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ABSTRACT
This article has two objectives. The first and narrower is to formalize the p-value function, which records
all possible p-values, each corresponding to a value for whatever the scalar parameter of interest is for the
problem at hand, and to show how this p-value function directly provides full inference information for
any corresponding user or scientist. The p-value function provides familiar inference objects: significance
levels, confidence intervals, critical values for fixed-level tests, and the power function at all values of the
parameter of interest. It thus gives an immediate accurate and visual summary of inference information for
the parameter of interest. We show that the p-value function of the key scalar interest parameter records
the statistical position of the observed data relative to that parameter, and we then describe an accurate
approximation to that p-value function which is readily constructed.
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1. Introduction

The term p-value appears everywhere, in journals of science,
medicine, the humanities, and is often followed by decisions at
the 5% level; but the term also appears in newspapers and every-
day discussion, citing accuracy at the complementary 19 times
out of 20. Why 5%, and why “decisions”? Is this a considered
process from the statistics discipline, the indicated adjudicator
for validity in the fields of statistics and data science, or is it
temporary?

The p-value was introduced by Fisher (1922) to give some
formality to the analysis of data collected in his scientific inves-
tigations; he was a highly recognized geneticist and a rising
mathematician and statistician, and was closely associated with
the intellectual culture of the time. His p-value used a measure
of departure from what would be expected under a hypothesis,
and was then defined as the probability p under that hypothesis
of as great or greater departure than that observed. This was
later modified by Neyman and Pearson (1933) to a procedure
whereby an observed departure with p less than 5% (or other
small value) would lead to rejection of the hypothesis, with
acceptance otherwise.

Quite early, Sterling (1959) discussed the use of this modi-
fication for journal article acceptance, and documented serious
risks. And the philosopher and logician, Rozeboom (1960) men-
tioned “(t)he fallacy of the null-hypothesis significance test” or
NHST, and cited an epigram from philosophy that the “accept–
reject” paradigm was the “glory of science and the scandal
of philosophy;” in other words the glory of statistics and the
scandal of logic and reason! These criticisms can not easily be
ignored, and general concerns have continued, leading to the
ASA’s statement on p-values and statistical significance (Wasser-
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stein and Lazar 2016), and to further discussion as in this journal
issue.

Many of the criticisms of p-values trace their origins to the
use of bright-line thresholds like the 5% that scientists often
rely on, as if such reliance had been universally endorsed by
statisticians despite statisticians’ own reservations about such
thresholds. We assert that many of the problems arise because
statements of “significance” are based on supposed rules, that are
abstract and too-little grounded in the applied context. Accord-
ingly, we suggest that many of these problems can be reduced
or circumvented entirely if statisticians report the entire set of
possible p-values—the p-value function—instead of a single p-
value. In the spirit of the early Statistical Society of London
motto Aliis exterendum—statisticians should refrain from pre-
scribing a rule, and leave the judgment of scientific significance
to subject-matter experts.

The next four sections of this article are structured to illus-
trate the main aspects of the p-value function for inference.
Throughout, we rely mainly on examples to illustrate the essen-
tial ideas, leaving many of the details and the underlying math-
ematical theory to cited references as needed.

Section 2 defines and illustrates the p-value function for a
paradigmatic simple situation, the Normal location problem.
And in this we show how the function can be used to find all
the familiar quantities such as confidence limits, critical values,
and power. We also emphasize that the p-value function in itself
provides an immediate inference summary.

Of course real problems from applied science rarely fit easily
into the simple formats of textbook examples. Fortunately,
however, many real problems can be understood in a way
that puts the focus on a single scalar interest parameter.

© 2019 The Author. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

https://doi.org/10.1080/00031305.2019.1556735
https://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2019.1556735&domain=pdf&date_stamp=2019-03-16
mailto:dasfraser@gmail.com
http://www.tandfonline.com/r/TAS
http://creativecommons.org/licenses/by-nc-nd/4.0/


136 D. A. S. FRASER

Section 3 presents three scientific problems that are reduced
in this way. In applications with complex models and many
parameters, available theory outlined in Fraser (2017) provides
both an identification of a derived variable that measures the
interest parameter θ and a very accurate approximation to its
distribution. This leads directly to the p-value function p(θ)

that describes statistically where the observed data are relative
to each possible value of the scalar interest parameter θ , and thus
fully records the percentile or statistical position of the observed
data relative to values of the interest parameter. From a different
viewpoint, the p-value function can be seen as defining a right-
tailed confidence distribution function for θ , and as the power
function (conditional) for any particular θ0 and any chosen test
size.

