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ABSTRACT
In the recent project BENCHOP – the BENCHmarking project in Option Pric-
ingwe found that Stochastic and Local Volatility problemswere particularly
challenging. Herewe continue the effort by introducing a set of benchmark
problems for this typeof problems. Eight differentmethods targeted for the
Stochastic Differential Equation (SDE) formulation and the Partial Differen-
tial Equation (PDE) formulation of the problem, as well as Fourier methods
making use of the characteristic function, were implemented to solve these
problems. Comparisons are made with respect to time to reach a certain
error level in the computed solution for the different methods. The imple-
mented Fourier method was superior to all others for the two problems
where it was implemented. Generally, methods targeting the PDE formu-
lation of the problem outperformed the methods for the SDE formulation.
Among the methods for the PDE formulation the ADI method stood out as
the best performing one.
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1. Introduction

The aim of the original BENCHOP project described in [34] was to provide researchers and prac-
titioners in finance with a set of common benchmark problems for comparisons between methods
and for evaluation of newmethods. A wide range of existing numerical methods for each benchmark
problem was implemented and the relative performance of the methods was compared. The prob-
lems were selected with respect to features that may be numerically challenging such as early exercise
properties, barriers, discrete dividends, local volatility, stochastic volatility, jump diffusion, and two
underlying assets.

In [34] we found that stochastic and local volatility problems were particularly challenging.
Hence, we here continue the effort to provide benchmark problems and performance compar-
isons between numerical methods at the research frontier for this type of problems. Stochastic and
local volatility models provide an alternative approach to jump-diffusion models, and have proven
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Table 1. List of methods used with abbreviations, marker symbol used in figures, references, and whether the MATLAB-
implementation makes use of parallellism.

Abbreviations Symbol Method References Parallellism

Methods for SDE formulation
MCA Monte Carlo simulation with control

and antithetic variables
[4,13,30] Yes

MLMC Multi-level Monte Carlo [12] No
SGBM Stochastic grid bundling method [10,22] Yes
mSABR The multi-step Monte Carlo simulation

of the SABR model
[24] Yes

Fourier method
FGL Fourier method with Gauss–Laguerre

quadrature
[1,5,6,14,23,25] No

Methods for PDE formulation
ADI Modified Craig–Sneyd alternating

direction implicit finite difference
method (θ = 1/3)

[17,20,21,36] No

RBFFD Radial basis function generated finite
differences

[3,11,28,29] Yes

RBFPUM Radial basis function partition of unity
methods

[28,31–33] No

effective in matching the rich asset price structure observed in derivatives markets. As is the case
for jump-diffusion models, the market is typically incomplete in stochastic volatility models (in
absence of assets that are directly traded on volatility risk), so additional assumptions are needed to
uniquely determine asset prices. In [19], for example, it is assumed that the volatility risk-premium
is proportional to the volatility level.

We present the benchmark problems with sufficient detail so that others can solve them in the
future. We also provide analytical solutions where such are available. Each problem is solved using
MATLAB implementations of a number of numerical methods, and error plots as a function of com-
putational time are provided. For details of the methods, we refer to the original papers, listed in
Table 1. The codes are not fully optimized, and the numerical results should not be interpreted
as competition scores. We rather see it as a general indication of their performance in terms of
obtained accuracy versus computational time that could be expected in the computing environment
under consideration. In order to facilitate future comparisons, MATLAB p-codes of the here pre-
sentedmethods for each benchmark problemwill be made available through the BENCHOPweb site
http://www.it.uu.se/research/scientific_computing/project/compfin/benchop.

The paper is outlined as follows. In Section 2we state the benchmark problemswhile the numerical
methods are briefly presented in Section 3. Section 4 is dedicated to the presentation of the numerical
results and finally in Section 5 we discuss the results. In Appendix 1 we present how the reference
values are computed for the different problems. Finally, in Appendix 2 we specify the contributions
from the authors of the paper.

