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ABSTRACT
Piecewise affine systems constitute a popular framework for the approximation of non-linear systems and
the modelling of hybrid systems. This paper addresses the recursive subsystem estimation in continuous-
time piecewise affine systems. Parameter identifiers are extended from continuous-time state-space mod-
els to piecewise linear and piecewise affine systems. The convergence rate of the presented identifiers is
improved further using concurrent learning, whichmakes concurrent use of current and recordedmeasure-
ments. In concurrent learning, assumptions on persistence of excitation are replaced by the less restrictive
linear independence of the recorded data. The introduction ofmemory, however, reduces the tracking abil-
ity of concurrent learning because errors in the recorded measurements prevent convergence to the true
parameters. In order to overcome this limitation, an algorithm is proposed to detect and remove erroneous
measurements at run-time and thereby restore the tracking ability. Detailed examples are included to vali-
date the proposed methods numerically.

1. Introduction
Piecewise affine (PWA) systems constitute a powerful tool to
describe complex dynamical systems. They consist of multiple
linear subsystems, which define the dynamics of the continu-
ous states. A discrete value indicates the active subsystem. For
switched affine systems, this index is an exogenous input signal.
For PWA systems, the index is a function of the state and input,
and is obtained by partitioning the state-input space of the sys-
tem. PWA systems have gained popularity due to their univer-
sal approximation capabilities for non-linear systems (Azuma,
Imura, & Sugie, 2010) and their equivalence to certain hybrid
systems (Heemels, Schutter, & Bemporad, 2001).

Identifying PWA systems requires estimating both the lin-
ear subsystems as well as the partitions of the state space. This
is particularly challenging as available measurements of the
state and control input usually do not reveal which subsys-
tem and region they belong to. This is similar to the iden-
tification of linear parameter-varying (LPV) systems where
the scheduling variable may be unknown (Bamieh & Giarré,
2002; Tóth, 2010; Verdult & Verhaegen, 2002). An overview
of identification algorithms for PWA systems is given by Pao-
letti, Juloski, Ferrari-Trecate, and Vidal (2007). The later sur-
vey by Garulli, Paoletti, and Vicino (2012) provides an exten-
sive summary of more recent approaches. The identified mod-
els are mostly discrete-time models in input–output form, i.e.
switched autoregressive exogenous (SARX) models or piece-
wise ARX (PWARX) models. However, continuous-time mod-
els are more intuitive. Furthermore, as pointed out by Garnier
(2015), direct identification of continuous-time models based
on sampled data can outperform the discrete-time models
in case of rapidly or irregularly sampled data. Algorithms to
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identify PWA systems in state-space form are less common,
due to increased complexity in case the state is not accessible.
Exemplary algorithms to deal with discrete-time PWA state-
space systems are proposed in Pekpe and Lecœuche (2008),
Blackmore, Gil, Seung, andWilliams (2007), Bako,Mercère, and
Lecoeuche (2009), Bako, Mercère, Vidal, and Lecoeuche (2009),
Gil and Williams (2009), Chen, Bako, and Lecoeuche (2011),
and Bako, van Luong, Lauer, and Bloch (2013). Identifying state-
space systems is considerably more challenging than SARX and
PWARX as the partition of the system is based on the state
that might not even be measurable. Nevertheless, many control
strategies rely on state-space models, which is the first motiva-
tion to identify PWA state-space systems. Furthermore, research
in realisation theory shows that PWA models in state-space
form can realise a greater class of systems than input–output
models, i.e. there exist PWA state-space models that cannot be
transformed into a corresponding input–outputmodel. Also the
conversion from PWA state-space models to PWARX models
can result in a tremendous increase of modes and parameters
(Garulli et al., 2012). Realisation theory also plays a crucial role
in determining, whether a switched system is identifiable or
not (Petreczky, 2011; Petreczky & van Schuppen, 2010, 2011).
It was shown by Petreczky, Bako, and van Schuppen (2010) that
minimality of a realisation is necessary for identifiability. Inter-
estingly, minimality or identifiability of a linear switched sys-
tem does not imply minimality or identifiability of the linear
subsystems.

Most state-of-the-art identification algorithms for PWA sys-
tems fall into one of the four major categories: optimisation-
based methods, algebraic methods, clustering-based methods
or recursive methods. The identification of PWA systems is
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generally a non-convex combinatorial optimisation problem.
The optimisation-based methods seek to solve this problem
through a relaxation of the problem (e.g. Bako, 2014; Lauer,
Bloch, & Vidal, 2011) or by finding alternative formulations
(e.g. Maruta, Sugie, & Kim, 2011). The algebraic methods orig-
inate from (Vidal, Soatto, Yi, & Sastry, 2003) and share the
idea that multiple ARX models can be identified (independent
of the switching sequence) as a single, lifted ARX model. The
individual ARX models are retrieved from the lifted model by
differentiation. In clustering-based methods, clustering tech-
niques are applied at different stages of the identification process
(e.g. Ferrari-Trecate, Muselli, Liberati, & Morari, 2003; Lopes,
Borges, & Ishihara, 2013).

Recursive methods, like Bako, Boukharouba, Duviella, and
Lecoeuche (2011), Bako et al. (2009), Chen et al. (2011), Vidal
(2008), Feiler andNarendra (2008), andWang and Chen (2011),
solve the identification problem online and therefore allow
tracking of parameter changes in the system. Also, recursive
algorithms handle the available data sequentially and are there-
fore computationally more efficient. Since the aforementioned
properties are desirable, the focus of this article is on recursive
estimation algorithms. Some recursive algorithms are modifi-
cations of existing batch algorithms: Vidal (2008) for instance
extends the original algebraic method in Vidal et al. (2003) to
recursively identify SARX systems. Another popular approach
is to reason online about the active/best performing model and
update the corresponding parameters (Bako et al., 2011; Feiler &
Narendra, 2006; Feiler & Narendra, 2008; Wang & Chen, 2011).
Proof of convergence remains an open issue for this class of algo-
rithms. Overall, a provably converging, recursive identification
algorithm for PWA systems in state-space form is still missing.

The adaptive control literature on the other hand has prov-
ably converging algorithms for the control of uncertain PWA
systems. The method presented by Di Bernardo, Montanaro,
and Santini (2009) allows to identify bimodal piecewise lin-
ear (PWL) state-space systems based on the gain evolution of
the adaptive controller in Di Bernardo, Montanaro, and San-
tini (2008). The main drawback of this approach is the limita-
tion to two subsystems. The works by Di Bernardo et al. (2009)
and Di Bernardo et al. (2008) show that recursive identification
and adaptive control are closely related. In Sang and Tao (2012),
exponential tracking is achieved through parameter projection
by imposing slow switching and persistence of excitation (PE)
on the system.More recently, Di Bernardo,Montanaro, and San-
tini (2013) proposed a new adaptive control law to asymptot-
ically track the states of a multi-modal PWA reference model.
Note that the above adaptive control algorithms for PWA sys-
tems share the assumption of known switching hyperplanes. In
previous work by Kersting and Buss (2014a, 2014c), adaptive
parameter identifiers were extended from linear systems to PWL
and PWA systems under the same assumption. Afterwards, they
were enhanced in Kersting and Buss (2014b) by the use of con-
current learning.

Chowdhary et al. introduced the concept of concurrent learn-
ing to adaptive control in order to circumvent the limita-
tions in adaptive systems related to PE (see Chowdhary, 2010;
Chowdhary & Johnson, 2010; Chowdhary, Mühlegg, & John-
son, 2014; Chowdhary, Yucelen, Mühlegg, & Johnson, 2013).
While traditional update laws in adaptive control rely on current

measurements, the central idea in concurrent learning is to use
current measurements concurrently with past measurements.
Closely related to concurrent learning is the concept of expe-
rience replay, which is applied in reinforcement learning with
actor–critic structure (Modares, Lewis, &Naghibi-Sistani, 2014;
Wawrzyński, 2009). By replaying recorded past experiences con-
currently with current data, convergence rates are improved and
assumptions on the excitation of the system are relaxed. The
concept of concurrent learning has been applied successfully in
various fields (Chowdhary, Mühlegg, How, & Holzapfel, 2013;
Kamalapurkar, Walters, & Dixon, 2016; Klotz, Kamalapurkar,
& Dixon, 2014). However, the most promising field for con-
current learning is switched systems, where the use of memory
enables a continuous adaptation of active and inactive subsys-
tems (De La Torre, Chowdhary, & Johnson, 2013; Kersting &
Buss, 2014b). Despite the growing interest in concurrent learn-
ing, some of its properties still lack detailed analysis. Especially
the effect of erroneous data in the history stacks has received lit-
tle attention. It is noted by Chowdhary et al. (2013) that tracking
errors remain uniformly ultimately bounded and that adaptive
weights converge to a compact ball around the ideal weights in
the presence of erroneous history stack data. Unfortunately, the
size of the compact ball is related to the errors in history stack
data. Hence, errors in the history stack limit guaranteed conver-
gence levels.

