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Abstract 

 

Patient survival post liver transplant (LT) is important to both the patient and the center’s 

accreditation, but over the years physicians have noticed that distant patients struggle with post 

LT care.  I hypothesized that patient’s distance from the transplant center had a detrimental effect 

on post LT survival.  I suspected Hepatitis C (HCV) and Hepatocellular Carcinoma (HCC) patients 

would deteriorate due to their recurrent disease and there is a need for close monitoring post LT.  

From the current literature it was not clear if patients’ distance from a transplant center affects 

outcomes post LT.  Firozvi et al. (Firozvi AA, 2008) reported no difference in outcomes of LT 

recipients living 3 hours away or less. This study aimed to examine outcomes of LT recipients 

based on distance from a transplant center. I hypothesized that the effect of distance from a LT 

center was detrimental after adjusting for HCV and HCC status. 

 

Methods:  

This was a retrospective single center study of LT recipients transplanted between 1996 and 

2012.  821 LT recipients were identified who qualified for inclusion in the study.  Survival analysis 

was performed using standard methods as well as a newly developed Monte Carlo (MC) 

approach for change point detection. My new methodology, allowed for detection of both a 

change point in distance and a time by maximizing the two parameter score function (M2p) over a 

two dimensional grid of distance and time values. Extensive simulations using both standard 

distributions and data resembling the LT data structure were used to prove the functionality of the 

model. 
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Results:   

Five year survival was 0.736 with a standard error of 0.018.  Using Cox PH it was demonstrated 

that patients living beyond 180 miles had a hazard ratio (HR) of 2.68 (p-value<0.004) compared 

to those within 180 miles from the transplant center.  I was able to confirm these results using KM 

and HCV/HCC adjusted AFT, while HCV and HCC adjusted LR confirmed the distance effect at 

180 miles (p=0.0246), one year post LT.  The new statistic that has been labeled M2p allows for 

simultaneous dichotomization of distance in conjunction with the identification of a change point in 

the hazard function.  It performed much better than the previously available statistics in the 

standard simulations. The best model for the data was found to be ��
; �,  �� �  ���
� exp��
 �
 ���
 � �� ��� ! "� � #$��
�% which dichotomizes the distance Z, replacing it by I(Z>c), and then 

estimates the change point c and �. 

 

Conclusions:  

Distance had a detrimental effect and this effect was observed at 180 miles from the transplant 

center.  Patients living beyond 180 miles from the transplant center had 2.68 times the death rate 

compared to those living within the 180 mile radius.  Recipients with HCV fared the worst with the 

distance effect being more pronounced (HR of 3.72 vs. 2.68).  Extensive simulations using 

different parameter values in both standard simulations and simulations resembling LT data, 

proved that these new approaches work for dichotomizing a continuous variable and finding a 

point beyond which there is an incremental effect from this variable. The recovered values were 

very close to the true values and p-values were small. 
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Chapter One 

Introduction 

 

1.1 Distance Effect on Post-Transplant Survival 

Patient survival post-transplant is important to both the patient and a transplant center’s 

accreditation, especially given the scarcity of donor organs and the increasing demand for them.  

Physicians and patients work closely to improve survival of transplant patients, so a thorough 

understanding of factors affecting this is an important key to improving post-transplant survival.  

Over the years, physicians had noticed that patients who travelled further to visit the transplant 

center experienced more challenges with post-transplant care.  Although there were a few papers 

on this topic, most used a very short follow up period of one year during which surgical 

complications come into play and had majority of the patients living closest to the LT center 

(Firozvi et al., 2008, Axelrod et al., 2008, Kemmer et al., 2011, Zorzi et al., 2012).  I decided to 

revisit this topic with a larger number of patients in a retrospective study of all patients at Tampa 

General Hospital.  I hypothesized that further distance of the patient’s residence from the liver 

transplant center leads to worse survival post LT. This study aimed to examine outcomes of liver 

transplant recipients based on distance from a transplant center.  I examined the distance effect 

using cubic regression splines to detect nonlinearity, and with Akaike Information Criterion (AIC) 

and a Monte Carlo (MC) approach used to determine a distance cutoff. 

 

1.2 Literature Review on Outcomes 

Since liver transplant was first performed by Dr. Starzl in 1963, it has become widely indicated for 

patients with fatal acute and chronic end stage liver diseases (ESLD) (Starzl et al., 1982).  Over 

6000 LTs are performed each year in the U.S., with improved survival noted in the recent years 
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(Alsina et al., 2009).  A donor and recipient disparity in LT currently exists (Merion, 2009; Merion 

et al., 2005).  United Network for Organ Sharing (UNOS) was established in 1987 to ensure 

equitable access to these organs (Tuttle, Curley, Roh, 1997).  It is also important to identify 

patients who can obtain most survival benefit (Merion et al., 2005). Thus, guidelines for liver 

allocation have evolved over the years to achieve the best outcome for all patients in need of LT. 

 

Since 2002, UNOS has incorporated the use of Model for End Stage Liver Disease (MELD) to 

modify liver allocation (Freeman et al., 2002). MELD is a formula based on objective laboratory 

values, with some exception points such as those given for hepatocellular carcinoma (HCC) to 

determine patients’ risk of death and hence the need for LT.  This is an excellent and successful 

example of how statistical models can be translated into policy.  

 

One of the goals of this dissertation is to investigate whether statistical models can also be used 

to identify patients at higher risk of death after LT.  Freeman et al. (2002) have recognized that 

post-transplant risk models will be important as they add to the pre-transplant risk models such 

that scarce organs will not only benefit patients with the highest risk of dying without LT, but also 

achieve highest chance of survival with the LT. 

 

I was interested in studying the distance effect on outcome after LT. However, most of the 

geographical literature emphasized allocation disparities before LT.  It has been shown that LT 

candidates who live far from a LT center had less chance of receiving a LT (Tuttle et al., 1997).  

Distant patients also had higher rate of death and dropout from the list due to worsening of their 

medical conditions (Zorzi et al., 2012).  They were less likely to be called in as a “backup” patient 

and less likely to be admitted during times of emergency (Firozvi et al., 2008).  Given access 

disparities that arise from distance barriers pre-transplant, I hypothesized that the distance would 

also affect post LT outcome. 
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There has been a dearth of literature evaluating the association between residential distance from 

a LT center and post LT survival.  Through literature review, I have identified only two studies 

from the U.S., both of which yielded unexpected results. Firozvi et al. (2008) showed that patients 

who lived more than 3 hours away had similar outcomes to those who lived closer for all of the 

following:  listing, transplantation, and 1 year survival after LT.  Axelrod et al. (2008) examined the 

distance effect on outcome via discussion of urban vs. rural settings. Nearly 14% of US 

population does not live in major urban areas where LT centers are predominately located; 

patients with long travel distance are those from rural and small town settings.  Their study 

showed that rural and small town residents had lower wait list registration rate and lower 

transplant rate for liver, compared to urban residents.  However, once a patient was wait listed, 

the wait time among rural residents was not longer, and the post-LT survival was not different 

(Axelrod et al., 2008). 

 

Due to the donor and recipient disparity in LT that currently exists (Merion, 2009), it is important 

to maximize the utility of transplantation, whether measured by post LT survival, rejection, access 

to post-transplant care, quality of life, or other variables. UNOS plans to modify liver allocation in 

order to make waiting time more uniform across the country for patients with similar disease 

severity. However, these models do not specifically address post-transplant benefits (Freeman et 

al., 2002; Washburn, 2008, 2012; Washburn, Pomfret, & Roberts, 2011).  One aspect of LT that 

had not been thoroughly studied was the impact of the patient’s distance (residence) from the 

transplant center on post-transplant survival, although it is already known that distance was a 

detriment to access and being listed for liver transplantation (Axelrod et al., 2008; Kemmer, 

Alsina, & Neff, 2011; Park et al., 2012; Park et al., 2011). 

 

Distance or geographical studies in liver transplantation are rare and tightly interwoven with 

concepts of 1) allocation models, 2) large vs. small centers and their claims of superior ability to 

care for patients at long distances vs. to serve their community, 3) post-transplant care, 4) 

insurance carriers and centers of excellence, 5) and overall utility of transplants (Axelrod et al., 
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2008; Firozvi et al., 2008; Kemmer et al., 2011; Park et al., 2012; Park et al., 2011).  This study 

was conducted because it remained unclear to us if the patient’s distance from the transplant 

center affected the outcome post liver transplantation.  

 

Five years ago, a study published in Liver Transplantation, caught my attention. It concluded that 

distance does not adversely affect outcomes (Firozvi et al., 2008). The conclusion of this study 

and the editorial comment (Washburn, 2008)  that it received were of much interest, which 

prompted me to restudy this topic. In the Firozvi study, based on 66 transplant patients, a survival 

analysis was conducted utilizing a small number of patients at long distances. Lack of statistical 

power due to the small sample size may have explained the similar survival curves. The study 

only focused on survival at one year post-transplant, a time period too short to evaluate the 

multiple difficulties that the patients may encounter in their post-transplant course of care.  These 

include, but are not limited to, Hepatitis C (HCV) and Hepatocellular Carcinoma (HCC) 

recurrence, compliance, and medical complications of transplantation.  In addition, using one 

specific cutoff point for distance that is predetermined ahead of time, excluded the possibility of 

discovering a different and more appropriate cutoff that might have been further or closer to the 

transplant center than what was initially suspected.   

 

Axelrod et al. (2008) found that rural patients had worse survival, while Park et al. (2011) reported 

that pediatric rural LT patients did not have worse survival.  There are some who argued that rural 

health care, in general, is of lower quality than that provided in urban settings because better 

prepared or more competent health care providers would be attracted to urban centers where 

there would be more opportunities and access to cultural and academic functions than can be 

found in rural settings.  Axelrod et al. (2008) looked at 174,630 patients who underwent heart, 

liver or kidney transplantation with an accrual period of 5 years (1999-2004).  Each of these 

organs was different with respect to follow-up and expected outcomes.  Because heart and 

kidney transplant care can be different from LT care, it is impossible in this study to determine the 

effect of distance on LT patients’ survival.  For example, patients who received a kidney 
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transplant were able to receive follow-up care from their local nephrologist, whereas patients who 

received a liver transplant had to follow-up with the center that performed the transplant.  This 

made the issue of distance more important in LT recipients as opposed to those receiving a 

kidney.  Also this study examined rural vs. urban residence which was not necessarily the same 

as the effect of driving distance from the transplant center.   

 

The study by Park et al. (2011) found that rurality did not significantly affect health outcomes after 

LT in 388 pediatric patients. The authors used urban influence (UI) codes published by the US 

Department of Agriculture (USDA) to stratify patients as urban or rural depending on county of 

residence.  Again, rural vs. urban does not necessarily reflect distance from the transplant center. 

This study also differed from mine in that their population consisted of pediatric LT patients.  They 

included patients with UNOS status 1 (fulminant hepatic failure) who received priority on the 

waiting list because these patients only had hours to live without a transplant.  Logistic regression 

models were used in their papers that disregarded the length of survival.  By contrast, I used, Cox 

PH and AFT models that take into account the actual duration of survival.  In addition, other 

studies used a pre-specified mileage/driving time cutoff whereas my study allowed that cutoff to 

be data driven.  In a later study, Park et al. (2012) examined 3,307 pediatric LT patients and 

found that rural location had a negative impact on patient health within the first 6 months of LT by 

increasing the risk for allograft rejection, although patients in rural areas had lower rates of 

developing post LT lymphoproliferative disorder.   

 

Several studies addressed the effect of distance on pre-transplant survival and waiting time to LT. 

 

Kemmer et al. (2011) examined the time between diagnosis and transplant.  While distance did 

not appear to affect access to transplant, it did not necessarily preclude a distance effect on 

survival post-transplant.  In this paper only 439 patients were studied and the median distance 

was 36.8 miles with a range of 0.5 to 231 miles.  The present study included a larger sample size 
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of 821 patients living a median distance of 27.8 miles with a range of 0 to 548 miles from the 

transplant center. 

 

Zorzi et al. (2012) studied 5,673 candidates listed for liver transplant in UNOS Region 4 between 

2004 and 2010.  The authors established that there was a deterioration in survival on the waiting 

list for patients living more than 30 miles from the transplant center in patients with Model for End 

stage Liver Disease (MELD) score over 20 (p-value<0.0001).  The 30 mile intervals were pre-

specified as 0-30, 30-60 and over 60 with the cutoffs not dictated by the data.  Methodology 

included Kaplan Meier and Cox PH, but survival post-transplant was not studied.  It was also 

specific to those with MELD scores over 20, whereas my study pertained to the entire LT 

population. 

 

Barritt et al. (2012) assessed the effect of distance on whether or not the patient received a LT.  

The mean distance to the primary transplant center did not differ between those who were 

transplanted and those who were not. Age, race, sex, distance to transplant centers, and rural vs. 

urban residence did not influence the odds of receiving a liver transplant (Barritt, Telloni, Potter, 

Gerber, & Hayashi, 2012). 

 

It is important to note that distance from a transplant center can lead to selection bias in those 

receiving a transplant. Liver failure patients living far from a liver transplant center had less 

chance of receiving transplantation (Benach & Amable, 2004; McCormick et al, 2004). Distant 

patients had difficulty navigating through the transplant process, even after referral.  These 

distant patients were also less likely to be called in as a “backup” patient (Washburn et al., 2011), 

which reduced their chances of successful transplantation, therefore reducing survival.   The 

differential probability of transplantation by distance needs to be considered, because it can result 

in those transplanted patients living at longer distances being in poorer health than those living 

closer to the transplant center. 
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My study was different from previous studies in the following ways:  First, it utilized a larger 

number of patients overall (821 vs. 66 in Firozvi et al.) with more at longer distances.  Second, it 

followed liver transplant recipients for up to 5 years post transplantation vs. one year in previous 

studies (Firozvi et al., 2008). Third, it excluded patients who relocated temporarily to be closer to 

the transplant center for purposes of receiving a transplant. Hence, this significant bias present in 

other studies such as that by Firozvi et al., was eliminated.  Fourth, adjustment was made for 

important covariates, such as HCV and HCC which recurred affecting survival.  

 
1.3 Literature Review of the Methods 

The Kaplan-Meier (KM) estimator, the most widely used method for estimating survivor functions 

in biomedicine, is also known as the product-limit estimator because the estimated survival 

probabilities are computed using a product limit formula (Kleinbaum & Klein, 2012).  Researchers 

were using this method for many years prior to 1958 when Kaplan and Meier showed that it was a 

nonparametric maximum likelihood estimator, therefore giving it a solid theoretical justification 

(Allison, 2010).  When there are no censored data the KM estimator &'�
� is just the sample 

proportion of observations with event time greater than t.  When censoring is present then for a 

given time t all the event times that are less than or equal to t are taken and for each of those 

event times, the probability of surviving to time 
()*, given that one has survived to time 
( is 

computed using the following formula: 

&'�
� �  + ,1 - .(/(0(: 2342  

where at each time 
( there are /( individuals at risk of death and .( is the number of individuals 

who die at time 
(. 

 

The log-rank test compares two or more survival curves using a null hypothesis of a common 

survival curve.  It is based on the summed observed minus expected score for a given group and 

its variance estimate with k-1 degrees of freedom where k is the number of groups (Kleinbaum & 

Klein, 2012).  The log-rank statistic can be written as 
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5�.*( - 6*(�7
(8*  

summing over all unique event times in every group.  The expected number of events in group 1 

at time j, 6*( �  9:3;393  .  The Wilcoxon statistic is a weighted sum of the deviations of observed 

number of deaths from the expected number of deaths given by 

5 /(�.*( -  6*(�7
(8*  

This test puts more weight on early times as compared to late times since /< always decreases; 

therefore it is less sensitive than the log-rank test to differences between groups that occur at 

later on in time. 

 

The Cox PH model (Cox, 1972) can be written as 

=>�
� �  ���
� exp?
*@>* � A �  
B@>BC 
This equation illustrates that the hazard for an individual D at time t is the product of a linear 

function of a set of k fixed covariates which is then exponentiated and the baseline hazard 

function ���
�.  Partial likelihood enables estimation of the coefficients β of the proportional 

hazards model without, having to specify the baseline hazard function, except for the restriction 

that it must be positive.  Assumptions include non-informative censoring and proportional 

hazards, but the model can be generalized to allow for non-proportional hazards.  In my study, 

Breslow’s method was employed for handling ties (Breslow, 1974). 

 

In contrast to the Cox PH, the Accelerated Failure Time (AFT) model, depicts a relationship 

between the survivor functions of any two individuals.  If &>�
� is the survivor function for individual 

i, then for another individual j, the AFT model states that &>�
� �  &(�E>(
� for all t where E>( is a 

constant that is specific to the pair (i, j) so what makes one individual different from another is the 

rate at which they age.  The model can be written as   

Log Ti = β0 + β1xi1 + ………+βkxik +σεi 

where F> denotes the event time for the ith individual, @>*, … , @>B are the values of k covariates for 
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that same individual, H> is a random disturbance term, and 
�, … , 
Band I are parameters to be 

estimated.  AFT models have the advantage that they allow distributions of ε besides the normal 

distribution but retain assumptions of constant mean and variance, and independence across 

observations (James, 2005; Keiding, Andersen, & Klein, 1997). 

 

Some typical distributions for the AFT model can be found below.  Usually for parametric models, 

the shape parameter p would be held fixed and λ re-parameterized in terms of predictor variables 

and regression parameters.  The AFT was used in the past for modeling kidney transplant data 

(Lambert, Collett, Kimber, & Johnson, 2004) but not LT. 

 

Table 1:  Common AFT Distributions   

Distribution f(t) S(t) h(t) 

Exponential � exp�-�
� exp�-�
� � 

Weibull �J
KL* exp�-�
K� exp�-�
K� �J
KL* 

Log-Logistic �J
KL*�1 � �
K�M 
11 � �
K 

�J
KL*1 � �
K 

 

The logistic regression (LR) model is most appropriate when events can only occur at regular, 

discrete points in time.  With my data, it was used at 1 year post LT with 739 patients eligible for 

inclusion.  Eighty-two patients were excluded from this analysis because they did not have one 

year’s worth of follow-up at the time this study ended (September 25th 2012) although they were 

alive.  I felt it was a useful model for this data since ties arise from grouping continuous data into 

intervals (Albert & Anderson, 1984; Hilbe, 2009).  Allowing N>2 to be the conditional probability that 

individual i has an event at time t, given that the individual has not already had an event, then the 

logistic regression equation is 

log R N>21 - N>2S �  T2 �  
*@>2* � A � 
B@>2B 

 

The KM and Cox PH were the most frequently used in the literature due to the ease of 
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interpretation.  AFT models required more stringent assumptions about the distribution of the data 

so they were not used as often.  AFT had the advantage of a completely specified hazard and 

survival function but required an assumption about the underlying distribution.  The Cox PH 

model does not rely on distributional assumptions and the baseline hazard is not necessary for 

estimation of the hazard ratio.  However the distribution of the survival time is unknown and it is 

less consistent with the theoretical survival function as it is usually a step function.  LR ignores 

valuable information concerning the length of survival post-transplant and provides only a snap 

shot at a particular point in time (1 year in this study). 

 

Akaike’s Information Criterion (AIC) is a measure of the goodness of fit of an estimated statistical 

model (Bozdogan, 1987). It is an operational way of trading off the complexity of an estimated 

model against how well the model fits the data.  I used this criterion to establish the best possible 

cutoff point for distance in Cox PH models.   

 

Boisson et al. (2008) studied the survival time as affected by the rate of degradation of quality of 

life and extended the partial likelihood score statistic to apply to survival time. Goodman et al. 

(2011) used data driven methods to estimate both the number of change points in the hazard 

function and where those change points occurred. An alpha spending function was used where 

TU�V� � WMXY: for the overall significance level α to ensure strong evidence for choosing a more 

complicated model.  Nelder and Mead (1965) developed a Wald-type test statistic that uses the 

Nelder-Mead Simplex optimization algorithm, which is robust but relatively slow.  Specifically they 

tested sequentially for the presence of an additional change point using Z�: TBL* - TB � 0 vs 

Z*: TBL* - TB \ 0 where the test statistic was �] �  �ŴXY:LŴX�_`a7 �ŴXY:LŴX� which was distributed as a bM 

with one degree of freedom.  Once a null hypothesis could not be rejected then one stops and 

concludes that there were no more change points.  A simulation study successfully demonstrated 

the strength of this new method and found that power was most affected by sample size.  Change 

points were restricted to larger than the first non-censored survival time and smaller than the last 

non-censored survival time. 
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Liang et al (1990) introduced a variant of the Cox PH model and used age as the time variable 

and � as the change point.  However their method required the time invariant condition that 

c��� �  lim9fg h i_jik_ �0, 
, #, ��lL* h i_jikim  �0, 
, #, ��l  was independent of �.  This time invariant 

condition of c��� usually did not hold when there existed additional covariates X and their 

coefficients n \ 0. 

 

Matthews et al. (1982) presented a likelihood ratio test for detecting a single change point.  They 

used the following hazard function: 

��
� �  o �*,   
 p �q�*,   
 ! �r 
Since standard asymptotic likelihood inference on the parameters �*, q,  and � was not possible, 

they used maximum likelihood estimators and unconditional procedures.  The log-likelihood test 

statistic for the null hypothesis � � 0, is Δ� � t��'*, qu, �̂� - t��', �', 0�, where �' was the maximum 

likelihood estimator of the failure rate in a simple exponential model.  Although it would have been 

naïve to apply asymptotic likelihood ratio theory to conclude that 2Δ� had a bM distribution with 2 

degrees of freedom, the percentiles of the b�M�M  distribution agreed quite well with the simulation 

results. 

 

Nguyen, Rogers, and Walker (1984) pointed out that the likelihood was unbounded under the 

alternative hypothesis since a singularity appeared as q f ∞ and � was taken immediately before 

the largest observation.  Matthews et al. (1985) removed the singularity by considering the data 

as discrete and reformulated the likelihood as a product of probabilities rather than densities.  

They proposed tests based on maximal score statistics and derived the asymptotic significance 

levels.  Yao (1986) suggested constraining the estimate of �  proposed previously by Matthews, 

Farewell, and Pyke (1985) so it did not  fall in the interval between the two largest observations.  

Worsley (1988) found that the singularity could be removed if the largest observation was 

artificially considered to be censored. 
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Chang, Chen, and Hsiung (1994) proposed an estimator for the change-point �̂ that was easier to 

implement and could be considered a nonparametric counterpart of the estimator resulting from 

the score process proposed by Matthews et al (1985).  Henderson (1990) suggested some 

modified likelihood ratio tests with the most important modification involving a weighted and 

standardized likelihood ratio value, which leads to a higher power and a smaller mean squared 

error for �.  Loader (1991) derived large deviation approximations to the significance level of the 

likelihood ratio test by a random change of time scale for the empirical process. 

 

Akman and Raferty (1986) analyzed a change-point Poisson process and provided point and 

interval estimates of the change-point.  They investigated the small-sample performance of the 

proposed procedures by means of a Monte-Carlo study.  Raftery and Akman (1986) developed a 

comparable Bayesian approach.  A kernel method for the estimation of the change-point of the 

most rapid change of a continuous hazard function was then proposed by Müller and Wang 

(1990). 

 

Kleinbaum (1996) found that the assumption of proportional hazards was not always relevant in 

the whole range of the covariate and the covariate could be dichotomized to satisfy this 

assumption.  Kleinbaum’s procedure led to a two-phase Cox model with a change-point 

according to a threshold that may be fixed or estimated from the data.  Other authors considered 

a non-regular Cox model involving a two-phase regression and time-dependent covariates, with a 

change-point at an unknown time (Liang, Self, and Liu, 1990; Luo, 1996; Luo, Turnbull, and Clark, 

1997). 

  

Pons (2003) studied the asymptotic behavior of the maximum partial likelihood estimator of the 

parameters in a non-regular Cox model with a change-point according to the unknown threshold 

of a covariate. In their model, the hazard rate of a survival time F� had the form 

�k� 
 | � � �  � �
� exp?yk ���
��C  with yk���
�� �  Tz�*�
� �  
z�M�
�{?|}4~C �  #z�M�
� {?|}�~C 
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where � � ��, �z�z , � � �Tz , 
z , #z�z , �  was an unknown baseline hazard function and � �
��*z , �Mz , ���z was a vector of covariates. 

