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ABSTRACT
Feedforward control enables high performance of a motion system. Recently, algorithms have been
proposed that eliminate bias errors in tuning the parameters of a feedforward controller. The aim of
this paper is to develop a new algorithm that combines unbiased parameter estimates with optimal
accuracy in terms of variance. A simulation study is presented to illustrate the poor accuracy proper-
ties of pre-existing algorithms compared to the proposed approach. Experimental results obtained
on an industrial nanopositioning system confirm the practical relevance of the proposed method.

1. Introduction

Challenging requirements on positioning accuracy often
necessitate the use of feedforward control for motion
systems, since feedforward can effectively compensate
for the error induced by known, repeating disturbances.
Examples include atomic force microscopes (Butter-
worth, Pao, & Abramovitch, 2012; Clayton, Tien, Leang,
Zou, &Devasia, 2009; Kara-Mohamed, Heath, & Lanzon,
2015), robotics (Khalil & Dombre, 2002, Chapter 14)
and wafer scanners (Mishra, Coaplen, & Tomizuka, 2007;
Oomen et al., 2014; van der Meulen, Tousain, & Bosgra,
2008). Traditional approaches that can potentially achieve
these requirements on positioning accuracy include iter-
ative learning control (ILC) (Bristow, Tharayil, &Alleyne,
2006; Gorinevsky, 2002) and model-based feedforward
(Butterworth et al., 2012; Zhong, Pao, & de Callafon,
2012).

ILC algorithms update the feedforward signal by
learning from previous tasks under the assumption that
the task is repetitive. ILC consequently enables superior
performance with respect to model-based feedforward
for a specific task by compensating for all repetitive dis-
turbances. However, changes in the reference signal typi-
cally result in significant performance deterioration (see,
e.g. Hoelzle, Johnson, & Alleyne, 2014). Motion systems
are typically confronted with similar yet slightly differ-
ent reference signals (Lambrechts, Boerlage, & Steinbuch,
2005; Oomen et al., 2014). In contrast to ILC, model-
based feedforward results in moderate performance for
a class of reference signals instead of only one specific
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reference (Butterworth et al., 2012). Note that the per-
formance for model-based feedforward is highly depen-
dent on the model quality of the parametric model of
the system and the accuracy ofmodel-inversion (Devasia,
2002).

By introducing basis functions in ILC, the advantages
of model-based feedforward and ILC are combined in
van de Wijdeven and Bosgra (2010). This approach is
further improved in van der Meulen et al. (2008), where
the need for an approximate model of the system, as is
common in ILC, is eliminated by exploiting results from
iterative feedback tuning (Bazanella, Campestrini, &
Eckhard, 2012). The iterative feedforward control
approach in van der Meulen et al. (2008) is extended
to multivariable systems and input shaping in Heertjes,
Hennekens, and Steinbuch (2010) and Boeren, Bruijnen,
van Dijk, and Oomen (2014), respectively. However,
in Boeren, Oomen, and Steinbuch (2015), it is shown
that the least-squares algorithm used in van der Meulen
et al. (2008) can lead to a bias error in the estimated
parameters. A new algorithm is proposed in Boeren,
Oomen, et al. (2015) based on instrumental variable (IV)
techniques that results in unbiased parameter estimates.
However, accuracy in terms of variance of the estimate
has not yet been investigated.

Although iterative feedforward control based on
instrumental variables is promising for motion control,
existing approaches suffer from poor accuracy proper-
ties in terms of variance. This severely limits the prac-
tical applicability of existing approaches in case of noisy
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signals. This paper aims to reveal non-optimal accuracy
for the approaches in Boeren, Oomen, et al. (2015) and
van der Meulen et al. (2008), and develop an algorithm
that leads to optimal accuracy in the presence of noise.

The contributions of this paper are fourfold. First,
an analysis is provided to show that the approaches
in Boeren, Oomen, et al. (2015) and van der Meulen
et al. (2008) lead to poor accuracy in terms of variance.
Therefore, variance results developed in open-loop iden-
tification (Söderström & Stoica, 1983, Chapters 5 and 6)
and closed-loop identification (Forssell, 1999; Gilson &
Van den Hof, 2005) are extended towards iterative feed-
forward control. As a second contribution, this insight in
the accuracy aspects is exploited to develop an algorithm
that achieves optimal accuracy. The proposed algorithm
(1) exploits an iterative refined instrumental variable
(RIV) method that is similar to the approaches presented
in Young (1976, 2015), Young and Jakeman (1979),
Jakeman and Young (1979), and Young and Jakeman
(1980), and (2) is closely connected to the estimation of
inverse systems (see, e.g. Jung & Enqvist, 2013). Third, a
simulation study is presented to (1) illustrate that the pro-
posed algorithm leads to enhanced accuracy properties
compared to pre-existing approaches and (2) confirm the
significance of the accuracy of parameter estimates on the
achievable performance. As a final contribution, experi-
mental results confirm the practical relevance of the pro-
posed algorithm. This paper significantly extends earlier
results reported in Boeren, Bruijnen, and Oomen (2014)
and Boeren, Oomen, and Steinbuch (2014) by thorough
proofs and extended experimental results. Related data-
driven tuning algorithms are available in Formentin,
van Heusden, and Karimi (2013b), Karimi, Butcher, and
Longchamp (2008), and Kim and Zou (2013). Further-
more, instrumental variable approaches are often used for
estimating the parameters of industrial robots (see, e.g.
Janot, Vandanjon, & Gautier, 2014a, 2014b; Puthenpura
& Sinha, 1986; Yoshida, Ikeda, & Mayeda, 1992).

This paper is organised as follows. In Section 2, the
problem formulation is outlined. In Section 3, asymp-
totic expressions for optimal accuracy are developed
for feedforward control. To provide a concise presenta-
tion of the contributions of this paper, the second con-
tribution is presented before the first contribution is
explained. That is, a new tuning algorithm for iterative
feedforward control is proposed in Section 4. Then, in
Section 5, the accuracy properties of existing approaches
are analysed. In Section 6, a simulation study of a motion
system is presented to compare the proposed and pre-
existing approaches. In Section 7, the theoretical results
are confirmed by experiments on an industrial nanopo-
sitioning system. Finally, conclusions are drawn in
Section 8.
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Figure . Two degree-of-freedom control configuration.

Notation: The variable q denotes the forward shift oper-
ator qu(t) = u(t + 1). For a vector x, ||x||2W = xTWx. A
positive-definitematrixA is denoted asA� 0.Also,A−B
� 0 is denoted asA� B. A positive-semidefinitematrixA
is denoted asA� 0. LetR[q] denotes the real polynomials
in q. Also,E(x) = ∫ ∞

−∞ x f (x)dx,with probability density
function f (x), Ē(x) = limN→∞ 1

N
∑N

t=1 E(x), whereN is
the number of samples.

2. Problem definition

2.1 Problem setup

Consider the two degree-of-freedom control configura-
tion as depicted in Figure 1. The true unknown system
P(q) is assumed to be discrete-time, single-input single-
output, and linear time-invariant, with rational represen-
tation

P(q) = B0(q)
A0(q)

,

where B0(q),A0(q) ∈ R[q]. The control configuration
consists of a given stabilising feedback controller Cfb(q),
and a feedforward controllerCj

f f (q). The index j denotes
the jth task in a sequence of finite time tasks of length N
samples, where j = 0, 1, ..., M. Furthermore, Ts denotes
the sampling time.

