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Definitions 
 

Cyst: a phase or form of an organism characterized by a thick and environmentally 
resistant cell wall.  It is produced either in response to environmental 
conditions or as a normal part of the life cycle of the organism 

 
Effluent: the outflow of water usually from a waste water facility that has been treated in 

order to be released back into the environment.  It may be further treated for 
use as reclaimed water 

 
Fomites: an object (such as an article of clothing) that may be contaminated with 

infectious organisms and serve in their transmission 
 
ID50: used for the dose of an infectious organism required to produce infection in 50 

percent of the experimental subjects 
 
Inhibition: something that forbids, debars, or restricts 
 
Oocyst: an encysted zygote of certain sporozoans, e.g. Cryptosporidium, characterized 

by a thick and environmentally resistant cell wall.  It is a phase or form of an 
organism produced either in response to environmental conditions or as a 
normal part of the life cycle of the organism 

 
Raw water: water taken from the environment (ground and surface) that is subsequently 

treated or purified to produce potable water in a water purification works 
 
Reclaimed water: wastewater (sewage) that has been treated and purified for reuse, 

rather than discharged into a body of water.  It is frequently used to irrigate 
golf courses and parks and to fill decorative fountains 
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Evaluation of TaqMan Real-Time PCR for the Detection of Viable  

Cryptosporidium parvum Oocysts in Environmental Water Samples 

Melissa A. Cameron 

ABSTRACT 

Cryptosporidium parvum is of growing public health concern due to its ability to 

survive typical water treatment processes.  In order to protect the public from infection, 

the Environmental Protection Agency developed Method 1623 for the detection of 

Cryptosporidium oocysts in environmental water samples.  Execution of this method is 

time consuming, and the results do not provide an accurate estimation of viability.  

Therefore, current research is focused on creating a real-time PCR method for the 

accurate detection of viable Cryptosporidium parvum in environmental water samples. 

 This thesis presents the development of a real-time PCR method, and the results 

obtained in its use on field samples.  The assay was standardized using multiple dilution 

series in addition to positive and negative controls.  Environmental water samples were 

tested using this method and Method 1623 for comparison.  The results were compared 

statistically to determine the degree of correlation between methods.  The data show that 

the real-time PCR method correlates well to Method 1623.  In addition, the assay was 

determined to be more cost effective and less labor intensive than Method 1623.  

Although these early findings are promising, additional research and development are 

needed before the proposed assay can be used in industry. 
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Introduction 
 

Cryptosporidium 

 Cryptosporidium parvum, commonly known as “crypto,” originally 

thought to only cause disease in animals, has become a major public health concern.  

Over recent decades, Cryptosporidium has been linked to most waterborne outbreaks in 

the United States (Leav et al., 2003).  It resists chlorination and is difficult to remove by 

filtration due to its small size.  Hence, Cryptosporidium has become a major threat in 

United States’ water supplies (Guerrant, 1997).  Subsequently, it has become the most 

common cause of human waterborne disease in the United States (CDC, 2005).  The 

disease caused by Cryptosporidium, known as Cryptosporidiosis, is an enteric illness in 

humans and animals and has become recognized as a significant cause of diarrhea in 

humans.  Though the disease is self-limiting in those with healthy immune systems, it is 

potentially life threatening in the growing number of individuals with compromised 

immune systems (Guerrant, 1997).  For this reason, water sources must be closely 

monitored to assure the health of the public. 

Discovery 

 Cryptosporidium was first described as an intracellular organism in the mucosa of 

mice by E.E. Tyzzer in 1907 (Hannahs, 2007).  It is a minute coccidean parasite and the 

only genus in the family of Cryptosporidiidae.  Cryptosporidium was originally known as 

an intracellular parasite and the cause of enterocolitis in many animal species including 
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mammals, birds, and fish (Markell et al., 1999).  This ability to infect a vast variety of 

hosts sets it apart from other coccideans.  Nevertheless, it was not until 1976 that 

Cryptosporidium was first discovered to cause disease in humans (Leav et al., 2003).  

The first reported case involved a 3 year old girl from Tennessee who developed a severe 

yet self-limiting enterocolitis (Markell et al., 1999).  An intestinal biopsy was performed 

and examination of the intestinal mucosa showed the causative organism to be 

Cryptosporidium parvum.  There are approximately 20 different species of 

Cryptosporidium, with the primary cause of illness in humans and most mammals 

attributed to Cryptosporidium parvum (Roberts & Janovy, 2000). 

Epidemiology 

 Cryptosporidiosis may be acquired from domestic animals as a zoonosis with 

mainly bovine and human reservoirs (Leav et al., 2003).  It is a common cause of short-

term diarrhea (Roberts & Janovy, 2000).  Humans acquire the parasite by ingesting it in 

its oocyst form after it is excreted in the stool of infected animals or people (Leav et al., 

2003).  Though distributed world wide and endemic in developing countries, 

Cryptosporidiosis is only seen in developed countries in sporadic outbreaks mainly 

affecting children and people who are immunocompromised (Leav et al., 2003).   

 Cryptosporidiosis is often significantly under diagnosed due to its self-limiting 

nature.  Among diagnosed cases, a vast majority have been linked to the ingestion of 

water contaminated with Cryptosporidium oocysts.  There have been several waterborne 

outbreaks of cryptosporidiosis in the U.S. (Markell et al., 2000).  An environmental study 

found between 67% and 95% of the surface water throughout the U.S. is contaminated 
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with Cryptosporidium oocysts (Markell et al., 1999).  Due to their small size, 4 to 5µm in 

diameter, Cryptosporidium oocysts are difficult to filter from water supplies.  They are 

also resistant to chlorination.  This has lead to numerous outbreaks throughout the U.S 

despite water treatment efforts.   

The first reported outbreak occurred in 1984 and was due to the fecal 

contamination of an artesian well in Texas.  Another highly publicized outbreak occurred 

in Milwaukee, Wisconsin in 1993 (Leav et al., 2003).   The outbreak affected 

approximately 403,000 people and was the largest waterborne outbreak in the U.S. 

(Guerrant, 1997).  Of these, many became severely ill and several of those who were 

immunocompromised died. 

 Drinking water has been identified as source of infection.  Most outbreaks have 

occurred in communities where the local water utilities were meeting state and federal 

guidelines.  Other sources of infection have been linked to public wave pools and to 

consumption of unchlorinated well water (Markell et al., 1999).  The vast possibilities for 

infection and outbreaks illustrate the importance of routine monitoring of water supplies.  

Transmission 

 The transmission of Cryptosporidium parvum is via the fecal-oral route.  Infected 

individuals and animals shed the parasite in their feces in the form of oocysts as few as 

five days after initial infection and for up to five weeks after the diarrheal illness ends 

(Roberts & Janovy, 2000).  A single bowel movement from an infected individual or 

animal may release millions of oocysts (CDC, 2005).  Oocysts can contaminate water, 

soil and food.  Cryptosporidium oocysts have a thick wall which allows them to survive 
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well in the environment and withstand chlorination (Guerrant, 1997).  Once the oocysts 

are shed into the environment there are multiple means of transmission.  For example, 

from animal to person: a person comes in contact with an infected animal, picks up the 

oocysts through contact and accidentally ingests the parasite.  This means of transmission 

has been seen on dairy farms where the pathogen is present in 50% of the calves on 90% 

of dairy farms; however, it is rare in other environments (Hannahs, 2007).   

