define the con-
straints on the variances of the estimates and compute
the optimal input signal in Section 5.2. We solve the opti-
misation problem using CVX (Grant & Boyd, 2013). We
also show what the optimal actuator and sensor locations
are. In Section 5.3, the optimal input signal is applied
to the data-generating system (in a simulation environ-
ment) and with the collected data we identify the physi-
cal parameters. In order to test if the variance constraints
are honoured, we simulate 2 × 104 experiments. We also
analyse what happens to the optimal input signal when
we replace θ̃0 by an initial guess θ̃g in Equation (34).

5.1 Data-generating system

We consider a homogeneous rod of length L = 0.05m
oriented along the spatial coordinate x (see Figure 2).
We place the left side of the rod at x = 0, such that
the spatial domain we consider isD = [0, L]. During the
experiment, we heat the cross-sectional area of the rod
uniformly at x = xu with a heat flux u(t) and keep the
temperature constant at the right boundary (x = L),
here equal to zero.6 We measure the temperature T(x, t)
at position x = xy ∈ D. The optimal actuator and sen-
sor positions are determined with optimal experiment
design. We assume zero initial conditions.

The dynamics are governed by the following
equations:

∂T (x, t )
∂t

= α0
∂2T (x, t )

∂x2
, (40)

− λ0
∂T (x, t )

∂x

∣∣∣∣
x=xu

= u(t ), ynf(t ) = T (xy, t ), and

T (L, t ) = 0 ∀t, (41)

in which λ0 = 111 Wm−1°C−1 is the thermal conduc-
tivity and α0 = 3.38 × 10−5 m2s−1 the thermal diffu-
sivity. We collect the physical parameters in the vector
θ0 = [α0, λ0]. This data-generating system corresponds
to the continuous-time second-order PDEs (1) and (2) for
the macroscopic field f(x, t) = T(x, t), input location x =
xu, θ1, 0 = α0 and θ4, 0 = λ0. Our goal is to identify the
physical parameters θ0 = [α0, λ0] = [3.38 × 10−5, 111].

.. Non-dimensionalisation
Following Section 2.1, we introduce the non-dimensional
variables T̃ (x̃, t̃ ) = T (x,t )

ys
, x̃ = x

xs
, ũ(t̃ ) = u(t )

us
, t̃ = t

ts
, and

non-dimensional parameters α̃0= α0
αs
, λ̃0 = λ0

λs
. Choosing

ys = 1, xs = L = 0.05, ts = L2
α0

= 73.96, us = L
λ0ys

=
4.5 × 10−4, αs = α0, λs = λ0, and substituting the non-
dimensional variables in Equations (40) and (41) results
in the non-dimensional model,

∂T̃ (x̃, t̃ )
∂ t̃

= α̃0
∂2T̃ (x̃, t̃ )

∂ x̃2
, (42)

− λ̃0
T̃ (x̃, t̃ )

∂ x̃

∣∣∣∣∣
x̃=x̃u

= ũ(t̃ ), ỹnf(t̃ ) = T̃ (x̃y, t̃ ), and

T̃ (1, t̃ ) = 0 ∀t̃. (43)

Note that we have used an initial guess θg = θ0 for conve-
nience. This results in an unscaled true parameter vector,
θ̃0, that is of O(1).

The non-dimensional continuous-time transfer func-
tion G̃x̃u,x̃y (s̃, θ̃0) that couples ũ(t̃ ) to the output ỹnf(t̃ ) (cf
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Equation (7)) is derived in Appendix 1 and reads as

G̃x̃u,x̃y (s̃, θ̃0) = 1
λ̃0

√
α̃0

s̃

sinh
(√

s̃
α̃0

(1 − x̃y)
)

cosh
(√

s̃
α̃0

(1 − x̃u)
) . (44)

In this equation, the Laplace variable has also been scaled
according to Equation (4), i.e. s̃ = tss = sL2/α0. We will
use this transfer function in the experiment design pro-
cedure that is explained in the next section.

5.2 Experiment preliminaries

In this section, we define the experiment. We choose the
same parameters as in Gabano and Poinot (2009), mainly
to compare the excitation frequencies. We remark that
we did not have an actual physical set-up to generate
data. Instead, the noise-corrupted output data is gener-
ated with the computer. We set the experiment length at
N = 2000 + 9000 samples, where the first 2000 samples
are not used in the identification, i.e. we wait until tran-
sients died out. The sampling time is set at Ts = 0.1 s. The
optimal input signal (whichwewill compute shortly) gen-
erates the measured output of the data-generating system
given by

yD[n] = ynf(nTs) + e(nTs), (45)

where we assumed that the output of the data-generating
system ynf(nTs) is corrupted by zero-mean Gaus-
sian white noise with variance σ 2

e = 0.05 (see also
Equation (8)).

