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ABSTRACT
It is a common conviction that forward motion control of tractor-trailer vehicles is a substantially simpler
problem relative to reversing with trailers. This opinion may be misleading when considering the N-trailer
vehicles moving forward with positive hitching offsets when a guidance point is located on a trailer. Due to
the non-minimum-phase nature of vehicle kinematics, closing a feedback from a trailer posture can lead to
the jackknife effect in this case. So far, there has been no solution to this problem for the N-trailers admit-
ting trajectories of a varying curvature. To fill this gap, we propose a scalable and modular control strategy
applicable to the N-trailer vehicles equipped solely with off-axle interconnections. The concept relies on a
transformation of the control problem posed for the non-minimum-phase kinematics into a corresponding
problem formulated for a virtual vehicle of minimum-phase kinematics, which can be solved by using the
recently proposed cascade-like controller.

1. Introduction
The need of accurate guiding the (last) trailer of tractor-trailer
vehicles moving forward appears in various practical applica-
tions. For instance, positioning of the urban articulated buses is
often prohibited by law in a backward manner when manoeu-
vering on urban streets and in vicinity of bus stations (Tan &
Huang, 2014). Agricultural tasks with tractor-trailers are per-
formed mostly in the forward motion strategy (Auat Cheein
et al., 2016; Backman, Oksanen, & Visala, 2012; Karkee & Stew-
ard, 2010; Werner, Kormann, & Mueller, 2013). Finally, some
loading/unloading tasks require positioning of the trailer(s)
when a vehicle is moving forward. Therefore, considering the
forward tracking problem for the articulated vehicles seems jus-
tified by the practical needs.

Numerous solutions to the trajectory tracking task for the
tractor-trailer vehicles have been proposed in the literature so
far. However, most of them have been devoted to the backward-
motion case, either for tractor-trailers kinematics with some
particular number of trailers (usually for 1-trailers only) (Bullo
& Murray, 1996; Kayacan, Ramon, & Saeys, 2016; Khalaji &
Moosavian, 2014; Kim & Oh, 2002; Lamiraux, Sekhavat, &
Laumond, 1999; Pradalier & Usher, 2008; Yuan & Zhu, 2016;
Yue, Hou, Gao, & Chen, 2018) or for vehicles equipped solely
with on-axle hitches (the kinematics of which belong to dif-
ferentially flat systems) (Cheng, Wang, Zhang, & Wang, 2017;
Khalaji & Moosavian, 2016; Morin & Samson, 2008b; Pazder-
ski, Waśkowicz, & Kozłowski, 2015). Design of a trajectory-
tracking control strategy for truly N-trailer robotic vehicles (i.e.
those admitting an arbitrary number of trailers) equipped with

CONTACT Maciej Marcin Michałek maciej.michalek@put.poznan.pl

non-zero hitching offsets, and where the guidance point of a
vehicle is located on a (last) trailer, is generally a more diffi-
cult problem (Chung, Park, Yoo, Roh, & Choi, 2011; Michałek,
2017). It is a consequence of specific properties characterising
kinematics of such systems which are no more differentially
flat (Michałek, 2013; Rouchon, Fliess, Levine, & Martin, 1993).
One of the most commonly mentioned and addressed prop-
erties refers to the joint-instability of a vehicle chain in back-
ward motion conditions. Therefore, the forward motion tasks
are usually treated as much simpler due to structural stabil-
ity of the vehicle’s joint-dynamics in these motion conditions.
However, it does not reflect the full complexity of the prob-
lem. Namely, if the N-trailer contains positive hitching offsets
and moves forward (i.e. with positive longitudinal velocities of
the vehicle segments) onemust expect the non-minimum-phase
effects in dynamics between the angular configuration variables
of a vehicle and the angular velocity of a tractor (a detailed treat-
ment of this issue can be found inMichałek (2013); see alsoMar-
tinez, Morales, Mandow, and Garcia-Cerezo (2008)). It is well
known (see, e.g. Aguiar, Hespanha, &Kokotović, 2008; Hoagg &
Bernstein, 2007; Seron, Braslavsky, & Goodwin, 1997 and refer-
ences cited therein) that the non-minimum-phasiness of a plant
imposes fundamental limitations on the feedback control design
andmay restrict performance attainable in a closed-loop system.
As a consequence, in the case of automatically guidedN-trailers,
the non-minimum-phasiness may be the reason of the so-called
jackknife effect, even in forward motion conditions, which is
manifested by the undesirable (and usually destructive) folding
of a vehicle in its passive joints (Chiu & Goswami, 2014). This
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particular limitation has been observed and formally explained
by the authors of Bolzern, DeSantis, and Locatelli (2001) and
Michałek (2017) in the context of cascade-like control design. A
simple remedy applied by most investigators in the case of for-
wardmotion conditions is to move the guidance point of a vehi-
cle to the tractor segment which substantially simplifies the con-
trol design problem (Astolfi, Bolzern, & Locatelli, 2004; Bolzern
et al., 2001; DeSantis, Bourgeot, Todeschi, & Hurteau, 2002; Ma,
Niu, Xie, & Lin, 2014; Yuan &Huang, 2006). However, this sim-
ple trick also essentially changes an underlying control objective,
which becomes unsuitable when a motion task is defined with
respect to a trailer, rather than to a tractor segment. An alter-
native approach, (although not so simple) is to approximate the
N-trailer kinematics by a differentially flat system, which for a
vehicle containing the non-zero hitching offsets is possible only
locally and only in special cases; see Lizarraga, Morin, and Sam-
son (2001), and Bolzern, DeSantis, Locatelli, and Masciocchi
(1998).

As a consequence of the above-mentioned difficulties, any
generic solution to the forward tracking control problem for
truly N-trailers with positive hitching offsets and the guidance
point located on a trailer has not been presented so far, except
some preliminary or restricted results. Namely, a solution to
the path-following problem in forward motion conditions for
the non-minimum-phase kinematics has been proposed in Car-
iou, Lenain, Thuilot, and Martinet (2010), and Leng and Minor
(2017) for a tractor-single-trailer vehicle. Both solutions are
interesting, however, only Leng and Minor (2017) presents a
control strategy which deals with the varying-curvature paths.
It is not clear if they can be (easily) generalised to the N-trailer
case. To the authors’ best knowledge, the only work address-
ing the N-trailers in the context of control design for forward
motion conditions with a guidance point located on the last
trailer is Bolzern et al. (1998), where the ghost-vehicle approach
was proposed by applying a feedback-linearisation concept for
the case of constant-curvature reference paths. However, scal-
ability of this solution (with respect to a number of trailers) is
essentially limited requiring derivation of a control law for any
particular case of the N-trailer structure, where complexity of
the controller substantially increases with a number of trailers.

In view of the above comments, we propose a cascade-
like scalable control strategy for truly N-trailer robots of non-
minimum-phase kinematics containing only non-zero hitching
offsets to address the trajectory tracking task under forward
motion conditions with a guidance point located on a last trailer.
A general concept proposed here (motivated by Bolzern et al.,
1998) relies on a transformation of an original control task stated
for a real vehicle of non-minimum-phase kinematics into a cor-
responding control problem for a virtual tractor-trailers vehicle
of minimum-phase kinematics, which shares a common trac-
tor with the real N-trailer. Designing a feedback controller for
a virtual vehicle and applying it to the real tractor helps in
avoiding a jackknife phenomenon, and simultaneously enables
to obtain an asymptotic tracking of even complex reference tra-
jectories in forward motion conditions. To our best knowledge,
it is the first solution to the forward tracking problem devised
for truly N-trailers of non-minimum-phase kinematics which
admits reference trajectories of a varying curvature. In con-
trast to Bolzern et al. (1998), we do not apply any linearisation

Figure . REAL nSNT vehicle (black) and its VIRTUAL nSNT minimum-phase coun-
terpart (gray) in a global frame {G}.

concept, and provide a modular non-singular controller appli-
cable to N-trailer structures with all positive or mixed (posi-
tive and negative) hitching offsets. The approach proposed in
this paper builds upon Michałek (2017), however, it is (non-
trivially) adopted to address the forward tracking problem for
vehicles with non-minimum-phase kinematics, not considered
in Michałek (2017).