Another mode of transmission is person to person contact.  This occurs 

predominately in child daycare centers, nursing homes, and hospitals where the 

occupants need supervision and assistance with personal hygiene.  Infection may spread 

quickly if special attention is not given to cleanliness when changing diapers or handling 

contaminated fomites of infected patients.  Like animal to human transmission, person to 

person transmission is rare (Hannahs, 2007). 

 The most common means of transmission for Cryptosporidium parvum is via 

contaminated food or water.  Most outbreaks world wide have been transmitted through 

contaminated drinking water and recreational water parks (Leav et al., 2003).  Source 

water is easily contaminated by water runoff from farms and grazing areas.  Once oocysts 

are in the water supply, they are very difficult to remove.  Upon ingestion of the 

contaminated water, the individual becomes infected, begins excreting oocysts and the 

cycle continues. 

Clinical Features 

 Cryptosporidium parvum is the etiologic agent of cryptosporidiosis.  Based on 

human studies C. parvum has an infective dose (ID50) of 132 oocysts.  However, 
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infection may occur upon ingestion of as few as 30 oocysts by healthy individuals and a 

single oocyst in those immunocompromised (Guerrant, 1997).  Once ingested, 

sporozoites are released and parasitize the brush lining of the epithelial cells located in 

the gastrointestinal or respiratory tract.  This may cause a variety of symptoms two to ten 

days post infection depending upon the age and immune status of the individual (Leav et 

al., 2003).  

In individuals with healthy immune systems, the disease may be asymptomatic 

but generally causes a watery or mucous-like diarrhea that may or may not be 

accompanied with abdominal pain.  Other symptoms may include varying degrees of 

nausea and vomiting accompanied with dehydration, low grade fever and weight loss 

(Markell et al., 1999).  Symptoms in healthy individuals may cycle, causing a period of a 

few days during which the individual seems to be improving before the symptoms return 

(CDC, 2005).  The symptoms are usually self-limiting and mild lasting one to two weeks.  

However, children and pregnant women should be closely monitored due to their 

increased sensitivity to dehydration (Hannahs, 2007). 

Individuals with a compromised or deficient immune system, such as people with 

HIV/AIDS, those who have undergone a transplant or chemotherapy, and individuals 

with inherited immune disease, are much more likely to suffer from more severe 

symptoms (CDC, 2005).  Since the early 1980’s, Cryptosporidiosis has become an 

important contributory factor in the death of AIDS patients (Guerrant, 1997).  The 

infected individual may experience cholera-like watery diarrhea with as many as 6 to 25 

bowel movements per day, with a stool fluid loss of up to 20 liters per day.  They may 
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also experience severe abdominal pain, nausea and vomiting.  Complications may occur 

due to prolonged diarrhea, malabsorbtion and dehydration.  In immunocompromised and 

deficient individuals, infection may occur in multiple areas of the body in addition to the 

intestines by penetration of the luminal surface (Hannahs, 2007).   

Cryptosporidium has been found in the sputum, lung biopsy materials and the 

biliary tract.  Symptoms may subside, but often become chronic and life-threatening.  

There have been many deaths attributed to Cryptosporidiosis in immunocompromised 

individuals (CDC, 2005).   

Treatment and Prevention 

 Cryptosporidiosis is diagnosed by identification of the organism in biopsy 

material or detection of oocysts in stool samples (Guerrant, 1997).  The disease may not 

require any treatment in healthy individuals due to its self-limiting nature however some 

may be treated with nitazoxanide (CDC, 2005).  Treatment for individuals with poor 

health or weakened immune systems is more difficult.  The effectiveness of drugs such as 

nitazoxanide is unclear in the immunocompromised (CDC, 2005).  The illness is not 

usually curable in these individuals and, as the immune status worsens, the symptoms 

may recur and worsen producing a chronic infection (CDC, 2005). 

 There are few measures that may be taken to prevent possible infection by 

Cryptosporidium parvum.  The best way to prevent illness is to abstain from drinking 

water or consuming food that may be contaminated with the parasite.  One must also 

practice good hygiene and use caution when traveling; especially abroad, i.e. proper hand 
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washing to avoid fecal-oral contamination, drinking bottled water and consuming only 

cooked foods (CDC, 2005).   

Water Treatment & Detection Methods 

 Public health and municipal water authorities have taken action in an attempt to 

assure the safety of public drinking water.  The U.S. Safe Drinking Water Act (1974) 

requires drinking water utilities to meet stringent standards for maximum levels of 

microbiological and chemical contaminants (Viessman & Hammer, 1998).  The treatment 

process used at each facility is determined by the type of raw water source and the quality 

of finished water desired.  To successfully remove a protozoan like C. parvum, there 

must be effective chemical treatment and filtration (Viessman & Hammer, 1998).   It is 

difficult and very costly to remove all Cryptosporidium from water supplies because of 

the parasite’s resistance to chlorination and small oocyst size (Guerrant, 1997).  Minor 

problems in the treatment process may go unnoticed and allow C. parvum to enter the 

water supply.  Therefore, it is very important that municipal water supplies are treated 

and monitored regularly to prevent the public from becoming ill.  In order to do this, 

improved and faster methods of detection are necessary. 

Water Testing (Environmental Protection Agency Methods 1622 & 1623) 

 The U.S. Environmental Protection Agency (EPA) created Methods 1622 and 

1623 as a means of routine monitoring of water sources to prevent the occurrence of 

outbreaks like that witnessed in Milwaukee.  Method 1622 is specific for the detection 

and enumeration of Cryptosporidium oocysts and Method 1623 is specific for the 

detection and enumeration of both Cryptosporidium oocysts and Giardia cysts in 
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environmental water samples (EPA, 2001).   The methods are performed by filtration of 

the water to be assayed, elution of the organisms from the filter, immunomagnetic 

separation (IMS) of the oocysts from the matrix and immunofluorescence assay (IFA) 

microscopy and differential interference contrast (DIC) microscopy (EPA, 2001).   

Analysis 

 The primary method for identifying and enumerating the number of cysts and 

oocysts in environmental water samples, per EPA Methods 1622 and 1623, is by 

immunofluorescent staining and microscopic examination.  Two types of stain are used.  

The first stain used is an immunofluorescent stain, for example EasyStain C&G (BTF, 

Cat. #ESTAIN80) which is designed to bind specifically to the protein coat of 

Cryptosporidium and Giardia using monoclonal antibodies that cause the oocysts and 

cysts in the sample to fluoresce a bright apple green color.  This allows for quick 

identification of potentially viable oocysts and cysts. 

 Giardia and Cryptosporidium may also be assayed with a secondary stain, 4’,6-

diamidino-2-phenylindole, commonly known as DAPI.  DAPI is a fluorescent dye that 

binds to A-T rich double stranded DNA, producing a sky blue color when viewed with a 

UV filter block (excitation 550nm, emission 600nm) (Polysciences, INC., 1999).  

Positive DAPI staining is an indicator of potential viability, whereas DAPI negative 

oocysts are considered nonviable since they lack intact DNA (EPA, 2001).  The slides are 

also examined with differential interference contrast (DIC) microscopy for internal 

structures characteristic of Giardia cysts and Cryptosporidium oocysts. 
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 These staining methods are capable of providing a rough estimate of the number 

of potentially viable oocysts in a water sample; however, there are problems with these 

methods.  Because they do not differentiate between different Cryptosporidium species, 

oocysts counted in this process may be of a species that is not known to cause harm to the 

general public.  In addition, DAPI has been shown to overestimate the number of viable 

oocysts in a sample by studies in which mice were infected with DAPI positive samples 

yet never produced infection (Jenkins et al., 2000). 

