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ABSTRACT
Finding the cheapest, or smallest, set of sensors such that a specified level of diagnosis performance is
maintained is important to decrease cost while controlling performance. Algorithms have been developed
to find sets of sensors that make faults detectable and isolable under ideal circumstances. However, due to
model uncertainties and measurement noise, different sets of sensors result in different achievable diag-
nosability performance in practice. In this paper, the sensor selection problem is formulated to ensure that
the set of sensors fulfils required performance specifications whenmodel uncertainties and measurement
noise are taken into consideration. However, the algorithms for finding the guaranteed global optimal
solution are intractable without exhaustive search. To overcome this problem, a greedy stochastic search
algorithm is proposed to solve the sensor selection problem. A case study demonstrates the effectiveness
of the greedy stochastic search in finding sets close to the global optimum in short computational time.
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1. Introduction

In model-based diagnosis, mathematical models describing
the monitored system are used to compare observed signals
with the corresponding modelled signals to detect anomalies
(Nyberg, 2002). Finding the optimal set of sensors to fulfil the
fault detection and isolation requirements is important but can,
in general, be computationally intractable due to exponential
complexity properties. More sensors will give better fault diag-
nosis, i.e. fault detection and isolation, performance but also
increase the sensor cost and require more space to fit all sensors
(Bhushan, Narasimhan, & Rengaswamy, 2008). Therefore, the
primary goal of this paper is to find, given a set of candidate sen-
sors and a specified cost of using each sensor, a cheapest subset
of sensors that fulfils the fault detection and isolation require-
ments. If the sensor cost is equal for all sensors the cheapest set
is the minimum cardinality set.

A common approach to formulate fault diagnosability
requirements when defining the sensor selection problem is
to use fault detectability and isolability (see, e.g. Krysander
& Frisk, 2008; Yassine, Ploix, & Flaus, 2008). Fault detectabil-
ity and isolability are deterministic performance measures and
describe whether faults can be detected and isolated or not in
the ideal case, i.e. the measures can answer questions such as: ‘Is
it possible to detect a fault fi?’ or ‘Is a fault fi isolable from another
fault fj?’ ‘Is it possible to detect a fault fi?’ or ‘Is a fault fi isolable
from another fault fj?’ (Eriksson, Frisk, &Krysander, 2013). One
problem of using qualitative fault detectability and isolability to
formulate performance requirements is that there is no way of
specifying how easy it should be to detect or isolate different
faults of different magnitudes.
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An important factor when considering the sensor selection
problem is the negative impact of model uncertainties andmea-
surement noise on the performance of a diagnosis system. Large
uncertainties complicate detection and isolation of small faults.
Even if a set of sensors fulfils the deterministic fault detectability
and isolability requirements, it is not certain that a diagnosis sys-
tembased on these sensors willmeet performance requirements
when model uncertainties and measurement noise are taken
into consideration. In Bhushan et al. (2008), it is emphasised
that the importance of reducing cost or increasing robustness
have a significant impact on the required number of sensors.

Another motivation is the increasing availability of cheap
sensors. It can be more cost effective to use a large number of
cheap sensors in the system instead of a few expensive ones with
higher accuracy to achieve the same fault detection and isola-
tion performance. With model uncertainties and measurement
noise, the sensor selection problem needs to include a more
realistic evaluation of diagnosability performance than, say, just
finding a minimum cardinality sensor sets that implies fault
detectability and isolability under ideal conditions. Typically,
there are requirements on the diagnosis system, such as proba-
bility of false alarms and probability of missed detections given
different faults. If these requirements can be translated to the
sensor selection problem, a feasible solution would then assure
that the corresponding diagnosis system can be developed with
satisfactory performance.

A quantitative measure of diagnosability performance based
on the Kullback–Leibler divergence, called distinguishability,
is proposed in Eriksson et al. (2013). The same measure
is also proposed in Harrou, Fillatre, and Nikiforov (2014).
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Distinguishability is used to quantify fault detection and iso-
lation performance for a given model by taking measurement
noise and model uncertainties into consideration. An impor-
tant property of the distinguishability measure is that it is a
model property and gives an upper bound of the maximum
fault-to-noise ratio for any linear residual generator. Thus, by
evaluating distinguishability of the model, the achievable per-
formance of a diagnosis system can be predicted which is
useful in the early diagnosis system design process. This is
illustrated in Eriksson, Krysander, and Frisk (2012) where dis-
tinguishability is proposed when defining the sensor selection
problem. It is shown that the distinguishability requirements
have a significant impact on the number of sensors that are
required to achieve the desired performance. In general, stricter
distinguishability requirements result in higher solution cost
since more sensors are needed. With respect to these previ-
ous works, a greedy stochastic search algorithm is proposed
to solve the sensor selection problem. It is also shown how to
include requirements on false alarm rates and missed detection
rates when formulating the sensor selection problem using the
distinguishability measure.

In Huber, Kopecek, and Hofbaur (2014), distinguishability
is used to select a set of sensors which are good for estimating
faults in an internal combustion (IC) engine using an extended
Kalman filter. The nonlinear model of the IC engine was lin-
earised at different operating points to capture distinguishability
variations at different operating points. The number of available
sensors was relatively small and, therefore, an exhaustive search
was used. Thus, the work in Huber et al. (2014) did not explore
the search problem which is a main topic here.

This work extends the results of the previous work in Eriks-
son et al. (2012), by analysing properties of the sensor selection
problem and proposing an efficient algorithm for solving the
problem. The main contribution is a formulation of the sensor
selection problemwheremodel uncertainties andmeasurement
noise are taken into consideration when formulating the perfor-
mance requirements using the distinguishability measure. It is
shown how to formulate the quantitative fault detection and iso-
lation performance requirements based on required false alarm
rate andmissed detection rate. This is important to assure that a
diagnosis system can be designed, based on the selected sensor
set, that fulfils the specified fault detection and isolation perfor-
mance requirements. A second contribution is an analysis of the
properties of the sensor selection problem. Based on the results
from the analysis, a heuristic greedy stochastic search algorithm
is proposed. A case study is used to show the effectiveness of
the proposed algorithm with respect to other heuristic search
algorithms.