This paper provides the following contributions. First, we
revise the extension of parameter identifiers from linear to
PWL/PWA systems and improve the achievable convergence
rate using concurrent learning. In addition to previous, pre-
liminary works by Kersting and Buss (2014a, 2014b, 2014c),
we provide extended proofs and further insights. Specifically,
proving PE for affine systems, which violate the assumption of
sufficiently rich input signals, constitutes an enabling contribu-
tion for the presented algorithms. Second, we analyse the con-
vergence of concurrent-learning-based parameter identifiers in
more detail and propose algorithms to detect and remove erro-
neous history stack elements online. The extension of Kerst-
ing and Buss (2015) to PWA systems is particularly useful due
to erroneous stack elements introduced by switching. This not
only enables better estimation of the system parameters but also
restores the tracking ability of concurrent-learning-based algo-
rithms. Simulation studies illustrate the benefit of concurrent
learning and show the approximation of a non-linear hybrid sys-
tems.

The remainder of this paper is organised as follows. Section 2
defines parameter identifiers for PWA and PWL systems. The
concurrent-learning-based identification of PWA systems is
presented in Section 3. The management of history stack data,
especially the detection and removal of erroneous data, is subject
of Section 4. Section 5 validates the obtained results in numer-
ical simulations of general PWA systems as well as a non-linear
hybrid two-tank system. Section 6 concludes the paper.

2. Parameter identifiers for PWA systems
This section defines PWL and PWA systems and discusses
briefly how they naturally arise from the linearisation of a
non-linear system at multiple operating points. Afterwards,
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parameter identifiers are extended from linear systems to PWL
and PWA systems.

2.1 Definition of PWA systems
PWA systems in state-space form are switched systems of the
form

ẋ(t ) = Aσ (t )x(t ) + Bσ (t )u(t ) + fσ (t ), (1)

where x ∈ R
n, u ∈ R

p are the state and input vectors, respec-
tively. Let the input u be generated by a stabilising controller
such that x and u remain bounded, also for open-loop unstable
systems. Let the switched system (1) consist of N ∈ N subsys-
tems, where each subsystem i is characterised by a systemmatrix
Ai ∈ R

n×n, an input matrix Bi ∈ R
n×p and an affine input vector

fi ∈ R
n. The piecewise constant switching signal σ (t) � {1,… ,

N} indicates the currently active subsystem.
In PWA systems, σ is a function of the system state x and

its input u. The extended state-input space R
n+p is partitioned

into polyhedral regions�i. In order to form a complete partition
∪N
i=1�i = R

n+p, the regions do not overlap, i.e.�i��j = �,�i
� j. The value of the switching signal σ (x(t), u(t)) is given by
the index of the region that currently contains the state-input
vector:

σ (t ) = i if
[
x(t )
u(t )

]
∈ �i, i = 1, . . . ,N.

In order to obtain a well-posed identification problem, it
must be possible to excite all states in x for all subsystems. This
in turn poses restrictions on the allowed partitions �i. Hence,
throughout this article, we assume that all �i are such that they
allow sufficient excitation of the state x. For more details on the
well-posedness of identification problems for switched systems,
refer to Petreczky et al. (2010).

The challenge in identifying PWA systems originates from
the coupling between subsystem dynamics (Ai,Bi and fi) and the
polyhedral regions�i thatmight both be assumedunknown and
thus need to be identified. In Kersting and Buss (2014b) as well
as in the remainder of this paper, we consider the simplified case
in which the switching signal σ (t) is known. This constitutes on
the one hand a restrictive assumption for the identification of
PWA systems, as it generally reduces the identification of PWA
systems to the identification of N individual subsystems Ai, Bi
and fi. On the other hand, it is in line with adaptive control con-
cepts for PWA systems (Di Bernardo et al., 2008; Di Bernardo
et al., 2013; Sang & Tao, 2012). Also, this is acceptable for the
second objective of this paper, which is to provide insights into
concurrent learning and to extend its capabilities.

A PWAmodel (1) can be obtained by linearising a non-linear
system aroundmultiple operating points. Consider therefore the
non-linear system

ẋ(t ) = g (x(t ), u(t )) , (2)

where g is a non-linear vector function of dimension n. Note that
for the rest of this paper the time instance t is omitted as long as
it is clear from the context. Neglecting higher-order terms in the
linearisation of g around an operating point (x∗

i , u∗
i ), the affine

model is obtained as

ẋ = g(x∗
i , u

∗
i ) + Ai(x − x∗

i ) + Bi(u − u∗
i )

= Aix + Biu + g(x∗
i , u

∗
i ) − Aix∗

i − Biu∗
i

= Aix + Biu + fi, (3)

where Ai = ∂g(x,u)

∂x

∣∣
(x∗

i ,u
∗
i )
, Bi = ∂g(x,u)

∂u

∣∣
(x∗

i ,u
∗
i )

and fi =
g(x∗

i , u∗
i ) − Aix∗

i − Bix∗
i . Linearising around various oper-

ating points {(x∗
i , u∗

i )}i=1,...,N yields a PWA model. In this
PWA model, the state space is partitioned such that the linear
subsystem in each region is characterised by a minimal error
compared to the original non-linear system.

Assuming that (x∗
i , u∗

i ) are known equilibrium points and
considering only the deviations �xi = x − x∗

i and �ui = u −
u∗
i from these equilibrium points, the same considerations yield

a PWL model without the affine vectors fi:

ẋ = Ai�xi + Bi�ui.

Note however that working with PWLmodels requires the addi-
tional knowledge about the equilibrium points in order to com-
pute the deviations �xi and �ui. Therefore, PWA models are
more favourablewhen it comes to designing adaptive algorithms
as less knowledge about the system is required.

The actual partitions �i of a PWA model, approximating a
non-linear system, are often unknown in practice. In such cases,
one can define a sufficiently large number of fictitious partitions
in order to obtain a satisfactory approximation of the actual
switching behaviour. The assumption of a known switching sig-
nal σ is hence satisfied for such designer-chosen partitions.

With the introduced notation for PWA systems, the problem
of estimating the subsystem parameters of a PWA system online
is formulated as follows:
Problem 2.1: Assume that the identification problem is well-
posed. Given the partitions�i and hence also the switching sig-
nal σ (t), find update laws which are based on themeasured state
x and input u, and provably drive the dynamic estimates Âi(t ),
B̂i(t ) and f̂i(t ) to the true system parameters Ai, Bi and fi.

2.2 Parameter identifiers for PWA systems
The literature on adaptive systems offers identifiers to recur-
sively identify the parameters of linear state-space models (see
Ioannou & Sun, 1996, Chapter 4). Those identifiers extend to
switched affine systems in state-space form by carefully includ-
ing the switching signal σ . The update laws in parameter iden-
tifiers are based on prediction errors. Therefore, the state of the
currently active subsystem (σ (t) = i) is predicted with the state
observer:

˙̂xi = Amx̂i + (Âi − Am)x + B̂iu + f̂i, if σ = i, (4)

where the stable (Hurwitz) design matrix Am ∈ R
n×n ensures

boundedness of x̂i. Hence, there always exists a symmetric, pos-
itive definite P ∈ R

n×n satisfying

A�
mP + PAm = −Qe, (5)

with a positive definite matrix Qe ∈ R
n×n.
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x̂ix

x(t), x̂i(t)

t

σ(t) = iσ(t) = i σ(t) = i

σ(τ−) = i σ(τ+) = i

x̂i(τ+) = x(τ)

τ

Figure . Discrete reset of the state prediction for the ith subsystem upon deactivation of the ith subsystem dynamics, i.e. x̂i(τ
+) = x(τ ) as σ (τ−)= i and σ (τ+)� i.

Define the prediction error ei = x̂i − x, which provides infor-
mation about the fit of subsystem i. It is used to update the
parameter estimates of the active subsystem. For inactive sub-
systems ei is unrelated. The predicted state x̂i is thus reset and
kept equal to the true state x as long as the corresponding sub-
system is inactive:

x̂i = x, if σ �= i. (6)

Figure 1 shows the state prediction for the ith subsystemwith
continuous prediction (4) and state reset (6). This reset is the
crucial step in extending parameter identifiers to switched sys-
tems because it ensures that switching between different subsys-
tems does not destabilise the overall system.

Note that some preliminaries are needed for convergence
analysis. Therefore, Appendix A details a definition for PE as
well as two useful lemmas from the adaptive control literature
(Ioannou & Sun, 1996). It is well known that PE conditions in
adaptive systems can be derived from the spectral distribution
of input or reference signals. The following definition captures
such spectral properties.

Definition 2.1 (sufficiently rich):A signal u : R
+ → R is called

sufficiently rich of order 2n, if it consists of at least n distinct
frequencies (Ioannou & Sun, 1996, Def. 5.2.1).

The state of the art in parameter identifiers (see Ioannou &
Sun, 1996, Chapter 5) requires all input signals of a controllable
system to be sufficiently rich of order n + 1. In PWA systems,
however, the affine vectors fi are constant and therefore violate
this assumption. Hence, the following lemma is needed for the
extension to PWA systems as it ensures PE of the internal signal
vector [x�, u�, 1]�.

Lemma 2.1: Consider an affine subsystem (3) with controllable
pair (A, B) and invertible A. If the input signals in u are sufficiently
rich of order n + 1 with distinct frequencies, then the vector z =
[x�, u�, 1]� is PE.

The proof of Lemma 2.1 is given in Appendix A for improved
readability. Lemma 2.1 extends the state of the art in a sense that
violating the common assumption of sufficiently rich input sig-
nals can be compensated by restricting the system to invertible
system matrices. This insight enables the application of param-
eter identifiers for PWA systems.