Let r denote the reference signal. Typically, r is
designed as a known nth-order multi-segment polyno-
mial trajectory with constraints on the first n derivatives,
as in, e.g. Biagiotti andMelchiorri (2012) and Lambrechts
et al. (2005). Also, wj(t) = H(q)ϵj(t) denotes an unknown
disturbance, whereH(q) is amonic, asymptotically stable,
proper system, and {ϵj(t)} is normally distributed white
noise with zeromean and variance λ2

ε . Hence,wj and r are
uncorrelated. The feedforward signal is denoted by uj

f f ,
while the measured signals e jm and y jm in the jth task are
given by

e jm(t ) = e jr (t ) − e jw(t ),

y jm(t ) = y jr (t ) + y jw(t ),
(1)
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with

e jr (t ) = S(q)(1 − P(q)Cj
f f (q))r(t ),

e jw = S(q)w j(t ),
y jr (t ) = S(q)P(q)(Cf b(q) +Cj

f f (q))r(t ),
y jw = S(q)w j(t ),

(2)

and sensitivity function S(q) = (1 + P(q)Cfb(q))−1. Since
P(q) is assumed to be unknown and wj is an unknown
disturbance, it is not possible to determine e jr and e

j
w (resp.

y jr and y jw) based on the measured signal e jm (resp. y jm).

2.2 Iterative feedforward: batch-wise tuning

In iterative feedforward control, the measured signals
e jm(t ) and y jm(t ), for t = 1, ..., N, are stored. Hence, the
data set that is used for the estimation of the feedforward
controller is given by

e jm = [
e jm(1), e jm(2), . . . , e jm(N)

]
,

y jm = [
y jm(1), y jm(2), . . . , y jm(N)

]
.

After the jth task is finished, this batch of measured data
is used to perform an offline update of the existing feed-
forward controllerCj

f f (q), i.e.

Cj+1
f f (q) = Cj

f f (q) +C�
f f (q),

before initiating the (j + 1)th task.
To establish the main ideas in this paper and provide

a fair comparison, the feedforward controller Cj+1
f f (q) is

parametrised similar to Lambrechts et al. (2005), van der
Meulen et al. (2008), Heertjes et al. (2010), and Boeren,
Bruijnen, van Dijk, et al. (2014) as

Cj+1
f f (q, θ j+1) = Cj

f f (q, θ
j) +C�

f f (q, θ
�)

=
nθ∑
i=1

ψi(q−1)(θ
j
i + θ�

i ), (3)

where θ
j+1
i = θ

j
i + θ�

i , and ψ i(q−1) are basis functions.
The updateC�

f f (q, θ
�) is given by

C�
f f (q, θ

�) =
nθ∑
i=1

ψi(q−1)θ�
i = �(q)θ�, (4)

with parameters θ� = [θ�
1 θ�

2 . . . θ�
nθ
]T ∈ R

nθ , and
polynomial basis functions

�(q) = [ψ1(q−1) ψ2(q−1) . . . ψnθ
(q−1)].

To illustrate a typical selection of the parameter vector θ�

and basis functions�(q), consider the following example
that is aimed at feedforward control for motion systems.

Example 2.1: Let Cj
f f (q) = 0, i.e. only a feedback con-

troller Cfb(q) is used in task j, and let r(t) be a fourth-
order reference trajectory. A typical parametrisation of
C�

f f (q, θ
�) is given by

C�
f f (q, θ

�) = ψa(q−1)θ
j
a + ψs(q−1)θ

j
s , (5)

with basis functions

ψa(q−1) =
(
1 − q−1

Ts

)2

, ψs(q−1) =
(
1 − q−1

Ts

)4

,

parameters θ j = [θ j
a , θ

j
s ]T , and sampling time Ts. The

parametrisation in (5) consists of acceleration feedfor-
wardwith acceleration a(t)= ψa(q−1)r(t), i.e., the second
derivative of r(t), and snap feedforward with snap s(t) =
ψ s(q−1)r(t), i.e. the fourth derivative of r(t). Furthermore,
θa denotes the mass of the system, while θ s denotes the
snap parameter. As such, C�

f f (q, θ
�) in (5) can com-

pensate for the dominant component of the reference-
induced error (see, e.g. Lambrechts et al., 2005). Note that
double (and fourth) differentiation is possible since r(t)
is a deterministic and known signal. The corresponding
feedforward signal uff(t) is given by

uj+1
f f (t ) = C�

f f (q, θ
�)r(t ) = θaa(t ) + θss(t ).

The approach proposed in this paper aims to estimate the
parameters θa and θ s based on measured data.

The use of feedforward is a standard approach to
obtain a small error signal e jm(t ) when tracking a refer-
ence trajectory r(t) (see, e.g. Steinbuch & Norg, 1998). By
subdividing e jm(t ) into e jr (t ) and e jw(t ), as defined in (2),
it is immediately clear thatCj+1

f f (q, θ j+1) has no influence
on e jw(t ). Indeed, the goal of feedforward control is to
determine a Cj+1

f f (q, θ j+1) that minimises the reference-
induced error e j+1

r (t, θ j+1) for t = 1, ..., N in a suitable
sense. Given the definition ofCj+1

f f (q, θ j+1) in (3), the aim
of this paper is to determine θ j + 1 such that e j+1

r (t, θ j+1)

is as small as possible. It directly follows from (2) that

e j+1
r (t, θ j+1) = S(q)(1 − P(q)Cj+1

f f (q, θ j+1))r(t ), (6)

and e j+1
r (t, θ j+1) = 0 for all t ifCj+1

f f (q, θ j+1) = P−1(q).
However, since P(q) is assumed to be unknown, it is
not possible to determine either P−1(q), or determine
e j+1
r (t, θ j+1) before initiating the (j + 1)th task. Instead,
the measured signal e jm(t ) in the jth task, contaminated
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by wj(t), is used in an optimisation problem to deter-
mine Cj+1

f f (q, θ j+1). That is, the aim in iterative feedfor-
ward control is to determine the parameters θ̂� in (4),
before starting the (j + 1)th task, from the optimisation
problem

θ̂� = argmin
θ�

V (θ�), (7)

where the criterion V(θ�) is based on the stored signals
e jm(t ) and y jm(t ) for t = 1, ..., N, as measured in the jth
task. Then,Cj+1

f f (q, θ j+1) is determined according to (3).
Next, two assumptions are introduced.

Assumption 2.1: Cfb(q) is designed such that S(q)H(q)=
1, where the noise model is parametrised as

H(q) = D(q−1)

C(q−1)
= 1 + d1q−1 + · · · + dmq−m

1 + c1q−1 + · · · + cmq−m .

Assumption 2.2: The true unknown system is given by

P0 = 1
A0(q−1)

= 1
1 + a1q−1 + · · · + anq−n .