2. Problem statement

Before formulating the sensor selection problem, a short discus-
sion about modelling faults and the distinguishability measure
is presented.

2.1 Modelling faults

The goal here is to solve the sensor selection problem, given a
predetermined set of possible faults F = {f1, f2, . . . , flf } and a
diagnosis requirement specification.

Figure 1. The fault time profile θ describes the fault trajectory during a given time
interval.

A fault fi is modelled as an unknown signal affecting the sys-
tem (Eriksson et al., 2013) where fi = 0 represents the fault-free
case. It is assumed that each fault fi can have any fault realisa-
tion, for example, a constant and a ramp, but alsomore complex
realisations, as illustrated in Figure 1. The fault time profile θ
is a vector describing the fault trajectory during a specific time
interval.When formulating fault detection and isolation perfor-
mance requirements, different fault time profiles θ can be used
to represent different fault realisations that should be detectable
and isolable.

2.2 Formulation of performance requirements for sensor
sets

The sensor selection problem is formulated using a distin-
guishability measure that takes model uncertainties and mea-
surement noise into consideration. The notion of the distin-
guishabilitymeasure (Eriksson et al., 2013) is described in detail
in Section 4, but for the problem formulation it is sufficient
to know that distinguishability, denoted Di,j(θ), quantifies the
difficulty of isolating a fault fi, with a given fault time profile
θ , from another fault fj. Each fault can have any fault realisa-
tion but the distinguishability measure is computed for a given
fault scenario. Distinguishability can be computed for differ-
ent fault time profiles to evaluate how the fault trajectory and
magnitude affect detection and isolation performance. The dis-
tinguishability measure is non-negative where a larger value of
Di,j(θ) corresponds to an easier fault isolation problem. The
caseDi,j(θ) = 0 corresponds to the situation where fi cannot be
isolated from fj.

LetS = {y1, y2, . . . , yk} be a set of k candidate sensors, where
each sensor yi ∈ S is assumed fault-free and the cost to use that
sensor is denoted as ci. The objective is to find a cheapest set
of sensors S ⊆ S , which fulfils a set of performance require-
ments defined by minimum required distinguishabilityDreq

i,j (θ)
for a predetermined set of fault realisations θ ∈ �i for each
fault fi ∈ F . Each set �i can be interpreted as a selected sub-
set of fault time profiles a diagnosis system should be able to
detect and isolate, i.e. the selected sensor set should fulfil the
requirements Dreq

i,j (θ) for each θ ∈ �i. The maximum achiev-
able distinguishability is denoted as Dmax

i,j (θ) and is the com-
puted value of Di,j(θ) when all available candidate sensors are
used. Then, each requirementDreq

i,j (θ) is selected in the interval
0 ≤ Dreq

i,j (θ) ≤ Dmax
i,j (θ) and defines a lower bound of Di,j(θ).

Note thatDreq
i,j (θ) can be computed based on other performance

requirements which are discussed in Section 5.
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The reliability of each candidate sensor in S is not taken
into consideration in the sensor placement problem. However,
the increased lifetime cost by using a non-reliable sensor could
be included when defining the sensor cost in the optimisation
problem.

2.3 Sensor selection problem formulation

The sensor selection problem is formulated as follows.

Problem formulation 2.1: Let S = {y1, y2, . . . , yk} be a set of k
candidate sensors,F = {f1, f2, . . . , flf } a set of faults, andDreq

i,j (θ)
solution constraints. Then, the sensor selection problem is formu-
lated as

min
S⊆S

∑
yl∈S

cl

s.t. DS
i,j(θ) ≥ Dreq

i,j (θ), ∀θ ∈ �i

∀fi, fj ∈ F ,

(1)

where
∑

yl∈S cl is the solution cost and DS
i,j(θ) denotes the com-

puted distinguishability for a given set of sensors S. The sensor
candidates S are here assumed to be fault-free. However, the sys-
tem can include already mounted sensors, not part of the sensor
candidates S , which can be faulty.

Note that distinguishability requirements regarding isolabil-
ity from multiple faults can also be taken into consideration in
Equation (1) by computing distinguishability from each fault to
a set of other faults (see Eriksson, Frisk, & Krysander, 2012).

3. Related research

As mentioned in Section 1, many proposed sensor selection
problems are formulated using fault detectability and isola-
bility. In Frisk, Krysander, and Åslund (2009), an analytical
approach for linear differential algebraic equation models is
used to find all minimal sets of sensors that fulfil the required
performance. In Dong and Biswas (2013) and Narasimhan,
Mosterman, andBiswas (1998), aminimal solution to the sensor
placement problem is found using the A∗ algorithm. In Casillas,
Puig, Garza-Castañón, and Rosich (2013), a genetic algorithm
is applied to select sensors for leakage detection in a water dis-
tribution network. In Krysander and Frisk (2008), an exhaustive
search strategy is proposed which finds all minimal solutions. A
greedy search strategy for finding a set of sensors fulfilling the
diagnosability requirements is proposed in Raghuraj, Bhushan,
and Rengaswamy (1999). Another greedy approach is pro-
posed in Perelman, Abbas, Koutsoukos, andAmin (2016) which
utilises the submodularity property of the sensor selection prob-
lem to significantly reduce computational time. In Rosich, Sar-
rate, and Nejjari (2009), the sensor placement problem is for-
mulated as a binary integer linear programming problem. In
Daigle, Roychoudhury, and Bregon (2014) and Travé-Massuyès,
Escobet, and Olive (2006), the sensor selection problem is for-
mulated as a test selection problem where the set of selected
tests should use as few sensors as possible. In these previous
works, fault diagnosability performance requirements are for-
mulated in the sensor selection problem using fault detectability

and isolability. For nonlinear models, a structural description
of the system is used to evaluate fault detectability and isolabil-
ity performance (see, e.g. Chi, Wang, & Zhu, 2015; Commault
& Dion, 2007; Yassine et al., 2008).