2. Vehicle kinematics and problem formulation

2.1 Kinematic model of the real and virtual vehicles
Let us consider the N-trailer vehicle presented in Figure 1,
which consists of an active unicycle-like tractor and an arbitrary
number of N passive trailers interconnected with passive rotary
joints. For our purposes, we will distinguish two vehicles: the
REAL vehicle (denoted in black in Figure 1) representing a phys-
ically availableN-trailer, and theVIRTUALvehicle which is only
an imaginary object. The vehicles share a common tractor and
possess the same number of segments. The aim of introducing
the virtual vehicle will be clarified in Section 3.1.

The configuration and control input of the real vehicle will be
represented, respectively, by

q �
[

β

qN

]
∈ T

N × R
3 and u0 =

[
ω0
v0

]
∈ R

2, (1)

where the joint-angles vector β = [β1 . . . βN]� determines a
vehicle shape described on theN-dimensional torus T

N = S
1 ×

· · · × S
1 (N times), vector qN = [θN xN yN]� denotes a posture

of a last trailer (called the guidance segment), whileω0 and v0 are,
respectively, an angular tractor velocity and a longitudinal veloc-
ity of a wheels-axle midpoint of the tractor. Segments of the real
vehicle are characterised by two kinds of kinematic parameters:
trailer lengths Li > 0 and hitching offsets Lhi ∈ R. The ith hitch-
ing offset is positive (Lhi > 0) if a hitching point in located behind
a wheels-axle of the (i − 1)st vehicle’s segment, it is negative if
a hitching point is located in front of the wheels-axle, whereas



INTERNATIONAL JOURNAL OF CONTROL 2549

Lhi = 0 when the hitching point is located exactly on the wheels-
axle (see Figure 1: on the picture LhN > 0 but L̄hN < 0).

We assume what follows:

A1. Lhi � 0 � i = 1,… , N and � i Lhi > 0.

AssumptionA1 restricts our considerations to the class of the
so-called non-Standard N-Trailers (nSNT – see e.g. Michałek,
2017) in which the signs of hitching offsets can be mixed (we
admit both positive and negative offsets in the same kinematic
chain), while at least one of the offsets is positive. The latter
makes the control problem especially difficult in the forward
motion strategy. It is due to the fact (formally addressed in
Michałek, 2013) that kinematics of the N-trailer moving with
positive longitudinal velocity reveals the non-minimum-phase
property in the dynamic route between the angular velocity of
the tractor and angular configuration variables of the vehicle if
hitching offsets are positive.

Assuming the rolling-without-slipping motion condition for
all the vehicle’s wheels, every ith vehicle segment (i = 0,… , N)
can be treated as a unicycle with kinematics defined as follows
(we use notation sα = sinα and cα = cosα for conciseness):

q̇i = G(qi)ui =
[
1 0 0
0 cθi sθi

]�
ui, i = 0, . . . ,N, (2)

with posture qi = [θi xi yi]� ∈ R
3 and input velocity ui =

[ωi vi]� ∈ R
2. According to Michałek (2013) and Michałek

(2017), one can express the N-trailer kinematics in the form of
a driftless system

[
β̇

q̇N

]
︸ ︷︷ ︸

q̇

=
⎡
⎣ Sβ (β)

− − − − −
SN (β, qN )

⎤
⎦

︸ ︷︷ ︸
S(q)

u0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c��1(β1)

c��2(β2)J1(β1)
...

c��N (βN )J1N−1(β)

− − − − − − −−
c�J1N (β)

d�J1N (β)cθN
d�J1N (β)sθN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u0,

(3)

where�i(βi) � I2×2 − J i(βi), I2×2 ∈ R
2×2 is an identitymatrix,

J1i (β) � J i(βi) . . . J1(β1), c� � [1 0], d� � [0 1], while

J i(βi) =
[−(Lhi/Li)cβi (1/Li)sβi

Lhi sβi cβi

]
(4)

is a velocity transformationmatrix, which has got a well-defined
inverse J−1

i (βi) under Assumption A1. Matrix (4) transforms
velocities ui and ui−1 of any two neighbouring vehicle segments
according to the formula: ui = J i(βi)ui−1. By iterative applica-
tion of this transformation, and its inverse, one gets two key
mappings between velocities along a vehicle chain (valid for i �
{1,… , N})

ui =
1∏
j=i

J j(β j)u0, ui−1 =
N∏
j=i

J−1
j (β j)uN, (5)

which will be essential for further considerations. It is worth
to stress once again that kinematics (3) under Assumption
A1 reveals the non-minimum-phase property in the forward
motion conditions (for more details, we refer a reader to
Michałek, 2013). This structural property is a main source of
difficulties for a control strategy design discussed in Section 3.

The virtual vehicle can be described, by analogy to the real
vehicle, with virtual configuration and input vectors

q̄ �
[

β̄

q̄N

]
∈ T

N × R
3, ū0 ≡ u0 ∈ R

2 (6)

denoted with a bar mark above particular symbols. The equiv-
alence ū0 ≡ u0 results from the assumption that the tractor is a
common segment for both vehicles. For the virtual vehicle, we
assume what follows:

A2. L̄hi = −hi |Lhi| � i = 1,… , N, hi > 0,
A3. L̄i >

∣∣L̄hi∣∣ � i = 1,… , N.

Assumption A2 imposes solely negative hitching offsets in
the virtual vehicle chain, whichmakes its kinematicsminimum-
phase in the forward motion conditions (see Michałek, 2013) –
it is the key difference between kinematics of the virtual vehicle
and the real one. Moreover, by introducing the design factors
hi we admit different lengths of hitching offsets for the virtual
vehicle than the lengths of the offsets present in the real vehi-
cle. It will be shown in Section 5.1 that factors hi are useful in
adjusting a measurement-noise sensitivity of a closed-loop sys-
tem. A3 comes from obvious mechanical constraints, however,
we do not impose any other special limitation on selection of L̄i.
It will be shown in Section 5.1 that the values of parameters L̄i
influence a transient performance of a closed-loop system and
may be treated as design parameters.

Introducing the velocity transformationmatrix for the virtual
vehicle as

J̄ i(β̄i) =
[−(L̄hi/L̄i) cβ̄i (1/L̄i) sβ̄i

L̄hisβ̄i cβ̄i

]
, (7)

one can write kinematic relations and velocity mappings for the
virtual vehicle in the same forms as in Equation (2), (3) and (5),
respectively, but using the symbols denoted with a bar mark.

2.2 Underlyingmappings of direct and inverse kinematics
Let us define the direct and inverse kinematic mappings for the
nSNT structures which will be instrumental for the subsequent
considerations.