.. Optimal experiment design
In Gabano and Poinot (2009), the collection of a thou-
sand estimates

{
α̂N
}
and

{
λ̂N

}
were distributed around

their respective true values α0 = 3.38 × 10−5 and λ0 =
111 (identical to the parameters used in this section) with
σα = 0.02α0/3 and σλ = 0.01λ0/3. Following Section 4,
we cast these values in the scaled variance constraints
(27):

σ̃ 2
α̃ ≡ σ̃ 2

1 ≤
(
0.02
3

)2

, σ̃ 2
λ̃

≡ σ̃ 2
2 ≤

(
0.01
3

)2

, (46)

where it is understood that the probability α � 0.99, and
that χ2

0.99(2) ≈ 9. The optimal experiment design prob-
lem is formulated by Equations (29) and (30). Choos-
ing Equation (31) to represent the scaled spectrum, the
above constraints, the scaled optimisation problem for

this experiment reads

min{
Ãl

} 1
2

Qex∑
l=1

Ã2
l (47)

subject to the constraints
(

σ̃ 2
α eT1
e1 P̃

−1
θ̃

)
� 0,

(
σ̃ 2

λ eT2
e2 P̃

−1
θ̃

)
� 0. (48)

The expression of P̃
−1
θ̃ is given by Equation (34), in

which we substituted G̃iu,iy (z̃, θ̃) with the continuous-
time transfer function G̃x̃u,x̃y (s̃, θ̃) in Equation (44), and
used as initial guess θg = θ0, i.e. θ̃0 = [1.0, 1.0].

We use Algorithm 1 to find the optimal locations
and the optimal input signal for those locations. To this
end, we thus solve the problem (29)-(30) with the LMI
approach. We takeQ=Qex = 200. For each combination
(x̃u, x̃y), it turns out that the optimal input signal is a sin-
gle sinusoid. Interestingly, we find that the lowest cost, i.e.
J̃cost= 1

2 Ã
2
opt is obtained at (x̃u, x̃y) = (0, 0.12). The optimal

amplitude Ãopt at x̃u = 0 as a function of x̃y) is depicted
in Figure 3(a). In unscaled length, this corresponds to
xy = 0.12L. In practice, front-face experiments (xu = xy
= 0) are common. However, this study suggests that this
is not the best practice, as a lower cost (proportional to
Ã2) of about 6% can be obtained at x̃y = 0.12. Equiva-
lently, for the same cost, the variances in the parame-
ters will be about 6% lower since P̃−1

θ̃
is proportional to

Ã2. Furthermore, observe that the curve increases rapidly
as x̃y increases. Although not shown in the figure, when
x̃y → 1, the optimal amplitude Ãopt → ∞. This is a con-
sequence of the boundary condition T̃ (1, t̃ ) = 0 ∀t̃ (cf
Equation (43)). Hence, the informativeness of the data at
any frequency is zero at this location.

Although the best estimate can be obtained at
(x̃u, x̃y) = (0, 0.12), we shall, however, use the optimal
input signal for x̃u = 0 and sensor location x̃y = 0 to
compare with previous works. In this case, the optimal
input signal is computed to be

ũopt(t̃ ) = 1.7067 sin(1.5666t̃ ), (49)

which in unscaled variables translates (using the con-
version defined in Section 5.1) into the optimal input
signal7

ũD(t̃ ) = 3.789 × 103 sin(0.0212t ). (50)

Observe from Figure 3(b) that the scaled optimal fre-
quency ω̃ = 1.5666 lies in between the twomaxima of the
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Ã
o
p
t

(a)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω̃

∂
G̃

∂
θ

i
(ω̃

)

(b)

Figure . (a) The optimal input signal is a single sinusoid of which the logarithm of the optimal amplitude Ãopt is plotted against the

sensor position x̃y for x̃u = 0. (b) Derivatives ∂G̃x̃u,x̃y
(iω̃, θ̃)/∂α̃ (red) and ∂G̃x̃u,x̃y

(iω̃, θ̃)/∂λ̃ (blue) for x̃u = x̃y = 0.

derivatives of G̃x̃u,x̃y . This is an intuitively pleasing result,
as high values for the derivatives lead to a large certainty
(see Equation (34)).We refer the reader to Appendix 2 for
a more detailed analysis and interpretation of the optimal
input signal.

.. Chicken-and-egg problem
The optimal input signal designed in the previous section
was designed by using the true parameter vector θ̃0. In
practice, however, we obviously do not know this vector
as we in fact want to estimate it. As mentioned in Section
4, the problem of finding the optimal signal to identify
the parameter vector requires the parameter vector itself.
This so-called chicken-and-egg problem can be circum-
vented by replacing θ̃0 in Equation (34) with a previous
estimate or guess θ̃g. This inevitably leads to a designed
input signal that is not optimal. Optimal input design can,
however, still be used andwill generally lead to better esti-
mates than arbitrary signals under the same experiment
cost.