2. Benchmark problems

2.1. Problem 1 – SABR stochastic-local volatilitymodel

The Stochastic Alpha Beta Rho (SABR) model [18] is an established Stochastic Differential Equation
(SDE) system which is often used for interest rates and FXmodelling in practice. A key feature of the
model is that it matches the observed dynamic behaviour of the volatility smile, namely that when
the price of the underlying decreases, the volatility smile shifts to lower prices, and vice versa. The
SABR model is based on a parametric local volatility component in terms of a model parameter, β .
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The formal definition of the SABR model reads

dFt = σtF
β
t dW

F
t ,

dσt = ασtdWσ
t ,

where Ft = St exp(r(T − t)) denotes the forward value of the underlying asset St , with r the interest
rate, S0 the spot price and T the contract’s final time. The quantity σt denotes the stochastic volatil-
ity, WF

t and Wσ
t are two correlated Brownian motions with constant correlation coefficient ρ (i.e.

WF
t Wσ

t = ρt). The free model parameters are α > 0 (the volatility of the volatility), 0 ≤ β ≤ 1 (the
elasticity) and ρ (the correlation coefficient). The corresponding Partial Differential Equation (PDE)
for the valuation of options is given by

∂u
∂t

+ 1
2
σ 2s2β

∂2u
∂s2

+ ραsβσ 2 ∂2u
∂σ∂s

+ 1
2
α2σ 2 ∂2u

∂σ 2 − ru = 0,

for s> 0, σ > 0 and 0 ≤ t < T.
Deliverables: The problem should be solved for a European call option with payoff max(S − K, 0) at
t=T, with three strikes

K = S0 exp(0.1 ×
√
T × δ),

δ = −1.0, 0.0, 1.0.

Parameter and problem specifications:

• Set I ([16]): T= 2, r= 0, S0 = 0.5, σ0 = 0.5, α = 0.4, β = 0.5 and ρ = 0.
• Set II ([7]): T= 10, r= 0, S0 = 0.07, σ0 = 0.4, α = 0.8, β = 0.5 and ρ = −0.6.

2.2. Problem 2 – quadratic local stochastic volatilitymodel

TheQuadratic Local Stochastic Volatility (QLSV)model, can be viewed as a generalization ofHeston’s
stochastic volatility model [19]. In the QLSVmodel, the square root term is multiplied by a quadratic
function in the underlying asset.When the function is a constant, Heston’s originalmodel is obtained.
The additional degrees of freedom provided by the quadratic function allows for improved volatility
surface calibration.

We use the formulation in, e.g. [26] and define the following SDE:

dSt = rSt dt + √
Vt f (St) dW1

t ,

dVt = κ(η − Vt) dt + σ
√
Vt dW2

t ,

with f (s) = 1
2αs

2 + βs + γ . The PDE for the valuation of options is then given by

∂u
∂t

+ 1
2 f (s)

2v
∂2u
∂s2

+ ρσ f (s)v
∂2u
∂s∂v

+ 1
2σ

2v
∂2u
∂v2

+ rs
∂u
∂s

+ κ(η − v)
∂u
∂v

− ru = 0,

for s> 0, v> 0 and 0 ≤ t < T.
We consider a case when the Feller condition, 2κη ≥ σ 2 is not satisfied (as is often the case in

practice). The Feller condition [9] ensures that the volatility process, Vt , remains strictly positive. If
the condition is violated, the process may reach the boundary Vt = 0. In this case, additional spec-
ification of the behaviour at the boundary is needed to ensure (weak) positivity, and the problem is
also numerically more challenging (see [8,27]).
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Deliverables: The problem should be solved for

• a European call option with payoff max(S − K, 0) and K = 100,
• a Double-no-touch option paying 1 if L < St < U (for all t) and 0 else with L= 50, U = 150,

and three spot values: (S0,V0) = (S0, 0.114) for S0 = 75, 100, 125.
Parameter and problem specifications: We consider

• a Heston model with α = 0, β = 1, γ = 0,
• a QLSV model with α = 0.02, β = 0, γ = 0.

For both models we use the parameter set (see [26]):

T = 1, r = 0, κ = 2.58, η = 0.043, σ = 1, ρ = −0.36.