With the focus narrowed to a parameter of interest, it remains
necessary to reduce the comparison data for inference analysis
to a set appropriate to the full parameter and then to that for
the interest parameter. If there is a scalar sufficient statistic for
a scalar interest parameter, as in the Normal location problem,
the reduction is straightforward, but few problems are so simple.
Fisher (1925) introduced the concept of an ancillary statistic,
and suggested conditioning on the value of that ancillary. An
important feature of the present approach to inference with
the p-value function is that, for a broad range of problems,
there is a uniquely determined conditioning that leads to an
exponential model for the full parameter, and then by Laplace
marginalization to a third-order accurate model for an inter-
est parameter; this then provides a well-determined p-value
function. And when sufficiency is available this is equivalent
to inference based on the sufficient statistic. Section 4 uses
an extremely short-tailed model to provide a brief introduc-
tion to continuity conditioning. This conditioning has historical
connections with Fisher‘s concept of ancillarity conditioning,
but the present development is distinct from that ancillarity
approach.

Section 5 outlines the statistical geometry that provides the
third-order accurate approximation for the p-value function
in a wide range of problems. The approximation is essentially
uniquely determined with inference error of order O(n−3/2).
Examples also illustrate how conditioning leads to the relevant

p-value function even when there is no traditional sufficient
statistic.

The article concludes with applications (Section 6) and dis-
cussion (Section 7).

2. Likelihood and the p-value Function

The Normal location problem, though simple, can often serve
as a paradigm, an idealized version of much more complicated
applied problems. Suppose that the applied context has deter-
mined a scalar variable y that measures some important charac-
teristic θ of an investigation; and to be even simpler suppose y
is Normal with mean θ and known standard deviation σ0, say
equal to 1 for transparency.
Example 1. Normal location

For simplicity we assume that y = (y1, . . . , yn) is a sample
from a Normal with unit variance and unknown mean θ . The
sample mean ȳ is also Normal so that for all values of θ the
pivot z = n1/2(ȳ − θ)) is standard Normal; and for further
simplicity suppose that n = 1 and the observed y = yobs = 10;
and that our theory seeks an assessment or testing of values
for θ . In Figure 1(a), we record a typical density of the model
and also the observed data value. In Figure 1(b), we record the
amount of probability at the observed data point under some θ

value and do so as a proportion of the maximum possible; this is
designated L(θ) and is called the observed likelihood function;
we also record p(θ) which is the probability to the left of the
data point yobs. Here, θ̂obs is the value of the parameter that puts
maximum probability density at the observed data point yobs;
we also indicate by the dotted curve the corresponding density
function f (y; θ̂obs). This maximum likelihood density function
happens to be of central interest for bootstrap calculations.

Now for general values of θ , we can record two items of
information. The first is the normalized likelihood function

L(θ) = exp{�(θ)} = f (yobs; θ)

f (yobs; θ̂obs)
= cf obs(θ).

The numerator is the observed value of the density function
when the parameter is θ and tells us how much probability lies

Figure 1. The upper graph presents the model at some typical θ value and the observed data value yobs; the lower graph records in addition the p-value and the likelihood
for that θ value, and also in dots the density using the maximum likelihood θ = θ̂obs value for the parameter.
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Figure 2. The upper graph presents the p-value function and the lower graph the likelihood function, for the simple Normal example; the median estimate of θ is θ̂0.50
which here is the maximum likelihood value θ̂obs = 10.

on that observed data point under θ ; this is usually presented
as a fraction of the maximum possible density at yobs, obtained
with θ = θ̂obs. For the simple example, see Figures 1(b) and 2.

The second is the p-value function, which is less familiar
than the likelihood but its value at any given parameter value is
familiar as an ordinary p-value. For given data yobs, the p-value
function records the probability left of the data as a function of
the parameter θ

p(θ) = F(yobs; θ) = Fobs(θ).

See again Figure 2 for this simple Normal example. The p-
value function simply records the usual left-sided p-value as a
function of a general tested value θ . Thus, the p-value function
is the observed value of the distribution function under θ :
p(θ) = F(yobs; θ) = Fobs(θ). As such it records the percentile
position of the data for any choice of scalar parameter value
θ . Because this function is nonincreasing and 0 ≤ p(θ) ≤
1, we can regard 1 − p(θ), formally at least, as a cumulative
distribution function for θ . The resulting distribution is in the
spirit of Fisher’s fiducial distribution. As shown in Fraser (2017)
and summarized in Section 5, this function is well defined and
accurately approximated to the third order, for a wide range of
applied problems with vector-valued y and scalar parameter of
interest.

These items are what the data and model give us as the
primary inference material; they are recorded for our present
example in Figure 2(a,b). We recommend the use of these two
key inference functions as the inference information.