Concerning Assumption 2.1, recall from (6) that
Cj

f f (q, θ
j) aims to minimise e jr (t ), i.e. the error induced

by the known r(t). In the optimal case, it holds that
e jr (t ) = 0 for all t. In contrast, the main goal of the feed-
back controller Cfb(q) is to compensate for wj(t) in view
of minimising e jw(t ). These disturbances are assumed
to be stochastic with a certain spectrum. Typically, the
dominant disturbances are in the low-frequency range,
e.g. due to amplifier noise (Fleming, 2014), cable slab,
commutation errors, or immersion water-flow in litho-
graphic applications. Then, Cfb(q) is designed to com-
pensate for these disturbances, in which case the optimal
result is e jw(t ) = ε j(t ), i.e. the error signal being white
noise. Clearly, this corresponds to S(q)H(q) = 1. Similar
approximations are used in the identification of robotics
(see, e.g. Janot, Gautier, Jubien, & Vandanjon (2014)).
Assumption 2.1 can be achieved by, e.g. using traditional
PID tuning, possibly with error-based retuning (van de
Wal, van Baars, & Sperling, 2000), and common LQG
control designs (Åström, 1970, Section 6.2). In a typi-
cal approach to design Cfb(q) such that S(q)H(q) = 1,
e jm(t ) is measured in an experiment where r(t) = 0 for
all t. For this case, e jr (t ) = 0 for all t, and consequently
e jm(t ) = e jw(t ). Then, Cfb(q) is tuned until e

j
m(t ) = ε j(t ),

i.e. e jm(t ) being white noise.
Concerning Assumption 2.2, the assumption that

P(q) = 1/A0(q) implies that there is a θ j + 1 such that
Cj+1

f f (q, θ j+1) = P−1(q). This result immediately follows
by observing that P−1(q) = A0(q) and Cj+1

f f (q, θ j+1) is

restricted to a polynomial parametrisation as in (3). This
assumption may appear as a stringent requirement on
P(q). However, for a general class of motion systems as
described in Lambrechts et al. (2005), the reference sig-
nal r(t) has a dominant low-frequency signal content, and
P−1(q) can be accurately described by an acceleration-
dependent and snap-dependent term (Boerlage, Tousain,
& Steinbuch, 2004). That is, high-frequency dynamic
aspects are concealed by the specific input design of r(t)
(see also Hjalmarsson (2009) for a further explanation of
this aspect). These results will be corroborated by the sim-
ulation example in Section 6 and the experimental results
in Section 7, where it is shown that the reference-induced
contribution to the error signal can be almost completely
compensated for by using Cj+1

f f (q, θ j+1) as in (3) of low
degree. The proposed approach can be extended by allow-
ing a more general parametrisation for Cj+1

f f (q, θ j+1), as
in, e.g. Boeren, Blanken, Bruijnen, and Oomen (2015)
and Boeren, Bruijnen, van Dijk, et al. (2014) if a refer-
ence is needed with a significant high-frequency signal
content.

Throughout, measured data from a single task is used
to determine θ̂� according to (7). This approach is pur-
sued since it can effectively handle slow variations that
are typically present in a motion system, for example,
wear, by means of continuous adaptation of the feed-
forward parameters. Note that the presented approach
can be directly extended to exploit data from multiple
tasks (e.g. as in Gunnarsson andNorrlöf (2001, 2006) and
Kushner and Yin (2003)).

3. Optimal feedforward based on instrumental
variables

3.1 Iterative feedforward control

Based on the known r(t) and measured e jm(t ) and y jm(t )
in task j, the predicted error ε̂ j+1(t, θ�) in task j + 1 can
be determined as (see Figure 2):

ε̂ j+1(t, θ�) = e jm(t ) − S(q)P(q)C�
f f (q, θ

�)r(t ). (8)

In the proposed iterative feedforward control approach,
the parameters θ� should be estimated directly from
measured data as is done in Hjalmarsson, Gevers,
Gunnarsson, and Lequin (1998), i.e. without estimat-
ing a model of P(q). As such, (8) cannot be directly
used to determine θ�. Instead, the following estimate of
ε̂ j+1(t, θ�) is used

ê j+1(t, θ�) = e jm(t ) −C�
f f (q, θ

�)C−1y jm(t ), (9)
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Figure . The update C�
f f (q, θ

�) is determined based on the
known r(t), and measured e jm(t ) and y j

m(t ) in task j.

whereC = (Cfb(q) +Cj
f f (q)). To show that (9) is a suit-

able estimate of (8), note that the commutative property
of SISO systems enables rewriting y jm(t ) in (1) as y jm(t ) =
(Cfb(q) +Cj

f f (q))S(q)P(q)r(t ) + S(q)w j(t ). Rearrang-
ing terms leads to

C−1(q)y jm(t ) = S(q)P(q)r(t ) +C−1(q)S(q)w j(t ).
(10)

Clearly, ê j+1(t, θ�) = ε̂ j+1(t, θ�) ifwj(t) is equal to zero.
Moreover, by taking the expectation of (10), it follows
that

E
{
C−1(q)y jm(t )

} = E{S(q)P(q)r(t ) +C−1(q)S(q)w j(t )}.
(11)

By noting that r(t) is deterministic, it follows that
ES(q)P(q)r(t ) = S(q)P(q)r(t ). Furthermore, for wj(t)
as defined in Section 2.1, it is immediately clear
that EC−1(q)S(q)w j(t ) = 0(see, e.g. Söderström, 2002,
Lemma 4.1). By combining these results, (11) implies that
(10) is an unbiased estimator of S(q)P(q)r(t).

In the remainder of this paper, (9) is used as the pre-
dicted error in task j + 1. Substituting the parametrisation
defined in (4) into (9) and rearranging terms leads to the
following estimation equation:

ê j+1(t, θ�) = e jm(t ) − (ϕ j(t ))Tθ�, (12)

where

ϕ j(t ) = �(q)(Cfb(q) +Cj
f f (q))

−1y jm(t ) ∈ R
nθ . (13)

Note that (12) is linear in the parameters θ�.
Finally, the optimal parameters, denoted as θ�

0 , are
defined. By subdividing e jm(t ) in (12) into e jr (t ) and e

j
w(t ),

as defined in (2), and rearranging terms, ê j+1(t, θ�) in
(12) is given by

ê j+1(t, θ�) = [e jr (t ) − (ϕ j(t ))Tθ�] − e jw(t ).

Recall from Section 2.2 that the goal of feedforward
control is to minimise the reference-induced error
e j+1
r (t, θ j+1). Given the definition of e jr (t ) in (2) together
with the parametrisation for Cj+1

f f (q, θ j+1) in (3), it
directly follows that the reference-induced error contri-
bution in (12) can be expressed as

ê j+1
r (t, θ�) = e jr (t ) − (ϕ j(t ))Tθ�, (14)

Then, the optimal parameters θ�
0 are defined such that

(14) is equal to zero for all t, i.e.ê j+1
r (t, θ�

0 ) = 0, which
directly implies that e jr (t ) = (ϕ j(t ))Tθ�

0 , and conse-
quently that

e jm(t ) = (ϕ j(t ))Tθ�
0 − e jw(t ). (15)

Note that this definition of θ�
0 implies that

Cj+1
f f (q, θ0) = P−1(q), where θ0 = θ j + θ�

0 . This is
in accordance with Assumption 2.2.

3.2 An instrumental variable approach to iterative
feedforward control

A general framework is proposed in Boeren, Oomen,
et al. (2015) for iterative feedforward control based on
instrumental variables (IV). The rationale is that unbi-
ased estimates of θ̂� are obtained without the need for a
correct model of wj, which is in contrast to least-squares
estimation, including van der Meulen et al. (2008). In IV-
based approaches, V(θ�) is typically selected as

V (θ�) =
∣∣∣∣∣
∣∣∣∣∣
1
N

N∑
t=1

z(t )L(q)ê j+1(t, θ�)

∣∣∣∣∣
∣∣∣∣∣
2

W

, (16)

where z(t ) ∈ R
nz are instrumental variables that are

uncorrelated with wj, W is a positive-definite weighting
matrix, nz � nθ , L(q) is a prefilter and ê j+1(t, θ�) in (12).
Since r(t) is uncorrelated with wj, the instrumental vari-
ables z(t) are in the remainder of this paper selected as a
function of (derivatives of) r(t).