2.3. Problem 3 – Heston–Hull–Whitemodel

TheHeston–Hull–White (HHW)model is a hybrid asset price model combining the Heston stochas-
tic volatility model, and Hull–White stochastic interest rate model, see e.g. [15,17]. With such an
approach the skew pattern for equity can be matched, while still allowing for stochastic interest rates.
We define the HHW SDE:

dSt = RtSt dt + √
Vt St dW1

t ,

dVt = κ(η − Vt) dt + σ1
√
Vt dW2

t ,

dRt = a(b(t) − Rt) dt + σ2 dW3
t ,

and the corresponding HHW PDE:

∂u
∂t

+ 1
2 s

2v
∂2u
∂s2

+ 1
2σ

2
1 v

∂2u
∂v2

+ 1
2σ

2
2
∂2u
∂r2

+ ρ12σ1sv
∂2u
∂s∂v

+ ρ13σ2s
√

v
∂2u
∂s∂r

+ ρ23σ1σ2
√

v
∂2u
∂v∂r

+ rs
∂u
∂s

+ κ(η − v)
∂u
∂v

+ a(b(t) − r)
∂u
∂r

− ru = 0,

for s> 0, v> 0, and 0 ≤ t < T. Again, we will consider a case when the Feller condition is violated,
see Section 2.2.
Deliverables: The problem should be solved for a European call option with payoff max(S − K, 0),
K = 100, and three spot values: (S0,V0,R0) = (S0, 0.04, 0.10) for S0 = 75, 100, 125.

Parameter and problem specifications: We use the parameter set (cf. [2,17]):

T = 10, κ = 0.5, η = 0.04, σ1 = 1, σ2 = 0.09, ρ12 = −0.9, ρ13 = 0,

ρ23 = 0, a = 0.08 and b(t) ≡ 0.10.

3. Numerical methods

In Table 1 we display all the methods that we have used. The methods are developed from the SDE
or PDE formulation of the problem respectively, or make use of the characteristic function for the
Fourier method. The methods are organized according to this in the table. To have a uniform presen-
tation in Section 4 we use the same abbreviation and marker symbol for a given method in all figures
in this section. Finally, Table 1 provides references to the original papers describing the methods and
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also indicates whether the implementation is employing parallel constructions provided in Matlab
Parallel Computing Toolbox or not. From the references in the table it should be clear which flavour
of a method is actually used, when there are several similar approaches available.

It should be noted that even if a method is not parallelized here, it may still be parallelizable with
good scalability.

4. Numerical results

In this section, we present the results using the different methods presented in Section 3 for the prob-
lems defined in Section 2. For all problems, we display errors in the computed solution as a function of
wall clock time. The implementations weremade inMATLAB and encrypted into p-code. The exper-
iments were carried out at the Rackham Cluster at Uppsala Multidisciplinary Center for Advanced
Computational Science at Uppsala University http://www.uppmax.uu.se/resources/systems/the-
rackham-cluster/. The Rackham Cluster consists of 334 nodes where each node has two 10-core Intel
Xeon V4 CPUs and at least 128 GB RAMmemory. The experiments were performed on a dedicated
node, i.e. using up to 20 MATLAB-workers. For the methods based on the SDE formulation of the
problems, i.e. aMonte Carlo based solutionmethod, the codewas run three times and themean of the
results was reported. Finally, note that the axes in the figures are different for the different problems.

4.1. Results for SABRmodel

In Figures 1 and 2 we display the error

�umax = max
K

|u(S0, σ0, 0) − uref (S0, σ0, 0)|,

for the set of parameters (including S0 and σ0) defined in Section 2.1. Here u denotes the computed
solution and uref the reference solution, as a function of wall clock time for the SABR stochastic-local

Figure 1. Results for the European call option under the SABR model, Parameter Set I. The reference values for Ki = S0exp(0.1 ×√
T × δi), δi = −1.0, 0.0, 1.0 are given by 0.221383196830866, 0.193836689413803, and 0.166240814653231.
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Figure 2. Results for the European call option under the SABR model, Parameter Set II. The reference values for Ki = S0exp(0.1 ×√
T × δi), δi = −1.0, 0.0, 1.0 are given by 0.052450313614407, 0.046585753491306, and 0.039291470612989.

volatility model. Figure 1 shows the results for Parameter Set I, and Figure 2 the results for Parame-
ter Set II. For both parameter sets, the ADI method is the most favourable one to use – for a given
computational time the error is always smallest for thismethod. Among theMonte Carlo basedmeth-
ods, mSABR is the least favourable one to use for Parameter Set I while it is quite favourable to use
for Parameter Set II if the required error in the solution is not too small (slightly less than 10−3).
For Parameter Set I MCA and MLMC behave similarly while MCA performs better than MLMC for
Parameter Set II. For the RBF methods, RBFPUM performs better than RBFFD for relatively large
errors (∼ 10−3). However, especially for Parameter Set I, RBFFD can provide smaller errors than
RBFPUM does. For the SABR model, FGL was not implemented.