Lemma 2.1 relates PE of each affine subsystem to the richness
of the inputs. For the considered class of PWA systems, however,

PE should also reflect how frequently each subsystem is visited
over time.Only if each subsystem is PE and visited in a persistent
manner, it is possible to estimate all system parameters. The first
formal but restrictive notion for PE in switched linear systems is
given by Petreczky and Bako (2011). In this paper, we require the
input signals to be sufficiently rich and such that they repeatedly
drive the system through all regions in order to ensure PE of the
PWA system.

Theorem 2.1: Consider the switched system (1) with control-
lable pairs (Ai, Bi) and Ai invertible. Let the state of the system be
predicted by Equations (4) and (6) for all subsystems. If the input
signals in u are sufficiently rich of order n+ 1with distinct frequen-
cies, and such that they cause repeated activation of all subsystems
obeying a certain dwell time T0, then the update laws

˙̂AC
i = −Γ1Peix�,

˙̂BC
i = −Γ2Peiu�,

˙̂f Ci = −Γ3Pei, (7)

with P from Equation (5) and scaling constants Γ1, Γ2, Γ3 ∈ R
+,

cause the estimates Âi, B̂i, f̂i to converge to the real systemmatri-
ces Ai, Bi, fi and cause the prediction errors ei = x̂i − x to converge
to zero.
Proof: The superscript C in Equation (7) indicates that the
update laws only depend on current measurements. This dis-
tinction is important for the later introduction of concurrent
learning but is irrelevant for the following proof. The superscript
C is thus neglected.

The proof is separated into two parts. In the first part, we
show stability of all estimates in the switched system. Multi-
ple Lyapunov functions guarantee stability even for arbitrary
fast switching. Note that we apply the same stability notation as
Liberzon (2003) throughout the paper, which at the same time
serves as an excellent introduction to switched systems. In the
second part, we prove convergence to the true parameters with
the help of PE. Convergence is achieved under a loose minimal
dwell time condition needed to ensure sufficient excitation of the
system.

Part I – Stability: In order to formulate a quadratic candidate
Lyapunov function for each subsystem in terms of the parame-
ter errors Ãi = Âi − Ai, B̃i = B̂i − Bi and f̃i = f̂i − fi, they are
combined in a single column vector

θ̃i =
[
vec(Ãi)

� vec(B̃i)
� f̃�

i

]�
∈ R

n(n+p+1), (8)
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where the vec-operator concatenates the columns of a matrix.
We make use of the Kronecker product � and introduce the
matrices

	 �

⎡
⎣Γ1Inn 0 0

0 Γ2Inp 0
0 0 Γ3In

⎤
⎦ , 
 �

⎡
⎣xu
1

⎤
⎦ ⊗ In, (9)

with identity matrices In, Inn and Inp of dimensions n × n,
nn× nn and np× np, respectively, which allow expressing most
equations in a more compact form, which in turn simplifies the
later analysis. The derivative of the prediction error for the active
subsystem in terms of θ̃i is given by

ėi = ˙̂xi − ẋ = Amei + Ãix + B̃iu + f̃i
= Amei + 
�θ̃i. (10)

Also, with Equations (8) and (9), the update laws (7) take the
form

˙̃
θi = ˙̂

θCi = −	
Pei. (11)

Consider the quadratic candidate Lyapunov function

Vi = [
e�i θ̃�

i
] [P 0

0 	−1

] [
ei
θ̃i

]
. (12)

Its time derivative along Equations (10) and (11) yields

V̇i = e�i A
�
mPei + e�i PAmei + θ̃�

i 
Pei + e�i P
�θ̃i

− e�i P
�
�	�	−1θ̃i − θ̃�

i 	−1	
Pei
= e�i (A�

mP + PAm)ei = −e�i Qeei, (13)

for σ = i. For the inactive subsystems, ei = 0 due to Equation
(6). Therefore, the Lyapunov function of the inactive subsystems
remains constant, i.e. V̇i = 0 for σ � i.

While Equation (13) shows stability in the sense of Lyapunov
for all subsystems individually, it does not imply stability of
the overall switched system. In order to prove stability for the
obtained hybrid system, we will see that the candidate Lyapunov
functions have to be Lyapunov-like functions along all possible
trajectories and switching sequences (Branicky, 1998; Liberzon,
2003). This requires the values of the Lyapunov functions at each
activation of the corresponding subsystem to form a decreasing
sequence.

A precise notation for the switching instances is required
in order to show that the candidate Lyapunov functions are
Lyapunov-like. Express the qth activation of sub-model i by τ in

i,q
(we have σ−(τ in

i,q) �= i and σ+(τ in
i,q) = i). Similarly, the instance

τ out
i,q refers to the qth exit from sub-model i (σ−(τ out

i,q ) = i and
σ+(τ out

i,q ) �= i). With this notation, the following requirement
arises for stability in the sense of Lyapunov for switched systems
(Branicky, 1998):

Vi(τ
in
i,q) ≥ Vi(τ

in
i,q+1), ∀q ≥ 1. (14)

Due to the negative semi-definiteness in Equation (13), it fol-
lows that

Vi(τ
in
i,q) ≥ Vi(τ

out
i,q ). (15)

Furthermore, the state reset associated with Equation (6) yields
ei(τ ) = 0 for the inactive periods τ ∈ (τ out

i,q , τ in
i,q+1]. With ei = 0,

adaptation pauses and the parameter errors remain constant, i.e.
θ̃i(τ

out
i,q ) = θ̃i(τ

in
i,q+1). It follows that

Vi(τ
out
i,q ) =

[
e�i Pei + θ̃�

i 	−1θ̃i

]
τ out
i,q

≥
[
θ̃�
i 	−1θ̃i

]
τ in
i,q+1

= Vi(τ
in
i,q+1),

which shows that Equation (14) is satisfied. In other words:
switching between different subsystems does not cause diver-
gence of the parameter estimates. It remains to be shown that
all errors converge to zero.

Part II – Convergence: The proof of convergence relies on
Lemma 2.1 and Lemma A.2 in Appendix A. In order to show
asymptotic convergence of the switched error system with mul-
tiple Lyapunov functions, the sequence in Equation (14) must
be shown to be strictly decreasing to zero. This will be achieved
by showing that the Lyapunov function derivative of the active
subsystem is actually negative definite under PE. A certain dwell
time is demanded to sufficiently excite each subsystem and
ensure that V̇i < 0,∀θ̃i �= 0 while σ = i. Therefore, let the dwell
time be equal to the constantT0 in the definition of PE (see Defi-
nitionA.1 inAppendixA). The shorter this dwell time, the lower
is the level of excitation and the slower do errors converge.

First, the error dynamics are rewritten in the form of
Lemma A.2 given in Appendix A:

[
ėi
˙̃
θi

]
=
[

Am 
�(t )
−	
(t )P 0

] [
ei
θ̃i

]
, (16)

with
 = z�In. Note that condition (A2) has been shown in the
previous stability proof in form of Equation (13), where P0 =
diag(P, 	−1). For convergence of e and θ̃ , Lemma A.2 addition-
ally requires the vector

z = [
x� u� 1

]� ∈ R
n+p+1

to be PE, which is ensured by Lemma 2.1 under the given
assumptions. Consequently with Lemma A.2, the equilibrium
ee = 0, θ̃e = 0 of Equation (16) is exponentially stable in the
large. Hence, the difference Vi(τ

in
i,q) −Vi(τ

in
i,q+1) is bounded

from above by a negative definite functionWi(ei(τ in
i,q), θ̃i(τ

in
i,q)).

As shown in Liberzon (2003, Theorem 3.1), this implies that
multiple Lyapunov functions can be used to reason asymptotic
stability of the switched system. In other words, the Lyapunov
function of the active subsystem is negative definite, which
implies that the sequence in Equation (14) is strictly decreasing
to zero. Including the assumption that each subsystem i is vis-
ited in a persistent manner, this means that all prediction errors
ei as well as all parameter errors θ̃i converge to zero, i.e. Âi → Ai,
B̂i → Bi and f̂i → fi,∀i as t → 	. �
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2.3 Parameter identifiers for PWL systems
Considering the simpler case of PWL systems (for which f = 0),
one notices that Theorem 2.1 holds with one assumption less,
i.e. the matrices Ai are not required to be invertible.

Theorem2.2: Consider a PWL systemwith controllable pairs (Ai,
Bi). Let the state of the system be predicted by Equation (4) with
f̂i = 0 and Equation (6) for all subsystems. If the input signals in
u are sufficiently rich of order n + 1 with distinct frequencies, and
such that they cause repeated activation of all subsystems obey-
ing a certain dwell time T0, then the update laws ˙̂AC

i and ˙̂BCi in
Equation (7) cause the estimates Âi, B̂i to converge to the real sys-
tem matrices Ai, Bi and cause the prediction errors ei = x̂i − x to
converge to zero.

Proof: The proof of Theorem2.2 follows the one of Theorem2.1
and is therefore sketched briefly. First, stability is verified in
the same way as before, i.e. with multiple Lyapunov functions
which form the decreasing sequence (14). In the second part of
the proof, which is concerned with convergence, PE now only
needs to be guaranteed for the vector z = [x�, u�]�. Analysing
the proof of Lemma 2.1 in Appendix A shows that this can be
guaranteed without restricting Ai to invertible matrices. The
remainder of the proof remains unchanged as compared to The-
orem 2.1. �

Note that Theorem 2.1 and Theorem 2.2 both assume a cer-
tain dwell time of the switched system. This dwell time assump-
tion is however not restrictive. It turns out that arbitrary fast
switching does not cause divergence of the estimated parame-
ters. But, if little time is spent in a subsystem, the corresponding
estimates receive only minor updates, resulting in slow conver-
gence.