A central question is the sensitivity of the cost of the
experiment to the initial guess θ̃g, and whether or not the
constraints will still be honoured. To this end we com-
puted the optimal amplitude and frequency for many val-
ues of θ̃g using Equations (47) and (48). The range in
which these values lie is larger than the desired accu-
racy of estimates from the identification experiment. In
Figure 4(a), the optimal amplitude is shown for values
of λ̃ and α̃ around 10% of λ̃0 = 1 and α̃0 = 1 (the case
for which θg = θ0). Observe that within this range the
optimal amplitudes can differ up to 30% from the one

obtained with θ̃0 = θ̃g, i.e. Aopt = 1.7067 (cf Equation
(49)). The cost of the experiment is thus rather sensitive
to the guess θ̃g. In Figure 4(b), the optimal frequencies as
a function of θ̃g are shown. It can be observed that the
optimal frequency is not sensitive to a wrong guess α̃g for
a given guess λ̃g.

To test whether the constraints will still be honoured,
and how large the error in the estimates is when using the
optimal input signal designedwith θg �= θ0, we proceed as
follows. For each guess θ̃g, we use the corresponding opti-
mal amplitude and frequency of Figure 4(a) and 4(b) and
apply this input signal to the true system. We then obtain
the variances in the estimates ˆ̃αN and ˆ̃

λN as a function of
θ̃g. We use the following measure of error:

e(θ̃g) = 1
2

[
var ˆ̃αN (α̃g) − var ˆ̃αN (α̃0)

var ˆ̃αN (α̃0)

+ varˆ̃λN (λ̃g) − varˆ̃λN (λ̃0)

varˆ̃λN (λ̃0)

]
. (51)

We found that the relative error in the considered
interval lies between 0% and 30%. Also, it is clear that a
strong correlation exists with Figure 4(a): if the optimal
amplitude is larger or equal to Ãopt = 1.7067 ((α̃, λ̃) =
(1, 1)), we obtain variances that are smaller or equal to
the case θg = θ0. Conversely, we do not satisfy the con-
straints if the optimal amplitude is smaller than Ãopt =
1.7067.
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Figure . The left (a) and right (b) figures depict, respectively, the optimal amplitude and frequency computed with Equations () and
() for many values of θ̃g.

5.3 Identification results

In this section, we identify the physical parameters θ̃0
with the optimal input signal computed in the previous
section (49). We use method (2) as detailed in Section 3.
The resulting unscaled data-set ZN is defined by scaling
(45) and the scaled sampled equivalent of the input (50).
We remind the reader that we consider the case xu =
xy = 0. The data-set Z̃N = { uD[ j]

us
,
yD[ j]
ys

}
j=2001,...,N ,

where us and ys are defined in Section 5.1. Note that
we discarded the first 2000 samples to remove tran-
sients. Simulation of the scaled noise-free output
ỹnf(t̃ ) (43) is done according to Section 3.2.1 where
we chose �t̃ = Ts/ts and M = 200. The simulated
noise-free output ỹsim[ j] for j = 2001,… , N is then
used together with the scaled measured data yD[j]/ys in
Z̃N in the least-squares procedure (9). For one exper-
iment we found the scaled estimates resulting from

this procedure to be ˆ̃αN = 1.01 and ˆ̃
λN = 1.005, cor-

responding to unscaled estimates α̂N = 3.414 × 10−5

m2s−1 and λ̂N = 111.56 Wm−1°C−1. These estimates
fall within the respective intervals [λ0 − 0.01λ0, λ0 +
0.01λ0] and [α0 − 0.02α0, α0 + 0.02α0] that we set in
Section 5.2.

.. Monte Carlo simulations experiment :
validating the variance constraints
To validate whether the variance constraints are hon-
oured,we ran 2× 104MonteCarlo simulations to identify
the scaled physical parameters α̃0 = 1 and λ̃0 = 1 with
the optimal signal (49). (In other words, 20,000 data-sets

0.97 0.98 0.99 1 1.01 1.02 1.03
0.985

0.99

0.995

1

1.005

1.01

1.015

α̃

λ̃

Figure . Twenty thousand identified vectors θ̃N are indicated by
the blue open circles, the mean value of θ̃N over all Monte Carlo
simulations by the red cross, and the constraints on the parame-
ters α̃N and λ̃N by the square generated through the intersection
of the dashed black lines. Only .% of the estimates lies outside
the square.

ZN were generated and for each the identification pro-
cedure was applied.) The identified parameters α̃N and
λ̃N for all experiments are shown in Figure 5. The mean
value of the coordinate θ̃N = [α̃0, λ̃0] is indicated by the
red cross. The constraints set in Section 5.2 are visualised
by the square resulting from intersection horizontal and
vertical dashed black lines.

Observe that almost none of the estimates θ̃N lie out-
side the region of constraints. The computed variance for
α̃N and λ̃N are, respectively, var(α̃N ) = 3.615 × 10−5 and
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var(λ̃N ) = 1.1108 × 10−5. Clearly, the optimal input sig-
nal designed in the previous section honours the con-
straints. The experiment design procedure ensured that
the confidence ellipse ‘touches’ the horizontal constraints,
whereas the variance in α̃N is in fact a bit smaller. This is
not surprising, as explained in Appendix 2.