Since V (θ�) is quadratic in θ�, the minimiser θ̂� of
V (θ�) follows from the necessary condition for optimal-
ity ∂V (θ�)

∂θ� = 0 since W is a positive-definite matrix. By
substituting (12) in (16), it is straightforward to show that
the minimiser θ̂� of V(θ�) in (16) is given by

θ̂� = (
R̂T
zϕ jWR̂zϕ j

)−1R̂T
zϕ jWR̂ze jm

, (17)

where R̂zϕ j = 1
N

∑N
t=1 z(t )L(q)(ϕ j(t ))T is nonsingular,

and R̂ze jm
= 1

N
∑N

t=1 z(t )L(q)e jm(t ).
The key idea behind (16) is that high performance is

obtained if z(t), consisting of (derivatives of) r(t), and
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Figure . Tuning of a feedforward controller for a motion system. Low performance in an instrumental variable framework: significant
correlation between the acceleration a(t) (dashed black) and predicted error ê j+1(t, θa) (red) for θa =  (left). High performance in an
instrumental variable framework: a(t) (dashed black) and ê j+1(t, θa) (green) are uncorrelated for the minimiser θ̂a of the criterion V(θa)
in () (right). (To view this figure in colour, please see the online version of the journal).

ê j+1(t, θ�) are uncorrelated. This concept is, in fact, very
well known and finds its roots in traditional feedforward
tuning techniques in control engineering, as illustrated in
the following example.

Example 3.1: Let Cj
f f (q) = 0, i.e. only a feedback con-

troller is used in task j. Furthermore,C�
f f (q, θ

�) is given
by

C�
f f (q, θ

�) = ψa(q−1)θa,

with basis function

ψa(q−1) =
(
1 − q−1

Ts

)2

,

and parameter θa. This parametrisation corresponds
to acceleration feedforward with acceleration a(t) =
ψa(q−1)r(t), i.e. the second derivative of r(t), while θa
denotes themass of the system.Note that double differen-
tiation is possible since r(t) is a known, noise-free signal.
The instruments are selected as z(t) = a(t), whileW = I,
nz =nθ , andL(q)= I. For this specific case, (16) becomes

V (θa) =
∣∣∣∣∣
∣∣∣∣∣
1
N

N∑
t=1

a(t )ê j+1(t, θa)

∣∣∣∣∣
∣∣∣∣∣
2

, (18)

where ê j+1(t, θa) = e jm(t ) − ψa(q−1)C−1y jm(t )θa. The
aim of the IV approach is to determine θa such that a(t)
and ê j+1(t, θa) are uncorrelated.

For the considered experimental setup in Section 7, the
(normalised) a(t) of a typical r(t) is depicted in Figure 3,
together with ê j+1(t, θa) based on (1) θa = 0 (red), and
(2) the minimiser θ̂a of V(θa) in (18) (green). Clearly,
high performance is obtained with θ̂a, i.e. when a(t) and

ê j+1(t, θa) are uncorrelated. In contrast, low performance
is obtained for θa = 0, which corresponds to significant
correlation between a(t) and ê j+1(t, θa). This shows that
the correlation between a(t) and ê j+1(t, θa) is a measure
for the performance of a motion system.

Next, the asymptotic covariance matrix PIV is derived
that is related to θ̂�. Consider the asymptotic distribution
of θ̂� given by

√
N(θ̂� − θ�

0 )
dist−→ N (0, PIV ), (19)

where θ�
0 is the asymptotic parameter estimate as defined

in (15). It can be shown that θ̂� is a consistent estimator,
i.e. θ̂� converges to θ�

0 forN to infinity, along similar lines
as in, e.g. Söderström, Stoica, and Trulsson (1987). Then,
the asymptotic covariance matrix PIV in (19) is given by

PIV = (RT
zϕ jWRzϕ j )−1RT

zϕ jWJWTRzϕ j (RT
zϕ jWRzϕ j )−T,

(20)

with

Rzϕ j = Ēz(t )L(q)(ϕ j
r (t ))T,

J = λ2
εĒ

[
L(q)z(t )

] [
L(q)z(t )

]T
,

(21)

and reference-induced part ϕ
j
r (t ) of ϕj(t) in (13) given

by

ϕ
j
r (t ) = �(q)(Cfb(q) +Cj

f f (q))
−1y jr (t ), (22)

with y jr (t ) as in (2). A derivation of (20) for iterative feed-
forward control follows the proof derived in Söderström
and Stoica (1989, App. A8.1) for open-loop identification,
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and Söderström et al. (1987, Section 3) for closed-loop
identification.

Note that PIV in (20) depends on the design of z(t) and
L(q). Next, a lower bound is derived for PIV as a func-
tion of z(t) and L(q), which corresponds to the minimum
variance achievable with an IV method for feedforward
control.

3.3 Optimal design procedure for z(t) and L(q)

The covariance matrix PIV in (20) depends on the design
of z(t) and L(q). Optimal accuracy in terms of variance
is obtained if z(t) and L(q) are designed such that PIV is
equal to an optimal covariance matrix Popt

IV , where for any
z(t) and L(q), it holds that PIV � Popt

IV .The optimal covari-
ance matrix Popt

IV for iterative feedforward control based
on instrumental variables is given by

Popt
IV = λ2

ε

{
Ēϕ

j
r (t )

(
ϕ

j
r (t )

)T
}−1

, (23)

where Popt
IV � 0. A derivation of Popt

IV follows along simi-
lar lines as the derivation for open-loop identification in
Söderström and Stoica (1989, Chapter 8).

Equivalence between PIV in (20) and Popt
IV in (23) holds

if z(t), L(q) andW are designed as

zopt(t ) = ϕ
j
r (t ),

Lopt(q) = 1,
Wopt = I, and nz = nθ , (24)

and ϕ
j
r (t ) in (22). This result follows by substituting

zopt(t), Lopt(q), and Wopt in (20). Note that this design is
not unique, and closely related to the proposed instru-
mental variables in the RIV algorithms.

The following two observations are made based on
zopt(t), Lopt(q), andWopt. First, the optimal design reveals
that minimum variance is obtained when the number of
instruments nz is equal to the number of parameters nθ ,
and uniform weighting (W = I) is applied for t = 1, ...,
N. Based on this observation, W and nz are furthermore
selected asW = I and nz = nθ . Then, (20) becomes

PIV = R−1
zϕ j JR−T

zϕ j , (25)

with Rzϕ j and J as in (21). Furthermore, (17) reduces to a
basic IV method, i.e.

θ̂� = R̂−1
zϕ j R̂ze jm

. (26)

Second, the optimal instruments zopt(t) cannot be
determined since P(q) is assumed to be unknown in the
developed framework. To see this, note that ϕ j

r (t ) in (22),

and in particular y jr (t ), cannot be determined based on
the known r(t), andmeasured e jm(t ) and y jm(t )when P(q)
is unknown. In the next section, a novel algorithm is
proposed that alternates between iteratively updating the
estimate of the noise-free zopt(t), and determining θ̂�,
similar to the algorithms described in Young (2015).

4. Proposed approach achieving optimal
accuracy

4.1 Proposed RIV algorithm

The algorithm proposed in this section is an iterative
method to achieve optimal accuracy by jointly updating
the estimate of the optimal instruments zopt(t) in (24)
and solving for θ̂� as in (26). Note that measured data
froma single task is sufficient. Related iterative RIVmeth-
ods are developed in system identification (see Jakeman
& Young (1979); Young, 2015; Young & Jakeman (1979,
1980).