4.2. Results for QLSVmodel

The error

�umax = max
S0

|u(S0,V0, 0) − uref (S0,V0, 0)|, (1)

as a function of wall clock time for the European call option under the Heston model is presented
in Figure 3, and the Double-no-touch option under the same model in Figure 4. Here we have used
the set of parameters (including S0 andV0) defined in Section 2.2. For the European call option, FGL
outperforms all othermethods. Already in less than 0.1 s, the error is below 10−7 for thismethod. The
second best method is ADI which is also themethod that is performing best for the Double-no-touch
option. When it comes to the two RBF methods, RBFFD is the method of choice for this problem.
For the European call option, the error for RBFPUM stays slightly below 10−1 and for the Double-
no-touch option it stays around 10−2. RBFFD on the other provides an error that is slightly larger
than 10−4 in less than 100 s. The SGBMmethod is the best performingMonte Carlo type method for
the Heston model. Both for the European option and the Double-no-touch option the time to reach
a certain accuracy for SGBM is well below the time for MCA. Finally, for the European option, the
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Figure 3. Results for the European call option under the Heston model. The reference values for S0 = 75, 100, and 125 are given
by 0.908502728459621, 9.046650119220969, and 28.514786399298796.

Figure 4. Results for theDouble-no-touchoptionunder theHestonmodel. The reference values for S0 = 75, 100, and125 are given
by 0.834539127387590, 0.899829293208866, and 0.668399975738358.
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Figure 5. Results for the European call option under the QLSV model. The reference values for S0 = 75, 100, and 125 are given by
0.527472759419533, 8.902347915743665, and 29.159828965633729.

Figure 6. Results for the Double-no-touch option under the QLSVmodel. The reference values for S0 = 75, 100, and 125 are given
by 0.933800903110254, 0.914799140676374, and 0.592983062889906.
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Figure 7. Results for the European call option under the HHWmodel. The reference values for S0 = 75, 100, and 125 are given by
35.437896876285350, 54.728065308229503, and 75.397596834993621.

performance of RBFFD and SGBM is similar, while RBFFD gives better results than SGBM for the
Double-no-touch option.

In Figures 5 and 6 the results for the European and Double-no-touch options under the QLSV
model are presented. The Fourier method was not implemented for this model and the ADI method
performed best for both types of options this time. To obtain low accuracy (10−1 and 10−2 for Euro-
pean andDouble-no-touch options respectively) the RBFPUM is the second bestmethod that reaches
these accuracies in less than 1 s. To obtain higher accuracy (10−3 and 10−4 respectively) RBFFD is
preferable between the two RBFmethods. For the Double-no-touch option, MCA performs similarly
as RBFFD while RBFFD outperforms MCA for the European call option.

4.3. Results for HHWmodel

In Figure 7 we present the results from the Heston–Hull–White model which is the only three-
dimensional model among our benchmark problems. The error

�umax = max
S0

|u(S0,V0,R0, 0) − uref (S0,V0,R0, 0)|, (2)

as a function of wall clock time is presented for the set of parameters (including S0, V0, and R0)
defined in Section 2.3. Again, FGL outperforms all other methods and reaches�umax < 10−7 in less
than 0.1 s. ADI shows the same robust convergence behaviour as in the previous cases but this time
MCA seems to perform equally well when considering accuracy versus computational time. It should
be noted that the ADI code is a serial code while MCA is parallelized. Further, for MCA confidence
intervals are not given. Finally, RBFPUM gives a fairly large error in this experiment.
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5. Discussion

In this paper, we have defined a set of benchmarking problems in option pricing for stochastic and
local volatility problems. Eight different numerical methods have been implemented and compared
with respect to error versus computational time.

The Fourier method FGL was implemented only for the European call option with the Heston
model and the Heston–Hull–White model. In both cases, this method was superior to all others and
reached extremely high accuracy with an error less than 10−7 in less than 0.1 s. However, Fourier
methods rely on the availability of the characteristic function of the underlying stochastic process or
efficient approximations of the same.

