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ABSTRACT
This paper addresses the problem of navigation control of a general class of 2nd order uncertain nonlinear
multi-agent systems in a bounded workspace, which is a subset of R

3, with static obstacles. In particular,
we propose a decentralised control protocol such that each agent reaches a predefined position at the
workspace, while using local information based on a limited sensing radius. The proposed scheme guar-
antees that the initially connected agents remain always connected. In addition, by introducing certain
distance constraints, we guarantee inter-agent collision avoidance as well as collision avoidance with the
obstacles and the boundary of the workspace. The proposed controllers employ a class of Decentralized
Nonlinear Model Predictive Controllers (DNMPC) under the presence of disturbances and uncertainties.
Finally, simulation results verify the validity of the proposed framework.
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1. Introduction

During the last decades, decentralised control of multi-agent
systems has gained a significant amount of attention due to
the great variety of its applications, including multi-robot sys-
tems, transportation, multi-point surveillance and biological
systems. The main focus of multi-agent systems is the design
of decentralized control protocols in order to achieve global
tasks, such as consensus (Jadbabaie, Lin, & Morse, 2003; Olfati-
Saber & Murray, 2004; Ren & Beard, 2005; Tanner, Jadbabaie,
& Pappas, 2007), in which all the agents are required to converge
to a specific point and formation (Anderson, Yu, Fidan, & Hen-
drickx, 2008; Cao, Morse, Yu, Anderson, & Dasgupta, 2011;
Egerstedt & Hu, 2001; Oh, Park, & Ahn, 2015), in which all
the agents aim to form a predefined geometrical shape. At
the same time, the agents might need to fulfill certain tran-
sient properties, such as network connectivity (Ji & Egerst-
edt, 2007; Zavlanos & Pappas, 2008) and/or collision avoidance
(Dimarogonas, Loizou, Kyriakopoulos, & Zavlanos, 2006). In
parallel, another topic of research is multi-agent navigation in
both the robotics and the control communities, due to the
need for autonomous control of multiple robotic agents in the
same workspace. Important applications of multi-agent navi-
gation arise also in the fields of air-traffic management and in
autonomous driving by guaranteeing collision avoidance with
other cars and obstacles. In this work, we study the problem of
multi-agent navigation with network connectivity and collision
avoidance properties.

The literature on approaching the problem of navigation of
multi-agent systems is rich. In Dimarogonas et al. (2006) and
Makarem and Gillet (2011), a decentralised control protocol of
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multiple non-point agents (point masses) with collision avoid-
ance guarantees is considered. The problem is approached by
designing navigation functions which have been initially intro-
duced in Koditschek and Rimon (1990). A decentralised poten-
tial field approach for navigation of multiple unicycles (aerial
vehicles) with collision avoidance has been considered in Baras,
Tan, and Hovareshti (2003) and Panagou (2017); Robustness
analysis and saturation in control inputs are not addressed. In
Roozbehani, Rudaz, and Gillet (2009), the collision avoidance
problem for multiple agents in intersections has been studied.
Anoptimal control problem is solved,with only time and energy
constraints. Authors in Loizou (2014) proposed decentralised
controllers for multi-agent navigation and collision avoidance
with arbitrarily shaped obstacles in 2D environments. Further-
more, connectivity maintenance properties are not taken into
consideration in all the aforementioned work.

Other approaches in multi-agent navigation propose solu-
tions to decentralised optimisation problems. In Dunbar
and Murray (2006), a decentralised receding horizon protocol
for formation control of linear multi-agent systems is proposed.
Authors in Rucco, Aguiar, Fontes, Lobo Pereira, and Borges
de Sousa (2015) considered the path-following problems for
multiple Unmanned Aerial Vehicles (UAVs) in which a decen-
tralised optimisation method is proposed through linearisation
of the dynamics of the UAVs. A DNMPC along with poten-
tial functions for collision avoidance has been studied in Shim,
Kim, and Sastry (2003). A feedback linearisation framework
along with Model Predictive Controllers (MPC) for multiple
unicycles in leader-follower networks for ensuring collision
avoidance and formation is introduced in Fukushima, Kon, and
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Matsuno (2005). Authors in Franco, Magni, Parisini, Polycar-
pou, and Raimondo (2008), Keviczky, Borrelli, and Balas (2006)
and Keviczky, Borrelli, Fregene, Godbole, and Balas (2008)
propose a decentralised receding horizon approach for dis-
crete time multi-agent cooperative control. However, in the
aforementioned works, plant-model mismatch or uncertain-
ties and/or connectivity maintenance are not considered. In
Richards and How (2004a) and Richards and How (2004b), a
centralized (decentralized) linearMPC formulation and integer
programming is proposed for dealing with collision avoidance
of multiple UAVs.

The contribution of this paper is to provide decentralized
control protocols which guarantee that a team of rigid-bodies
modeled by 2nd order uncertain Lagrangian dynamics satisfy:
collision avoidance between agents; obstacle avoidance; connec-
tivity preservation; singularity avoidance; that agents remain in
the workspace; while the control inputs are saturated. This con-
stitutes a general problem that arises inmanymulti-agent appli-
cations where the agents need to perform a collaborative task,
stay close and connected to each other and navigate to desired
goal points. To the best of the authors’ knowledge, decentralised
control protocols that guarantee all the aforementioned control
specifications for the dynamics in hand have not been proposed
in the bibliography. In order to address the aforementioned
problem, we propose a Decentralized Nonlinear Model Predic-
tive Control (DNMPC) framework in which each agent solves
its own optimal control problem, having availability of informa-
tion on the current and estimated actions of all agents within
its sensing range. The proposed control scheme, under rela-
tively standard Nonlinear Model Predictive Control (NMPC)
assumptions, guarantees that all the aforementioned control
specifications are satisfied. A conference version of this paper
can be found in Filotheou, Nikou, and Dimarogonas (2018), in
which a similar problem is investigated for nonlinear uncertain
dynamics with additive disturbance inR

n, without any rotation
representations. However, due to space constraints, the proofs
have been omitted in the conference paper.

The remainder of this paper is structured as follows: In
Section 2 the notation and preliminaries background are given.
Section 3 provides the system dynamics and the formal problem
statement. Section 4 discusses the technical details of the solu-
tion and Section 5 is devoted to simulation examples. Finally,
conclusions and future work are discussed in Section 6.

2. Notation and preliminaries

The set of positive integers is denoted by N. The real n-
coordinate space, n ∈ N, is denoted byR

n;Rn
≥0 andR

n
>0 are the

sets of real n-vectors with all elements nonnegative and positive,
respectively. Given a set S, we denote by |S| its cardinality. The
notation ‖x‖ is used for the Euclidean norm of a vector x ∈ R

n

and ‖A‖ = max{‖Ax‖ : ‖x‖ = 1} for the induced norm of a
matrix A ∈ R

m×n. Given a real symmetric matrix A, λmin(A)
and λmax(A) denote the minimum and the maximum abso-
lute value of eigenvalues of A, respectively. Its minimum and
maximum singular values are denoted by σmin(A) and σmax(A)
respectively; In ∈ R

n×n and 0m×n ∈ R
m×n are the unit matrix

and the m × n matrix with all entries zeros, respectively. The
set-valued function B : R

3 × R>0 ⇒ R
3, given by B(c, r) =

{x ∈ R
3 : ‖x − c‖ ≤ r}, represents the 3D sphere with center

c ∈ R
3 and radius r ∈ R>0. Furthermore, we denote by φ, θ

and ψ the Euler angles of a frame {F} with respect to an iner-
tial frame {Fo}. We also use the notationM = R

3 × T 3 where:
T = (−π ,π)× (−π

2 ,
π
2 )× (π ,π). For the definitions of Class

K, Class KL functions, Input-to-State Stability (ISS Stability),
ISS Lyapunov Function and positively invariant sets, which will
be used thereafter in this manuscript, we refer the reader to
Khalil (2002), Marquez (2003) and Sontag and Wang (1995).

