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ABSTRACT
In this paper, a class of infinite horizon optimal control problems with a mixed control-state isoperimetrical
constraint, also interpreted as a budget constraint, is considered. The underlying dynamics is assumed to be
affine-linear in control. The crucial idea which is followed in this paper is the choice of a weighted Sobolev
space as the state space. For this class of problems, we establish an existence result and apply it to a bilinear
model of optimal cancer treatmentwith an isoperimetrical constraint including the overall amount of drugs
used during the whole therapy horizon. A numerical analysis of this model is provided by means of open
source software package OCMat, which implements a continuation method for solving discounted infinite
horizon optimal control problems.

1. Introduction
Infinite horizon optimal control problems have been inves-
tigated since the 1970s of the last century, cf. Aseev and
Kryazhimskii (2007), Aseev and Veliov (2012, 2014), Carlson,
Haurie, and Leizarowitz (1991), Garg, Hager, and Rao (2011),
Halkin (1979), Zaslavski (2006, 2014) and among many others.
This class of problems findsmany applications in the economics,
biology and stabilisation problems as well, cf. Feichtinger and
Hartl (1986) and Grass, Caulkins, Feichtinger, Tragler, and
Behrens (2008). The interest of introducing an isoperimetrical
constraint in an optimal control problem, also often called bud-
get constraint, is motivated by many reasons, e.g. from the point
of view of multicriterial control problems (see Torres 2006, p.
176), or by evident economical arguments such as exhaustible
resources or bounded budget (cf. Aseev, Besov, & Kaniovski,
2013; Feichtinger & Hartl, 1986, p. 122), or by therapeutic evi-
dences (cf. Maurer & Pinho, 2015, p. 3; Ledzewicz, Maurer, &
Schaettler, 2011, p. 307). Throughout the paper, the budget con-
straint is assumed to be linear in both the state and the control
variables, while the underlying dynamics is assumed to be linear
in control.

The main theoretical task of the present paper is to derive
an existence result for the considered class of mixed budget-
constrained optimal control problems with infinite horizon. On
the other hand, the obtained existence theorem is to apply to
an infinite horizon optimal control problem of cancer treatment
which is of great practical interest. The main practical reason
for investigating a cancer treatment model with infinite horizon
consists in establishing structural changes in optimal solutions
while passing from the model with a finite to a model with an
infinite horizon. At the present time, mathematical models with
a fix finite time horizon are used for computation of optimal
cancer treatment strategies, cf. Schättler and Ledzewicz (2015).
Their aim is mostly to eliminate all the tumour cells as fast as
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possible whereas the side-effects and the therapy costs should be
minimised, theminimisation of the so-called damage functional
should be guaranteed. The drawback of this method lies possi-
bly in the choice of a very short time horizon which causes very
high side-effects onto the entire human body, which are too high
to be acceptable. These are the immune weakness, unnecessarily
killed or damaged healthy tissues as well as the increased resis-
tance of tumour cells. On the contrary, in the present paper we
intend to investigate whether an infinite horizonmodel can pro-
vide less aggressive stabilising long-term therapies. These ther-
apies might not necessarily lead to a tumour-free equilibrium of
the dynamical system (human body), but to a ‘coexisting’ type
of equilibrium, i.e. where tumour and normal cells coexist.

The numerical analysis of the formulated model will be
performed with the help of the open source software pack-
age OCMat, cf. Graß (2012), which can be downloaded at
http://orcos.tuwien.ac.at/research/ocmat_software/. This pack-
age implements an indirect numerical method for solving non-
linear discounted infinite horizon optimal control problems
combining a continuation method with two-point boundary
value problem solver. In contrast to direct methods, the used
software attempts to avoid ‘cutting the horizon procedure’ while
it uses a continuation method starting at a stationary solution,
which is known to be optimal at the equilibrium point taken as
an initial state point, and moving towards the given state ini-
tial condition, i.e. the continuation happens with respect to the
initial condition. Among other existing indirect methods for
solving infinite horizon problems we want to mention methods
developed in Kunkel and Von Dem Hagen (2000) and Picken-
hain, Burtchen, Kolo, and Lykina (2016). The first source pro-
vides amethod based on a transformation techniquewhich aims
to transform the infinite horizon problem into an equivalent
finite horizon problem bymeans of time transformation applied
to the objective and to the dynamics and afterwards to solve
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two-point boundary value problems. However, the algorithm
does not allow any constraints, i.e. state or control constraints.
In the second source, the method is presently developed only
for a class of linear-quadratic control problems which does not
cover problems with bilinear dynamics such as cancer treatment
optimal control problem presented and analysed in this paper.
In case of extension of the pseudospectral method developed in
Pickenhain et al. (2016), a comparison of the performance of
both numerical methods would be of interest.

We also would like to emphasise the importance of obtaining
existence theorems, which is especially true for problems, where
the finding of analytical solutions is hardly possible. While
applying numerical solution methods, it is necessary to know
that the considered optimal control problem possesses an opti-
mal solution indeed, otherwise applying the necessary optimal-
ity conditions in the form of Pontryagin Maximum Principle
to find the solution becomes ‘naive’ heuristics. Available exis-
tence results help to justify the viability of obtained numerical
results. One of the main assumptions of the numerical method
applied here to analyse the infinite horizon cancer treatment
problem is the existence of an optimal solution for all the initial
states which belong to a certain compact subset of IRn (cf. Graß,
2012, p. 1628). This will be done analytically before applying the
method.