 

Zucker and Lakatos (1990) presented two weighted log rank type statistics designed to have 

good efficiency over a wide range of lags.  One was a maximum efficiency robust statistic, while 

the second was a simplified version of this statistic.  Both of these were substantially more 

efficient than the conventional log rank statistic.  This was an attractive method because it 

required no modeling assumptions.  When there was a lag in the effect of a certain covariate, the 

proportional hazards assumption was violated causing the log rank test to be inefficient and 

therefore a weighted version was best.  However, choosing weights is a non-trivial issue.  Self et 

al. (1988) suggested an approach for choosing weights when the lag function was equal to some 

function.  Another approach taken by the Physician’s Health Committee was to give positive 

weight only to the portion of the trial during which one felt fairly certain that all or most of the full 

treatment effect was present, but this approach had serious drawbacks as early adverse effects 

could be overlooked (Physician's, 1983).  Zucker and Lakatos’ (1990) approach included all 

events so there was no risk of proving a treatment to be beneficial when there were early adverse 

effects; however their approach down-weighed early events even though they did not completely 

exclude them. 

 

The goal of this study was to search for two types of change points in the hazard function: one 

with respect to distance c and the other with respect to time �.  It was possible that the distance 

effect was not present initially but became evident later on in the patient follow-up, after a time 

point �.  In addition I suspected that the distance effect began after a point c, with a potentially 

increasing effect beyond this point [max(z-c,0)].  Identifying change points in a hazard function 

was of great importance in survival analysis and I was particularly interested in the Monte Carlo 

approach used by Liu et al. (2008).  It was computationally efficient, avoided technical 

assumptions that would be difficult to verify, and gave a legitimate p-value for the test for the 

existence of a change point at an unspecified location, which other methods failed to do.   
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1.3.1 Background  

The hazard function (Liu et al., 2008) could be specified with one change point as  ��
; �, �� �  ���
� exp�?
 �  ���
 p ��C� �  #$��
�� 
and for two change points as ��
; �, �� �  ���
�exp �?
 �  �*��
 p �*� �  �M��
 p �M�C� �  #$��
��  
where λ��t� was an unspecified baseline hazard function, � > 0 was the change-point parameter, 

θ was the magnitude of change after the change point, β was the throughout distance effect on 

the hazard function, Z was distance from LT center which caused the non-constant hazard, η 

were the coefficients and X(t) were other risk factors that I adjusted for (HCV and HCC).  Using 

this model I determined the presence of change points in the hazard as well as the magnitude of 

change in distance effect before and after the change-point �.   

 

Let F> � min�F�> , �>� and �> � ��F�>  p  �>� where F�> and �> denote the failure time and censoring 

time for the ith subject.  Define �>�
� � ��F> p 
, �> � 1� as the count of failures on the ith subject at 

time t,  �>�
� � ��F> � 
� the at-risk indicator, and � � inf ?
; Jy�F ! 
� � 0C the shortest time t such 

that it is not possible for both survival time and censoring time to exceed it.  For a trial with n 

subjects, the partial likelihood for the unknown parameters (θ, β, n, τ) based on the observed 

data is  

� ��, 
, n, �� �  + � exp�?
 � ���
 p ��C�> � n��>�
��∑ �(�
� exp�?
 � ���
 p ��C�( � n� �(�
��9(8* .�>�
��
�

9
>8*  

Complications arise with the Likelihood Ratio Test since the likelihood is not a smooth function of 

the change-point � and under the null hypothesis of no change-point  Z�: � � 0, the parameter � 

disappears from the likelihood (Liang et al. 1990; Matthews et al. 1985).  Matthews et al. (1985) 

proposed a maximal score statistic as an alternative, but the normalized score process indexed 

by the change-point parameter must converge to an O-U process.  An O-U process is a 

stochastic/random process that is stationary, Gaussian and Markovian.  It is a modification of 



15 
 

random walk where the process drifts toward the mean.  Since the technical assumptions for the 

limiting O-U process were difficult to verify in semi-parametric models (Liang et al., 1990), there 

was a need for improved methodology.   

 

Liu et al (2008) let # � �
, n��� and �>U � ��> , �>��$ and defined the non-normalized score statistic as 

&k�#�;  �� �  � t�. ; ��� � |k8�,�8�� 

and the corresponding normalized score statistic as 

�k�#�;  �� �  &kM�#�;  ��� �#�;  �� 

where #� is the restricted maximum partial likelihood estimates under Z� and ��#�;  �� is the 

variance estimator of &k �#�;  �� evaluated under the null hypothesis.  If the change point is 

suspected to lie in a region � then maximizing over this region gives 

� �  sup� �� |&k�#�;  ��| and �U �  sup� �� �k�#�;  �� 

Liang et al. (1990) proposed something similar to M*, but they imposed a technical assumption 

that B(�) was independent of �, so when � was a fixed time interval then the normalized score 

process converged to an O-U process, where  

c��� �  lim9fg h i_ji k_ �0, 
, n, ��lL* o i_ ji k i m �0, 
, n, ��  
(Liang et al., 1990) 

This time-invariant condition of B(�) usually did not hold in the presence of additional covariates 

when the coefficients were not zero (η≠0).  As an alternative Liu et al. (2008) used an efficient 

Monte Carlo method to evaluate the statistical significance for both M and M* which did not 

require the technical assumption that B(�) was independent of � nor the special O-U process 

covariance structure for the normalized score process.  This approach numerically approximated 

the joint distribution of {&k� #�;  ��, � � �} and kept within process correlation intact. 

 

1.3.2 Monte Carlo Method 

Under Z�: � � 0, .�>�
� � .�>�
� - �>�
� exp?#�� �>U�
�C .Λ��
� is a martingale, where #� is the true 

value of # and Λ��
� �  ¢ ���£�.£2� .  Let ¤��, #;  �� be the negative second derivative matrix of the 
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log partial likelihood at a supposed change-point time �.  By the law of large numbers 

/L* ¤�0, #;  �� converges to a matrix ∑��� under Z�: � � 0.  Using a Taylor series expansion 

&k�#�;  �� is asymptotically equivalent to ∑ &¥k,>�0, #�;  �� 9>8*  which is a sum of n independent random 

variables with mean zero where &¥k,>�0, #�;  �� �  &k,>�0, #�;  �� -  ∑ ���k� ∑ ���L*�� &�,>�0, #�;  �� or as a 

martingale integral  

&¥k,>�0, #�;  �� � ¢ ���
 p ��?�> - ¦̃��
�C -B� ∑ ���k� ∑ ���?�>U�
� - @̈�U�
�C�.�>�
�L*��     -  (*) 

Here ∑ ���kk , ∑ �����  and ∑ ���k�  are the components of ∑��� according to the partition of � and #.  

Under the null hypothesis /L* M© &k�#�;  �� converges to a zero-mean Gaussian process, the limiting 

variance is ����� �  lim9fg /L* ∑ &¥k>M �0, #�;  � �9>8* , and the covariance is  

����*, �M� �  lim9fg /L* 5 &¥k> �0, #�;  �*�9
>8* &¥k> �0, #�;  �M� 

Replacing the unknown parameters in &¥k,>�0, #�;  �� with consistent estimators under the null (with 

the exception of �) &'k,>��� �  ¢ ���
 p ��?�> - ����
; #��C - B�  ¤k��0, #�;  �� ¤��L*�0, #�;  ��?�>U�
� -
���U�
�C�.�ª>�
� 

where .�ª>�
� � .�>�
� - �>�
� exp?#�$�>UC .Λ« �
� and Λ« �
� � ∑ ¢ ;¬­�®�∑ ¯3�®�°±² ?���³3U�®�C3́µ:
2�9>8* . 

Therefore at each time �, /L*� �#�, �� �  /L* ∑ &'k,>M ���9>8*  is a consistent estimate for the asymptotic 

variance of /L* M© &k�#�;  �� under the null hypothesis Z�: � � 0. 

 

In order to approximate the distribution of the test statistics proposed by Liu et al. (2008), they 

define  

&'k�#�;  �� �  ∑ &'k,>9>8* ���¶> where {¶> , · � 1, , … , /} are independent standard normal random 

variables that act as disturbance factors in the sum and agree that the randomly perturbed variant 

&'k�#�;  ��, given the observed data, has the same limiting distribution as &k�#�;  �� (proof in (Lin, 

Wei, & Ying, 1993)).   Likewise �k�#�;  �� can be approximated by �ªk�#�;  �� �  &'kM� #�;  �� � �#�, ��¸ .  

A large number of randomly disturbed score processes &'k�#�;  �� and �ªk�#�;  �� are used to 
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calculate �ª �  sup� �� |&'k�#�;  ��| and �ªU �  sup� �� �ªk�#�;  �� respectively, and the empirical 

quantiles of �ª  and �ªU. 

The Monte Carlo resampling procedure outlined above has several advantages:  

1. The components to construct &'k,>��� are only calculated once and reused to find the 

variance � �#�, ��. 

2. The score statistic process only jumps at the observed failure times so when searching 

for a change point over the candidate region �, test statistics are only calculated at the 

observed death times. 

 

In the event that distance was associated with L change points �* ¹ A ¹ �º with an effect on the 

hazard function where L >1, then the hazard function is defined as 

��
; �, �� � ���
� exp�»
 � 5 �j��
 � ¼j�½��º
j8* ¾ � � n$��
�� 

where ¼*�½� � �0, �*�, ¼M�½� � ��*, �M�, … ¼ºL*�½� � ��ºLM, �ºL*�, ¼º�½� � ��º , �� are intervals 

subdividing the study period K (which is 5 years in my case).  The interval ��ºL*, �º� is not needed 

because the model is already saturated over �0, �� without it. 

 

Under multiple change points where ¿ and ½ were L x1 vectors, the partial likelihood function 

becomes 

� �¿, 
, #, ½� �  + � exp�?
 � ∑ �jºj8* ��
 � ¼j�½��C�> � n��>�
��∑ �(�
� exp�?
 � ∑ �jºj8* ��
 � ¼j�½��C�( � n� �(�
��9(8* .�>�
��
�

9
>8*  

 

The null hypothesis for multiple change points is Z�#: �* � A � �º � 0.  Then the normalized 

maximal score test statistic for testing Z�# has the form �# �  sup�:��:,…�Á��Á �k#�#�;  �*, . . �º� 

where ?�*, … �ºC are the proposed regions in which the change points ?�*, … , �ºC lie respectively.  
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The method used to evaluate statistical significance used numerous randomly disturbed score 

statistics that were generated over all the potential change points.  Those were then used to 

compute the 100(1-α) quantile of the Monte Carlo resampled maximal score statistics which was 

used as the critical threshold.  The proportion of simulation samples in which the null hypothesis 

of no effect was rejected at the 0.05 level of significance when the null was false defined the 

empirical power (Leffondré, Abrahamowicz, & Siemiatycki, 2003; Væth & Skovlund, 2004).  Type 

II error was computed as 1-power.  The empirical type I error was the proportion of p-values less 

than the nominal 0.05 significance level (under a true null) from testing the null hypothesis on 

each simulated sample (Rempala & Looney, 2006).  These values were computed and reported 

for each of the 4 extensions described next in the methods. 

 

1.4 Statement of the Problems/ Applications and Significance  

The methods described above were not sufficient for detecting change points in the hazard while 

simultaneously dichotomizing distance.  This brought forth an opportunity for improvement in the 

existing methodology of the Monte Carlo approach to change point detection which was first 

proposed by Liu et al. (2008).  This research required a more complicated null hypothesis which 

simultaneously dichotomized distance at a point c and located the time τ such that the distance 

effect was observed for times greater than τ.  This required maximizing the partial likelihood over 

a grid of distance and time values.  My approach required substantial modifications of standard 

methods in survival analysis and the use of very recently developed methods that were not yet in 

common use and described only in journal articles (Liu et al., 2008).  The goal was to best 

establish the mileage point at which survival post-transplant declined and the time point post-

transplant at which the hazard changed, while adjusting for the effects of multiple covariates 

observed at the time of transplant.  

Critical barriers to exploring this topic include lack of comprehensive data and methods.  The 

United Network for Organ Sharing (UNOS) database has many limitations that prevented 

researchers from studying the effects of distance on post LT survival.  Elements common to most 
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forms included primary diagnosis, medical condition at time of transplant, functional status, pre-

transplant serology, and transplant procedure type. Pre-transplant risk factors included factors 

such as portal vein thrombosis and previous abdominal surgery for liver transplants.  Elements 

common to the Transplant Recipient Follow-up (TRF) forms included patient status and cause of 

death, graft status and cause of graft failure, rejection episodes, and biological/anti-viral and 

immunosuppressive medications.  Patients’ place of residence and lab results were not available 

in the detail that was captured here, especially with regard to distance. 

Since the UNOS database does not contain patient address information, this could be the reason 

behind the lack of published data on the topic of patient distance.  The preliminary data consisted 

of 627 patients who were transplanted at Tampa General Hospital (TGH) between 1996 and 

2009.  Patients were excluded if they underwent multiple organ transplantation (n=37), had 

fulminant hepatic failure (n=20), died the day of transplant (n=5), or relocated temporarily to be 

closer to the transplant center (n=46).  An additional 194 patients who were transplanted between 

2009 and 2012 were added to the initial 627.  None of the previous studies had attempted to use 

AFT models which, although more restrictive due to the distribution assumption, could prove to be 

more powerful when the underlying distribution was known or could be reasonably estimated.  

The proposed method for identifying change points in the hazard function was an extension to 

recent methods described in journal articles (Liu et al., 2008; Matthews & Farewell, 1982; Zucker 

& Lakatos, 1990), adapted and specifically designed to dichotomize continuous variables and 

locate change points in the hazard.  The improvements to scientific knowledge offered by this 

study were a more comprehensive dataset and the extension of newer statistical methodology. 

 

The LT program at TGH began in 1996 and is currently the 9th largest LT program in the country 

and the 4th busiest transplant center in the nation.  Data for this analyses was derived from TGH 

electronic medical records called Electronic Privacy Information Center (EPIC), transplant 

databases including Organ Transplant Care Platform (OTTR), Chartview (previous electronic 

record system at TGH which has been replaced by EPIC), flowcharts, and the United Network for 
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Organ Sharing database containing TGH transplant data.  Those who relocated to temporary 

housing near the transplant center were excluded from the study.  The objective is to study the 

distance between the patients’ permanent residence in relation to the transplant center, as it 

pertains to difficulty with post LT care, HCV treatments, compliance with tests and other factors.  

Including patients that came from out of state, relocated near TGH, and left early post-transplant, 

transferring their care to other centers would invalidate and bias this study.  

 

Data at the time of transplant were extracted from Chartview, EPIC and OTTR then entered into 

Microsoft Excel for Windows (Microsoft Corporation, Redmond, WA) and statistical analysis 

conducted using SAS 9.3 (Cary, NC: SAS Institute. Inc) and R (R Development Core Team 

(2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation 

for Statistical Computing.  Retrieved from http://www.R-project.org). 

 

This study is invaluable for the LT community, as it pertained to how outcomes could be improved 

in LT patients.  In this study of distance from the LT center, utilized more patients at longer 

distances, followed for a longer period post LT, and is specific to those patients receiving LT only, 

since the follow-up process for other organs was different.  Distance was calculated using SAS 

9.3 using an algorithm based on zipcodes (Distance_from_home 

=zipcitydistance(zipcode,TGHzip)).  Methods used to establish a distance cutoff in this 

study were data driven and therefore more accurate than the vague dichotomization of rural vs. 

urban used by Park et al. (2012; 2011) and Axelrod et al. (2008).  In addition, I studied an adult 

population, which constitutes the majority of LT patients.  Pediatric patients were not transplanted 

at TGH at the time of this study.  Furthermore, the distance portion was unique in that patients 

relocating temporarily to be near the transplant center for purposes of receiving a transplant were 

excluded, as well as those receiving multiple organ transplants and those with Fulminant Hepatic 

Failure (Status 1).  Therefore, this significant bias present in other studies was eliminated. 
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My methods included Kaplan-Meier curves, Cox PH, AFT, and restricted cubic splines.  Newer 

methodologies implemented included the use of AIC/ML to best determine the cutoff point, Monte 

Carlo to determine change points associated with distance, an additional component for 

dichotomizing distance and their significance were also implemented. 

 
1.5 Contributions from this Dissertation 

This dissertation proposes a more general form of the approach taken previously (Liu et al., 2008) 

which accommodated dichotomization of a continuous variable, which in this case was distance.  

The general framework  ��
� � ���
�exp �����
, �� � #���
�� 
allowed for � to include a change point in time � as well as a distance cutoff c.  While extension 

three (described in more detail below) allowed for a distance contribution after the cutoff point c, 

extension four was more flexible allowing for an incremental distance effect after the point c.  

While maximizing the partial likelihood gave us parameter estimates, the Cox PH model could not 

attach any measure of statistical significance to the necessity of change points � and c.  I was 

interested in knowing if these effects were different from 0 and whether they were actually 

necessary and significant in the model.  The purpose of the MC method was to determine the 

necessity and significance of � and c in the model. 

 

In this model there was a higher dimension for � and � than in the models of Liu et al (2008), 

which complicated many aspects of the computation. As examples, I noted that ¤k� was now a 

matrix and a two dimensional grid search was now required to establish � and c.  Furthermore, I 

no longer had the special structure in �>�
, �� which allowed evaluation only at observed event 

times.  The approach proposed here required evaluation at all event times in some chosen grid of 

values, since Z no longer factored out as it did before (Liu et al., 2008). 
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In addition, the maximum likelihood criterion (via AIC) was applied to repeated Cox PH models 

while adjusting for multiple covariates, to determine the best dichotomization point for distance.  

This method was not standard. 

 

Also, this study followed patients up to 5 years post LT, which is 2 years longer than what is used 

for accreditation of centers and longer than what was previously studied in the literature.  I also 

used a significantly larger population than previous studies. 

 
Change point hazard functions may have implications in health care policy decisions in the future.  

With an enhanced understanding of the changes in LT recipient population mortality rates one 

can identify gaps, seek solutions, improve performance, and ultimately, better the public’s health. 
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Table 2: Contributions from this Dissertation 

  
Existing 
Approaches New in my Dissertation 

      

Methods / 
technical 

Use the change point 
equation proposed by 
Liu et al (Liu et al., 
2008) 

��
� � ���
�exp �����
, �� � #���
�� 
  

Higher dimension for � and �.  ¤k� is now a 
matrix and a two dimensional grid search is now 
required. 

  

Drop 
, if distance Z does not have a 
"throughout" effect, but only an effect after a 
certain time �. 

  

Change ��
 p �� to ��
 � �� which is a 
statistically equivalent model (if 
 is retained) 
but has a more natural interpretation in this 
database.  If 
 is not retained in the model, then 
this change means there is only a distance 
effect for times greater than �. 

  

Dichotomize the distance Z, replacing it by 
I(Z>c), and then extending the approach in Liu 
et al (2008) to estimate the change point c in 
addition to �.  

  

Replace Z by max(Z-c,0), the positive part of Z-
c.  This gives another way of saying that there is 
no distance effect for distances less than c, but 
allows the effect to increase for larger 
distances. 

  
Dichotomization 
criterion 

Use ML criterion (via AIC) while adjusting for 
multiple covariates to determine the optimum 
cutoff point for distance 

      

Application 
Use KM and Cox PH to 
analyze survival data Use AFT in addition to the standard methods 

  
Studied a maximum of 
3 years post-transplant 

Study 5 years post-transplant, 2 years longer 
than what is used for accreditation of centers.  
Use a larger patient population than previous 
studies. 
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Chapter Two 

Methods 

 

2.1 Data Source 

This study was approved by the University of South Florida Institutional Review Board.  It 

involved a retrospective review of 821 adult patients who underwent orthotropic liver 

transplantation at TGH between January 1st 1996 and September 25th 2012.  All transplants were 

from deceased donor sources. Patients were identified consecutively since the program’s 

inception, and data were complete on all patients.  Data were obtained from Electronic Privacy 

Information Center (EPIC), Organ Transplant Care Platform (OTTR), Chartview and transplant 

flowcharts. In addition, United Network for Organ Sharing (UNOS) database containing TGH’s 

transplant data was accessed as needed to ensure complete information.  Patients were 

excluded if they underwent multiple organ transplantation, had fulminant hepatic failure (Status 

1), died the day of transplant (n=5), or relocated temporarily to be closer to the transplant center 

(n=42).   

 

This study considered random censoring from only administrative censoring 5 years post LT.  

Survival time was independent of censoring, satisfying this assumption necessary for the model. 

  

2.2 Etiology Grouping 

Etiology was condensed into the following three categories: 1) Nonalcoholic steatohepatitis 

(NASH) and Alcohol, 2) HCV/HCC, and 3) HBV/ primary biliary cirrhosis (PBC) / primary 

sclerosing cholangitis (PSC)/ Other.  In preliminary analyses, there was a statistically significant 

difference in survival across these three groups. Log-rank, Wilcoxon, and the likelihood ratio test 

yielded significant p-values (less than 0.0001).  Patients with NASH and alcohol related liver 
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disease had the best survival, while those with HCV and HCC had the worst survival due to 

reinfection of the graft by HCV and the recurrence of HCC in the cancer patients. 

 

PBC is a disease of the liver that affects the bile ducts within the liver. Inflammation destroys the 

bile duct which causes bile to remain in the liver, resulting in injury and damage to the liver cells, 

causing cirrhosis or scarring of the liver. Cirrhosis leads to scar tissue in the liver so the liver 

loses its ability to function. Cirrhosis also prevents blood from the intestines from returning to the 

heart.  PSC also affects the bile ducts causing inflammation and subsequent obstruction of bile 

ducts both at the intrahepatic and extra hepatic level. This inflammation hinders the flow of bile to 

the gut, causing cirrhosis of the liver, liver failure and liver cancer (Maggs & Chapman, 2008).  

Since these two diseases were related they were grouped together.  Hepatitis B was very rare 

among this group of patients (n=3) so it was grouped with PSC and PBC along with other rare 

diseases. 

 

HCV infection is a major risk factor for HCC, and 73% of HCC patients in my dataset also had 

HCV.  There was an incubation period of 20-30 years in most HCV related HCC cases and HCV 

infection usually resulted in HCC via cirrhosis, although the possibility of direct carcinogenic 

effects of HCV have also been suggested (Di Bisceglie (1997). 

 

Nonalcoholic steatohepatitis (NASH) is a rare complication of obesity with laboratory and 

histological features indistinguishable from alcoholic hepatitis (Eriksson, Eriksson, & Bondesson, 

1986).  Both of these involve a fatty liver. Therefore these 2 diseases were grouped together. 

 

2.3 General Modeling and Methodology 

As primary variables of interest, distance from the transplant center adjusting for the presence of 

HCV and HCC was studied.  Distance was calculated from the patient’s original home at the time 

of referral to the transplant center in Tampa, FL using SAS 9.3 using an algorithm based on zip 

codes (Distance_from_home =zipcitydistance(zipcode,TGHzip)). 
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Survival analysis was performed using Kaplan Meier (KM), Cox Proportional Hazards (Cox PH), 

and Accelerated Failure Time (AFT) methods. Logistic regression (LR) analysis was used to 

predict outcome (failed vs. not) 1 year post-transplant.  Patients transplanted after September 25, 

2011 were excluded from the LR analysis since they did not have a yearlong follow-up before the 

end of the study on September 25, 2012 (n=739).  Continuous descriptive data were presented 

as mean ± standard deviation, while categorical data were summarized as frequencies. 

 

The Cox PH model was chosen because it is semi parametric with minimal assumptions.  Also, 

with the Cox PH the effect of distance and HCV/HCC could be reported as hazard ratios that are 

easy to interpret. Patients were censored five years post-transplant.  The five year period was 

more than enough to measure the utility of LT. Long term survival measured beyond five years 

could be affected by patients’ co-morbidities, de novo post LT malignancies, non-adherence, loss 

to follow-up, suicides, accidents, cardiovascular disease, transfer of patients to other centers 

whom assume their long term care (loss to follow-up), and other causes. Neither UNOS, nor the 

Scientific Registry of Transplant Recipients (SRTR), nor the Center for Medicare Services (CMS), 

holds transplant centers accountable for survival beyond three years.  This is the yardstick that 

was used for maintaining accreditation and comparing centers.   