For Example 1, consider some applications of the p-value
function:

(1) With an observed value y = yobs and for any hypothesized
null value θ0, the value of p(θ) at θ0 is the one-sided p-value,
and records the statistical position of the observed data.

(2) The endpoint of a left-sided 97.5% confidence interval with
data yobs = 10 is the value θ̂0.975 = p−1(0.975) for which the
p-value is 97.5%, that is, Pr{y ≤ 10; θ̂0.975} = 0.975. As seen
in Figure 3(a), take the value 0.975 on the vertical p(θ) axis,
run a line horizontally to the p-value curve, and then down
to the θ axis; this gives the value θ̂0.975 = p−1(0.975) = 8.04,
which is the lower 97.5% confidence bound, the value that
in repetitions would be less than the true value 97.5% of the
time. In the same way, θ̂0.025 = 11.96 is the endpoint of a
left-sided 2.5% interval. Taken together the two percentiles
give a 95% two-sided interval (θ̂0.975, θ̂0.025) = (8.04, 11.96).
We rely here on confidence intervals as derived by inverting
an essential pivot, as distinct from intervals defined by
shortest interval with given overall coverage probability.
Thus, the 95% interval is the set of parameter values not
rejected by either of the 2.5% single-tailed tests. For more
on the two different approaches to intervals and the role of
conditional inference, together with examples, see Fraser,
Reid, and Lin (2018).

(3) Similarly, for the 50% point for which p(θ) = 0.50, θ̂0.50 is
the median estimate for θ . First, locate 0.5 on the vertical
axis and across to the curve. Then, drop down to the hori-
zontal axis to get the value θ̂0.50 = 10.

(4) For any given test size α, the inverse function p−1(α) gives
the corresponding parameter value say θ0 that is being tested
with the observed data value as critical point. Although
the view taken here argues against fixed-level testing, there
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Figure 3. The upper graph (a) indicates the median estimate and the one-sided 0.975 and 0.025 confidence bounds; the lower graph (b) records the observed likelihood
function.

are occasions where the notions of size and power can be
convenient. To find the value θ0 being tested at level α

relative to the observed data as critical point locate the
particular value of α on the vertical axis, then read across
to the p-value curve, and then down to the θ0 for testing.

(5) For the size α test with the data point as critical value, the
p-value function gives the power of that test at any other
parameter value θ ; this is conditional power given model
information identified from the data, but as such it is also
marginal power: the power at θ is p(θ). First be aware of
the critical value for the test of size α as given in (4). Then
for any other value of θ the probability that the α-level test
rejects the null hypothesis is p = Pr{y ≤ yobs; θ} = p(θ),
which is, the value of the p-value function at θ . Perhaps
more importantly the p-value function describe the sensi-
tivity of the procedure in distinguishing parameter values
in the broad range around the maximum likelihood value.

(6) In addition, if for some value on the θ axis, say θ = 8,
we found that the corresponding p-value was large or very
large we would infer that the true value was large or much
larger than the selected value 8. And similarly if the p-value
was small or very small, say at θ = 12 we would infer that
the true value was small or much smaller than the selected
12. Thus, the observed p-value function not only shows
extremes among θ values but also the direction in which
such extremes occur; it thus provides inference information
widely for different users who might have concern for dif-
ferent directions of departure.

(7) Based on the properties above, it follows that the location
and shape of the p-value function provides a clear way to

assess the evidence about the parameter θ . Figure 4 shows
three p-value functions corresponding to n = 1, n =
4, and n = 100.

(8) The p-value function is central to a widely available
approach to inference based on approximate conditioning,
as discussed in Section 4 and 5. When a complete sufficient
statistic is available, the present approach coincides with
the usual inferences based on sufficiency. When a reduction
by sufficiency is not available as is all too frequently the
case, the present approach is widely available and gives an
accurate approximation to a well defined p-value function;
and as illustrated in Section 5 is immediately available. The
theory uses conditioning derived from model continuity.
The Normal location problem of this section was chosen
as extremely simple, partly to keep technical details to a
minimum, and partly to emphasize that the general case is as
simple but with slightly less familiar computation. The next
three sections show how the ideas of the p-value function
for a single, scalar parameters are available quite generally
for models with multi-dimensional parameters that have no
reduction via a sufficient statistic. And as the next section
shows it is often the case that for problems of genuine sci-
entific interest, it is reasonable to focus attention on a single
parameter of interest and the present p-value function.