The proof of the existence theorem presented in this paper
follows the scheme of the generalised Weierstraß theorem. The
crucial role in our investigations is played by the choice of a
weighted Sobolev space as the state space and by the rigorous
functional analytical approach in the proof of the Maximum
Principle. Control problems with isoperimetric constraints were
handled in many sources, e.g. Aseev et al. (2013), Feichtinger
and Hartl (1986) and Torres (2006), but either not in the con-
text of weighted Sobolev spaces or not on an unbounded inter-
val of integration. The existence theoremobtained in Lykina and
Pickenhain (2016) was generalised here due to the more general
state equation.

The paper has the following structure. The second section
contains important definitions. Section 3 introduces the prob-
lem statement and the optimality criterion. The derivation of
the existence result is contained in Sections 4 and 5; we anal-
yse the infinite horizon model of optimal cancer treatment with
a budget constraint in order to demonstrate the applicability of
the theoretical result proved before as well as to enlighten the
structural changes compared to the corresponding finite hori-
zon problem. A summary of the results concludes the paper.

2. Weighted Lebesgue and Sobolev spaces
Let us write [ 0 , ∞) = IR+ . We denote by M(IR+), Łp(IR+)

and C0
(IR+) the spaces of all functions x : IR+ → IR which

are Lebesgue measurable, in the pth power Lebesgue integrable
or continuous, respectively (see Dunford & Schwartz, 1988,
pp. 146, 285; Elstrodt, 1996, p. 228). The Sobolev spaceW1

p(IR+)

is then defined as the space of all functions x : IR+ → IR which
belong to Łp(IR+) and admit distributional derivative ẋ (Yosida,
1974, p. 49) belonging to Lp(IR+) as well.

Definition 2.1:

(a) A continuous function ν : IR+ → IR with positive val-
ues is called a weight function.

(b) A weight function ν will be called a density function iff
it is Lebesgue integrable over IR+ , i.e.

∫ ∞
0 ν(t ) dt < ∞

(cf. Kufner, 1985, p. 18).
(c) Bymeans of a weight function ν ∈ C0

(IR+)we define for
any 1 � p < � the weighted Lebesgue space

Lp (IR+, ν) =
{
x ∈ (R+),

∣∣‖ x ‖
p(IR+ ,ν)

=
( ∞∫

0

| x(t ) |p ν(t ) dt

)1/p

< ∞
}

.

(d) For x ∈ p(IR+ , ν) let the distributional derivative ˙x be
defined according to Yosida (1974, p. 46). We introduce
the weighted Sobolev space of all p(IR+ , ν) functions
having its distributional derivative in p(IR+ , ν):

W1
p(IR+, ν) = {

x ∈ M(IR+)
∣∣ x ∈ p(IR+, ν) , ẋ ∈ p(IR+, ν)

}
(see Kufner, 1985, p. 11).

Equipped with the norm

‖ x ‖W1
p(IR+ ,ν) = ‖ x ‖

p(IR+ ,ν) + ‖ ẋ ‖
p(IR+ ,ν) ,

W1
p(IR+, ν) becomes aBanach space (this can be confirmed anal-

ogously to Kufner, 1985, p. 19).

Lemma 2.1: Let ν be a density function. Any linear continuous
functional ϕ : p(IR+, ν) → IR can be represented by a function
ϕ ∈ Lq(IR+, ν) with p−1 + q−1 = 1 if 1 < p < � and q = � if
p = 1:

〈ϕ , x 〉 =
∞∫
0

ϕ(t ) x(t ) ν(t ) dt ∀ x ∈ p(IR+, ν) . (1)

Proof: We may apply Elstrodt (1996, p. 287), since the measure
generated by the density function ν is finite on IR+ . �

For p= 2 the spaces L2(IR+, ν) andW1
2 (IR+, ν) become sep-

arable Hilbert spaces, see Kufner (1985), and (1) is the scalar
product in L2(IR+, ν).

3. Problem formulation
Themain control problembeing considered in the present paper
is

(P)B∞ : J∞(x, u) =
∞∫
0

r(t, x(t ), u(t ))ν0(t )dt −→ min !

(2)

(x, u) ∈ W1,n
2 (IR+, ν )1 × m

2 (IR+, ν ) ,1 (3)

ẋ(t ) = A(t, x(t )) + B(t, x(t ))u(t ) a. e. on IR+, x(0) = x0 > 0,
(4)

L

L

L

L L

L

L L

L

L

L

M
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d �
∞∫
0

{
D0

1(t )
Tx(t ) + D0

2(t )
Tu(t )

}
ν2(t ) dt (5)

u(t ) ∈ U a. e. on IR+. (6)

Hereby U denotes a compact convex subset of IRm. Further-
more, let functions A : IR+ × IRn → IRn, B : IR+ × IRn → IRn ×
IRm;

(
D0

1 · ν1
ν2

)
: IR+ → IRn,

(
D0

2 · ν1
ν2

)
: IR+ → IRm satisfy A,B ∈

L∞(IR+ × IRn),
(
D0

1 · ν1
ν2

,D0
2 · ν1

ν2

) ∈ Ln+m
2 (IR+, ν1), ν0, ν1 and ν2

are weight functions as defined in Section 2. The integrand r :
IR+ × IRn × IRm → IR should be continuous in the first argu-
ment, continuously differentiable in the second and third, and
convex in the third. The functions x and u are called the state
and the control function, respectively. The integral in (2) is
understood in Lebesgue sense. The fact that we have to dis-
tinguish between different integral types in infinite horizon
optimal control problems was detailed discussed in Lykina
(2010), Lykina, Pickenhain, andWagner (2008) and Pickenhain,
Lykina, andWagner (2008). Our considerations are based on the
following.