There are also previous sensor selection research where the
effects of different types of uncertainties are taken into consid-
eration. In Bhushan et al. (2008), the probability of faults and
sensor failures are taken into consideration when formulating
the sensor placement problem. In Wu, Hsieh, and Li (2013),
the cause–effect relations between faults and sensors are rep-
resented by a fuzzy graph and different quantitative factors are
taken into consideration, such as sensor quality and sensitivity
to different faults. In Namburu, Azam, Luo, Choi, and Patti-
pati (2007), diagnostic accuracy is taken into consideration in
the selection problem where a data-driven diagnosis algorithm
is designed.Allmentionedworks are closely related to thiswork,
and a main contribution is that the effects of model uncertain-
ties, measurement noise, fault realisations, and allowed time to
detect are taken into consideration in addition to the search
properties of the optimal selection problem.

4. Theoretical background

The quantitative diagnosability analysis used in the paper is here
briefly reviewed. For detailed descriptions, the interested reader
is referred to Eriksson et al. (2013).

4.1 Model

The class ofmodels considered are linear descriptormodelswith
additive faults represented as

Ex[t + 1] = Ax[t] + Buu[t] + Bf f [t] + Bvv[t],

y[t] = Cx[t] + Duu[t] + Df f [t] + Dεε[t],
(2)

where t denotes time index, x ∈ R
lx are unknown variables, y ∈

R
ly are measured signals, u ∈ R

lu are input signals, f ∈ R
lf are

modelled faults, and v ∼ N(0,�v) and ε ∼ N(0,�ε) are i.i.d.
Gaussian randomvectors, representingmodel uncertainties and
noise, respectively, with zero mean and known symmetric pos-
itive definite covariance matrices�v ∈ R

lv×lv and�ε ∈ R
lε×lε .

The notation lα denotes the number of elements in the vec-
tor α. All matrices are known and if lq denotes the number
of system equations, then E ∈ R

lq×lx , A ∈ R
lq×lx , Bu ∈ R

lq×lu ,
Bf ∈ R

lq×lf , Bv ∈ R
lq×lv , C ∈ R

ly×lx , Du ∈ R
ly×lu , Df ∈ R

ly×lf ,
and Dε ∈ R

ly×lε . Note that E can be singular.
Each sensor candidate yl ∈ S measures one unknown vari-

able xi with additive i.i.d. Gaussian noise and is described by the
model yl[t] = xi[t] + εl[t], where εl ∼ N (0, σ 2

l ). Thus, when
adding a set of candidate sensors S, represented by the vector
yS[t], to model (2), the measurement equations are modified as
follows:

(
y[t]
yS[t]

)
=

(
C
CS

)
x[t] +

(
Du
0

)
u[t]

+
(
Df
0

)
f [t] +

(
Dε 0
0 I

)(
ε[t]
εS[t]

)
, (3)
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where the uppercase S refers to the candidate sensors in S and
CS is a zero matrix with ones at positions corresponding to the
measured variables, I is the identity matrix, and εS is a noise
vector with the corresponding noise covariances.

Besides the magnitude and time profile of the fault, the dif-
ficulty to detect or isolate a fault also depends on allowed time
to fault detection or time to fault isolation (see, e.g. Basseville
&Nikiforov, 1993). The allowed time can also be seen as a design
parameter in the sensor selection problem but is here consid-
ered to be fixed. Extended model (2)+(3) is rewritten as a time
windowmodel, or batchmodel, of length n to model the system
behaviour during a given time window. Define the vectors

z = (y[t − n + 1]T, . . . , y[t]T, u[t − n + 1]T, . . . , u[t]T)T,

x = (x[t − n + 1]T, . . . , x[t]T, x[t + 1]T)T,

f = (f [t − n + 1]T, . . . , f [t]T)T,

e = (v[t − n + 1]T, . . . , v[t]T, ε[t − n + 1]T, . . . , ε[t]T)T,
(4)

where z ∈ R
n(ly+lu), x ∈ R

(n+1)lx , f ∈ R
nlf , and e is a random

vector with a known distribution with zero mean and covari-
ance matrix�e.

A sliding window model of length n can then be written as

Lz = Hx + Ff + Ne, (5)

where

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −Bu 0 · · · 0
0 0 0 0 −Bu 0
...

. . .
...

...
. . .

...
0 0 · · · 0 0 · · · 0 −Bu
I 0 · · · 0 −Du 0 · · · 0
0 I 0 0 −Du 0
...

. . .
...

...
. . .

...
0 0 · · · I 0 0 · · · −Du

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A −E 0 · · · 0
0 A −E 0
...

. . . . . .
...

0 0 · · · A −E
C 0 0 · · · 0
0 C 0 0
...

. . .
...

0 0 · · · C 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bf 0 · · · 0
0 Bf 0
...

. . .
...

0 0 · · · Bf
Df 0 · · · 0
0 Df 0
...

. . .
...

0 0 · · · Df

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bv 0 · · · 0 0 0 · · · 0
0 Bv 0 0 0 0
...

. . .
...

...
. . .

...
0 0 · · · Bv 0 0 · · · 0
0 0 · · · 0 Dε 0 · · · 0
0 0 0 0 Dε 0
...

. . .
...

...
. . .

...
0 0 · · · 0 0 0 · · · Dε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The fault vector f in Equation (5) describes how a fault affects
the system during the considered time interval, for example, a
constant, a ramp, or an intermittent fault.

For the quantitative fault diagnosability analysis, it is
assumed that no noise-free residuals can be generated. This
corresponds to model (5) that fulfils the condition

(
H N

)
has full row-rank. (6)

One sufficient criteria for Equation (2) to satisfy Equation
(6) is that all sensors have measurement noise and the
model has a unique solution for a given initial state (Kunkel
& Mehrmann, 2006).