The derivation of parameter identifiers for PWA and PWL
systems may seem a little technical. An intuitive interpretation
of the discussed identifiers for PWA systems is to initialise a
separate identifier for each subsystem and apply it during the
time frames inwhich the corresponding subsystem is active. The
update laws (7) suffer three shortcomings: (1) all signals in u
must be sufficiently rich of order n + 1 for all time in order to
ensure PE; (2) adaptation of subsystem i only takes place while
subsystem i is active; (3) convergence is rather slow. These short-
comings can be overcome by introducing memory in the form
of concurrent learning as shown by Kersting and Buss (2014b)
and as we revise in the following section.

3. Concurrent learning adaptive identification
The update laws in concurrent-learning-based adaptive control
and identification consist of two parts. The first part is based
on current measurements of states and control inputs (such as
the ones presented in the previous section). The second part is
based on selected, past measurements that are stored in mem-
ory, the so-called history stacks. The update laws thusmake con-
current use of current and recorded data. This idea is motivated
by the ability to repeatedly employ the recorded data to com-
pute updates for the system parameters, allowing for continued
identification of all subsystems. In the case of switched systems,
even estimates of currently inactive subsystems can then be fur-
ther updated. Furthermore, concurrent learning reduces the PE

requirements to a limited period of excitation in which themea-
surements are taken.

Denote with (xi j ∈ R
n, ui j ∈ R

p, ẋi j ∈ R
n) the jth triplet

that is recorded while subsystem i is active. Let a total
of q ∈ N such triplets be recorded for each subsystem i.
The elements of the triplets are stored in the three history
stacks Xi � [xi1, xi2 , . . . , xiq], Ui � [ui1 , ui2 , . . . , uiq] and Ẋi �
[ẋi1, ẋi2 , . . . , ẋiq]. For now, let the number of triplets q be fixed
and the stack elements xi j , ui j and ẋi j be constant. Later, this
assumptionwill be discarded without loss of generality. Further-
more, it will be shown how to record new data for the history
stacks and when to replace existing data with new data.

Note that in case the derivatives ẋi j cannot be measured
directly, techniques such as fixed point smoothing (Jazwinski,
1970; Shumway & Stoffer, 2006; Simon, 2006) can be applied to
get an accurate estimate.

Two assumptions on the history stacks arise.

Assumption 3.1: For each subsystem i, the history stacks Xi and
Ui contain elements, such that there exist n + p + 1 linearly inde-
pendent vectors [x�

i j , u
�
i j , 1]

�.

Assumption 3.1 ensures that the recorded data contain
enough information for the identification task and hence
amounts to a PE-like condition to guarantee negative definite-
ness of the Lyapunov function in later proofs of convergence.
The existence of linearly independent history stack elements for
Assumption 3.1 is guaranteed under PE. Note however that PE
is by no means necessary for the collection of the history stack
elements. The assumption also implies the lower bound n + p +
1
 q for the number of history stack elements. An upper bound
is only given by practical considerations in formof limited, avail-
able memory.

Assumption 3.2: The elements of each history stack Ẋi fulfil
Aixi j + Biui j + fi = ẋi j ,∀ j ∈ {1, . . . , q}.

Assumption 3.2 requires the recorded derivative ẋi j to match
the real derivative ẋ at state xi j and input ui j . As will be shown in
Theorem 3.1, one can relax Assumption 3.2 such that estimates
of ẋ obtained with fixed point smoothing are sufficiently accu-
rate.

For the jth triplet of subsystem i, define εi j as the error
between estimated and recorded derivative of the state:

εi j (t ) � Âi(t )xi j + B̂i(t )ui j + f̂i(t ) − ẋi j . (17)

Note that the history stack elements xi j , ui j and ẋi j in Equation
(17) are constant and thus only the time-varying estimates Âi, B̂i

and f̂i cause changes in εi j .
In the ideal case, whenAssumption 3.2 is satisfied and thus ẋi j

is correctly measured, the error εi j vanishes for the true system
parameters:

εi j (Ai,Bi, fi) = Aixi j + Biui j + fi − ẋi j = 0.

In the suboptimal case, when Assumption 3.2 is violated, the
measured derivative differs from the true derivative. To model
this, let the measured derivative ẋi j equal the true derivative
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ẋ(xi j , ui j ) minus an error term δi j ∈ R
n:

εi j (Ai,Bi, fi) = Aixi j + Biui j + f −
(
ẋ(xi j , ui j ) − δi j

)
︸ ︷︷ ︸

ẋi j

= δi j .

Expressing ẋi j in Equation (17) in terms of the true sys-
tem dynamics ẋ(xi j , ui j ) = Aixi j + Biui j + fi and the error δi j
yields

εi j = (Âi − Ai)xi j + (B̂i − Bi)ui j + ( f̂i − fi) + δi j

= Ãixi j + B̃iui j + f̃i + δi j . (18)

While Equation (17) specifies how to calculate εi j online, the
expression in Equation (18) – which cannot be calculated due to
the unknown parameter errors – is beneficial in the later conver-
gence analysis. The errors εi j form a key element in the recorded
data-based part (hence superscript R) of the update laws:

˙̂AR
i = −Γ1

q∑
j=1

εi j x
�
i j ,

˙̂BR
i = −Γ2

q∑
j=1

εi j u
�
i j ,

˙̂f Ri = −Γ3

q∑
j=1

εi j . (19)

The rationale behind the update laws (19) is to ensure
exponential parameter convergence in the Lyapunov func-
tion (12),which will become evident shortly. As Equation (19)
does not depend on current measurements of u or x, these
update laws continuously update the parameter estimates, which
enables convergence even for currently inactive subsystems. By
combining the current data-based (superscript C) update laws
in Equation (7) and the recorded data-based (superscript R)
update laws in Equation (19), we obtain the following theorem
which specifies concurrent learning adaptive identification of
PWA systems.

Theorem 3.1: Consider the PWA system (1) with a known
switching signal σ and let the subsystem states be predicted by
Equations (4) and (6). Then the update laws

˙̂Ai = ˙̂AC
i + ˙̂AR

i ,
˙̂Bi = ˙̂BC

i + ˙̂BR
i ,

˙̂fi = ˙̂f Ci + ˙̂f Ri (20)

cause the estimates Âi, B̂i and f̂i to

� either converge exponentially to the true parameters Ai, Bi
and fi if Assumptions 3.1 and 3.2 are satisfied,

� or converge to a compact ball around the true parameters in
case only Assumption 3.1 holds.

Proof: The proof of Theorem 3.1 is based onmultiple Lyapunov
functions, one per subsystem. The derivative of all Lyapunov
functions is shown to be negative definite regardless of σ . The
parameter estimates of subsystem i therefore converge towards
the true parameters whether the ith subsystem is active (σ = i)
or inactive (σ � i). It is therefore possible to analyse the stability

of each subsystem individually, which is done in the following
by neglecting the index i (i.e. A�Ai or xj � xi j ).

Again, the parameter error vector θ̃ enables a compact repre-
sentation of the concurrent learning-based updated laws. First,
rewrite Equation (18) as

ε j =
⎛
⎝
⎡
⎣xj

uj

1

⎤
⎦ ⊗ In

⎞
⎠�

θ̃ + δ j . (21)

Then, recall the definitions of 	 and 
 in Equation (9) as well
as the compact representation for ė in Equation (10):

ė = Ame + 
�θ̃ . (22)

Additionally, define

� �

⎛
⎝ q∑

j=1

⎡
⎣xj

uj

1

⎤
⎦[

x�
j
u�

j
1
]⎞⎠ ⊗ In. (23)

After a few transformations involving Equations (21) and (23),
the update laws in Equation (20) take the form

˙̃
θ = ˙̂

θ = −	
Pe − 	�θ̃ − 	

⎛
⎝ q∑

j=1

⎡
⎣xj

uj

1

⎤
⎦ ⊗ δ j

⎞
⎠

︸ ︷︷ ︸
�

. (24)

For stability analysis, consider the same quadratic candidate
Lyapunov function (12) as before. The time derivative ofV along
Equations (22) and (24) yields:

V̇ = e�A�
mPe + e�PAme + θ̃�
Pe + e�P
�θ̃

−
(
e�P�
�	� + θ̃���	� + ��	�

)
	−1θ̃

− θ̃�	−1
(
	
Pe + 	�θ̃ + 	�

)
= e�(A�

mP + PAm)e − θ̃�(�� + �)θ̃ − 2��θ̃

= −e�Qee − θ̃�Qθ θ̃ − 2��θ̃ , (25)

where Qe � −(A�
mP + PAm) and Qθ��� + �. Recall that Qe

was chosen to be positive definite in the design of the current
data-based update laws (7). Also, because of Assumption 3.1,
the matrix � and thus Qθ are positive definite. Note that the
useful consequence that −θ̃�Qθ θ̃ < 0,∀θ̃ �= 0 results from the
recorded data-based update laws (19) and thus constitutes the
motivation behind Equation (19). Assuming the ideal case in
Equation (25), i.e. δ j = 0,∀ j ∈ {1, . . . , q}, then the�-termvan-
ishes and the derivative of the candidate Lyapunov function
is indeed negative definite. Hence, all prediction errors e and
parameter errors θ̃ converge exponentially to zero.