 In addition to the non-species specific nature of these stains, they are also labor 

intensive to perform and examine, taking hours to complete.  Examination of the slides 

must be performed by experienced laboratorians trained in the science.  However, a great 

deal of the interpretation of the results is left to the discretion of the examiner.  Although 

both of these stains allow us to assess the possibility of contaminants in water samples, 

there needs to be a less subjective, more specific and efficient means of detecting viable 

Cryptosporidium in environmental water samples in order to significantly reduce the 

possibility of misinterpretation.    

Real-Time PCR 

 In attempts to find a more specific and timely method for the detection of 

Cryptosporidium in environmental water samples, scientists are looking toward real-time 

polymerase chain reaction (PCR).  It is a method that allows for the logarithmic 

amplification of short strands of DNA and detection in “real-time” by the reporting of 

fluorescent probes.  Theoretically, a single copy of a particular sequence can be amplified 

and detected, through the use of appropriate primers and probes, with a direct relationship 
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between the starting target and the amount of product at a given cycle (Ambion, 2007).  

This is accomplished by cycling the sample through various thermal cycles, usually 

ranging in number from 40 to 50, during which the DNA is replicated (Ambion, 2007).  

As the DNA replicates, the probe searches for a specific target nucleic acid sequence.  

The probe attaches to the target DNA and cleaves, creating a fluorescence that is detected 

by the real-time PCR instrument after each thermal cycle is completed.   

 This method is commonly used for detection and quantification of various viruses 

and parasites in numerous sample mediums.  The ability to detect a specific sequence and 

the fast result time (2 to 3 hours) makes real-time PCR a good candidate for future 

Cryptosporidium testing and water monitoring.  Many studies have been done in attempts 

to create a method that detects viable Cryptosporidium in water samples; however, few 

have been done using environmental samples as opposed to spiked laboratory samples.   

 In 1995, Wagner-Wiening and Kimmig detected viable Cryptosporidium parvum 

oocysts using traditional PCR.  The study used oocysts that were placed in media and 

excysted to assure viability.  The PCR generated a product 873 base pairs (bp) in length 

encoding an oocyst protein.  The procedure was successful in detecting viable oocysts; 

however, the results were not easily replicated or predictable.   

Kaucner and Stinear (1997) detected viable C. parvum oocysts in large volumes, 

20 to 1,500 liters, of spiked creek and river water.  They devised a method for detecting a 

smaller segment of DNA measuring only 307 bp in length, from a heat shock protein 

found in C. parvum.  The method was not tested on environmental samples.  These two 
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studies did not permit enumeration of oocysts but they did set the course for further 

research in the area.    

 A Most-Probable-Number assay was developed by Slifko, Huffman, and Rose 

(1999) that enumerated infectious C. parvum oocysts in cell culture systems.  They also 

were able to determine from this study that the age of the oocysts affected its infectivity.  

This discovery illustrated the ability of oocysts enumeration and a need for a more 

precise method for determining the viability of oocysts. 

Gobet and Toze (2001) conducted a study to determine the relevance of heat 

shock protein (hsp) 70 messenger RNA and DNA to determine the viability of 

Cryptosporidium parvum oocysts.  The study compared an assay using this protein with 

methods utilizing mouse infectivity and immunofluorescent dyes.  The poor specificity 

and sensitivity of immunofluorescent dyes and the unreliability of infectivity assays lead 

to the determination that DNA encoding for hsp70 was the best indicator of viability.  

They also noted that the amount of DNA detectable in the oocysts decreased quickly after 

they became nonviable allowing for more precise detection of only viable oocysts. 

 In 2003, Fontaine and Guillot developed a method for an immunomagnetic 

separation real-time PCR for the quantification of C. parvum in water samples.  The 

method followed the previously used EPA Method 1622 for the detection of 

Cryptosporidium species in water samples.  They were able to detect as few as 5 oocysts 

in spiked samples.  Though this method was successful with laboratory spiked samples, it 

did not use hsp70 as the target and was not designed to detect only viable oocysts.   
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 During the same period of time, LeChevallier, et al. (2003) were comparing EPA 

Method 1623 with a cell culture PCR method.  The two methods produced similar results.  

Their study showed the usefulness of hsp70 for detection of viable C. parvum in water 

samples.  Though the method was successful and able to detect low quantities of viable 

oocysts, it utilized traditional gel based PCR and was labor intensive to perform. 

 The results of both 2003 studies just described were used in the development of 

the present research presented herein.  The method developed for this study used 

immunomagnetic separation followed by real time PCR with hsp70 as the target in order 

to detect only viable oocysts in spiked water samples and environmental samples 

received at the Florida Department of Health, Bureau of Laboratories in Tampa. 
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Objectives 

Many methods have been used to assess the viability of Cryptosporidium parvum 

oocysts.  For example, one method consists of growing cell cultures and inoculating the 

cells with oocysts.  This is done to determine if the oocysts are viable (capable of causing 

infection).  This method is time-consuming, taking weeks to perform, and underestimates 

of the number of viable oocysts.  Method 1623, developed by the US Environmental 

Protection Agency, is the current test used by most laboratories.  Although this method is 

widely used, it is also a time-consuming method requiring at least one day for processing.  

The results depend on the interpretation of the technologist and may lead to an 

overestimate of the number of viable oocysts in the sample. 

 The inaccuracy and inefficiency of current testing methods necessitates finding a 

more precise and practical method for laboratories to determine oocyst viability in public 

water sources.  Current research utilizing the real-time PCR shows promise.  Primers and 

probes have been reported in the literature for testing the viability of Cryptosporidium 

parvum oocysts, but the tests are not standardized and are not currently in routine use, nor 

have they been evaluated to determine their efficiency in a public health laboratory. 

 The hypothesis of this study is that a protocol can be developed for real-time PCR 

based assay for testing of Cryptosporidium parvum in environmental water samples that 

is as sensitive as the current testing methods.  This method is anticipated to give a more 

accurate estimate of oocyst viability due to the specific nature of the test and the 
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elimination of examiner interpretation.  This new method will decrease the total time 

needed to complete the assay and allow for quicker reporting of results.  This will, in 

turn, aid in the prevention of illness and allow control measures to be implemented in a 

more timely manner should an outbreak occur. 

This study evaluates the potential use of real-time PCR to determine 

Cryptosporidium parvum oocyst viability by comparing the viability of C.  parvum 

oocysts estimated by EPA Method 1623 with TaqMan real-time PCR. 

The study has four specific aims: 

1) to standardize and validate a protocol for using Real Time PCR detection on 

viable Cryptosporidium parvum  oocysts in various types of water samples; 

2) to determine the sensitivity and statistical relationship of real-time PCR method as 

compared to IFA/DAPI staining methods; 

3) to determine if the statistical relationship varies by water sample types, i.e. raw, 

treated waste water (effluent), reclaimed water, or drinking water (potable); and, 

4) to determine the best testing method for viable Cryptosporidium oocysts by 

analyzing cost and time efficiency. 

The overall goal of this study is to enhance public health by improving current 

Cryptosporidium detection methods in environmental water samples, and to aid in the 

prevention and control of infection. 
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Materials and Methods 
 
Water Sample Submission and Processing 

 Water samples are received weekly at the Florida Department of Health Bureau of 

Laboratories in Tampa, to be tested for Cryptosporidium and Giardia.  The samples are 

submitted from various water and waste water utilities throughout the state of Florida.  