Let the index i denote the ith computational iteration
of the proposed algorithm. Furthermore, θ̂�

<i−1> denotes
the parameter estimate in iteration i − 1. In the ith itera-
tion, zopt(t) is approximated by

zp,<i>(t ) = ϕ̂
j
r (t ) := �(q)

(
Cfb(q)

+ Cj
f f ,<i>

(
q, θ̂�

<i−1>
))−1r(t ). (27)

Subsequently, zp, <i >(t) in (27) is used to determine θ̂�
<i>

in the ith iteration similar to (26):

θ̂�
<i> = (R̂zϕ j,<i>)−1R̂ze jm,<i>,

where R̂zϕ j,<i> = 1
N

∑N
t=1 zp,<i>(t )(ϕ j(t ))T with ϕj(t) in

(13), and R̂ze jm,<i> = 1
N

∑N
t=1 zp,<i>(t )e jm(t ) with e jm(t )

in (1). The proposed algorithm to determine θ̂� with
optimal accuracy is summarised in Algorithm 4.1.

Algorithm 4.1: Determine θ̂� with optimal accuracy

(a) Initialise θ̂�
<i−1> = 0.

(b) Construct Cj
f f ,<i>(q, θ̂�

<i−1>)=�(q)(θ j+θ̂�
<i−1>).

(c) Construct instrumental variables
zp,<i>(t ) = �(q)(Cfb(q)

+ Cj
f f ,<i>(q, θ̂�

<i−1>))−1r(t ).
(d) Determine R̂zϕ j,<i> = 1

N
∑N

t=1 zp,<i>(t )(ϕ j(t ))T

and R̂ze jm,<i> = 1
N

∑N
t=1 zp,<i>(t )e jm(t ), based on

ϕj(t) in (13) and e jm(t ) in (1).
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Table . The comparison study presented in Sections  and  of this paper shows that optimal
accuracy is not achievedwith the existing approaches in van derMeulen et al. () and Boeren,
Oomen, et al. () while the proposed approach can achieve optimal accuracy upon conver-
gence of the proposed RIV algorithm.

Method Instrumental Covariance matrix PIV Optimal
variables accuracy

Optimal zopt(t ) = ϕ
j
r (t ) PoptIV = λ2

ε

[
Ēϕ

j
r (t )(ϕ

j
r (t ))T

]−1
Yes

Proposed (Section ) zp,<i>(t ) = ϕ̂
j
r (t ) PIV,p = λ2

ε

[
Ēϕ̂

j
r (t )(ϕ

j
r (t ))T

]−1 × Yes[
Ēϕ̂

j
r (t )(ϕ̂

j
r (t ))T

] [
Ēϕ̂

j
r (t )(ϕ

j
r (t ))T

]−T

Method  (Section .) z(t)= �(q)r(t) PIV,1 = λ2
ε

[
Ē�r(t )(ϕ j

r (t ))T
]−1 × No, arbitrary

[
Ē�r(t )(�r(t ))T

] [
Ē�r(t )(ϕ j

r (t ))T
]−T

Method  (Section .) z(t)= ϕ(t) PIV,2 = λ2
ε

[
Ēϕr(t )(ϕ

j
r (t ))T

]−1 × No,
√
2

[
Ēϕ2(t )ϕ

T
2 (t )

] [
Ēϕr(t )(ϕ

j
r (t ))T

]−T

(e) Solve for θ̂�
<i> as in (26): θ̂�

<i> =
(R̂zϕ j,<i>)−1R̂ze jm,<i>.

(f) Set i→ i + 1 and repeat from Step (b) until a stop-
ping criterion is met.

(g) Set θ̂� = θ̂�
<i>.

Before initiating Algorithm 4.1, it is advised to deter-
mine an initial parameter θ j by using a linear least squares
estimation approach as in van der Meulen et al. (2008).
Similar to the RIV algorithms presented in Young (2015),
practical use has shown that such an initial estimate is
typically sufficient for subsequent convergence of Algo-
rithm 4.1.

Remark 4.1: An approach to deal with possible insta-
bility of (Cfb(q) +Cj

f f ,<i>(q, θ̂�
<i−1>))−1 in computing

zp, <i >(t) is given in Boeren, Oomen, et al. (2015,
Appendix A).

4.2 Accuracy analysis of the proposed approach

In this section, it is shown that optimal accuracy in
terms of accuracy is obtained with Algorithm 4.1. Con-
sider the covariance matrix PIV, p corresponding to
zp, <i >(t) as given in Table 1. The covariance PIV, p fol-
lows by substituting (27) in (25). Clearly, optimal accu-
racy for the proposed method, i.e. PIV, p equal to Popt

IV
in (23), is obtained if zp, <i >(t) converges to zopt(t) in
Algorithm 4.1.

To show that zp, <i >(t) converges to zopt(t) in subse-
quent iterations of the proposed algorithm, substitute (2)

and (22) in (24) to obtain

zopt(t ) = �(q)(Cf b(q) +Cj
f f (q))

−1y jr (t )

= �(q)(Cf b(q)+Cj
f f (q))

−1S(q)P(q)(Cf b(q)

+Cj
f f (q))r(t )

= �(q)S(q)P(q)r(t ), (28)

where the last equality is obtained by using the com-
mutative property of SISO systems. Then, the difference
between zopt(t) and zp, <i >(t) in the ith iteration can be
expressed as

zopt(t ) − zp,<i>(t )
= �(q)

(
S(q)P(q)

− (
Cfb(q) +Cj

f f ,<i>

(
q, θ̂�

<i−1>
))−1)r(t ),

and zp, <i >(t) = zopt(t), i.e. optimal accuracy, is obtained
if

(Cfb(q) +Cj
f f ,<i>(q, θ̂�

<i−1>))−1 = S(q)P(q). (29)

It remains to be shown that (31) holds, i.e. zp, <i >(t)
converges to zopt(t), to guarantee that Algorithm 4.1
results in optimal accuracy. Recall from Section 3 that
θ̂�
<1> in iteration i= 1 is a consistent estimator, i.e. θ̂�

<1> =
θ�
0 for N to infinity, and that consistency of θ̂�

<1> implies
that

Cj
f f ,<2>(q, θ̂�

<1>) = P−1(q). (30)

Substituting (29) in (29) with i= 2 and rearranging terms
illustrates that zp, <2 >(t) = zopt(t). This result shows that
optimal accuracy in terms of accuracy is achieved with
Algorithm 4.1.
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Remark 4.2: For finite N, θ̂�
<1> is not exactly equal to

θ�
0 and multiple iterations are typically required to refine
zp, <i >(t). Practical use of the algorithm shows good con-
vergence properties. This is in accordance with the con-
vergence analysis for closely related iterative RIV algo-
rithms (Young, 2015).

4.3 Design procedure

Next, Algorithm 4.1 is embedded in a design procedure
to determine Cj+1

f f (q, θ j+1) according to (7) with V(θ�)
in (16). This design procedure implements the main con-
tribution of this paper, and is given next.

Procedure 4.1: Estimation of Cj+1
f f (q, θ j+1) after the jth

task:
1. Measure e jm(t ) and y jm(t ) for t = 1, . . . ,N, in the

jth task.
2. Construct ϕ j(t ) = �(q)(Cfb(q) +Cj

f f (q, θ
j))−1

y jm(t ).
3. Algorithm 4.1: Determine θ̂� with optimal accu-

racy.
4. ConstructCj+1

f f (q, θ j+1) = �(q)(θ j + θ̂�).

5. Set j → j + 1 and go to Step 1.

Remark 4.3: Procedure 4.1 is based on measured data
from a single task. The proposed procedure can directly
be implemented as a (batch-wise) recursive approach,
where measured data from multiple tasks is used to
reduce the variance of θ̂�.

5. Accuracy analysis of existing approaches

In this section, the accuracy properties of the itera-
tive feedforward tuning approaches in van der Meulen
et al. (2008) and Boeren, Oomen, et al. (2015) are
compared with the optimal approach derived in
Section 3. An overview of this comparison is provided in
Table 1.