For the suboptimal case, however, in which δ j �= 0, the
derivative (25) consists of quadratic terms in e and θ̃ but is also
linear in θ̃ . This observation permits a division of the error space
[e�θ̃�]� ∈ R

n(n+p+2) in two sets as exemplified in Figure 2. For
some small values of θ̃ the linear term dominates, which results
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θ̃ = 0
θ1

θ2

θ̃c

νmin
νmax

θ̃max

V̇ < 0

V̇ > 0

V̇ = 0

Figure . Visualisation of the ellipsoidal set for which V̇ ≥ 0 and approximation of the maximum parameter error ‖θ̃max‖ in terms of the centroid θ̃c and the maximal
semi-principal axis νmax of the ellipsoid (‖νmax‖ = 1/

√
λmin).

in a first closed set for which V̇ > 0. The first set is surrounded
by a second set in which the quadratic terms outweigh the linear
term and V̇ < 0. The outer set with V̇ < 0 guarantees bounded-
ness of e and θ̃ .

We can approximate the compact set to which the parame-
ter errors θ̃ converge by analysing the shape of the boundary
between the two sets. On this boundary V̇ = 0, and thus,

[
e� θ̃�] [Qe 0

0 Qθ

] [
e
θ̃

]
+ [

0 2��] [e
θ̃

]
= 0. (26)

It is easy to verify that both the origin and the state with e =
0 and θ̃ = −2(Q−1

θ )�� reside on this boundary. Furthermore,
Equation (26) resembles an ellipsoid in the error space centred at
ec = 0 and θ̃c = −(Q−1

θ )��. An alternative formulation of this
ellipsoid is

[
e� − e�c θ̃� − θ̃�

c
] 1

��Q−1
θ �

[
Qe 0
0 Qθ

]
︸ ︷︷ ︸

E

[
e − ec
θ̃ − θ̃c

]
= 1.

The eigenvectors of the positive definite matrix E define the
principal axes of the ellipsoid. The length of the semi-axes is
given by the square root of the inverse eigenvalues of E. Figure 2
visualises the ellipsoid for a two-dimensional parameter vector
θ = [θ1, θ2]�.

In a last step, exploiting the triangle inequality on the cen-
troid of the ellipsoid and its maximal semi-principal axis (char-
acterised by the minimal eigenvalue) gives an approximation of
the ball around the true parameters to which the estimates con-
verge in the presence of errors δ j :

‖θ̃∗
max‖ ≤ ‖��Q−1

θ ‖ +
(

λmin

(
Qθ

��Q−1
θ �

))− 1
2

,

where ‖ · ‖ is the Euclidean norm and λmin ( · ) denotes the min-
imum eigenvalue. Compare with Figure 2 for a visual interpre-
tation of this approximation. �

While the discussion of concurrent learning thus far involved
only PWA systems, it is stressed that the results also apply for
PWL systems. In PWL systems, there is no affine input vector f.

Consequently, deleting the terms related to f yields the special
case of PWL systems. Importantly, this removes the constant 1
in Assumption 3.1 and in the definitions of 
 and �.

From an adaptive control or identification point of view,
the above proof is remarkable in a sense that convergence is
guaranteed without the usual PE requirement. The linear inde-
pendence of the history stack elements (required by Assump-
tion 3.1) replaces PE. This is beneficial as linear independence is
considerably easier tomonitor than PE. Furthermore, excitation
over a limited period of time suffices to record linear indepen-
dent data.

4. History stackmanagement in concurrent learning
In the discussion of concurrent learning, the stack elementswere
thus far assumed to be constant. However, looking back at Equa-
tion (25), one realises that parameter convergence is maintained
as long asQθ remains positive definite. In other words, as long as
Qθ is ensured to be positive definite, one can arbitrarily replace
history stack elements. From a control theoretic perspective,
this resembles switching between different stable dynamics that
share the common Lyapunov function V. In the following steps,
this is exploited in order to further improve the performance of
concurrent learning adaptive identification.

4.1 Populating the history stacks
Since initially all history stacks are empty and Assumption 3.1
is violated, consider first the process of populating the history
stacks. The history stacks need to be filled with at least n +
p + 1 linearly independent elements. Also, a new data point
should be sufficiently different from the previously recorded
data point. Let �(t)�[x(t)�, u(t)�]� be the state-input vector
at time instance t and let �prev denote the last recorded state-
input vector. In concurrent learning, it is common to refer to a
new measurement �(t) as sufficiently different if the following
inequality is satisfied (Chowdhary et al., 2013):

‖�(t ) − �prev‖2
‖�(t )‖ ≥ υ, (27)

where the threshold υ ∈ R
+ is a design parameter. Until the his-

tory stack fulfils Assumption 3.1, a new measurement is added
to the history stack if x and u are linearly independent of all pre-
viously recorded elements and if they fulfil Equation (27).
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4.2 Maximising the rate of convergence
In order to confine computational complexity, the number of
recorded data elements q is limited. Once the history stack is
filled with q data points, it has to be reasoned whether replacing
old data with new data is beneficial or not.

With the derivative of the Lyapunov function in Equation
(25), we are able to characterise the rate of convergence. Note
that in the ideal case (δi j = 0), the derivative of the Lyapunov
function of an inactive subsystems (e = 0) is bounded by

V̇ = −θ̃�Qθ θ̃ ≤ −λmin(Qθ )θ̃
�θ̃ . (28)

It is thus intuitive to record stack elements xj and uj such
that the minimum eigenvalue of Qθ is maximised, as this max-
imises the rate of convergence. Especially for full history stacks,
this approach allows to reason whether or not it is beneficial
to replace an existing stack element with a new measurement.
While the same idea is also applied in concurrent learning adap-
tive identification by Kersting and Buss (2014b), it was Chowd-
hary et al. (2013) who originally introduced it to concurrent
learning adaptive control.

Note that the maximisation of the convergence rate also
affects the centroid θ̃c, which characterises the remaining
parameter error. Approximate the squared norm of θ̃c as
follows:

‖θ̃c‖2 = ��Q−1
θ (Q−1

θ )�� ≤ λ2
max(Q

−1
θ )‖�‖2

= 1
λ2
min(Qθ )

‖�‖2. (29)

According to Equation (29), improving the convergence rate by
maximising λmin (Qθ ) provides a second benefit. That is, with
increased λmin (Qθ ), the error term� – caused by errors δ j in the
estimation of ẋ(xj , uj ) – has a weakened effect on the parameter
errors.

4.3 Detecting erroneous history stack elements
Section 3 explained that wrongly recorded or estimated stack
elements hinder convergence to the true parameters. This prob-
lem has received limited attention in previous works on con-
current learning, excluding De La Torre et al. (2013). There-
fore, concurrent learning is expected to work well in case of con-
stant system parameters. However, if system parameters change
over time (e.g. due to ageing or wear), then history stack ele-
ments become outdated and estimates converge to (or are stuck
at) wrong values.

Here we describe the first algorithm to detect and remove
erroneous stack elements online (Kersting & Buss, 2015), which
is based on the result of Section 3: i.e. estimated parameters con-
verge to an ellipsoidal set in the parameter space (depicted in
Figure 2) in the presence of erroneous history stack elements.

In order to understand the cause of this ellipsoid, note that
each triplet (x j, uj, ẋ j) in the history stack spans a subspace �j
in the parameter space. The subspace�j, associated with the jth

θ1

θ2

θ̃ = 0

˙̂
θC

Θ2

˙̂
θR
2

Θ3

˙̂
θR
3

Θ1

˙̂
θR
1

Θ4

˙̂
θR
4

V̇ = 0

limit cycle

Figure . Exemplary limit cycle in a two-dimensional parameter space. The history

stack has four elements for which only δ � . The update vectors ˙̂θRj are an orthog-
onal projection onto�j .

triplet, contains all parameter configurations that cannot be fal-
sified by the measurements (x j, uj, ẋ j), i.e.

� j = {
θ̂ ∈ R

n(n+p+1) ∣∣ Â(θ̂ )x j + B̂(θ̂ )uj + f̂ (θ̂ ) = ẋ j
}
.

(30)

The parameter configurations θ̂ ∈ � j form the solution of
an under-determined system of equations, from which the
dimension of �j can be found to be dim(� j) = dim(θ ) −
n = n(n + p).

In the error-less case (δj = 0,�j) and under Assumption 3.1,
all subspaces intersect at a single point θ = ∪q

j=1� j, for which
θ̃ = 0. In case δj � 0, however, the subspaces do not intersect at
a single point. Figure 3 displays an example with four subspaces.
The first three subspaces represent the subspaces of error-less
history stack triplets. The fourth subspace corresponds to an
erroneous history stack element, which is therefore shifted away
from the intersection point. Due to the shifted subspace �4, the
estimates do not converge to the true parameter configuration
θ . Instead the estimates enter a limit cycle in the ellipsoidal set
as shown in the proof of Theorem 3.1. In turn, the prediction
error does not converge to zero, i.e. e � 0 or greater than some
threshold in the presence of noise.