The inverse posture kinematics invQi : R
3 × T

N → R
3 is

used to compute a posture qi = invQi(qN,β) of the ith vehicle
segment (cf. Equation (2)) upon the knowledge of the guidance
segment posture qN = [θN xN yN]� and the joint angles β of a
vehicle. Based on geometrical arguments inferred from Figure
1, one can write the following iterative relationships: θ i = θ i + 1
+ β i + 1, xi = xi + 1 + Li + 1cθ i + 1 + Lhi + 1cθ i, and yi = yi + 1 +
Li + 1sθ i + 1 + Lhi + 1sθ i, which are valid for i � {0,… , N − 1}.
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Next, the iterative equations can be reformulated into a non-
iterative form

invQi(qN,β) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θN +
i+1∑
l=N

βl

xN +
i+1∑
j=N

(Ljcθ j + Lhjcθ j−1)

yN +
i+1∑
j=N

(Ljsθ j + Lhjsθ j−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where i � {0,… , N − 1}, while θ j = θN + ∑ j+1
l=N βl and θ j−1 =

θN + ∑ j
l=N βl are computable solely upon qN and β according

to the first row of Equation (8).
The direct posture kinematics Qi : R

3 × T
N → R

3 is used to
compute a posture qi = Qi(q0,β) of the ith vehicle segment
upon the knowledge of the tractor posture q0 = [θ0 x0 y0]� and
the joint angles β of a vehicle. Recalling the iterative relations
formulated above Equation (8), one can write: θ i = θ i−1 − β i,
xi = xi−1 − Licθ i − Lhicθ i−1, and yi = yi−1 − Lisθ i − Lhisθ i−1,
valid for i� {1,… ,N}. One can reformulate these equations into
a non-iterative form

Qi(q0,β) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ0 −
i∑

l=1

βl

x0 −
i∑

j=1

(Ljcθ j + Lhjcθ j−1)

y0 −
i∑

j=1

(Ljsθ j + Lhjsθ j−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where i � {1,… , N}, while θ j = θ0 − ∑ j
l=1 βl and θ j−1 = θ0 −∑ j−1

l=1 βl are computable solely upon q0 and β according to the
first row of Equation (9).

By analogy to the direct and inverse kinematics for pos-
tures, let us define their counterparts in the domain of veloci-
ties. Recalling relationships (5), one can introduce twomappings
V i, invV i : R

2 × T
N → R

2 called the direct velocity kinematics
and inverse velocity kinematics, respectively, of the forms

V i(u0,β) �
∏1

j=i J j(β j)u0, (10)

invV i(uN,β) �
∏N

j=i+1 J
−1
j (β j)uN . (11)

The direct velocity kinematics allows computing velocities ui =
V i(u0,β) of the ith vehicle segment (cf. Equation (2)) based on
the tractor velocities u0 and the joint angles β of a vehicle. On
the other hand, the inverse velocity kinematics return velocity
vector ui = invV i(uN,β) computed upon velocities uN of the
last trailer and the joint angles β of a vehicle.

Remark 2.1: From now on, by writing invQ̄i and invV̄ i or Q̄i

and V̄ i (with the barmark above) we will understand the inverse
or direct kinematics, respectively, computed by using the appro-
priate parameters L̄ j and L̄h j of the virtual vehicle instead of the

real vehicle’s parameters Lj and Lhj. This distinguishing will be
important in the following sections.

2.3 Reference trajectories and control problem
formulation
For the real nSNT vehicle, we prescribe the reference guidance
trajectory qNr(t ) = [θNr(t ) xNr(t ) yNr(t )]� ∈ R

3 admissible for
the unicycle kinematics, that is,

qNr(t ) : ∀t ≥ 0 q̇Nr(t ) = G(qNr(t ))uNr(t ), (12)

where the form of G(qNr) results from Equation (2), while
uNr(t ) = [ωNr(t ) vNr(t )]� is a reference guidance velocity such
that

(r1) � t� 0 vNr(t)> 0 (persistent forward referencemotion),
(r2) supt≥0 ‖ uNr(t )‖ ≤ δ1, supt≥0 ‖ u̇Nr(t )‖ ≤ δ2, for some

finite upper bounds δ1, δ2 > 0.

With the reference guidance trajectory qNr(t ) we associate a
reference shape trajectory βr(t ) compatible with qNr(t ) by sat-
isfying the reference shape kinematics (the exogenous system)

β̇r
(3)= Sβ (βr)u0r

(5)= Sβ (βr)

N∏
j=1

J−1
j (β jr)uNr (13)

expressed with the same reference velocity uNr used in Equation
(12). There is a conjecture that there exist 2N steady solutions βr
of Equation (13) compatible with the same guidance trajectory
qNr(t ) (that is, corresponding to the same velocity uNr(t )). Most
of them, however, lead to the jackknife effect and usually should
be avoided in practical applications. Therefore, amongst all the
possible reference trajectories qr(t ) = [β�

r (t ) q�
Nr(t )]� satisfy-

ing Equation (12) and (13) we will consider only the so-called
S-P (Segment-Platooning) trajectories (Michałek, 2017), which
guarantee the same signs for reference longitudinal velocities of
all the vehicle segments, i.e.

qr(t ) : vir(t )vi−1r(t ) > 0 ∀ t ≥ 0, i = 1, . . . ,N (14)

where vi−1r
(5)= [0 1] · ∏N

j=i J
−1
j (β jr)uNr. The S-P property (14)

is highly desirable because it prevents the jackknife effect along
a reference trajectory qr(t ).

Introducing now the shape tracking error and the guidance
tracking error, respectively, as

β̃ � βr − β, eN � qNr − qN = [
eθ ex ey

]�
, (15)

one can formulate the following control problem.

Problem 2.1: Find a feedback control strategy for input u0 of
kinematics (3) under Assumption A1, which ensures bounded-
ness and asymptotic convergence of tracking errors (15) to zero
for reference trajectories qr(t ) satisfying S-P condition (14) and
requirements (r1)–(r2).
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3. Tracking control law

3.1 Control strategy description: the virtual-vehicle
concept
At the first attempt, one could try to apply the cascade-like con-
trol law proposed in Michałek (2017) to solve the Problem 2.1
stated above. Unfortunately, the analysis provided in Michałek
(2017) reveals that application of this control law to theN-trailer
kinematics satisfying Assumption A1 will inevitably lead to the
undesirable jackknife effect (see the results in Section 5.1). This
is a direct consequence of the non-minimum-phase kinematics
of the real N-trailer vehicle in the forward motion conditions
(Michałek, 2013).

In order to prevent the jackknife phenomenon, we propose
to apply the virtual-vehicle concept (motivated by Bolzern et al.,
1998) using the virtual vehicle introduced in Section 2 which,
in contrast to the real vehicle, possesses the minimum-phase
kinematics in the forward motion conditions under Assump-
tion A2. A general idea is to transform the ill-conditioned con-
trol problem posed for the real vehicle (see Problem 2.1) into
a corresponding problem being well-conditioned for the virtual
vehicle. Next, we propose to apply the cascade-like control law
presented inMichałek (2017) to the virtual vehicle which should
guarantee asymptotic guidance of its last trailer along a cor-
responding reference trajectory without a jackknife effect. The
question is: how to ensure that asymptotic stability obtained for
a closed-loop system with the virtual vehicle entails solution to
Problem2.1 for the real vehicle?One can achieve it in the control
system illustrated in Figure 2 by using two key transformations
between the real and virtual kinematics (denoted as � andH in
Figure 2), and recalling that the tractor links the two vehicles
together. Let us explain the roles played by the two mappings.

Mapping� transforms the prescribed reference guidance tra-
jectory qNr(t ) and the reference guidance velocity uNr(t ) to the
corresponding compatible reference signals, q̄Nr(t ) and ūNr(t ),
for the virtual vehicle, i.e.[

q̄Nr
ūNr

]
= �(qNr, uNr) =

[
�q(qNr, uNr)

�u(uNr)

]
, (16)

where the exact construction of mapping � will be explained
in Section 3.2. With reference signals q̄Nr and ūNr we have to
associate (by analogy to the real vehicle) the reference virtual
shape configuration β̄r = [β̄1r . . . β̄Nr]�, which will be com-
puted within mapping � as an auxiliary signal (see Section 3.2
and Figure 3) but will not be directly used in a control process.