3. Narrowing the Focus to the Essential Parameter:
Three Illustrations From Science

The examples in this section are here to illustrate three instances
where scientific problems of considerable import lend them-
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Figure 4. The p-value function for n=1 (solid), n=4 (dashed), n=100 (dotted).

selves to an analysis that puts focus on a scalar parameter of
interest and a related scalar variable. These examples discuss
such a parameter of interest, but we wait until later sections to
address the role of nuisance parameters and the reduction of
data observations to a single dimension.

3.1. Trajectory of Light

A theory being floated in the early part of the last century
indicated that the trajectory of light would be altered in the
presence of a large mass like the sun. An opportunity arose in
1919 when the path of an anticipated total eclipse was expected
to transit portions of Africa. During the eclipse an expedition
was able to measure the displacement of light from a star in the
Hyades cluster whose light would pass very close to the sun, and
whose position relative to nearby visible stars was then seen to
be displaced, by an amount indicated by the theory. This was
an observational study but in many details duplicated aspects of
an experiment. In this example, the intrinsic variable relevant to
the theory was the displacement on the celestial sphere of the
prominent star relative to others whose light trajectory was at
some greater distance from the sun, and was calculated away
from the sun.

3.2. Search for the Higgs Boson

In 1994, Abe (1994) and coauthors reported on the search for
the top quark. High energy physicists were using the collider
detector at Fermilab to see if a new particle was generated in
certain particle collisions. Particle counts were made in time
intervals with and without the collision conditions; in its sim-
plest form this involves a Poisson variable y and parameter θ ,
and whether the Poisson parameter is shifted to the right from a

background radiation level θ0, thus increased under the exper-
imental intervention. This is an experimental study and such
typically provide more support than an observational study.

The statistical aspects of the problem led to related research,
for example, Fraser, Reid, and Wong (2004), and to a collab-
orative workshop with statisticians and high energy physicists
(Banff International Research Station 2006). This in turn led to
an extensive simulation experiment launched by the high energy
physicists, in preparation for the CERN investigation for the
Higgs boson. The p-value function approach to this problem
is detailed in Davison and Sartori (2008), with the measure of
departure recommended in Fraser, Reid, and Wong (2004), and
shown to give excellent coverage for the resulting confidence
intervals. The p-value reached in the CERN investigation was
1 in 3.5 million, somewhat different from the widely used 5%.

3.3. Human–Computer Interaction

A researcher in human–computer interaction (HCI) is investi-
gating improvements to the interface for a particular popular
computer software package. The intrinsic variable could, for
example, be the reduction in learning time under the new inter-
face, or a qualitative evaluation of the ease of learning. In this
experimental investigation, advice is sought on the appropriate
model and appropriate approximation for the distribution of the
intrinsic variable.

3.4. Overview

In each of these examples, the methodology for the Normal
example in Section 2 is immediately available and follows meth-
ods described in Fraser (2017). The resulting p-value and like-
lihood functions are readily computed, and inference is then of
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Figure 5. The sample space for a sample of 2 from the uniform distribution on (θ − 1/2, θ + 1/2). The observed data point is (9.4, 8.6); the square is the sample space for
θ = θ̂obs = ȳobs = 9. Only θ -values in the range 8.9–9.1 can put positive density at the observed data point. The short line through this point illustrates the small data
range consistent with the observed data.

the same type as that in the simple example but computational
details differ. Extensions from this are also available for testing
vector parameters and use recently developed directional tests
(Sartori, Fraser, and Reid 2016). The next two sections discuss
the conditioning and then the use of the approximations.

4. Conditioning for Accurate Statistical Inference

Fisher (1930) introduced the notion of an ancillary statistic, to
formalize the use of conditioning for inference based on features
of the observed data. An ancillary statistic is a function of the
data whose distribution does not depend on the parameter or
parameters in the model for the observed response. As a simple
example, if the sample size n in an investigation is random,
rather than fixed, but its distribution does not depend on the
parameters governing the model for the response y, then the
appropriate model for inference is f (y | n; θ), not f (y, n; θ , φ) =
f (y | n; θ)f (n; φ), where φ might be present as a parameter for
the distribution for n. The weighing machine example in Cox
(1958) is another example of an obvious conditioning; in this
case a random choice is made between a precise measurement
of y and an imprecise measurement, and the resulting inference
based on y should be conditional on this choice.

Example 2. A pair of uniformly distributed variables
Consider a response y that is uniformly distributed on the

interval (θ − 1/2, θ + 1/2) and suppose we have a sample of
n = 2 with data (9.4, 8.6), Figure 5 presents the sample space
for some θ value with observed data (9.4, 8.6); the actual sample
space indicated is that for θ = θ̂obs = 9 which is just ȳobs.