The strategy to detect erroneous history stack elements is to
compare the individual contributions in the update laws (20).
Hence, let the contribution of the current measurements and of
the jth history stack triplet be denoted by

˙̂
θC(x(t ), u(t )) = −	
Pe (31)

˙̂
θR
j (x j, uj, ẋ j) = −	� j θ̂ + 	ξ j, j ∈ {1, . . . , q}, (32)

where

� j �

⎛
⎝
⎡
⎣x j
u j
1

⎤
⎦[

x�
j u�

j 1
]⎞⎠ ⊗ In, ξ j �

⎡
⎣x j
u j
1

⎤
⎦ ⊗ ẋ j,

which combined in ˙̂
θ = ˙̂

θC + ∑q
j=1

˙̂
θR
j form the original update

laws (20).
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Next, note that the recorded data-based update laws (32)
correspond to an orthogonal projection onto the subspaces �j.
For correct history stack triplets, this projection points into the
ellipsoid. Also the current data-based update (31) drives the
estimates towards the true parameter configuration under the
assumption of persistent excitation. Therefore, ˙̂

θC serves as a ref-
erence point. Convergence is prevented if at least one erroneous
stack element exists and points out of the ellipsoid. Therefore,
the directional information compared to the current data-based
update law is used to reason about the erroneous history stack
elements.

Note that the PE requirement for the reference point ˙̂
θC

should not be understood as a limitation at this point. Once
the history stack is known to contain erroneous elements, one
must in any case record new measurements. In order to fulfil
Assumption 3.1, excitation of the system is beneficial. During
the collection of new measurements, it can be reasoned which
elements are erroneous and need to be replaced. While the exis-
tence of measurements, which satisfy Assumption 3.1, is guar-
anteed under PE, it is not a necessary condition. Future work
could analyse how the following ideas perform without PE. As
shown in the proof of Theorem 2.1, PE can be ensured by choos-
ing input signals sufficiently rich of order n + 1 with distinct fre-
quencies.

In order to analyse to which extent the recorded data-based
update laws (32) coincide with the reference vector ˙̂

θC, define
for each stack element j the angle ϕj between

˙̂
θC and ˙̂

θR
j :

ϕ j(t ) = �
( ˙̂
θC(t ), ˙̂

θR
j (t )

)
. (33)

Note that statements, which are based on the angles ϕj, are
only meaningful if the norms of the corresponding vectors are
sufficiently large. Therefore, we introduce the two thresholds ϑC

and ϑR for ˙̂
θC and ˙̂

θR, respectively. If ‖ ˙̂
θC‖ < ϑC, the current

data-based update vector fails to qualify as a reliable reference
point. This is for instance the case if the parameter estimates are
in the vicinity of the true parameters. For ‖ ˙̂

θR
j ‖ < ϑR, the contri-

bution of the jth history stack element is very small. In this case,
the jth history stack triplet (x j, uj, ẋ j) cannot be falsified by the
current estimates θ̂ . In summary, falling below these two thresh-
olds corresponds to good estimates. The angle ϕj is therefore set
to zero whenever one of the two thresholds is not exceeded:

ϕ j(t ) ⇐ 0, if
(
‖ ˙̂
θC‖ < ϑC or ‖ ˙̂

θR
j ‖ < ϑR

)
. (34)

The parameter estimates θ̂ and angles ϕj are time-varying
for sinusoidal excitation and enter into a limit cycle. Due to
the known excitation u, the frequency of this limit cycle can be
approximated. Since we are interested in the update directions
on average, consider the low-pass filtered angles ϕ̄ j, where the
cut-off frequency of the filter is lower than the lowest excitation
frequency in u. The following algorithm to detect and remove
erroneous history stack elements is based on the filtered angles
ϕ̄ j.

Algorithm 1: Consider the concurrent learning-based update
law in Theorem 3.1 with errors δj. Monitor the filtered angles ϕ̄ j
according to Equations (33) and (34). If the parameter estimates
enter a limit cycle (i.e. e� 0 and ˙̄ϕ j ≈ 0), replace the kth history
stack triplet, where

k = argmax
j

{
ϕ̄ j
∣∣ϕ̄ j ≥ π

2

}
, (35)

by a new measurement with ϕ̄new < ϕ̄k in order to reduce the
errors in the history stack.

Since PE constitutes a critical assumption in adaptive sys-
tems, we want to complete the theoretical part of this paper
by briefly repeating the role of PE in the presented algorithms.
For the parameter identifiers discussed in Theorems 2.1 and
2.2, PE is a necessary condition for parameter convergence. The
concurrent learning-based parameter identifiers in Theorem 3.1
replace PE by linear independence of the history stack elements.
While PE in this context guarantees the existence of linearly
independent measurements, PE is by no means necessary in
order to obtain them. In case of an erroneous history stack ele-
ment, we propose in Algorithm 1 to resume PE over a limited
period of time in order to detect and replace the erroneous ele-
ment. Once the erroneous element is replaced, convergence can
proceed without PE.

5. Numerical validation
In this section, we numerically validate the proposed update
laws for PWA systems as well as Algorithm 1 for the detection of
erroneous history stack elements in concurrent learning. First,
the advantage of concurrent learning over traditional adapta-
tion is demonstrated for a linear bimodal system. Then, we
analyse the estimation and tracking of time-varying parameters
with concurrent learning-based parameter identifiers. After-
wards, we compare the proposed algorithmwith Recursive Least
Squares and with an alternative approach to enable tracking in
concurrent learning (De La Torre et al., 2013). Finally, we apply
concurrent learning for the adaptive identification of a hybrid
two-tank system.

5.1 Benefit of concurrent learning
First, consider a bimodal PWL system with n= 1 and p= 1. Let
the parameters for the two subsystems be

θ1 = [−2 1
]�

�1 = {x ∈ R|x ≥ 0}
θ2 = [−5 2

]�
�2 = {x ∈ R|x < 0}.

The initial state is x = 1 and the control input is an exponen-
tially decaying sinusoidal signal: u(t) = 5e−0.1tsin (t). The state
derivatives are estimated with fixed point smoothing.

Simulation results with and without concurrent learning are
shown in Figure 4 for the design parameters −Am = P = 	1 =
	2 = 1. The exponentially decaying state does not yield a persis-
tent excitation of the system. Hence, the estimates do not con-
verge under the traditional update laws. For concurrent learn-
ing, the initial excitation is sufficient to fill the history stackswith
linear independent data, which can be seen from the increase
in λmin . Based on the recorded data, exponential convergence
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Figure . Comparison of parameter identifiers without (left column) andwith (right column) concurrent learning. The top left shows the exponentially decaying excitation
of the state in both cases. The top right shows the minimum eigenvalues associated with the two history stacks for the concurrent-learning-based estimation.

is achieved for both active (solid lines) and inactive (dotted
lines) subsystems. This comparison demonstrates the benefit of
concurrent learning in terms of reduced PE requirements and
increased convergence rates.

5.2 Parameter estimation and tracking
First, on a time interval t � [0, 700) s, consider the following
PWA system (n = 2, p = 1), which consists of three subsystems
with the unknown parameter vectors

θ ′
1 = [

0 −2 1 −3 0 1 0 0
]�

θ ′
2 = [

0 −2 1 −4 0 1 0 0
]�

θ ′
3 = [

0 −2 1 −2 0 1 0 0
]�

and the known state-space partitions

�1 = {
x ∈ R

2 : −3 ≤ x1 ≤ 3
}

�2 = {
x ∈ R

2 : x1 < −3
}

�3 = {
x ∈ R

2 : x1 > 3
}
.

To test the tracking abilities, the subsystems abruptly change
their parameters at time instance t = 700 s. During the second

t [s]
0 200 400 600 800 1000 1200 1400

ū

−8

0

8

Figure . Offset ū(t ) in the input signal u(t).

interval t � [700, 1400) s, the parameters are

θ ′′
1 = [

0 −3 1 −1 0 1.3 0 0.3
]�

θ ′′
2 = [

0 −2 1 −2 0 1.5 0 0.4
]�

θ ′′
3 = [

0 −3 1 −2 0 1.7 0 −0.2
]�

.

The system is excited with u(t ) = sin(0.8t ) + sin(t ) +
sin(3t ) + ū(t ), where ū(t ) is a ramp-like offset shown in Figure
5, which drives the system into all regions. Therefore, the input
signal u is sufficiently rich of order 6, which enables traditional
updating according to Theorem 2.1 as well as recording linearly
independent data according to Theorem 3.1. Gaussian white
noise with zero mean and 10−3 variance is added to the state
measurement x.

The scaling constants are Γ1 = Γ2 = Γ3 = 1 for balanced
adaptation of Ai, Bi and fi. For unknown system parameters,
we choose the design parameters P = I2 and Am = −10I2.
All parameter estimates θ̂i are initially zero and the history
stacks of size q = 4 are initially empty. Selected estimates of
the state derivative for the history stacks are obtained with

1274 S. KERSTING ANDM. BUSS



t [s]
200

200

200

200

400

400

400

400

600

600

600

600

800

800

800

800

1000

1000

1000

1000

1200

1200

1200

1200

1400

1400

1400

1400

θ̂1

θ̂2

θ̂3

−4

−4

−4

−2

−2

−2

0

0

0

0

0

0

0

1

2

2

2

2

3
σ

Figure . Identification and tracking of PWA subsystemparameterswith concurrent-learning-based parameter identifiers and removal of erroneous history stack elements.

fixed point smoothing. The design parameters for the detec-
tion of erroneous history stack elements are ϑC = 0.09, ϑR(t ) =
0.1max j(‖ ˙̂

θR
j (t )‖).