Figure . Functional scheme explaining computational stages required for map-
ping � used in the reference trajectory generator for the nSNT vehicle.

A role of transformation H is to establish a correspondence
between the guidance segment posture q̄N of the virtual vehicle
and measurable configuration q of the real vehicle. Such a cor-
respondence can be obtained by the following transformation:

q̄N = H(qN,β, β̄), (17)

where the exact construction of mappingH will be explained in
Section 3.2.

Having the two mappings, � and H , let us introduce the vir-
tual tracking errors (cf. Equation (15))

˜̄β � β̄r − β̄, ēN � q̄Nr − q̄N = [
ēθ ēx ēy

]�
. (18)

Since the virtual vehicle of minimum-phase kinematics meets
all the requirements imposed in Michałek (2017) for the
cascade-like controller to guarantee asymptotic stability of point
(ēN,

˜̄β) = (0, 0) in forward motion conditions for the S-P tra-
jectories, we propose the following feedback control law:

u0(t ) �
N∏
j=1

J̄−1
j (β̄ j(t ))φ(ēN (t ), t ) (19)

where φ(ēN (t ), t ) is an outer-loop tracking control function
devised for the unicycle kinematics and possessing some par-
ticular properties (see Remark 3.2). We suppose (it will be for-
mally shown in Section 4) that by application of Equation (19)
into a tractor – the common segment of both the virtual and
the real vehicle – will lead to asymptotic tracking of the corre-
sponding S-P trajectory q̄r(t ) = [β̄

�
r (t ) q̄�

Nr(t )]� by the virtual
vehicle and, as a consequence, will lead to asymptotic tracking
the originally prescribed S-P trajectory qr(t ) by the real vehicle.

Figure . Block scheme of the proposed control system (RSG= reference signals generator, R→V denotes mapping from REAL to VIRTUAL vehicle).
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The above reasoning expresses an underlying idea of the virtual
vehicle approach.

Remark 3.1: The form of control law (19), together with
Assumption A2, explains a necessity of introducing Assump-
tion A1. Namely, if any ith hitching offset is of a zero length,
the matrix J̄ i becomes singular and cannot be used in Equation
(19).

Remark 3.2: It is worth noting that control law (19) has a mod-
ular structure since the outer-loop control function φ(ēN (t ), t )
represents any continuous and bounded asymptotic tracking
control function developed for unicycle kinematics satisfying
the following general properties (Michałek, 2017) (numerous
control functions of this type can be found in the literature – see
e.g. Canudas deWit, Siciliano, & Bastin, 1996;Morin & Samson,
2008a):

(p1) φ(0, t ) ≡ ūNr(t ),
(p2) ūN (t ) ≡ φ(ēN (t ), t ) makes the point ēN = 0 uniformly

asymptotically stable in some domainDE ⊆ R
3,

(p3) property (p2) entails ‖ φ(ēN (t ), t )‖ < ∞ for all t � 0
and ∀ ēN ∈ DE .

Remark 3.3: The form of matrix J̄−1
j (β̄ j) in Equation (19)

results from the inverse of the matrix from Equation (7), and
it has to be evaluated upon the current shape configuration β̄

of the virtual vehicle. Therefore, angles β̄ j(t ) need to be com-
puted on-line by integration of the virtual shape kinematics
˙̄β = S̄β (β̄)ū0 (cf. Equation (3)), i.e.

β̄(t ) = β̄(0) +
∫ t

0
S̄β (β̄(τ ))u0(τ )dτ (20)

for β̄(0) := β(0) and u0 ≡ ū0 taken from Equation (19), cf.
Figure 2.

Taking into account Equations (16) and (17), the control law
(19) can be rewritten as follows:

u0 �
N∏
j=1

J̄−1
j (β̄ j)φ([�q(qNr, uNr) − H(qN,β, β̄)], t )

which explains the proposed control structure in a more com-
prehensive way (see Figure 2).

3.2 Description ofmappings H and�

The objective of mapping H : R
3 × T

N × T
N → R

3 is to com-
pute the posture q̄N = H(qN,β, β̄) of the last virtual trailer
applying a feedback dependent on a configuration of the real
vehicle and using the virtual joint angles β̄ being a response (20)
of the simulated virtual shape kinematics. MappingH is defined
as follows:

H(qN,β, β̄) � Q̄N
(
invQ0(qN,β), β̄

)
, (21)

where invQ0(qN,β)
(8)= q0 ≡ q̄0 returns a current posture of the

tractor (a common segment for the real and virtual vehicles).
The role of mappingH results from Figure 2 (cf. also Figure 1).

Mapping � : R
3 × R

2 → R
3 × R

2 can be decomposed into
six component mappings denoted by �0 to �5. Their roles are
explained below and by the functional scheme in Figure 3.

The purpose ofmapping�0 : R
2 → T

N is to compute the ref-
erence shape trajectory

βr(t ) = �0(uNr(t )), (22)

respecting the S-P condition (14), as a bounded steady response
of kinematics (13) upon a knowledge of the prescribed reference
guidance velocity uNr(t ). The steady response βr(t ) computed
as a solution of Equation (13) is guaranteed to be compatible
with the reference guidance trajectory qNr(t ). Note that signal
βr(t ) is computed only for the auxiliary purposes (needed by
mappings �1 and �2, see Equations (23) and (24)) and will not
be directly used by a control law.

Mapping�1 : R
3 × T

N → R
3 returns a reference posture for

the tractor, i.e.

q0r ≡ q̄0r = �1(qNr,βr) � invQ0(qNr,βr), (23)

where invQ0 represents the inverse posture kinematics (8) for
i= 0, evaluated here by taking as arguments the reference signals
(see the direction of mapping �1 denoted in Figure 1).

Mapping �2 : R
2 × T

N → R
2 computes a reference velocity

for the tractor, i.e.

u0r ≡ ū0r = �2(uNr,βr) � invV 0(uNr,βr), (24)

where invV 0 represents the inverse velocity kinematics (11) for
i= 0, evaluated here by taking as arguments the reference signals
(see the direction of mapping �2 denoted in Figure 1).

Mapping�3 : R
2 → T

N extracts a bounded steady response

β̄r(t ) = �3(ū0r(t )) (25)

of the reference virtual shape kinematics (cf. with Equation
(13))

˙̄βr
(3)= S̄β (β̄r)ū0r (26)

upon a knowledge of reference input ū0r = [ω̄0r v̄0r]� returned
by mapping (24). Depending on the character of input ū0r, the
steady response β̄r(t ) may be constant (computable in a closed
form, see Appendix A1) or time-varying (for a non-trivial peri-
odic reference input ū0r(t ), the steady response β̄r(t ) usually
corresponds to a limit cycle in a shape space). Thus, in general,
a bounded steady response of kinematics (26) can be extracted
from its solution obtained by (numerical) integration of Equa-
tion (26). Note that β̄r is computed only for the auxiliary pur-
poses (needed by mapping �4, see Equation (27)) and will not
be used directly during a control process.
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Mapping �4 : R
3 × T

N → R
3 returns a reference guidance

trajectory for the virtual vehicle, i.e.

q̄Nr = �4(q̄0r, β̄r) � Q̄N
(q̄0r, β̄r), (27)

where Q̄N represents the direct posture kinematics for the virtual
vehicle determined by Equation (9) for i = N, and evaluated by
taking as arguments the reference signals of the virtual vehicle
(see the direction of mapping �4 denoted in Figure 1).

Mapping �5 : R
2 × T

N → R
2 computes the reference guid-

ance velocity ūNr for the last trailer of the virtual vehicle based
on the reference velocity of the tractor ū0r ≡ u0r, i.e.