Definition 2.1 (Minkowski Addition): Given the sets S1, S2 ⊆
R
n, their Minkowski addition is defined by: S1 ⊕ S2 = {s1 +

s2 ∈ R
n : s1 ∈ S1, s2 ∈ S2}.

Definition 2.2 (Pontryagin Difference): Given the sets S1,
S2 ⊆ R

n, their Pontryagin difference is defined by: S1 � S2 =
{s1 ∈ R

n : s1 + s2 ∈ S1, ∀ s2 ∈ S2}.

Property 2.1: Let the sets S1, S2, S3 ⊆ R
n. Then, it holds that:

(S1 � S2)⊕ (S2 � S3) = (S1 ⊕ S2)� (S3 ⊕ S3).

Proof: The proof can be found in Appendix 1. �

3. Problem formulation

3.1 Systemmodel

Consider a set V of N rigid bodies, V = {1, 2, . . . ,N}, N ≥ 2,
operating in a workspaceW ⊆ R

3. A coordinate frame {Fi}, ı ∈
V is attached to the center of mass of each body. The workspace
is assumed to be modeled as a bounded sphere B(pW , rW)
expressed in an inertial frame {Fo}. We consider that over time
t each agent i ∈ V occupies the space of a sphere B(pi(t), ri),
where pi : R≥0 → R

3 is the position of the agent’s center of
mass, and ri < rW is the radius of the agent’s rigid body. We
denote by qi(t) : R≥0 → T 3, the Euler angles representing the
agents’ orientation with respect to the inertial frame {Fo}, with
qi � [φi, θi,ψi]�. By defining: xi(t) � [pi(t)�, qi(t)�]�, xi(t) :
R≥0 → M, vi(t) � [ṗi(t)�, ωi(t)�]�, vi(t) : R≥0 → R

6, we
model the motion of agent i under continuous second order
Lagrangian dynamics as:

ẋi(t) = J(qi)vi(t), (1a)

v̇i(t) = M−1
i (xi)

[−Ci(xi, ẋi)vi(t)− gi(xi)+ ui(t)
]

+ w̃i(xi, vi, t), (1b)

where J : T 3 → R
6×6 is a Jacobian matrix that maps the Euler

angle rates to vi: J(qi) =
[

I3 03×3
03×3 Jq(qi)

]
, Jq(qi) =[

1 sinφi tan θi cosφi tan θi
0 cosφi − sinφi
0 sinφi

cos θi
cosφi
cos θi

]
. Moreover, Mi : M → R

6×6 is the

positive definite inertiamatrix,Ci : M × R
6 → R

6×6 is theCoriolis
matrix and gi : M → R

6 is the gravity vector.
The continuous function w̃i : M × R

6 × R≥0 → R
6 is a term

representing disturbances and modeling uncertainties. Finally,
ui : R≥0 → R

6 is the control input vector representing the 6D
generalised actuation force acting on the agent. The aforemen-
tioned vectors as well as their derivatives are derived with
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respect to the inertial frame Fo. The matrix J(qi) is singular
when cos θi = 0 ⇔ θi = ±π

2 . However, the proposed controller
guarantees that J(qi) is well-defined for every i ∈ V .

Let us define the vector zi(t) = [xi(t)�, vi(t)�]� : R≥0 →
M × R

6, i ∈ V . Then, by defining the vector żi : R≥0 → R
12,

the dynamics (1a), (1b) can be written as:

żi(t) = fi(zi(t),ui(t))+ wi(zi(t), t), (2)

where w = [01×6, w̃�
i ]

� and the functions fi : M × R
6 ×

R
6 → R

12, i ∈ V are given by: fi(zi(t),ui(t)) �[
Jvi(t)

−M−1
i [Civi(t)+gi−ui(t)]

]
. It is assumed that there exist finite con-

stants w̄i,ūi ∈ R>0, i ∈ V such that:

Wi = {wi ∈ R
12 : ‖wi‖ ≤ w̄i},Ui = {ui ∈ R

6 : ‖ui‖ ≤ ūi},
(3)

i.e. the disturbances wi as well as the control inputs ui are upper
bounded by the terms w̄i, ūi, respectively.

Assumption 3.1: The nonlinear functions fi are locally Lipschitz
continuous inM × R

6 × Ui with Lipschitz constants Lfi . Thus, it
holds that:

‖fi(z,u)− fi(z′,u)‖ ≤ Lfi‖z − z′‖, ∀ z, z′ ∈ M × R
6, u ∈ Ui.

(4)

We consider that in the given workspace there exists a set
of L ∈ N static obstacles, with L = {1, 2, . . . , L}, also modeled
by the spheres B(pO	 , rO	 ), with centers at positions pO	 ∈ R

3

and radii rO	 ∈ R>0, where 	 ∈ L. Their position and size in
the 3D space is assumed to be a priori unknown to each agent.
In order for agents to be able to detect the obstacles during their
navigation, we assume that each agent i ∈ V has a limited spa-
tial obstacle-detection range bi such that bi > ri. Thus, each
agent senses points which reside on the surface of the obsta-
cles and which are within a radius bi of its position. Given these
points, each agent reconstructs the sphere that corresponds to
the obstacle and extracts its position and radius in 3D space.

Assumption 3.2 (Measurements Assumption): Agent i ∈ V
has: (1) access to measurements pi, qi, ṗi,ωi, that is, vectors xi, vi
pertaining to itself; (2) A limited sensing range di such that: di >
maxi,j∈V , i �=j{ri + rj}.

The latter implies that each agent has sufficiently large sens-
ing radius so as to measure the agent with the biggest volume,
due to the fact that the agents’ radii are not the same. The con-
sequence of points 1 and 2 of Assumption 3.2 is that by defining
the set of agents j that are within the sensing range of agent i
at time t as: Ri(t) � {j ∈ V\{i} : ‖pi(t)− pj(t)‖ < di}, agent i
knows all signals pj(t), qj(t), ṗj(t), ωj(t), ∀j ∈ Ri(t), t ∈ R≥0,
of all agents j ∈ Ri(t) by virtue of being able to calculate them
using knowledge of its own pi(t), qi(t), ṗi(t), ωi(t). The geome-
try of two agents i and j as well as an obstacle 	 in the workspace
W is depicted in Figure 1.

Definition 3.1 (Collision/Singularity-free Configuration):
The multi-agent system is in a collision/singularity-free config-
uration at a time instant τ ∈ R≥0 if all the following hold: 1)
For every i, j ∈ V , i �= j it holds that: ‖pi(τ )− pj(τ )‖ > ri + rj;

Figure 1. Illustration of two agents i, j ∈ V and a static obstacle 	 ∈ L in the
workspace at a time instant τ ; {O} is the inertial frame, {Fi}, {Fj} are the frames
attached to the agents’ center of mass, pi , pj , p	 ∈ R

3 are the positions of the cen-
ters of mass of agents i,j and obstacle 	 respectively, expressed in frame {Fo};
ri , rj , r	 are the radii of the agents i,j and the obstacle 	 respectively; di , dj with
di > dj are the agents’ sensing ranges; bi is the spatial obstacle-detection range
of agent i.

2) For every i ∈ V and for every 	 ∈ L it holds that: ‖pi(τ )−
pO	‖ > ri + rO	 ; 3) For every i ∈ V it holds that: ‖pi(τ )−
pW‖ < rW − ri; 4) For every i ∈ V it holds that: −π

2 <
θi(τ ) <

π
2 .

Definition 3.2 (Neighboring set): Define the neighboring set
of agent i ∈ V as:Ni = {j ∈ V\{i} : j ∈ Ri(0)}. We will refer to
agents j ∈ Ni as the neighbors of agent i ∈ V .

The setNi is composed of indices of agents j ∈ V which are
within the sensing range of agent i at time t= 0. Agents j ∈ Ni
are agents which agent i is instructed to keep within its sensing
range at all times t ∈ R>0, and therefore maintain connectivity
with. While the setsNi are introduced for connectivity mainte-
nance specifications and they are fixed, the sets Ri(t) are used
to ensure collision avoidance, and, in general, their composition
evolves and varies through time.