Slightly lower accuracy in the estimates is obtained
in Gabano and Poinot (2009) for the same experi-
ment length N, parameters α0andλ0, and rod length L.
The input signal they considered was a pseudo-random
binary excitation signal with a power distribution in the
higher frequencies, up to 20 rads−1. The amplitudes are
of the same order but the noise variances might be dif-
ferent, so a comparison is difficult. However, indepen-
dent of this difference, our result suggests that one should
instead use a very low excitation frequency, i.e. 0.02
rad s−1 to get the most accurate estimates. As shown in
Figure 4(b), choosing high frequencies leads to matrix
P−1
θ̃

that is much smaller than using one that is close to
the maxima of the derivatives. Intuitively, it means that
the system is highly insensitive to high-frequency input
signals.

Our results also suggest that higher accuracy can
be obtained by measuring at x̃y = 0.12 as shown in
Figure 4(a). The ratio of the optimal amplitude between
x̃y=0 and x̃y = 0.12 is 1.03. As P̃−1

θ̃
is proportional to Ã2, it

means that 1.032 higher accuracies can be obtained using
the same input power.

.. Monte Carlo simulations experiment :
chicken-and-egg problem revisited
In Section 4, we mentioned that OED suffers from the
chicken-and-egg problem. In this section, we show that
we can still find estimates that honour the user-imposed
constraints, even if we do not know exactly θ̃0.

To this end, suppose that we start without any prior
knowledge on θ0. We run an experiment of length N/2
and apply a white-noise input signal8 with high variance

σ̃ 2
wn=25. This delivers us an estimate ˆ̃

θwn. At this point, we
compare two scenarios: (1) we apply optimal experiment
design to find the optimal input signal that guarantees the
constraints (46) based on the initial guess θ̃g=ˆ̃

θwn for an
experiment length ofN/2, or (2) continue with applying a
white-noise signal that has the same power as the optimal
input signal and equal experiment length. Both scenarios
thus have equally powered input signals and the experi-
ments have equal length.

Using Monte Carlo simulations, we first generate 500
white-noise realisation with variance σ̃ 2

wn=25 that generate

500 estimates ˆ̃
θwn, which we collect in the set { ˆ̃

θwn}. These
estimates are shown in red in Figure 6. Next, for each of
the estimates, we run scenarios (1) and (2). The estimates
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Figure . Monte Carlo simulations. The red, blue and green circles
correspond to the set of initial guesses { ˆ̃θ

wn
}, estimates generated

by optimal input signals and estimates fromwhite-noise input sig-
nals with a power that is equal to their respective optimal input
signal.

resulting from scenarios (1) and (2) are shown in blue and
green in Figure 6, respectively. We find that the variances
of the estimates in scenario (1) are var( ˆ̃αN/2)=3.1381×10−5 and
var(ˆ̃λN/2) = 9.2074 × 10−6, which are both smaller than
the required variances of respectively 4.44 × 10−5 and
1.11× 10−5. The equally poweredwhite noise realisations
of scenario (2) deliver much worse estimates.

Since both scenarios generate signals that are equally
long and equally powered, these Monte Carlo simula-
tions clearly illustrate the advantage of optimal experi-
ment design.

The above approach is the classical approach to tackle
the chicken-and-egg problem.More involved approaches
exist. In these approaches, the initial guess and the
optimal spectrum are adapted throughout the experi-
ment (see e.g. Forgione, Bombois, & Van den Hof, 2013;
Gerencsèr, Hjalmarsson, & Mårtensson, 2009; Larsson
et al., 2013).

6. Conclusions

The main novelty of this paper is the introduction of
a systematic way to identify physical parameters in lin-
ear physical systems in a least intrusive manner while
guaranteeing accuracy on the to-be-identified parame-
ters.We have in particular shown how to apply the theory
of least costly experiment design to diffusion–advection
processes.

To this end, we made use of a discretisation using
the Crank–Nicolson stencil to truncate the continuous-
time model to find a discrete-time transfer function that
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couples the input and output. This transfer function is
then also guaranteed to be stable. This integration scheme
is not only unconditionally stable, but also more accu-
rate than the Euler stencil. The resulting truncated model
is a state-space realisation that is explicit in the physi-
cal parameters.We then showed how optimal experiment
design can be applied.

The second novelty of this paper is the generalisation
of the experiment design framework to find not only opti-
mal amplitudes and frequencies, but also optimal actuator
and sensor locations.

We applied our methodology to the estimation of
two thermal parameters in a front-face experiment. This
study showed that current practice, i.e. placing the sen-
sor and actuator at position x= 0, in fact does not deliver
the best possible estimates. Our study suggests that plac-
ing the sensor location at a distance of 12% of the total
length of the rod from the actuator position yields esti-
mates that are 6% better. Applying the optimal input sig-
nals designed in the case study furthermore shows that
the input power can be reduced considerably in compar-
ison to previous experiments.

It is interesting to extend the methodology to physi-
cal systems with spatially dependent parameters. This is
considered to be future work.

Notes

1. For a general introduction to optimal experiment design,
we refer the reader to the nice historical review of Mehra
(1974).