Definition 3.1:

(a) The set of all admissible pairs, denoted by A, consist of
all processes satisfying (3)–(6) and make the Lebesgue
integral in (2) finite.

(b) Let processes (x, u), (x∗, u∗) ∈ A be given. Then, the
pair (x∗, u∗) ∈ A is called global optimal for (P)B∞ , if for
any pair (x, u) ∈ A holds

∞∫
0

r(t, x(t ), u(t ))ν0(t ) dt

−
∞∫
0

r(t, x∗(t ), u∗(t ))ν0(t ) dt ≥ 0.

Remark 3.1:

(a) A typical weight and even density function which
appears in objectives of economic models is the discount
factor given by ν(t) = e−ρt with 0 < ρ < 1. This density
function can also be used for weighting the process (x,
u) itself so that one has two equal weights in the problem
statement.

(b) Other optimality criteria using an improper Riemann
integral in the performance index were detailed dis-
cussed in Carlson et al. (1991).

4. Existence theorem for (P)B∞
Remark 4.1: With the denotation

Di(t ) := D0
i (t )ν2(t )ν

−1
1 (t ), i = 1, 2 (7)

an equivalent formulation of (P)B∞ can be given, wherein only
two density functions ν0, ν1 appear.

We use this equivalent formulation of (P)B∞, namely

J∞(x, u) =
∞∫
0

r(t, x(t ), u(t ))ν0(t )dt −→ min ! (8)

(x, u) ∈ W1,n
2 (IR+, ν )1 × m

2 (IR+, ν ) ,1 (9)

ẋ(t ) = A(t, x(t )) + B(t, x(t ))u(t ) a. e. on IR+, x(0) = x0 > 0,
(10)

d �
∞∫
0

{
DT

1 (t )x(t ) + DT
2 (t )u(t )

}
ν1(t ) dt (11)

u(t ) ∈ U a. e. on IR+ (12)

Assumption 4.1: Let the right-hand side of the dynamics satisfy
the growth condition

|A(t, x(t )) + B(t, x(t ))u(t )| � C(1 + |x(t )|) (13)

for all (t, ξ , v ) ∈ IR+ × IRn × IRm (ξ and v stand for x(t)andu(t),
respectively), any admissible process (x, u) and some constant C>

0.

Before proving the existence result, we formulate an auxiliary
lemma.

Lemma 4.1: Any admissible trajectory x(·) of the problem (P)B∞
satisfies the inequality:

|x(t )| � β(t ), (14)

where

β(t ) := KeCt (15)

with a constant K > 0.
Proof: The differential inequality

−C(1 + |x(t )|) � ẋ(t ) � C(1 + |x(t )|),

valid by Assumption 4.1, together with initial condition x(0) =
x0 and due to the differential inequality theorem imply the
inequality

(C1)
sgn(x(t ))e−sgn(x(t ))Ct − 1 � |x(t )| � (C2)

sgn(x(t ))esgn(x(t ))Ct − 1

for all t > 0 with x(t) > 0 and some constantsC1, C2 ∈ IR+. For
t > 0 with x(t) < 0 one has the contrary inequality:

(C1)
sgn(x(t ))e−sgn(x(t ))Ct − 1 � |x(t )| � (C2)

sgn(x(t ))esgn(x(t ))Ct − 1.

Altogether, we obtain the statement of the lemma with K :=
max{C−1

1 ,C2}. �

As far as it is known to the authors, there are no existence
results for the considered class of problems in the literature. The
existence result in Lykina and Pickenhain (2016) captures only
control problems with a budget constraint depending solely on

L



the state variable. Therefore, we now derive an existence theo-
rem for our main optimal control problem which represents a
generalisation of the theorem in the cited source. Let us assume:

Assumption 4.2: The function r(t, ξ , v) is continuous in t, contin-
uously differentiable in ξ and v , and convex on U for all (t, ξ ) ∈
IR+ × IRn.

Assumption 4.3: The integrand r(t, ξ , v) satisfies the growth con-
dition

∣∣ r(t, ξ , v
)∣∣ ≤ A1(t )

ν0(t )
+ B1 ·

n∑
k=1

| ξk |2
ν0(t )

· ν1(t )

+B1 ·
m∑
k=1

| vk |2
ν0(t )

· ν1(t )

∀ (t, ξ , v ) ∈ IR+ × IRn × U (16)

with a function A1 ∈ L1(IR+) and a constant B1 > 0.