Figure 6 shows the evolution of estimates θ̂i for all subsys-
tems i = 1, 2, 3 on the entire time interval [0, 1400] s. The fig-
ure shows that once a subsystem is activated for the first time,
its history stacks are quickly filled with measurements and the
parameter estimates converge to the true parameters. Note that
the transition between two regions is characterised by multiple
switches due to the sinusoidal excitation. These switches likely
cause the smoothing process to result in erroneous history stack
elements. Especially the estimates θ̂3 converge to wrong param-
eters between 400 and 450 s. The proposed detection algorithm,
however, detects and removes these erroneous elements once the
system remains in �3 for a sufficiently long time.

The evolution of θ̂2 after the parameter change at 700 s shows
that the systementers into a limit cycle due to the parametermis-
match. This can be seen by oscillating estimates, which naturally
triggers the proposed detection algorithm. In turn, outdated
history stack elements taken before the change are successfully
replaced. As can also be seen from the figure, the removal of
erroneous history stack elements only takes place for the active
subsystem,which is why θ̂3 reacts to the parameter changewith a
delay of 400 s. Approximately 100 s after a subsystem is activated,
the corresponding history stacks do not contain outdated mea-
surements taken with θ ′

i anymore and the estimates converge to
the true parameters θ ′′

i .
Figure 7 shows the normed parameter errors ‖θ̃i‖ for all sub-

systems. At around 400 and 900 s, it can be seen that the sequen-
tial removal of erroneous history stack elements according to

t [s]
0 200 400 600 800 1000 1200 1400

θ̃i

0
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2

3

4

5

θ̃1

θ̃2

θ̃3

Figure . Normed parameter errors during concurrent-learning-based parameter estimation with removal of erroneous history stack elements. The lines are dashed for
inactive and solid for active subsystems.
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Figure . Comparison between the proposed detection mechanism for erroneous stack elements and a cyclic replacement of the entire history stack and Recursive Least
Squares.

Algorithm 1 might lead to a temporary increase in the param-
eter errors. As shown in the proof of Theorem 3.1, however, all
errors remain bounded.

5.3 Comparisonwith cyclic replacement and recursive
least squares
Reducing the parameter error θ̃ in the presence of errors δj
constitutes a major advantage of the proposed algorithm over
other approaches. In this section, we demonstrate this by com-
paring our approach with the cyclic replacement approach pro-
posed by De La Torre et al. (2013) and recursive least squares
(RLS) (see Ljung, 1987, Chapter 11) applied to an affine linear
time-invariant (LTI) system. In De La Torre et al. (2013), the
ageing of data is modelled with an exponential decay (e−0.01t)
on the current history stack. Once a new history stack out-
performs the current history stack, the entire history stack is
replaced. For the following comparison, the standard RLS algo-
rithm was implemented on the history stack measurements xj,
uj and ẋ j with a forgetting factor γ = 0.95.

A stable, randomly chosen state-space system of higher order
(n = 5, p = 2) is considered, i.e. θ ∈ R

40. The system is excited
with input signals u1(t ) = sin( 53 t ) + cos(1.1t ) + sin(1.7t ) and
u2(t ) = sin( 43 t ) + cos(t ) + sin( 73 t ), each sufficiently rich of
order 6 with distinct frequencies. We initialise the history stacks
with q= 10 measurements. The errors of each stack element are
drawn from a normal distribution δ j ∼ N (0, 0.3). For 2000 s,
the stack elements with the greatest errors (detected by the
mechanism according to Algorithm 1) are replaced by newmea-
surements. Note that the errors δj of new elements follow the
same normal distribution as the initial errors. The chosen design
parameters are the same as in Section 5.2.

Figure 8 shows the estimation process in terms of the normed
parameter errors for all three approaches. The normed param-
eter error for the cyclic replacement approach is greater than
the normed error obtained with our error detection approach,
because the cyclic replacement exchanges the entire history
stack at once. In that case, it is likely that the history stack con-
tains elements with similarly large errors, leading to no improve-
ment. Even though RLS provides lower estimation errors than
concurrent learning with cyclic replacement, it is still affected
by the errors δj. In contrast, the algorithm proposed here selec-
tively replaces the most erroneous history stack element. After
about 900 s, the algorithm has found history stack elements
with sufficiently small errors which cause the update terms to

Figure . Hybrid two-tank system with two connecting pipes.

fall below the thresholds ϑC and ϑR in Equation (34). This
terminates the proposed detection algorithm and the history
stack is left unchanged. Consequently, the estimates converge to
the smallest neighbourhood of the true parameters, as can be
seen from the smallest normed parameter error.

5.4 Adaptive identification of a hybrid two-tank system
We apply the proposed algorithm to estimate the parameters of
a PWAmodel for the hybrid two-tank system shown in Figure 9.
The system consists of two tanks, each of height 4m. The cross-
sectional areas of the tanks are Ct1 = 1.54m2 and Ct2 = 0.79m2.
Two pipes connect the tanks: one at the bottom of the tanks and
one at height hc = 2m.The cross-sectional area of the upper pipe
isCp1 = 0.0314m2, which is wider than the one of the lower pipe
Cp2 = 0.0079 m2. The only outflow of the system is through the
pipe with cross-sectional areaCout = 0.0154m2 at the bottom of
the right tank.

The control input is the inflow to tank 1: u = qin. The lev-
els in the tanks h1 and h2 form the states of the system and are
governed by the flows q1/2 between the tanks

q1 = Cp1sgn(h1 − h2)
(
g
∣∣(1 + sgn(h1 − hc))(h1 − hc)

− (1 + sgn(h2 − hc))(h2 − hc)
∣∣) 1

2
,

q2 = Cp2sgn(h1 − h2)
√
2g |h1 − h2|,
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Figure . State-space trajectory for excitation with triangle-like offset and two sinusoidal signals. The state-space partitions are given by gray and white stripes.

and the outflow from the second tank qout = Cout
√
2gh2. The

dynamics of the states are

ḣ1 = 1
Ct1

(u − q1 − q2), ḣ2 = 1
Ct2

(q1 + q2 − qout).

Note that the system dynamics are on the one hand non-linear
due to the Bernoulli equation and on the other hand hybrid due
to the sudden change in dynamics as the level h1 rises above the
connecting pipe. Hence, this example is the first showcase of the
proposed parameter identifiers to simultaneously approximate
non-linear and hybrid effects by PWA systems.

The maximal inflow umax = 0.127m3/s, at which the tanks
will overflow, limits the controlled inflow u. The system is
excited by two sinusoidal signals with amplitudes 0.3umax and
with frequencies 0.4 and 1 rad/s. Furthermore, a triangle-like
offset that alternates between 0.2umax and 0.9umax is added to u
and Gaussian noiseN (0, 0.003) is added to the measured tank
levels.

For the a-priori partitioning of the state-input space, we
incorporate the previous knowledge that the system does not
switch with respect to the inflow u. Hence, only the two-
dimensional state-space is partitioned. The state-space parti-
tions together with the state-space trajectory obtained with the
excitation signal are shown in Figure 10. The figure at the same
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Figure . Comparison of the hybrid two-tank system with the obtained PWAmodel for the validation input uval .
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time suggests that the system may not be approximated well by
an LTI model.

The concurrent learning design parameters are Am = −In,
P = In, 	 = In(n + p + 1), q = 18 and ν = 0.03. We excited the sys-
tem for 4000 s and the parameter estimates in each subsystem
converged about 500 s after the corresponding history stacks sat-
isfied Assumption 3.1.

The comparison between the estimated PWA system and the
hybrid two tank is shown in Figure 11. The excitation for this
experiment differs from the training data which was used to
estimate the model parameters. As can be seen from the figure,
the estimated PWA system approximates well the non-linear,
switching dynamics of the hybrid two-tank system.

6. Conclusions
This paper extends linear parameter identifiers to switched sys-
tems in the form of PWL and PWA systems. In the case of
PWA systems, it is shown that the affine input violates classical
assumptions on the richness of input signals. This violation is
compensated by restricting the applicability to invertible system
matrices. A neat state reset associated with detected switches
secures stability of the estimation process, even for arbitrarily
fast switching. Despite the maintained stability, fast switching
does affect the rate of convergence. The proposed parameter
identifiers for PWA systems are further improved by concur-
rent learning, where recorded data are used concurrently with
instantaneous data. In the switched system setting, this allows
to adapt even currently inactive parameter estimates and yields
faster convergence. Furthermore, it is shown that themain draw-
back of concurrent learning, caused by outdated or erroneous
history stack elements, can be overcome by the proposed out-
lier detection algorithm.Numerical simulations of both theoret-
ical systems as well as a non-linear hybrid two-tank system vali-
date the performance of parameter identifiers using concurrent
learning. Future work focuses on deriving identifiers for sys-
tems with partial state measurement and unknown state-space
partitions.
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Appendix A. Definitions and lemmas
This appendix repeats definitions and lemmas from Ioannou
and Sun (1996) which are needed for the convergence proofs in
this paper.Another excellent introduction to the field of adaptive
control is Narendra and Annaswamy (2005). PE plays a funda-
mental role in the convergence of adaptive systems.