It proves useful to write Equation (5) in an input–output
form where the unknowns, x, are eliminated, without losing
information about the system behaviour (Eriksson et al., 2013).
The input–outputmodel can, in the general case, then bewritten
as

NHLz = NHFf + NHNe, (7)

where the rows of NH is an orthonormal basis for the left null
space of H, i.e.NHH = 0 and cov(NHNe) = �.

4.2 Model-based diagnosis

Model-based diagnosis systems are based on a set of residual
generators tomonitor the system. Each residual generator r(z) is
a function of known variables and designed tomonitor a specific
part of the system. A residual is, ideally, zero in the fault-free
case and is said to be sensitive to a fault fi if a fault time pro-
file θ 	= 0 implies that E[r(z)] 	= 0. Based on which faults each
residual generator is sensitive to, it can be used to detect and
isolate faults (Svärd, Nyberg, & Frisk, 2013).

Definition 4.1 (Fault detectability of a residual generator): A
fault f is detectable if a residual generator is sensitive to that
fault.

Definition 4.2 (Fault isolability of a residual generator): A
fault fi is isolable from another fault fj if a residual generator is
sensitive to fi but not fj.

Based on these definitions, fault detection and isolation per-
formance of a diagnosis system can be evaluated by analysing
the detection performance of the residual generators with cor-
responding fault sensitivities (Svärd et al., 2013).
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4.3 Distinguishability

Distinguishability is a model property, based on the Kullback–
Leibler divergence, and is a quantitative measure of fault
detection and isolation performance (Eriksson et al., 2013). In
order to compute distinguishability, model (5) is first trans-
formed to simplify the computations. It is assumed without loss
of generality that

� = NHN�eNTN T
H = I. (8)

Note that any model in form (5), satisfying Equation (6), can be
transformed into fulfilling � = I by multiplying Equation (5)
with an invertible transformation matrix T from the left. The
choice of matrix T is non-unique and one possibility is

T =
(
	−1NH

T2

)
, (9)

where 	 is non-singular and

NHN�eNTN T
H = 		T (10)

is satisfied, and T2 is any matrix ensuring invertibility of T.
Matrix 	 can, for example, be computed by a Cholesky factori-
sation of the left-hand side of Equation (10).

Then, distinguishability can be computed according to the
following lemma (Theorem 1 in Eriksson et al., 2013).

Lemma 4.3: Distinguishability of a fault fi with fault profile θ ∈
R
n from another fault fj, for sliding windowmodel (5) with Gaus-

sian distributed random vector e, with covariance matrix I, is
given by

Di,j(θ) = 1
2
‖N(H Fj)Fiθ‖2, (11)

where the rows of N(H Fj) is an orthonormal basis for the left
null space of the matrix (H Fj) and the matrix Fj ∈ R

n(lq+ly)×n

contains the columns of F corresponding to the elements of fj.

Distinguishability Di,j(θ) : R
n → R is a quantitative mea-

sure to evaluate how difficult it is to isolate a fault fi given
model (5), if the fault realisation is given by the specific fault
profile θ , from another fault fj with an unknown fault profile.
Note that Di,j(θ) increases with increasing fault magnitude θ
illustrating that the larger fault is easier to detect or isolate. A
fault fi with fault time profile θ is isolable from a fault mode fj if
and only if

Di,j(θ) > 0. (12)

Distinguishability computed for a given model gives an
upper limit of the fault-to-noise ratio that can be achieved by
a linear residual generator

r(z) = γN(H Fj)Lz, (13)

where γ is a row vector. The fault-to-noise ratio measures the
change in residual mean, caused by a fault fi with fault profile θ ,
normalised by the residual noise standard deviation. The upper
limit is given by the following lemma (Theorem 2 in Eriksson
et al., 2013).

Lemma 4.4: For model (2), let φ be the optimal fault-to-noise
ratio with respect to fault fi with fault profile θ when fault fj is
decoupled. Then

Di,j(θ) = 1
2
φ2,

where φ = N(H Fj)Fiθ .

This means that any linear residual generator (13) designed
to isolate fi (with fault realisation θ) from fj will have a fault-
to-noise ratio that is equal to or lower than φ. Note that max-
imum fault-to-noise ratio is achieved if the residual genera-
tor is designed such that the vector γ is selected parallel to
(N(H Fj)Fiθ)T. Lemma 4.4 shows that it is possible to predict,
by analysing the model, what fault detection and isolation per-
formance can be achieved by a set of residual generators in a
diagnosis system.

5. Reformulating diagnosis system requirements for
sensor selection

Two common measures to quantify performance requirements
of diagnosis tests, such as residuals, are probability of false
alarms preqfa and probability ofmissed detections preqmd. The objec-
tive is then to find a set of sensors thatmakes it possible to design
residual generators (13) with sufficient fault-to-noise ratio φ to
fulfil these requirements. To illustrate this, a one-sided thresh-
old J is considered (see Figure 2), where pnom(r) represents the
nominal residual pdf and pf (r) the faulty case. However, it is
simple to generalise for the two-sided case, i.e. when |r| > J.
Note that since a fault in Equation (2) only affects the mean of
residual generator (13), a normalised residual value is consid-
ered here such that the variance is one. Then, the fault-to-noise
ratio is equal to the mean deviation of the residual output when
the fault fi occurs with realisation θ .

A lower bound on the required fault-to-noise ratio can be
derived such that it is possible to select a threshold J that fulfils
both preqfa and preqmd (see Figure 2). Then, Lemma 4.4 can be used
to formulate the required fault-to-noise ratio as required distin-
guishability Dreq

i,j (θ). Note that requirements on fault isolation
performance are treated in the same way as detection perfor-
mance since φ in Lemma 4.4 refers to the fault-to-noise ratio of
a residual sensitive to fi but not fj.