A quick conventional approach might use approximate nor-
mality and the pivot t = (ȳ − θ)/2−1/2(1/12)1/2, where the
denominator is the standard deviation 0.20 of the sample mean.
Figure 6 shows for some θ value the corresponding distribution
of ȳ with its standard deviation 0.20. The corresponding p-value
function �{(9 − θ)/0.20} from the data is plotted in Figure 7.
This provides an approximate 95% interval for θ as (9 − 1.96 ·
0.20, 9 + 1.96 · 0.20) = (8.61, 9.39), but not all is well.

In Figure 5, we show the sample space centered at θ , and
indicate the line parallel to the 1-vector through the data point
(9.4, 8.6), and related lines would be parallel to this. Suppose we
think of changing the θ value: the corresponding square domain
will shift to the lower left or to the upper right, but only θ-
values from 8.9 to 9.1 can put positive density at the observed
data point (9.4, 8.6). The short line through the observed data
point records the corresponding range and the parameter can
only be at most 0.1 from the data. Any statistic describing these
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Figure 6. The approximate density of ȳ for some θ value.

Figure 7. The observed p-value function from the approximate pivot t = (ȳobs − θ)/2−1/2(1/12)1/2 = 0.20(ȳobs − θ) as a function of θ .

diagonal lines has a distribution that cannot depend on θ and
is thus ancillary. The conditional model on the line through
the data point is U(θ − 0.1, θ + 0.1) with half-range 0.1: the
parameter can be at most 0.1 from the data and the data can
only be at most 0.1 from the parameter. An exact 95% confidence
interval for θ is (9 − 0.095, 9 + 0.095) = (8.905, 9.095), which
is radically different from the approximate result (8.61, 9.39) in
the preceding paragraph.

Indeed, the initial confidence interval includes θ values
that are not possible, and also those for which the actual
coverage is 100%. Of course, the first interval uses an extreme
approximation but conditioning on y1 −y2 makes clear how the
observed data restricts the range of possible parameter values.
In Figure 8, we record the exact observed likelihood function
from the data (9.4, 8.6); it shows the range of possible values for
θ and demonstrates the restrictions on the parameter.
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Figure 8. The exact observed a likelihood function from the data (9.4, 8.6).

In many cases for statistical inference, there is not such an
obvious function of the data that is exactly distribution constant,
However, there are many models in which there is an essentially
unique quantile function or data-generating function yi =
y(θ , zi), where the distribution of z is known. For example, if
yi follows a location model with density f (yi − θ), we can write
yi = θ+zi, with the distribution of zi known to be f (·). Similarly
with independent sampling from a normal model with E(yi) =
x′

iβ and var(yi) = σ 2, the model can be written yi = x′
iβ + σ zi,

with zi following a N(0, 1) distribution.
This quantile function provides the information needed to

construct conditional inference, by examining how parameter
change affects variable change for fixed quantile. This is sum-
marized by the n × p matrix of derivatives

V = (v1, ..., vp) = ∂y
∂θ

∣∣∣
fixed pivot z

evaluated at the data yobs and maximum likelihood estimate
θ̂obs. The p vectors v1, . . . , vp are tangent to the contours of an
approximate ancillary statistic, and the model conditional on
these contours can be expressed in exponential family form.
Recent asymptotic theory as summarized in Fraser (2017) shows
that this conditional model provides a third-order inference
information with extremely simple methods of analysis. If the
given model happens to be a normal location model, then this
will also reproduce the simple analysis above.

In Example 2, the quantile expression of the model is yi =
θ + ui, where ui follows a U(−1/2, 1/2) distribution. The 2 × 1
matrix V is simply (1, 1)′, and this defines the sloped lines in the
sample space in Figure 5.

In the linear regression model, the matrix V is n × (p + 1),
where p is the dimension of β . The leading n × p submatrix
is simply X with ith row x′

i, and the final column of V is the
observed standardized residual vector (ẑ1, . . . , ẑn).
Example 3. Ratio of Normal variables

This example has appeared widely in the literature and is
often called the Fieller (1954)-Creasy (1954) problem. In its
simplest form, we have two Normal variables with common
variance, and we are interested in the ratio ψ = μ1/μ2 of their
means; a nearly equivalent parameter is the direction ψ = α

of the vector mean (μ1, μ2) as an angle, say negative, from the
positive μ1 axis. The problem also has close connections to
regression calibration methods. Various routes to conditioning
have been discussed in the past. Fraser, Reid, and Lin (2018)
examine the model from the present viewpoint, but we do not
attempt to reproduce the discussion here; other related examples
are also examined there.