Assumption 3.3 (Initial Conditions Assumption): For sake of
cooperation needs, we assume thatNi �= ∅, ∀i ∈ V i.e. all agents
have at least one neighbour. We also assume that at time t= 0
it holds that vi(0) = 06×1 and the multi-agent system is in a
collision/singularity-free configuration, as per Definition 3.1.

3.2 Objectives

Given the aforementioned modeling of the system, the objec-
tive of this paper is the stabilization of the agents i ∈ V start-
ing from a collision/singularity-free configuration as given
in Definition 3.1 to a desired feasible configuration xi,des =
[p�

i,des, q
�
i,des]

� ∈ M, while maintaining connectivity between
neighbouring agents, and avoiding collisions between agents,
obstacles, and the workspace boundary.

Definition 3.3 (Desired Feasible Configuration): The desired
configuration xi,des = [p�

i,des, q
�
i,des]

� ∈ M of agents i ∈ V , j ∈
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Ni is feasible if the following hold: 1) It is a collision/singularity-
free configuration according to Definition 3.1; 2) It does not
result in a violation of the connectivity maintenance between
neighbouring agents, i.e. ‖pi,des − pj,des‖ < di, ∀i ∈ V , j ∈ Ni.

Definition 3.4 (Feasible Initial Conditions): Let xi,des =
[p�

i,des, q
�
i,des]

� ∈ M, i ∈ V be a desired feasible configuration as
defined in Definition 3.3. Then, the set of all initial conditions
xi(0), vi(0) according to Assumption 3.3, for which there exist
time constants t̄i ∈ R>0 ∪ {∞} and control inputs u�i ∈ Ui, i ∈
V , which define a solution x�i (t), t ∈ [0, t̄i] of the system of dif-
ferential equations (1a)–(1b), under the presence of disturbance
wi ∈ Wi, such that: 1) x�i (t̄i) = xi,des, 2) ‖p�i (t)− p�j (t)‖ > ri +
rj for every t ∈ [0, t̄i], i, j ∈ V , i �= j, 3) ‖p�i (t)− pO	‖ > ri + rO	
for every t ∈ [0, t̄i], i ∈ V , 	 ∈ L, 4) ‖p�i (t)− pW‖ < rW − ri
for every t ∈ [0, t̄i], i ∈ V , 5) ‖p�i (t)− p�j (t)‖ < di for every
t ∈ [0, t̄i], i ∈ V , j ∈ Ni, are called feasible initial conditions.

The feasible initial conditions are, essentially, all the initial
conditions xi(0), vi(0), i ∈ V from which there exist controllers
ui ∈ Ui that can navigate the agents to the given desired states
xi,des, under the presence of disturbances wi ∈ Wi, while (i) the
initial neighbours remain connected, (ii) the agents do not col-
lide with each other, (iii) the agents stay in the workspace and
iv) the agents do to collide with the obstacles of the environ-
ment. Initial conditions for which one or more agents can not
be driven to the desired state xi,des by a controller ui ∈ Ui, i.e.
initial conditions that violate one or more of the conditions of
Definition 3.4, are considered infeasible initial conditions. Moti-
vated by this observation, the goal of this paper is to provide
a systematic method of designing decentralised feedback con-
trollers that navigate the agents to the desired states xi,des from
all feasible initial conditions, as defined in Definition 3.4.

3.3 Problem statement

Formally, the control problem, under the aforementioned con-
straints, is formulated as follows:

Problem3.1: ConsiderNagents governed by dynamics (2),mod-
eled by the spheres B(pi, ri), i ∈ V , and operating in a spher-
ical workspace W which is modeled by the sphere B(pW , rW).
In the workspace there are L spherical obstacles B(pO	 , rO	 ),
	 ∈ L. The agents have communication capabilities according
to Assumption 3.2, under the initial conditions xi(0), vi(0)
imposed by Assumption 3.3 and they are affected by distur-
bances wi ∈ Wi. Then, given a desired feasible configuration
xi,des according to Definition 3.3, for all feasible initial condi-
tions, as defined in Definition 3.4, the problem lies in design-
ing decentralized feedback control laws ui ∈ Ui, such that for
every i ∈ V and for all times t ∈ R≥0, all the following spec-
ifications are satisfied: (1) Position and orientation stabilisa-
tion is achieved: limt→∞ ‖xi(t)− xi,des‖ → 0; (2) Inter-agent
collision is avoided: ‖pi(t)− pj(t)‖ > ri + rj, ∀ j ∈ V , j �=
i; (3) Connectivity between neighbouring agents is preserved:
‖pi(t)− pj(t)‖ < di, ∀ j ∈ Ni; (4) Agent-with-obstacle colli-
sion is avoided: ‖pi(t)− pO	 (t)‖ > ri + rO	 , ∀	 ∈ L; (5)Agent-
with-workspace-boundary collision is avoided: ‖pi(t)− pW‖ <
rW − ri; (6)All matrices J(qi) are well defined:−π

2 < θi(t) < π
2 ;

4. Proposed solution

In this section, a systematic solution to Problem 3.1 is intro-
duced.Our overall approach builds on designing a decentralised
control law ui ∈ Ui, i ∈ V for each agent. In particular, since we
aim to minimise the norms ‖xi(t)− xi,des‖ as t → ∞, subject
to the state constraints imposed by Problem 3.1, it is reason-
able to seek a solution which is the outcome of an optimisation
problem. In Section 4.1 we derive the error dynamics and in
Section 4.2 we discuss the proposed control scheme as well as
the stability analysis.

4.1 Error dynamics

Let us define the stack vector of the desired states and veloci-
ties by: zi,des = [x�

i,des, v
�
i,des]

� ∈ M × R
6. The state xi,des ∈ M

is the desired feasible state that agent i needs to reach, as is given
in Problem 3.1. For the desired velocities vi,des ∈ R

6 we can set,
without loss of generality, that vi,des = 06×1, i.e. the agents need
to stop when they achieve the desired state. We define the error
vector ei : R≥0 → M × R

6 by:

ei(t) =
[
xi(t)
vi(t)

]
−

[
xi,des
vi,des

]
= zi(t)− zi,des. (5)

If we provide a control scheme that guarantees that limt→∞
‖zi(t)− zi,des‖ → 0 then it is also guaranteed that limt→∞
‖xi(t)− xi,des‖ → 0, which is the first goal of Problem 3.1.
By defining the vector ėi : R≥0 → R

12, the error dynamics are
given by:

ėi(t) = hi(ei(t),ui(t)), (6)

where the functions hi : M × R
6 × R

6 → R
12, gi : M × R

6 ×
R
6 → R

12 are defined by:

hi(ei(t),ui(t)) � gi(ei(t),ui(t))+ wi(ei(t)+ zi,des, t), (7a)

gi(ei(t),ui(t)) � fi(ei(t)+ zi,des,ui(t)), (7b)

respectively, where fi is defined in (2). We define the set Zi ⊆
M × R

6, i ∈ V as the set that captures all the state constraints
on the system (1), posed by Problem 3.1. Therefore Zi is given
by:

Zi � {zi(t) ∈ M × R
6 : ‖pi(t)− pj(t)‖

≥ ri + rj + ε, ∀ j ∈ Ri(t),

‖pi(t)− pj(t)‖ ≤ di − ε, ∀ j ∈ Ni, ‖pi(t)− pO	‖
≥ ri + rO	 + ε, ∀ 	 ∈ L,

‖pi(t)− pW‖ ≤ rW − ri − ε,−π
2

+ ε ≤ θi(t) ≤ π

2
− ε

}
, i ∈ V ,

where ε ∈ R>0 is an arbitrary small constant. In order to trans-
late the constraints that are dictated for the state zi into con-
straints regarding the error state ei of (5), we define the set Ei =
{ei ∈ M × R

6 : ei ∈ Zi ⊕ (−zi,des)}, ∀i ∈ V . Then, the follow-
ing rudimentary equivalence holds for all i ∈ V : zi ∈ Zi ⇔
ei ∈ Ei.
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Property 4.1: The nonlinear functions gi, i ∈ V as defined
in (7b), are locally Lipschitz continuous in Ei × Ui, with Lipschitz
constants Lgi = Lfi , where Lfi as in (4). Thus,

‖gi(e,u)− gi(e′,u)‖ ≤ Lgi‖e − e′‖, ∀ e, e′ ∈ Ei, u ∈ Ui.
(8)

Proof: The proof can be found in Appendix 2. �

The goal is to solve Problem 3.1, i.e, to design decen-
tralised control laws ui ∈ Ui, ∀ i ∈ V such that the error signal
ei, with dynamics as in (6), constrained by ei ∈ Ei, satisfies
limt→∞ ‖ei(t)‖ → 0, while all system signals remain bounded
in their respective regions as well.