Assumption 4.4: The gradient �v r(t, ξ , v) satisfies the growth
condition

∣∣ ∇vr
(
t, ξ , v

) · ν0(t )
ν1(t )

∣∣ ≤ A2(t ) ν1(t )−1/2 + B2 ·
n∑

k=1

| ξk |

+B2 ·
m∑
k=1

| vk |

∀ (t, ξ , v ) ∈ IR+ × IRn × U (17)

with a function A2 ∈ L2(IR+) and a constant B2 > 0.

Assumption 4.5: Let the function B : IR+ × IRn → IRn × IRm

from the right-hand side of the state equation satisfy component-
wisely the growth condition

|Bi j(t, ξ1, . . . , ξn)| � A3i j(t )ν1(t )−1/2 + B3i j ·
n∑

k=1

|ξk| (18)

for each pair of indices (i, j) � {1, …, n} × {1, …, m} with some
function A3i j(·) ∈ L2(IR+) and some constant B3ij > 0 for all vec-
tors (t, ξ1, . . . , ξn) ∈ IR+ × IRn.

Theorem 4.1: Assume that Assumptions 4.1–4.5 are satisfied for
a problem of class (P)B∞ and the feasible set is not empty. Addition-
ally, let the weight function ν1 be a density and function β from
(15) belong to the space L12(IR

+, ν1). Then, the control problem
(P)B∞ possesses an optimal solution.

Remark 4.2: Assumed ν1(t) = e−ρt, then function β(·) satisfies
the assumption of the theorem, if ρ > 2C.

Proof: Due to Lemma 4.1 and to the assumption of the theorem,
the so-called natural state constraint of the form

|x(t )| ≤ β(t ), β ∈ L2(IR+, ν1) (19)

holds for any admissible state trajectory x(·) for any time t > 0
and with β(t) as in (15).

The proof of the weak lower semi-continuity of the func-
tional (2) can now be completely taken from Lykina (2016,

Theorem 3.1, p. 56 ff). In order to get the weak compactness
of the admissible set of (P)B∞ we can use the proof of the weak
compactness of the admissible set for a state constrained con-
trol problem with the state constraint of the form (19) provided
in Lykina (2016, Theorem 4.1, p. 63 ff). However, we still need
to show that the isoperimetrical constraint (5) remains valid, if
one passes to a weak limit xN⇀x0 in W 1,n

2 (IR+, ν1) and weak
limit uN⇀x0 in Lm2 (IR+, ν1) asN→ � for an arbitrary sequence
{(xN, uN )}∞N=1 of admissible processes. Indeed, the continuity
of the embeddingW 1,n

p (IR+, ν1) ⊂ Lnp(IR+, ν1) implies the weak
convergence xn⇀x0 also in the space Ln2 (IR+, ν1) as N → �.
Furthermore, since (D1,D2) ∈ Ln+m

2 (IR+, ν1) holds, the left-
hand side of (5) can be interpreted as a linear continuous func-
tional on the space Ln+m

2 (IR+, ν1), i.e. for the elements of the
sequence {xN, uN}∞N=1 we have

∞∫
0

(
DT

1 (t )xN (t ) + DT
2 (t )uN (t )

)
ν1(t ) dt = f (xN, uN ) (20)

for some f ∈ [
Ln+m
2 (IR+, ν1)

]∗. Due to the weak convergence of
(xN, uN), one obtains

d � f (xN, uN ) → f (x0, u0), N → ∞. (21)

Therefore, f(x0, u0) � d. Thus, the admissible set of (P)B∞ is
weakly compact and the generalisedWeierstraß theorem can be
applied to assure the existence of an optimal solution. �
Remark 4.3: Theorem 4.1 remains valid, if the growth condi-
tions posed in Assumptions 4.3 and 4.4 as well as the differen-
tiability assumptions on the integrand r are satisfied only on the
set

R := {(t, ξ , v ) ∈ IR+ × IRn × IRm | t ∈ IR+, |ξ | ≤ β(t ), v ∈ U }.
(22)

5. Application to a cancer treatmentmodel
We consider the following bilinear model of cell cycle-specific
cancer treatment by means of multi-drug chemotherapy with a
killing (cytotoxic) and blocking (cytostatic) agent. The cell cycle
consists of three phases, namely the first growth phase G1, the
synthesis phase S and the second growth phase with mytosis
G2/M. Every cell sequentially goes through all of these three
phases. Let N(t) = (N1(t), N2(t), N3(t))T be a 3-compartmental
state variable, where Ni(t) (i = 1, 2, 3) denotes the number
of cancer cells in ith-phase of cell cycle at time t (Ntotal(t) =
N1(t) + N2(t) + N3(t) is the total number of cancer cells) and
satisfying the following systemof ordinary differential equations
(cf. Schättler & Ledzewicz, 2015, p. 158):

Ṅ1(t ) = −a1N1(t ) + 2a3N3(t ) − 2u(t )a3N3(t ), N1(0) = N0
1

(23)

Ṅ2(t ) = a1N1(t ) − a2N2(t ) + v(t )a2N2(t ), N2(0) = N0
2

(24)

Ṅ3(t ) = a2N2(t ) − a3N3(t ) − v(t )a2N2(t ), N3(0) = N0
3

(25)

1404 D. GRASS AND V. LYKINA



which is controlled optimally through minimising the linear-
quadratic damage functional J�(x, u) given by