Logistic regression (LR) analysis was the weakest method used, since it disregarded the length of 

the patient’s survival post LT and carried the disadvantage that each time point of interest 

required a separate model.  Also, LR was run on a reduced dataset of 739 patients for one year 

post LT analysis. Distance models were evaluated with a Cox PH multivariate regression model 

to adjust survival for HCV and HCC, which were associated with patient mortality.  The same 

conditions applied for AFT. The standard for statistical significance was a p-value less than or 

equal to 0.05.  Analysis was conducted including and excluding patients who died within the first 

30 days post LT (n=22) to determine if there were any effects on the model by excluding these 

patients. 
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2.3.1 AIC/Maximum Likelihood Approach 

In order to choose the best threshold value for dichotomizing distance from transplant center for 

predicting outcome (failed within 5 years from transplant), the following approach was taken. 

Akaike’s Information Criterion (AIC) is a measure of the goodness of fit of an estimated statistical 

model (Bozdogan, 1987) and it is an operational way of trading off the complexity of an estimated 

model against how well the model fit the data.  Plots of the AIC from Cox PH models vs. all 

possible cutoff values c, were computed and plotted on a graph.   

 

Â�� � 2Ã - 2ln ��� 

Ã � number of parameters in model 

L = maximized log-likelihood 

Smaller AIC values indicate a better fit. If the number of parameters was constant in this 

approach, AIC would be equivalent to twice the negative log-likelihood, apart from a constant.  I 

adjusted for multiple covariates using the AIC criterion to detect a change point attributed to 

distance and ensured that this cutoff remained consistent regardless of the number of covariates 

included in the model.  Since I did adjust for multiple covariates, this approach was different from 

using the likelihood ratio criterion. 

 

2.3.2 Restricted Cubic Regression Splines 

Restricted cubic regression splines are a useful tool in exploratory data analysis since they allow 

the detection of unknown functional relationships between continuous covariates such as 

distance and the response variable, survival time in the Cox PH model (Durrleman & Simon, 

1989; Heinzl, Kaider, & Zlabinger, 1996). They were employed here to explore the potential non-

linear relationship between distance from LT center and the length of survival post LT.  The RCS 

macro (H. Heinzl & Kaider, 2007) was used and modified for use with this data set so the splines 

would reveal information about the relationship between distance as a continuous variable and 

survival. 
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The expression for a restricted (or natural) cubic spline function with k knots, 
* ¹ A ¹ 
B is given 

by  

� �£� �  
� �  
*£ �  ∑ �(�(�£�BLM(8*  where �*�£�, … �BLM�£� are cubic terms, 

�(�£� � �£ - 
(�)�  -  �£ - 
BL*�� � �
B -  
(��
B -  
BL*� �  �£ - 
B�� � �
BL* -  
(��
B -  
BL*� , < � 1 … . V - 2. 
C(u) has continuous first and second derivatives, is linear in u for u<t1 and u>tk (linear in the tails), 

and is a linear function with regard to the k parameters 
�, 
*, �*, … . �BLM. (Heinzl & Kaider, 1997) 

Confidence bands (1-α) are often helpful in interpretation and those are given by 

��'jÄ]�£��, �'ÅKK�£��% � 
'$Æ� Ç �#Æ�� �Æ��*/M 

where 
' � �
'�, 
'*, �É*, … �ÉBLM�2 , Æ� � �1, £�, �*�£��, … �BLM�£���2, V is the large sample covariance 

matrix for 
', and n �  bK,*LWM is the (1-α) quantile of the bM distribution on p degrees of freedom.  

When p is set to the number of covariates this method yields Scheffe-type simultaneous 

confidence bands, and when p is set to 1 it yields standard point wise confidence bands (Hess, 

1994).  The number of knots was pre-specified.  In the literature it was suggested that three to 

five knots would usually suffice (Durrleman & Simon, 1989; Heinzl et al.,1996; Hess, 1994) 

although I experimented with a larger numbers of knots too.  These knots were placed at 

quantiles of the observed distribution of u, near but not at the extremes and roughly uniform over 

the quantiles.  The result of fitting a cubic spline to the data set was usually insensitive to the 

location of knots unless they occurred in an extremely non-uniform way over the covariate space 

(Durrleman & Simon, 1989; Heinzl et al.,1996; Hess, 1994). 

 

Let n=821, then the data could be denoted by (Ê> , Ë> , ¦>� for i=1, …n where y was the survival time, 

s was the censoring variable where 1 indicated a death and 0 meant the patient was censored 

and still alive, and z denoted distance from the transplant center.  The hazard using Cox PH was 

��
;  ¦>� �  ���
� exp�
¦>� and β was estimated using partial likelihood requiring no further 

assumptions about the unknown baseline hazard function ���
�.  The log hazard ratio (LHR) 

function with respect to Z was  

LHR�Z� � log Ð�2;|�ÐÑ�2� �  
�. 
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It was assumed that a unit change in distance Z had the same effect on the patients’ log hazard 

ratio across the entire range of Z but to explore the nature of LHR(Z) more flexibility was needed.  

Hence ��
; �� �  ���
� exp�Ò���� which yielded �ZÓ��� � log Ð�2;|�ÐÑ�2� � Ò���.  Since ���
� � � �
; � �
0�, f(Z)=0 for Z=0.  Then �ZÓ��� � log Ð�2;|�ÐÑ�2�  Ô ���� - ��0� �  
*� �  ∑ �(��(��� -  �(�0��BLM(8* .  

Since in this scenario it was not meaningful to report hazard ratios relative to a distance of 0 but it 

was of great interest to report them in relation to a specific mileage point of 180 miles, the LHR 

function for a given reference value m was 

�ZÓÕ��� � log = �
; ��=�
; Ö� � Ò��� - Ò�Ö� Ô ���� - ��Ö� �  
*�� - Ö� �  5 �(��(��� -  �(�Ö��BLM
(8*  

Once β1, θ1…θk-2 were fitted the reference value m could be changed and that only involved a 

shift in the axis.  Confidence intervals were also computed and displayed on the graph (Heinzl & 

Kaider, 2007). 

 

2.3.3 Estimating Change Points Using Monte Carlo  

Given that Firozvi et al. (Firozvi et al., 2008) found no significant distance effect one year post LT, 

one of the goals was to search for change points in the hazard function that could be attributed to 

distance in a five year period.  I was also interested in the time change point over the five year 

period.  It was possible that the distance effect was not present initially but became evident later 

on in the patient follow-up (see dichotomizing at c in extension three below).   It was also possible 

that beyond that point, the distance effect was incremental (increasing distance effect in 

extension four below).  Identifying change points in a hazard function is important in survival 

analysis and I was particularly interested in the Monte Carlo approach used by Liu et al (2008).  

This method gave a legitimate p-value for the test for the existence of a change point at an 

unspecified location (known only to belong in a certain set).   

 

The hazard function proposed by Liu et al. (2008) was specified with one change point in the 

hazard function as  
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��
; �, �� �  ���
� exp�?
 �  ���
 p ��C� �  n$��
�� 
where λ��t� was an unspecified baseline hazard function, � > 0 was the change-point parameter, 

θ was the magnitude of change after the change point, β was the throughout distance effect on 

the hazard function, Z was a covariate (distance from transplant center) which potentially caused 

the non-constant hazard, η were the coefficients and X(t) were other risk factors that I adjusted 

for  in the model (HCV and HCC).  Using this model I determined the presence of change points 

in the hazard �, as well as the change point in the distance effect, c.   

 

Liu et al. (2008) developed this method to give a legitimate p-value for the test of the existence 

of a change point at an unspecified location.  I was using this method in a very unique way to first 

dichotomize distance at some value c, reducing it to a binary variable.  Next I chose a value of 

time � such that the distance effect was only observed for times greater than �.  The values of c 

and � could both be considered change points and the approach in Liu et al. (2008) could be 

used to simultaneously choose both of them after their methods were suitably generalized. 

 

In the simulation performed by Liu et al. (2008) the authors performed 1000 runs and in each run 

the thresholds were calculated using 10,000 Monte Carlo resampling samples.  Sample size was 

set to 200-300.  It was established that the Monte Carlo resampling-based methods approximated 

the distribution of the maximal score tests very well.  Accuracy of the approximation and power 

increased with sample size, and instability of the variance was noted when there were few failure 

events.  These authors also established that the maximum normalized score statistic was less 

sensitive in the detection of a change point than that based on the non-normalized score, under 

all alternative hypotheses that they considered.  The maximum normalized score statistic was 

also more conservative under the null hypothesis. 

 

2.4 Methodological Development Proposed for this Dissertation 

The extension to this methodology was in the form of a more complicated null hypothesis than the 

one in Liu et al. (2008).  As stated above, distance was dichotomized at some value c, reducing it 
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to a binary quantity rather like the treatment assignment in Liu et al. (2008).  In addition, a value 

of time � was chosen such that the distance effect was only observed for times greater than �.  

The values of c and � were both considered change points, and the Monte Carlo approach was 

used to simultaneously choose both of them. 

 

The general form of the extended model was ��
� � ���
�exp �����
, �� � #���
�� 
for parameters �, #, �.  This model was linear in � and # for fixed �.  The parameter � contained 

the nonlinear parameters � which represent change points in time and c which represented the 

dichotomization point for distance which was the mileage point beyond which distance had an 

effect on survival.  ��
, �� and X(t) were functions of covariates, which could be time-varying 

covariates.  In this particular dataset X(t) was not time-varying but the model could be applied in 

the scenario where X(t) included time-varying covariates.  Distance in my model was part of 

� �
, �� which made the model in Liu et al. a special case of this extended model in which � � � 

and � �
, �� � ���
 p ��. 

 

Let �>�
� � ��F> p 
, �> � 1� be the count of failures on the ith subject at time t,  �>�
� � ��F> � 
� be 

the at-risk indicator, and � � inf ?
; Jy�F ! 
� � 0C.  For a trial with n subjects, the partial likelihood 

for the unknown parameters (�, #, �� based on the observed data would be 

� ��, #, �� �  + � exp����>�
, �� � #��>�
��∑ �(�
� exp����(�
, �� � #��(�
��9(8* .�>�
��
�

9
>8*  

The goal was to test the null hypothesis Z�: � � 0 using the score function  

&k��, #, �� �  ��� t��, #, �� 

where t represented the logarithm of the partial likelihood.  Let #� be the maximum partial 

likelihood estimate of # under the null hypothesis.  The variance estimator of &k�0, #�, �� under Z� 

was denoted by ��#�, �� (Fleming & Harrington, 2011); a definition is given later. 
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The score functions are given explicitly by 

&k��, #, �� �  5 � ×�>�
, �� -  ∑ �(�
, ���(�
� exp?�$�<�
, �� � #$�< �
�C9(8*∑ �(�
� exp?�$�<�
, �� � #$�< �
�C9(8* Ø  .�>�
�B
�

9
>8*  

&���, #, �� �  5 � ×�> �
� -  ∑ �( �
��(�
� exp?�$�<�
, �� � #$�< �
�C9(8*∑ �(�
� exp?�$�<�
, �� � #$�< �
�C9(8* Ø  .�>�
�B
�

9
>8*  

The corresponding test statistics defined by Liu et al (2008) were  

� �  supÙ�� |&k�0, #�, ��|  and   �U �  supÙ�� �k� #�, ��  

 

where �k�#�, �� �  ÚÛ_��,�,�  Ù�`� ��,Ù� .   

In the work of Liu et al (2008) � is univariate, and consequently ��#�, �� is univariate.  But in much 

of the present work � is bivariate, i.e., � � ��*, �M�, so that the score &k��, #, �� is a 2x1 vector 

which can be written as &k��, #, �� � �&k*��, #, ��, &kM��, #, ���, and the variance estimate ��#�, �� is a 

2x2 matrix.  Thus I have statistics analogous to the M and M* for each of the components of �, 

which I define by 

�( �  supÙ�� |&k(�0, #�, ��|  and  �(U �  supÙ�� �k(� #�, �� for j=1,2, 

where �k(�#�, �� �  �ÚÛ3 ��,��,Ù��_`33� ��,Ù� .  Motivated by standard results on quadratic forms, I also defined a 

test statistic M2p which combines both components of the score vector as follows  

�MK �  supÙ�� &k� �0, #�, �����#�, ���L*&k�0, #�, ��. 

The statistic M2p, which is new to this work, is essentially a ‘two parameter’ analog of the statistic 

M*, and in my work this statistic is usually referred to as the ‘two parameter score’ or identified by 

the acronym M2P, where ‘2P’ stands for ‘two parameter’.  In Liu et al (2008) the set � is one-

dimensional so that the Supremum in their definition of M and M* is a one-dimensional 

maximization.  However, in much of the present work � � ��, "� and the set � is two-dimensional, 

which is taken to be a finite grid of time and distance values ��, "�.  In computing �(, �(U, and �MK, 

we maximize over this two-dimensional grid.  

&'k,>��� �  � �?�>�
, �� -  �̈��
, �, #��C - ¤k��0, #�, ��¤��L*�0, #�, ��?�>�
� - �Þ��
, #��C%.�ª>�
�B
�  
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and  .�ª>�
� � .�>�
� - �>�
� exp?#���>�
�C.Λ«�
� with Λ« � ∑ ¢ ;¬­�®�∑ ¯3�®� °±²���ß³3�®� 3́µ:
2�9>8*  . 

�̈��
, �, #�� and �Þ��
, #�� could be found from �̈��
, �, #�� �  Úà�:����,Ù�Úà�Ñ�����  and �Þ��
, #�� �  Úá �:�����Úá�Ñ����� 
where &|����#�� � &³����#�� �   /L* ∑ �>�
� exp?#���> �
�C9>8*  and  

&|�*��#�, �� �  /L* ∑ �>�
, ���>�
� exp?#���> �
�C9>8*  and similarly for &³�*��#��.  The information matrix ¤ 

was partitioned as R¤kk ¤k�¤�k ¤��S.   

 

At each fixed point �, let �� #�, �� �  ∑ &'k> ���&'k> � ���9>8*  which reduces to �� #�, �� �  ∑ &'k>M ���9>8*  in the 

univariate case considered by Liu et al (2008). Then /L*��#�, �� is a consistent estimate for the 

asymptotic variance of /L:_&k�0, #�, �� under the null hypothesis. The Monte Carlo null distribution 

of &k�0, #�, �� was found by simulating &'k�0, #�, �� �  ∑ &'k,>���¶>9>8*  where ?¶> , · � 1, … , /C were 

independent standard normal random variables serving as perturbation factors in the sum. 

 

The values of &'k�0, #�, �� may be used to obtain Monte Carlo approximations to the null 

distributions of the statistics �( , �(U, and �MK by using these values in place of &k�0, #�, �� in the 

computation of these statistics.  That is I computed Monte Carlo replicates of 

�ª( �  supÙ�� |&'k(�0, #�, ��|, 
�ª(U �  supÙ�� �Ú'Û3 ��,�,�  Ù��_`33� ��,Ù�  , and   �ªMK �  supÙ�� &'k� �0, #�, �����#�, ���L*&'k�0, #�, ��. 

 

The empirical 100(1-α)th quartile of the randomly perturbed maximal score statistics provided the 

critical values of nominal level α for the observed maximal score statistics. 

 

The specific extensions I considered were: 

 

1. Dropped 
, to indicate that distance Z (dichotomized at 180 miles) did not have a throughout 

effect, but only an effect after a certain time �. 
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��
; �, �� �  ���
� exp�?���
 p ��C� �  n$��
�� 
 

2. Changed ��
 p �� to ��
 � �� which was a statistically equivalent model (if 
 is retained) but 

had a more natural interpretation in this situation.  If 
 was not retained in the model, then this 

change meant there was only a distance effect for times greater than �.  In this model Z was 

dichotomized at 180 miles. 

 ��
; �, �� �  ���
� exp�?
 �  ���
 � ��C� �  n$��
�� 
 

3. Dichotomized the distance Z, replacing it by I(Z>c), and then extending the approach in Liu et 

al. (2008) to estimate the change point c in addition to �. 

 ��
; �, �� �  ���
� exp�?
 �  ���
 � ��C��� ! "� �  n$��
�� 
This fit into the general framework  ��
� � ���
�exp �¿���
, �� � #���
�� 
by taking ¿ � â
�ã , # � n, � � â�"ã , ��
, �� �  R ��� ! "���
 � ����� ! "�S , ��
� � ��
�. 
4.  Alternatively, I replaced Z by max(Z-c,0), the positive part of Z-c.  This gave another way of 

saying that there was no distance effect for distances less than c, but allowed the effect to 

increase for larger distances. 

 ��
; �, �� �  ���
� exp�?
 �  ���
 � ��C�� - "�) �  n$��
�� 
This also fit into the general framework  ��
� � ���
� exp �¿���
, �� � #���
�� 
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by taking ¿ � â
�ã , # � n, � � â�"ã , ��
, �� �  R �� - "�)��
 � ���� - "�)S , ��
� � ��
�.  Here �� - "�) �
max�� - ", 0�.  
 

The additional challenge for extensions three and four is that 
, �, �, c and n must be estimated 

simultaneously.  There are 2 possible approaches to this and we tried both: 

 

The first approach involved the estimation of 
, �, and n for fixed values of c and �.  This implied 

fitting a standard Cox model for each of c and �, which was efficient, particularly since reasonable 

initial estimates were used.  

 

Maximizing the likelihoods could be done by standard algorithms, such as simulated annealing, 

variants of gradient ascent or algorithms like Nelder-Mead which required only repeated function 

evaluations.  The log-likelihood function was optimized using the Nelder-Mead algorithm, a 

variable metric algorithm  (Broyden, Fletcher, Goldfarb and Shanno, 1970), and a simulated 

annealing algorithm to estimate �, ", 
, �, n*, and nM.   

 

First I used the simplex search algorithm proposed by Nelder and Mead (1965). This method is 

very effective for multidimensional unconstrained optimization without derivatives (Price & Coope, 

2003). Only function values are used and it is robust but relatively slow. This method performs a 

sequence of transformations on the working simplex, defined by n+1 points @�, … @9 � ä9 that are 

considered as the vertices of a working simplex S. The goal is to decrease the function values at 

the vertices.  In each iteration of the Nelder–Mead algorithm, the vertex with the worst function 

value is removed and replaced with another point which has a superior value. The new point is 

obtained by reflecting, expanding, shrinking or contracting the simplex along the line joining the 

worst vertex with the centroid of the remaining vertices. If one cannot find an improved point, only 

the vertex with the best function value is retained, and the simplex is shrunk by moving all other 

vertices toward this value. This process is terminated when the working simplex S becomes 
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sufficiently small, or when the function values are close enough.  It has been proven to work 

reasonably well for non-differentiable functions (Kolda, Lewis, & Torczon, 2003; Nocedal & 

Wright, 1999). 

 

A quasi-Newton method which is also known as a variable metric algorithm (Broyden, 1970; 

Powell, 1976), that uses function values and gradients to build up a picture of the surface to be 

optimized was also used.  It was published simultaneously in 1970 by Broyden, Fletcher, 

Goldfarb and Shanno (BFGS). Often BFGS may not move away from the initial values of � and " 

because the numerically estimated gradient is exactly zero.  The log-likelihood is flat as a function 

of � and " in the neighborhood of � � 3.66 and " � 180 (see Chapter 3).  I anticipated this method 

to behave poorly because it was designed for differentiable functions and the log-likelihood in this 

case is discontinuous with respect to � and " but the estimates it produced were not different from 

the other 2 methods. 

 

Next a variant of simulated annealing (SANN) was used (Bélisle, 1992). Simulated annealing is a 

Monte Carlo technique for solving optimization problems.  It is a stochastic global optimization 

method and since it is random, it may often not find anything better than the initial parameters.  

Only the function value is used, it is relatively slow, and was chosen because it works for non-

differentiable functions. This implementation uses the Metropolis function p=p(x,y,t) for the 

acceptance probability of the next candidate point y, given the current state x and the 

temperature t. By default the next candidate point is generated from a Gaussian Markov kernel 

with scale proportional to the actual temperature t. Temperature is decreased according to a 

logarithmic cooling schedule (Bélisle 1992, p. 890).  A disadvantage is that it depends critically on 

the settings of the control parameters and it is not a general-purpose method but can be very 

useful in getting to a good value on a very rough surface. 

 

In the frequentist MC approach, the parameter estimates for the covariate effects not associated 

with the change point were estimated under the null hypothesis that there was no change point.  
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So after the MC approach had demonstrated the necessity for a change point, these parameters 

were re-estimated.  One potential approach involved simultaneous estimation of all the 

parameters, including the change point, by maximizing the partial likelihood and incorporating a 

grid search for maximizing over the change point.  Another choice was setting the change point 

equal to the value which maximized the score statistic and then re-estimating the other 

parameters by fitting a standard Cox model as in the example in Section 3.4 of Liu et al. (2008).  

The models included both a change point (in time) and a dichotomization point (for the distance).  

 

2.5 Simulation 

I conducted a simulation study using the hazard functions in extensions one to four.  There were 

two types of simulations:  

1. Using data that was generated from standard distributions 

2. A situation which resembled the actual LT data set.  

The purpose of the first simulation was to demonstrate that the methodology worked and that of 

the second simulation to determine how the methodology worked with the actual LT data 

structure. 

 

2.5.1 Simulation 1 

Distance Z was generated from a random uniform distribution on the interval (0, 1) for extensions 

three and four and a Bernoulli distribution with a success probability of 0.5 in extensions one and 

two, to resemble a dichotomous variable.  Two additional risk factors were generated using a 

uniform distribution on (0, 1) and an exponential distribution with mean 1.  The change point 

parameter was set to � � 0.25 and the distance cutoff to c=50.   

 

For 1000 simulated data sets, critical thresholds based on 1,000 Monte Carlo resampling 

samples were calculated for each of the four extensions above.  The sample size was set to 200 

and 300 for approaches one and two and 600 for approaches three and four.  A grid was defined 

over the suspected region where the change point � and the cutoff c were suspected to lie.  The 
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proposed test procedure was implemented searching for a change point over the grid of a time 

interval and the distance cutoff range in miles.  The simulation results are summarized in tables 

31 through 36 where the partial likelihood was maximized over the above stated grid. 

 

The empirical threshold corresponding to a nominal level T was determined by the 100�1 - T�2æ 

quantile of the sample test statistics from 1000 runs of simulations under the null hypothesis.  The 

average Monte Carlo resampling-based threshold was defined as the mean of 1000 thresholds 

found by the Monte Carlo resampling approach.   

 

The results were tabulated in section 3.9.1 to compare the empirical quantiles of the test statistic 

based on 1000 simulated data sets with the Monte Carlo resampling thresholds. 

 

2.5.2 Simulation 2 

The second simulation effort aimed at resembling the actual situation in the LT data set, with the 

goal of determining the level of performance that might be expected of my methods in this 

situation. 

 

HCV, HCC and distance from the original dataset were used.  Survival times were generated 

from the Cox PH model to fit to this data set for each of the hazard functions in extensions three 

and four (i.e., using the estimated parameter values and a baseline hazard obtained by 

smoothing Breslow’s estimator) with censoring.  A piecewise exponential was used to generate 

the censoring time and the censoring variable was created by determining which of the two was 

smaller.  For simulations under the alternative hypothesis, this testing procedure was repeated for 

a range of values for β and �, and the accuracy of estimation for � and c was recorded. 

 

Since this study involved the estimation of both a change point in time � and a distance cutoff c, 

the computations were significantly more complex than those done previously (Liu et al., 2008) 

with an appreciable programming effort required.  I evaluated this model over a grid of time and 
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distance values with the all times considered, not just the event times since distance Z no longer 

factors out as it did in the simpler case of Liu et al (2008). 
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Chapter Three 

Results and Applications 

 

Four extensions to the MC approach were developed as described in the previous chapter.  In 

this chapter, these models were applied to a specific dataset of liver transplant recipients.  In this 

retrospective single center study of 821 liver transplant recipients at TGH; Hepatitis C (HCV), 

Hepatocellular Carcinoma (HCC), and patient survival were collected in addition to distance from 

the transplant center.   This methodology allowed us to establish a change point in the hazard 

function � as well as a dichotomization point for distance c. 