4.2 Decentralized control design

Due to the fact that we have to deal with the minimisation
of norms ‖ei(t)‖, as t → ∞, subject to constraints ei ∈ Ei, we
invoke here a class of decentralised Nonlinear Model Predic-
tive controllers (NMPC). NMPC frameworks have been studied
in Camacho and Bordons (2007), Chen and Allgöwer (1998),
Findeisen, Imsland, Allgöwer, and Foss (2003b), Fontes (2001),
Frasch et al. (2013), Grüne and Pannek (2016), Kouvaritakis
andCannon (2007),Mayne, Rawlings, Rao, and Scokaert (2000)
andOliveira andMorari (2000) and they have been proven to be
a powerful tool for dealing with state and input constraints.

Consider a sequence of sampling times {tk}k∈N, with a con-
stant sampling time h, 0 < h < Tp, where Tp is the finite time
predicted horizon, such that tk+1 = tk + h, ∀ k ∈ N. Hereafter
wewill denote by i the agent and by index k the sampling instant.
In sampled data NMPC, a Finite-Horizon Open-loop Optimal
Control Problem (FHOCP) is solved at discrete sampling time
instants tk based on the current state error measurement ei(tk).
The solution is an optimal control signal ū�i (s), computed over
s ∈ [tk, tk + Tp]. The open-loop input signal applied in between
the sampling instants is given by the solution of the following
FHOCP:

min
ūi(·)

Ji(ei(tk), ūi(·))

= min
ūi(·)

{
Vi(ēi(tk + Tp))+

∫ tk+Tp

tk
[Fi(ēi(s), ūi(s))] ds

}
(9a)

subjectto :

˙̄e(s) = gi(ēi(s), ūi(s)), ēi(tk) = ei(tk), (9b)

ēi(s) ∈ Ei,s−tk , ūi(s) ∈ Ui, s ∈ [tk, tk + Tp], (9c)

ē(tk + Tp) ∈ i. (9d)

At a generic time tk then, agent i ∈ V solves the aforementioned
FHOCP. The notation · is used to distinguish predicted states
which are internal to the controller, corresponding to the nom-
inal system (9b) (i.e. the system (6) by substituting w = 012×1).
This means that ēi(·) is the solution to (9b) driven by the con-
trol input ūi(·) : [tk, tk + Tp] → Ui with initial condition ei(tk).

Note that the predicted states are not the same with the actual
closed-loop values due to the fact that the system is under the
presence of disturbances wi ∈ Wi, where Wi is defined in (3).
The functions Fi : Ei × Ui → R≥0, Vi : Ei → R≥0 stand for the
running costs and the terminal penalty costs, respectively, and
they are defined by:

Fi (ēi, ūi) � ē�i Qiēi + ū�
i Riūi, (10a)

Vi (ēi) � ē�i Piēi. (10b)

Ri ∈ R
6×6 andQi,Pi ∈ R

12×12 are symmetric and positive def-
inite controller gainmatrices to be appropriately tuned. The sets
Ei,s−tk ,i will be explained later. For the running cost functions
Fi, i ∈ V the following hold:

Lemma 4.1: Let the running costs Fi be defined by (10b). Then,
for all ηi ∈ Ei × Ui, there exist functions α1,α2 ∈ K∞ such that:
α1(‖ηi‖) ≤ Fi(ei,ui) ≤ α2(‖ηi‖), i ∈ V ,where ηi � [e�i ,u�

i ]
�.

Proof: The proof can be found in Appendix 3. �

Lemma 4.2: The running costs Fi are locally Lipschitz contin-
uous in Ei × Ui. Thus, it holds that: |Fi(ei,ui)− Fi(e′i,ui)| ≤
LFi‖ei − e′i‖, ∀ ei, e′i ∈ Ei, u ∈ Ui, where:LFi � 2σmax(Qi)
supei∈Ei ‖ei‖.

Proof: The proof can be found in Appendix 4. �

The applied input signal is a portion of the optimal solution
to an optimisation problem where information on the states of
the neighbouring agents of agent i is taken into account only in
the constraints considered in the optimisation problem. These
constraints pertain to the set of its neighbours Ni and, in total,
to the set of all agents within its sensing range Ri. Regarding
these, we make the following assumption:

Assumption 4.1 (Access to Predicted Information from each
agent): When at time tk agent i solves a FHOCP, it has access
to the following measurements, across the entire horizon s ∈
(tk, tk + Tp] :

(1) Measurements of the states:
• zj(tk) of all agents j ∈ Ri(tk) within its sensing range at

time tk;
• zj′(tk) of all of its neighbouring agents j′ ∈ Ni at time tk;

(2) The predicted states:
• z̄j(s) of all agents j ∈ Ri(tk) within its sensing range;
• z̄j′(s) of all of its neighbouring agents j′ ∈ Ni;

Remark 4.1: The justification for this assumption is as follows.
By considering that Ni ⊆ Ri(t), ∀ t ∈ R≥0, that the state vec-
tors zj are comprised of 12 real numbers encoded by 4 bytes,
and that the sampling occurs with a frequency f for all agents,
the overall downstream bandwidth required by each agent is:
BWd = 12 × 32 [bits] × |Ri| × Tp

h × f [sec−1]. Given a con-
servative sampling time f = 100 Hz and a horizon of Tp

h = 100
time steps, the wireless protocol IEEE 802.11n-2009 (a stan-
dard for present-day devices) can accommodate up to |Ri| =
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Figure 2. The inter-agent constraint regime for two agents, i, j. Fully outlined circles denote measured configurations, while partly outlined circles denote predicted
configurations. During the solution to the individual optimisation problems, the predicted configuration of each agent at each time step is constrained by the predicted
configuration of the other agent at the same time step (hence the homologously identical colors at each discrete time step).

600 [Mbit·sec−1]
12×32[bit]×104[sec−1] ≈ 16 · 102 agents, within the range of one
agent. We deem this number to be large enough for practical
applications for the approach of assuming access to the pre-
dicted states of agents within the range of one agent to be
reasonable.

In other words, each time an agent solves its own indi-
vidual optimisation problem, it knows the (open-loop) state
predictions that have been generated by the solution of the
optimisation problem of all agents within its sensing range at
that time, for the next Tp time units. These pieces of infor-
mation are required, as each agent’s trajectory is constrained
not by constant values, but by the trajectories of its associated
agents through time: at each solution time tk and within the
nextTp time units, an agent’s predicted configuration at time s ∈
[tk, tk + Tp] needs to be constrained by the predicted configu-
ration of its neighbouring and perceivable agents (agents within
its sensing range) at the same time instant s, so that collisions
are avoided, and connectivity between neighbouring agents is
maintained.We assume that the above pieces of information are
always available, accurate and can be exchanged without delay.
Figure 2 depicts the designed inter-agent (and intra-horizon)
constraint regime.

