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ABSTRACT
The paper presents a numerical and experimental study of a setup which mimics the famous ‘sympa-
thy’ of pendulum clocks experiment conducted by Christian Huygens. The setup consists of two pendula
(metronomes) installed on a platform which can move either in horizontal or vertical direction. Existence
and co-existence of different synchronisation regimes is studied both experimentally and numerically. The
main contribution of the paper reveals that the stability onsets of those modes resemble behaviour of
systems with auto-parametric resonance. Therefore, the resonances of translational frequency of the plat-
form and rotational frequency ofmetronomes induce different types of synchronous behaviour. This novel
approach turns out to be more insightful then an analysis of how the platform mass and/or the spring
stiffness influence the stability onsets.
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1. Introduction

In February 1665 Huygens made a discovery: two of the pen-
dulum clocks hanging from a common wooden bar supported
by two chairs demonstrated an odd phenomenon: the pendula
swung in opposite direction, keeping an identical period of
oscillations with respect to each other: the pendula were syn-
chronised, or exhibited ‘sympathy’ (Huygens, 1893). There is
a gradually growing interest in synchronisation, partly due to
various applications in different fields of science and technol-
ogy (Blekhman, 1988; Pikovsky, Rosenblum, & Kurths, 2003;
Strogatz, 2003). A part of those studies is somehow inspired
by Huygens’ synchronisation setups (Bennett, Schatz, Rock-
wood, & Wiesenfield, 2002; Czolczynski, Perlikowski, Stefan-
ski, & Kapitaniak, 2013; Fradkov & Andrievsky, 2008, 2009;
Fradkov, Andrievsky, & Boykov, 2012; Hoogeboom, Pogrom-
sky, & Nijmeijer, 2016; Kapitaniak et al., 2012; Kuznetsov,
Leonov, Nijmeijer, & Pogromsky, 2007; Martens, Thutupalli,
Fourriere, &Halltschek, 2013; Nijmeijer & Ramirez, 2017; Oud,
Nijmeijer, & Pogromsky, 2006; Pantaleone, 2002; Peña Ramírez,
Aihara, Fey, & Nijmeijer, 2014; Peña Ramírez, Olvera, Nijmei-
jer, & Alvarez, 2016). Besides pendulum clocks, synchronisa-
tion experiments are often conducted with metronomes. That
is due to the inexpensive and easy to use nature of the sim-
ple instruments. However, researchers found that these musical
tools lend themselves perfectly for conducting synchronisation
experiments due to the following properties: (1) they are self-
sustained, i.e. an internal source of energy is present to compen-
sate for dissipated energy; (2) The shape of the oscillations are
independent of the initial conditions and is purely described by
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the system parameters and (3) the oscillations are robust against
small disturbances.

This allows for an easy adjustment of themetronome’s eigen-
frequencies and simplifies the analysis of how this frequency
affects the outcome of the experiments. Briefly speaking, the
change of the experimental parameters can lead to different syn-
chronisation phenomena: the metronomes can exhibit either
in-phase, or anti-phase synchronous motion, while their co-
existence is also possible: in this situation the initial conditions
are responsible if the metronomes eventually fall in the anti-
phase or in-phase motion. A preliminary study of the bifurca-
tions in synchronisation of metronomes is reported in Hooge-
boom et al. (2016) and it turns out that both the in-phase and
anti-phase synchronous solutions undergo various bifurcations
which result in stability changes. The role of bifurcation param-
eters was played by the platform mass, spring stiffness and/or
the damping coefficient. The goal of this paper is to present
arguments which allow to study those bifurcations as conse-
quences of resonances between the translational frequency of
the platform and rotational frequency of the metronome(s). In
particular, we study how the ratio of theses eigenfrequencies
influence the stability onsets of the synchronous behaviour.

One of the simplest systems which exhibits the paramet-
ric resonance is a pendulum with a periodically oscillating
pivot. Despite its simplicity, the mathematical analysis is quite
involved (see, e.g. Arnold, 1977, 1988, 1989; Broer & Veg-
ter, 1992 to mention a few) and is built on stability analy-
sis of Hill’s equation. The situation, which is usually referred
to as autoparametric resonance, occurs when several coupled
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oscillating systems with different eigenfrequencies demonstrate
unstable behaviour when those frequencies satisfy a resonance
condition, see, e.g. Verhulst (2002). For an involved mathe-
matical analysis of parametrically excited systems, we refer to
Yakubovich and Starzhinskii (1975).