This chapter starts with an introduction of the dataset and the Kaplan Meier curves, Cox 

Proportional Hazards, Accelerated Failure Time and Logistic Regression models.  Data were 

analyzed both including and excluding early deaths (n=22).  

Then I proceeded to fit the model introduced by Liu et al. (2008) followed by the four extensions 

that I proposed.  Lastly, I performed two types of simulations described in section 2.5 above to 

illustrate the use and application of this methodology. 

 

3.1 Introduction 

3.1.1 General Description of the Data 

Recipients included 603 males and 218 females with a mean age of 53.5 (standard deviation 9).  

22 patients died within the first 30 days post LT.  The analyses were conducted with and without 

these patients.  Of the 821 patients, 178 died within five years post LT and 643 (78.32%) were 

still alive at the five year mark. Hepatitis C (HCV) or Hepatocellular Carcinoma (HCC) were the 
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most common reason for patient transplant.  Table 3 below outlines the patient characteristics 

including and excluding the 22 early deaths. 

Table 3: Liver Transplant Recipient Characteristics 

  All Patients Excluding Early Deaths 

Total (n=821) n=799 

Age (years) mean ± SD 53.48 ± 8.97 53.49 ± 9 

Male (%) 603 (73.45%) 587 (73.47%) 

Race (Caucasian) 667 (81.24%) 650 (82.70%) 

Primary cause of ESLD (%)     

   HBV/PBC/PSC/Other 130 (15.83%) 125 (15.64%) 

   HCV/HCC 470 (57.25%) 459 (57.45%) 

   NASH and Alcohol 221 (26.92%) 215 (26.91%) 

 

Table 4 describes patient characteristics of 2 groups, those who lived within 180 miles and those 

who lived beyond this distance.  Mean age, gender, race, and transplant etiology were not 

significantly different between these groups. 570 patients who were transplanted after February 

2002 had MELD scores calculated prior to receiving LT, of which 553 patients were from within 

180 miles, and 17 patients were from beyond 180 miles.  

 

The mean MELD score was significantly lower for the distant group (p-value=0.008) but the 

prevalence of HCC (p-value=0.23) and HCV (p-value=0.68) were not. It is suspected that the 

more severely ill patients with higher MELD scores, who lived further away, did not actually make 

it to the transplant stage. Due to the fact that there were 251 patients transplanted in the pre-

MELD era who did not have MELD scores on file and MELD alone was not a significant predictor 

of survival using KM (LR p-value=0.1370) and Cox PH (p-value=0.2050), I opted not to adjust for 

it in the model. However, MELD score at the time of transplant indicates that the distant patients 

were healthier compared to those living within the 180 mile radius (p-value=0.008). 
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Table 4: Clinical and Demographic Features of Patients by Distance Category  

  

Within 180 

miles (n=802) 

Beyond 180 

miles (n=19) P-value 

Mean Age (SD) 53.48 (8.99) 53.6 (8.40) 0.9662 

Gender 

   Male  590 (73.56%) 13 (68.42%) 0.6157 

   Female  212 (26.43%) 6 (31.58%) 

Race/Ethnicity 0.9777 

   Asian  3 (0.37%) 0 

   Black  49 (6.11%) 1 (5.26%) 

   Caucasian 652 (81.30%) 15 (78.95%) 

   Hispanic  64 (7.98%) 1 (5.26%) 

   Other  22 (2.74%) 1 (5.26%) 

MELD Score at 

Transplant (SD) 22.09 (7.18) 17.35 (8.85) 0.008 

Etiologies  

   Alcohol 120 (14.96%) 5 (26.31%) 0.403 

   Autoimmune/PBC/PSC 88 (10.97%) 0 

   Cryptogenic/NASH 94 (11.72%) 2 (10.53%) 

   HBV/Others 42 (5.23%) 0 

   HCC 98 (12.22%) 4 (21.05%) 

   HCV 285 (35.54%) 7 (36.84%) 

   HCV and Alcohol 75 (9.35%) 1 (5.26%) 

        

 

Next I looked at the effects of disease etiology, gender and insurance type separately.  Disease 

etiology was grouped into three categories and survival differed by etiology as detected by the 

KM curves (p-value<0.0001). 

 
3.1.2 Disease Etiology 

Differences in survival by disease etiology were significant in the Kaplan Meier curves above 

according to log-rank, Wilcoxon and likelihood-ratio tests (p-values<0.0001).  NASH and alcohol 

patients had the best survival while those with HCV and HCC fared the worst.  This phenomenon 

was likely due to disease recurrence in these patient populations. 

 



43 
 

 

Figure 1:  KM by Etiology All Patients 

 

Table 5 below confirms that HCV/HCC were the deadliest with 131 (27.87%) deaths, followed by 

HBV/PBC/PSC/Other with 23 (17.69%) deaths, and NASH and Alcohol had the best survival with 

24 (10.86%) deaths. 

 

Table 5: Disease Etiology for Transplant Patients (All Patients) 

Summary of the Number of Censored and Uncensored Values 

Stratum Etiology Condensed Total Failed Censored Percent 
Censored 

1 HBV/PBC/PSC/Other 130 23 107 82.31 

2 HCV/HCC 470 131 339 72.13 

3 NASH and Alcohol 221 24 197 89.14 

Total   821 178 643 78.32 

 

Next, I repeated the KM for 799 patients who survived past 30 days post LT.   
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Figure 2:  KM by Etiology Excluding Early Deaths  

 

Table 6: Disease Etiology for Transplant Patients Excluding Early Deaths 

Summary of the Number of Censored and Uncensored Values 

Stratum Etiology Condensed Total Failed Censored 
Percent 

Censored 

1 HBV/PBC/PSC/Other 125 18 107 85.6 

2 HCV/HCC 459 122 337 73.42 

3 NASH and Alcohol 215 19 196 91.16 

Total   799 159 640 80.1 
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The same pattern of survival by disease etiology appeared when early deaths were excluded 

(n=799), with 122 (26.58%) deaths for patients with HCV/HCC, 18 (14.4%) for patients with 

HBV/PBC/PSC/Other, and 19 (8.84%) for those with NASH and Alcohol.  Differences in survival 

by disease etiology were significant according to log-rank, Wilcoxon and likelihood-ratio tests (p-

values<0.0001).  In conclusion, NASH and alcohol patients had the best survival while those with 

HCV and HCC fared the worst. 

 

3.1.3 Gender Distribution 

There were 218 females in the study and 603 males.  Although no significant difference in 

survival by gender was detected using KM (log-rank p-value=0.0935, Wilcoxon p-value=0.2007, 

likelihood ratio p-value=0.0868), I noticed a separation of the curves after the second year post 

LT indicating that females had a slightly better survival after the first three years as compared to 

males. 

 

 

Figure 3:  KM by Gender All Patients 
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On the reduced dataset excluding 22 patients who died in the first month, there were 212 females 

in the study and 587 males.  Although no significant difference in survival by gender was detected 

using KM (log-rank p-value=0.0775, Wilcoxon p-value=0.1641, likelihood ratio p-value=0.0690), I 

noticed a separation of the curves after the second year post-transplant indicating that females 

had a slightly better survival after 3 years as compared to males.  P-values were lower in the 

reduced dataset which excluded 22 early deaths indicating more of a gender difference in survival 

for that dataset. 

 

 

Figure 4: KM by Gender Excluding Early Deaths 
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3.1.4 Insurance 

Insurance was grouped in 4 categories but failed to yield any significant difference in survival as 

seen by the log-rank (p-value=0.7596), Wilcoxon (p-value=0.6341) and likelihood-ratio (p-

value=0.8584) tests.  This indicated that the insurance did not impact survival post-transplant 

even though the literature indicated that there was an effect on access to transplant (Kemmer et 

al., 2011). 

 
Table 7: Insurance for All Patients 

Summary of the Number of Censored and Uncensored 
Values 

Stratum Insurance 
Grouped Total Failed Censored Percent 

Censored 

1 Medicaid 106 25 81 76.42 

2 Medicare 179 29 150 83.8 

3 Other 32 8 24 75 

4 Private 504 116 388 76.98 

Total   821 177 643 78.32 

 

Table 6 above and Figure 5 below indicate that patients on Medicare had the best post LT 

survival while those with other insurance had the worst, but these differences failed to yield any 

statistical significance. 

 

Figure 5:  KM by Insurance for All Patients 
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Table 8: Insurance Excluding Early Deaths  

Summary of the Number of Censored and Uncensored Values 

Stratum Insurance Total Failed Censored 
Percent 

Censored 

1 Medicaid 103 22 81 78.64 

2 Medicare 173 24 149 86.13 

3 Other 30 6 24 80 

4 Private 493 107 386 78.3 

Total 
  

799 159 640 80.1 

 

The same pattern with Medicare patients having the best survival persisted when patients who 

died in the first 30 days were excluded but this was not statistically significant.  In this subset, 

patients with private insurance fared the worst which was rather surprising. 

 

Figure 6: KM by Insurance Excluding Early Deaths 
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However, difference in survival by insurance failed to yield any significant difference in survival as 

seen by the log-rank (p-value=0.5442), Wilcoxon (p-value=0.4296) and likelihood ratio (p-

value=0.6183) tests but p-values were again lower than those for the KM including early deaths.  

From this data it appears that there is insufficient evidence that private insurance leads to any 

survival benefit as one might suspect. 

 

3.2 AIC/ML Approach to the Cox PH Model 

I began with the AIC approach to the Cox PH model described in the methods in chapter 2.  The 

eight models displayed in table 9 were fit, all of which pointed to a distance cutoff of 180 miles as 

the value which minimized the AIC and maximized the partial likelihood function.  

The following were also considered as covariates in the model: creatinine, bilirubin, insurance, 

presence of HCV, HCC, etiology, age, and abuse of alcohol.  The data suggested a distinct cutoff 

value for distance, and that the plots convincingly indicated such a case.   

Table 9: AIC Model for the Covariates 

  HCC HCV Etiology Alcohol Creatinine Bilirubin Age Insurance BMI AIC 

Model 1 √ √ 

      

 2243.238 

Model 2 √ √ √ 

 

         2244.004 

Model 3 √ √ √ √ 

    

 2244.754 

Model 4 √ √ √ √ √        2231.950 

Model 5 √ √ √ √ √ √ 

  

 2218.825 

Model 6 √ √ √ √ √ √ √    2220.754 

Model 7 √ √ √ √ √ √ √ √  2223.990 

Model 8 √ √ √ √ √ √ √ √ √ 2225.971 

 

The model adjusting for HCC, HCV, etiology, alcohol, creatinine, and bilirubin had the lowest AIC 

of 2218.825 indicating that it was the best model for the data.  Using this criterion I concluded that 

180 miles was the best cutoff point regardless of which covariates I adjusted for.  Figure 7 below 
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shows distance from the transplant center on the horizontal axis and the resulting AIC on the 

vertical axis.  It was evident from the graph that the AIC was minimized at 180 miles. 

 

The algorithm was rerun using the reduced dataset excluding deaths within the first 30 days post-

transplant (n=22) and the AIC criterion consistently pointed to 180 days as a critical 

dichotomization point. 

 

 

(a) HCV and HCC adjusted only 

 

(b) HCC, HCV, Etiology, Alcohol, CR and Bilirubin adjusted 

Figure 7: Using AIC to Estimate Optimal Cutoff  



 

 

3.3 Restricted Cubic Regression Spline

The restricted cubic regression spline was employed to detect a potential non

between distance as a continuous variable and post

at 1, 7.36, 21.32, 38.60, 87.88

 

Figure 8:  Restricted Cubic Regression Spline with 7 knots

 

From the curve above there 

Wald  (p-value=0.87) for testing the hypothesis that distance ha

as a continuous variable.  This p

regression spline was fit on the reduced dataset which excluded early deaths (n=799).  

indicated there was a need to dichotomize distance and establish a cutoff point for distance 

beyond which there was an impact on survival.  This lead to suspicion that there 

throughout effect of distance over the five year period

the second modification to the Monte Carlo approach where 
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Restricted Cubic Regression Spline 

The restricted cubic regression spline was employed to detect a potential non-linear relationship 

between distance as a continuous variable and post-transplant survival. Seven knots were placed 

87.88, 174.15, and 267.77 miles to correspond to the quantiles.  

 

Restricted Cubic Regression Spline with 7 knots  

there was insufficient evidence of a distance effect as indicated by the 

for testing the hypothesis that distance had no effect on post

This p-value only decreased slightly (0.79) when the restricted cubic 

regression spline was fit on the reduced dataset which excluded early deaths (n=799).  

s a need to dichotomize distance and establish a cutoff point for distance 

s an impact on survival.  This lead to suspicion that there 

throughout effect of distance over the five year period post LT which was the reasoning behin

the second modification to the Monte Carlo approach where β was dropped from the model.

linear relationship 

transplant survival. Seven knots were placed 

orrespond to the quantiles.   

 

as indicated by the 

no effect on post LT survival 

when the restricted cubic 

regression spline was fit on the reduced dataset which excluded early deaths (n=799).  This 

s a need to dichotomize distance and establish a cutoff point for distance 

s an impact on survival.  This lead to suspicion that there was no 

which was the reasoning behind 

 was dropped from the model. 



 

The restricted cubic regression spline was also run with 5 knots which made no difference to the 

significance (p-value=0.9147).

8.9, 16.2, 29.1, 72.8, 114.2,

distance on survival when distance 

 

Figure 9:  Restricted Cubic Regression 

 

As indicated using the AIC/ML

cutoff point regardless the other covariates 

180 miles is presented in the next sectio
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The restricted cubic regression spline was also run with 5 knots which made no difference to the 

value=0.9147).  Using 9 knots (figure 12) at the following mileage 

, 145.3, and 196 miles there was still no statistically significant effect of 

when distance was specified as a continuous variable. 

Restricted Cubic Regression Spline with 9 knots  

/ML criterion applied to Cox PH in figure 10, 180 miles 

other covariates I adjusted for.  The KM for distance dichotomized at 

180 miles is presented in the next section. 

 

The restricted cubic regression spline was also run with 5 knots which made no difference to the 

lowing mileage points 2.8, 5.6, 

196 miles there was still no statistically significant effect of 

 

, 180 miles was the best 

The KM for distance dichotomized at 
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3.4 Kaplan Meier 

The KM plot for this dichotomization is shown below in figure 10, and p-values for the log-rank (p-

value=0.0049), Wilcoxon (p-value=0.0077) and likelihood ratio (p-value=0.0154) indicated that 

survival was improved for patients who had to travel less than 180 miles to the transplant center 

as opposed to those who lived more than 180 miles away. 

 

Table 10: Dichotomizing Distance at 180 Miles for All Patients 

Summary of the Number of Censored and Uncensored 
Values 

Stratum Distance Total Failed Censored Percent 
Censored 

1 within 
180 802 169 633 78.93 

2 beyond 
180 19 9 10 52.63 

Total   821 178 643 78.32 

 

From table 10 above I noticed that 21% expired among those living within 180 miles while that 

increases to 47% for those living over 180 miles from the transplant center.  In figure 13 below, it 

was evident that the survival curve dropped faster for those living beyond 180 miles.  It remained 

steadily below that for patients living within the 180 mile radius indicating impaired survival at 

longer distances. 

 

Table 11: Dichotomizing Distance at 180 Miles Excluding Early Deaths 

Summary of the Number of Censored and Uncensored 
Values 

Stratum Distance Total Failed Censored Percent 
Censored 

1 within 
180 780 150 630 80.77 

2 beyond 
180 19 9 10 52.63 

Total   799 159 640 80.1 
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Figure 10:  KM at 180 miles 

 

3.5 Cox Proportional Hazards 

The Cox PH model below with the 180 mile dichotomization point for distance, adjusted for HCV 

and HCC, was statistically significant according to likelihood ratio, Score and Wald p-values (all 

less than 0.0001).  The hazard ratio indicated that patients living beyond 180 miles from the 

transplant center had 2.68 times the death rate compared to those living within 180 miles after 

adjusting for HCV and HCC (p-value=0.0040).  Breslow’s estimator was used to handle ties. 

 

The Cox PH model was 

�>�
� �  ���
� exp?0.25 �Z�� ç/tÊ�> � 0.80 �Z�� ç/tÊ�> �  0.95 �éç
=�> - 0.99 �£/.6y 180�C 
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Table 12: Cox PH for 180 Mile Dichotomization  

Analysis of Maximum Likelihood Estimates 

  All Patients (n=821) Excluding Early Deaths (n=799) 

Parameter DF P-value Hazard Ratio P-value Hazard Ratio 

HCC only 1 0.6011 1.279 0.2884 1.660 

HCV only 1 <.0001 2.227 <.0001 2.639 

Both HCV and HCC 1 <.0001 2.577 <.0001 3.136 

Distance beyond 180 1 0.0040 2.681 0.0009 3.145 

 

P-values decreased when patients who died within the first 30 days post-transplant were 

excluded as noted in table 12 above.  All of the 22 patients excluded for early death resided 

within the 180 mile radius. 

 

 

Figure 11:  Survivor Function for Cox PH 
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Separate Cox PH models were fit for patients with HCV and HCC respectively.  The effect of 

distance was more pronounced in patients with HCV (HR of 3.72 for 434 HCV patients vs. 2.5 for 

total 821 patients). The distance effect was even stronger in patients with HCC (HR of 5.24 for 

134 HCC patients). 

 

 

Figure 12:  KM Curve for HCV Patients 

 

To assess the fit of this model I first looked at deviance residuals.  They were symmetrically 

distributed around 0 and had a standard deviation of approximately 1.0.  Residuals were positive 

for patients with shorter survival time than expected and negative for patients with longer survival 

times than expected.  Very low or very high values suggested that the patient may be an outlier 

and therefore in need of attention.  Below in figure 13, the residuals were plotted against the 

covariate distance (continuous variable), and unusual patterns would have suggested features of 

the data that had not been adequately fitted by the model.  This dataset contained censored data 

so caution was exercised because censoring could produce striking patterns that don’t 

necessarily imply any problem with the model. 

 



 

Figure 13: Graph of Deviance Residuals by Distance as a Continuous Variable

 

A clear disjunction between the two groups of observations

toward the bottom were all censored observations, while the more widely dispersed points in the 

upper portion of the graph we

 

Covariate-wise residuals including

score residuals all had a separ

approximately zero in the sample.

observations.  Since distance wa

very informative and therefore was 

 

Influence statistics were computed to detect whether any particular patient would change the 

results if it were removed from the model 
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Graph of Deviance Residuals by Distance as a Continuous Variable

disjunction between the two groups of observations was noted.  The cluster of points 

re all censored observations, while the more widely dispersed points in the 

were uncensored observations. 

including Schoenfeld residuals, weighted Schoenfeld residuals and 

a separate residual for each covariate for each patient.  They also sum to 

zero in the sample.  However Schoenfeld residuals were not defined for censored 

Since distance was a dichotomous variable, the graph for the residuals wa

very informative and therefore was omitted. 

Influence statistics were computed to detect whether any particular patient would change the 

removed from the model (Collett, 2003).  Influence on the model as a whole

 

Graph of Deviance Residuals by Distance as a Continuous Variable 

.  The cluster of points 

re all censored observations, while the more widely dispersed points in the 

Schoenfeld residuals, weighted Schoenfeld residuals and 

ate residual for each covariate for each patient.  They also sum to 

re not defined for censored 

e, the graph for the residuals was not 

Influence statistics were computed to detect whether any particular patient would change the 

nfluence on the model as a whole is 



 

measured by the likelihood displacement (LD) statistic which 

multiplied by two, would change if the individual patient wa

plotted below in figure 14 against distance

that there were no influential patients who needed to be revisited

 

Figure 14: Likelihood Displacement 

 

Another method used to check the proportional hazards 

cumulative residuals using the Assess statement and ph option in the proc phreg function

(Gharibvand, 2008). 
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measured by the likelihood displacement (LD) statistic which detects how much th

ange if the individual patient was removed from the sample.  

against distance, and since all values were relatively small 

that there were no influential patients who needed to be revisited. 

isplacement Against Distance to Look for Influential Patients

Another method used to check the proportional hazards (PH) assumption was to look at the 

cumulative residuals using the Assess statement and ph option in the proc phreg function

 

how much the log-likelihood 

s removed from the sample.  LD was 

re relatively small I concluded 

 

atients 

s to look at the 

cumulative residuals using the Assess statement and ph option in the proc phreg function 
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Figure 15:  Checking the PH Assumption for Patients with HCC 

A plot of the cumulative martingale residuals against the values of the 5 year survival and a p-

value of a Kolmogorov-type supremum test based on a sample of 1,000 simulated residual 

patterns are presented. 

The plot in figure 15 displays the observed cumulative martingale residual process for survival 

together with 20 simulated realizations from the null distribution. It is obvious that the observed 

process is typical compared to the simulated realizations. Also, some of the 1,000 simulated 

realizations have an absolute maximum exceeding that of the observed cumulative martingale 

residual process. Both the graphical and numerical results indicate that a transform is not 

deemed necessary in the model.  
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Figure 16: Checking the PH Assumption for Patients with HCV 

 

Figure 17: Checking the PH Assumption for Patients with Both HCV and HCC 
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Figure 18: Checking the PH Assumption for Distance Beyond 180 miles 

 

Table 13:  Supremum Test for Proportional Hazards Assumption 

Supremum Test for Proportional Hazards Assumption 

Variable 

Maximum 
Absolute 

Replications Seed 
Pr > 

Value MaxAbsVal 

HCC only 1.0828 1000 19 0.18 

HCV only 0.9383 1000 19 0.498 

Both HCV and 
HCC 0.8996 1000 19 0.471 

Distance 
Beyond 180 0.656 1000 19 0.585 

 

Based on table 13 and figures 13-18 above, I concluded that there was no serious violation of the 

proportional hazards (PH) assumption. Since the p-value for all covariates exceeded 0.05, I am 
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95% confident that there was no relationship between residuals and time. This also confirmed the 

previous conclusion that the PH assumption was not violated and they were no time-dependent 

covariates. Therefore, I did not need to do any further stratification. 

 

In the literature, the Cox PH model was the overwhelmingly favored method for regression 

analysis of survival data.  This method required no assumptions about the shape of the 

distribution of survival times, allowed for time-dependent covariates, could be used with both 

discrete and continuous-time data, could stratify on categorical control variables and could be 

extended to non-proportional hazards.  However, one cannot test hypotheses about the shape of 

the hazard function so I resorted to another method known as the accelerated failure time model. 

 

3.6 Accelerated Failure Time Model 

 

An AFT model for the 180 mile distance cutoff was used assuming a Weibull distribution.  Other 

distributions were fit, but Weibull was the best for the LT data.  Since the underlying distribution of 

survival time conditional on the covariates was estimated to be Weibull with σ=0.7, this indicated 

that the hazard was increasing at a decreasing rate.  The survivor function was 

 

&>�
� � exp h-�
>6LM.êë)�.�ê ìíí )*.MM ìí`)*.î� ïÄ2æL*.ë ð>®2_Å9;ò7_*ó�%*.ë�l 

 

where HCV, HCC, Both and Dist_under_180 were all indicator variables that determined whether 

or not the condition was present. 

 

The log survival became  

 log F � 2.75 - 0.37 Z�� - 1.22 Z�� - 1.43 cç
= � 1.50 �õ·Ë
ö/"6 £/.6y 180�
�  IH 



63 
 

Therefore all other covariates held constant, living within 180 miles increased survival by 

e1.5=4.48 units.  The ‘mean’ survival time in patients living within 180 miles was estimated to be 

4.48 times longer than that in the group living beyond 180 miles after controlling for HCV and 

HCC.  The hazard function was illustrated in figure 19 below. 