5.1 Accuracy analysis of the approach in Boeren,
Oomen, et al. (2015)

The instrumental variable approach in Boeren, Oomen,
et al. (2015) uses as instruments z1(t) = �(q)r(t), with
�(q) the basis functions of Cj

f f (q), and L1(q) = 1. The
covariance matrix PIV, 1 corresponding to this design fol-
lows by substituting z1(t) and L1(q) = 1 in (25), and is

given by

PIV,1 = λ2
ε

[
Ē�(q)r(t )(ϕ j

r (t ))T
]−1

× [
Ē�(q)r(t )(�(q)r(t ))T

]
× [

Ē�(q)r(t )(ϕ j
r (t ))T

]−T
. (31)

Based on (31) and (23), it can be shown that PIV,1 � Popt
IV ,

i.e. the approach in Boeren, Oomen, et al. (2015) results
in non-optimal accuracy in terms of variance.

5.2 Accuracy analysis of the approach in van der
Meulen et al. (2008)

The iterative feedforward approach proposed in van der
Meulen et al. (2008) utilises L2(q) = 1 and z2(t) =
ϕ2(t) as instruments, where ϕ2(t ) = �(q)(Cfb(q) +
Cj

f f (q))
−1ym(t ) is constructed based on measured data

obtained in an additional task. As such, measured data
from two tasks is required to determine θ̂�, which results
in a 1/

√
2 reduced accuracy compared to the optimal

approach in Section 3. To see this, note that the asymp-
totic distribution of θ̂� corresponding to z2(t) yields

√
N(θ̂� − θ�

0 )
dist−→ N (0, PIV,2), (32)

based on two tasks of eachN samples, where PIV, 2 yields

PIV,2 = λ2
ε

[
Ēϕ

j
r (t )(ϕ

j
r (t ))T

]−1

×
[
Ēϕ2(t )ϕT

2 (t )
] [

Ēϕ
j
r (t )(ϕ

j
r (t ))T

]−T
.

In contrast, the asymptotic distribution corresponding to
the optimal instruments zopt is given by

√
2N(θ̂� − θ�

0 )
dist−→ N (0, Popt

IV ), (33)

based on two tasks of each N samples. Comparing
(32) and (33) reveals a 1/

√
2 reduced accuracy for the

approach based on z2(t) when compared to the optimal
approach. This result confirms that non-optimal accu-
racy is obtained with the approach proposed in van der
Meulen et al. (2008).

6. Simulation example

In this section, a simulation study is presented to

(1) Confirm that unbiased parameter estimates are
obtained for all considered IV approaches in
Table 1,
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Figure . Bode diagram of the system P.

Figure . Schematic illustration of a two-mass spring damper
system.

(2) Show that the proposed approach zp, <i >(t) leads
to enhanced accuracy of the parameter estimates
compared to the pre-existing approaches based on
z1(t) and z2(t),

(3) Illustrate the close relation between the statistical
accuracy of θ̂� and the performance of a motion
system.

6.1 System description

Consider the system P(q) given by

P(q) = 1.761 × 10−9

1 − 3.69q−1 + 5.225q−2 − 3.38q−3 + 0.8451q−4 ,

which represents a two-mass spring damper system with
non-collocated dynamics (see Figure 4 for a Bode plot).
A schematic illustration of the two-mass spring damper
system is depicted in Figure 5. The feedback controller
Cfb(q) is given by

Cfb = 7.444 × 104q−1 − 1.47 × 105q−2 + 7.259 × 104q−3

1 − 2.736q−1 + 2.49q−2 − 0.7537q−3 .

Recall from Section 2.2 that the unknown disturbance
wj(t) is assumed to be given by wj(t) = H(q)ϵj(t). Here,
H(q) is designed such that Assumption 2.1 holds, i.e.
H(q) = 1 + P(q)Cfb(q), and {ϵj(t)} is normally dis-
tributed white noise with zero mean and standard devi-
ation λϵ = 2.5 × 10−8. The system is excited by a third-
order reference signal, designed as in Biagiotti and Mel-
chiorri (2012). Furthermore, the feedforward controller

Cj
f f (q, θ

j) is parametrised as

Cj
f f (q, θ

j) = ψa(q−1)θ
j
a + ψs(q−1)θ

j
s ,

with basis functions

ψa(q−1) =
(
1 − q−1

Ts

)2

, ψs(q−1) =
(
1 − q−1

Ts

)4

,

parameters θ j = [
θ
j
a , θ

j
s
]T

, and sampling time Ts =
5 × 10−4 s. Hence, Cj

f f (q, θ
j) consist of acceleration

feedforwardψa(q−1)θ
j
a and snap feedforwardψs(q−1)θ

j
s .

Straightforward computations reveal that the true param-
eter vector θ0 of Cj

f f (q, θ
j), as defined in Section 3, is

given by θ0 = [22, 3 × 10−5]T. This implies that the
reference-induced contribution e jr (t ) is equal to zero for
all t whenCj

f f (q, θ0) is used as feedforward controller.
A Monte Carlo simulation study is performed for the

proposed approach with zp, <i >(t) in (27) and the pre-
existing approaches based on z1(t) and z2(t). The num-
ber of realisations is equal to m = 200, and a parameter
estimate in the lth realisation is denoted θ̂l . In a single
realisation, M = 5 tasks are performed, consisting of N
= 6000 samples each. After the jth task in the lth realisa-
tion, Procedure 4.1 is used to determine θ̂

j+1
l based on θ

j
l ,

and the measured signals e jm and y jm in the jth task. The
initial parameter vector is given by θ init = [16, 1× 10−5]T.
The sample mean corresponding to the jth task in the lth
realisation is defined as

θ̄ j = 1
m

m∑
l=1

θ̂
j
l , (34)

with θ̄ j = [θ̄ j
a θ̄

j
s ]T . The corresponding feedforward

controller is denoted asCj
f f (q, θ̄

j).

6.2 Simulation results: parameter estimation

The results of theMonte Carlo simulation study are given
in Figure 6 and Table 2. The following observations are
made:

(1) Unbiased estimates of θ0, i.e. θ̄ j = θ0, are obtained
for zp, <i >(t), z1(t), and z2(t). This confirms that all
considered IV approaches in Table 1 lead to unbi-
ased estimates.

(2) The standard deviation of θ̄
j
s is significantly

smaller for zp, <i >(t) when compared to z1(t) and
z2(t). This confirms that the proposed approach
leads to improved accuracy in terms of variance.
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Figure . Simulation results. Parameters θ̂ as a function of tasks for m =  realisations for z(t) (left), z(t) (middle) and the proposed
zp,<i>(t) (right) show that the standard deviation of θ̂a is comparable for all approaches, while the standard deviation of θ̂s is significantly
smaller for the proposed zp,<i>(t) compared to z(t) and z(t).

6.3 Simulation results: accuracy and performance

Next, the relation between the statistical accuracy of
the estimated parameters and the obtained performance
is analysed for the considered system. Recall from (6)
that a high-performance Cj

f f (q, θ
j) minimises e jr (t, θ j),

i.e. the error induced by the known r(t). Since θ̄ j in
(34) is an unbiased estimate of θ0 for all approaches in
Table 1, it follows from Section 3 that e jr (t, θ̄ j) = 0 for all
twhenCj

f f (q, θ̄
j) is used as feedforward controller. Con-

sequently, (1) implies that

e jm(t, θ̄ j) = −e jw(t ), (35)

which is the best possible result in the developed frame-
work for a fixed Cfb(q). However, as already shown in
Section 6.2, the estimate θ̂

j
l in realisation l can signifi-

cantly deviate from the sample mean θ̄ j. In this section,

the influence of this deviation on the achieved perfor-
mance is analysed for the IV approaches in Table 1.