2. For simplicity, we considered only one spatial dimension,
but more can be incorporated easily.

3. The scaling procedure explained here is classical, except
that usually in the literature the parameters are (assumed
to be) known. In such cases, one can make most terms
equal to unity in step (4), rather than of O(1).

4. The simulation accuracy is thusO(�t̃ )2. If�t̃ turns out to
be large, define the integer γ such that the time integration
step becomes�t̃/γ . This generates γ timesmore points in
the considered simulation time interval. In the identifica-
tion procedure, one then has to downsample the simulated
output by a factor γ .

5. Since the Nyquist frequency is chosen a decade above the
system’s bandwidth it is generally not necessary to cover
the whole frequency range [0, π /Ts]

6. If xu = 0, we can easily heat the cross-sectional area. If xu
0, the rod can be heated locally with a thin thermal band
wrapped around the rod.

7. This optimal input signal has a different optimal frequency
than the case x̃y = 0.12.

8. Note that we now can only use identification method (2)
of Section 3, because the input signal is no longer peri-
odic, whereas in Experiment 1we could have also opted for
method (1) since the input signal is periodic and a closed-
form transfer function exists.
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Appendix 1. Derivation of continuous-time transfer
function of 1D diffusion equation

We consider the 1D problem of a diffusion process on
a line with domain D = [0, L]. The physical parameters
are collected in the vector θ = [θ1, θ2]. The problem is
defined by

∂ f (x, t )
∂t

= θ1
∂2 f (x, t )

∂x2
(A1)

subject to the boundary conditions

φ(x, t ) = −θ2
∂ f (x, t )

∂x
, f (L, t ) = 0 ∀t. (A2)

We define the input of the system by u(t) = φ(xu, t) and
the output ynf(t) = f(xy, t), where xu,xy ∈ D denote the
input and output locations on the line. To solve the prob-
lem, we first apply the Laplace transform to the above
equations:

sF(x, s) = θ1
∂2F(x, s)

∂x2
(A3)

�(x, s) = −θ2
∂F(x, s)

∂x
. (A4)

The general solution to Equation (A3) reads

F(x, s) = c1e
√ s

θ1
x + c2e

−√ s
θ1 , (A5)

where c1 and c2 are real constants that will be determined
from the boundary conditions. From this equation, it fol-
lows that Equation (A4) becomes

�(x, s) = −θ2

√
s
θ1

{
c1e

√ s
θ1
x − c2e

−√ s
θ1
x
}

. (A6)

We also have that the input and output in the Laplace
domain read U(s) = �(xu, s) and Ynf(s) = F(xy, s). We
can thus write

U (s) = �(xu, s) = −θ2

√
s
θ1

{
c1e

√ s
θ1
xu − c2e

−√ s
θ1
xu
}
(A7)

from which follows that

c1 = e−
√ s

θ1
xu
{
− 1

θ2

√
s
θ1
U (s) + c2e

−√ s
θ1
xu
}

. (A8)

Furthermore, fromEquation (A5) and the boundary con-
dition F(L, s) = 0 �s, we get

F(L, s) = c1e
√ s

θ1
L + c2e

−√ s
θ1
L = 0 → c2 = −c1e

2
√ s

θ1
L
.

(A9)

We can now combine Equations (A8) and (A9) to find
that

c1 = − 1
θ2

√
θ1

s
e−

√ s
θ1
xu

1 + e2
√ s

θ1
(L−xu)

U (s), (A10)

c2 = 1
θ2

√
θ1

s
e−

√ s
θ1

(xu−2L)

1 + e2
√ s

θ1
(L−xu)

U (s). (A11)

Next, we can write the expression for Ynf(s) = F(xy, s)
which reads

Ynf(s) = c1e
√ s

θ1
xy + c2e

−√ s
θ1
xy (A12)

= − 1
θ2

√
θ1

s
e−

√ s
θ1

(xu−xy )

1 + e2
√ s

θ1
(L−xu)

{
1 − e2

√ s
θ1

(L−xy )
}
U (s).

(A13)
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Hence, the transfer function between input and output
reads

Gxu,xy (s, θ) = Ynf(s)
U (s)

= − 1
θ2

√
θ1

s
e−

√ s
θ1

(xu−xy )

1 + e2
√ s

θ1
(L−xu )

{
1 − e2

√ s
θ1

(L−xy )
}

,

(A14)

which can be further simplified to

Gxu,xy (s, θ) = 1
θ2

√
θ1

s

sinh
[√

s
θ1

(L − xy)
]

cosh
[√

s
θ1

(L − xu)
] . (A15)

Substitution of f(x, t) = T(x, t) in Equation (A1)
and following the same calculations yields the equation
above. Finally, setting θ1 = α0 and θ2 = λ0 results in
Gxu,xy (s, θ0), in which θ0 = [α0, λ0]. In a similar fashion,
the continuous-time transfer function between the scaled
input and scaled output can be derived for Equations (42)
and (43), yielding

G̃x̃u,x̃y (s̃, θ̃) = 1
θ̃2

√
θ̃1

s̃

sinh
[√

s̃
θ̃1

(1 − x̃y)
]

cosh
[√

s̃
θ̃1

(1 − x̃u)
] . (A16)

This equation is equal to (44) after substitution of θ̃ =
θ̃0 = [α̃0, λ̃0].