 

Table 14:  AFT Model with Weibull Distribution 180 Mile Dichotomization All Patients 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard Error 

95% Confidence 

Limits P-value 

Intercept 1 2.75 0.55 1.67 3.83 <.0001 

HCC only 1 -0.37 0.72 -1.77 1.03 0.6060 

HCV only 1 -1.22 0.28 -1.77 -0.66 <.0001 

Both HCV and HCC 1 -1.43 0.37 -2.15 -0.71 <.0001 

Distance under 180 1 1.50 0.53 0.46 2.54 0.0046 

Scale 1 1.52 0.11 1.33 1.74  

Weibull Shape 1 0.66 0.05 0.57 0.75  

 

Table 15:  AFT Model with Weibull Distribution 180 Mile Dichotomization Excluding Early Deaths 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard Error 

95% Confidence 

Limits P-value 

Intercept 1 2.56 0.44 1.70 3.42 <.0001 

HCC only 1 -0.62 0.57 -1.73 0.50 0.2790 

HCV only 1 -1.16 0.25 -1.64 -0.68 <.0001 

Both HCV and HCC 1 -1.37 0.31 -1.98 -0.76 <.0001 

Distance under 180 1 1.36 0.42 0.54 2.18 0.0012 

Scale 1 1.19 0.09 1.03 1.37  

Weibull Shape 1 0.84 0.06 0.72 0.97  



 

By excluding early deaths (n=22)

intervals, and the p-values decreased giving a 

Figure 19:  Hazard Function

 

The Cox-Snell residuals we

when the model was correct they follow

order to evaluate this graphically 

plotted that against the residuals 

passed through the origin with a slope of 1 (see Figure 
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By excluding early deaths (n=22) the estimators became more precise with tighter confidence 

values decreased giving a more precise model. 

Hazard Function 

were defined as .  These were always positive and 

s correct they followed an exponential distribution with parameter 

order to evaluate this graphically I computed the KM estimator of the survivor function, and 

plotted that against the residuals e.  The resulting graph was expected to be a straight line which 

through the origin with a slope of 1 (see Figure 20).  

 

the estimators became more precise with tighter confidence 

 

re always positive and 

an exponential distribution with parameter λ=1.  In 

computed the KM estimator of the survivor function, and 

straight line which 



 

Figure 20:  Residual Plot (Weibull Model)

Figure 21: Weibull Probability Plot

 

The estimated cumulative d

point wise parametric confidence bands 
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Residual Plot (Weibull Model) 

Weibull Probability Plot 

density function, a line representing the maximum likelihood fit, and 

point wise parametric confidence bands were plotted in the body of figure 21. The values of right

 

 

, a line representing the maximum likelihood fit, and 

. The values of right-
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censored observations were plotted along the bottom of the graph (Kay & Kinnersley, 2002). All 

the events fell within the 95% confidence bands indicating a good fit for this model. 

 

Next I fit the same model using the exponential and lognormal distributions and it was evident 

that the fit was not as good (figure 22 and 23). 

 

 

Figure 22:  Exponential Probability Plot 
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Figure 23:  Lognormal Probability Plot 

 

3.7 Logistic Regression 

LR model is useful in predicting dichotomous outcomes, in this case, whether the patient is dead 

or alive at 1 year post-transplant.  Patients transplanted after the time period (September 25, 

2011) were excluded from the study (n=82) because they had not yet received one year of follow-

up. Distance models were computed, adjusting for HCV for the cutoff of 1 year post LT.  It was 

established that at a 180 mile distance cutoff, survival was affected (p-value =0.0246) (Table 15). 

The odds of death 1 year post LT were 3.4 times higher for patients beyond 180 miles, compared 

to those within.  When the model was rerun excluding early deaths, the odds of death 1 year post 

LT increased to 4.57 compared to those who lived within the 180 mile radius.  However, LR 

discarded valuable information by ignoring the length of patient survival and by reducing 

outcomes to a dichotomous variable (dead/alive) at a particular time point.  It was also computed 
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on a reduced dataset of 739 patients compared to the Cox PH and AFT models which were able 

to utilize all 821 patients in the entire study group. 

 

A total of 739 patients were included in the study and the model was adjusted for the presence of 

HCV alone.  This was done, as opposed to both HCV and HCC, to avoid non-convergence 

issues.  Assuming N>2 represents the probability that individual i had an event at time t, conditional 

on the fact that an event had not already occurred to that individual.  When distance takes on a 

value of 1 for within 180 miles and 2 for beyond 180 miles the model can be written as 

log R N>21 - N>2S �  -1.652 -  0.40 Z��>2 - 0.62 õ·Ë
ö/"6>2 

 
Table 16: Logistic Regression 180 Mile Dichotomization All Patients 

 Analysis of Maximum Likelihood Estimates 

Parameter   Estimate (SE) Odds Ratio 95% Wald CI P-value 

Intercept   -1.65 (0.28)       <.0001 

Hepatitis C No -0.39 (0.13) 0.459 0.275 0.765 0.0028 

Distance 1: under 180 -0.61 (0.27) 0.292 0.1 0.854 0.0246 

 

The same model was rerun excluding patients who died in the first 30 days post LT.  A total of 

722 patients were included in the model.  The resulting model was presented below. 

log R N>21 - N>2S �  -1.852 -  0.56 Z��>2 - 0.76 õ·Ë
ö/"6>2 

Table 17: Logistic Regression 180 Mile Dichotomization Excluding Early Deaths 

 Analysis of Maximum Likelihood Estimates 

Parameter   Estimate (SE) Odds Ratio 95% Wald CI P-value 

Intercept   -1.85 (0.29)       <.0001 

Hepatitis C No -0.56 (0.16) 0.323 0.174 0.600 0.0003 

Distance 1: under 180 -0.76 (0.28) 0.219 0.073 0.654 0.0066 
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I computed LR models at 3 and 5 years post LT at multiple incremental groupings of 30 miles [30, 

60, 90,120,150, 180, and so on], of 60 miles, 90 miles, 120 miles, 150 miles, 180 miles, and 240 

miles. Models of distance cutoffs vs. the rest of the patients (30 miles vs. the rest; 60 miles vs. the 

rest, and so on, up to 240 miles) were also run.  None of these LR models was able to pinpoint a 

distance vs. outcome effect, due to the use of a markedly limited dataset from extensive 

censoring.  

 

3.8 Monte Carlo Approach to Change Point Detection 

Initially I used the method developed by Liu et al. (Liu et al., 2008) with distance dichotomized at 

180 miles from the transplant center.  Patients were dichotomized according to the distance from 

transplant center (0: within 180 miles, 1: beyond 180 miles) and KM curves were presented in 

figure 8.  KM curves crossed early on and survival for the distant group remained steadily below 

that of patients living within the 180 mile radius.  This indicated that distance may not affect 

survival immediately after transplant but may begin at a later point in time.  It was also possible 

that the distant patients were in the hospital for longer and the distance effect did not begin until 

after their hospital discharge.  This was a factor that I investigated further using Cox PH models 

that included change points.   

 

In its general form the hazard function was specified as  ��
� � ���
�exp �����
, �� � #���
�� 
where Z represented distance, � contained the nonlinear parameters � which was the change 

point in time and c the dichotomization point for distance, # contained the coefficients 
 for 

distance and n for the presence of Hepatitis C and HCC, and X(t) contained indicator variables for 

Hepatitis C (HCV) and Hepatocellular Carcinoma (HCC).  

 

Let  

�* � o0 if the patient did not have HCV1 if the patient had HCV r  
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�M � o0 if the patient did not have HCC1 if the patient had HCC r 
 

3.8.1 Original Hazard with One Change Point 

I was interested in testing the existence of a change point associated with the distance cutoff that 

was determined using the AIC (180 miles) over the time period of 0-5 years post liver transplant.  

When distance Z was already dichotomized at 180 miles the hazard function above could be 

simplified to ��
; �, �� �  ���
� exp�?
 �  ���
 p ��C� �  #$��. 
Using the Monte Carlo approach by Liu et al., distance Z was defined as 0: within 180 miles and 

1: beyond 180 miles, while adjusting for HCV (1: yes; 0: no) and HCC (1: yes; 0: no).  The p-

values were 0.566 and 0.235 and the overall 5 per cent significance level thresholds were 3.57 

and 8.04 for M and M*, respectively, based on 10,000 resampling samples.  The thresholds were 

presented by the horizontal lines in the plot.  The potential change point locations in terms of 

achieving the maximal score statistics were at 3.622 and 4.186 years post-transplant for 

|&k�#�;  ��| and �k�#�;  �� respectively. 

 

Table 18:   Change Point Detection Using 180 Mile Dichotomization 

  Maximum Test Profile Value 95% Threshold P-value Change Point 

sup |S| 1.916 3.609 0.562 3.624 

sup W 4.823 8.032 0.233 4.187 

*Maximization was over a range of � between 0.25 and 4.75. 

 

After the change-point was found (even though p-values were high), a Cox model was fit with the 

indicator variable included to represent the change point.  Caution was taken in interpreting the 

model since the estimation ignored the fact that the candidate change point was determined by 

the test procedure using the same data set.  This research was conducted under the assumption 

that there was only one change point parameter τ but it can be extended easily to incorporate 

multiple change points in time.  
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Figure 24:  Profiles of Score Test Processes 

 

The resulting Cox PH model with the change point � set at 4.186 which was indicated by the 

normalized test statistic yielded the following model: ��
; �, �� �  ���
� exp�?3.71 - 4.87��
 p 4.186�C� - 0.70 Z�� � 0.14 Z��� 
 

The reference were patients with both HCV and HCC living within 180 miles with the change point 

at � � 4.186.  The hazard ratios were reported in table 19 below.  Likelihood Ratio, Score and 

Wald statistics all agreed that this model was statistically significant (p-value<0.0001) and the AIC 

value was 1919.314. 
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Table 19: Cox PH Model with � � 4.186 

Analysis of Maximum Likelihood Estimates 

Parameter 
  

DF 
Parameter Standard Chi-

Square 
P-

value 
Hazard 

Estimate Error Ratio 

HCV n 1 -0.70363 0.16878 17.3802 <.0001 0.495 

HCC n 1 0.14235 0.19212 0.549 0.4587 1.153 

 
 0 1 3.70805 0.43698 72.0053 <.0001 40.774 

 � 0 1 -4.87466 0.44645 119.2172 <.0001 0.008 

 

Next I fit the model with the change point � � 3.622 which was indicated by the non-normalized 

score statistic and below are the resulting estimates.  

 

Table 20: Cox PH model with � � 3.622 

Analysis of Maximum Likelihood Estimates 

Parameter 

  

DF 
Parameter Standard Chi-

Square 
P-

value 
Hazard 

Estimate Error Ratio 

HCV n 1 -0.76966 0.16745 21.1278 <.0001 0.463 

HCC n 1 0.15028 0.19178 0.614 0.4333 1.162 

 
 0 1 2.99874 0.38993 59.1447 <.0001 20.06 

 � 0 1 -4.89206 0.46594 110.2361 <.0001 0.008 

 

AIC was 1922.756 which was larger than 1919.314 from the model with � � 4.186 indicating 

worse fit statistically.  Likelihood Ratio, Score and Wald statistics were all in agreement that this 

model was significant (p-value<0.0001).   

 

It was known from the work of Liu et al. (2008) that accuracy of the approximation and power 

increased with sample size and instability of the variance could be seen when there were few 

deaths such as the case with this data (78.32% censored).  The authors also established that the 

maximum normalized value of the score statistic was less sensitive in the detection of a change 

point than that based on the non-normalized score. The maximum normalized value for the test 

score statistic was also more conservative under the null hypothesis (Liu et al., 2008).  Even 
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though the AIC score was lower for the Cox PH model with the change point established by the 

normalized score (� � 4.186), I presented both in this analysis since the non-normalized score 

(which showed � � 3.622) was more sensitive to change point detection. 

 

3.8.2 Extension 1: Drop β 

I dropped 
, to determine if distance Z did not have a throughout effect, but only an effect after a 

certain time �. 

��
; �, �� �  ���
� exp�? ���
 p ��C� �  #$�� 
The p-values were 0.573 and 0.543 and the overall 5 per cent significance level thresholds were 

3.387 and 7.592 for M and M*, respectively, based on 100,000 resampling samples.  The 

thresholds were presented by the horizontal lines in the plot.  The potential change point locations 

in terms of achieving the maximal score statistics were at 3.622 years post LT for both |&k�#�;  ��| 
(non-normalized) and �k�#�;  �� (normalized) respectively. 

 

Table 21:  Change Point Detection Without 
 

  Maximum Test Profile Value 95% Threshold P-value Change Point 

sup |S| 1.915 3.387 0.573 3.622 

sup W 2.624 7.592 0.543 3.622 

 
 

By dropping beta and increasing the number of resampling samples to 100,000 instead of 10,000, 

the normalized and non-normalized test statistics agreed at 3.622.  A Cox PH model was fit 

illustrating that distance (dichotomized at 180) was significant (p-value < 0.0001) after 3.622 

years post LT. I concluded that the hazard of death for patients living beyond 180 miles of the LT 

center had 2.023 times the death rate before (and including) 3.622 years compared to those who 

lived within 180, after adjusting for HCV and HCC.  However this model had to be interpreted with 

caution since there was evidence of a throughout distance effect as indicated in the previous 

approach. 
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Table 22:  Cox PH Including a Change Point Without 
 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Parameter 
Estimate 

Standard 
Error 

Chi-Square P-value Hazard 
Ratio 

 

HCC n 1 0.2544 0.4709 0.2918 0.5891 1.290  

HCV n 1 0.7794 0.1781 19.1598 <.0001 2.180  

Both   0.9280 0.2340 15.7305 <.0001 2.530  

Z(t) 0 1 0.7047 0.4172 0.8536 0.0912 2.023  

 

Likelihood Ratio, Score and Wald statistics all agreed that this model was significant (p-

value<0.0001).  AIC was 1954.936.  Since the AIC increased, and β was significant in table 19, I 

concluded that β should remain in the model and there was evidence of a throughout effect of 

distance on survival when distance was dichotomized at 180 miles. 

  

 
Figure 25: MC Approach With β Dropped 
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3.8.3 Extension 2: Reversed Inequality Sign 

I changed ��
 p �� to ��
 � �� which was a statistically equivalent model but had a more 

natural interpretation in this dataset.  Since 
 was not retained in the model, this meant there was 

only a distance effect for times greater than � and when 
 was retained, this meant that there 

was an additional effect due to distance after a certain point in time post-transplant, �. 

 ��
; �, �� �  ���
� exp�?
 �  ���
 � ��C� �  #$�� 
 

In this model, I adjusted for HCV (1: yes; 0: no) and HCC (1: yes; 0: no) as X(t) before modeling 

distance Z  (1: within 180, 0: beyond 180) since these diseases are known to recur and therefore 

reduce survival.  The p-values were 0.080 and 0.315 and the overall 5 per cent significance level 

thresholds were 4.855 and 7.491 for M and M*, based on 100,000 resampling samples.  The 

thresholds were presented by the horizontal lines in the plot in figure 25.  The potential change 

point locations in terms of achieving the maximal score statistics were at 0.286 years post LT for 

|&k�#�;  ��| and �k�#�;  ��. 

 

Table 23:  Change Point Detection with Inequality reversed 

  Maximum Test Profile Value 95% Threshold P-value Change Point 

sup |S| 4.430 4.855 0.080 0.286 

sup W 3.718 7.491 0.315 0.286 

 
 

The normalized and non-normalized score statistics showed agreement at a change point � of 

0.286 years post-transplant possibly due to random variation in the Monte Carlo.  The Cox PH 

model was fit using this change point and the resulting model is shown in table 24 below.  Both 
 

and � were statistically significant indicating a distance effect throughout the 5 year period (p-

value=0.0002 for 
) as well as an additional burden of distance beyond 180 miles (p-

value<0.0001 for �) on post-transplant survival. 
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Table 24:  Cox PH with the Inequality Reversed 

Analysis of Maximum Likelihood Estimates  

Parameter 
 

DF 
Parameter Standard Chi-

Square P-value 
 

Estimate Error HR 

HCC  1 0.245 0.471 0.271 0.602 1.278 

HCV  1 0.782 0.178 19.304 <0.001 2.187 

Both   1 0.942 0.234 16.138 <0.001 2.564 

 Z  1 0.882 0.419 4.436 0.035 2.416 

 
 

3.8.4 Extension 3: Dichotomizing Distance at c 

Distance was dichotomized using the model as opposed to a pre-specified value for c=180 miles, 

replacing Z by I(Z>c), and extending the approach in Liu et al (2008) to estimate the change point 

c in addition to �.  The hazard function used was: 

 ��
; �, �� �  ���
� exp�?
 �  ���
 � ��C��� ! "� �  #$�� 
The likelihood function  

���, #, �� �  + � exp ?�
 �  ���
 � ������> ! "� � #$�>C∑ �(�
�9(8* exp  ��
 �  ���
 � ������( ! "� � #$�( B
�

9
>8*  .�>�
� 

The log likelihood corresponds to  

t��, #, �� �  5 � û?�
 �  ���
 � ������> ! "� � #$�>CB
�

9
>8*

- log 5 �(�
���
 �  ���
 � ������( ! "� � #$�(  9
(8* Ø  .�>�
� 

A two-step process was used.  First estimates for η were obtained from a Cox PH model with no 

change point �, fit with distance pre-dichotomized at 180 miles which seemed to be a reasonable 

estimate from the previous models.  These estimates were nu* � 0.789 (for HCV) and nuM � 0.162 

(for HCC).  The values were used as initial values for obtaining estimates for all six parameters 

simultaneously, which were �, ", 
, �, n*, and nM.   
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The log-likelihood function was optimized using the Nelder-Mead, a variable metric algorithm, and 

a simulated annealing algorithm.  The algorithms were used to obtain estimates for 

�, ", 
, �, n*, and nM simultaneously.  Convergence was achieved using all three methods and the 

results were presented in table 25 below. 

 

Table 25: Resulting Estimates for Extension 3 

  

Initial 

Values Nelder-Mead SANN BFGS 

 

 

   Τ 3.66 3.622 4.082 3.474 

C 180 179.767 184.691 180.085 

Θ 0 1.144 1.455 0.965 

Β 0.989 0.909 0.960 0.855 

γ1 0.789 0.764 0.827 0.791 

γ2 0.162 0.084 0.171 0.162 

Number of function calls  523 10000 50 

Gradient  NA NA 11 

Improvement in log-

likelihood 

 1.211 1.300 1.092 

 

The change point in time ranged from 3.474 and 4.082, while the distance cutoff ranged from 

179.767 and 184.691.  Since these values did not deviate significantly from the initial values, I 

used different carefully chosen (table 26) as well as random (table 27) starting values and was 

able to confirm that these estimates maximized the log-likelihood.  I found these constituted a 

global maximum, not just a local one.  Although it appeared that the change point in the hazard 

function � could not be established with BFGS and SANN, the distance cutoff using SANN was 

still close to 180 miles, confirming the distance cutoff, and BFGS was not far off either.  This led 

to reinforcing the conclusion that the choice of initial values is critical, and had to be made 

carefully. 
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Table 26:  Extension 3 with Different Initial Values 

(a) 

  Initial values Nelder-Mead BFGS SANN 

  

   

  

Τ 3 4.057 NA NA 

C 100 139.591 179.87 180.625 

Θ 2 1.142 -0.157 5.057 

Β 1 0.214 0.987 1.007 

γ1 0.8 0.781 0.789 0.794 

γ2 0.16 0.153 0.162 0.158 

 

(b) 

  Initial values Nelder-Mead BFGS SANN 

  

   

  

Τ 4 4.093 3.997 0 

C 200 192 200 183.217 

Θ 1 4.649 1 0.41 

Β 0 -1.89 0 1.018 

γ1 0.8 0.876 0.8 0.771 

γ2 0.16 0.16 0.16 0.168 

 

In the scenario in table (a) where the initial values were below what we expect, BFGS and SANN 

did not converge to anything for distance c.  In the scenario in table (b) where the initial values 

were above what we expected, SANN did not produce an estimate for the change point in time.   

 

Next I used the uniform distribution to generate random initial values with the ranges indicated in 

table 27 below.  The log-likelihood was maximized and the resulting end values were displayed in 

table 27 below.  None of these three algorithms were able to determine a change point in the 

hazard function when the initial values were generated randomly; they all converged to zero, 

which was the boundary of the search range. 
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Table 27: Parameter Estimates for Extension 3 Using Random Initial Values 

  Initial Values Nelder-Mead BFGS SANN 

 

   

Τ 

U (observed 

death times) 0 0 0 

C (0, 250) 55.833 140.088 183.262 

Θ (-2, 2) -0.379 0.233 0.619 

Β (-2, 2) 0.309 0.076 0.39 

γ1 
(-2, 2) 

0.78 0.786 0.768 

γ2 
(-2, 2) 

0.154 0.138 0.195 

 

 

A grid search was performed over 20 values of � between 2 and 3.8 and 20 distance values 

between 120 and 200.  The grid was 20x20.  The non-normalized score M, normalized score M* 

and the two parameter score M2P were calculated to account for both the change point and 

distance cutoff simultaneously, and the values of � �2.758 and c=195.79 maximized this, 

although this did not reach statistical significance (p-value=0.118) using the Monte Carlo 

approach with 1000 repetitions.  

 

Using a finer grid of 100x100 in the same range, the values for � �2.455 and c=192.727 

remained stable and the p-value was 0.146.  The maximum value of the score was 7.469 which 

were also in agreement with the coarse grid (2 parameter score maximized at 7.469).  Table 28 

summarizes these results.  The M2p statistic consistently performed better than M and M*, 

producing lower p-values.  The grid size does not affect the power as seen in section 3.10 below 

but both grid sizes were used to demonstrate in the table below.  Further analysis of a 10x10, 

20x20 and 30x30 can be seen in table 38. 
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Table 28: Score Values for Extension 3 

    Results Max Value P-value 

Grid Type of Score (τ, c) θ β θ β 

Coarse 2 Parameter 

(2.758, 

195.790) 7.469 

 

0.118   

Coarse 

Non-

normalized 

 

3.087 5.536 0.279 0.173 

Coarse Normalized  2.411 4.736 0.383 0.123 

Fine 2 Parameter 

(2.455, 

192.727) 7.469   0.146   

Fine 

Non-

normalized 

 

3.16 5.536 0.256 0.166 

Fine Normalized  2.437 4.736 0.39 0.155 

 

 

Below in figure 26 is an image plot of values for � and c.  The fine grid (100x100) was used for 

this plot.  The 3D plot in figure 27 was more informative for this approach but both are displayed 

here for completeness. 

 

 

 
Figure 26: Image Plot of Extension 3 

c 
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Figure 27: 3D Plot of Extension 3 

 
3.8.5 Extension 4: Increasing Distance Effect 

Distance Z was replaced by max(Z-c,0), the positive part of the difference between distance and 

the cutoff point (Z-c).  This meant there was no distance effect for distances less than c, but 

allowed the effect to increase for larger distances.  The hazard function in this case was: 

 ��
; �, �� �  ���
� exp�?
 �  ���
 � ��Cmax�� - ", 0� �  #$��
�� 
Using the initial values: � � 3.66, c=180, � � 0, 
 � 0.989, n* � 0.789, and nM � 0.162, the 

parameter estimates in Table 29 were obtained. 
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Table 29: Increasing Distance Effect 

  Nelder-Mead SANN BFGS 

    Τ 4.079 1.567 3.649 

C 201.209 180.9 179.435 

Θ 0.008 0.003 0.006 

Β 0.844 1.6 0.989 

γ1 0.079 0.824 0.79 

γ2 0.016 0.122 0.162 

Number of function calls 149 10000 33 

Gradient 

  

5 

Improvement in log-likelihood 3.535 251.166 3.483 

 

The distance cutoff was consistently in the region of 180 miles using the variable metric algorithm 

(BFGS) and simulated annealing (SANN), while the Nelder-Mead approximation was higher at 

200 miles.  The SANN method yielded the best improvement in the log-likelihood out of all three 

methods used for optimization.  Using different initial values, the results are presented in table 30 

below where only the Nelder-Mead approach yielded the first set of initial values. 