ūNr = �5(ū0r, β̄r) � V̄N
(ū0r, β̄r), (28)

where V̄N represents the direct velocity kinematics for the vir-
tual vehicle determined by Equation (10) for i = 0, evaluated
here by taking as arguments the reference signals (see the direc-
tion of mapping �5 denoted in Figure 1).

Remark 3.4: The mapping � introduced in Equation (16)
results from the following compositions (cf. Figure 3):

�q = �4
[
�1(qNr,�0(uNr)),�3(�2(uNr,�0(uNr)))

]
,

�u = �5 [�2(uNr,�0(uNr)),�3(�2(uNr,�0(uNr)))] .

It is worth to stress that since we are interested only in the S-P
reference trajectories qr(t ) for the forward motion conditions,
the mapping � should preserve the S-P property and forward
motion conditions for the virtual vehicle.
Remark 3.5: It can be easily shown that application of mapping
�u leads to the following implications:

uNr = const ⇒ ūNr = const, (29)
‖ uNr‖ ≤ δ1 ⇒ ‖ ūNr‖ ≤ η1δ1 =: δ̄1, (30)
‖u̇Nr‖ ≤ δ2 ⇒ ‖˙̄uNr‖ ≤ (η2δ1 + η3δ2) =: δ̄2, (31)

where the upper bounds δ1, δ2 have been introduced in (r2),
while η1 > 0 and η2, η3 > 0 are some finite constants.

4. Analysis of control performance in the closed-loop
system
We are going to show asymptotic stability of point (

˜̄β, ēN ) =
(0, 0) for the virtual vehicle, and next wewill prove that it entails
asymptotic convergence of tracking errors β̃(t ) and eN (t ) to zero
for the real vehicle as t → �. The first stability result can be
immediately inferred upon Theorem 1 formulated in Michałek
(2017) which allows claiming what follows.

Lemma 4.1 (Upon Theorem 1 fromMichałek (2017)):Assume
the S-P reference trajectory qr(t ) satisfying (r1)–(r2) is given for
the real vehicle, and the corresponding S-P reference trajectory
q̄r(t ) has been computed using mapping (16). Application of con-
trol law (19) into kinematics of the virtual N-trailer satisfying
Assumptions A2–A3 guarantees local asymptotic stability of point
(
˜̄β, ēN ) = (0, 0) in some basin of attraction DB × DE when one

of the two following conditions is met:

(s1) ūNr = const, or
(s2) ūNr = ūNr(t ) and ∀ t ≥ 0 ‖ ūNr(t )‖ ≤ δ̄1, ‖ ˙̄uNr(t )‖ ≤ δ̄2

for sufficiently small constants δ̄1, δ̄2 > 0.

Proof: See the proof of Theorem 1 in Michałek (2017). �

The above lemma leads to the conclusion that the virtual N-
trailerwill asymptotically track the S-P reference trajectory q̄r(t )
(mapped by � from the original S-P trajectory qr(r)) in the for-
ward motion strategy when the virtual guidance velocity is con-
stant, or when it is time-varying but the reference motion is
sufficiently slow with the reference acceleration small enough.
Recalling implications (29)–(31), it is evident that conditions
(s1)–(s2) can be replaced with analogous conditions imposed
on the reference velocity uNr defined for the real vehicle with
the upper bounds δ1 = δ̄1/η1 and δ2 = (δ̄2 − δ̄1η2/η1)/η3.

Solution to the underlying Problem 2.1 is provided now by
the following theorem.

Theorem 4.1: Local asymptotic stability of point (
˜̄β, ēN ) =

(0, 0), guaranteed by Lemma 4.1, entails boundedness of tracking
errors β̃(t ), eN (t ) for the real vehicle and their asymptotic conver-
gence β̃(t ) → 0 and eN (t ) → 0 as t → �.

Proof: Since ‖ ēN‖ < ∞ (upon Lemma 4.1), then also
∥∥ q̄N∥∥ =∥∥ q̄Nr − ēN

∥∥ < ∞. As a consequence, a posture of the trac-
tor

∥∥ q0∥∥ ≡ ∥∥ q̄0∥∥ = ‖invQ̄0
(q̄N, β̄)‖ < ∞, and also

∥∥ qN∥∥ =
‖QN (q0,β)‖ < ∞, which finally imply

∥∥ qNr − qN
∥∥ = ‖ eN‖ <

∞.
Furthermore, upon the relation (17) and using definitions

(21) and (18) one can write the following equalities:

q̄N = Q̄N[invQ0(qN,β), β̄],

q̄Nr − ēN = Q̄N[invQ0(qN,β), β̄],

Q̄N[invQ0(qNr,βr), β̄r] − ēN = Q̄N[invQ0(qN,β), β̄].

According to Lemma 4.1, we can write that terminally, for
(
˜̄β, ēN ) → (0, 0), holds

Q̄N[invQ0(qNr,βr), β̄r] = Q̄N[invQ0(qN,β), β̄r]. (32)

Since mapping Q̄N
(a, b) is diffeomorphic with respect to a for

any fixed b, one can infer that terminally, for (
˜̄β, ēN ) → (0, 0),

Equation (32) implies

invQ0(qNr,βr) = invQ0(qN,β) (33)
(15)= invQ0(qNr − eN,βr − β̃). (34)

We will return to the above partial result later on.
Next, we are going to show that β̃(t ) asymptotically tends to

zero as t → �. To this purpose, let us derive the shape-error
dynamics of the real vehicle as follows:

˙̃
β = β̇r − β̇

(3)= Sβ (βr)u0r − Sβ (β)u0, (35)
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where u0r(t ) is the reference tractor velocity along the reference
trajectory qr(t ). Introducing the control input error

ũ0 � u0r − u0
(19)= u0r −

N∏
j=1

J̄−1
j (β̄ j)φ(ēN, t )

=
N∏
j=1

J̄−1
j (β̄ jr)ūNr −

N∏
j=1

J̄−1
j (β̄ jr − ˜̄

β j)φ(ēN, t ) (36)

we can rewrite Equation (35) as

˙̃
β = Sβ (βr)u0r − Sβ (βr − β̃)[u0r − ũ0]

= Sβ (βr)u0r − Sβ (βr − β̃)u0r︸ ︷︷ ︸
f (β̃,t )

+ Sβ (βr − β̃)ũ0︸ ︷︷ ︸
g(β̃,ũ0,t )

(37)

where

˙̃
β = f (β̃, t ) (38)

represents the nominal shape-error dynamics, while g(β̃, ũ0, t )
is a perturbation term with perturbing input ũ0, such that, in
general, g(0, ũ0, t ) ≡ 0. By recalling the definition (36), the
form of matrix J̄−1

i (β̄i), properties (p1)–(p3) of function φ, and
due to boundedness and asymptotic convergence of errors ˜̄β and
ēN guaranteed by Lemma 4.1, one may observe that

(u1) ∀ t ≥ 0 ‖ũ0( ˜̄β(t ), ēN (t ), t )‖ < ∞, ‖ũ0(0, 0, t )‖ ≡ 0,
(u2) ‖ũ0( ˜̄β(t ), ēN (t ), t )‖ → 0 as t → �.