Sample types received vary depending on the facility requesting the testing which include 

raw (ground or surface), effluent (treated waste water), reclaimed (re-use), and drinking 

(potable) water.  The raw water used in this study is from ground or surface water 

sources.  Raw water is treated and purified to be used as potable or drinking water.  

Effluent is the outflow of water usually from a waste water facility that has been treated 

in order to be released back into the environment.  Effluent can be further treated and 

purified, known as reclaimed water, for use in irrigation systems and outdoor fountains.   

On average the Tampa Laboratory receives approximately 130 samples a year; 

however this number is steadily increasing.  Upon submission, samples are logged, 

numbered and stored at 4ºC until testing.  All samples are tested within 96 hours of 

collection per EPA Method 1623 requirements. 

Sample Size and Selection 

 A sample size of 32 was needed in this study to assure statistically significant 

results.  The sample size was determined using the sample size calculator developed by 

Cameron and Baldock based upon a population of 130 (the average number of samples 
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collected per year), a sensitivity and specificity of 80%, a prevalence of 45% (based on 

an average of 59 positive samples per year), a level of significance of α=.05, and a power 

of 95% (AUSVET, 1998).  Due to the limited number of samples collected each year, 

every sample received between September and December of 2006 was assayed in this 

study.  This resulted in a final sample size of 40 for this study.   

Water Sample Analysis 

EPA Method 1623 

 All water samples received are tested for Cryptosporidium and Giardia protozoa 

using EPA Method 1623.  This method will be summarized here.  A complete protocol is 

available at http://epa.gov/waterscience/methods/1623.pdf.   

In the field, water sources are passed through filters (IDDEX, Cat. # FMC10601) 

which are designed to trap Cryptosporidium, Gardia and extraneous material.  The filters 

are sent on ice to the Department of Health for processing and testing.  Upon arrival at 

the laboratory, the samples are numbered and held between 0 and 8ºC until tested.   

Elution 

The Filta-Max system (IDDEX Cat. #FMC 10102, FMC 10301, FMC 12001) is 

used to elute the material off of the submitted filter.  The apparatus consists of an elution 

tube and plunger containing a membrane designed to concentrate the oocysts and cysts 

(Figure 1).  The filter is placed in the elution tube along with any remaining liquid from 

the filter carriage.  The filter is processed using a series of washes to assure all protozoa 

are concentrated on or above the membrane at the base of the tube.  The membrane, with 

protozoa attached, is removed from the device and washed to remove the oocysts and 
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cysts from the membrane.  The membrane is discarded.  The oocyst suspension is placed 

in 50 ml sterile polypropylene conical tubes and centrifuged at 1,500g for 15 minutes.  

This results in the formation of a pellet, consisting of oocysts, and the supernatant.   

The supernatant is removed to leave a volume of approximately 5ml above the 

pellet.  At this point, the pellet size is measured and recorded.  The pellet is divided in 

two with one portion continuing on to the immunomagnetic separation step, the other 

preserved with 10% neutral buffered formalin and archived.  For the purpose of this 

study, the second portion of the pellet continued through the IMS step and was processed 

for real-time PCR testing (Figure 2). 

Immunomagnetic Separation 

Dynal flat-sided tubes (Dynal Inc., Cat. #740.03) are labeled and 1ml each of 

buffer A and buffer B from the Dynal IMS kit (Dynal Inc., Cat. #730.02) is added to each 

tube.  Both pellets are resuspended by vortexing for 2 minutes.  The sample pellets are 

removed with a pre-wetted pipette and added to the appropriate Dynal tube.  The conical 

tubes are rinsed twice with the appropriate amount of sterile water in order to produce a 

total volume of 12ml in the Dynal tube.  Magnetic beads with antibodies specific for 

Giardia and Cryptosporidium are added.  The Dynabeads Giardia-Combo and Crypto-

Combo vials (Dynal Inc., Cat. #730.02) are vortexed and 100µl from each vial are added 

to each tube.  The Dynal flat-sided tubes are then placed on a rotation device (Dynal Inc., 

Cat. #947.01) and rotated at a speed of 18 rotations per minute for one hour (Figure 3). 

After the samples complete the rotation, the Cryptosporidium oocysts and Giardia 

cysts present in the samples should be attached to the magnetic beads by an antigen-



 18

antibody reaction.  The Dynal flat-sided tubes are removed from the rotator and placed in 

a magnetic holder with the flat portion of the tube facing the magnet (Figure 4).  The 

tubes are rotated in the holder 90º end to end for two minutes at one tilt per second 

causing the magnetic beads to adhere to the flat portion of the Dynal tube.  The 

supernatant is immediately decanted; the tubes are removed from the magnetic holder and 

placed in a test tube rack.  The tube containing the magnetic beads is rinsed three rinses 

with a 1X buffer A solution to assure removal of the magnetic beads from the Dynal 

tubes: 0.5ml of the 1X buffer A solution is added to the tube.  The tube is caped and 

gently rocked to rinse the beads from the flat side of the tube.  The solution is removed 

using a pre-wetted pipette and added to a microfuge tube.  The process is repeated with 

an additional wash using 0.5ml and a final wash of 0.4ml.  The microfuge tube is capped, 

placed in a holder and a magnetic strip is added to the holder (Figure 5).  The tubes are 

gently rocked back and forth through 180º for one minute at one rock per second 

allowing the magnetic beads to adhere to the side of the tube.  The supernatant is 

removed leaving the magnetic beads with any attached protozoa.  At this point, the two 

samples separated at the beginning of the IMS proceed to different steps.  One microfuge 

tube continues to the IMS disassociation step, staining with DAPI and EasyStain, and 

microscopic examination while the other proceeds to the experimental nucleic acid 

extraction, real-time PCR and analysis. 

Disassociation 

 The magnetic bar is removed from the microfuge tube holder and 50µl N HCl is 

added to the tube.  The tube is vortexed for 50 seconds, placed back into the tube holder 
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without the magnetic strip and let stand for 10 minutes.  This causes the oocysts to 

disassociate from the beads.  The tube is vortexed for 30 seconds and the tube is tapped to 

assure any drops in the cap return to the base of the tube.  The magnetic strip is placed 

back into the holder.  The holder is placed at a slant and let stand for 10 seconds.  A well 

slide is labeled and 10µl of 1.0 N NaOH is added to the well.  Without removing the 

magnetic strip the supernatant is removed from the microfuge tube and added to the well 

slide.  The disassociation step is repeated and the supernatant is added to the slide.  The 

slide is now ready for staining. 

Staining 

During the staining process a positive and negative slide are also prepared for 

controls.  The slides containing the sample and the controls are placed on a slide warmer 

set to 37ºC and allowed to air dry.  Each slide is treated with 50µl of absolute methanol 

and allowed to air dry.  The slide is removed from the warmer and 50µl of DAPI staining 

solution (Sigma, Cat. #D9542-1MG) is added to each slide and allowed to stand for 2 

minutes.  The solution is removed from the slide by tilting it on a paper towel.  A volume 

of 50µl of sterile water is added to the well and the slide stands for one minute.  The 

water is removed as before by tilting the slide on a paper towel.  50µl of EasyStain, 

consisting of an immunofluorescence reagent designed for use on Cryptosporidium 

oocysts and Giardia cysts in water samples, (BTF, Cat. #ESTAIN80) is added to the slide 

and the slide is placed in a humid, dark chamber at room temperature for 30 minutes.  