Suppose that θ̂ j
l , e

j
m(t, θ̂ j

l ) andV (θ̂
j
l ) are stored for all

tasks, i.e. j= 1, …, 5, and all realisations, i.e. l= 1, …, 200.
Let θ̂ j

wc denote the parameters such thatV (θ̂
j
wc) ≥ V (θ̂

j
l )

for l = 1, …, 200. The corresponding worst-case error
e jwc(t, θ̂

j
wc) follows from (1) as

e jwc(t, θ̂
j
wc) = e jr (t, θ̂

j
wc) − e jw(t ), (36)

while the feedforward controller is denoted as
Cj

f f (q, θ̂
j
wc). Next, it is shown that enhanced accu-

racy in terms of variance results in a smaller difference
between e jwc(t, θ̂

j
wc) in (36) and e jm(t, θ̄ j) in (35), i.e.

improved worst-case performance.
The error e1wc(t ) in task j = 1 and cumulative power

spectrum are depicted in Figures 7 and 8, respectively.
The following observations are made:

Table . Summaryof results ofMonteCarlo simulation. Themeanvalueof θ̄1
a and θ̄1

s in task j=  for
zp,<i>(t), z(t) and z(t) confirm that unbiased parameter estimates are obtained for all methods,
while the standard deviation of θ̄1

a and θ̄1
s confirms that an enhanced accuracy is obtained with

the proposed approach zp,<i>(t) compared to z(t) and z(t).

Method Instrumental Mean θ̄ 1a Std. deviation θ̄ 1a Mean θ̄ 1s Std. deviation θ̄ 1a
variables

Proposed (Section ) zp,<i>(t ) = ϕ̂
j
r (t )  .× − × − .× −

Method  (Section .) z(t)= �(q)r(t)  .× − × − .× −

Method  (Section .) z(t)= ϕ(t)  .× − × − .× −
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(1) For zp, <i >(t), the contribution of e1r (t, θ̂1
wc) to

e1wc(t, θ̂1
wc) is negligible compared to the contribu-

tion of e1w(t ). Hence, e1wc(t, θ̂1
wc) is similar to the

optimal case e1m(t, θ̄1).
(2) For z1(t), the contribution of e1r (t, θ̂1

wc) to
e1wc(t, θ̂1

wc) is significant. As a result, e1wc(t, θ̂1
wc) is

significantly degraded compared to the optimal
case e1m(t, θ̄1).

Similar results as provided for z1(t) are obtained for z2(t),
and are omitted for brevity.

The provided simulation study showed that an
enhanced accuracy of the parameter estimates results
in a reduced difference between e1wc(t, θ̂1

wc) in (36) and
e1m(t, θ̄1) in (35). Hence, the worst-case error e1wc(t, θ̂1

wc)

based on a single set of measured data is improved by
using the proposed instruments zp, <i >(t). This confirms
that the statistical accuracy properties of θ̂ j are important
for performance.

7. Experimental results

In this section, the proposed approach in Section 4 is
applied to the prototype industrial nanopositioning sys-
tem depicted in Figure 9. The positioning stage, mea-
surement system, and actuation system are placed on a
vibration isolation table to isolate the system from exter-
nal disturbances originating from the environment.

The positioning stage is magnetically levitated and
actuated, and controlled in sixmotion degrees of freedom
(DOFs): three translations (x, y, and z) and three rota-
tions (Rx,Ry andRz).Magnetically levitated stages exhibit
contactless operation. Therefore, friction (which is typi-
cally an important disturbance inmotion control) is elim-
inated.

The actuation system consists of six linear magnetic
motors, with an added position offset such that each
actuator can also generate a force in the perpendicular
direction. The permanent magnets are connected to the
vibration isolation table, while the coils are part of the
positioning stage.

The measurement system consists of laser interferom-
eters in conjunction with a mirror block, connected to
the vibration isolation table and the positioning stage,
respectively. This system enables high-accuracy position
measurements in all six motion DOFs. In particular, sub-
nanometer resolution position measurements are avail-
able for the translational DOFs x, y and z. Throughout, all
systems and signals operate in discrete time with a sam-
pling time of Ts = 2 × 10−4 s.

7.1 Control configuration and reference signal
design

The proposed design procedure for the feedforward con-
troller is applied to the x-direction of the system, i.e. the
long-stroke (80 mm) direction of the setup in Figure 9. A
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Figure . Experimental setup with ©measurement system, © positioning stage, © linear magnetic actuation system and © vibration
isolation table.
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Figure . Frequency response function of the considered system
P(q) in x-direction.

stabilising feedback controller Cmimo
f b is designed for the

multivariable system by means of sequential loopshaping
(see Skogestad & Postlethwaite, 2005, Section 10.6) for
details. By closing the control loops for the remaining 5
DOFs, i.e. y, z, Rx, Ry and Rz, a single-input, single-output
equivalent system P(q) is obtained for the x-direction.
The frequency response function of the equivalent sys-
tem P(q) for the x-direction is depicted in Figure 10. The
dynamical response of a linearmotion system P(s), where
s is the Laplace operator, with proportional damping can
be written as a sum of N second-order subsystems

P(s) =
n∑

i=1

cTi bi
s2

+
N∑

i=n+1

cTi bi
s2 + 2ζiωis + ω2

i
, (37)

with n the number of rigid-body modes, cTi the ith col-
umn of the output matrix C ∈ R

n×N , bi the ith row of

the input matrix B ∈ R
N×n, ζ i the dimensionless damp-

ing constant, and ωi the natural frequency of the ith
second-order subsystem. Inspection reveals rigid-body
behaviour (as described by the first term in (37)) below
approximately 300 Hz, while the first resonance phe-
nomena (as described by the latter term in (37)) appear
at 480 and 860 Hz. For a motion system with dom-
inant rigid-body dynamics in the frequency range of
interest, parametric models are typically developed that
only describe the rigid-body dynamics, i.e. the first term
in (37).

The feedback controller Cfb(q) for the x-direction
of the system is depicted in Figure 11, and achieves
a bandwidth (defined as the lowest frequency where
|CfbP| = 1) of 120 Hz. This bandwidth results in rejec-
tion of low-frequency disturbances, while having suffi-
cient robustness against uncertainty in the resonances
of P(q).

The reference r(t) of the performed servo task is
depicted in Figure 12, together with its acceleration, jerk
and snap, i.e. the second, third and fourth derivative of
r(t).

7.2 Parametrisation feedforward controller

For the general parametrisation of Cff(q, θ) in (3), (1) the
number of parameters nθ and (2) the selection of basis
functions �(q) should be determined to obtain Cff(q, θ).
Here, the parametrisation ofCff(q, θ) is chosen as in Lam-
brechts et al. (2005). This parametrisation is developed
for motion systems with dominant rigid-body dynamics
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Figure . Bode diagram of the feedback controller Cfb(q) for the
x-direction of the experimental setup.

as in Figure 10, and is given by

Cf f (q, θ ) = �(q)θ, (38)

with basis functions �(q) = [ψv(q−1), ψa(q−1),
ψ j(q−1), ψ s(q−1)], where

ψv (q−1) =
(
1 − q−1

Ts

)
, ψa(q−1) =

(
1 − q−1

Ts

)2

,

ψ j(q−1) =
(
1 − q−1

Ts

)3

, ψs(q−1) =
(
1 − q−1

Ts

)4

,

(39)

and corresponding parameters θ = [θv θa θ j θs]T ∈
R

nθ . For Cff(q, θ) in (40), it holds that

Cf f (q, θ )|q=1 = 0,

i.e. the static gain of Cff(q, θ) is equal to zero. This condi-
tion implies that the feedforward signal uff is equal to zero
when the system is in stand-still, which is a desired prop-
erty for motion systems with rigid-body dynamics. Fur-
thermore, recall that the considered experimental setup
operates contactless, thereby eliminating performance-
deteriorating friction. As such, friction feedforward is not
included in the feedforward controller in (40).