In this paper we treat a Huygens inspired experimental plat-
form of coupled self-excited pendula with rotational eigenfre-
quency fmtr installed on a platform with translational eigen-
frequency fplt that can move either in horizontal or vertical
direction. Via a numerical study we show that the synchro-
nisation onset resembles Arnold’s tongues and we emphasise
the role of the resonance condition between fmtr and fplt in the
corresponding bifurcation analysis. This observation indicates
that the analytical methods applicable for analysis of parametric
resonance (e.g. small-parameter methods, averaging technique)
could also be utilised in the analysis of synchronous behaviour
inHuygens-like synchronisation setups, similar to that reported
in Pena Ramirez and Nijmeijer (2016).

The paper is organised as follows. First we describe the exper-
imental platform and discuss different synchronous steady-state
regimes therein. A mathematical modelling of the setup will be
followed by the numerical analysis which clearly demonstrates
the effect of parametric resonance.

2. Experimental results

The experimental setups used in this study are depicted in
Figure 1. They consist of two metronomes standing on a plat-
form vertically suspended at the corners by thin cables. In the
first setup, Figure 1(a), the platform can freely move in the hori-
zontal planewhile the verticalmotion is restricted. In the second
setup, Figure 1(b), the platform can freely move in vertical
direction while motions in the horizontal plane are suppressed.
Hereto, the cables are suspended by springs and are guided
through thin holes in fixed metal strips to restrict motion in
the horizontal plane. Due to a degree of freedom of the plat-
form, whether it is horizontal or vertical, the metronomes are
able to transfer energy to one another, hence the metronomes
could potentially synchronise just like Huygens observed with
pendulum clocks.

The metronomes used in the experiments are Nikko Lupina
311 metronomes. It is a lightweight device of approximately
3 × 11 × 5 cm that consists of a pendulum with an additional
small mass, called the bob, that can be slided up and down the
pendulum to adjust the metronome frequency from largo 40
beats per minute (bpm) to prestissimo 208 bpm. It also contains

an internal escapement mechanism that compensates for dissi-
pated energy by giving it a small pulse every time the pendulum
swings back and forth. Themechanism consists of a set of gears,
axles, a toothed wheel and a coiled spring that acts as an inter-
nal energy source that can be loaded by turning a screw to the
side. Each time the pendulum swings back and forth, a tooth
‘escapes’ and hits the pendulum, resulting in the pulse and the
distinctive ticking sound of a metronome. In this study, the bob
mass is set as close as possible to the centre of rotation, resulting
in the highest natural frequency of the metronome, namely 208
beats per minute, i.e. fmtr = 1.733Hz as two beats are generated
during one cycle.

To measure the platform motions and pendulum angles,
a contactless measurement setup by means of video cameras
is implemented. Hereto, one camera is positioned in front
of the metronomes to determine their angular displacements
and a second camera is placed above the platform to mea-
sure its motions. Each camera determines its position relative
to the setup with means of small checkerboard patterns and
subsequently, by tracking certain black-and-white markers the
desired displacements can be measured in real world coordi-
nates.

The experiments are described as follows. The metronomes
are initialised from a certain arbitrary position, however after
some transient behaviour of approximately 30 seconds, the pen-
dula seem to converge to a stable solution in which the pendula
are eithermoving in the same or in opposite directionwith equal
frequency and amplitude, i.e. the metronomes are either syn-
chronised in-phase or anti-phase. In the horizontal case, the
pendula synchronise in-phase independently of the initial posi-
tions, while in the vertical case, the type of synchronisation is
dependent on the initial positions. When the metronomes are
released close to its in-phase, they synchronise in-phase and
analogously, when they are released close to its anti-phase they
synchronise anti-phase.

The obtained experimental results are presented in Figure 2
where the black and gray time series correspond to the angu-
lar displacement of pendulum 1 and 2, respectively. The
obtained solution regarding the horizontal system is presented
in Figure 2(a), while the two obtained solutions regarding the
vertical system are presented in Figure 2(b,c).

It is generally known that the stiffness of the coupling
medium highly influences the synchronising behaviour of pen-
dulum clocks or metronomes, e.g. Peña Ramírez et al. (2016),
PeñaRamírez et al. (2014), andHoogeboomet al. (2016). There-
fore, it is decided to conduct an additional set of experiments

Figure 1. Experimental setups with two metronomes placed in row configuration on a platform that is solely moving in one of the elementary directions: (a) horizontal
displacement; (b) vertical displacement: the cables are suspended by springs and guided through the holes in metal strips.
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Figure 2. Experimental results, pendulum angles θ1: black and θ2: gray (top). (a) Horizontal system, in-phase synchronisation. (b) Vertical system, in-phase synchronisa-
tion. (c) Vertical system, anti-phase synchronisation.