The stain is removed from the slide by tilting it on a paper towel.  At this time, 300µl of 

Fixing Buffer from the EasyStain Kit (BTF, Cat. #ESTAIN80) is added to the slide.  The 
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slide stands for 2 minutes and the buffer is removed by placing the slide tilted on a paper 

towel.  10µl of mounting buffer is added to the well and a cover slip is put in place.  The 

cover slip is sealed in place using two coats of clear nail polish around its edges.  Once 

dried, the slide is ready for microscopic analysis. 

Microscopy 

A Zeiss epifluorescent microscope (Zeiss, model #AXIOSKOP2) is used to scan 

the entire well at 200X or 400X for an apple-green fluorescence which indicates the 

possible presence of cysts and oocysts.  When bright apple-green fluorescing ovoid or 

spherical objects, ranging in size from 4 to 6μm in diameter, are observed with 

highlighted edges they are counted and recorded (Figure 6).  A UV filter block 

(excitation 550nm, emission 600nm) is put in place for DAPI examination.     

The oocysts may exhibit one or more of the following characteristics: a light blue 

internal staining and no distinctive nuclei, an intense blue internal staining, or no more 

than four distinct sky blue nuclei (Figure 7).  The results are recorded for the first ten 

organisms examined.  If the organism exhibits a green rim without internal structures, it 

is characterized as DAPI negative.  Organisms are recorded as DAPI positive if there is a 

strong blue internal stain or distinctly stained nuclei are present.  The UV filter is 

removed; magnification is increased to 1000X (oil emersion) for DIC examination of 

possible internal structures. 
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Real-Time PCR 

Extraction 

Samples that do not undergo the IMS disassociation step mentioned above 

continue to the experimental real-time PCR method.  1ml of 1X phosphate buffered 

saline (PBS) added to each microfuge tube containing the magnetic beads to wash away 

any residual Buffer A solution.  The samples are vortexed, returned to the magnetic 

holder, and rocked 180º for 2 minutes allowing the beads to attach to the side of the tube 

containing the magnet.  A solution is prepared at a 25% weight-to-volume concentration 

of Chelex 100 resin (BioRad, Cat. #143-2832) and sterile reagent grade water to be used 

in the extraction.  The wash supernatant is removed from the microfuge tube containing 

the magnetic beads and 200µl of Chelex 100 resin solution is added to the tube.   

The DNA is extracted using a simple freeze-thaw method.  The tubes are 

submerged into liquid nitrogen for 2 minutes.  Upon removal, they are immediately 

placed into a water bath at 95ºC for 2 minutes.  This freeze-thaw process is repeated for 

four more cycles.  After the final cycle, the sample is placed in a microcentrifuge and 

spun at 10,000g for 10 minutes to separate the beads and Chelex 100 resin from the 

supernatant containing the DNA.  The sample lysate is now ready for PCR testing and is 

stored in a -20ºC freezer until real-time PCR is performed. 

Positive and Negative Controls 

Positive and negative controls are used to assure accuracy in the PCR testing.  

Viable Cryptosporidium parvum oocysts in 1X PBS were obtained from Waterborne Inc. 

(New Orleans, LA) with a guaranteed number of viable oocysts at 1 x 106 per 4ml.  A 
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volume of 500µl is removed from the vial and placed in a screw top microfuge tube 

marked positive.  An additional 500µl is removed from the vial, boiled for one minute in 

order to render the Cryptosporidium oocyst nonviable and is placed in a screw capped 

microfuge tube marked negative.  Both tubes undergo the same freeze thaw extraction 

method used on the samples. 

Standardization of PCR Assay 

 The PCR assay that was developed for this study was based on methods used by 

LeChevallier et al. for the detection of viable Cryptosporidium and Fontaine et al. for 

IMS detection of Cryptosporidium parvum.  The methods were combined to allow for 

testing of viable oocysts in environmental water samples. 

 Primers and probes specific for Cryptosporidium parvum hsp70 DNA were 

obtained from Operon (Huntsville, AL).  Primer and probe sequences to be used are as 

follows:  

forward primer: 5' TCCTCTGCCGTACAGGATCTCTTA 3';  

reverse primer: 5' TGCTGCTCTTACCAGTACTCTTATCA 3';  

TaqMan probe: 5' 6-carboxyfluorescein 

TGTTGCTCCATTATCACTCGGTTTAGA 6-

carboxytetramethylrhodamine 3'.   

Based on experimental results the optimal concentration for the primers and probe in this 

study are 100µM and 25µM respectively and are subsequently used to test all collected 

samples.  
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 Real-Time PCR Protocol 

 Real-time PCR is performed with the Applied Biosystems (ABI) 7500 Fast Real-

Time PCR System (Applied Biosystems, CA) and TaqMan One Step RT-PCR Master 

Mix Kit (Applied Biosystems, Cat. #4309169).  A template is created for calculating the 

quantities of each master mix ingredient per sample being tested; an example is seen in 

Figure 8.  For each sample to be assayed, a master mixture is made containing: 

Dnase/Rnase free water, 6.35µl; TaqMan Universal 2X PE Master Mix, 12.5µl; forward 

primer, 0.25µl; reverse primer, 0.25µl; probe 0.15µl; enzyme, 0.50µl.  These ingredients 

are combined in a SafeLock 1.5 microfuge tube (Eppendorf, Cat. #0540334B), vortexed, 

and briefly pulsed to remove any drops from the lid.   

 Samples are tested on a MicroAmp Fast Optical 96 well reaction plate (Applied 

Biosystems, Cat. #4346906) along with positive and negative controls, a positive control 

dilution series for quantification and spiked samples to determine if the is any inhibition 

of the PCR run.  The template sheet also illustrates the well location of each sample, 

spiked samples, controls, and dilution series (Figure 8).  Each plate is loaded with 15µl of 

master mix per well.  A volume of 10µl of DNA template from the extracted sample is 

added to the appropriate well creating a total reaction volume of 25µl (Figure 9).  The 

mixture is mixed by pipetting up and down carefully so as to not create bubbles or 

aerosols.  Spiked samples are loaded with 15µl of master mix, 8µl of sample and 2µl of a 

known positive control.  A well is also loaded with the same volumes of master mix, 

sterile water and positive control for comparison against spiked samples.  An optical 
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adhesive cover (Applied Biosystems, Cat. #4311971) is placed on the plate to seal the 

wells.   

 The sample plate is loaded in the ABI 7500 (Figure 10).  The detectors, FAM and 

TAMRA, are selected and applied to the entire plate.  The optimum cycling times are 

programmed.  These include an initial denaturing step of 95ºC for 10 minutes and an 

amplification step of 50 cycles of 95ºC for 30 seconds followed by 60ºC for 1 minute.  

The sample volume is set to 25µl and a run mode of 9600 emulation with detection 

occurring at the 60ºC stage.  The run takes approximately 3 hours to complete.   

 TaqMan Analysis 

Once the run is completed, the manual Ct and manual baseline settings are 

selected.  Start and end cycles are set to 13 and 25 respectively, based on experimental 

results.  The threshold is moved to the mid point of the exponential portion of the curves 

(Figure 11).  The data is analyzed and cycle threshold (Ct) values are displayed following 

the instrument instructions.  The Ct values displayed for each sample allow for 

enumeration and determination of run validity (Figure 12). 