Remark 4.2: The designed procedure flow can be either con-
current or sequential, meaning that agents can solve their indi-
vidual FHOCP’s and apply the control inputs either simul-
taneously, or one after the other. The conceptual design
itself is procedure-flow agnostic, and hence it can incorporate
both without loss of feasibility or successful stabilisation. The
approach that we have adopted here is the sequential one: each
agent solves its own FHOCP and applies the corresponding
admissible control input in a round robin way, considering the
current and planned (open-loop state predictions) configura-
tions of all agents within its sensing range. This choice is made
on account of three reasons: (a) Safety: if a parallel approach
is adopted, at the limit, that is in the event that the commu-
nication (maximum distance) range is comparable to the size
of the agents (consider for instance the case where two UAVs
need to collaboratively transport a similar-sized object) it is
more likely for collisions to occur. This is because, within a
parallel approach, agents would need to rely more on the open-
loop predictions of their neighbouring agents, which, in the case
of disturbances, would make the violation of constraints more

Figure 3. The procedure is approached sequentially. Notice that the figure implies
that recursive feasibility is established if the initial configuration is itself feasible.

likely to occur. (b) Conversely, the sequential approach allows
each agent, in turn, to have access to the direct measurements
of all other agents’ position and overall configuration, as well
as their predicted trajectories, before solving its own optimi-
sation problem, thereby allowing agents to plan their trajecto-
ries and execute their motions using additional and concrete
information on top of the (in principle approximate) open-
loop predictions, and therefore without danger of violating their
constraints. (c) Synchronization problems between agents are
avoided within a sequential approach, since, from the moment
when agent i ∈ V starts to solve its optimisation problem to
the moment that it concludes executing its motion, all agents
j ∈ V , j �= i are assumed stationary, while the configuration of
those within its sensing range is known to i. Figures 3 and 4
depict the sequential procedural and informational regimes.

The solution to FHOCP (9a)–(9d) at time tk provides an
optimal control input, denoted by ū�i (s; ei(tk)), s ∈ [tk, tk + Tp].
This control input is then applied to the system until the next
sampling instant tk+1:

ui(s; ei(tk)) = ū�i (s; ei(tk)) , s ∈ [tk, tk+1). (11)

At time tk+1 a new finite horizon optimal control problem
is solved in the same manner, leading to a receding horizon
approach.

The control input ui(·) is of feedback form, since it is recal-
culated at each sampling instant based on the then-current
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Figure 4. The flow of information to agent i regarding his perception of agents
within its sensing range Ri at arbitrary FHOCP solution time tk . Agents m, n ∈
Ri(tk) have solved their FHOCP; agent i is next; agents p, q ∈ Ri(tk) have not
solved their FHOCP yet.

state. The solution of (6) at time s, s ∈ [tk, tk + Tp], start-
ing at time tk, from an initial condition ei(tk) = ēi(tk), by
application of the control input ui : [tk, s] → Ui is denoted by:
ei(s; ui(·), ei(tk)), s ∈ [tk, tk + Tp].

The predicted state of the system (9b) at time s, s ∈ [tk, tk +
Tp] based on the measurement of the state at time tk, ei(tk), by
application of the control input ui(s; ei(tk)), for the time period
s ∈ [tk, tk + Tp] is denoted by: ēi(s; ui(·), ei(tk)), s ∈ [tk, tk +
Tp].

Due to the fact that the system is in presence of disturbances
wi ∈ Wi, as Wi defined in (3), it holds in general that: ēi(·) �=
ei(·).
Property 4.2: By integrating (6), (9b) at the time interval s ≥
τ , the actual ei(·) and the predicted states ēi(·) are respectively
given by:

ei (s; ui(·), ei(τ )) = ei(τ )+
∫ s

τ

hi
(
ei(s′; ei(τ )),ui(s)

)
ds′,

(12a)

ēi (s; ui(·), ei(τ )) = ei(τ )+
∫ s

τ

gi
(
ēi(s′; ei(τ )),ui(s′)

)
ds′.

(12b)

The satisfaction of the constraints Ei on the state along the
prediction horizon depends on the future realisation of the
uncertainties. Through the assumption of additive uncertainty
and Lipschitz continuity of the nominal model, it is possible to
compute a bound on the future effect of the uncertainty on the
system. Then, by considering this effect on the state constraint
on the nominal prediction, it is possible to guarantee that the
evolution of the real state of the system will be admissible for
all times. In view of the latter, the state constraint set Ei of the
standard NMPC formulation, is being replaced by a restricted
constraint set Es−tk ⊆ Ei in (9c). This state constraints’ tight-
ening for the nominal system (9b) with additive disturbance
wi ∈ Wi is a key ingredient of the proposed controller and guar-
antees that the evolution of the evolution of the real system will
be admissible for all times. If the state constraint set was left
unchanged during the solution of the optimisation problem, the
applied input to the plant, coupled with the uncertainty affect-
ing the states of the plant could force the states of the plant
to escape their intended bounds. The aforementioned tighten-
ing set strategy is inspired by the works (Eqtami, Dimarogonas,
& Kyriakopoulos, 2011; Fontes, Magni, & Gyurkovics, 2007;
Marruedo, Alamo, & Camacho, 2002).

Lemma 4.3: The difference between the actual measurement
ei(tk + s; ui(·), ei(tk)) at time tk + s, s ∈ (0,Tp], and the pre-
dicted state ēi(tk + s; ui(·), ei(tk)) at the same time, under
a control input ui(·) ∈ Ui, starting at the same initial state
ei(tk) is upper bounded by: ‖ei(tk + s;ui(·), ei(tk))− ēi(tk +
s;ui(·), ei(tk))‖ ≤ w̄i

Lgi
(eLgi s − 1), s ∈ (0,Tp], where w̄i is the

upper bound of the disturbance as defined in (3), and Lgi is defined
in (8).

Proof: The proof can be found in Appendix 5. �

By taking into consideration the aforementioned Lemma,
the restricted constraints set are then defined by: Ei,s−tk � Ei �
Xi,s−tk , where:

Xi,s−tk =
{
ei ∈ M × R

6 : ‖ei(s)‖ ≤ w̄i

Lgi

(
eLgi (s−tk) − 1

)
,

∀ s ∈ [tk, tk + Tp]
}
. (13)

If the state constraint set considered in the solution of the
FHOCP is given by: Ei,s−tk , then the state of the real system ei
is guaranteed to fulfill the original state constraint sets Ei. We
formalise this statement in Property 4.3.

Property 4.3: For every s ∈ [tk, tk + Tp], it holds that if:
ēi(s; ui(·, {ei(tk)), ei(tk)) ∈ Ei � Xi,s−tk , where Xi,s−tk is given
by (13), then the real state ei satisfies the constraints Ei, i.e.
ei(s) ∈ Ei.

Proof: The proof can be found in Appendix 6. �

Assumption 4.2: The terminal seti is a subset of an admissible
and positively invariant set�i,withi ⊆ �i,where�i is defined
by:�i � {ēi ∈ �i : Vi(ēi) ≤ ε�i},
varepsilon�i > 0.
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Figure 5. Thenominal constraint setEi in bold, and the consecutive restricted con-
straint setsEi � Xi,s−tk , s ∈ [tk , tk + Tp], dashed. The predicted state is constrained
by a different andmore tight set at each different time instant, since themore times
goes by themore uncertain the true state becomes, and hence, themore themodel
state needs to be restricted if the true state is to be constrainedwithinEi at all times.

Assumption 4.3: The set �i is interior to the set �i, �i ⊆ �i,
which is the set of states within Ei,Tp−h for which there exists
an admissible control input (see Definition 4.1) which is of lin-
ear feedback form with respect to the state κi(ei) : [0, h] → Ui :
�i � {ēi ∈ Ei,Tp−h : κi(ēi) ∈ Ui}, such that for all ei ∈ �i and for
all s ∈ [0, h] it holds that:

∂Vi

∂ei
gi (ei(s), κi(ei(s)))+ Fi (ei(s), κi(ei(s))) ≤ 0. (14)

Remark 4.3: The existence of the robust linear state-feedback
control law κi is ensured if: (1) the linearisation of system (6) is
stabilizable; (2) the function hi is twice differentiable, locally Lip-
schitz continuous in Ei × Ui with f (0, 0) = 0, and 3) Ui is a com-
pact subset ofR6 containing the origin in its interior (Findeisen,
Imsland, Allgöwer, & Foss, 2003a; Michalska & Mayne, 1993).