The next section outlines the automatic conditioning based
on model continuity: this is preliminary to the widely available
accurate approximations for the p-value function. We also out-
line the route to the accurate p-value function approximations.

5. Accurate p-value Functions

Two main features make the p-value function central to infer-
ence. The first of these is its multiple uses, as set out in Section 2.
The second is the broad availability of an asymptotic approxi-
mation to the p-value function. This approximation is uniquely
determined to third order and is conditional on an approxi-
mately ancillary statistic. The matrix V described in Section 4
enables construction of an approximating exponential family
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Figure 9. For the simple exponential model, the p-value function is plotted using
the Normal approximation for r (dotted), using the third-order approximation
(dashed), and compared to the exact p-value function (solid).

model but avoids explicit construction of the approximately
ancillary statistic. This exponential model provides a route to
inference for a scalar parameter of interest that is accurate
to third order, that is, the inference approximation errors are
O(n−3/2). We illustrate this approximation route in this section;
details on the construction of the tangent exponential model, if
needed, are provided in Fraser (2017).
Example 4. Exponential life model

As a simple and transparent example consider the exponen-
tial life model f = exp{−ϕy + log ϕ} with failure rate ϕ and
observed life y, both on the positive axis; and for data, take
yobs = 1 with little loss of generality. Note that increasing
ϕ corresponds to decreasing life y. The observed likelihood
function is �(ϕ) = −ϕ + log ϕ and the maximum likelihood
estimate is ϕ̂ = 1/yobs = 1. An approximate p-value function
for ϕ can be obtained from standard asymptotic theory, for
example, using the standardized maximum likelihood estimate
q = ϕ̂ − ϕ we have p(ϕ) approximated by �(q), where �

is the standard normal cdf. The signed square root of the log-
likelihood ratio statistic also follows a normal distribution in the
limit, so another approximate p-value function is pL(ϕ) = �(r),
where r = sign(ϕ̂−ϕ){2(ϕ−ϕ̂−log ϕ)}1/2. As described below,
the saddlepoint approximation leads to a pivotal quantity r∗ =
r+r−1 log(q/r) that follows the standard normal distribution to
third order. The approximations pL(ϕ) and p3rd(ϕ) = �(r∗) are
compared to the exact p-value function pExact(ϕ) = exp{−ϕ}
in Figure 10. Although n = 1, the third-order approximation is
extremely accurate.

The steps in obtaining this approximation are as follows:

1. The exponential model
Exponential models have a simple form as an exponential

tilt of some initial density h(s)

f (s; ϕ) = exp{ϕ′s − κ(ϕ)}h(s), (1)

where the p-dimensional variable s = s(y) and parameter
ϕ = ϕ(θ) are called canonical and can in turn be functions
of some background variable y and parameter θ .

2. Saddlepoint accuracy
The saddlepoint approximation came early to statistics

(Daniels 1954) but only more recently has its power for anal-
ysis been recognized. The saddlepoint approximation to the
density of s can be expressed in terms of familiar likelihood
characteristics; in particular, the log-likelihood ratio r2/2 =
�(θ̂ ; y) − �(θ ; y) and the standardized maximum likelihood
departure q = (ϕ − ϕ̂)j

1/2
ϕϕ , with the latter calculated in the

canonical parameterization. These measures are illustrated in
Figure 10. The saddlepoint approximation has the form

f (s; ϕ)ds = exp(k/n)

(2π)1/2 exp(−r2/2)
r
q

dr (2)

using the just defined familiar statistical quantities r and q.
3. Accurate p-value approximation

If p = 1, then the distribution function can be computed
from (2) by noting that rdr = (ϕ̂ −ϕ)ds and then integrating
by parts, leading to the Barndorff-Nielsen (1983) formula for
the p-value function

p(ϕ) = �{r + r−1 log(q/r)} = �(r∗), (3)

still in terms of the simple r and q statistical quantities. This
was used above for the exponential life model.

4. With a nuisance parameter
Suppose in (1) that the parameter of interest ψ is a com-

ponent of ϕ, with the remaining components λ, say treated
as nuisance parameters. A relatively simple adjustment to r∗
above can be used to compute an accurate approximation to
the p-value function for ψ . The arguments use the general
theory of conditioning in Section 4, followed by a Laplace
approximation for the required integration. The result is an
approximation to p(ψ) given by (3) but with r computed from
the profile log-likelihood function: r2/2 = �(ϕ̂; s) − �(ϕ̂ψ ; s)
and q replaced by

Q = q
( |j̃λλ|

|ĵλλ|
)−1/2

, (4)

where q = (ψ̂ − ψ)jp(ψ̂)1/2 is the standardized maximum
likelihood departure as before, jp = −�′′

p(ψ) is the observed
information in the profile log-likelihood function, and jλλ

is the nuisance parameter submatrix of the full observed
information matrix, evaluated in the numerator at the con-
strained maximum likelihood estimate ϕ̂ψ , and evaluated in
the denominator at the full maximum likelihood estimate ϕ̂.