Figure 3. Experimental results with stiffer setups, pendulum angles θ1: black and θ2: gray (top). (a) Horizontal system in-phase synchronisation. (b) Horizontal system,
anti-phase synchronisation. (c) Vertical system, quarter-phase synchronisation.

with stiffer setups. To achieve this increase in stiffness, the sus-
pension cables are replaced by stiffer and shorter substitutes in
the horizontal case, whereas in the vertical case the springs that
suspend the platform are simply replaced by stiffer ones. The
obtained experimental results are presented in Figure 3. In the
horizontal case, we now observe both in- and anti-phase syn-
chronisation depending on the initial pendula positions, see
Figure 3(a,b), while in the vertical case we now solely observe
a single type of synchronisation that is different from in-phase
and anti-phase synchronisation. It is a stable solution in which
one of the pendula is oscillating with a 1

2π phase lead or lag
with respect to the other. This type of synchronisation is called
quarter-phase synchronisation and is observed numerically for
vertically coupled oscillatory systems (Czolczynski et al., 2013;
Hoogeboom, 2015; Kapitaniak et al., 2012), yet an experimental
observation was still lacking.

In conclusion, depending on the platform stiffness–and thus,
the platform eigenfrequency–we see certain transformations
between synchronisation regimes. This, therefore, raises ques-
tions about the influence of platform and metronome eigenfre-
quencies on the synchronous behaviour. In order to investigate
how the interaction of those frequencies is responsible for sta-
bility/instability of the synchronous regimes, we are going to

pursue the following plan: first the synchronisation setup is
modelled via the first principles, then the parameters of the
model are tuned to match the experimental results. Once we
are certain that the model mimics the real behaviour reason-
ably well, we are going to study numerically how the ratio of the
rotational and translational eigenfrequencies affects the stability
of the synchronous regimes.

3. Modelling the experimental setup

To further investigate the frequency dependency and possible
autoparametric resonance behaviour, it is necessary to derive
suitable mathematical models that can accurately describe and
predict the dynamics of the real systems.

3.1 Metronomemodel

To describe the dynamical behaviour of the Nikko Lupina 311
metronome in amathematical sense, the samemodel as derived
in Hoogeboom et al. (2016) is used. It is a two-mass pendulum
model given by

(mpl2p + mbl2b)θ̈ + dθ̇ + g(mplp − mblb) sin θ = u(θ , θ̇ )), (1)
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Table 1. Properties of the Nikko Lupina 311metronome, experimentally found by
the least square method, Hoogeboom et al. (2016).

Property Value

Mass of pendulum mp = 18.5 g
Mass of pendulum bob mb = 8.6 g
Length of pendulum lp = 0.0245m
Length of pendulum bob lb = 0.027m
Damping constant d = 0.0024 Nmms/rad
Gravitational acceleration g = 9.81m/s2

Driving torque of escapement mechanism μ = 0.0451 Nmm
Starting angle of escapement mechanism θs = −0.1920 rad
Ending angle of escapement mechanism θe = 0.2793 rad
Accuracy constant ε = 0.05 –
Natural frequency fmtr = 1.733 Hz

where u(θ , θ̇ ) is a smooth approximation of the escapement
mechanism’s impulsive input that is a function of the pendula
angular displacement and velocity

u(θ , θ̇ ) = τ s(tanh((sθ − θs)/ε)− tanh((sθ − θe)/ε))/2. (2)

Herein, s = tanh(50θ̇/ε) approximates the sign function of the
pendulum’s angular velocity. The metronome parameters are
identified and estimated in Hoogeboom et al. (2016), partly
by using conventional methods and partly by a standard least
squares estimation procedure based on experimental data. The
parameters, descriptions and estimated values are listed in
Table 1.

3.2 Equations ofmotion

In order to derive amodel for the experimental setups, following
(Hoogeboom et al., 2016), consider the schematic representa-
tions in Figure 4. Herein the experimental setups are repre-
sented in a schematic front view with the platform in gray and
the metronomes in blue. Furthermore, �e 0 is a fixed world frame
and �e 1, �e 2 body fixed frames of the platform and metronome
respectively. Note that the platform is assumed to solely move
in a single direction which is limited by a linear spring-damper
system, i.e. translations in other directions and rotations are
neglected. In reality, however, some of these motions are not
strictly constrained, for example the suspension of the platform
in Figure 1(b) allows the platform to rotate in the (�e01, �e03)-plane.
However, by careful positioning of the metronomes on the plat-
form, these motions can be reduced to a minimum such that
they do not significantly influence the behaviour.