 Enumeration and Inhibition 

 Based on the Ct values for the positive and negative controls one can assess if the 

run is valid.  Positive controls should have a Ct value of less than 45 and the negative 

control should be listed as undetected.  The Ct value gives a reference value for the 

enumeration of the amount of viable Cryptosporidium in the sample.  For example, if a 

known number of 250 oocysts are placed in the positive control well, the Ct values of 
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each sample can be compared to the Ct of the positive control, estimating the number of 

oocysts in each sample.  

 Some field samples may inhibit the PCR reaction.  In order to account for this, the 

spiked samples are examined.  The Ct value for the well containing the water spike (8µl 

water and 2µl positive control) is compared to the Ct value of each spiked sample.   If the 

Ct value is less than two standard deviations from the spiked control Ct, the sample is not 

considered to be inhibitory.  Ct values on spiked samples that are 2 to 4 standard 

deviations greater than the control spike are reported with minor inhibition.  Samples that 

are 4 to 6 standard deviations above the control are reported with major inhibition.  

Samples 6 or more standard deviations above the control and Ct’s listed as undetected are 

reported with major or complete inhibition, respectively.    
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Figure 1 Iddex elution device used in EPA Method 1623 for the elution of 
Cryptosporidium oocysts and Giardia cysts 
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Figure 2 Flow chart of sample processing and time requirements for processing 8 
samples using Method 1623 vs. real-time PCR 
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Figure 3 Immunomagnetic separation procedure: Dynal rotation instrument with 
flat sided tubes mounted 
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Figure 4 Immunomagnetic separation procedure: Dynal flat sided tubes in 
magnetic holder for the removal of the supernatant   
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Figure 5 Immunomagnetic separation procedure: Washed beads are added to 
microfuge tubes in a magnetic holder for additional washes 
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Figure 6 Cryptosporidium producing apple-green fluorescence with IFA (obtained 
from www.griffin.uga.edu)  
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Figure 7 Cryptosporidium producing bright blue fluorescence with DAPI staining 
(obtained from www.griffin.uga.edu)  
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Figure 8 TaqMan template for master mix calculations and well placement of 
samples, spikes, controls and dilution series 
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Figure 9 Real-time PCR procedure: Loading of sample into 96-well MicroAmp 
plate for analysis 
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Figure 10 Real-time PCR procedure: MicroAmp 96-well plate loaded on the ABI   
7500 
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Figure 11 TaqMan analysis: Placement of the threshold in the center of the 
exponential phase of the curve for determination of Ct values 
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Figure 12 TaqMan analysis: Displayed Ct values after analysis of PCR results 
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Results 

Real-Time PCR Standardization 

 A required minimum sample size of 32 was determined by use of the Cameron 

and Baldock sample size calculator.  Due to the unpredictable schedule of sample 

submission by water and waste water utilities, every sample received between September 

and December 2006 was used in this study instead of a random sampling. This resulted in 

a final sample size of 40.  All field samples were processed and tested for viable 

Cryptosporidium parvum oocysts using the method developed for this study. 

Positive and negative controls were tested against various primer and probe 

concentrations ranging from 30 to 300µM for primers and 10 to 200µM for probes.  

Using the 3 primer and probe concentrations (60/25, 30/10, 100/25) that accurately 

detected positive and negative controls, multiple dilution series of positive controls were 

assessed to determine the best concentrations to be used in the real-time PCR protocol.  

This was determined by finding the concentrations of primers and probes that resulted in 

a correlation coefficient closest to one to illustrate perfect unity.  Based on this data, a 

concentration of 100µM for the primers and 25µM for the probe was selected for use in 

this study (Figure 13). 

Three ratios of master mix to DNA template were tested to determine the best 

ratio to use for the assay.  The first test utilized a master mix volume of 20µl with 5µl of 

template.  The second used a 10µl master mix volume and a 15µl template volume.  



 39

Amplification curves produced from these two tests were jagged and did not have a 

distinctive exponential phase.  The third mixture tested included 15µl of master mix and 

10µl of DNA template.  This run generated amplification curves that were smooth with a 

distinctive exponential phase, indicating the 15:10 ratio of master mix and DNA template 

to be most suitable for use in this PCR protocol.  

Initially, 45 cycles of DNA amplification were used in the PCR protocol.  Results 

from this first run produced nicely shaped curves but the curves did not complete the 

exponential phase prior to the run termination.  Therefore, the real-time PCR runs were 

assessed at 50 and 55 cycles.  The 50 cycle run resulted in smooth and clearly defined 

exponential curves at 50 cycles, while the 55 cycle run produced results similar to those 

of the 45 cycle trial.  Once cycling times were determined, the linear graph of the dilution 

series was examined to find the cycle number at which all fluorescent curves were at zero 

and converge.  This cycle was identified as 13, and the start cycle was set to this value 

(Figure 14).  Initial amplification occurred at 30 cycles.  The end cycle which determines 

the end of the background noise, was set to 5 cycles before this point, or 25 (Figure 15).  

Sample Classification and Determination of Inhibition 

 Water samples were categorized into 4 groups based on the type of water noted on 

the submission paperwork.  Of the 40 samples collected, 21 were reclaimed water, 10 

were raw (ground or surface) water, 5 were effluent, and 4 were potable water samples.  

These samples were analyzed using real-time PCR and further classified. 

 Real-time PCR assays utilizing positive control dilution series were analyzed and 

a standard deviation from the mean of 0.699 was calculated.  The inhibition of PCR by 
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the sample matrix was determined in increments of 2 standard deviations.  Ct values less 

than two standard deviations above the spiked control Ct were reported as having no 

inhibition.  Ct values 2 to 4 standard deviations above the spiked control were reported 

with minor inhibition.  Samples 6 or more standard deviations from the control and Ct’s 

listed as undetected were reported with major and complete inhibition, respectively.  

Inhibition was detected in all water types in varying degrees except in the potable water 

samples (Figure 16).  Effluent water samples illustrated the highest degree of inhibition at 

80%, with 20% of the samples showing minor inhibition and 60% displaying complete 

inhibition (Figure 17).  Similar results were observed in the raw water samples (70%); 

complete inhibition was observed in 60% of the samples and 10% produced minor 

inhibition (Figure 18).  Reclaimed water samples produced an overall inhibition of 52%, 

where 28% of the samples produced complete inhibition, 5% produced major inhibition, 

and 19% showed minor inhibition (Figure 19).  Samples tested from potable water 

sources were the only samples that produced no inhibition.   

Statistical Analysis of Assay Results 

 A statistical analysis was performed on the results obtained from each real-time 

PCR on field samples, with triplicate runs used to account for variability.  Using two-by-

two tables comparing real-time PCR and DAPI results from the split IMS pellet, the 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) of this PCR assay were determined.  The real-time PCR assay had a specificity of 

100% and a sensitivity of 56%, a PPV of 100% and a NPV of 73% (Table 1). 
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In addition to the aforementioned tests, statistical tests which study equivalency 

and measure the association between variables with dichotomous outcomes were 

performed on the data obtained from this project.  Additional tests included the Kappa 

measure of agreement, Pearson’s Correlation, and Youden’s J.  These were performed 

using diagnostic effectiveness software (Simple Interactive Statistical Analysis, 2007).   

The Kappa measure of agreement determines the degree of agreement between 

compared tests.  A value of zero is produced if there is no agreement between tests and a 

value of one results if the tests are in perfect agreement (i.e., they correctly predict the 

outcome).  Values that fall between zero and one are classified by degrees of agreement 

(Szklo & Nieto, 2000).  The Kappa value for this test was determined to be 0.59, 

indicating a substantial agreement between DAPI and real-time PCR.   