∞∫
0

{
q1N1(t ) + q2N2(t ) + q3N3(t )

+1
2

(
θ1u2(t ) + θ2v

2(t )
) }

e−ρtdt −→ min ! (26)

over all pairs (x, u) satisfying

(x, u) ∈ W1
2 (IR+, e−ρt ) × 2(IR+, e−ρt ) (27)

u(t ) ∈ [0, umax], v(t ) ∈ [0, vmax], a. e. on IR+, 0 � umax, vmax < 1
(28)

d �
∞∫
0

(c1u(t ) + c2v(t ))e−ρtdt. (29)

Here, the control function u(·) denotes the concentration of
cytotoxic agent in the bloodstream. Drugs of G2/M-specific
cytotoxic type are combined here with a cytostatic blocking
agent preventingDNAandRNA synthesis in phase S. Thus, can-
cer cells are hold in the growth phase G1, i.e. before the divi-
sion process starts, unless the killing cytotoxic agent will be at
full potential in the G2/M phase. A cytostatic blocking agent is
applied to slow down the transit times of cancer cells during the
synthesis phase S and, as a result, the flowof cancer cells from the
second to the third compartment is reduced by v(t) percent from
its original flow. One’s goal is to maximise the overall number of
killed cancer cells and simultaneously to minimise the damage
of the chemotherapy on healthy cells. For any choice of controls,
all states andmultipliers in themodel are positive. The tumour is
assumed to be a homogeneous population of drug sensitive cells
and the process of killing the cancer cells by the killing cytotoxic
agent is assumed to follow the log-kill hypothesis.

The problem (23)–(29) is a problem of class (P)B∞ with func-
tionsA : IR+ × IRn → IRn, B : IR+ × IRn → IRn × IRm given by

A(t,N(t )) =
⎛
⎝−a1N1(t ) + 2a3N3(t )

a1N1(t ) − a2N2(t )
a2N2(t ) − a3N3(t )

⎞
⎠ ,

B(t,N(t )) =
⎛
⎝−2a3N3(t ) 0

0 a2N2(t )
0 −a2N2(t )

⎞
⎠ , (30)

functionsD1 : IR+ → IR3,D2 : IR+ → IR2 defined byD1(t)� (0,
0, 0),D2(t)� (c1, c2), density functions ν0(t)� ν1(t) := e−ρt with
ρ > 0. The isoperimetrical constraint (29)means that the overall
allowed and/or available amount of drugs applied in the treat-
ment horizon [0, �) does not exceed d. Moreover, the dosages
which are being applied in the far future are not so relevant due
to the presence of the density function ν1(·) in the isoperimetri-
cal constraint.

Remark 5.1:

(a) We use weighted Sobolev and weighted Lebesgue spaces
in the above model setting in view of advantages
described in Lykina and Pickenhain (2017) and with the
purpose of comparability of future results.

(b) The perspective of using other densities ν0 in the damage
functional J� rather than the discount factor e−ρt seems
to be one of the most important future tasks.

Proposition 5.1: For ρ > 2 · a3 there exists an optimal solution
for the infinite horizon optimal control problem of cancer treat-
ment by means of multi-drug chemotherapy with isoperimetrical
constraint, i.e. for (23)–(29).

Proof: We verify, whether the assumptions of Theorem 4.1 are
satisfied for the considered cancer treatment problem. The
admissible set is not empty, since the dynamic system without
treatment, i.e. u(t) � v(t) � 0, possesses a solution (N1, N2,
N3) which satisfies Ni(t) → � as t → � but is still admissi-
ble due to the high discount rate ρ. Such state trajectory belongs
to the weighted Sobolev spaceW 1,3

2 (IR+, ν1) and the zero con-
trol functions are obviously in the space L22(IR+, ν1) as well
as the budget constraint is trivially satisfied. Assumption 4.2
obviously holds, Assumption 4.3 of Theorem 4.1 is satisfied
with A1(·) ∈ L1(IR+) defined by A1(t ) := maxi=1,2,3{qi}e−ρt

and B1 := maxi=1,2,3, j=1,2{qi, θ j} > 0 due to the estimate

3∑
i=1

(qiNi(t )) + 1
2
(θ1u2(t ) + θ2v

2(t )) � max
i=1,2,3

{qi}+ (31)

max
i=1,2,3

{qi}
3∑

i=1

(N2
i (t )) + max

j=1,2
{θ j}(u2(t ) + v2(t )). (32)

Furthermore, Assumption 4.4 of Theorem 4.1 is satisfied with
A2(·) ∈ L2(IR+) given by A2(t): �0 and B1 := max {θ1, θ2} > 0
because of inequality

θ1u(t ) + θ2v(t ) � 0 + max
j=1,2

{θ j}(u(t ) + v(t )). (33)