Figure 2. Requirements of maximum probability of false alarm preqfa and missed
detection preqmd can be translated to minimum required distance to the threshold J
from the mean of the nominal pdf pnom and the faulty case pf , respectively.
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To compute the lower bound, let the cumulative density
function of the normal distribution with zero mean and vari-
ance one be denoted

�(ψ) =
∫ ψ

−∞
1√
2π

e−ψ
2/2 dψ = pψ (14)

and the inverseψ = �−1(pψ). The value |ψ | represents the dis-
tance from the distribution mean to a threshold J where the
probability that ψ lies outside of the threshold is pψ . Thus, to
fulfil preqfa the distance from the mean of the nominal residual
distribution pnom(r) to the threshold J must be greater than
|�−1(preqfa )|. Similarly, the distance from themean of pf (r) to the
threshold J must exceed |�−1(preqmd)| to fulfil p

req
md (see Figure 2).

Thus, the fault-to-noise ratio φ must fulfil the inequality

φ ≥ |�−1(preqmd)| + |�−1(preqfa )| (15)

to satisfy both constraints.
Since computed distinguishability measure (11) gives the

upper limit of achievable fault-to-noise ratio, itmust exceed 1
2φ

2

as stated in Lemma 4.4, to assure that it is possible to design a
set of residual generators that fulfils the requirements. Thus, the
constraintsDreq

i,j (θ) can be computed as

Dreq
i,j (θ) = 1

2
(|�−1(preqmd)| + |�−1(preqfa )|)2. (16)

Note that Equation (16) reformulates the quantitative diagno-
sis system performance requirements to sensor selection prob-
lem (1) without designing a diagnosis system.

6. Analysis

In order to find a computationally efficient sensor placement
algorithm, different properties of the problem are investigated.
The search space grows exponentially with the number of avail-
able sensors which complicates the search for an optimal solu-
tion without an exhaustive search strategy. In order to find a
global optimum, it is desirable to find some properties of the
sensor placement problem that could be used to reduce the
number of sensor combinations that needs to be evaluated.

6.1 A lattice representation of the search space

The set of all possible sensor combinations can be represented
using a lattice. A lattice is a partially ordered set in which every
two elements have a supremum and an infimum. Each element
in the lattice set represents a sensor set and all sensor combi-
nations of equal cardinality are positioned on the same level in
the lattice. As a result, the lattice will be wider in the middle.
Edges connect each set with its smallest supersets and its largest
subsets, thus, representing the partial order. As an example,
consider all combinations of four sensors S = {y1, y2, y3, y4}.
A lattice of all combinations of the four sensors is shown in
Figure 3.

6.2 Distinguishability properties of partially ordered
sensor sets

The distinguishability measure for each fault pair (fi, fj), i.e. iso-
lating fault fi from fj, will never decrease when including more

Figure 3. A lattice representing all combinations of four sensors {y1, y2, y3, y4}.

sensors to the already selected set of sensors. This means that if
S1 is consistent with the constraints in Equation (1) and S1 ⊆ S2
then S2 is also consistent, i.e. all sensor combinations which
are supersets of the feasible sensor set S1 in the lattice are also
feasible.

Theorem 6.1: Consider sliding window model (5) and a fault
pair (fi, fj). Let DS

i,j(θ) denote distinguishability when the sensor
equations corresponding to the sensor set S are included in model
(5). Let S1, S2 ⊆ S be two sets of sensors. If S1 ⊆ S2 then

DS2
i,j (θ) ≥ DS1

i,j (θ) (17)

for all fi, fj ∈ F .

Proof: Given model (5) whereDi,j(θ) > 0, there exists an opti-
mal linear residual generator, to isolate the fault fi with fault time
profile θ from a fault fj, that can be found using Theorem 3 in
Eriksson et al. (2013). Since S1 ⊆ S2, the optimal residual gen-
erator given S1 can also be generated with S2. Thus, the optimal
linear residual based on sensors S2 is at least as good as for
sensors S1. Lemma 4.4 states that distinguishability gives the
maximum fault-to-noise ratio of any linear residual generator
based on the model, thus proving the inequality. �

6.3 Distinguishability bounds and submodularity

An example of a candidate search algorithm to guarantee find-
ing a globally optimal set of sensors is the A∗ algorithm (Russell,
Norvig, Canny,Malik, & Edwards, 1995). To avoid evaluating all
possible sensor combinations, the A∗ algorithm uses an admis-
sible heuristic function to estimate the distance from a set of
sensors S ⊆ S to the optimal solution. For the sensor selection
problem, the heuristic function would define an upper bound of
the distinguishability gain when adding a specific sensor to the
solution set.However, it is important that the upper bound is not
conservative in order for the search algorithm to be efficient.

Let

�DS∪{yl}
i,j (θ) = DS∪{yl}

i,j (θ)− DS
i,j(θ) (18)

denote the increased distinguishability for a fault fi with fault
time profile θ from a fault fj when adding a sensor yl to a set
S. For convenience, �DS∪{yl}

i,j (θ) is also simply referred to the
distinguishability gainwhen adding sensor yl to S, since the fault
pair (fi, fj) and fault time profile are given from the notation.

If the increase in distinguishability is lower when added to a
larger solution set than a smaller,�DS∪{yl}

i,j (θ) is a sub-modular
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Figure 4. A schematic overview of the model described in Equation (21) with one
known input, three measurable variables, and two faults.

set function. This property is utilised in, for example, Perelman
et al. (2016) and Shamaiah, Banerjee, and Vikalo (2010), and
if satisfied, a heuristic function would also be easy to compute.
However, the amount of distinguishability that is increased for
each fault pair �DS∪{yl}

i,j (θ), when adding a sensor yl, depends
on the previous selected set of sensors S. If S1, S2 ⊆ S \ {yl} are
two sets of sensors such that S1 ⊆ S2, then

�DS1∪{yl}
i,j (θ) ≶ �DS2∪{yl}

i,j (θ), (19)

i.e. it is not certain that more distinguishability is always gained
by adding the sensor to a subset of sensors S1 or a superset
of sensors S2. Thus, to compute the maximum distinguishabil-
ity gain for a sensor yl ∈ S , means to solve the combinatorial
optimisation problem

max
S⊆S\yl

�DS∪{yl}
i,j (θ). (20)

A small example is used to illustrate the difficulty of finding the
global optimum to Equation (20) without using an exhaustive
search strategy because of property (19).