Definition A.1 (Ioannou & Sun, 1996, Def. 4.3.1): A piecewise
continuous signal vector z : R

+ → R
n is persistently excited in

R
n with a level of excitation α0 > 0 if there exist constants α1,

T0 > 0 such that

α1In ≥ 1
T0

∫ t+T0

t
z(τ )z�(τ )dτ ≥ α0In ,∀t ≥ 0.

The following lemmas are used to prove convergence in The-
orem 2.1 and Lemma 2.1 in Section 2.
Lemma A.1 (Ioannou & Sun, 1996, Lem. 5.6.1): If the auto-
covariance of a function z : R

+ → R
n defined as

Rz(t ) � lim
T→∞

1
T

∫ t0+T

t0
z(τ )z�(t + τ )dτ

exists and is uniform with respect to t0, then z is persistently excit-
ing if and only if Rz(0) is positive definite.
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Lemma A.2 (Ioannou & Sun, 1996, Lem. 5.6.3): Consider the
system described by

[
ξ̇1
ξ̇2

]
=
[ A F�(t )
−P1F(t )P2 0

] [
ξ1
ξ2

]
, (A1)

where ξ1 ∈ R
n1 , ξ2 ∈ R

gn1 for some integer g, n1 � 1, andA,P1,P2
are constant matrices and F(t) is of the form

F(t ) =

⎡
⎢⎢⎢⎣
z1(t )In1
z2(t )In1

...
zr(t )In1

⎤
⎥⎥⎥⎦ ∈ R

gn1×n1 ,

where zi, i= 1, 2,… , g are the elements of the vector z ∈ R
g. Sup-

pose that z is persistently excited and there exists a matrix P0 > 0
such that

Ṗ0 + A�
0 P0 + P0A0 +C0C�

0 ≤ 0 (A2)

where

A0 =
[ A F�(t )
−P1F(t )P2 0

]
, C�

0 = [
In1 , 0

]
.

Then, the equilibrium ξ 1e = 0, ξ 2e = 0 of Equation (A1) is expo-
nentially stable in the large.

For PWA systems, the PE condition on z in Lemma A.2 can
be guaranteed by Lemma 2.1, which is proposed in Section 2.
The corresponding proof is given here for improved readability.

Proof of Lemma 2.1: Lemma 2.1 is shown with the help of
Lemma A.1 and a frequency domain relationship between z and
the inputs u. Note that the affine term f can be seen as the input
matrix of an additional constant input of 1. Therefore, let z be
related to the constant input via a transfer function Hf(s). Fur-
thermore, let the transfer functionHk(s) relate z to the kth input
uk. The dimensions ofHf(s) andHk(s) are (n + p + 1)× 1. Over-
all, z is related to the inputs by

z(s) =
[
(sIn − A)−1 f

�p+1

]
︸ ︷︷ ︸

Hf (s)

1(s) +
p∑

k=1

[
(sIn − A)−1 bk

�k

]
︸ ︷︷ ︸

Hk(s)

uk(s),

where bk denotes the kth column of B and �k, �p+1 ∈ R
p+1

denote the kth and (p + 1)th column of the identity matrix
Ip+1 ∈ R

(p+1)×(p+1), i.e.:

�k = [0 · · · 0 1︸︷︷︸
kth element

0 · · · 0 0]�,

�p+1 = [0 · · · 0 0 0 · · · 0 1]�.

Under the assumption of distinct input frequencies, the auto
covariance of z is given by

Rz(0) = 1
2π

∫ ∞

−∞
Hf (− jω)S1(ω)H�

f ( jω)dω

+ 1
2π

p∑
k=1

∫ ∞

−∞
Hk(− jω)Suk (ω)H�

k ( jω)dω (A3)

where S1(ω) and Suk (ω) are the spectral distributions of the con-
stant input 1 and the inputuk, respectively. Sinceuk is sufficiently
rich of order n+ 1, its spectrumhas n+ 1 distinct peaksFuk (ωkl )

at frequencies ωkl, l = 1, …n + 1. The affine term f results in a
spectral peak at zero. The spectral distributions are

S1(ω) = δ(ω), Suk (ω) =
n+1∑
l=1

Fuk (ωkl )δ(ω − ωkl ), (A4)

where δ(ω = 0) = 1 and δ(ω � 0) = 0. With Equation (A4), the
integrals in Equation (A3) are replaced by summations:

Rz(0) = 1
2π

Hf (− j0)H�
f ( j0)

+ 1
2π

p∑
k=1

n+1∑
l=1

Fuk (ωkl )Hk(− jωkl )H�
k ( jωkl ). (A5)

According to Lemma A.1, the vector z is persistently exciting
if Equation (A5) is positive definite, i.e. the quadratic equation

χ�Rz(0)χ = 0, χ ∈ R
n+p+1 (A6)

can only have a single solution at χ = 0n + p + 1. Note that the
outer products Hk( − jωkl)Hk(jωkl)� of the column vectors
Hk(jωkl) are positive semi-definite. Therefore, each summand
in Equation (A5) is positive semi-definite and Equation (A6) is
equivalent to

χ�Rz(0)χ = χ�Rz1(0)χ︸ ︷︷ ︸
≥0

+χ�Rz2(0)χ︸ ︷︷ ︸
≥0

= 0, (A7)

where

Rz1(0) �
1
2π

p∑
k=1

n+1∑
l=1

Fuk (ωkl )Hk(− jωkl )H�
k ( jωkl ),

Rz2(0) �
1
2π

Hf (− j0)H�
f ( j0).

First, χ�Rz1(0)χ = 0 is solved for χ . As all the summands of
Rz1(0) are positive semi-definite, this equality only holds if

χ�Hk(− jωkl )H�
k ( jωkl )χ = 0

k = 1, 2, . . . , p,
l = 1, 2, . . . , n + 1,

or equivalently

H�
k ( jωkl )χ = 0

k = 1, 2, . . . , p,
l = 1, 2, . . . , n + 1.

(A8)
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The transfer functionHk(s) can also be written as

Hk(s) = 1
a(s)

[
adj(sIn − A)bk

a(s)�k

]
= 1

a(s)
H̄k(s), (A9)

where a(s) = det(sIn − A). Therefore, the equalities (A8) are
also equivalent to

H̄�
k ( jωkl )χ = 0

k = 1, 2, . . . , p,
l = 1, 2, . . . , n + 1.

(A10)

Each vector element of H̄k( jωkl ) is a polynomial in ωkl of
maximal order n (see Equation (A9)). So after multiplying with
χ , gk(s) � H̄�

k (s)χ is also a polynomial in s of maximal order n.
For a given k, Equation (A10) states that gk(s) is zero at n + 1 fre-
quencies or values of s. As gk(s) is only of order n, it follows that
gk(s) = 0,∀s ∈ C, k = 1, . . . , p. Combining the p equalities of
Equation (A10) in matrix form gives

⎡
⎣adj(sIn − A)B

a(s)Ip
0�
p

⎤
⎦�

χ = 0p, (A11)

where 0p ∈ R
p is a p-dimensional zero vector. Next, the vectorχ

is expressed as χ = [X�,Y�,Z]�, with X = [χ1, . . . , χn]� ∈
R

n, Y = [χn+1, . . . , χn+p]� ∈ R
p and Z = χn+p+1 ∈ R. This

leads to

(
adj(sIn − A)B

)� X + a(s)Y + 0pZ = 0p. (A12)

The following expressions for adj(sIn − A)B and a(s) are
applied to Equation (A12)

adj(sI − A)B = Bsn−1 + (AB + an−1B)sn−2

+ (A2B + an−1AB + an−2B)sn−3

+ · · · + (An−1B + an−1An−2B + · · · + a1B),

a(s) = sn + an−1sn−1 + · · · + a1s + a0,

which results in a polynomial of order n. All coefficients of the
resulting polynomialmust be zero, so that the polynomial is zero
independent of s. This leads to n equalities that can be written
in a compact form:

Y = 0p and [B,AB, . . . ,An−1B]�X = 0np.

With (A, B) controllable, it follows that thematrix [B,AB,… ,
An − 1B] is of full rank. Therefore, the equality (A12) holds for
X = 0n, Y = 0p and an arbitrary Z ∈ R. Consequently, Rz1(0)
is only positive semi-definite. Therefore,Rz2(0) in Equation (A7)
must restrict the choice of Z further, i.e. χ�Rz2(0)χ = 0 for
X = 0n, Y = 0p and Z = 0. The same arguments as above
lead to

H̄�
f ( j0)χ =

⎡
⎣adj(−A) f

0p
a( j0)

⎤
⎦�

χ = 0,

and with χ = [X�,Y�,Z]� result in

(adj(−A) f )�X + a( j0)Z = 0. (A13)

Since Rz1(0) and Rz2(0) are both positive semi-definite,
one needs to find those χ for which χ�Rz1(0)χ = 0 and
χ�Rz2(0)χ = 0. In order to ensure χ�Rz1(0)χ = 0, it is thus
necessary to assume X = 0n and Y = 0p in Equation (A13).
With a(j0) = a0, Equation (A13) reduces to a0Z = 0. Since A
is assumed to be invertible, we have a0 � 0. Therefore, Z !=
0 in order to ensure H̄�

f ( j0)χ = 0 with X = 0n and Y = 0p.
This shows that χ�Rz(0)χ = 0 only holds for χ = 0n + p + 1
and thus proves positive definiteness of Rz(0) and according to
Lemma A.1 makes z persistently exciting. �
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