For the problemswhen FGLwas not implemented, themost efficientmethodwas theADImethod.
This was also together with RBFPUM andMCA the only method that was implemented for all prob-
lems. For the RBF methods, RBFPUM often reached a reasonable accuracy in a short time but had
troubles with convergence with increasing computational time. RBFFD however, was in many cases
the method that reached the smallest error after ADI (and FGL where applicable). The main chal-
lenge for the RBFmethods was to apply appropriate boundary conditions in the volatility and interest
rate dimensions. Some commonly used conditions introduced bias, while the option of leaving the
boundary open in some cases lead to instability or inaccuracy.

For the methods based on the SDE formulation of the problems, it is difficult to draw any far-
reaching conclusions. MLMC performed reasonably well for the SABR problems while mSABR gave
reasonably small errors for Parameter Set II in a fairly short time. The mSABR method requires a
smart application of a stochastic collocation-based method (see [16]) to make the algorithm afford-
able in terms of computational time.Once the so-called integrated variance and volatility processes are
simulated, the SABR forward asset process has been simulated by an extended Log-Euler discretiza-
tion scheme, called Log-Euler+. MCA also gave quite accurate results in a reasonable time, especially
for the SABR problems. For the Heston model (the special case of QLSV), SGBM was the best per-
formingMonte Carlo typemethod. For the 3D problemHeston–Hull–White, MCA and ADI showed
comparable results in this setting. This indicates as expected that Monte Carlo methods probably will
be more competitive in higher dimensions.
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Appendices

Appendix 1. Themethods used for computing the reference values used in the
comparisons
When there is no analytical formula available we have used the ADImethod with a very small tolerance to compute the
reference values. The estimated error in these values is computed as the absolute difference between two subsequent
solutions in a refinement sequence of ADI solutions. As with all numerical methods, there could be some bias in this.

A.1. Methods for problem 1 – SABR
Case I: To our knowledge, no analytical formula allowing for highly accurate evaluation of the European call option
under the SABRmodel was previously available in the literature. For the parameters we use in Case I, with uncorrelated
Brownian motionsWS for the stock andWσ for the volatility, a new price formula has been derived. The full details of
the derivations are found in [35]. If we denote the European call option price at time t for the SABR model with strike
K and maturity T by πE

C(t, St ,T,K), we have that

πE
C(0, S0,T,K) = S0(1 − FS(K)) − K(1 − FK(K)),

where the probabilities FS(K) and FK(K) are expressed through the following integrals:

FK(K) = 1
π

∫ ∞

−∞

∫ ∞

0
�

(
q(α, σ0,T, x)
z̄′ + iω′

)
dω′dx,

FS(K) = 1
π

∫ ∞

−∞

∫ ∞

0
�

(
q(α, σ0,T, x)

(z̄′ + iω′)(1 + z̄′ + iω′)2

)
dω′dx,

where

q(α, σ0,T, x) = e−(1/2α2T)(arcCosh(e−xλα2/σ 2
0 +cosh(x))2−x2+(x+Tα2/2)2)

√
2πα2T

,

and the variable z̄′, which is associated with the integration path of an inverse Laplace transform, should be chosen
such that

0 < z̄′ <
1
2

(
x1 +

√
x21 + x2

)
,

where

x1 = 1
K

(
(ex − 1)σ0

2α

)2
+ S0

K
− 1,

x2 = 4
K

(
(ex − 1)σ0

2α

)2
.

We calculate these integrals using Gauss–Hermite quadrature points for x and Gauss–Laguerre quadrature points
for ω′. Using 2000 points in the x and ω′ direction, i.e. a total of 4 million points we get the values.

Case II: The solutionwas obtained by anADImethod since the analytical method only works in the zero correlation
case. The ADI method employed 890 × 445 spatial grid points and 445 time steps.

A.2. Methods for problem 2 –QSLV
Heston European call: The solution was obtained using a Fourier–Gauss–Laguerre implementation with 1000 quadra-
ture points.

Table A1. SABR European call prices using the parameters from case I. Error∼ 1e − 14.

K 0.5 exp(−0.1
√
2) 0.5 0.5 exp(0.1

√
2)

Call price 0.221383196830866 0.193836689413803 0.166240814653231

Table A2. SABR European call prices using the parameters from case II. Error∼ 1e − 6.

K 0.07 exp(−0.1
√
10) 0.07 0.07 exp(0.1

√
10)

Call price 0.052450313614407 0.046585753491306 0.039291470612989
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Table A3. Heston European call prices. Error∼ 1e − 16.