 
Table 30: Increasing Distance Effect with Different Initial Values 

(a) 

  Initial Values Nelder-Mead 

Increasing Distance Effect 
  Τ 4 NA 

C 200 219.698 

Θ 1 0.569 

Β 0 -0.336 

γ1 0.8 0.78 

γ2 0.16 0.155 

Number of function calls 

 

105 
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(b) 

  Initial Values Nelder-Mead BFGS SANN 

  

   

  

Τ 3 4.109 NA 2.936 

C 200 201.14 NA 156.291 

Θ 1 0.008 NA 0.002 

Β 0 0.386 0 0.043 

γ1 0.8 0.802 0.781 0.677 

γ2 0.16 0.014 0.156 0.076 

Number of function calls   435 13 10000 

Improvement in log-likelihood   12703.45 12699.92 12700.22 

 

(c) 

  Initial Values Nelder-Mead BFGS SANN 

    

  

Τ 4 4.2 NA 2.844 

C 150 194.798 NA 93.307 

Θ 1 -0.376 -0.057 0.002 

Β 0 0.45 0 0.208 

γ1 0.8 0.78 0.78 0.905 

γ2 0.16 0.156 0.156 0.078 

Number of function calls   183 18 10000 

Improvement in log-likelihood   6307.6 6307.495 6309.171 

 

Nelder-Mead was the most appropriate method for this data, but BFGS and SANN were used for 

comparison purposes.  Different initial values were used and Nelder-Mead approximation 

produced the most consistent results which was expected. 

 

A grid search was performed over 20 values of � between 2 and 3.8 and 20 distance values 

between 120 and 200.  The two parameter score was calculated to account for both the change 

point and distance cutoff simultaneously, and the values of � �4.237 and c=134.211 maximized 

this, although this did not achieve statistical significance (p-value=0.118) using the Monte Carlo 

approach with 1000 repetitions.  
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Using a finer grid of 100x100 the values in the same range for � �3.727 and c=192.727 and the 

p-value was 0.161.  The maximum value of the two parameter score was 5.082. 

 

Figure 28: MC Approach of Two Parameter Score for Extension 4 

 

(a) Coarse 20x20 grid 

 

(b) Finer 100x100 grid 

Figure 29: 3D Image Plots of Increasing Distance Effect 
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Table 31:  Results for Score Function in Extension 4 

    Results Max Value P-value 

Grid Type (τ, c) θ β θ β 
Coarse 2 Parameter (4.237, 134.11) 7.344 

 

0.118   

Coarse 

Non-

normalized 

 

228.677 94.566 0.287 0.792 

Coarse Normalized  4.237 0.906 0.173 0.569 

Fine 2 Parameter 

(3.727, 

192.727) 5.082   0.161   

Fine 

Non-

normalized 

 

233.101 94.832 0.3 0.789 

Fine Normalized  1.567 0.719 0.368 0.6 

 

3.9 Simulation Results 

This section presents simulation results for Extensions 3 and 4 described in Section 2.4.  Two 

types of simulations were run, one using data generated from standard distributions and one with 

a situation which closely resembled the data set of LT patients.  The purpose of the first 

simulation was to demonstrate that the methodology worked while the second simulation studies 

its performance in a situation resembling the LT data.  The simulations used covariates Z and (X1, 

X2) with distributions described below. 

 

3.9.1 Using Standard Distributions 

The covariate X1 was generated from a uniform distribution with range (0,1), and X2 was 

generated from an exponential distribution with mean=1. The sample size was n=600, with 1000 

runs of simulations, and the thresholds for 1000 simulated datasets and thresholds based on 

1000 Monte Carlo resampling samples.  Z was generated from a uniform distribution on (0.100) 

for extension 3 and (0,10) for extension 4.  � was chosen to be 0.25 and the distance cutoff was 

chosen to be 50.  The grid was 20x20 and �  ranged from 0.15 to 0.30 while c ranged from 20 to 

60. The simulation results are summarized below. 

 

For all 3 types of statistics M, M* and M2P, the Monte Carlo resampling-based thresholds 

matched the empirical values reasonably well (Table 32).  More specifically, the empirical 
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threshold corresponding to a nominal level α was estimated by the 100(1-α)th quantile of the 

sample test statistics from 1000 data sets simulated under the null hypothesis.  The average 

Monte Carlo resampling-based threshold was defined as the mean of 1000 thresholds found by 

the Monte Carlo resampling approach.  We considered α levels of 0.1, 0.05, and 0.01 to examine 

the tail approximation by the proposed Monte Carlo approach.  The proximity between the 

empirical threshold and the Monte Carlo resampling-based threshold indicated that the proposed 

approach well approximated the distribution of the maximal score test statistics. 

 

Table 32: Empirical and Resampling-based Thresholds at the Nominal Level α for Standard 

Simulations 

      Sample   Empirical Resampling 

Extension 

(θ, β ,γ1, 

γ2)   Size   α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

3 

(0, 0, 0.78, 

0.16) sup |S| 600 θ 19.2718 20.9852 26.5965 

19.0641 

(0.6240) 

21.3356 

(0.7171) 

25.7821 

(1.0653) 

  

   

β 18.8528 21.2806 27.5332 

18.9047 

(0.6065) 

21.3670 

(0.7080) 

26.0719 

(1.0500) 

  

 

sup W 

 

θ 6.3836 7.748 11.3765 

6.1861 

(0.2480) 

7.6978 

(0.3313) 

11.0759 

(0.6677) 

  

   

β 5.3341 6.829 10.6373 

5.3102 

(0.2175) 

6.7268 

(0.2994) 

9.9088 

(0.6346) 

  

 

M2P 

  

9.8826 11.4541 16.395 

9.5649 

(0.3475) 

11.2865 

(0.4267) 

15.0340 

(0.7664) 

4 

(0, 0, 0.78, 

0.16) sup |S| 600 θ 19.4348 21.6797 26.0303 

19.0203 

(0.6707) 

21.2987 

(0.7822) 

25.7586 

(1.0815) 

  

   

β 19.4131 21.638 25.6503 

18.8775 

(0.6323) 

21.3055 

(0.7428) 

26.0737 

(1.1097) 

  

 

sup W 

 

θ 6.6696 8.045 11.3061 

6.1681 

(0.2735) 

7.6732 

(0.3645) 

11.0503 

(0.6996) 

  

   

β 5.6271 7.1691 10.8428 

5.3065 

(0.2308) 

6.7115 

(0.3095) 

9.9141 

(0.6436) 

    M2P     10.4484 12.2452 16.5111 

9.5642 

(0.3590) 

11.2823 

(0.4338) 

15.0219 

(0.7791) 

 

In the 3 situations studied under extension 3 in table 33 below, the median estimated change 

point � from 1000 replicated values was 0.2430, 0.2194, and 0.2285 in scenario 1, 2 and 3 

respectively, ranging from 0.2194 to 0.2430.  The median estimated change point from 1000 

values, for the 3 scenarios were 0.2566, 0.2132, and 0.2289.  Similarly the mean estimated 

distance cutoff c was 58.46, 47.39, and 50.34 in scenarios 1, 2 and 3 with distance cutoff values 

for 1000 replications ranging from 47.39 to 58.46.  The median estimated distance cutoff was 60, 

49.47, and 49.47.  The null was excluded in these estimates given above.   
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Likewise in table 33, 4 scenarios were studied for extension 4.  The mean estimated change 

points from 1000 values were 0.2197, 0.2195, 0.2155, and 0.2571 for scenarios 4, 5, 6 and 7 

respectively.  This ranges from 0.2155 to 0.2571 which captures the true value of 0.25.  The 

median estimated change points from 1000 values for the 4 scenarios were 0.2132, 0.2132, 

0.2053, and 0.2911. The mean distance of 1000 values in scenarios 4 through 7, were 38.96, 

46.61, 46.72, and 55.87 with the mean increasing as the values of 
 and � increased.  The range 

was 38.96 to 55.87 which captured the true value of 50 miles.  The median estimated cutoffs from 

1000 values were 38.95, 51.58, 51.58, and 55.79. 

 

Under the null hypothesis of no change points, the estimators of the change points were spread 

over the searched interval.  When the change points actually existed under the alternatives, the 

time and distance points yielding the maximal score statistics successfully captured the true 

change-points of 0.25 years post-transplant and 50 miles as indicated by the median values of 

their estimators. 

 
Table 33: Standard Simulation Results 

          Recovered Value from Simulations 

Extension Scenario (β, θ, γ1, γ2) Parameter 
True 

value 
Mean Median Minimum Maximum 

3 1 
(0.02, 0.08,0.78, 

0.16) 
τ 0.25 0.243 0.2566 0.15 0.3 

      c 50 58.46 60 41.05 60 

3 2 
(0.3, 0.3, 0.78, 

0.16) 
τ 0.25 0.2194 0.2132 0.15 0.3 

      c 50 47.39 49.47 20 60 

3 3 
(0.6, 0.6, 0.78, 

0.16) 
τ 0.25 0.2285 0.2289 0.15 0.3 

      c 50 50.34 49.47 20 60 

4 4 (0, 0.002, 1, 0.5) τ 0.25 0.2197 0.2132 0.15 0.3 

      c 50 38.96 38.95 20 60 

4 5 (0.008, 0, 1, 0.5) τ 0.25 0.2195 0.2132 0.15 0.3 

      c 50 46.61 51.58 20 60 

4 6 
(0.008, 0.002, 1, 

0.5) 
τ 0.25 0.2155 0.2053 0.15 0.3 

      c 50 46.72 51.58 20 60 

4 7 (0.15, 0.1,1,0.5) τ 0.25 0.2571 0.2921 0.15 0.3 

      c 50 55.87 55.79 49.47 60 
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Table 34: Type I Errors and Powers Using Resampling-based Thresholds for Standard 

Simulations 

 

 

3.9.2 Using Original Data Structure 

The purpose of the second simulation was to use the distance, HCV and HCC status from the 

original data set to generate the survival times using a Cox PH model.  The MC model in 

extensions three and four of this dissertation was used to see how well the parameter estimates 

could be recovered from this hybrid simulation using the real covariate values. 

 

The coefficient for HCV was preset to 0.78 and the coefficient for HCC was 0.16 taken from the 

Cox model estimated under the null hypothesis of no change points.  Beta and theta were set to 

      Sample Resampling sup |S| Resampling sup W 
Resampling sup 2 

Parameter Score 

Extension (θ, β ,γ1, γ2)    Size α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

3 
(0, 0, 0.78, 

0.16) 
θ 600 0.106 0.042 0.014 0.105 0.055 0.01       

    β   0.1 0.051 0.012 0.105 0.055 0.01 0.113 0.052  0.014  

3 
(0.3, 0.3, 

0.78, 0.16) 
θ 600 0.907 0.84 0.653 0.897 0.819 0.632   

      β   0.919 0.862 0.682 0.906 0.846 0.669 0.823 0.752 0.536 

3 
(0.3, 0, 0.78, 

0.16) 
θ 600 0.205 0.136 0.039 0.196 0.122 0.033 

  
  

    β   0.194 0.122 0.029 0.19 0.119 0.032 0.196 0.124 0.04 

3 
(0.4, 0.5, 

0.78, 0.16) 
θ 600 0.782 0.626 0.267 0.712 0.508 0.174 

  
  

    β   0.725 0.573 0.232 0.725 0.545 0.182 0.553 0.381 0.165 

3 
(0.6, 0.8, 

0.78, 0.16) 
θ 600 0.817 0.67 0.296 0.702 0.504 0.145 

  
  

      β   0.843 0.703 0.344 0.81 0.643 0.276 0.664 0.425 0.187 

4 
(0, 0, 0.78, 

0.16) 
θ 600 0.108 0.061 0.009 0.117 0.06 0.011   

      β   0.117 0.054 0.009 0.114 0.06 0.011 0.141 0.074 0.013 

4 
(0.008, 0.002, 

1, 0.5) 
θ 600 0.566 0.438 0.222 0.551 0.423 0.204 

  
  

    β   0.613 0.488 0.264 0.594 0.472 0.259 0.482 0.346 0.159 

4 
(0.008, 0, 1, 

0.5) 
θ 600 0.107 0.059 0.01 0.111 0.054 0.01 

  
  

    β   0.12 0.056 0.01 0.114 0.06 0.009 0.137 0.073 0.024 

4 
(0, 0.002, 1, 

0.5) 
θ 600 0.555 0.435 0.214 0.539 0.418 0.206 

  
  

      β   0.606 0.493 0.244 0.588 0.476 0.233 0.466 0.341 0.164 
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0.6 and 0.8 respectively for extension three, and 0.08 and 0.02 for extension four.  The change 

point in time � was set to 0.5 and the distance cutoff was 180.  1000 simulations with 1000 Monte 

Carlo repetitions were run on a 20x20 grid of time between 0.25 and 0.75 and distance of 150 to 

200.   

 

For extension three, the two parameter score function (M2P) was maximized and was statistically 

significant.  In the 4 scenarios in table 35, the mean estimated change point �, calculated from 

1000 estimated values, were recovered at 0.5448, 0.5479, 0.5291, 0.534.  These ranged from 

0.5291 to 0.5479, depending on the values of the parameters β and θ used, which captured the 

true value of 0.5.  The median estimated change point for the 4 scenarios were 0.5658 and 

0.5395 with 2 repetitions of each.  The mean distance cutoff c from 1000 estimated values was 

recovered at 177.2, 176.4, 180.2, and 177.5, which range between 176.4 and 180.2 which are 

relatively close to the true values of 180.  The median estimated change points from 1000 values 

were 178.99 (three times) and 186.8. 

 

Similarly for extension 4 in table 35 in scenarios 5 through 8, the mean estimated change point �, 

calculated from 1000 estimated values, were recovered at 0.5097, 0.4981, 0.4942, and 0.4774, 

ranging from 0.4774 to 0.5097 which captures the true value of 0.5.  The median estimated 

change points from 1000 values were 0.4868 and 0.4605.  The mean value for the distance cutoff 

c, estimated from 1000 replicated values for scenarios 5 through 8 were 165.1, 152.5 and 161.2 

in scenarios 5,6 and 8 where the true value was 180.  The median estimated distance cutoff from 

1000 values which were generated were 162.9, 163.2 and 159.2.  In scenario 7 a true value of 

100 miles was used which allowed for more patients with distances above this value and it is 

noted that the mean recovered value was 94.11 and the median was 92.11 which was closer to 

the true value of 100 miles.  Values for n*and nM were intentionally varied between 0.78 and 0.16 

for one option, and 1 and 0.5 for the second option as seen in table 35 below. 
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Table 35: Simulations Resembling LT Data 

          Recovered Value from Simulations 

Extension Scenario (β, θ, γ1, γ2) Parameter 
True 

value 
Mean Median Minimum Maximum 

3 1 (0.5, 0.7, 0.78, 0.16) τ 0.5 0.5448 0.5658 0.25 0.75 

      c 180 177.2 178.9 150 200 

3 2 (0, 0.8, 0.78, 0.16) τ 0.5 0.5479 0.5658 0.25 0.75 

      c 180 176.4 178.9 150 200 

3 3 (0.6, 0, 0.78, 0.16) τ 0.5 0.5291 0.5395 0.25 0.75 

      c 180 180.2 186.8 150 200 

3 4 (0.6, 0.8, 0.78, 0.16) τ 0.5 0.534 0.5395 0.25 0.75 

      c 180 177.5 178.9 150 200 

4 5 (0, 0.02, 1, 0.5) τ 0.5 0.5097 0.4868 0.25 0.75 

      c 180 165.1 162.9 150 185 

4 6 (0.008, 0.002,0.78,0.16) τ 0.5 0.4981 0.4868 0.25 0.75 

      c 180 152.5 163.2 100 200 

4 7 (0.001, 0.004,1,0.5) τ 0.5 0.4942 0.4868 0.25 0.75 

      c 100 94.11 92.11 50 150 

4 8 (0.08, 0.02,0.78,0.16) τ 0.5 0.4774 0.4605 0.25 0.75 

      c 180 161.2 159.2 150 185 

 

The LT data-based simulation produced rather poor results compared to the standard simulation 

with respect to distance in the fourth extension, probably due to the small number of patients 

living at longer distances. 

 

For all 3 types of statistics M, M* and M2p, the Monte Carlo resampling-based thresholds did not 

match the empirical values well (Table 36).  M produced the best agreement, M* was rather poor 

and M2P did not perform well perhaps because of the small number of patients living at longer 

distances.  I considered α level of 0.1, 0.05, and 0.01 to examine the tail approximation by the 

proposed Monte Carlo approach.  The reasonable proximity between the empirical threshold and 

the Monte Carlo resampling-based threshold indicated that the proposed approach well 

approximated the distribution of the maximal score test statistics. 
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Table 36: Empirical and Resampling-based Thresholds at the Nominal Level α for Simulations 

Resembling the LT Data 

      Sample   Empirical Resampling 

Approach (θ, β ,γ1, γ2)   Size   α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

3 
(0, 0, 0.78, 

0.16) 
sup |S| 821 θ 5.319 5.9912 7.4405 

4.9572 

(0.6752) 

5.6746 

(0.7627) 

7.0773 

(0.9430) 

  
      

β 5.5346 6.4579 8.2997 
5.3186 

(0.5623) 

6.1400 

(0.6482) 

7.7493 

(0.8381) 

  sup W θ 8.2162 10.945 16.834 
5.7283 

(0.5024) 

7.1647 

(0.5579) 

10.4095 

(0.8227) 

  

      
β 6.873 8.485 11.729 

5.0819 

(0.2782) 

6.4699 

(0.3354) 

9.5737 

(0.6331) 

  M2P 20.9984 22.933 25.404 
8.3956 

(0.5691) 

10.0184 

(0.6250) 

13.5376 

(0.8878) 

4 
(0, 0, 0.78, 

0.16) 
sup |S| 821 θ 327.139 394.15 630.12 

307.0252 

(147.2931) 

361.5709 

(174.2347) 

468.0873 

(226.0252) 

  β 338.818 410.84 596.79 
334.9368 

(136.9262) 

397.7352 

(162.2611) 

519.7167 

(212.2840) 

  
  

sup W 
  

θ 5.5208 6.6549 8.8947 
3.8259 

(0.5114) 

5.1094 

(0.5965) 

8.1263 

(0.8526) 

  
      

β 4.5681 5.332 8.3525 
3.3507 

(0.2589) 

4.5755 

(0.3322) 

7.5003 

(0.6697) 

 
 M2P  

 13.031 13.7843 14.8645 
6.7186 

(0.6905) 

8.2969 

(0.7559) 

11.7940 

(1.0121) 

 

Under the null hypothesis of no change points, the estimators of the change points were spread 

over the searched interval.  When the change points actually existed under the alternatives, the 

time and distance points yielding the maximal score statistics successfully captured the true 

change-points of 0.5 years post-transplant and 180 miles. 

 

Although the methodology was successful in recovering the parameter values used to generate 

this data, the simulations using standard distributions produced better results than those 

resembling the LT data.  I believe this is due to the small number of patients who lived beyond the 

180 mile cutoff (n=19). 
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Table 37: Type I Errors and Powers Using Resampling-based Thresholds for Simulations 
Resembling the LT Data 
 

      

Sampl

e Resampling sup |S| Resampling sup W Resampling M2P 

Ext (θ, β ,γ1, γ2)   Size 

α=0.1

0 

α=0.0

5 

α=0.0

1 

α=0.1

0 

α=0.0

5 

α=0.0

1 α=0.10 α=0.05 α=0.01 

3 (0, 0, 0.78, 0.16) θ 821 0.146 0.068 0.02 0.256 0.146 0.05 

  

  

  

 

β 

 

0.116 0.057 0.017 0.201 0.114 0.022 0.609 0.497 0.351 

3 

(0, 0.6, 0.78, 

0.16) θ 821 0.214 0.113 0.019 0.168 0.065 0.011 

  

  

  

 

β 

 

0.255 0.141 0.026 0.224 0.109 0.015 0.4 0.248 0.149 

3 

(0.7, 0.5, 0.78, 

0.16) θ 821 0.690 0.49 0.145 0.531 0.330 0.068    

  β  0.683 0.515 0.184 0.638 0.439 0.125 0.583 0.359 0.201 

3 

(0.8, 0, 0.78, 

0.16) θ 821 0.356 0.202 0.029 0.241 0.098 0.007 

  

  

  

 

β 

 

0.311 0.154 0.027 0.251 0.116 0.013 0.585 0.434 0.326 

3 

(0.8, 0.6, 0.78, 

0.16) θ 821 0.817 0.67 0.296 0.702 0.504 0.145 

  

  

  

 

β 

 

0.843 0.703 0.344 0.81 0.643 0.276 0.664 0.425 0.187 

4 (0, 0, 0.78, 0.16) θ 821 0.175 0.105 0.029 0.21 0.105 0.017 

  

  

  

 

β 

 

0.156 0.093 0.022 0.202 0.085 0.018 0.419 0.305 0.141 

4 

(0, 0.08, 0.78, 

0.16) θ 821 0.326 0.18 0.018 0.215 0.092 0.008 

  

  

  

 

β 

 

1 0.993 0.143 1 0.98 0.074 0.747 0.415 0.046 

4 

(0.02, 0, 0.78, 

0.16) θ 821 0.53 0.142 0.002 0.125 0.029 0.002 

  

  

  

 

β 

 

0.53 0.149 0.002 0.473 0.093 0.001 0.344 0.264 0.126 

4 

(0.4, 0.6, 0.78, 

0.16) θ 821 0.5 0.340 0.090 0.373 0.198 0.029    

  β  0.507 0.352 0.111 0.466 0.287 0.071 0.508 0.331 0.201 

4 

(0.001, 

0.004,1,0.5) θ 821 0.433 0.274 0.063 0.357 0.198 0.033    

  β  0.408 0.263 0.072 0.388 0.229 0.047 0.325 0.191 0.090 

4 

(0.08, 0.02, 

0.78, 0.16) θ 821 0.42 0.249 0.039 0.311 0.15 0.007 

  

  

    β   1 0.995 0.224 1 0.992 0.122 0.838 0.526 0.075 

 

In future studies with more patients living beyond the critical cutoff point, this will no longer be an 

issue and the two types of simulations will produce comparable results. 

 

3.10 Varying Grid Size 

Next we explored the grid size to see if there was any impact on the power and we found that 

there was none. 
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Table 38: Grid Size 

    Sample Resampling sup |S| Resampling sup W 

Resampling sup 2 

Parameter Score 

Grid size   Size α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

10 θ 600 0.9 0.85 0.647 0.888 0.838 0.621   

  β   0.919 0.868 0.705 0.912 0.857 0.685 0.845 0.747 0.538 

20 θ 600 0.906 0.835 0.655 0.890 0.822 0.643   

  β   0.923 0.870 0.699 0.916 0.853 0.688 0.819 0.735 0.538 

30 θ 600 0.913 0.855 0.667 0.9 0.838 0.655     

  β    0.931 0.883 0.685   0.923 0.868 0.67   0.839 0.75  0.537  τ � 0.251, c � 50, β � 0.3, θ � 0.3, γ* � 1, γM � 0.5 

 

The grid size did not impact the power and this was demonstrated using various grid sizes 

(10x10, 20x20 and 30x30) while keeping the parameters under the alternative constant as seen 

in table 37.  
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Chapter Four 

Conclusion 

 

4.1 Summary of Results 

My study has demonstrated using extensive methodologies, that those patients who lived outside 

of the 180 mile radius from TGH had a higher mortality rate during the first 5 years post-

transplant.  Using the AIC/ML approach applied to repeated Cox PH models, calculated for every 

possible distance cutoff point (from 1 to 400 miles); it was established that 180 miles was where 

the AIC was minimized.  This corresponded to a driving distance of approximately three hours.  It 

was worth investigating further with other models to confirm the effect of distance on survival 

post-transplant.   

 

KM curves revealed higher mortality beyond 180 miles at five years post-transplant.  Next, Cox 

PH and AFT models adjusted for HCV and HCC, confirmed a distance effect on survival at 180 

miles. LR at one year post-transplant confirmed that 180 miles was also a significant distance 

cutoff.  There are limitations with LR, which discards valuable information by ignoring the length 

of patient survival and reducing outcomes to a dichotomous variable at a particular time point. 

Models beyond one year post-transplant were calculated on a reduced dataset due to extensive 

censoring. Therefore, greater emphasis was put on the findings of the Cox PH and AFT models.  