Assumption 4.4: The admissible and positively invariant set �i
is such that ∀ ei(t) ∈ �i ⇒ ēi(t + s; κi(ei(t)), ei(t)) ∈ i ⊆ �i,
for some s ∈ [0, h].

The terminal sets i are chosen to be closed, including the
origin, as: i � {ēi ∈ Ei : Vi(ēi) ≤ εi}, where εi ∈ (0, ε�i)

(Figures 5 and 6 ).

Remark 4.4: It should be noted that the larger the length of the
time-horizon Tp the more probable (in general) it becomes that
the sets Ei,s may become empty beyond some s ∈ [tk, tk + Tp].
The length of the time-horizon should hence be designed so that
the above violation does not occur.

For the terminal cost penalty functions Vi, i ∈ V the follow-
ing hold:

Lemma 4.4: Let the functions Vi be defined by (??). Then,
for every ei ∈ �i there exist functions α1,α2 ∈ K∞ such that:
α1(‖ei‖) ≤ Vi(ei) ≤ α2(‖ei‖), ∀ i ∈ V .

Proof: The proof can be found in Appendix 7. �

Figure 6. The hierarchy of sets i ⊆ �i ⊆ �i ⊆ Ei,Tp−h , in bold, dash-dotted,
dash-dotted, and dashed, respectively. For every state in �i there is a linear state
feedback control κi(ei)which,when applied to a state ei ∈ �i , forces the trajectory
of the state of the system to reach the terminal seti .

Lemma 4.5: The terminal penalty functions Vi are locally Lip-
schitz continuous in �i. Thus it holds that: |Vi(ei)− Vi(e′i)| ≤
LVi‖ei − e′i‖, ∀{ei, e′i ∈ �i, where: LVi=2σmax(Pi) supei∈�i

‖ei‖.

Proof: The proof is similar to the proof of Lemma 4.2 and is
omitted. �

We can now give the definition of an admissible input for the
FHOCP (9a)–(9d).

Definition 4.1 (Admissible input for FHOCP (9a)–(9d)): A
control input ui : [tk, tk + Tp] → R

6 for a state ei(tk) is called
admissible for the problem (9a)–(9d) if the following hold: 1)
ui(·) is piecewise continuous; 2) ui(s) ∈ Ui, ∀ s ∈ [tk, tk + Tp];
3) ēi(tk + s; ui(·), ei(tk)) ∈ Ei � Xi,s, ∀ s ∈ [0,Tp]; 4) ēi(tk +
Tp; ui(·), ei(tk)) ∈ i;

In other words, ui is admissible if it conforms to the con-
straints on the input and its application yields states that con-
form to the prescribed state constraints of FHOCP (9a)–(9d)
along the entire horizon [tk, tk + Tp], and the terminal pre-
dicted state conforms to the terminal constraint.

Under these considerations, we can now state the theorem
that relates to the guaranteeing of the stability of the compound
system of agents i ∈ V , when each of them is assigned a desired
position and orientation:

Theorem 4.1: Suppose that for every i ∈ V :

(1) Assumptions 3.1–4.4 hold;
(2) A solution to FHOCP (9a)–(9d) is feasible at time t= 0 with

feasible initial conditions, as defined in Definition 3.4;
(3) The upper bound w̄i of the disturbancewi satisfies the follow-

ing:

w̄i ≤ ε�i − εi
LVi
Lgi
(eLgi h − 1) eLgi (Tp−h)

, (15)

for all t ∈ R≥0.

Then the closed loop trajectories of the system (6), under the
control input (11) which is the outcome of the FHOCP (9a)–(9d),
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converge to the set i, as t → ∞ and are ultimately bounded
there, for every i ∈ V .

Proof: The proof of the above theorem consists of two parts:
in the first, recursive feasibility is established, that is, initial fea-
sibility is shown to imply subsequent feasibility; in the second,
and based on the first part, it is shown that the error state ei(t)
reaches the terminal set i and is trapped there. The feasibility
analysis can be found in Appendix 8. The convergence analysis
can be found in Appendix 9. �

Remark 4.5: Inequality (15) gives an upper bound of the dis-
turbance that the proposed methodology can handle. Distur-
bances excheeding this bound cannot guarantee the feasibility
of Theorem 4.1.

Remark 4.6: Due to the existence of disturbances, the position
and orientation error of each agent cannot be made to become
arbitrarily close to zero, and therefore limt→∞ ‖ei(t)‖ cannot
converge to zero. However, if the conditions of Theorem 2
hold, then this error can be bounded above by the quantity√
εi/λmax(Pi) (since the trajectory of the error is trapped in

the terminal set, this means that V(ei) = e�i Piei ≤ εi).

Remark 4.7: In sampled-data Model Predictive Control, the
solution to the optimisation problem is the input that is imple-
mented on the continuous time system (6). However, the solu-
tion of the FHOCP (9c)–(9d) is computed in a discrete-time
manner. In order to address this, the input is held constant over

Figure 8. The evolution of the 2−norms of the error signals of the three agents
over time.

the time period between successive solutions of the optimisa-
tion problem using zero-order hold. For more details we refer
the reader to Findeisen et al. (2003b). Implementation tools
of this approach, which we also have adopted for our simu-
lation experiments (see next section), can be found in Grüne
and Pannek (2016).

Figure 7. The trajectories of the three agents in the x−y plane. Agent 1 is in red, agent 2 in blue and agent 3 in green. Agent 3 executes its motions first, followed by
agent 1 and then agent 2. A faint black line connects agents deemed neighbours. A point on the circumference of the obstacles is black and dotted when it is not visible
by an agent; otherwise it is colored in accordance with which agent it is visible. Mark X marks the desired configurations.
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5. Simulation results

For a simulation scenario, consider N = 3 unicycle agents

with dynamics: żi(t) =
[ ẋi(t)
ẏi(t)
θ̇i(t)

]
=

[
vi(t) cos θi(t)
vi(t) sin θi(t)

ωi(t)

]
+ wi(t)

[ 1
1
1

]
,

i ∈ V = {1, 2, 3}, where: zi = [xi, yi, θi]�, fi(zi,ui) = [vi cos θi,
vi sin θi,ωi]�, ui = [vi,ωi]�, wi = w̄i sin(2t), with w̄i = 0.1.
For the control inputs we set ūi = 8

√
2. The radius of the

agents is ri = 0.5. The sensing range of all agents is di =
4ri = 2.0. Their obstacle-detection range is set to bi = 4.0.
We set ε = 0.01, where ε is the parameter of the con-
straint set Zi. The neighbouring sets are set to N1 = {2, 3},
N2 = N3 = {1}. Agent 3 is chosen to execute motions first,
then agent 1, followed by agent 2. The agents’ initial posi-
tions are z1 = [−6, 3.5, 0]�, z2 = [−6, 2.3, 0]� and z3 =
[−6, 4.7, 0]�. Their desired configurations in steady-state

Figure 9. The evolution of the 2−norms of the error signals of the three agents
over time, in greater detail.

Figure 10. The distance between agents 1−2 and 1−3 over time. The maximum
and the minimum allowed distances are di − ε = 1.99 and ri + rj + ε = 1.01,
respectively for every i ∈ V , j ∈ Ni .

are z1,des = [6, 3.5, 0]�, z2,des = [6, 2.3, 0]� and z3,des =
[6, 4.7, 0]�. In the workspace, we place 2 obstacles with centers
at points [0, 2.0]� and [0, 5.5]�, respectively. The obstacles’ radii
are rO	 = 1.0, 	 ∈ L = {1, 2}. The matrices Qi, Ri, Pi are set
to Qi = 0.5(I3 + 0.5†3), Ri = 0.005[5 0; 0 1] and Pi = 0.3(I3 +
0.5†3), where †N is a N × N matrix whose elements are ran-
domly chosen between the values 0.0 and 1.0. The maximum
eigenvalue of matrix Pi was found to be λmax(Pi) = 0.4710. The
sampling time is h= 0.1 sec, the time-horizon is Tp = 0.6 sec,
and the total execution time given is 10 sec. Furthermore, we
set: Lfi = 8.5883, LVi = 0.0471, ε�i = 0.0582 and εi = 0.0035
for all i ∈ V .