7.3 Experimental results for optimal IVmethod

In this section, the key experimental results of this paper
are presented, which involve the application of Proce-
dure 4.1 on the nanopositioning system in Figure 9. Five
tasks are performed of N = 2700 samples each, with r(t)
as depicted in Figure 12. In addition, r(t) filtered by the
basis functions in (41) is shown in Figure 12.

During the jth task, the measured signals e jm(t ) and
y jm(t ), for t = 1, ..., N, are stored. Then, this batch of
measured data is used to determine Cj+1

f f (q, θ j+1). To
initialise Procedure 4.1, C1

f f (q, θ
1) in the first task has

parameters θ1 = [0, 0, 0, 0]T, i.e., C1
f f (q, θ

1) = 0. The
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performance obtained in task j = 1 is, therefore, the
performance with only feedback control applied to the
system. Alternatively, the linear least squares estimation
approach in van der Meulen et al. (2008) can be used to
determine an initial parameter vector θ1.

The measured error signal e jm(t ) in the first, sec-
ond and third task are depicted in Figure 13, while
the corresponding cumulative power spectrum is shown
in Figure 14. In addition, the two-norm of e jm(t ), i.e.
‖e jm(t )‖22, as a function of tasks is depicted in Figure 15.
The following observations are made:
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Figure . The two-norm of the measured error e jm(t ) as a func-
tion of tasks shows convergence in two tasks.
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Figure . Iterative refinement of the instruments zp, **< i>(t) after
task j = : (Cfb + C1

f f,<3>)−1 (green) corresponding to the i = 
computational iteration of Algorithm . is an improved approx-
imation of the frequency response function of the process sensi-
tivity S(q)P(q) (black) compared to (Cfb + C1

f f,<1>)−1 (dashed red)
in the i=  iteration of Algorithm .. (To view this figure in colour,
please see the online version of this journal.)

(1) The peak value of e3m(t ) in task j = 3 is reduced
by approximately 97% when compared to e1m(t ) in
the first task. This confirms that the proposed iter-
ative feedforward approach significantly enhances
the positioning accuracy of the system compared
to only feedback control.

(2) Figures 13 and 14 show that the low-frequency
contribution up to approximately 10 Hz is not
compensated for by C3

f f (q, θ
3) in task j = 3.

This implies that the dynamical behaviour of the
experimental setup in this frequency range is
not captured by the parametrisation proposed in
Section 7.2. This can be contributed to the dynam-
ics of the cable connection between the fixedworld
and the (moving) positioning stage, which acts as
a low-frequency disturbance on the system.

(3) Figure 15 shows that ‖e jm(t )‖22 converges in two
tasks. This confirms that fast convergence in
terms of ‖e jm(t )‖22 is obtained with the proposed
approach.

7.4 Analysis of Algorithm 4.1

The iterative refinement of zp, <i >(t) proposed in Algo-
rithm 4.1 is an essential attribute of Procedure 4.1. In
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this section, Algorithm 4.1 is illustrated for the consid-
ered experimental setup. Recall from (28) that the opti-
mal instruments zopt(t) can be expressed as

zopt(t ) = �(q)S(q)P(q)r(t ),

and optimal accuracy is obtained, i.e. zp, <i >(t) = zopt(t),
if

(Cfb(q) +Cj
f f ,<i>(q, θ̂�

<i−1>))−1 = S(q)P(q).

This result enables a visual illustration of Algorithm 4.1
by comparing the identified frequency response func-
tion of S(q)P(q) with the frequency response of (Cfb(q) +
Cj

f f ,<i>(q))−1.
The analysis in this section is based on the measured

signals e1m(t ) and y1m(t ), for t = 1, …, N, in task j = 1
withC1

f f (q, θ
1) implemented on the experimental setup.

Furthermore, the number of computational iterations of
Algorithm 4.1 is given by K = 3. Figure 16 reveals that

(Cfb +C1
f f ,<3>)−1 in iteration i = 3 of Algorithm 4.1 is a

significantly improved approximation of S(q)P(q) in the
frequency range up to 200 Hz, when compared to iter-
ation i = 1. This confirms that iterative refinement of
zp, <i >(t) by means of Algorithm 4.1 results in zp, <i >(t)
that resemble the optimal zopt(t).

7.5 Enhanced flexibility to reference variations and
comparisonwith ILC

As is argued in Sections 1 and 2, the key moti-
vation for the proposed feedforward approach com-
pared to ILC algorithms is an enhanced flexibility with
respect to changes in the reference trajectory. To demon-
strate this flexibility, two similar yet slightly different
reference trajectories are applied to the considered
nanopositioning system. These reference trajectories are
depicted in Figure 17. Then, the optimal IV approach pro-
posed in Section 4 is compared to the standard frequency-
domain ILC-based approach (see, e.g. Bristow et al.,
2006).
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Figure . Flexibility with respect to changes in the reference trajectory between tasks for ILC. Before task j= , the reference trajectory
is changed from r to r (see Figure ). For standard ILC, the measured error signal e(t) (blue) in task j=  is significantly smaller than for
e(t) (green) in task j= . This confirms that for standard ILC, the servo performance is severely deteriorated if the reference is changed at
j= . (To view this this figure in colour, please see the online version of this journal.)
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The measured error signals e5(t) in task j= 5 and e6(t)
in task j = 6 as depicted in Figure 18 for ILC, and in
Figure 19 for the proposed optimal IV approach confirm
that (1) the servo performance obtainedwith ILC severely
deteriorateswhen the reference is slightly changed and (2)
the proposed approach is insensitive to reference changes.
Note that the error in tasks j = 5 is smaller for ILC than
for the proposed approach. Sincemotion systems are typ-
ically confronted with similar yet slightly different ref-
erence signals (Lambrechts et al., 2005; Oomen et al.,
2014), the proposed optimal IV approach is preferred
in industrial practice since learning transients are elim-
inated when the reference trajectory is changed.

8. Conclusions

In this paper, a new algorithm is proposed for itera-
tive feedforward control based on instrumental variables.
The key advantage of the proposed algorithm is that
it achieves optimal accuracy in terms of variance, in
contrast to existing approaches, which are shown to be
non-optimal. To achieve optimal accuracy, the proposed
algorithm iteratively updates an estimate of the opti-
mal instruments. The assumptions that are introduced in
Section 2.2 are for a large class of motion systems nonre-
strictive for the achievable performance. If the considered
motion system is subject to reference signals with high-
frequency signal content, the proposed approach can be
extended by allowing more general parametrisations by
means of input shaping (Boeren, Bruijnen, van Dijk, et al.
2014) and rational feedforward (Bolder &Oomen, 2015).
The proposed method is validated by means of a simu-
lation example, showing improved accuracy compared to
pre-existing approaches. Finally, the procedure is success-
fully applied to an industrial nanopositioning system.The

presented experimental results confirm the practical rel-
evance of the proposed approach.

Ongoing research focuses on extensions towards opti-
mal input design (Formentin, Karimi, & Savaresi, 2013a),
inferential control, positioning-varying effects (Groot
Wassink, van deWal, Scherer, & Bosgra, 2005) andmulti-
variable systems. For the considered nanopositioning sys-
tem in Figure 9, improved performance can be obtained
by compensating for the dynamics of the cable connec-
tion between the fixed world and the (moving) position-
ing stage by means of feedforward control.
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