Often the parameter of interest is a nonlinear function
of the canonical parameter, which we write ψ(ϕ), and the
nuisance parameter λ = λ(ϕ). The arguments leading to (3)
can be developed by building on the conditioning of Section 4
and the Laplace integration mentioned above, and the result
is an approximation to the p-value function again given by
(3), but with q replaced by a quantity similar to Q in (4)

Q = q̃
( |j̃(λλ)|

|ĵ(λλ)|
)−1/2

, (5)
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Figure 10. A log-likelihood function with the log-likelihood ratio r2/2 and the standardized maximum likelihood departure q = (θ̂ − θ)j
1/2
θθ identified.

where the notation j(λλ) means that λ is re-expressed in
terms of a nuisance parameterization that accommodates the
non-linearity in the dependence of the parameter of interest
on the canonical parameter of the exponential model. The
quantity q̃ is a standardized maximum likelihood departure,
as above, but in a parameterization that takes account of the
nonlinearity of ψ as a function of ϕ; see, for example, Fraser,
Reid, and Wu (1999).

In the next section we give an example of the approxima-
tion of the p-value function in this setting.

5. General parametric model for y
If the statistical model of interest is not an exponen-

tial model, then a preliminary step based on Section 4
is used to construct what we have called the tangent
exponential model, which implements conditioning on an
approximate ancillary statistic using the matrix V . The
canonical parameter of the tangent exponential model is
ϕ(θ) = ∂�(θ ; y)/∂V . It can be shown that this approximation
is sufficient to obtain an approximate p-value function
to third order, and the steps are essentially the same as
those for an exponential model described above. The
argument is summarized in Reid and Fraser (2010) and
Fraser, Reid, and Wu (1999).

One feature of these third-order approximations is that
the pivotal quantity used to generate the p-value function is
determined at the same time as its distribution is approxi-
mated, an astonishing result!

6. Applications

Many examples are available in the literature; see, for example,
Fraser, Wong, and Wu (2004) and Fraser, Reid, and Wong (2009)
and the book by Brazzale, Davison, and Reid (2007).
Example 5. Mean of a gamma density

As an illustration of the formulas in the previous section, we
now consider the analysis of the lifetime data in Gross and Clark
(1975) using a gamma model. The observations are (152, 152,
115, 109, 137, 88, 94, 77, 160, 165, 125, 40, 128, 123, 136, 101,
62, 153, 83, 69) being 20 survival times for mice exposed to 240
rads of gamma radiation. The gamma exponential model for a
sample (y1, . . . , yn) is

f (y; α, β)�dyi = �−n(α)βnα exp{αs1 − βs2}(�yi)
−1�dyi,

where (s1, s2) = (� log yi, �yi) records the canonical variable
and (α, β) records the canonical parameter. Inference for α or β

would use (4) for Q in approximation (3); and now we illustrate
inference for the mean μ = α/β , a nonlinear function of the
canonical parameter.

Grice and Bain (1980) considered such inference for the
mean and eliminated the remaining nuisance parameter by
“plugging in” the nuisance parameter estimate and then
using simulations to adjust for the plug-in approach. Fraser,
Reid, and Wong (1997) investigated the use of r∗

μ based on
(5) and verified its accuracy; the results for the Gross and
Clark (1975) data are recorded in Figure 11. For example,
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Figure 11. The p-value function and log-likelihood function for the mean of the Gamma model data from Gross and Clark (1975).

the 75% lower confidence bound is 107.8 which tells us that
the given data provide 75% confidence that the true μ is in
the interval (107.8, ∞). Any one-sided or two-sided confi-
dence interval is thus available immediately from the p-value
graph.
Example 6: Model selection: Box and Cox

Location-scale and regression models have an important role
in applications. Instances, however, do arise where the investiga-
tor is unsure of the mode of expression for his primary variable:
Should he make a transformation of some initial variable, say
a log or power transformation? Or should he take a family of
such transformations and thus have a spectrum of regression
models? A common concern is whether curvature should be
applied to an initial response variable to achieve the linearity
expected for a regression model. Box and Cox (1964) proposed
a likelihood analysis, and a Bayesian modification. We consider
here the present p-value function approach.