 

The reason for adjusting for both HCV and HCC was that these diseases cause a higher mortality 

due to disease recurrence.  Patients with HCV and HCC have worse survival post-transplant 

which was evident in this study. The effect of distance at 180 miles was more pronounced in 

patients with HCV (HR of 3.72 for 434 HCV patients vs. 2.68 for total 821 patients) and even 
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stronger in patients with HCC (HR of 5.24 for 134 HCC patients). 98 (12%) patients had both 

HCV and HCC, as HCV often precedes HCC in liver disease progression. 

 

In this dissertation, I extended current statistical methods for the use of Monte Carlo to establish a 

p-value for the change point in the hazard function and incorporated both a change point in time 

and a change point due to a continuous variable, in this case distance.  In this dataset of LT 

recipients, the new model was applied to simultaneously dichotomize distance and establish a 

point in time where there was a change in the hazard function.   

 

Using the approach proposed by Liu et al. (2008), the non-normalized score function pointed to a 

change point at 3.622 years post LT but failed to reach statistical significance (p-value=0.566).  

The normalized score pointed to a change point at 4.186 years post LT but failed to yield 

statistical significance (p-value=0.235). 

 

My first extension used distance dichotomized at 180 miles and allowed one to drop β, indicating 

that there was no throughout distance effect.  With this model, the distance effect was only 

present prior to a specific point in time which was established at 3.622 years post-transplant, with 

a hazard ratio of 0.011, indicating that the hazard of death was lower for those patients living 

within 180 miles in the first 3.6 years post-transplant.  Neither the non-normalized score function 

nor the normalized score function reached statistical significance with p-values 0.573 and 0.543 

respectively. 

 

My second extension enabled reversal of the inequality sign to allow for an additional effect of 

distance dichotomized at 180 miles, on the hazard beyond a certain time point which was more 

intuitive for this data.  This was found to be 3.663 years post-transplant but failed to reach 

statistical significance for both the non-normalized and normalized score function with p-values 

0.789 and 0.642 respectively.   
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With the third extension I was able to allow the data to determine the best cutoff for distance while 

simultaneously detecting the change point in the hazard function.  This was done by maximizing 

the log-likelihood over six parameters �, ", 
, �, n*, and nM using the Nelder-Mead, BFGS and 

SANN optimization methods.  The various methods were in close agreement over the distance 

cutoff at 180 miles and a change point in the hazard between 3.5 and 4 years post-transplant 

depending on the optimization method used.  Using the Monte Carlo approach with a fine grid of 

100x100, the change point was established at 2.455 years post LT and the distance cutoff was at 

192.727 miles (p-value 0.146). 

 

The fourth approach allowed for an incremental addition to the hazard beyond a mileage cutoff 

point found at around 180 miles.  This implied that for every additional mile beyond 180, there 

was an incremental impact on survival.  The change point in the hazard function was between 3.6 

and 4 years post-transplant.  Various different initial values were used in the optimization for 

extensions three and four but the distance effect remained stable and close to 180 miles, 

confirming what the previous models found. Using the Monte Carlo approach with a fine grid of 

100x100, the change point was established at 3.727 years post LT and the distance cutoff was at 

192.727 miles (p-value=0.161). 

 

The models studied were consistent in determining that the distance cutoff in survival was 180 

miles, although some failed to reach statistical significance.  As explained in the results section, I 

explored various other distance cutoffs within each method and none reached the significance 

level of the 180 mile cutoff.  Extensions three and four in the MC approach provided a novel 

method to determine the distance cutoff. 

 

The best model for this data was the third approach  

��
; �,  �� �  ���
� exp�?
 �  ���
 � ��C��� ! "� � #$��
�� 
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 which dichotomized distance Z at a point c and then estimated the change points c and �.  This 

model pointed to a distance effect beyond 192.727 miles with a change point in the hazard due to 

this, after 2.455 years post-transplant. 

 

Extensive simulations using both standard simulation techniques and a hybrid simulation 

resembling the LT data, proved that these new approaches work for dichotomizing a continuous 

variable and finding a point beyond which there was an incremental effect from this variable.  

Various values of 
 and � were used and the median of the recovered values for � and c, were 

very close to the true values. 

 

4.2 This Study in Context 

Studies in the past have been significantly smaller and conducted survival analysis using a small 

sample size of 66 LT patients with very few of these at longer distances (Firozvi et al., 2008). 

That study also calculated survival at one year post-transplant, a time period too short to evaluate 

the multiple difficulties that the patients may encounter in their follow-up course.  These difficulties 

include, but are not limited to rejections, infections, HCV or HCC recurrence, medication 

compliance, and other complications of LT.   

 

My study was more comprehensive since I had 821 patients, over the span of 16 years, at longer 

distance, and with a follow-up of up to 5 years after LT. I excluded patients who had relocated 

temporarily to be closer to the LT center for purposes of receiving a transplant so this significant 

bias present in other studies was eliminated. These patients had a transplant center or specialist 

caring for them near their original residence so TGH was not solely responsible for their follow-up 

care, and their inclusion would have biased the study.  I decided to focus on patients within the 

state of Florida, where driving distances can be as long as 7 hours for those patients driving from 

the panhandle.  Those with acute liver failure were also excluded, as they had a high early 

mortality and a different set of circumstances regarding access to transplant centers and 

compliance. This methodology was not described in other studies (Firozvi et al., 2008).  Also 



98 
 

excluded were those with early deaths during their LT hospitalization, as they were not impacted 

by distance, travel time, or post-transplant care. Furthermore, adjustment was made for important 

covariates, such as for the presence of HCV and HCC which are diseases most likely to recur. I 

made a conscious effort to eliminate bias, which I believe has strengthened this study.  

 

Using this unique and extensive methodology, my study was able to detect a distance effect on 

post-transplant survival beyond 180 miles which other studies were previously unable to find.  

The MC approach provided additional information that there was a change point in the hazard 

with an additional distance effect after 3.6 years post-transplant, a factor that had not been 

studied before in this patient population.  The Nelder-Mead approximation, a variable metric 

algorithm (BFGS), and a simulated annealing algorithm (SANN) were used to simultaneously 

estimate �, ", 
, �, n*, and nM. This was necessary since the log-likelihood was discontinuous at � 

and c, and therefore not differentiable. 

 

4.3 Contribution 

This is the first study to show that the patient’s distance from the transplant center can affect 

survival after the LT. My study is more comprehensive, because it included a large patient pool 

over the span of 16 years, and the use of multiple statistical models and approximation methods 

to confirm the findings.  I utilized AIC, Kaplan Meier, Cox PH, Accelerated Failure Time models, 

Logistic Regression and a Monte Carlo approach to change point detection.  

 

The Monte Carlo approach to change point detection and continuous variable dichotomization 

developed here is applicable to dichotomizing any continuous variable in multiple therapeutic 

areas.  This is a new approach to change point detection that had not been in use before.  My 

fourth approach also allows for an incremental effect beyond a certain cutoff point which is a 

novel approach. 
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My study adds to the existing literature and clarifies the role of distance on post-transplant 

survival for those undergoing LT, a topic somewhat controversial, tightly interwoven to concepts 

of liver allocation, transplant centers and designations of centers of excellence, post-transplant 

care, and overall utility of transplants in selected populations. 

 

4.4 Findings 

This dissertation is the first of its kind to study the effect of distance five years post LT, since 

previous papers looked at shorter time periods.  It is also the first study to consider a change 

point in the hazard function due to distance and to demonstrate such a data driven approach to 

dichotomizing distance using the MC approach. 

 

The findings here indicated that travelling longer distances was detrimental to patient survival 

which makes a strong argument against fewer but larger transplant centers.  Studies in the past 

conducted survival analysis using a small sample sizes (66 patients) with very few of these at 

longer distances (Firozvi et al., 2008) and followed for a shorter period of time. This study was 

more comprehensive in that there were a total of 821 patients over the span of 16 years, at longer 

distance, and with a follow-up of five years after LT.  As the MC approach indicated there is a 

detrimental effect due to distance beyond 180 miles, and this effect is stronger after 3.6 years 

post-transplant.  Other studies would have missed this since they did not follow patients that long.  

I recognize that this data would carry more weight if it had a more even distribution of distant 

patients but the geography of Florida is such that most of the population is concentrated in the 

larger cities. Given that Tampa Bay Area is considered a large metropolitan region with many 

nearby suburban and rural areas, 180 miles does approximate to 3 hours of driving. For other LT 

centers that are located in urban areas, this may not be the case.  

 

Minimizing the AIC as previously described, lead to a distance cutoff of 180 miles.  Using Cox PH 

and AFT, after adjusting for HCV and HCC, I found that patients living beyond 180 miles from the 

LT center had worse survival in a time period of five years post LT.  LR at one year post LT also 
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revealed that 180 miles was a significant distance cutoff.  HCV and HCC impacted survival post 

LT and were clearly noticeable in this study.  Patients living beyond 180 miles had significantly 

worse survival. This is crucial information because the medical community can monitor this 

subgroup more aggressively to improve survival in the future.  In the case of patients with HCV, 

the effect of distance on survival post LT appeared to be worse. 

 

There was clearly a prejudicious effect of distance on survival which was not previously confirmed 

on post LT patients.  When dichotomizing distance at 180 miles, those living further had a 

significant disadvantage in survival (Log-Rank test statistic (p-value=0.0049), Wilcoxon (p-

value=0.0077) and the Likelihood Ratio Statistic (p-values=0.0154).  Logistic Regression 1 year 

post LT confirmed that 180 (p-value=0.0292) was significant.  This is the first study to 

demonstrate that the patient’s distance from a LT center can affect survival post LT. 

 

The five methods studied (KM, Cox PH, AFT, LR, and MC approach) were consistent in 

determining that the cutoff in survival was 180 miles, all of which were statistically significant.  I 

explored various other distance cutoffs within each method and none reached the significance 

level of the 180 mile cutoff.  

 

To limit biases, I excluded patients who had relocated temporarily to be closer to the LT center.  

This would invalidate any study of the effect of distance since these patients get transferred back 

to their original institutions.  Patients with multiple organ transplants, acute liver failure, and death 

on the same date as surgery were also excluded, as they had a different course of recovery.  

Patients who died in the first 30 days (n=22) post LT could also be excluded since they did not 

have a sufficiently long follow-up, and hence may not be affected much by traveling distance.  

Therefore, I also reran the models excluding patients with early death, and the hazard ratio 

increased from 2.68 to 3.15 because of the fact that all 22 of these patients lived within 180 miles 

of the LT center. This implied that even though patients who lived closer had higher early 
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mortality, including them did not change the finding that distant patients had higher mortality, and 

excluding them actually further supports my hypothesis. 

 

4.5 Implication of Findings in Public Health 

This research is unique because it required substantial modification of standard methods in 

survival analysis to incorporate dichotomization and the presence of change points in the hazard 

function due to distance.  I extended and improved upon the Monte Carlo method for change 

point detection introduced by Liu et al (2008) to accommodate both a change point in the hazard 

function due to distance at a point in time, and the dichotomization of distance (a continuous 

variable) with a potential incremental effect.  This recently developed method was not yet in 

common use and described only in a journal article in Statistics in Medicine in 2008, yet I 

extended it further to accommodate this dataset and the hypothesis that I was trying to prove. A 

more complicated null hypothesis was employed than that of Liu et al (2008), to simultaneously 

dichotomize distance at a point c and locate the time τ such that an enhanced distance effect is 

observed for times greater than τ  using a Monte Carlo (MC) approach.  The MC approach for 

change point detection that was developed in my dissertation is valuable in multiple scenarios 

since it is applicable for dichotomizing other biomarkers to predict survival or time to 

recurrence/graft failure in several other therapeutic areas apart from liver transplants. 

 

By showing that patients at a longer distance exhibit poor survival, one can suggest that patients 

should be transplanted at the nearest transplant center. Distance also plays a role in how organs 

could be distributed.  Indicating that results were worse at long distances, policy makers could 

argue that allocation could be improved with multiple smaller LT centers as opposed to fewer 

larger ones.  It is also beneficial for health insurance companies to recognize that travelling a 

longer distance hinders survival so patients should be encouraged to seek treatment at the 

nearest LT center regardless of insurance-hospital contracts.  From a patient perspective, 

knowing that distance is a major obstacle to longer survival post-transplant could prompt them to 

move closer to the center. 
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To conclude, by using a larger pool of patients and more extensive methodology, I was able to 

give more strength to this study compared to previous ones found in the literature.  Methodology 

that involved application of AIC to Cox PH and MC to establish the presence of change points in 

the hazard had very recently been developed and has been extended further here.  The MC 

method that I developed was specially adapted to fit the needs of this dataset, specifically to 

simultaneously estimate the dichotomization point for distance and the change point in the hazard 

function, which makes this study unique.  My new methodology is valuable in that it is the first of 

its kind to simultaneously dichotomize a continuous variable, in this case distance, and establish 

a change point in the hazard function attributed to this variable.  Furthermore in the fourth 

extension, the model allows for an incremental effect of distance beyond a certain cutoff point 

which was previously not possible to model and obtain the statistical significance for this term.  

Extensive simulation studies (in chapter 3) illustrate the value of this method.  This methodology 

has numerous applications in a countless therapeutic areas involving a vast array of possible 

biomarkers.  

 

4.6 Credibility  

Bias was minimized by ensuring that both study groups had similar mean age, gender, and race 

distribution.   However, I found that mean MELD scores were significantly higher for patients who 

lived closer, even though they had lower mortality post LT.  High MELD scores (≥21) have been 

an independent predictor of increased mortality (Heuman et al., 2004). This finding was of interest 

because it implied that even though patients who lived closer had markers of increased mortality 

prior to LT, they were not more likely to die after the LT.  This further supports that distance effect 

on mortality was very prominent in this study. However, the prevalence of HCC and HCV did not 

differ significantly between the two groups.  Again, even though distant patients had lower MELD 

scores indicating a better survival prognosis, they still had increased mortality after LT.  The 

models were adjusted for HCV and HCC in order to eliminate their impact on post LT survival.  I 

demonstrated that these covariates did affect survival post LT. The effect of distance was more 
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pronounced in patients with HCV (HR of 3.72 for 434 HCV patients vs. 2.5 for total 821 patients). 

The distance effect was even stronger in patients with HCC (5.24 for 134 HCC patients). 

 

Distance had a deleterious effect on patient survival post LT. This was shown using multiple 

different statistical modeling techniques with the MC approach which I developed, being new.  

Due to poor survival, allocation of resources may be needed for this distant population, especially 

those with HCV and HCC.  This study provides the data to support this need. Such resources 

could include but not limited to, post LT HCV therapy, comorbidities, satellite clinics, mobile units 

and in general availability of specialists in distant areas deserve further study. This research has 

indicated that patients living beyond 180 miles from the LT center needed to be followed closely, 

or timely follow-up at least attempted, so that their medical care is improved. Ideally, one would 

want strategic partners caring for those patients far away that also have an interest in their 

progress. If this care does not exist, then their health may suffer.  

 

4.7 Limitations 

This study was retrospective, single center and regional bias existed.  A larger prospective study 

would be beneficial in the future, where multiple additional covariates could be collected and 

adjusted for and plans for this are currently underway.  Power is the most important limitation in 

this study.  The small fraction of 19 patients living beyond 180 miles makes it impossible to find 

statistically significant differences in some of the more complex models. Work status information 

was incomplete in this retrospective data and therefore could not be studied.  The geography of 

Florida differs to other regions and the lack of mass transit in the state may have caused a 

different distance effect as compared to other centers.   

 

In this study patients who had relocated temporarily to be closer to the LT center were excluded, 

since their postoperative travel for follow-up would be altered.  The center of residential zip code 

area was used to approximate the patient’s distance to TGH’s LT center.  I recognize that zip 

code areas are established by the U.S. Postal Services and could change over the years to 
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expedite mail delivery.  This conceptual area tends to be larger in rural settings.  Thus, for the 19 

patients who lived over 180 miles from the TGH LT center, I have found that the center of their zip 

code areas was not a large mileage discrepancy from their physical addresses as zip codes in 

this area are relatively small.  TGH’s LT center is located in downtown Tampa, FL, and since 

Tampa is a part of a large metropolitan region, patients who lived within 180 miles should not 

have a large zip code area.  With this in mind I do not believe that using zip code instead of the 

full address has compromised my estimate of distance and I believe this study to be accurate. 

 

I did not examine potential difficulties that patients at long distances encountered, such as 

compliance with appointments and medications.  Difficulties that the patients may encounter in 

their follow-up course include, but are not limited to rejections, infections, HCV or HCC 

recurrence, medication compliance, and other complications following LT.  Even though my study 

attempted to minimize bias by adjusting for HCV and HCC, as well as making appropriate 

exclusions, there could be other confounding variables that could affect survival post LT, such as 

co-morbidities, BMI, perioperative parameters, insurance coverage, socioeconomic status, level 

of education, or availability of nearby specialists.  These factors have been debated regarding 

disparities in allocation and distribution which affects access and mortality prior to LT, but it is 

possible that these variables could also affect outcome post LT.  In the literature review in chapter 

one, I listed examples of these disparities and discussed them.   

 

4.8 Using Results to Solve Problems 

It was hypothesized that longer distance between the patient’s residence and the LT center 

results in worse outcome post LT.  Since this hypothesis was proven to hold true, LT centers 

should make an effort to provide additional resources, such as finding temporary housing closer 

to the LT center, scheduling follow-up visits and tests on the same day, offering blood tests in 

local laboratory centers, fostering more frequent communication, recommending nearby 

specialists, or even providing satellite clinics.  
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Possible explanation for poor survival in the distant group, which were not studied here but will be 

considered in future research, included the inconvenience of travelling a longer distance for 

follow-up, the expense incurred by the patient when having to travel so far, transportation issues 

since mass transit and railroad systems are practically non-existent in Florida, fewer follow-up 

visits as it is suspected that those living further away were more likely to cancel, and the lack of 

primary providers or specialists in the patient’s area. 

 

It is evident that patients living more than 180 miles from the liver transplant center may need to 

be followed closely.  If post LT coordinators are aware of the distance effect they can follow those 

patients more aggressively to ensure that they receive the necessary follow-up care to maintain a 

healthy graft. 

 

Health insurance companies should be aware that distance hinders survival, so patients can be 

encouraged to seek treatment at the nearest LT center.  This is not always done and due to 

insurance contracts some patients are forced to drive long distances to receive LT and follow-up 

treatment. 

 

4.9 Future Research 

There is a fundamental gap in understanding which socioeconomic factors affect long term 

survival of LT.  LT is the only therapy currently available for patients with end-stage liver disease.  

Approximately 4,000 liver transplants are done yearly, but waiting lists are lengthening and a 

shortage of organs has caused an increase in deaths among patients waiting for LT. After LT, the 

survival rate appears to be lower for African-Americans than for Caucasians.  Continued 

existence of this gap poses an increasingly difficult problem in the LT community as allocation of 

organs with limited supply becomes difficult to establish.   The long term goal is to better 

understand how socioeconomic factors affect access to LT and survival post LT.  I plan to design 

a Socioeconomic Predictive Model to predict survival post LT based on socioeconomic and 

clinical factors with both a retrospective and a prospective component. 
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I intend to further refine this study, by adding more patients to the dataset, hopefully having a 

greater distribution of patients outside of 180 miles, adjusting for more confounding variables, 

obtaining multicenter and multiregional data (discussions with UNC are underway), and by 

acquiring the necessary software to enable using the entire physical residential address as 

opposed to just the zip code. 

 

By acquiring a larger sample size, I can randomly divide the data into two groups and carry out 

the testing procedure and estimation separately on the two independent subsets.  Given that I 

had 821 patients with 19 living beyond 180 miles this was not possible here. 

 

Another topic of interest to me is the association between the economic recession and the distant 

patients’ outcomes, socioeconomic variables interacting with distance and other factors not 

studied here such as compliance, difficulty maintaining appointments, difficulty maintaining HCV 

treatment regimens, and lack of specialty providers. 

 

Simulation studies would aid in establishing the properties of using the AIC criterion applied to 

repeated Cox PH models to dichotomize a continuous variable.  More covariates can be adjusted 

for than what was available here. 

 

The research group at TGH and I, are currently working together to study the effects of BMI on 

complications measured by the Clavien-Dino classification scale post LT.  The hypothesis is that 

higher BMI will lead to more severe post LT complications, shorter graft survival and patient 

survival.  In addition we have designed a prospective study to assess the quality of life of HCC 

patients undergoing LT. 

 

4.10 Conclusion 

My study has shown that patients who lived farther than 180 miles from a LT center had a higher 
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mortality after LT than those who lived closer. Therefore, LT centers should consider this 

information during initial evaluation of patients and provide additional resources to assist these 

patients, especially those with HCV. This research has indicated that patients living more than 

180 miles from the transplant center may need to be followed closely, so that their medical care is 

improved. Ideally, one would want strategic partners caring for those patients far away that also 

have an interest in their progress. If this care does not exist, outcomes will be poor.   