Appendix 2. An analytical solution to the 2D least
costly experiment design problem

This section derives the analytical solution of the optimal
input signal that is found numerically in Section 5. The
derivation here is not specific to this example, but is a gen-
eral solution for systems of which two parameters need to
be identified. In this appendix, we have dropped all tildes
on variables and parameters to simplify notation.

Our starting point is the problem definition intro-
duced in Section 4. In the particular case if identifying
two parameters θ0 we require that the joint confidence
region defined by the ellipse

(θ − θ0)
TP−1

θ [�u(ω)](θ − θ0) ≤ χ2
α(2), (B1)

in which χ2
α(2) is the α-quantile of the chi-squared dis-

tribution, lies inside the intervals

i = 1, 2 : −�θi + θ0,i ≤ θ̂0 ≤ �θi + θ0,i. (B2)

Furthermore, we not only require these constraints to
hold, but also to find the spectrum in Equation (B1) that

Figure B. The blue ellipse E corresponds to the boundary of the
confidence region θTP−1

θ
θ ≤ χ 2

α(2). Thedashed anddash–dotted
grey line sets correspond to the constraints on parameter θ  and
θ , respectively.

minimises the cost as given in Equation (29). This con-
straint is equivalent to the variance constraint (27).

The situation is sketched in Figure B1. The blue ellipse
E1 is described by Equation (B1), the sets of horizontal
and vertical lines l1 and l2 indicate the intervals given
in Equation (B2). The goal is now to find the spectrum
�u(ω) that minimises the cost, while at the same time
ensuring that the ellipse E1 lies inside the box defined by
the four intersection points of the sets of lines. To keep
notation ease, we translated the centre of the ellipse from
θ0 to (0, 0) without loss of generality.

We recall that we parameterise the spectrum as a
multi-sine. It is known in System Identification that two
parameters can be identified with a single sine. In this
appendix, we give the solution to the optimisation prob-
lem defined in Section 4 assuming the solution lies in
the family of single sines. The optimisation problem thus
reads

min
A

1
2
A2 (B3)

subject to the constraints

∀θ = (θ1, θ2) for which θTP−1
θ [A]θ = χ2

α(2) : |θ1|
≤ |�θ1| , and |θ2| ≤ |�θ2| (B4)

in which

P−1
θ
[A] = NA2

2σ 2
e
Re
{[

∂Giu,iy (eiωTs, θ)

∂θ

]
θ=θ0

×
[

∂Giu,iy (e−iωTs, θ)

∂θ

]T

θ=θ0

}
. (B5)
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Theorem B.1: The solution to optimisation problem (B3)-
(B4) is given by the optimal input signal

uopt(t ) = Aopt cos(ωoptt + φ), (B6)

in which φ is an arbitrary phase,

Aopt = max
{
min

ω
A1(ω),min

ω
A2(ω)

}
, (B7)

and, if we denote iopt as the index that corresponds to the
function Ai which has the highest minimum between the
functions A1(ω) and A2(ω),

ωopt = argmin
ω

Aiopt (ω), (B8)

and lastly, for i = 1, 2,

Ai(ω) =
√[

d2(ω)

Di,2(ω)

]2
+
[
d1(ω)

Di,1(ω)

]2
, (B9)

m1 = ||v1(ω)||
||v2(ω)||

λ2(ω) − p22(ω)

λ1(ω) − p22(ω)
, m2 = ||v1(ω)||

||v2(ω)|| ,
(B10)

b1(ω) = |�θ1|
||v2(ω)|| p12(ω)

[
1 − λ2(ω) − p22(ω)

λ1(ω) − p22(ω)

]
,

b2(ω) = |�θ2|
||v2(ω)|| [λ2(ω) − λ1(ω)], (B11)

di(ω) =
√

χ2
α(2)/λi(ω), Di,1(ω) = −bi(ω)/mi(ω),

Di,2(ω) = bi(ω), (B12)

||vi(ω)|| =
√
p212(ω) + (λi(ω) − p22(ω))2, (B13)

(B14)

where λ1(ω) and λ2(ω) are, respectively, the largest and
smallest eigenvalue of matrix P given by

P = Re
{(

p11(ω) p12(ω)

p12(ω) p22(ω)

)}
, (B15)

with the elements

p11(ω) = N
2σ 2

e

∣∣∣∣∂G(e−iωTs, θ)

∂θ1

∣∣∣∣
2

θ=θ1

, (B16)

p12(ω) = N
2σ 2

e

[
∂G(e−iωTs, θ)

∂θ

]
θ=θ1

[
∂G(eiωTs, θ)

∂θ

]
θ=θ2

,

(B17)

p22(ω) = N
2σ 2

e

∣∣∣∣∂G(e−iωTs, θ)

∂θ2

∣∣∣∣
2

θ=θ2

. (B18)

Proof. We consider the positive quarter of the plane (θ1,
θ2) in Figure B1. The first part of the proof consists of
the observation that to obtain the optimal input signal, it
should hold that the ellipse E1 is tangent to either line l1
or l2, as depicted in Figure B1. Indeed, if the ellipse is not
tangent to one of these lines, then either (1) the ellipse
exceeds the constraints, or (2) the ellipse lies completely
inside the rectangle and has no intersection point with
the lines. In case (1), we trivially see that we find no solu-
tion, whereas in case (2), the amplitude A that scales the
confidence ellipse (B1) is larger than necessary, and the
solution is thus not optimal.