Example 6.2: Consider a simple dynamic pipeline model
shown in Figure 4. Let the inlet flow u be known, then a small
flow model is given by

x1[t + 1] = u[t] − f1[t] + v1[t],

x2[t + 1] = x1[t] + v2[t],

x3[t + 1] = x2[t] − f2[t] + v3[t]

(21)

with two faults f1 and f2 representing leakages in the pipeline.
The process noise is i.i.d. Gaussian distributed as v1, v2, v3 ∼
N(0, 1) . Each flow xi can be measured by a sensor yi[t] =
xi[t] + εi[t], where εi ∼ N(0, 1) . For the analysis the time win-
dow is selected as n= 4 and the analysed fault time profile is
assumed constant with amplitude one.

Two cases of Equation (19) are shown where the distin-
guishability gain decreaseswith a larger set S in the first case, and
increases in the second case. First, the distinguishability gain
of adding y1 to detect the fault f1 is evaluated, i.e. �DS∪{y1}

1 (1̄)
where 1̄ denotes a vector with ones. All sensors in S can be used
to detect f1 since a residual generator sensitive to f1 can be gen-
erated as long as we measure at least one of the flows, x1, x2, or
x3. If another sensor is already included in Swhen adding y1, the
total distinguishability value will increase since the knowledge
about the system increases withmore sensors. However, the dis-
tinguishability gain by adding y1 will be smaller compared to
if y1 is selected first. The largest gain is achieved if y1 is added
before any other sensor,�D∅∪{y1}

1 = 1, and the smallest gain if
added last,�D{y2,y3}∪{y1}

1 = 0.5.
If instead considering detection of fault f2 and maximising

the distinguishability gain by adding y3, the result is the oppo-
site. To be able to generate a residual generator to detect f2,

it is necessary to use y3 since it is the only sensor measuring
a flow after the leakage f2. If all three sensors are used, the
distinguishabilitymeasure will bemaximised. However, the dis-
tinguishability value will still be zero if y3 is not added since
y3 is required to detect f2. Thus, the highest distinguishabil-
ity gain by adding y3 is when y1 and y2 are already selected
since the distinguishability measure will go from zero to max-
imum, �D{y1,y2}∪{y3}

2 = 0.55, while if y3 is added before any
other sensors,�D∅∪{y3}

2 = 0.13.

7. Sensor placement algorithms

The analysis of the sensor placement problem shows that it
is difficult to find the globally optimal set of sensors without
the use of an exhaustive search strategy which is not feasi-
ble if the problem is too large. Therefore, a heuristic greedy
stochastic search algorithm is proposed to solve the problem.
The algorithm is designed to be computationally fast and still be
able to find solutions, equal or close to global optimum, even for
large search spaces. It uses multiple starting points, where each
starting point is initialised with a random set of sensors that ful-
fils the requirements. Then, the algorithm iteratively removes
sensors as long as the subset still fulfils the requirements, to
guarantee that a feasible solution is always returned. Thus, the
algorithm is sound.

7.1 Greedy stochastic search

A low-complexity heuristic search algorithm that can be used
for solving the sensor selection problem is a greedy search
algorithm (Eriksson et al., 2012). It solves a local optimisation
problem in each iteration of the search and stops when the solu-
tion cannot be further improved. Since the greedy search is
a deterministic algorithm, restarting the algorithm will always
result in the same solution, that in the worst case could be far
from the global optimum, which means that a better solution
will never be found. To increase the chance of finding a bet-
ter solution without significantly increasing the computational
complexity, a greedy stochastic search algorithm is proposed.
Greedy stochastic search algorithms have been successfully
applied in similar problemswhen computingminimal diagnosis
candidates (Feldman, Provan, & van Gemund, 2010). Because
of the similarities between the two problems, greedy stochas-
tic search is considered a suitable candidate search algorithm
for the sensor selection problem. A general description of the
algorithm in Feldman et al. (2010) is given here.

Instead of iteratively removing sensors that minimises a util-
ity function, as for the case with the greedy search, a sensor
is selected randomly from S and removed. Using this strat-
egy, the algorithm finds different local optima each time the
search is restarted. If the reduced sensor set, i.e. when the sensor
is removed, is not feasible, another random sensor is selected
instead. This is repeated maximally M times if no sensor to
remove is found. The parameter M ≤ k is used to reduce the
computational cost if k is large. If the reduced set of sensors
is still feasible, another sensor is removed. If none of the M
selected sensors can be removed, the remaining set of sensors
is considered a local optimum and the search is stopped.
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Figure 5. A lattice describing the greedy stochastic search algorithm. The
algorithm is restarted from a randomly selected valid sensor set. A random sensor
is iteratively removed as long as the subset is a valid solution.

To increase the probability of finding the global optimum,
the algorithm usesN different starting points and the best solu-
tion of each search is stored. If Si is a set of sensors found from
run i, which fulfils the requirements, then the algorithm returns
the cheapest set Smin as

Smin = arg min
1≤i≤N

∑
yl∈Si

cl. (22)

Let Xi and Xmin be random variables representing the distribu-
tions of

∑
yl∈Si cl and

∑
yl∈Smin

cl, respectively. If c∗ is the cost of
optimal solution, it can be shown that the discrete distribution
P(Xmin = c∗) → 1 when N → ∞ (see Theorem 2 in Feldman
et al., 2010). The probability that

∑
yl∈Smin

cl = c∗ can bewritten
as

P(Xmin = c∗) = 1 − P(X1 > c∗,X2 > c∗, . . . ,XN > c∗)

= 1 −
N∏
i=1

P(Xi > c∗), (23)

where the last equality follows from the fact that the set of
sensors in each restart is found independently from the oth-
ers. Since P(Xi > c∗) < 1, the probability of finding an optimal
solution goes to one when N → ∞.