The frames of the evolution of the trajectories of the three
agents in the x−y plane are depicted in Figures 7; 8 depicts the
evolution of the error states’ 2− norms of the agents; Figure 9

Figure 11. The distance between the agents and obstacle 1 over time. The mini-
mum allowed distance is ri + rO1 + ε = 1.51.

Figure 12. The distance between the agents and obstacle 2 over time. The mini-
mum allowed distance is ri + rO2 + ε = 1.51.
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Figure 13. Thenormsof control input-signals directing the three agents over time.
Their value is upper-bounded by ūi = 15, as ūi defined in (3).

depicts the evolution of the error states’ 2− norms of the agents
in greater detail; Figure 10 shows the evolution of the distances
between the neighbouring agents; Figures 11 and 12 depict the
distance between the agents and the obstacle 1 and 2, respec-
tively; Figure 13 shows the input signals directing the agents
through time; Figure 14 shows the evolution of theP-norms
of the errors of the three agents through time (i.e. ei(t)Piei(t),
i ∈ {1, 2, 3}), and Figure 15 shows the evolution of the P-norms
of the errors of the three agents through time in more detail,
and for an extended execution time of t= 100 seconds, with-
out altering the rest of the simulation variables. Notably, the
trajectories of the three agents are trapped inside the termi-
nal set once they enter it, since the magnitudes of their P-
weighted error norms do not exceed the value of εi once they
fall below it. Furthermore, it can be observed that all agents
reach their desired goal by satisfying all the constraints imposed

Figure 14. The P-weighted norms of the errors of the three agents over time.
Vi(t), i = 1, 2, 3 decreases monotonically until it reaches a value below the thresh-
old εi .

by Problem 3.1. The simulation was performed in MATLAB
R2015a Environment utilising the NMPC optimisation routine
provided in Grüne and Pannek (2016). The simulation takes
1340 sec on a desktop with 8 cores, 3.60GHz CPU and 16GB
of RAM.

6. Conclusions

This paper addresses the problem of stabilising a multiple rigid-
bodies system under constraints relating to the maintenance of
connectivity between agents, the aversion of collision among
agents and between agents and stationary obstacles within their
working environment, and constraints regarding their states
and control inputs. The proposed framework is a Decentralized
NonlinearModel Predictive Control scheme. Simulation results
verify the controller efficiency of the proposed framework.

Figure 15. The P-weighted norms of the errors of the three agents over an extended execution time of 100 seconds. Notice that the magnitudes of Vi do not exceed the
threshold εi , i = 1, 2, 3 as guaranteed by the control strategy. The periodic rise and fall of the magnitudes of Vi is due to the periodic nature of the disturbance.
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Future efforts will be devoted to reduce the communication
burden between the agents by introducing event-triggered com-
munication controllers.

Notes

1. A = B1 ⊕ B2 ⇒ A � B = (A � B1)� B2
2. (A ⊕ B)� B ⊆ A
3. For more details, refer to the discussion after the declaration of

Theorem 7.6 in Marquez (2003).
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Appendix 1. Proof of Property 2.1
Consider the vectors u, v, w, x ∈ Rn. According to Definition 2.2, we have
that: S1 � S2 = {u ∈ Rn : u + v ∈ S1, ∀ v ∈ S2}, S2 � S3 = {w ∈ Rn :
w + x ∈ S2, ∀ x ∈ S3}. Then, by adding the aforementioned sets according
to Definition 2.1 we get:

(S1 � S2)⊕ (S2 � S3)

= {u + w ∈ R
n : u + v ∈ S1 and w + x ∈ S2, ∀ v ∈ S2, ∀ x ∈ S3}

= {u + w ∈ R
n : u + v + w + x ∈ (S1 ⊕ S2), ∀ v + x ∈ (S2 ⊕ S3)}.

(A1)

By setting s1 = u + w ∈ Rn, s2 = v + x ∈ Rn and employing
Definition 2.2, (A1) becomes: (S1 � S2)⊕ (S2 � S3) = {s1 ∈ Rn : s1 +
s2 ∈ (S1 ⊕ S2), ∀ s2 ∈ (S2 ⊕ S3)} = (S1 ⊕ S2)� (S2 ⊕ S3), which con-
cludes the proof.

Appendix 2. Proof of Property 4.1
By setting z = e + zdes, z′ = e′ + zdes in (4) we get: ‖fi(e + zdes,u)−
fi(e′ + zdes,u)‖ ≤ Lfi‖e + zdes − e′ − zdes‖. By using (7b), the latter
becomes: ‖gi(e,u)− gi(e′,u)‖ ≤ Lgi‖e − e′‖, where Lgi = Lfi , which leads
to the conclusion of the proof.

Appendix 3. Proof of Lemma 4.1
By invoking the fact that:

λmin(P)‖y‖2 ≤ y�Py ≤ λmax(P)‖y‖2, ∀ y ∈ R
n,

P ∈ R
n×n, P = P� > 0, (A2)

we have: e�i Qiei + u�
i Riui ≤ max{λmax(Qi), λmax(Ri)}‖ηi‖2, and: e�i Qi

ei + u�
i Riui ≥ min{λmin(Qi), λmin(Ri)}‖ηi‖2, where ηi = [e�i , u�

i ]
� and

i ∈ V . By defining the K∞ functions α1, α2 : R≥0 → R≥0: α1(y) �
min{λmin(Qi), λmin(Ri)}‖y‖2, α2(y) � max{λmax(Qi), λmax(Ri)}‖y‖2, we
get α1(‖ηi‖) ≤ Fi(ei,ui) ≤ α2(‖ηi‖).

Appendix 4. Proof of Lemma 4.2
For every ei, e′i ∈ Ei, and ui ∈ Ui it holds that:∣∣Fi(ei,ui)− Fi(e′i,ui)

∣∣ =
∣∣∣e�i Qiei + u�

i Riui − (e′i)
�Qie′i − u�

i Riui
∣∣∣

≤
∣∣∣e�i Qi(ei − e′i)

∣∣∣ +
∣∣∣(e′i)�Qi(ei − e′i)

∣∣∣ . (A3)

By employing the property that: |e�i Qie′i| ≤ ‖ei‖ ‖Qie′i‖ ≤ ‖Qi‖ ‖ei‖ ‖e′i‖
≤ σmax(Qi)‖ei‖ ‖e′i‖, (A3) is written as: |Fi(ei,ui)− Fi(e′i,ui)| ≤ σmax
(Qi)‖ei‖ ‖ei − e′i‖ + σmax(Qi)‖e′i‖ ‖ei − e′i‖ ≤ [2σmax(Qi) supei∈Ei

‖ei‖]
‖ei − e′i‖ = LFi‖ei − e′i‖.

Appendix 5. Proof of Lemma 4.3
By employing Property 4.2 and substituting τ ≡ tk and s ≡ tk + s
in (12a), (12b) yields: ei(tk + s; ūi(·; ei(tk)), ei(tk)) = ei(tk)+ ∫ tk+s

tk
gi(ei(s′; ei(tk)), ūi(s′)) ds′ + ∫ tk+s

tk wi(·, s′) ds′, ēi(tk + s; ūi(·; ei(tk)),
ei(tk)) = ei(tk)+ ∫ tk+s

tk gi(ēi(s′; ei(tk)), ūi(s′)) ds′, respectively. Subtract-
ing the latter from the former and taking norms on both sides
yields: ‖ei(tk + s; ūi(·; ei(tk)), ei(tk)) −ēi(tk + s; ūi(·; ei(tk)), ei(tk))‖ =
‖ ∫ tk+s

tk gi(ei(s′; ei(tk)), ūi(s′)) ds′ − ∫ tk+s
tk gi(ēi(s′; ei(tk)), ūi(s′)) ds′

+ ∫ tk+s
tk wi(·, s′) ds′‖ ≤ Lgi

∫ tk+s
tk ‖ei(s; ūi(·; ei(t)), ei(t))−ēi(s; ūi(·; ei(t)),

ei(t))‖ds +sw̄i, since, according to Property 4.1, gi is locally Lip-
schitz continuous in Ei × Ui with Lipschitz constant Lgi . Then, we
get: ‖ei(tk + s; ūi(·; ei(tk)), ei(tk))−ēi(tk + s; ūi(·; ei(tk)), ei(tk))‖ ≤
sw̄i +Lgi

∫ s
0 ‖ei(tk + s′; ūi(·; ei(tk)), ei(tk)) −ēi(tk + s′; ūi(·; ei(tk)),

ei(tk))‖ ds′. By applying the Grönwall-Bellman inequality (see Khalil, 2002,
Appendix A) we get:‖ei(tk + s; ūi(·; ei(tk)), ei(tk))− ēi(tk + s;
ūi(·; ei(tk)), ei(tk))‖ ≤ w̄i

Lgi
(eLgi s − 1).