The right-hand side of the dynamics in the investigated model
fulfils the growth condition assumed in Assumption 4.1, since
we deal here with a bilinear model. Here, the growth condi-
tion (13) is satisfied with constant C1 = max {a1 + 2a3, a1 + a2,
a2 + a3}, if the maximum norm is used in three-dimensional
euclidean space IR3 and all the states are considered indepen-
dently from each other. Besides, the matrix function B(·) identi-
fied in (30) satisfies Assumption 4.5 with functions A311(t) =
A322(t): �0 and positive constants B311 := |2a3|, B322 := |a2|,
B332 := |a2| due to obvious inequalities. Therefore, Theorem 4.1
can be applied and we conclude the existence of an optimal
strategy for multi-drug cancer treatment. Due to Remark 4.2,
Theorem 4.1 can now be applied for ρ > 2C1 = 2max {a1 + 2a3,
a1 + a2, a2 + a3}, which for the data set in Table 2 gives values ρ

> 1.184.
However, using the interpretation of the states as number of

cancer cells in a certain stage in a cell cycle, we know that for
each i � {1, 2, 3} the inequality 0 � Ni(t) � Ntotal(t) holds for all

L
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Table . Parameter set used in Schättler and Ledzewicz () for the corresponding
finite horizon model.

Coefficient a a a umax vmax θ  θ  q q q c c

Value . . . . .  .    – –

Table . Parameter set for the infinite horizon model presented here

Coefficient a a a umax vmax θ  θ  q q q c c

Value . . . . .  .     .

t > 0. Adding all the three equations in the system (23)–(25) we
obtain the differential equation for the total number of cancer
cells Ntotal(·):

Ṅtotal(t ) = Ṅ1(t ) + Ṅ2(t ) + Ṅ3(t ) = a3(1 − 2u(t ))N3(t ).

The right-hand side of the last equation satisfies the growth con-
dition

−a3Ntotal(t ) � a3 · (1 − 2u(t ))N3(t ) � a3Ntotal(t )

due to the control constraints and therefore due to Lemma 4.1
we arrive at the growth condition for the total number of cancer
cells Ntotal(·):

|Ntotal(t )| � Kea3t .

It follows the inequality |(N1(t ),N2(t ),N3(t ))| =
maxi∈{1,2,3} |Ni(t )| � |Ntotal(t )| � KeCt with C := a3. Thus,
the diapason for the values of parameter ρ is improved to ρ > 2
· a3. �
Remark 5.2: For concrete set of data used in Schättler and
Ledzewicz (2015) for the corresponding finite horizon model of
multi-drug chemotherapy model without isoperimetrical con-
straint, see Table 1, and supplemented with necessary values of
parameters c1, c2, cf. Table 2, we obtain the existence of an opti-
mal solution for ρ > 0.214. Such values of the parameter ρ result
from the existence theorem. Nevertheless, there is a possibil-
ity of weakening the assumptions of the theorem by replacing
the Hilbert spacesW 1

2 (IR+, e−ρt ) and L2(IR+, e−ρt ) by reflexive
spacesW 1

p (IR+, e−ρt ) and Lp(IR+, e−ρt )with p� (1,�), cf. also
Aubin and Clarke (1979), where such reflexive functional spaces
are used for obtaining necessary optimality conditions without
explicitly to mention it.

In order to investigate the isoperimetrically constrained infi-
nite horizon cancer treatment problem, we now supplement the
Table 1 with the missing values of ci (i = 1, 2) as follows, see
Table 2, and transcribe the problem into an equivalent optimal
control problem with four state functions, i.e. N = (N1, N2, N3,
N4).

To this aim, we define

N4(t ) :=
t∫

0

(c1u(τ ) + c2v(τ ))e−ρτdτ

and by differentiating obtain the following system of ODEs:

Ṅ1(t ) = −a1N1(t ) + 2a3N3(t ) − 2u(t )a3N3(t ), N1(0) = N0
1

(34)

Ṅ2(t ) = a1N1(t ) − a2N2(t ) + v(t )a2N2(t ), N2(0) = N0
2

(35)

Ṅ3(t ) = a2N2(t ) − a3N3(t ) − v(t )a2N2(t ), N3(0) = N0
3

(36)

Ṅ4(t ) = e−ρt (c1u(t ) + c2v(t )), N4(0) = 0; lim
T→∞

N4(T ) � d,

(37)

with (N1,N2,N3,N4) ∈ W 1,4
2 (IR+, e−ρt ).

Remark 5.3: Alternatively to (37) it is possible to extend the
dynamical system by means of

Ṅ4(t ) = −e−ρt (c1u(t ) + c2v(t )), N4(0) = d,

N4(t ) � 0 ∀ t > 0, (38)

which means that instead of a terminal constraint we can intro-
duce a pure state constraint, cf. also Aseev et al. (2013).

The numerical results to the above cancer treatment prob-
lem were obtained by means of open source software OCMat,
cf. Graß (2012), and some additional extensions of its capabil-
ities made specific for handling the budget constrained prob-
lems. The numerical method implemented there is an indirect
method combining the solution of a boundary value problem

Figure . States for a sufficient large budget and initial state N()= (, , ).
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Figure . Controls for a sufficient large budget and initial state N()= (, , ).

Figure . Adjoint functions for a sufficient large budget and initial state N() =
(, , ).

obtained from a Pontryagin Maximum Principle with a contin-
uation method. The validity of the necessary optimality condi-
tions in the form of Pontryagin’s Maximum Principle including
transversality condition which is assumed for application of the
numericalmethod implemented inOCMat software, is given for
the considered cancer treatment model due to, e.g. Tauchnitz
(2015).