Pearson’s correlation indicates the amount of correlation between the expected Ct, 

based on percent DAPI positive oocysts, and mean Ct values.  A value close to one 

indicates a good linear correlation between the values whereas values of zero indicate 

there is no correlation between the two values.  This assay produced a Pearson’s 

Correlation value of 0.64, indicating a positive correlation between the two tests. 

The final statistical test performed on the data set was Youden’s J, which 

determines if the results are in agreement or produced solely be chance.  A value of one 

indicates the tests are in perfect agreement.  A value of zero indicates the results of the 

test occurred due to chance alone (Szklo & Nieto, 2000).  The real-time PCR assay had a 

Youden’s J of 0.56 (Table 2). 
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Due to the high level of inhibition, a statistical analysis was repeated on all 

samples that did not produce inhibition to determine the overall performance of the real-

time PCR assay in the absence of inhibition.  The samples that produced inhibition were 

removed from the data set and counted as failed runs.  The additional statistical analysis 

performed on the revised data set increased the sensitivity of the test to 89%.  It also 

resulted in an increase in the NPV and Pearson’s correlation to 90% and 0.89, 

respectively.  The Kappa value also increased to 0.89, showing a better correlation 

between the two testing methods (Tables 3 & 4).
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Figure 13 Comparison of correlation coefficients for positive control dilution 
series vs. Ct values for determination of optimum primer and probe 
concentrations 
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Figure 14 Screen capture illustrating the linear plot of fluorescence with all 
samples converging at zero for determination of the start cycle setting 
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Figure 15 Screen capture illustrating the cycle at which amplification begins for 
determination of the end cycle setting 
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Figure 16 Percentage of samples inhibiting the real-time PCR process by matrix 
type 
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Figure 17 Percentage of effluent water samples inhibiting the real-time PCR 
process by degrees of inhibition   
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Figure 18 Percentage of raw water samples inhibiting the real-time PCR process 
by degrees of inhibition   
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Figure 19 Percentage of reclaimed water samples inhibiting the real-time PCR 
process by degrees of inhibition   
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Table 1 Comparison of DAPI and Real-time PCR results for field sample data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DAPI Stain Results Real-time 
PCR 

DAPI + DAPI - Totals 

PCR + 9 0 
 
9 
 

PCR - 9 22 
 

31 
 

Totals 18 22 

 
 

40 
 
 

 
Sensitivity 

56% 
Specificity 

100% 
PPV 100% 

  NPV 73% 
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  Table 2 Correlation analysis of field sample data set comparing real-time PCR 
vs. DAPI 

 
 
 

Correlation Statistical Analyses 

Assay Pearson’s Youden’s J Kappa 

PCR 0.64 
p=0.0000 0.56 0.59 
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Table 3 Comparison of DAPI and Real-time PCR results for the adjusted field 
sample data 

 
 
 

DAPI Stain Results Real-time 
PCR 

DAPI + DAPI - Totals 

PCR + 8 0 
 
8 
 

PCR - 1 9 
 

10 
 

Totals 9 9 

 
 

18 
 
 

 
Sensitivity 

89% 
Specificity 

100% 
PPV 100% 

  NPV 90% 
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  Table 4 Correlation analysis of adjusted field sample data set comparing real-
time PCR vs. DAPI 

 
 
 

 
 

 
 

Correlation Statistical Analyses 

Assay Pearson’s Youden’s J Kappa 

PCR 0.89 
p=0.0001 0.89 0.89 



 54

 

Discussion 

 This study describes the development of a real-time PCR protocol for the 

detection of Cryptosporidium parvum in environmental water samples.  Due to C. 

parvum’s low infective dose and its ability to evade conventional water treatment, it is 

important to devise an assay that has the ability to reliably detect viable oocysts in a 

variety of water types.  Testing of municipal water systems was established by the EPA 

to ensure the safety of the public, and Method 1623 has been successful in the detection 

of Cryptosporidium and Giardia in environmental water supplies.  However, the method 

is very labor intensive and tedious to perform.  Also, Method 1623 does not have the 

ability to distinguish between different species of Cryptosporidium or Giardia, and it 

does not have the ability to give an accurate estimate of viability.  

 A real-time PCR assay for the detection of C. parvum would be beneficial to 

facilities that regularly perform water testing.  Real-time PCR has the ability to 

dramatically decrease the time required to obtain and report results (Figure 2).  This type 

of assay has the ability to narrow the range of species of Cryptosporidium detected to C. 

parvum specifically.  Therefore, it will only detect those species that are of human 

concern.  It also has the ability to accurately estimate oocysts viability due to the use of 

the hsp70 DNA as a target, since hsp70 quickly degrades once the oocyst become 

nonviable. 

 Real-time PCR was shown to accurately detect C. parvum oocysts in cell cultures 

in a study by Fontaine et al. (2003).  It has also been demonstrated by LeChevallier et al. 
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that viable C. parvum oocysts are detectable with high specificity in samples when using 

hsp70 gene as a target (2003).  These two methods brought the option of real-time PCR 

for the detection of viable C. parvum oocysts to the forefront.  This study built upon the 

results of these two studies to produce a protocol for a real-time PCR assay that detected 

viable C. parvum in environmental water samples. 

 The testing of various primer and probe concentrations yielded a final 

concentration of 100µM for the primers and 25µM for the probe used in this assay.  

These concentrations produced a correlation coefficient of 0.9997 illustrating an almost 

perfect relationship between the number of viable oocysts and the Ct values.  As the 

number of oocysts increased in the sample the Ct values accurately and predictably 

decreased linearly. 

 The assay was further evaluated to determine the optimum master mix to DNA 

template ratio.  The amplification plots for each ratio were compared and a 15:10 (master 

mix: template) ratio was determined to be best suited for this assay.  Whereas other 

concentrations produced jagged curves and minor exponential phases that were difficult 

to decipher, the amplification plot for this mixture was smooth and free of excess 

background noise.  It also produced a clear exponential phase with a distinct plateau, 

allowing for data analysis. 

 Amplification plots were also assessed to determine the number of cycles that 

should be used in each PCR run.  Initially 45 cycles were used, resulting in plots that had 

a very small exponential phase and never reached a plateau.  The small exponential phase 

did not allow for accurate analysis of the run, due to the difficulty of aligning the 
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threshold in the center of the phase.  The number of cycles were reset to 50 resulting in a 

much larger exponential phase and plateau in the final cycles.  This adjusted the 

placement of the threshold and allowed for the accurate reporting of Ct values. 

 The assay showed great potential for detecting viable oocysts with the successful 

run of multiple dilution series.  The results of these assays accurately detected the 

presence of viable oocysts and did not report oocysts that were rendered nonviable.  

Assays of dilution series of viable oocysts indicated the method was able to detect low 

numbers of oocysts ranging from 1 to 4, making real-time PCR a useful tool for testing 

potable water samples, as these are required to be oocyst free.    

 The data generated by the 2x2 tables was used to determine the specificity, 

sensitivity, PPV and NPV of the PCR assay.  The assay had a specificity of 100% and a 

NPV of 73% with field samples.  This was an indication that the assay was successful at 

correctly identifying negative field samples and had a low tendency to produce false 

negative results.  In other words, samples reported as negative were true negatives and 

did not contain viable C. parvum oocysts.  A sensitivity of 56% and PPV of 100% were 

determined for the PCR assay.  Though the assay was not capable of correctly identifying 

all samples positive for viable oocysts, the samples that were reported were true positive 

samples containing viable oocysts.   