It can be shown (see Appendix A2) that the equilibrium
point β̃ = 0 of the nominal shape-error dynamics (38) is
locally exponentially stable during forward tracking of the S-P
reference trajectories corresponding to the virtual reference
velocity satisfying (s1) or (s2) stated in Lemma 4.1. Thus,
according to the Converse Lyapunov Theorem (Khalil, 2002),
for some basin of attraction Db = {β̃ ∈ R

N : ‖β̃‖ < rb},
rb > 0, there exists a continuously differentiable func-
tion V (β̃, t ) : Db × [0,∞) → R≥0 satisfying: c1‖β̃‖2 ≤
V (β̃, t ) ≤ c2‖β̃‖2, (∂V/∂t ) + (∂V/∂β̃) f (β̃, t ) ≤ −c3‖β̃‖2,
and ‖∂V/∂β̃‖ ≤ c4‖β̃‖ for some positive constants ci, i = 1,
2, 3, 4. For the perturbed shape-error dynamics (37) one can
assess the time derivative of function V as follows:

V̇ = ∂V
∂t

+ ∂V

∂β̃
[ f (β̃, t ) + g(β̃, ũ0, t )]

≤ −c3‖β̃‖2 +
∥∥∥∥∥ ∂V

∂β̃

∥∥∥∥∥
∥∥∥ g(β̃, ũ0, t )

∥∥∥
≤ −c3‖β̃‖2 + c4δs‖β̃‖ ∥∥ ũ0∥∥ + μc3‖β̃‖2 − μc3‖β̃‖2

= −c3(1 − μ)‖β̃‖2 + ‖β̃‖
[
c4δs

∥∥ ũ0∥∥ − μc3‖β̃‖
]
, (39)

where μ � (0, 1) is a majorisation constant, while the assess-
ment ‖g(β̃, ũ0, t )‖ ≤ ‖Sβ (βr − β̃)‖ ∥∥ ũ0∥∥ ≤ δs

∥∥ ũ0∥∥ results
from Equation (37) and the form of matrix Sβ (cf. Equation

(3)). Upon Equation (39), we can conclude that

V̇ ≤ −c3(1 − μ)‖β̃‖2 for ‖β̃‖ ≥ c4δs
c3μ

∥∥ ũ0∥∥︸ ︷︷ ︸
σ (‖ ũ0‖)

(40)

where σ (‖ ũ0‖) is a function of class K. Thus, the perturbed
dynamics (37) is Locally Input-to-State Stable (LISS) (Khalil,
2002; Isidori, 1999; Teel, 1996). As a consequence, a solution of
Equation (37) satisfies

∀ t ≥ 0 ‖β̃(t )‖ ≤ max
{
ρ(‖β̃(0)‖, t ); γ

(
sup
t≥0

‖ũ0(t )‖
)}

for some KL-class function ρ and the K-class function
γ (‖ũ0‖) = √

c2/c1 c4δscsμ
‖ũ0‖ if

(c1) ‖β̃(0)‖ < rb
√
c1/c2, and

(c2) supt≥0 ‖ũ0( ˜̄β(t ), ēN (t ), t )‖ < rb
√
c1/c2 c3μ

c4δs
.

According to definition (36) and properties (u1)–(u2), sat-
isfaction of condition (c2) essentially depends on the tracking
errors ˜̄β, ēN , and on properties of control function φ(ēN, t ). In
particular, if locally for (

˜̄β, ēN ) ∈ DB × DE the following dom-
ination holds ‖ũ0( ˜̄β, ēN, t )‖ ≤ κ(‖[ ˜̄β� ē�

N]‖), where κ(·) is a
function of class K, then (c2) can be replaced by a condition
formulated directly with respect to the tracking errors, i.e.

(c2) supt≥0 ‖[ ˜̄β�(t ) ē�
N (t )]‖ < κ−1

(
rb

√
c1/c2 c3μ

c4δs

)
.

Furthermore, according to the asymptotic gain property
(Isidori, 1999) one can write for the LISS dynamics (37)

lim sup
t→∞

‖β̃(t )‖ ≤ γ

(
lim sup
t→∞

‖ũ0( ˜̄β(t ), ēN (t ), t )‖
)

(u2)= 0.

(41)

Now, we shall return to the result denoted by (33)
and (34). Since for any fixed b the mapping invQ0(a, b)
is diffeomorphic with respect to a, the asymptotic con-
vergence of β̃ to zero inferred upon Equation (41)
allows one to conclude that satisfaction of Equations
(33) and (34) for β̃(t ) → 0 must entail eN (t ) → 0 as
t → �. �

5. Numerical and experimental results

5.1 Numerical validation
We present exemplary results of tracking a complex reference
trajectory obtained for the nS3T kinematics (N = 3) charac-
terised by trailer lengths Li = 0.25 m, (i = 1, 2, 3) and hitch-
ing offsets Lh1 = Lh3 = 0.05 m, Lh2 = −0.05 m (mixed signs
of hitching offsets). A reference trajectory qr(t ) was computed
in four main steps. In the first step, the four way-points (θwp,
xwp, ywp) defining the desired orientation, θwp, and the desired
position coordinates (xwp, ywp) of the last trailer were chosen as
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Figure . Simulation results of forward tracking the complex reference trajectory
with direct application of the control law proposed in Michałek () to the nST
kinematics with mixed signs of hitching offsets illustrating the jackknife effect in
vehicle joints (an initial condition of the vehicle has been denoted by q(0)).

follows: (0, −1, 0), (0, 1, 1), (−π
2 , 2, 0) and (− π , −1, −1), all

expressed in ([rad],[m],[m]), respectively.Next, three 7th degree
polynomials were continuously concatenated at the successive
way-points in order to establish preliminary reference guidance
trajectory qNr(τ ) compatible with kinematics (12) for τ � [0,
T), withT> 0 being a prescribed time-horizon. In the third step,
the corresponding reference shape trajectory βr(τ ) avoiding the
jackknife effect was computed taking into account kinematics
(13) together with constraint (14). Finally, the reference trajec-
tory qr(t ) was obtained from qrN (τ ) and βr(τ ) by applying an
appropriate time scaling to guarantee a constant reference lon-
gitudinal velocity vNr = 0.2 m/s within the whole control time-
horizon.Values of the trailers’ lengths for the virtual vehiclewere
set as L̄i = 0.5Li = 0.125 m for i= 1, 2, 3, while hitching offsets
were set (upon A2) to L̄hi = −0.05m for i= 1, 2, 3 (hi = 1). The
unicycle controller proposed in Canudas deWit et al. (1996) was
applied in the outer loop of a cascade from Figure 2 resulting in
the control function

φ(ēN, t ) �
[
ω̄Nr + k0v̄Nrẽ3sēθ /ēθ + k1(ūNr)ēθ

v̄Nrcēθ + k2(ūNr)ẽ2

]
, (42)

where ẽ2 = ēxcθ̄N + ēysθ̄N and ẽ3 = −ēxsθ̄N + ēycθ̄N , k0 > 0 is a
design parameter (taken as k0 = 10), while k1(ūNr) = k2(ūNr) �
2
√

ω̄2
Nr + k0v̄2

Nr are the positive definite functions. All the sim-
ulations were conducted in the Matlab–Simulink environment
using the ode45 solver.

First, let us illustrate the consequences of applying the
cascade-like controller originally proposed in Michałek (2017)
to the considered nS3T vehicle with mixed signs of hitching off-
sets. The results of numerical simulations have been presented in
Figure 4. Although the guidance segment asymptotically tracks
the reference trajectory, the joint angles evolve around the values
of ±π ; one observes a complete folding of a vehicle in its joints,
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Figure . Simulation results of forward tracking the complex reference trajectory
obtained for a nST kinematics with mixed signs of hitching offsets (an initial con-
dition of the vehicle has been denoted by q(0)).

corresponding to the jackknife effect, which in practical appli-
cations usually leads to a damage of a mechanical construction.
This effect is a direct consequence of the non-minimum-phase
vehicle’s kinematics.