If the number of sensor candidates is large, lots of sensors
must be removed before reaching a local optimum. Therefore
to speed up the algorithm, the starting point of each run is
randomly generated among the feasible solutions, i.e. sensor
sets fulfilling the requirements, to start closer to a local opti-
mum (see Figure 5). Thus, the algorithm does not always start
from S = S in each run. Here, a feasible set of sensors is gen-
erated by starting with an empty set S = ∅ and then iteratively
adding a random subset of sensors S′ ⊆ S \ S to Suntil the start-
ing point is feasible as described in Algorithm 1. The function
RandValidSensSet adds each sensor s ∈ R to the set S′ with
probability padd.

The algorithm StochSearch is described in Algorithm 2
and takes a modelM in form (5), available sensors S , require-
ments Dreq

i,j , and the parameters N andM as inputs. Each start-
ing point is returned by a function RandValidSensSet which
generates a feasible set of sensors as described above.

Algorithm 1: Generate random feasible set of sensors.
function S = RandValidSensSet(M,S ,Dreq

i,j (θ));
R := S ;
S := ∅;
whileDS

i,j(θ) < Dreq
i,j (θ), ∀θ ∈ �i,∀fi, fj ∈ F do

S′ := SelectRandomSubset(R);
S := S ∪ S′;
R = R \ S′;

end
return S

The computational complexity of the greedy stochastic
search algorithm is O(kMN). Since the algorithm is stochastic,
there is no guarantee that it will find a solution within a certain
quality range from the global optimum, i.e. how close the cost
of the found solution will be from the global optimum.

If considering the multiple-fault case when formulating sen-
sor selection problem (1), distinguishability can be computed
using the results in Eriksson et al. (2012).

Algorithm 2: Greedy stochastic search
function Sopt = StochSearch(M,S ,Dreq

i,j (θ),N,M);
Sopt := S ;
for n = 1, . . . ,N do

S := RandValidSensSet(M,S ,Dreq
i,j (θ)) ;

m := 0;
whilem < M do

S′ := RemoveRandomSensor(S);
if DS′

i,j(θi) ≥ Dreq
i,j (θ), ∀θ ∈ �i,∀fi, fj ∈ F then

S := S′;
m := 0;

end
else

m := m + 1;
end

end
if

∑
yl∈S cl <

∑
yl∈Sopt cl then

Sopt := S;
end

end
return Sopt

8. Case study

Here, the greedy stochastic search algorithm is evaluated on a
system with 24 measurable variables with different sensor costs.
Two heuristic search methods are also evaluated to compare
the results, a greedy search (Eriksson et al., 2012) and a genetic
algorithm (Deep, Singh, Kansal, & Mohan, 2009). A depth-first
search algorithm (Russell et al., 1995) is also used as a reference
to evaluate the performance of the search algorithms.

8.1 Model description

A schematic of the system is shown in Figure 6. Since there is
no principal difference of computing distinguishability between
static and dynamic systems, because a dynamic system is writ-
ten in static form (5) for a given time window, a static system
is considered here. Here, the window length is chosen as n= 1
and the fault time profiles for each of the faults are θ = 1. The
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Figure 6. A schematic overview of a model describing a static flow through a
number of nodes. The inputs u are known and the flows through the branches xi ,
i = 1, 2, . . . , 24, are unknown, and f1, f2, f3 are three additive faults.

sensors have different costs so the goal is to minimise total
cost (1).

The system is under-determined and described by the fol-
lowing set of equations:

x1 + x2 = v1, x4 + x3 = x1 + u1 + v2,

x6 + x5 = x2 + u2 + v3, x8 + x7 = x3 + v4,

x10 + x9 = x4 + x5 + v5, x12 + x11 = x6 + f1 + v6,

x13 = x7 + v7, x15 + x14 = x9 + x8 + f2 + v8,

x17 + x16 = x11 + x10 + v9, x18 = x12 + v10,

x19 = x14 + x13 + v11,

x21 + x20 = x16 + x15 + f3 + v12,

x22 = x18 + x17 + v14, x23 + u3 = x20 + x19 + v15,

x24 + u4 = x22 + x21 + v16, 0 = x24 + x23 + v17,

where vk ∼ N (0, 0.01) for k = 1, 2, . . . , 17. Each unknown
variable xl can be measured by a sensor yl = xl + εl where εl ∼
N (0, 1) for l = 1, 2, . . . , 24. The cost of using each sensor is
given by

cl =
⎧⎨
⎩
1 for l ∈ {6, 8, 9, 11, 12, 14, 15, 16, 20, 21},
0.7 for l ∈ {3, 4, 5, 10, 19, 22, 23},
0.4 for l ∈ {1, 2, 7, 13, 17, 18, 24},

(24)

and the number of sensor combinations is 224 = 16 777 216.

8.2 Evaluation

Maximum distinguishability Dmax
i,j (θ) for each fault pair when

using all sensors is shown in Table 1. The problem is
solved for Dreq

i,j (θ) = αDmax
i,j (θ) for all fi, fj ∈ F , where α =

{0, 0.01, 0.02, . . . , 1} is a scaling factor. First, the greedy stochas-
tic search is parameterised as N = 10 and M= 4 which are
relatively small values compared to the number of candidate
sensors. The algorithm is evaluated 100 times for each set of
requirements to estimate the mean and standard deviation of
the computed cost.

The search algorithms are evaluated on a standard desktop
computer with an Intel I5 processor. The greedy search and the
greedy stochastic search algorithms take a couple of seconds

Table 1. Maximum achievable distinguishability for the case study model in
Figure 6.

Dmax
i,j (1) NF f1 f2 f3

f1 3.26 0 0.48 0.44
f2 3.28 0.47 0 0.27
f3 3.28 0.43 0.27 0

Figure 7. Evaluation of the greedy search algorithm, greedy stochastic search
(N = 10,M = 4), and depth-first search for different requirements.

for each run. The depth-first search algorithm takes a couple
of minutes for α = 0.9 and the time increases to around 10 h
when α = 0.5. Therefore, the depth-first search algorithm was
not evaluated for lower requirements. A global search, evaluat-
ing all sensor combinations, was estimated to take around 83 h
and was instead performed on a server using 9 cores which
reduced the computational time to around 12 h.