The regression model with the power transformation can be
written as yλ = Xβ + e where e is a vector of say Normal(0, σ 2)
errors. For our notation, it seems preferable to write it as

y = (Xβ + e)1/λ,

where the power is applied coordinate by coordinate and the
data and model coordinates are assumed to be positive. The
power or curvature parameter λ is typically the primary parame-
ter; while the regression parameters β only have physical mean-
ing relative to a particular choice of the transformation param-
eter value λ. The third-order analysis is discussed in Fraser,
Wong, and Sun (2009) using an example from Chen, Lockhart,
and Stephens (2002). The resulting p-value function for the

parameter λ is recorded there as Figure 1(e) on page 12, and the
95% central confidence interval for λ is (0.694, 2.378) on page
14. This shows that it is extremely hard to pin down possible
curvature even with the large sample size n = 107; linearity
corresponds to λ = 1.
Example 7: Extreme value model

The extreme value model has immediate applicability to the
modeling of extremes, say for the largest or smallest, in a sample
or sequence of available data values, perhaps collected over
time or space; it is of particular importance for the study say
of climate extremes and has generalizations in the form of the
Weibull model. The model has the density form

f (y; θ) = exp{−(y − θ) − e−(y−θ)}.

For our purposes here, it provides a very simple example where
the likelihood and the p-value functions are immediately avail-
able, in exact and in the third-order form. Suppose we have a
single data value yobs = 21.5 as discussed in Fraser, Reid, and
Wong (2009). The log-likelihood and p-value functions have the
simple form

�(θ) = θ − eθ−21.5, p(θ) = exp(−eθ−21.5).

For the third-order approximation, we have r and q as the signed
likelihood ratio and the Wald departure

r = sign(θ̂ −θ)[2{�(θ̂ −�(θ)}]1/2, q = sign(θ̂ −θ)|ϕ̂−ϕ|ĵ 1/2
ϕϕ

where the exponential parameterization ϕ(θ) = exp (θ − 21.5)

− 1 is obtained by differentiating �(θ ; y) with respect to y where
the V from Section 4 is just a one-by-one “matrix” given as V =
1. The likelihood and p-value function are plotted on page 4 of
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Fraser, Reid, and Wong (2009); in particular, the plot of the p-
value function also records the third-order approximation we
have been recommending; it is recorded as a dotted curve that
is essentially indistinguishable from the exact as a solid curve.
And of course any confidence interval or bound is immediately
available.
Example 8: Logistic regression and inference for discrete data

Discrete data, often frequency data such as with the binomial,
two by two tables, contingency tables, Poisson data, and
logistic regression are commonly analyzed by area specific
methods and some times by likelihood methods. Davison,
Fraser, and Reid (2006) examine such discrete data analyses
and demonstrate the straightforward steps and accuracy
available for such problems, using the present p-value function
approach and the related third-order accurate approximations;
the discreteness, however, does lower the effective accuracy
to second order. The general methods are also discussed
there together with the minor modifications required for the
discreteness. Binary regression is discussed in detail and the
data from Brown (1980) on 53 persons with prostate cancer
is analyzed. The methods are also applied to Poisson counts
and illustrated with data on smoking and lung cancer deaths
(Frome 1983).

7. Discussion

The p-value function reports immediately: if the p-value func-
tion examined at some parameter value is high or very high as
on the left side of the graph, then the indicated true value is large
or much larger than that examined; and if the p-value function
examined at some value is low or very low as on the right side of
the graph, then the indicated true value is small or much smaller
than that examined. The full p-value function arguably records
the full measurement information that a user should be entitled
to know!

We also note that the p-value function is widely available for
any scalar interest parameter and any model-data combination
with just moderate regularity, and has available computational
procedures.

In addition to the overt statistical position, the p-value func-
tion also provides easily and accurately many of the familiar
types of summary information: a median estimate of the param-
eter; a one-sided test statistic for a scalar parameter value at
any chosen level; the related power function; a lower confi-
dence bound at any level; an upper confidence bound at any
level; and confidence intervals with chosen upper and lower
confidence limits. The p-value reports all the common inference
material, but with high accuracy, basic uniqueness, and wide
generality.

From a scientific perspective, the likelihood function and p-
value function provide the basis for scientific judgments by an
investigator, and by other investigators who might have interest.
It thus replaces a blunt yes or no decision by an opportunity
for appropriate informed judgment. In the high energy physics
examples very small p-values are widely viewed as evidence
of a discovery: Abe (1994) obtained p = 0.0026, and the
LHC collaboration obtained 1 in 3.5-million before they were
prepared to claim discovery. This is not a case of statisticians

choosing a decision break point for others; but rather the provi-
sion of full inference information for others to make judgments.
The responsibility for decisions made on the basis of inference
information would rest elsewhere.
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