Next, let us show improvement in realisation of the same task
using the control law defined by Equation (19). The results of
simulations conducted with the controller (19) are presented in
Figure 5. It is worth noting that the vehicle does not experience
any jackknife effect and moves smoothly during a control pro-
cess despite a non-minimum-phase property of its kinematics in
the consideredmotion conditions. The joint angles evolve in this
case around the zero value. A smooth evolution of control sig-
nals, away of a short initial picking in the case of angular velocity
ω0(t) (not shown in the plot for the sake of presentation clarity)
looks promising in the context of practical applications of the
control strategy. Note that the resultant terminal tracking accu-
racy essentially depends on a precision of computing the map-
pings �0 and �3. In the case of perfect computations of �0 and
�3 one should expect the asymptotic convergence of tracking
errors to zero.
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Figure . Control signals obtained in the closed-loop system illustrating a change in
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Figure 6 illustrates an influence of the virtual vehicle’s kine-
matic parameters L̄i on the transient control performance
obtained with the outer-loop control function (42). Upon the
plot, one can conclude that selection of virtual trailers’ lengths
L̄i := w · Li with larger values of scaling factor w > 0 generally
implies faster convergence of a tracking error for the real vehi-
cle. The price is, however, a higher control cost observed in the
transient stage.

According to Assumptions A1 and A2, one has to limit
application of the proposed cascade-like controller solely to N-
trailers with off-axle hitching. It is a direct consequence of the
form of control law (19), where the inverse matrices J̄−1

i are well
determined only for L̄hi = 0. For the non-zero but very short
offsets Lhi the inverse matrices in Equation (19), although for-
mally well defined, may cause in practice substantial amplifica-
tion of measurement noises corrupting the outer feedback loop.
The plots presented in Figure 7 reveal how the design factors hi
introduced inAssumptionA2 help in decreasing the noise sensi-
tivity of the closed-loop system. For this purpose, the uniformly

Figure . View of the laboratory-scale N-trailer vehicle used in the experiments.

distributed random noises from the range [− 0.002; 0.002] were
added in a feedback loop to components of configuration vector
qN . All other simulation conditions were left unchanged, except
L̄i = Li . The upper plot in Figure 7 illustrates the control sig-
nals obtained for factors hi = 1, i = 1, 2, 3, while the bottom
plot corresponds to factors hi = 2, i = 1, 2, 3. The control qual-
ity for the twomentioned control scenarios was evaluated by the
steady-motion integral J �

∫ t2
t1

‖ eN (t )‖ dt , with t1 = 20 s and t2
= 39 s, obtaining J = 0.0201 for hi = 1 and J = 0.0143 for hi
= 2. One observes a clear beneficial effect of control smoothing
achieved with longer offsets L̄hi, corresponding to even slightly
better average tracking accuracy reflected by a smaller value of
integral J obtained for hi = 2.

5.2 Experimental verification
Experimental trials were performed on the laboratory testbed
equipped with the three-trailer (N = 3) vehicle presented in
Figure 8. Kinematic parameters of the vehicle were Li = 0.229m
and Lhi = 0.048 m for i = 1, 2, 3. The proposed control sys-
tem was implemented on the vehicle’s board using a floating-
point digital signal processor. An external vision system (con-
nected with the vehicle by a radio link) was used for estimation
of the last trailer posture qN to close the outer feedback loop.
The angles β i were measured by the absolute 14-bit encoders
mounted in the vehicle’s joints. The working frequency of the
control system was equal to 100 Hz. The time-response of vir-
tual shape kinematics was computed on-line according to Equa-
tion (20) by numerical integration after using the Euler-forward
discretisationmethod. To address practical limitations resulting
from themaximal admissible velocityωmax = 6 rad/s of the trac-
tor’s wheels, the following velocity scaling procedurewas applied
in the input channel of the real vehicle:

u0s(t ) =
[
ω0s(t )
v0s(t )

]
� s(t ) · u0(t ) =

[
s(t )ω0(t )
s(t )v0(t )

]
, (43)

where s(t) is a scaling function

s(t ) �
[
max

{
1; |ωR0(t )|

ωmax
; |ωL0(t )|

ωmax

}]−1

∈ (0, 1],

while ωR0 = (v0 + 0.5bω0)/r and ωL0 = (v0 − 0.5bω0)/r are
the angular velocities of the tractor’s wheels computed upon
the components of u0 and using the tractor’s wheel radius r =
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Figure . Experimental results of forward tracking the complex periodic reference
trajectory obtained using the laboratory-scale vehicle of nST kinematics with pos-
itive hitching offsets (an initial condition of the vehicle has been denoted by q(0)).

0.029m and the tractor’s wheels base b= 0.15m.Note that phys-
ically admissible control signal u0s(t ) commanded to the trac-
tor preserves an instantaneous motion curvature determined by
original components of u0 = [ω0 v0]� computed upon the con-
trol law (19).

In the sequel, we present the results of tracking a refer-
ence trajectory qr(t ) corresponding to the periodic guidance
positional trajectory of a varying curvature where

xNr(p(t )) � �(p(t )) sin(2π · p(t ) + π),

yNr(p(t )) � �(p(t )) sin(2π · p(t ) + π/2),

and ϖ(p(t)) = 0.12cos (6π · p(t)) + 0.8, while the parameter
p(t) was computed by numerically solving the differential
equation ṗ = vNr/

√
(∂xNr/∂ p)2 + (∂yNr/∂ p)2 for the initial

condition p(0) = 0 in order to obtain a constant reference
velocity vNr = 0.05 m/s along the guidance trajectory. The same
control function φ(ēN, t ) used previously in Section 5.1 was

implemented in the outer loop of the vehicle’s onboard control
system. Parameters of the virtual vehicle were chosen in this
case as L̄i = 0.5Li = 0.1145m and (according to Assumption
A2) L̄hi = −0.048 m (hi = 1) for i = 1, 2, 3.

Selected results of the conducted experimental trials are illus-
trated in Figure 9. Similarly as in the numerical tests, the ter-
minal tracking accuracy obtainable in practice substantially
depends on a numerical precision and sampling frequency with
which the reference signals q̄Nr and ūNr are computed for the
virtual vehicle. A small non-zero vicinity-tube, within which the
terminal tracking errors evolve (seen in Figure 9), is also a con-
sequence of small bounded slip/skid effects affecting the vehi-
cles’ wheels, the presence of a measurement noise corrupting a
feedback loop, and unavoidable uncertainties of a mechanical
construction of the experimental vehicle.

6. Concluding remarks
The cascade-like modular control law proposed in the paper is
(to our best knowledge) the first control solution which allows
the robotic vehicles of nSNT kinematics with positive or mixed-
sign hitching offsets to asymptotically track complex reference
trajectories (i.e. those with a varying curvature) in forward
motion conditions for a case where the guidance point is located
on the (last) trailer. Thanks to the cascade-like structure of the
controller, one obtains high scalability of the solution, where a
change of a number of trailers requires only a change of a num-
ber of matrix multiplications performed in the inner loop of the
controller. A possible difficulty with application of the proposed
virtual-vehicle approachmay come from the need of a sufficient
precision in computations ofmappings�0 and�3, and in partic-
ular from finding the S-P reference trajectory for the real vehi-
cle which is not a differentially flat system. The latter problem is
interesting by itself and, we believe, deserves a wider discussion
in a separate publication.
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Appendix
A. Closed-form solution of Equation () for
ū0r = [ω̄0r v̄0r]

� = const
In the special case of a constant reference velocity ū0r, the corre-
sponding steady response of Equation (26) will be constant too,
and its components can be computed for i� {1,… ,N} upon the
following equations (see e.g. Michałek, 2013):

β̄ir =
{

0 if ω̄0r ≡ 0
Atan2(āir, b̄ir) if ω̄0r ≡ 0

,
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where āir = L̄iR̄i−1r + L̄hiR̄ir, b̄ir = R̄irR̄i−1r − L̄iL̄hi,

R̄0r = v̄0r/ω̄0r,

R̄ir = sgn(v̄0r/ω̄0r)

√
R̄2
i−1r − L̄2i + L̄2hi,

while sgn(z) = 1 if z � 0, and sgn(z) = −1 if z < 0.