All calculations in subsequent subsections are provided for
the value ρ = 1.2. For smaller values of ρ the principal structure
of optimal solutions remains similar. Dependant on the ‘budget’
d, we can subdivide our considerations into three sub-cases.

Figure . States for a sufficient largebudget and large initial tumor cells population,
i.e. N()= (, , ).

Figure . Controls for a sufficient large budget and large initial tumour cells
population, i.e. N()= (, , ).

5.1 The case of a high ‘budget’ of therapeutics
Let us assume that the budget constant d is so high that the
isoperimetrical constraint never becomes active. In this case, it is
optimal to control the system towards the stable non-zero equi-
librium of the canonical system as if it was a non-constrained
optimal control problem, i.e. without the isoperimetrical ‘bud-
get’ constraint. For the parameter set given in Table 2, the state
components of this equilibrium are given by (N̂1, N̂2, N̂3) =
(1.5228, 0.7595, 2.8037).
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Figure . Adjoint functions for a sufficient large budget and large initial tumour
cells population, i.e. N()= (, , ).

Figure . States for a sufficient large budget and N()= (, , ).

Here, for large initial values of the tumor cells population,
the optimal solution structure confirms the principal structure
of the corresponding non-constrained finite horizon control
problem (cf. Schättler & Ledzewicz, 2015, p. 159), in the sense
that maximal tolerated dosages of the cytotoxic agent at the
beginning of the treatment are optimal. After some time they
are gradually decreased to a constant medium level, compare
Figures 1–3 and 4–6. Similar to Schättler and Ledzewicz (2015),
the used time scale corresponds to the number of treatment
days.

Figure . Controls for a sufficient large budget and N()= (, , ).

Figure . Adjoint functions for a sufficient large budget and N()= (, , ).

For small initial tumour cells population, e.g. forN(0)= (1, 1,
1), it also turns out to be optimal to control the system towards
the same non-zero equilibrium, whose coordinates are partly
even larger then the initial values, see Figures 7–9.

It can be explained bymeans of instability of the zero equilib-
rium of the uncontrolled system, though the zero equilibrium is
more desirable from the medical point of view. However, in this
case the dosage of the cytotoxic agent u(·) is growing very slowly
up to a constant medium level. If the initial number of cancer
cells belongs to a small neighbourhood of the non-zero equilib-
rium N̂ = (N̂1, N̂2, N̂3), e.g. N(0) = (3, 3, 3), then the non-zero
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Figure . States for a sufficient large budget and initial state near the equilibrium
level, here N()= (, , ).

Figure . Controls for a sufficient large budget and and initial state near the equi-
librium level, here N()= (, , ).

phase of the cytostatic agent v(·) disappears, compare Figures
10–12.

If the initial number of cancer cells is very low in compari-
son to the level of the non-zero equilibrium, e.g.N(0)= (0.3866,
0.1722, 0.4412) and cf. Figures 13–15, then the the structure of
the optimal solution undergoes a significant change. It turns out
to be optimal not to postpone the treatment but, starting with
a very small dosage, to very slowly increase the dosage of cyto-
toxic therapeutic agent unless the number of cancer cells arrives

Figure . Adjoint functions for a sufficient large budget and and initial state near
the equilibrium level, here N()= (, , ).

Figure . States for a sufficient large budget and a small tumour cells population
relatively compared to the level of the equilibrium, N()= (., ., .).

approximately at the level of the equilibrium and afterwards to
continue with a constant medium dosage.

Simultaneously, a shift of the non-zero phase of the cytostatic
agent to the beginning of the treatment period and increasing of
the dosage at the maximal level happens.

5.2 The case of a low ‘budget’ of therapeutics
In case of a small overall allowed amount of therapeutics d,
the isoperimetrical constraint will become active at some finite
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Figure . Controls for a sufficient large budget and a small tumour cells population
relatively compared to the level of the equilibrium, N()= (., ., .).

Figure . Adjoint functions for a sufficient large budget and a small tumor cells
population relatively compared to the level of the equilibrium, N() = (.,
., .).

point of time. It means that from this point of time on, both con-
trols are identically zero over an infinite time interval and the
system of cancer cells population starts uncontrolled growth.
From Figures 16–18 it is obvious that the available amount of
drugs is exhausted very fast and is not sufficient in order to bring
the state trajectories in a small neighbourhood of the non-zero
equilibrium level N̂ = (N̂1, N̂2, N̂3).

Figure . States for small budget d=  and N()= (, , ).

Figure . Controls for small budget d=  and N()= (, , ).

Remark 5.4: Given a fixed initial state N(0) = (N0
1 ,N0

2 ,N0
3 ), it

is possible to find a minimal level of budget dmin which is nec-
essary in order to have enough medical resources to control the
system optimally towards the equilibrium over the whole infi-
nite horizon. To do this, we need to compute the optimal con-
trols for the ‘unconstrained’ cancer treatment problem and then
set

dmin := lim
T→∞

N4(T ) = lim
T→∞

T∫
0

(c1u(t ) + c2v(t ))e−ρtdt.
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Figure . Costates for small budget d=  and N()= (, , ).

Figure . Phase diagram, slice plane ( , ), case of the threshold budget (long
path), d=.