S0 75 100 125

Call price 0.908502728459621 9.046650119220969 28.514786399298796

Table A4. Heston Double-no-touch prices with lower barrier L= 50 and upper barrier
U= 150. Error∼ 1.1e − 7.

S0 75 100 125

Call price 0.834539127387590 0.899829293208866 0.668399975738358

Table A5. Case quadratic stochastic-Local-Volatility European call prices. Error∼ 2.4e − 6.

S0 75 100 125

Call price 0.527472759419533 8.902347915743665 29.159828965633729

Table A6. quadratic stochastic-Local-Volatility Double-no-touch prices with lower barrier
L= 50 and upper barrier U= 150. Error∼ 7.3e − 8.

S0 75 100 125

Call price 0.933800903110254 0.914799140676374 0.592983062889906

Table A7. Heston European call prices. Error∼ 1e − 16.

S0 75 100 125

Call price 35.437896876285350 54.728065308229503 75.397596834993621

Heston Double-no-touch: The solution was obtained by an ADI method since analytical methods only work in the
European case. The ADI method employed 1514 × 758 spatial grid points and 757 time steps.

QSLV European call: The solution was obtained by an ADI method since analytical methods only work in the zero
correlation case. The ADI method employed 1486 × 744 spatial gridpoints and 743 time steps.

QSLV Double-no-touch: The solution was obtained by an ADI method using 2120 × 1061 spatial grid points and
1060 time steps.

A.3. Methods for problem 3 – HHW
The solution was computed using a Fourier–Gauss–Laguerre implementation with 1000 quadrature points.

Appendix 2. The contribution from the authors
Apart from what is listed in Table A8 all authors took part in reading and correcting of the final version of the paper.

During the time for the project, three meetings were held:

(A) A kick-off meeting in Uppsala in August 2016, dedicated for the set-up of the project.
(B) An intermediate planning meeting in Austin in connection with the SIAMConference on Financial Mathematics

& Engineering in November 2016.
(C) A final planning meeting in Leiden in connection with the Lorentz center workshop in Applied Mathematics

Techniques for Energy Markets in Transition in September 2017.

In Table A8 it is presented at what meetings the authors took part.
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Table A8. Name and contribution of authors.

Name Contributions

Lina von Sydow Project leader
Wrote Sections 1, 3, 4, 5, and Appendix 2
Took part in writing the rest of the paper
One of two behind code for RBFFD (SABR and QLSV models)
Took part in meetings A, B, and C

Slobodan Milovanović Performed all numerical experiments
Created all plots in Section 4
Took part in writing the paper
One of two who wrote unit tests for contributed codes
Took part in the computation of reference values
One of two behind code for RBFFD (SABR and QLSV models)
Took part in meetings A and B

Elisabeth Larsson Deputy project leader
Took part in the writing of Appendix 1
Took part in writing the rest of the paper
Took part in the computation of reference values
One of two behind code for RBFPUM (all models)
Took part in meetings A, B, and C

Karel In ’t Hout Lead the project of defining benchmark problems
Took part in the writing of Section 2
Took part in the computation of reference values
One of two behind code for ADI (all models)
Took part in meetings A, B, and C

Magnus Wiktorsson Took part in the writing of Appendix 1
Took part in the computation of reference values
Behind code for FGL (Heston European call option and HHWmodel)
Behind code for MCA (all models)
Took part in meeting A

Cornelis W. Oosterlee Took part in defining benchmark problems
Took part in the writing of Section 2
One of two behind code for mSABR (SABR model)
One of two behind code for SGBM (QLSV model)
Took part in meetings A, B, and C

Victor Shcherbakov One of two who wrote unit tests for contributed codes
One of two behind code for RBFPUM (all models)
Took part in meetings A and B
Took part in the computation of reference values

Maarten Wyns One of two behind code for ADI (SABR and QLSV models)
Took part in meeting B

Alvaro Leitao One of two behind code for mSABR (SABR model)
Behind code for MLMC (SABR model)
Took part in meeting C

Shashi Jain One of two behind code for SGBM (QLSV model)
Tinne Haentjens One of two behind code for ADI (HHWmodel)
Johan Waldén Took part in the writing of Sections 1 and 2

Took part in meeting A
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