The proof now proceeds as follows. First, we find all
amplitudes A1(ω) and A2(ω) such that ellipse E1 is tan-
gent to, respectively, line l1 and l2. Once we have these
functions, we find the frequencies that minimise A1(ω)
and A2(ω). The optimal amplitude will then correspond
to the largest of the two minima, since this amplitude
corresponds to the most stringent constraint. (We then
ensure that the ellipse lies within both set of lines.)

To this end, we apply a coordinate transformation
from θ → θ∗ as to align our coordinate system with the
principal axes of ellipse E1. The new coordinate system is
shown in red in Figure B1 and is spanned by the eigen-
vectors of matrix P−1

θ . Let us write P−1
θ as

P−1
θ = A2P. (B19)

The eigenvalues of P are given by

λ1,2 = 1
2
Tr[P] ± 1

2

√
Tr2[P] − 4det[P] (B20)

and its normalised eigenvectors by

u1 = 1
||v1||

(
λ1 − p22

p12

)
, (B21)

u2 = 1
||v2||

(
λ2 − p22

p12

)
, (B22)

(B23)

in which ||vi|| = √
p212 + (λi − p22)2 for i = 1, 2. We

define the coordinate transformation via θ = Mθ∗. If we
choose the matrixM as

M = (
u1 u2

)
, (B24)

then ellipse E1 can be rewritten as

θTP−1
θ θ = (Mθ∗)TA2P(Mθ∗) = A2θ∗MTPMθ∗

= A2θ∗Dθ∗ = χ2
α(2), (B25)
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Figure B. The same situation as in Figure B but now in the new
coordinate frame (θ∗

1 , θ∗
2 ).

whereD = MTPM is, by construction, a diagonal matrix
containing the eigenvalues λ1, 2. In the new coordinate
system θ∗, the principal axes are thus aligned with the
coordinate axes (see Figure B2).

The second step is to find expressions for the lines
l1 and l2 in Figure B1 in the new reference frame. We
can consider the lines in the upper right quadrant in
Figure B1. Line l1 is given by θ2 = �θ2 �θ1 and line l2 by
θ1 = �θ1 �θ2. We choose two arbitrary points on l1 and
denote them by Z1, 1 = (0, �θ1) and Z1, 2 = (�θ1, �θ1).
Similarly, for line l2 we define Z2, 1 = (�θ2, 0) and Z2, 2 =
(�θ2,�θ2). Then, using the transformation θ∗ = MTθ,

(
θ∗
1

θ∗
2

)
=
⎛
⎝ λ1−p22

||v1||
p12

||v1||
λ2−p22
||v2||

p12
||v2||

⎞
⎠( θ1

θ2,

)
(B26)

we can find the new lines l∗i : θ∗
2 = miθ

∗
1 + bi for i = 1,

2. The slope mi can be found by substituting the points
Zi, 1 and Zi, 2 into the above equations and calculating
mi = �θ∗

2
�θ∗

1
. The offset bi can then be calculated trivially.

The result is

l∗1 : θ∗
2 = m1θ

∗
1 + b1 = ||v1||

||v2||
λ2 − p22
λ1 − p22

θ∗
1

+ �θ1

||v2|| p12
[
1 − λ2 − p22

λ1 − p22

]
, (B27)

l∗2 : θ∗
2 = m2θ

∗
1 +b2 = ||v1||

||v2||θ
∗
1 + �θ2

||v2|| [λ2−λ1] . (B28)

The result of these transformations are shown in
Figure B2.

The final step is to find the condition for internal tan-
gency of the ellipse with both lines l∗1 and l∗2 . The ellipse

in the new coordinate system is given by

E∗
1 : θ∗TDθ∗ = λ1θ

∗2
1 + λ2θ

∗2
2 = χ2

α(2)/A2. (B29)

Substitution of line l∗i into the above equation and rear-
ranging terms yields

(λ1 + m2
i λ2)θ

∗2
1 + 2λ2mibiθ∗

1 + λ2b2i − χ2
α(2)/A2 = 0.

(B30)

This is a quadratic equation in θ∗
1 which has as solutions

θ∗
1,± = − 2λ2mibi

2(λ1 + m2
i λ2)

± 1
λ1 + m2

i λ2

×
√

λ2
2m2

i b2i − (
λ1 + m2

i λ2
)(

λ2b2i − χ2
α(2)/A2

)
.