The generalised coordinates are selected as q = [y, θ1, θ2]
which are the platform displacement in respective direction
(either horizontal, or vertical) and the pendulum angular dis-
placements. Assuming no dry friction or backlash is present, a
model is derived using the Euler-Lagrange equations of motion,
which results in:

Mtÿ + cẏ + ky = −pf (θi, θ̇i, θ̈i), (3a)

Iθ̈1 + dθ̇1 + gp sin θ1 + pÿh(θ1) = u(θ1, θ̇1), (3b)

Iθ̈2 + dθ̇2 + gp sin θ2 + pÿh(θ2) = u(θ2, θ̇2), (3c)

where Mt = M + 2mp + 2mb, p = mplp − mblb and I =
mpl2p + mbl2b, which are, respectively, the total mass, net pen-
dulum moment and pendulum moment of inertia. Note that g
denotes the gravitational acceleration, k the platform stiffness, c
the platform damping and M the platform mass including the
metronome casings but without the weight of the pendula. Fur-
thermore, the functions f (θi, θ̇i, θ̈i) and h(θi) are system specific.
For the horizontal system, Figure 4(a), these functions become:

f (θi, θ̇i, θ̈i) =
2∑

i=1
(θ̈i cos θi − θ̇2i sin θi), (4a)

h(θi) = cos θi, (4b)

and for the vertical system, Figure 4(b):

f (θi, θ̇i, θ̈i) =
2∑

i=1
(θ̈i sin θi + θ̇2i cos θi), (5a)

h(θi) = sin θi. (5b)

The platform parameters are identified using the least square
estimation procedure and the resulting values are presented in
Table 2 for both the original setups (horizontal 1 and vertical 1)
and for the stiffer setups (horizontal 2 and vertical 2). Note that
this table also presents the resulting platform eigenfrequencies,
fplt .

To gain more insight in the influence of eigenfrequencies
on the dynamical behaviour of the systems, the equations of
motion are transformed to dimensionless form. Hereto, let
� := √

k/Mt be the platform’s eigenfrequency; ω := √
gb/I

the approximation of the natural metronome frequency; ζ :=
c/2

√
Mtk the dimensionless platform damping factor; ỹ := y/lp

Figure 4. Schematic representations of the experimental setups presented in Figure 1. Twometronomes (blue) coupled by a platform (gray) which motion is constricted
by a linear spring-damper system. (a) Platform displaces horizontally (b) Platform displaces vertically.
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Table 2. Properties of the couplingplatform (Pl), experimentally foundby the least
square method, Hoogeboom et al. (2016).

Property Horizontal 1 Horizontal 2 Vertical 1 Vertical 2

Pl. mass, kg M= 0.3778 M= 0.3778 M= 0.433 M= 0.433
Pl. stiffness, N/m k = 14.75 k = 47.09 k = 117.3 k = 247.2
Pl. damping, Ns/m c= 0.0185 c= 0.3868 c= 0.0271 c= 0.0592
Pl. eigenfreq., Hz fplt = 0.930 fplt = 1.661 fplt = 2.468 fplt = 3.584

the scaled platform displacement and; ψ := ωt a dimension-
less time. Note that fplt = �/2π and fmtr = ω/2π . These scaled
quantities imply the following properties:

y = ỹlp,
dy
dt

= lp
dỹ
dψ

dψ
dt

= lpỹ′ω,
d2y
dt2

= lpỹ′′ω2,

dθ
dt

= dθ
dψ

dψ
dt

= θ ′ω and
d2θ
dt2

= θ ′′ω2. (6)

Substituting these expressions in (3) and rearranging terms
results in the following dimensionless equations of motion:

ỹ′′ + 2ζ
�

ω
ỹ′ + �2

ω2 ỹ = −αf (θi, θ̇i, θ̈i), (7a)

θ ′′
1 + β

ω
θ ′
1 + sin θ1 + γ ỹ′′g(θ1) = ψ

ω2 u(θ1, θ
′
1), (7b)

θ ′′
2 + β

ω
θ ′
2 + sin θ2 + γ ỹ′′g(θ2) = ψ

ω2 u(θ2, θ
′
2), (7c)

where α = p
Mtlp , β = d

I , γ = plp
I , ψ = 1

I .