A. Stability of zero-equilibrium for dynamics ()
According to kinematics (3), one can write particular rows of
dynamics (38) as follows:

˙̃
β1 = c��1(β1r)u0r − c��1(β1r − β̃1)u0r, (A1)

˙̃
βi = c��i(βir)

1∏
j=i−1

J j(β jr)u0r

− c��i(βir − β̃i)

1∏
j=i−1

J j(β jr − β̃ j)u0r (A2)

for i = 2,… , N. It is evident that β̃ = 0 is an equilibrium point
of dynamics (38). One can check (by direct computations) that
the following equality holds true: J i(βir − β̃i) = J i(βir)Rhi(β̃i)

for any i = 1,… , N, where

Rhi(β̃i) =
[

cβ̃i (1/Lhi)sβ̃i

−Lhisβ̃i cβ̃i

]
.

Thus, we can rewrite Equations (A1) and (A2) in the formwhich
emphasises the lower-triangular structure of dynamics (38), that
is,

˙̃
β1 = f1(β̃1, t ), (A3)
˙̃
βi = fi(β̃1, . . . , β̃i, t ), i = 2, . . . ,N (A4)

where

f1 = c�[I − J1(β1r)]u0r − c�[I − J1(β1r)Rh1(β̃1)]u0r,

fi = c�[I − J i(βir)]
1∏

j=i−1

J j(β jr)u0r

− c�[I − J i(βir)Rhi(β̃i)

1∏
j=i−1

J j(β jr)Rh j(β̃ j)u0r.

Taylor linearisation of dynamics (A3) and (A4) at the equilib-
rium β̃ = 0 gives the following linear approximation:

˙̃
β = A(t )β̃, (A5)

where A(t ) is the lower-triangular matrix with all the non-zero
off-diagonal elements (for i = 2,… , N, l = 1,… , i − 1)

ail (t ) = c�[I − J−1
i (βir(t ))]

l∏
j=i

J j(β jr(t ))

×
[

0 (1/Lhl )
−Lhl 0

] 1∏
j=l+1

J j(β jr(t ))u0r(t )

uniformly bounded in t, and with eigenvalues equal to the diag-
onal elements of the form (for i = 1,… , N)

aii(t ) = −
[
Lhi
Li

sβir(t )
1
Li
cβir(t )

] 1∏
j=i−1

J j(β jr(t ))u0r(t )

(5)= − 1
Li

[Lhisβir(t ) cβir(t )] ui−1r(t )

= −vir(t )/Li < 0, (A6)

where Li > 0 by construction, and the reference longitudinal
velocities v ir(t) > 0 for all t � 0 from assumption (see (r1) and
condition (14)).

To assess stability of dynamics (A5), we have to separately
consider two cases: when ūNr = const (corresponding to (s1)),
and when ūNr(t ) is time-varying (corresponding to (s2)). It
is well known that in the case (s1) the reference joint-angles
β̄r = const imply ū0r = invV 0(ūNr, β̄r) ≡ u0r = const. Con-
stant tractor velocity u0r corresponds to βr = const, and uir =
[ωir vir]� = V i(u0r,βr) = const for any i = 1,… , N. Thus, in
case (s1), matrix A(t ) = A becomes time-invariant, and the
local uniform exponential stability of β̃ = 0 results directly from
Equation (A6). In case (s2), one has to further investigate prop-
erties of matrix A(t ) and its time-derivative Ȧ(t ). Since all the
components of matrix A(t ) are uniformly bounded, one can
claim ‖A(t )‖ < Ā < ∞ for all t � 0. Next, one can write

ȧi j(t ) = a�
βi jβ̇r + a�

ui ju̇0r, i, j ∈ {1, . . . ,N}, (A7)

where a�
βi j � ∂ai j/∂βr and a�

ui j � ∂ai j/∂u0r. According to the
forms of components aij(t), by recallingAssumptionA1, anddue
to the assumed boundedness of reference velocity uNr (see (r2))
one may conclude

∥∥∥ a�
βi j

∥∥∥ ≤ δβi j,

∥∥∥ a�
ui j

∥∥∥ ≤ δui j, (A8)

where δβij > 0 and δuij > 0 are some finite constants. Next, by
recalling the forms of Equation (13) and matrix Sβ in Equation
(3), one may (conservatively) assess

‖β̇r‖ ≤ ‖Sβ (βr)

N∏
j=1

J−1
j (β jr)‖ ‖ uNr‖ ≤ δs ‖ uNr‖ ,

and, by analogy to the above,

‖ ˙̄βr‖ ≤ δ̄s ‖ ūNr‖ ,

where 0 < δs, δ̄s < ∞ under Assumptions A1–A2. Further-
more, since u0r ≡ ū0r = ∏N

j=1 J̄
−1
j (β̄ jr)ūNr =: P̄(β̄r)ūNr =

[p̄1(β̄r) p̄2(β̄r)]ūNr, and since the components of matrix P̄(β̄r)

are bounded (under A1 and A2) combinations of products of
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trigonometric functions, we can assess

‖u̇0r‖ =
∥∥∥ ˙̄P(β̄r)ūNr + P̄(β̄r)

˙̄uNr
∥∥∥

≤
∥∥∥∥∥
[

∂ p̄1
∂β̄r

˙̄
βr

∂ p̄2
∂β̄r

˙̄
βr

]∥∥∥∥∥ ‖ ūNr‖ +
∥∥∥ P̄(β̄r)

∥∥∥ ∥∥∥ ˙̄uNr
∥∥∥

≤ χ

∥∥∥∥∥
∂ p̄ j

∂β̄r

∥∥∥∥∥ ‖ ˙̄
βr‖ ‖ ūNr‖ +

∥∥∥ P̄(β̄r)

∥∥∥ ∥∥∥ ˙̄uNr
∥∥∥

≤ χρ1δ̄s ‖ ūNr‖2 + ρ2

∥∥∥ ˙̄uNr
∥∥∥ ≤ (χρ1δ̄sδ̄

2
1 + ρ2δ̄2)

for some j � {1, 2} and some finite constants χ > 0 and
ρ1, ρ2 > 0, where we have used the fact about equivalence
of matrix and vector norms and the inequalities taken from
condition (s2). Now, by using the inequality derived above

together with inequalities (A8), one can claim that (see Equa-
tion (A7)) ∀ t ≥ 0

∣∣ȧi j(t )∣∣ ≤ δβi j δs δ1 + δui j (χρ1δ̄sδ̄
2
1 + ρ2δ̄2),

and consequently (for a spectral norm of Ȧ):

‖Ȧ(t )‖ ≤ Nmax
i, j

∣∣ȧi j(t )∣∣
≤ N

[
δ∗
βi j δs δ1 + δ∗

ui j (χρ1δ̄sδ̄
2
1 + ρ2δ̄2)

]
(30)= N

[
δ∗
βi j δs δ̄1/η1 + δ∗

ui j (χρ1δ̄sδ̄
2
1 + ρ2δ̄2)

]
(A9)

for all t � 0, where δ∗
βi j = maxi, j(δβi j) and δ∗

ui j = maxi, j(δui j).
By ensuring that δ̄1 and δ̄2 are sufficiently small (postulated in
(s2)), the right-hand side of Equation (A9) can be made small
enough to satisfy the sufficient condition for asymptotic stability
of linear time varying (LTV) system (A5); see Zhu (1993).