(B31)

If ellipse E∗
1 is tangent to line l∗i , then only one point of

intersection exists. This means that the discriminant in
the above equation should be equal to zero. Hence, we
have the condition

λ2
2m

2
i b

2
i = (λ1 + m2

i λ2)(λ2b2i − χ2
α(2)/A2

i ), (B32)

where Ai is the amplitude we seek such that the above
equality holds for line li. Rearranging the above equation
yields the solutions

A2
i (ω) = χ2

α(2)
b2i (ω)

[
λ2(ω) − λ2

2(ω)m2
i (ω)

λ1(ω) + m2
i (ω)λ2(ω)

]−1

.

(B33)

In the last equation, we show the arguments of each
function explicitly to indicate that they depend on the
frequency. From (B29), we see that the lengths of the
principal axes are given by d1(ω) = √

χ2
α(2)/λ1(ω) and

d2(ω) = √
χ2

α(2)/λ2(ω). These points are indicated in
Figure B2 by the first magenta crosses measured from the
origin. Furthermore, the distance from the origin to the
intersection of line l∗i with the θ∗

1 and θ∗
2 axis is given

by, respectively, Di, 1(ω) = −bi(ω)/mi(ω) and Di, 2(ω) =
bi(ω).

Rewriting Equation (B33) as

Ai(ω) =
√

χ2
α(2)

√
1

b2i (ω)λ2
+ 1

λ1(ω)b2i (ω)/m2
i (ω)

(B34)
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and substituting the expressions for d1, d2,Di,D2 into this
equation results in

Ai(ω) =
√[

d2(ω)

Di,2(ω)

]2
+
[
d1(ω)

Di,1(ω)

]2
. (B35)

We now have an expression for the amplitudesAi such
that ellipse E1 touches line l∗i . The optimal amplitude is
thus given by

Aopt = max
{
min

ω
A1(ω),min

ω
A2(ω)

}
(B36)

and, if we denote iopt as the index that corresponds to the
function Ai which has the largest minimum between the
functions A1(ω) and A2(ω),

ωopt = argmin
ω

Aiopt (ω). (B37)
�

This is quite a remarkable result! It shows that themin-
imum amplitude corresponds to the situation in where
the sum of amplification factors d1/Di, 1 and d2/Di, 2
is minimal. Stated differently, the lengths indicated in
Figure B2 by magenta lines should be made as small as
possible.

Appendix 3. Computation of the gradient ∂Giu,iy
/∂θ

In this appendix, we show how to compute the gradient
∂Giu,iy/∂θ in Equation (34) evaluated at θ = θ0 for given
iu, iy. We start from Equation (34), which we here recall
for convenience:

Giu,iy (z, θ) = C [zI − A(θ)]−1 B(θ). (C1)

In this equation, I is the (M + 1) × (M + 1) identity
matrix, A(θ) = E−1A, B(θ) = E−1B(1 + z), and C =
C. Here, z = eiωTs and E ,A,B, and C are given by Equa-
tions (18) and (19).

Making use of the identities ∂U−1

∂x = −U−1 ∂U
∂xU

−1 and
∂(UV )

∂x = U ∂V
∂x + ∂U

∂xV , whereU ,V equally sizedmatrices
and x a scalar, we find that the derivative of Equation (C1)

with respect to parameter θi reads

∂Giu,iy (z, θ)

∂θi
= C [zI − A(θ)]−1

×
{

∂B(θ)

∂θi
+ ∂A(θ)

∂θi
[zI − A(θ)]−1 B(θ)

}
. (C2)

The derivatives of A(θ) = E−1(θ)A(θ) and B(θ) =
E−1(θ)B(θ)[1 + z] with respect to θi are

∂A(θ)

∂θi
= −E−1(θ)

∂E(θ)

∂θi
E−1(θ)A(θ) + E−1(θ)

∂A(θ)

∂θi
,

(C3)

∂B(θ)

∂θi
=
(

−E−1(θ)
∂E(θ)

∂θi
E−1(θ)B(θ) + E−1(θ)

∂B(θ)

∂θi

)
[1 + z].

(C4)

Substitution of Equations (C3) and (C4) into Equa-
tion (C2) finally gives

∂Giu,iy (z, θ)

∂θi
= C [zI − A(θ)]−1 E−1(θ)(1 + z)

×
{(

∂B(θ)

∂θi
+ ∂A(θ)

∂θi
[zI − A(θ)]−1 E−1(θ)B(θ)

)

− ∂E(θ)

∂θi
E−1(θ)(B(θ) + A(θ) [zI − A(θ)]−1

×E−1(θ)B(θ))

}
(C5)

In this equation, the derivatives can be found analytically
using Equations (18) and (19). To evaluate this equation
at θ = θ0 for all parameters θi ∈ θ, it is most efficient to
follow these steps:

(1) Calculate all terms independent of z in Equation
(C5) for θ = θ0 once and store these.

(2) Evaluate for θi the expression (C5) at frequency ω

by substituting z = exp (iωTs)
(3) Repeat step (2) for all other i = 1, . . . , dim(θ).
(4) Repeat steps (2) and (3) until the gradient is com-

puted for all required frequencies ω.
Combining the derivatives of each element in the

parameter vector then gives the gradient.
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