The result of the evaluation for different requirements is
shown in Figure 7. The cost of the solutions of the differ-
ent search algorithms are compared. The result of the greedy
stochastic search is presented by the mean value (grey thick
solid line) and standard deviation (thinner solid lines) of the
100 evaluations. The greedy stochastic search shows a notice-
able better result closer to global optimum compared to the
pure greedy search, even though the parameters N and M are
selected relatively restrictive compared to the size of the prob-
lem, except when the requirements are chosen in the interval
α ∈ [0.9, 1], i.e. close to Dmax

i,j . This is expected since there are
not many sensors that can be eliminated while still fulfilling the
high requirements.

To see how sensitive the greedy stochastic search algorithm
is to different parameters the system is evaluated for (N =
10,M = 24) and (N = 50,M = 10), see Figures 8 and 9,
respectively. Each run of the greedy stochastic search took
around 2 s for (N = 10,M = 4), 5 s for (N = 10,M = 24), and
around 24 s for (N = 50,M = 10). In this case study, different
values ofMwere tested and forM> 10, the performance did not
change significantly except computational timewhich increased
slightly. This could be explained by the fact that in many cases,
the cardinality of the solution set is seldom significantly larger
than 10, meaning that the number of sensors evaluated in each
step of the search is often close to the number of sensors in
S. For lower values of M the performance is slightly worse, i.e.
the mean and variance of the solution cost are higher, which is
visible when comparing Figures 7 and 8.
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Figure 8. Evaluation of the greedy search algorithm, greedy stochastic search
(N = 10,M = 24), and depth-first search for different requirements.

Figure 9. Evaluation of the greedy search algorithm, greedy stochastic search
(N = 50,M = 10), and depth-first search for different requirements.

Figure 9 shows that the solution of the greedy stochastic
search is significantly improved with increasing N. In this case,
the greedy stochastic search algorithm finds solutions which in
average are very close to the global optimum (within 1–3% of
global optimum). For (N = 200,M = 10), the search took a lit-
tle more than a minute and the found solution is in average
around 0.2–0.4% from the global optimum. This shows that the
global optimum is found in almost all cases.

To compare the quality of the computed solutions of Fig-
ures 7– 9, the mean costs relative to the global optimum are
compared (see Figure 10). The greedy search finds solutions
that are more expensive compared to the mean value of the
greedy stochastic searches. When α ≤ 0.5, the increased cost
varies between 30% and 90% higher than the optimal solution.

It is also visible for the greedy stochastic search that higher
M and N increase the probability of finding better solutions.
However, since there is no point in selecting M> k, the main
tuning parameter is N to improve the performance. That is,
the more starting points the greedy stochastic search algorithm
can explore, the higher is the probability of finding the global
optimum.

To evaluate the greedy stochastic search, an off-the-shelf
genetic algorithm is used to see if the performance is compa-
rable given similar running time. The mixed integer genetic
algorithm (Deep et al., 2009) is implemented using the function
ga in MATLAB’s Global Optimization Toolbox with standard

Figure 10. Relative mean cost of optimal solutions found by the different
algorithms.

Table 2. A summary of the standard configurations used in MATLAB for themixed
integer genetic algorithm.

Parameter Function Value

Population size 200
Elite selection 10
Selection to mate Tournament 4
Crossover Laplace 160
Mutation Power 30

Note: The functions are described in Deep et al. (2009).

configurations (see Table 2). Since the greedy stochastic search
can be considered a plug-and-play solver without any necessary
tuning, no specific tuning was made of the genetic algorithm
(see Deep et al., 2009; MATLAB & Toolbox, 2013 for further
details). In this comparison, the number of generations was set
to a large value and a time limit of the genetic algorithm was set
to 24 s which corresponds to the runtime of the greedy stochas-
tic search with parameters (N = 50,M = 10). The genetic
algorithm was run 100 times for each requirement. The genetic
algorithm gave a cost of the found solution around 10% higher
than global optimum compared to the greedy stochastic search
which gave around 2% higher cost. Thus, the greedy stochastic
search shows a good result in comparable computational time
and at the same time requires no tuning. The result of the genetic
algorithm was slightly worse than the greedy stochastic search
with parameters (N = 10,M = 24) as shown in Figure 10. Note
that the genetic algorithm did not always have time to converge
within the time limit of 24 s. The computational complexity of
the genetic algorithm depends on the number of generations G
and the population size P in each generation asO(GP).

Based on this case study, the greedy stochastic search appears
as a good candidate for finding solutions close to global opti-
mum while using limited computational time and no com-
plicated tuning. In the case study, this means from a couple
of seconds to a minute per run compared to the depth-first
search which can take from a couple of hours to days. How-
ever, each algorithm can be parallelised to further speed up
the computations, especially for the greedy stochastic search
algorithm.

9. Conclusions

The sensor selection problem is formulated by taking mea-
surement noise and model uncertainties into consideration to
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get a more realistic evaluation of fault diagnosability perfor-
mance. Fault detection and isolation performance is evaluated
using a measure called distinguishability which gives an upper
bound of achievable fault-to-noise ratio for any linear residual
generator based on the model of the system. By reformulating
diagnosis system requirements for the sensor selection problem
means that it is possible to take more realistic fault diagnosis
performance requirements into consideration early in the sys-
tem design process. It also gives an intuitive interpretation of
the distinguishability measure in terms of possible false alarm
rate and missed detection rate. The properties of the sensor
selection problem are analysed and examples show that the
amount of distinguishability gained by using a specific sensor
depends on previously selected sensors. This complicates the
use of informed search strategies, such as the A∗ algorithm,
since it is difficult to estimate the distance to the optimal solu-
tion. The case study shows that the proposed greedy stochastic
search algorithm is able to find solutions close to the global opti-
mum in relatively short time compared to other heuristic search
algorithms.
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