 

It has also inspired a variety of difficult questions: Should patients be transplanted at their nearest 

transplant center? Should distance play a role in how organs are distributed? Should insurance 

companies send patients to distant transplant centers of excellent quality when the outcome, in 

certain populations, is poor?  Should aggressive centers transplant difficult patients from far 

away? Should the trend be for fewer, larger centers? My study provides a partial answer to some 

of these questions. 
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Appendix A:  Standard Simulation for Extension 3 

remove(list=ls())  
 
#ginv function was taken from MASS library of Venables and Ripley 
ginv<- 
  function (X, tol = sqrt(.Machine$double.eps))  
  { 
    if (length(dim(X)) > 2L || !(is.numeric(X) || is.complex(X)))  
      stop("'X' must be a numeric or complex matrix") 
    if (!is.matrix(X))  
      X <- as.matrix(X) 
    Xsvd <- svd(X) 
    if (is.complex(X))  
      Xsvd$u <- Conj(Xsvd$u) 
    Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0) 
    if (all(Positive))  
      Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u)) 
    else if (!any(Positive))  
      array(0, dim(X)[2L:1L]) 
    else Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *  
                                                 t(Xsvd$u[, Positive, drop = FALSE])) 
  } 
 
mc.ext3<-function(TT,cen.ind,XX,dist,tau,cc,nrep,keep=FALSE) { 
  n<-nrow(XX) 
  np<-ncol(XX) 
  ntau<-length(tau) 
  ncc<-length(cc) 
   
  mod<-coxph(Surv(TT,cen.ind)~XX,method="breslow") 
  gamma<-mod$coeff 
   
  DD<-TT[cen.ind==1]  
  ndead<-length(DD) 
  d.ind<-(1:n)[cen.ind==1] 
  Dpos<-cbind(d.ind,1:ndead)   
   
  pp<-outer(TT,DD,">=")*exp(as.vector(XX%*%gamma)) 
  pp<-scale(pp,center=FALSE,scale=colSums(pp)) 
   
  S.obs<-array(0,dim=c(2,ntau,ncc)) 
   
  score<-array(0,dim=c(n,2,ntau,ncc)) 
  dimnames(score)<-list(NULL,c("theta","beta"),paste("tau",1:ntau,sep=""), 
                        paste("cc",1:ncc,sep="")) 
  V<-array(0,dim=c(2,ntau,ncc)) 
  Vinv<-array(0,dim=c(2,2,ntau,ncc)) 
   
  da<-c(n,ndead,np+2) 
  X.all<-array(0,dim=da) 
  for(i in 1:np)X.all[,,i+2]<-XX[,i] 
   
    for(i in 1:ntau)for(j in 1:ncc){ 
     
    X.all[,,1]<-outer(dist>cc[j],DD>=tau[i]) 
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    X.all[,,2]<-(dist>cc[j]) 
     
    Xbar0<-colSums(X.all*as.vector(pp)) 
    X.all<-sweep(X.all,2:3,Xbar0) 
     
    dM<- -pp 
    dM[Dpos]<-dM[Dpos]+1 
    raw.score<-rowSums(aperm(X.all*as.vector(dM),c(1,3,2)),dims=2) 
     
    S.obs[,i,j]<-colSums(raw.score[,1:2]) 
     
    B<-matrix(aperm(X.all*sqrt(as.vector(pp)),c(3,1,2)),da[3],da[1]*da[2]) 
    info<-B%*%t(B) 
     
    dI<-nrow(info) 
    I12<-info[1:2,3:dI] 
    I22<-info[3:dI,3:dI] 
     
    score[,,i,j]<-S<-raw.score[,1:2]-t(I12%*%solve(I22,t(raw.score[,3:dI]))) 
     
    
    tmp<-t(S)%*%S 
    V[,i,j]<-diag(tmp) 
    Vinv[,,i,j]<- if(is.matrix(B<-try(solve(tmp))))B else ginv(tmp) 
  } 
   
  score<-matrix(score,n,) 
  V<-matrix(V,2,) 
  Vinv<-array(Vinv,c(2,2,ntau*ncc)) 
   
  Mstar<-M<-array(0,c(nrep,2)) 
  M2p<-numeric(nrep) 
   
  if(keep)S.mc<-array(0,c(nrep,2,ntau,ncc)) 
   
  S.obs<-matrix(S.obs,2,) 
  M.obs<-c(max(abs(S.obs[1,])),max(abs(S.obs[2,]))) 
  W.obs<-S.obs^2/V 
  Mstar.obs<-c(max(W.obs[1,]),max(W.obs[2,])) 
  W2p.obs<-S.obs[1,]^2*Vinv[1,1,]+ 
    2*S.obs[1,]*S.obs[2,]*Vinv[1,2,]+S.obs[2,]^2*Vinv[2,2,] 
  tauvec<-rep(tau,ncc) 
  ccvec<-rep(cc,rep(ntau,ncc))  
  i<-which.max(W2p.obs) 
  M2p.obs<-W2p.obs[i] 
  tau.max<-tauvec[i]  
  cc.max<-ccvec[i] 
   
  
  for(i in 1:nrep){ 
    S<-matrix(rnorm(n)%*%score,2,) 
    M[i,]<-c(max(abs(S[1,])),max(abs(S[2,]))) 
    W<-S^2/V 
    Mstar[i,]<-c(max(W[1,]),max(W[2,])) 
    M2p[i]<-max(S[1,]^2*Vinv[1,1,]+2*S[1,]*S[2,]*Vinv[1,2,]+S[2,]^2*Vinv[2,2,]) 
    if(keep)S.mc[i,,,]<-as.vector(S) 
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  } 
   
   
  ans<-list(S.obs=array(S.obs,dim=c(2,ntau,ncc)), 
            W.obs=array(W.obs,dim=c(2,ntau,ncc)), 
            W2p.obs=array(W2p.obs,dim=c(ntau,ncc)), 
            tau.max=tau.max,cc.max=cc.max,             
            M.obs=M.obs,Mstar.obs=Mstar.obs,M2p.obs=M2p.obs, 
            p.M=pval(M.obs,M),p.Mstar=pval(Mstar.obs,Mstar), 
            p.M2p=pval(M2p.obs,M2p), 
            M.mc=M,Mstar.mc=Mstar,M2p.mc=M2p) 
   
  if(keep)ans<-c(ans,list(S.obs=array(S.obs,dim=c(2,ntau,ncc)),S.mc=S.mc)) 
   
  ans 
} 
 
pval<-function(x,xdist){ 
  
  rowMeans(t(xdist)>=x) 
} 
 
rchpt<-function(r1,r2,t){ 
  w<-rexp(length(r1)) 
  ifelse(w<r1*t,w/r1,t+(w-r1*t)/r2) 
} 
 
######################################################################### 
############ Simulation ################################################# 
######################################################################### 
 
library("survival") 
 
n<-600  
nrep<-1000 
 
nsim<-1000   
 
g1<-0.78  
g2<-0.16  
 
beta<-0.5  
theta<-0.4  
tau0<-.25 
cc0<-50 
ngrid=20 
tau<-seq(.15,.3,length=ngrid)  
cc<-seq(20,60,length=ngrid)  
 
 
int.tau0<-c(.15,.35)  
int.cc0<-c(40,60)  
 
inside<-function(x,int){(int[1]<=x)&(x<=int[2])} 
 
M<-Mstar<-p.M<-p.Mstar<-matrix(0,nsim,2) 
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tau.max<-cc.max<-M2p<-p.M2p<-numeric(nsim) 
 
alpha<-c(.10,.05,.01) 
 
nam.alpha<-as.character(alpha) 
nam.param<-c("theta","beta") 
 
 
tau.max<-cc.max<-M2p<-p.M2p<-numeric(nsim) 
 
M<-matrix(0,nsim,2) 
colnames(M)<-nam.param 
Mstar<-p.M<-p.Mstar<-M 
 
q.M.mc<-array(0,dim=c(nsim,2,length(alpha))) 
dimnames(q.M.mc)<-list(NULL,nam.param,nam.alpha) 
q.Mstar.mc<-q.M.mc 
 
q.M2p.mc<-matrix(0,nsim,length(alpha)) 
colnames(q.M2p.mc)<-nam.alpha 
 
 
num.dead<-num.dead.box<-numeric(nsim) 
 
for(i in 1:nsim){ 
  cat(i,"\n") 
  x1<-runif(n) 
  x2<-rexp(n) 
  dist<-100*runif(n) 
  z<-(dist>cc0)+0 
  lambda1<-exp(r1<-g1*x1+g2*x2+beta*z) 
  lambda2<-exp(r1+theta*z) 
  ss<-10*rchpt(lambda1,lambda2,tau0) 
  uu<-4*rexp(n) 
  tt<-pmin(ss,uu)   
  delta<-(ss<=uu)+0 
  xx<-cbind(x1,x2) 
  ans<-mc.ext3(tt,delta,xx,dist,tau,cc,nrep) 
  M[i,]<-ans$M.obs 
  Mstar[i,]<-ans$Mstar.obs 
  p.M[i,]<-ans$p.M 
  p.Mstar[i,]<-ans$p.Mstar 
  tau.max[i]<-ans$tau.max 
  cc.max[i]<-ans$cc.max 
  M2p[i]<-ans$M2p.obs 
  p.M2p[i]<-ans$p.M2p 
  q.M.mc[i,,]<-t(apply(ans$M.mc,2,quantile,probs=1-alpha)) 
  q.Mstar.mc[i,,]<-t(apply(ans$Mstar.mc,2,quantile,probs=1-alpha)) 
  q.M2p.mc[i,]<-quantile(ans$M2p.mc,probs=1-alpha) 
} 
 
 
Mall<-cbind(M,Mstar,p.M,p.Mstar,tau.max,cc.max,M2p,p.M2p) 
 
print(summary(Mall)) 
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print(apply(Mall,2,quantile,probs=seq(0,1,by=.1))) 
 
q.M<-t(apply(M,2,quantile,probs=1-alpha)) 
q.Mstar<-t(apply(Mstar,2,quantile,probs=1-alpha)) 
q.M2p<-quantile(M2p,probs=1-alpha) 
dimnames(q.M)<-dimnames(q.Mstar)<-list(nam.param,nam.alpha) 
names(q.M2p)<-nam.alpha 
 
pow<-function(p,a){colMeans(outer(p,a,"<"))} 
 
power.M<-t(apply(p.M,2,pow,alpha)) 
power.Mstar<-t(apply(p.Mstar,2,pow,alpha)) 
dimnames(power.M)<-dimnames(power.Mstar)<-list(nam.param,nam.alpha) 
power.M2p<-pow(p.M2p,alpha) 
names(power.M2p)<-nam.alpha 
 
mean.q.M.mc<-apply(q.M.mc,c(2,3),mean) 
sd.q.M.mc<-apply(q.M.mc,c(2,3),sd) 
mean.q.Mstar.mc<-apply(q.Mstar.mc,c(2,3),mean) 
sd.q.Mstar.mc<-apply(q.Mstar.mc,c(2,3),sd) 
mean.q.M2p.mc<-apply(q.M2p.mc,2,mean) 
sd.q.M2p.mc<-apply(q.M2p.mc,2,sd) 
 
 
OF<-mean(num.dead)/n 
LF<-mean(num.dead.box)/n 
 
 
q.M 
q.Mstar 
q.M2p 
 
 
mean.q.M.mc 
sd.q.M.mc 
mean.q.Mstar.mc 
sd.q.Mstar.mc 
mean.q.M2p.mc 
sd.q.M2p.mc 
 
 
power.M 
power.Mstar 
power.M2p 
 
 
OF 
LF  
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Appendix B:  Standard Simulation for Extension 4 

remove(list=ls())  
 
#ginv function taken from MASS library of Venables and Ripley 
ginv<- 
  function (X, tol = sqrt(.Machine$double.eps))  
  { 
    if (length(dim(X)) > 2L || !(is.numeric(X) || is.complex(X)))  
      stop("'X' must be a numeric or complex matrix") 
    if (!is.matrix(X))  
      X <- as.matrix(X) 
    Xsvd <- svd(X) 
    if (is.complex(X))  
      Xsvd$u <- Conj(Xsvd$u) 
    Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0) 
    if (all(Positive))  
      Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u)) 
    else if (!any(Positive))  
      array(0, dim(X)[2L:1L]) 
    else Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *  
                                                 t(Xsvd$u[, Positive, drop = FALSE])) 
  } 
 
mc.ext4<-function(TT,cen.ind,XX,dist,tau,cc,nrep,keep=FALSE) { 
   
   
  n<-nrow(XX) 
  np<-ncol(XX) 
  ntau<-length(tau) 
  ncc<-length(cc) 
   
  mod<-coxph(Surv(TT,cen.ind)~XX,method="breslow") 
  gamma<-mod$coeff 
   
  DD<-TT[cen.ind==1]  
  ndead<-length(DD) 
  d.ind<-(1:n)[cen.ind==1] 
  Dpos<-cbind(d.ind,1:ndead)   
   
  pp<-outer(TT,DD,">=")*exp(as.vector(XX%*%gamma)) 
  pp<-scale(pp,center=FALSE,scale=colSums(pp)) 
   
  S.obs<-array(0,dim=c(2,ntau,ncc)) 
   
  score<-array(0,dim=c(n,2,ntau,ncc)) 
  dimnames(score)<-list(NULL,c("theta","beta"),paste("tau",1:ntau,sep=""), 
                        paste("cc",1:ncc,sep="")) 
  V<-array(0,dim=c(2,ntau,ncc)) 
  Vinv<-array(0,dim=c(2,2,ntau,ncc)) 
   
  da<-c(n,ndead,np+2) 
  X.all<-array(0,dim=da) 
  for(i in 1:np)X.all[,,i+2]<-XX[,i] 
 
  for(i in 1:ntau)for(j in 1:ncc){ 
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    dmc<-pmax(dist-cc[j],0) 
    X.all[,,1]<-outer(dmc,DD>=tau[i]) 
    X.all[,,2]<-dmc 
     
    Xbar0<-colSums(X.all*as.vector(pp)) 
    X.all<-sweep(X.all,2:3,Xbar0) 
     
    dM<- -pp 
    dM[Dpos]<-dM[Dpos]+1 
    raw.score<-rowSums(aperm(X.all*as.vector(dM),c(1,3,2)),dims=2) 
     
    S.obs[,i,j]<-colSums(raw.score[,1:2]) 
     
    B<-matrix(aperm(X.all*sqrt(as.vector(pp)),c(3,1,2)),da[3],da[1]*da[2]) 
    info<-B%*%t(B) 
     
    dI<-nrow(info) 
    I12<-info[1:2,3:dI] 
    I22<-info[3:dI,3:dI] 
  
    score[,,i,j]<-S<-raw.score[,1:2]-t(I12%*%solve(I22,t(raw.score[,3:dI]))) 
     
   
    tmp<-t(S)%*%S 
    V[,i,j]<-diag(tmp) 
     Vinv[,,i,j]<- if(is.matrix(B<-try(solve(tmp))))B else ginv(tmp) 
  } 
   
  score<-matrix(score,n,) 
  V<-matrix(V,2,) 
  Vinv<-array(Vinv,c(2,2,ntau*ncc)) 
   
  Mstar<-M<-array(0,c(nrep,2)) 
  M2p<-numeric(nrep) 
   
  if(keep)S.mc<-array(0,c(nrep,2,ntau,ncc)) 
   
  S.obs<-matrix(S.obs,2,) 
  M.obs<-c(max(abs(S.obs[1,])),max(abs(S.obs[2,]))) 
  W.obs<-S.obs^2/V 
  Mstar.obs<-c(max(W.obs[1,]),max(W.obs[2,])) 
  W2p.obs<-S.obs[1,]^2*Vinv[1,1,]+ 
    2*S.obs[1,]*S.obs[2,]*Vinv[1,2,]+S.obs[2,]^2*Vinv[2,2,] 
  tauvec<-rep(tau,ncc) 
  ccvec<-rep(cc,rep(ntau,ncc))  
  i<-which.max(W2p.obs) 
  M2p.obs<-W2p.obs[i] 
  tau.max<-tauvec[i]  
  cc.max<-ccvec[i] 
   
  for(i in 1:nrep){ 
    S<-matrix(rnorm(n)%*%score,2,) 
    M[i,]<-c(max(abs(S[1,])),max(abs(S[2,]))) 
    W<-S^2/V 
    Mstar[i,]<-c(max(W[1,]),max(W[2,])) 
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    M2p[i]<-max(S[1,]^2*Vinv[1,1,]+2*S[1,]*S[2,]*Vinv[1,2,]+S[2,]^2*Vinv[2,2,]) 
    if(keep)S.mc[i,,,]<-as.vector(S) 
  } 
   
  ans<-list(S.obs=array(S.obs,dim=c(2,ntau,ncc)), 
            W.obs=array(W.obs,dim=c(2,ntau,ncc)), 
            W2p.obs=array(W2p.obs,dim=c(ntau,ncc)), 
            tau.max=tau.max,cc.max=cc.max,             
            M.obs=M.obs,Mstar.obs=Mstar.obs,M2p.obs=M2p.obs, 
            p.M=pval(M.obs,M),p.Mstar=pval(Mstar.obs,Mstar), 
            p.M2p=pval(M2p.obs,M2p), 
            M.mc=M,Mstar.mc=Mstar,M2p.mc=M2p) 
   
  if(keep)ans<-c(ans,list(S.obs=array(S.obs,dim=c(2,ntau,ncc)),S.mc=S.mc)) 
   
  ans 
} 
 
pval<-function(x,xdist){ 
  rowMeans(t(xdist)>=x) 
} 
 
rchpt<-function(r1,r2,t){ 
  w<-rexp(length(r1)) 
  ifelse(w<r1*t,w/r1,t+(w-r1*t)/r2) 
} 
 
######################################################################### 
############ Simulation ################################################# 
######################################################################### 
 
library("survival") 
 
n<-600  
nrep<-1000  
nsim<-1000   
 
g1<-1 
g2<-0.5 
beta<-0.008  
theta<-0.002  
tau0<-.25 
cc0<-50 
ngrid=20 
tau<-seq(.15,.3,length=ngrid)  
cc<-seq(20,60,length=ngrid)  
 
 
int.tau0<-c(.15,.35)  
int.cc0<-c(40,60)  
 
inside<-function(x,int){(int[1]<=x)&(x<=int[2])} 
 
M<-Mstar<-p.M<-p.Mstar<-matrix(0,nsim,2) 
tau.max<-cc.max<-M2p<-p.M2p<-numeric(nsim) 
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baseline<-list(u=c(.15,1.75,3.3),r=c(.15,.048,.018,.038)) 
 
L.rpwexp<-setup.rcox.with.chpt(lambda1,lambda2,tau0,baseline) 
 
alpha<-c(.10,.05,.01) 
 
 
nam.alpha<-as.character(alpha) 
nam.param<-c("theta","beta") 
 
tau.max<-cc.max<-M2p<-p.M2p<-numeric(nsim) 
 
M<-matrix(0,nsim,2) 
colnames(M)<-nam.param 
Mstar<-p.M<-p.Mstar<-M 
 
q.M.mc<-array(0,dim=c(nsim,2,length(alpha))) 
dimnames(q.M.mc)<-list(NULL,nam.param,nam.alpha) 
q.Mstar.mc<-q.M.mc 
 
q.M2p.mc<-matrix(0,nsim,length(alpha)) 
colnames(q.M2p.mc)<-nam.alpha 
 
 
num.dead<-num.dead.box<-numeric(nsim) 
 
for(i in 1:nsim){ 
  cat(i,"\n") 
  x1<-runif(n) 
  x2<-rexp(n) 
  dist<-100*runif(n) 
  z<-pmax((dist-cc0)+0,0)  
  lambda1<-exp(r1<-g1*x1+g2*x2+beta*z) 
  lambda2<-exp(r1+theta*z) 
  ss<-10*rchpt(lambda1,lambda2,tau0) 
  uu<-4*rexp(n) 
  tt<-pmin(ss,uu)   
  delta<-(ss<=uu)+0 
  xx<-cbind(x1,x2) 
  ans<-mc.ext4(tt,delta,xx,dist,tau,cc,nrep) 
  M[i,]<-ans$M.obs 
  Mstar[i,]<-ans$Mstar.obs 
  p.M[i,]<-ans$p.M 
  p.Mstar[i,]<-ans$p.Mstar 
  tau.max[i]<-ans$tau.max 
  cc.max[i]<-ans$cc.max 
  M2p[i]<-ans$M2p.obs 
  p.M2p[i]<-ans$p.M2p 
  q.M.mc[i,,]<-t(apply(ans$M.mc,2,quantile,probs=1-alpha)) 
  q.Mstar.mc[i,,]<-t(apply(ans$Mstar.mc,2,quantile,probs=1-alpha)) 
  q.M2p.mc[i,]<-quantile(ans$M2p.mc,probs=1-alpha) 
} 
 
Mall<-cbind(M,Mstar,p.M,p.Mstar,tau.max,cc.max,M2p,p.M2p) 
 
print(summary(Mall)) 
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print(apply(Mall,2,quantile,probs=seq(0,1,by=.1))) 
 
q.M<-t(apply(M,2,quantile,probs=1-alpha)) 
q.Mstar<-t(apply(Mstar,2,quantile,probs=1-alpha)) 
q.M2p<-quantile(M2p,probs=1-alpha) 
dimnames(q.M)<-dimnames(q.Mstar)<-list(nam.param,nam.alpha) 
names(q.M2p)<-nam.alpha 
 
pow<-function(p,a){colMeans(outer(p,a,"<"))} 
 
power.M<-t(apply(p.M,2,pow,alpha)) 
power.Mstar<-t(apply(p.Mstar,2,pow,alpha)) 
dimnames(power.M)<-dimnames(power.Mstar)<-list(nam.param,nam.alpha) 
power.M2p<-pow(p.M2p,alpha) 
names(power.M2p)<-nam.alpha 
 
mean.q.M.mc<-apply(q.M.mc,c(2,3),mean) 
sd.q.M.mc<-apply(q.M.mc,c(2,3),sd) 
mean.q.Mstar.mc<-apply(q.Mstar.mc,c(2,3),mean) 
sd.q.Mstar.mc<-apply(q.Mstar.mc,c(2,3),sd) 
mean.q.M2p.mc<-apply(q.M2p.mc,2,mean) 
sd.q.M2p.mc<-apply(q.M2p.mc,2,sd) 
 
 
OF<-mean(num.dead)/n 
LF<-mean(num.dead.box)/n 
 
 
q.M 
q.Mstar 
q.M2p 
 
mean.q.M.mc 
sd.q.M.mc 
mean.q.Mstar.mc 
sd.q.Mstar.mc 
mean.q.M2p.mc 
sd.q.M2p.mc 
 
power.M 
power.Mstar 
power.M2p 
 
OF 
LF 
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Appendix C: Numerical Optimization 

 
library(survival) 
 
mydata=read.csv("Jan16_R.csv",header=TRUE) 
liver=mydata[c(7,8,10,12,13,14,25)] 
 
dim(liver) 
names(liver) 
 
liver=liver[order(liver$surv5yr,-liver$censor5),] 
liver=liver[rowSums(is.na(liver))==0,] 
 
N=nrow(liver) 
 
cen.t=liver$surv5yr 
cen.ind=liver$censor5 
dist=liver$Distance_from_home 
hcv<-liver$hcv 
hcc<-liver$hcc 
cc0<-180 
zz<-(dist>cc0)+0 
 
mod<-coxph(Surv(cen.t,cen.ind)~zz+hcv+hcc) 
summary(mod) 
 
beta0<-mod$coef["zz"] 
gamma0<-mod$coeff[c("hcv","hcc")] 
tau0<-3.66 
theta0<-0 
 
# Specify initial values for parameters. 
x0<-c(tau0,cc0,theta0,beta0,gamma0)  
 
XX<-cbind(hcv,hcc) 
DD<-cen.t[cen.ind==1]  
nd<-length(DD)  
d.ind<-(1:N)[cen.ind==1] 
Dpos<-cbind(d.ind,1:nd)   
RR<-outer(cen.t,DD,">=")+0   
nx<-length(x0) 
 
# f computes the log-likelihood for Extension #3. 
f<-function(x) { 
   
  tau<-x[1] 
  cc<-x[2] 
  theta<-x[3] 
  beta<-x[4] 
  gamma<-x[5:nx] 
   
  AA<- as.vector(XX%*%gamma)+beta*(dist>cc)+theta*outer(dist>cc,DD>=tau) 
  sum(AA[Dpos]-log(colSums(RR*exp(AA)))) 
   
} 
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################################################################### 
 
parscale<-c(.5,20,.3,.3,.3,.3) 
control<-list(fnscale=-1,parscale=parscale) 
 
control.NM<-c(control,list(maxit=5000)) 
control.BFGS<-c(control,list(ndeps=c(.5,.5,rep(1e-03,4)),maxit=500)) 
control.SANN<-c(control,list(maxit=10000)) 
 
ans.NM<-optim(x0, f , method = "Nelder-Mead", control=control.NM) 
ans.BFGS<-optim(x0, f , method = "BFGS" , control=control.BFGS) 
ans.SANN<-optim(x0, f , method = "SANN" , control=control.SANN) 
 
ans.NM 
ans.BFGS 
ans.SANN 
 
# Different parameter estimates. 
rbind(x0,ans.NM$par,ans.BFGS$par,ans.SANN$par) 
 
# Improvements in log-likelihood relative to x0. 
c(ans.NM$value,ans.BFGS$value,ans.SANN$value)-f(x0) 
 
# Try random initial points. 
 
rt<-range(DD) 
nrep<-20 
param.est<-array(NA,c(nrep,3,length(x0))) 
 
for(i in 1:nrep){ 
  xran<-c(runif(1,rt[1],rt[2]),runif(1,0,250),runif(4,-2,2)) 
  param.est[i,1,]<-optim(xran, f , method = "Nelder-Mead", 
                         control=control.NM)$par 
  param.est[i,2,]<-optim(xran, f , method = "BFGS", 
                         control=control.BFGS)$par 
  param.est[i,3,]<-optim(xran, f , method = "SANN", 
                         control=control.SANN)$par 
} 
 
# Improvements in log-likelihood relative to x0. 
apply(param.est,c(1,2),f)-f(x0) 
 
############################################################## 
 
# My attempt Number 1 with different initial Values 
gamma1=c(0.8,0.16) 
x1=c(3,100,2,1,gamma1) 
 
ans.NM.1<-optim(x1, f , method = "Nelder-Mead", control=control.NM) 
ans.BFGS.1<-optim(x1, f , method = "BFGS" , control=control.BFGS) 
ans.SANN.1<-optim(x1, f , method = "SANN" , control=control.SANN) 
 
# Different parameter estimates. 
cbind(x1,ans.NM.1$par,ans.BFGS.1$par,ans.SANN.1$par) 
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# My attempt Number 2 with different Initial Values 
x2=c(4,200,1,0,gamma1) 
 
ans.NM.2<-optim(x2, f , method = "Nelder-Mead", control=control.NM) 
ans.BFGS.2<-optim(x2, f , method = "BFGS" , control=control.BFGS) 
ans.SANN.2<-optim(x2, f , method = "SANN" , control=control.SANN) 
 
# Different parameter estimates. 

cbind(x2,ans.NM.2$par,ans.BFGS.2$par,ans.SANN.2$par) 
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