4. Numerical analysis

4.1 Computer simulations

To compare and validate the model (3) a number of computer
simulation are performed using numerical integrationmethods.
Hereto, the parameter values are used as listed in Tables 1 and 2
for the original setups (horizontal 1 and vertical 1) and simula-
tions are started with initial pendulum positions and velocities
close to the experiments presented in Figure 2. The obtained
simulation results are depicted in Figure 5. When comparing

the simulation results with the experiments Figure 2, it can be
concluded that the model captures the dynamical behaviour
reasonably well for both the horizontal and vertical system.

At this point, it should be mentioned that the solutions pro-
vided in Figures 2, 3 and 5 are periodic solutions, i.e. the time-
dependent platform and pendula positions and velocities repeat
itself each full swing of the metronomes.

4.2 Local stability analysis

Since the model can be assumed sufficiently accurate for this
system, it can now be used to numerically investigate the influ-
ence of eigenfrequencies on the synchronous behaviour. Since
the focus of this research lies in the periodic solutions rather
than the transient behaviour, it is decided to use a numerical
continuation and bifurcation tool instead of numerical integra-
tion methods. With the tool Auto (Doedel & Oldeman, 2012)
it is possible to investigate the existence and stability of the peri-
odic solutions observed during the experiments when a certain
system parameter, called the bifurcation parameter, is varied.

Since we want to investigate the influence of eigenfrequen-
cies on the synchronous behaviour of coupled metronomes,
it is decided to perform this continuation procedure with the
dimensionless equation of motion (7). This way, it is possible
to select the platform andmetronome eigenfrequencies, fplt and
fmtr , directly as bifurcation parameter instead of indirect param-
eters like platform stiffness or mass as was done in Hoogeboom
et al. (2016) and Francke (2016). The results of this analysis are
presented in Figure 6. Figure 6(a,c) present the results regarding
the horizontal system and Figure 6(b,d) regarding the vertical
system. In each diagram, either fmtr or fplt is selected as bifurca-
tion parameter while the other is kept constant at the original
metronome frequency, i.e. fplt = 1.733Hz or fmtr = 1.733Hz,
respectively.

At first, we conclude that the observations made during the
experiments and simulations are in correspondence with the
bifurcation diagrams, i.e. the observed synchronisation phe-
nomena for the platform eigenfrequencies mentioned in Table 2
are corresponding with Figure 6(c,d). Secondly, we observe that
in the horizontal case, a transformation between solely stable

Figure 5. Numerical integration results of system (3), pendulumangles θ1: black and θ2: gray. (a) Horizontal system, in-phase synchronisation. (b) Vertical system, in-phase
synchronisation. (c) Vertical system, anti-phase synchronisation. Compare this with Figure 2.
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Figure 6. Bifurcation diagrams computed with Auto for systems (7). �φ = 0/ 12π /π denote in/quarter/anti-phase synchronisation and solid/dashed lines denote sta-
ble/unstable solutions. (a) Horizontal system, fplt = 1.733 Hz and fmtr is bifurcation parameter. (b) Vertical system, fplt = 1.733 Hz and fmtr is bifurcation parameter. (c)
Horizontal system, fmtr = 1.733 Hz and fplt is bifurcation parameter. (d) Vertical system, fmtr = 1.733 Hz and fplt is bifurcation parameter.

in-phase to stable in- and anti-phase synchronisation occurs at
approximately fplt = fmtr , and in the vertical case, a transforma-
tion from stable in- and anti-phase to solely stable quarter-phase
synchronisation at approximately fplt = 2fmtr . Thirdly, Auto
experiences numerical difficulties for certain synchronised solu-
tions which is why no data is available in certain frequency
ranges for: (1) In-phase synchronisation in Figure 6(a); (2) In-
phase synchronisation in Figure 6(c); (3) In- and anti-phase syn-
chronisation in Figure 6(d). However, it should be mentioned
that other synchronous behaviour may be possible within these
regions. For example, it is known that there exists more than
one type of in-phase synchronisation (Francke, 2016). Fourthly,
in Figure 6, the in- and anti-phase solutions become generally
unstable below fmtr = 1Hz except for some inexplicable small
stable sections. Finally, at the small arrows, we observe cer-
tain windows in the eigenfrequency bands in which the anti-
and quarter-phase solutions of respectively the horizontal and
vertical system become unstable. To see what happens inside
these regions, simulations are performed within these regions
and with initial pendula positions close to anti- respectively
quarter-phase synchronisation. The resulting angular displace-
ments of the pendula are presented in Figure 7. Clearly, after
some transient behaviour, the metronomes converge to some
kind of oscillating behaviour that is not related to synchroni-
sation whatsoever. Considering the type of behaviour and the
locations of the unstable regions, this behaviour is most likely
originating from auto-parametric resonating effects.