 Correlation studies were also performed comparing the real-time PCR assay to the 

DAPI stained portion of the pellet.  These tests included the Kappa measure of 

agreement, Youden’s J, and Pearson’s correlation.  The Kappa and Youden’s J values of 

0.59 and 0.56, respectively, indicate there is agreement between the two testing methods 
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and the results are not due to chance alone.  A value of 0.64 was obtained for the 

Pearson’s correlation.  This indicates the assay does show moderate correlation with the 

DAPI results.  Though there is agreement between the testing methods and a moderate 

correlation in the results, the assay didn’t perform well enough to be used on all water 

matrices. 

 The statistical analysis may have been influenced by the high number of samples 

that inhibited the real-time PCR runs.  A high percentage (80%) of waste water effluent 

samples displayed inhibition to PCR.  This caused many true positive samples to report 

as negative because the runs failed.  This was also observed with the raw water and 

reclaimed water samples, having 70% and 52% inhibition, respectively.  The levels of 

inhibition produced an interesting correlation to current water treatment.  Raw water 

showed a level of inhibition of 70%, suggesting the inhibition was not caused by the 

treatment but by a impurity already in the water supply.  Effluent may show a high level 

of inhibition due to the high level of chemical and biological agents it contains.  Since 

effluent may be further treated and purified to produce reclaimed water, it is logical for 

reclaimed water to have a lower inhibition that effluent.  However, reclaimed water 

treatment is not as rigorous as potable water treatment, since the water is not used for 

human consumption.  This may give insight as to why reclaimed water produced an 

inhibition level of 52%.  Since potable water has to endure a more rigorous treatment 

procedure, the contaminants that were in the original raw water sample have been 

removed producing an inhibition of 0%. 
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 Due to the high level of inhibition, it was necessary to determine the true value of 

the PCR assay in the absence of inhibition.  Samples that produced inhibition were 

removed from the original data set, and the runs were listed as failed.  The total number 

of successful PCR runs was 18. The data was then analyzed again using only values from 

the runs that produced a PCR result.  This produced a noticeable difference in the 

performance ratings of the assay.  The specificity and PPV were unaffected and remained 

at 100%, however, the sensitivity increased to 89% and the NPV to 90% indicating a 

lower probability of reporting false negative results.  The Pearson’s correlation and 

Kappa values both increased to 0.89 indicating the results were not due to chance and 

there is a more substantial correlation between the two tests.  This analysis shows the 

inhibition of the assay by matrix factors not removed in sample processing lead to the 

low proficiency of identifying positive samples and was not caused by a flaw in the PCR 

assay design. 

 Focusing in particular on the necessary materials and the “hands-on” time 

required for each method, that is, the amount of time a sample must be handled in some 

manner by the person executing the protocol, a cost comparison of Method 1623 to real-

time PCR was completed.  There was a marked decrease in the cost of performing real-

time PCR on 8 samples as opposed to completing Method 1623.  The cost associated with 

completion of Method 1623 on 8 samples is approximately $750.00.  The EasySeed, used 

for positive control, and EasyStain, the fluorescent antibody stain, used in Method 1623 

add substantially to the cost of Method 1623.  In addition, on average a hands-on time of 
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9 hours is needed to complete the disassociation step, staining, to examine the slides and 

report the results.   

In contrast, the real-time PCR assay would cost approximately $145.00 to test the 

same 8 samples.  The major cost associated with this assay is attributed to the cost of the 

96 well plates and covers; however it is offset by minimal hands-on labor of only 2 hours.  

The result is that the real-time PCR assay is much more cost effective than Method 1623 

(Table 5).   

These results further show the potential for a real-time PCR assay in the absence 

of inhibition.  The varying levels of inhibition may give some insight into the underlying 

cause, however further research should be performed to determine the inhibiting factors 

and methods for their elimination before performing the real-time PCR assay.  The assay 

works well with potable water samples, producing no inhibition and accurate detection of 

viable C. parvum oocysts.  In addition, the ability to test multiple samples in a single run 

paired with lower total cost make the assay more efficient to perform.  

Another important consideration in implementing a new assay is the amount of 

time needed to execute the test and report the results.  The current Method 1623 takes 

approximately 9 hours to test 8 samples, from disassociation of the beads to reading the 

slides and reporting the results.  The hands-on time required to prepare 8 samples for 

real-time PCR is 2 hours.  Since the PCR run is completed in 3 hours, a total of 5 hours is 

needed to complete the assay.  This cuts the time needed for reporting results almost in 

half.  Another benefit of the PCR assay is its ability to run multiple samples without 
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drastically increasing the turn around time.  Nevertheless, for both methods, processing 

of the water filter through IMS may require 4 to 6 hours to perform. 

 

Conclusion 

The monitoring of environmental water sources is important in the 

implementation of control measures to prevent outbreaks and protect the population from 

possible infection.  EPA Method 1623 is a practical and effective method for the 

detection of Cryptosporidium in water samples; however it is costly to perform and 

requires substantial time to report results.  It also does not have the ability to distinguish 

between various species of Cryptosporidium or give an accurate determination of 

viability.   

In summary, the objectives of this study were achieved.  The real-time PCR assay 

developed was validated with the use of positive and negative controls.  The results of 

this assay are comparable to the DAPI results obtained using EPA Method 1623.  The 

study determined that this real-time PCR assay may be capable of providing detection of 

viable C. parvum oocysts in potable water samples in a more cost effective manner than 

Method 1623.  The real-time PCR assay developed in this study has the potential to be 

used on other types of water samples once the problem of inhibition is solved.   

The rapid detection of viable C. parvum in environmental water samples by real-

time PCR would allow for a more accurate determination of the risk to public health.  It 

would allow proper authorities to issue boil water warnings and potentially decrease the 

risk of infection.  This method may potentially be used to assess treatment methods for 
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use in reclaimed water.  The increased use of reclaimed water in residential and 

recreational areas raises the possible risk of individuals to become infected with C. 

parvum.  The use of real-time PCR may more accurately assess this risk reclaimed water 

imposes on the public and prevent infection.  This real-time PCR assay has the potential 

to allow for faster detection of viable C. parvum in environmental water samples which 

may aid in the prevention and control of future infections. 

 



 62

Table 5 Cost comparison of the continuation of Method 1623 vs. the experimental 
real-time PCR assay for 8 sample 
 
 

 
Continuation of Method 1623 Experimental Real-time PCR 

Item Cost Item Cost 
1.5 Microfuge Tubes $0.50 1.5 SafeLock Tubes $2.80 
Cover slips $2.00 1.5 Microfuge Tubes $0.50 
DAPI $0.20 0.6 Microfuge Tubes $0.60 
Easy Seed $440.00 96 Well MicroAmp Plate $30.00 
EasyStain $74.40 Chelex 100 Resin $0.40 
Well Slides $8.00 Liquid Nitrogen $2.00 

   Optical covers $14.00 
    One Step PCR Master Mix $41.60 
    Primers $0.60 

    
Probe 
C. parvum oocysts 

$2.00 
$0.80 

Labor Hours @ $25.00/Hr $225.00 Labor Hours @ $25.00/Hr $50.00 
        
        
        
        
        

Total: $750.10 Total: $145.30
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