5.3 The case of a threshold ‘budget‘’ of therapeutics
In the following phase diagrams which represent slice planes
(N1N2), (N2N3) and (N1N3) of the phase space (N1, N2, N3), cf.
Figures 19–24 as well as Figure 25, the results are given for the
budget d= 500. On all these pictures, the green line corresponds
to the mode v(t) = vmax; the red line corresponds to the mode
v(t)= vmin; the blue line denotes themode, in which all controls
are in the interior of the control set.

The paths which lead to the equilibrium point, see long
paths on Figures 19–21, satisfy the terminal constraint
limT→∞ N4(T ) = d, i.e. they correspond to the case of ‘budget’

Figure . Phase diagram, slice plane ( , ), case of the threshold budget (long
path), d=  (long path), d= .

Figure . Phase diagra, slice plane ( , ), case of the (long path), d = e
threshold budget, d= .

d, which will be exhausted exactly in time T = �. The shorter
paths on these images denote the paths corresponding to the
case of the same budget d = 500 but which is exhausted in
finite time. It means the initial value of the state is rather high
compared to the value of the equilibrium so that the available
amount of drugs is not sufficient to achieve the equilibrium. The
paths are interrupted at that particular finite time, otherwise
they would diverge what confirms the uncontrolled growth of
the system of cancer cells.

1 

1 

1 3

3

2

N N

N N

N N
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Figure . Phase diagram, budget constraint which
does not become active (shorter path going near by the equilibrium), d= .

Figure . Phase diagram, slice plane ( , ) , case of budget constraint which
does not become active (shorter path going near by the equilibrium), d= .

The long paths connect the equilibrium with the initial point
starting fromwhich the set ‘budget’ d= 500 would be exhausted
at exactly T = �. For solutions corresponding to the ‘threshold
budget” compare Figures 26 and 27, and Figure 28.

If the solution of the problem, where the isoperimetrical con-
straint becomes active after a finite time, approaches the initial
state corresponding to the limiting condition limT→∞ N4(T ) =
d, then the corresponding path is getting closer to the
equilibrium, cf. Figures 22–24. However, this path misses the

Figure . Phase diagram, slice plane ( , ), case of budget constraint which
does not become active (shorter path going near by the equilibrium), d= .

Figure . ‘Threshold state trajectories’ for budget d= .

equilibrium point and after passing nearby the equilibrium the
trajectories drift away from it. Structurally, it means that for a
fixed ‘budget’ amount d, there exists a surface in the state space
(N1, N2, N3) which separates the initial states leading to the
active budget constraint at some finite point of time from those
initial states which lead to everywhere inactive isoperimetrical
constraint. The surface itself contains all those initial states, for
which the isoperimetrical constraint becomes active at exactly T
= �, i.e. limT→∞ N4(T ) = d. An exemplified slice curve, taken
for a fixed value of N3 = 1 is given in Figure 29, black curve.

slice plane ( , ), case of1 

1 3

32 2
N N N N

N N
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Figure . ‘Threshold state trajectories’ for budget d= .

Figure . ‘Threshold adjoint functions’ for budget d= .

If the isoperimetrical constraint is not satisfied by the equilib-
rium N̂ = (N̂1, N̂2, N̂3) taken as the initial state, i.e. the optimal
controls corresponding to this initial point induce the inequality
limT→∞ N4(T ) > d, then the separating surface will be located
beyond the equilibrium point, cf. Figure 29. Otherwise, it lies
above the equilibriumpoint. This picture shows also three paths,
each of which corresponds to one of the cases presented in
this discussion, namely a path starting exactly at the slice curve
and corresponding to the ‘threshold case’, a path starting under-
neath the separating curve which flows into the ‘threshold’ path
and corresponds to the case of sufficiently ‘high’ budget and a

Figure . Growth of the budget variable N for budget d= .

Figure 29. Slice curve for budget 

third shorter path starting above the separating curve and cor-
responding to the case of a budget which is exhausted in a finite
time.

6. Conclusions
A class of infinite horizon optimal control problems with mixed
control-state isoperimetrical constraint formulated in weighted
Sobolev spaces was investigated, for which an existence theo-
rem was derived. The proved theoretical result could have been
successfully applied to an infinite horizon optimal control prob-
lem of cancer treatment by means of multi-drug chemotherapy.

d= .
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Based on the continuation algorithm for infinite horizon opti-
mal control problems developed in Graß (2012), we also per-
formed the numerical analysis for this model for different val-
ues of the ‘budget’ d. The most remarkable point resulting from
the numerical analysis of the cancer treatment model with infi-
nite horizon is that for small tumours, compared to the equi-
librium level, it is optimal to gradually increase the dosage of
the cytotoxic therapeutic agent up to amedium level which then
should be held constant. In contrast to this, the corresponding
finite horizon control problem implies already at the beginning
of the treatment period the most tolerated dosage of the cyto-
toxic therapeutic agent. The future research focus will lie on
extending the achieved results to the optimal control problems
with highly nonlinear state equations and nonlinear isoperimet-
rical constraints. Considering more sophisticated cancer treat-
ment models with infinite horizon including density functions
resulting from the survival probability of a particular individ-
ual will also be a natural step in finding less aggressive long run
cancer therapies.

Note
1. This software package is available at http://orcos.tuwien.ac.at/research/

ocmat_software/
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