To further investigate the occurrence of auto-parametric res-
onance, it is required to get stability information about the
anti- respectively quarter-phase solutions for the full {fmtr , fplt}-
parameter space. Unfortunately, the bifurcation diagrams in
Figure 6 solely provide stability information about a few small
subspaces of the full parameter space, see the gray lines in
Figure 8 which correspond to the stable solutions from Figure 6.
To gain information about the remaining parameters, we per-
formed a large number of computer simulations. Hereto, the
dimensionless system (7) is simulated for different combina-
tions of fmtr and fplt and stability of the anti- and quarter-phase
solutions for, respectively, the horizontal and vertical systems is
determined accordingly. The results of this simulation study are
presented in Figure 8. Herein the stability of the anti- respec-
tively quarter-phase solution is depicted in terms of the platform
eigenfrequency fplt and the ratio of frequencies fplt/fmtr . White
means stable behaviour and black means unstable behaviour.

As can be seen, the results of the local stability analysis are in
good correspondencewith the simulation study, except for small
sections around fplt/fmtr = 4.5, 6.5 and 7.3 in Figure 8(b). This
may be due to numerical difficulties in determining quarter-
phase synchronisation, which also declares the granular nature
of the results. Furthermore, the solutions are generally sta-
ble except for low platform frequencies, low fplt/fmtr ratio, and
the so-called Arnold tongues that clearly show the regions in
which auto-parametric resonance affects the stability of the
solutions. In the horizontal case, these tongues seem to appear

Figure 7. Numerical integration results of system (7) with fmtr = 1.73 Hz, pendulum angles θ1: black and θ2: gray. (a) Horizontal system, fplt = 1.73 Hz. (b) Vertical system,
fplt = 3.38 Hz.



280 M. FRANCKE ET AL.

Figure 8. (a) Stability of the anti-phase solution of the horizontal system, White/black denote stable/unstable anti-phase behaviour. Gray lines correspond to stable
anti-phase behaviour according to the local stability analysis of Figure 6(a,c), see the vertical arrows therein. (b) Stability of the quarter-phase solution of the vertical
system, White/black denote stable/unstable quarter-phase behaviour. Gray lines correspond to stable quarter-phase behaviour according to the local stability analysis of
Figure 6(b,d), see the vertical arrows therein.

and converge to platform eigenfrequencies that are odd multi-
ples of the metronome eigenfrequency, i.e.

fplt ≈ nfmtr , for n ∈ {1, 3, 5, . . .}. (8)

While in the vertical case, the tongues seem to appear and
converge when the platform eigenfrequency is close to even
multiples of the metronome eigenfrequency, i.e.

fplt ≈ nfmtr , for n ∈ {2, 4, 6, . . .}. (9)

In conclusion, it can be stated that coupled metronome sys-
tems are indeed subject to auto-parametric resonance and sta-
bility/instability of the synchronous regimes is influenced by the
ratio of translational and rotational eigen-frequencies. When
the metronomes are coupled in horizontal fashion, it affects the
stability of the anti-phase synchronised solution, and in case
of vertical coupling, it affects the stability of the quarter-phase
synchronised solution.

5. Conclusions

The paper demonstrates that the stability/instability of the
synchronous regimes in Huygens-like synchronisation setups
is influenced by the ratio of the translational and rotational
eigen-frequencies similar to systems exhibiting auto-parametric
resonance. This observation augments previous studies on
bifurcations of synchronous solutions in systems of coupled
metronomes. Our analysis is made via a numerical study of the
model of the synchronisation setup. The model of the setup is
derived via the first principles in Hoogeboom et al. (2016) and
matches the experimental results reported in this paper.

The results reported support the conclusion that an analyti-
cal study of stability of synchronous regimes could be performed
by the analytical methods capable to expose the parametric res-
onance, i.e. methods based on small parameters and averaging
technique. An attempt to employ those methods for a justifica-
tion of the system behaviour similar to Figure 8 is a subject of
our ongoing research.
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