Appendix 6. Proof of Property 4.3

Let us define the function ζi : R≥0 → M × R6 as: ζi(s) � ei(s)−
ēi(s; ui(s; ei(tk)), ei(tk)), for s ∈ [tk, tk + Tp]. According to Lemma 4.3 we
have that: ‖ζi(s)‖ = ‖ei(s)− ēi(s; ui(s; ei(t)), ei(t))‖ ≤ w̄i

Lgi
(eLgi (s−t) − 1),

s ∈ [tk, tk + Tp], which means that ζi(s) ∈ Xi,s−t . Now we have that:
ēi(s; ui(·, ei(tk)), ei(tk)) ∈ Ei � Xi,s−tk . Then, it holds that: ζi(s) +ēi(s;
ui(s; ei(tk)), ei(tk)) ∈ (Ei � Xi,s−tk )⊕ Xi,s−tk , or: ei(s) ∈ (Ei � Xi,s−tk )
⊕Xi,s−tk . Theorem 2.1 (ii) from Kolmanovsky and Gilbert (1998) states
that for every U,V ⊆ Rn it holds that: (U � V)⊕ V ⊆ U. By invoking
the latter result we get: ei(s) ∈ (Ei �Xi,s−tk )⊕ Xi,s−tk ⊆ Ei ⇒ ei(s) ∈ Ei,
s ∈ [tk, tk + Tp].

Appendix 7. Proof of Lemma 4.4
By invoking (A2) we get: λmin(Pi)‖ei‖2 ≤ e�i Piei ≤ λmax(Pi)‖ei‖2, ∀ ei ∈
�i, i ∈ V . By defining the K∞ functions α1, α2 : R≥0 → R≥0: α1(y) �
λmin(Pi)‖y‖2,α2(y) � λmax(Pi)‖y‖2, we get:α1(‖ei‖) ≤ Vi(ei) ≤ α2(‖ei‖),
∀ ei ∈ �i, i ∈ V .

Appendix 8. Feasibility analysis
In this section we will show that there can be constructed an admissible but
not necessarily optimal control input according to Definition 4.1.

Consider a sampling instant tk forwhich a solution ū�i (·; ei(tk)) to Prob-
lem1 exists. Suppose nowa time instant tk+1 such that tk < tk+1 < tk + Tp,
and consider that the optimal control signal calculated at tk is comprised by
the following two portions:

ū�i (·; ei(tk)) =
{

ū�i (τ1; ei(tk)) , τ1 ∈ [tk, tk+1],

ū�i (τ2; ei(tk)) , τ2 ∈ [tk+1, tk + Tp].
(A4)

Both portions are admissible since the calculated optimal control input is
admissible, and hence they both conform to the input constraints. As for the
resulting predicted states, they satisfy the state constraints, and, crucially:

ēi
(
tk + Tp; ū�i (·), ei(tk)

) ∈ i. (A5)
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Furthermore, according to condition (3) of Theorem 4.1, there exists
an admissible (and certainly not guaranteed optimal feedback control)
input κi ∈ Ui that renders �i (and consequently i) invariant over [tk +
Tp, tk+1 + Tp].

Given the above facts, we can construct an admissible input ũi(·) for
time tk+1 by sewing together the second portion of (A4) and the admissible
input κi(·):

ũi(τ ) =
{

ū�i (τ ; ei(tk)) , τ ∈ [tk+1, tk + Tp],

κi
(
ēi

(
τ ; ū�i (·), ei(tk+1)

))
, τ ∈ (tk + Tp, tk+1 + Tp].

(A6)
Applied at time tk+1, ũi(τ ) is an admissible control input with respect to the
input constraints as a composition of admissible control inputs, for all τ ∈
[tk+1, tk+1 + Tp]. What remains to prove is the following two statements:

Statement 1: ei(tk+1 + s; ū�i (·), ei(tk+1)) ∈ Ei, ∀ s ∈ [0,Tp].
Statement 2: ēi(tk+1 + Tp; ũi(·), ei(tk+1)) ∈ i.
Proof of Statement 1: Initially we have that: ēi(tk+1 + s; ũi(·), ei(tk+1)) ∈

Ei � Xs, for all s ∈ [0,Tp]. By applying Lemma 4.3 for t = tk+1 + s
and τ = tk we get ‖ei(tk+1 + s; ū�i (·), ei(tk))− ēi(tk+1 + s; ū�i (·), ei(tk))‖
≤ w̄i

Lgi
(eLgi (h+s) − 1), or equivalently: ei(tk+1 + s; ū�i (·), ei(tk))−ēi(tk+1 +

s; ū�i (·), ei(tk)) ∈ Xi,h+s. By applying a reasoning identical to the proof of
Lemma 4.3 for t = tk+1 (in the model equation) and t = tk (in the real
model equation), and τ = s we get: ‖ei(tk+1 + s; ū�i (·), ei(tk)) −ēi(tk+1 +
s; ū�i (·), ei(tk+1))‖ ≤ w̄i

Lgi
(eLgi s − 1), which translates to: ei(tk+1 + s; ū�i (·),

ei(tk))−ēi(tk+1 + s; ū�i (·), ei(tk+1)) ∈ Xi,s.
Furthermore, we know that the solution to the optimisation problem

is feasible at time tk, which means that: ēi(tk+1 + s; ū�i (·), ei(tk)) ∈ Ei �
Xi,h+s. Let us for sake of readability set: ei,0 = ei(tk+1 + s; ū�i (·), ei(tk)), ēi,0= ēi(tk+1 + s; ū�i (·), ei(tk)), ēi,1 = ēi(tk+1 + s; ū�i (·), ei(tk+1)), and trans-
late the above system of inclusion relations: ei,0 − ēi,0 ∈ Xi,h+s, ei,0 − ēi,1 ∈
Xi,s,ēi,0 ∈ Ei � Xi,h+s.

First we will focus on the first two relations, and we will derive a
result that will combine with the third statement so as to prove that the
predicted state will be feasible from tk+1 to tk+1 + Tp. Subtracting the sec-
ond from the first yields ēi,1 − ēi,0 ∈ Xi,h+s � Xi,s. Now we use the third
relation ēi,0 ∈ Ei � Xi,h+s, along with: ēi,1 − ēi,0 ∈ Xi,h+s � Xi,s. Adding
the latter to the former yields: ēi,1 ∈ (Ei � Xi,h+s)⊕ (Xi,h+s � Xi,s). By
using Property 2.1 we get: ēi,1 ∈ (Ei ⊕ Xi,h+s)� (Xi,h+s ⊕ Xi,s). Using
implication1 (v) of Theorem 2.1 from Kolmanovsky and Gilbert (1998)
yields: ēi,1 ∈ ((Ei ⊕ Xi,h+s)� Xi,h+s)� Xi,s. Using implication2 (3.1.11)
from Schneider (2013) yields ēi,1 ∈ Ei � Xi,s, or equivalently:

ēi
(
tk+1 + s; ū�i (·), ei(tk+1)

) ∈ Ei � Xi,s, ∀ s ∈ [0,Tp]. (A7)

By consulting with Property 4.3, this means that the state of the ‘true’ sys-
tem does not violate the constraints Ei over the horizon [tk+1, tk+1 + Tp]:
ēi(tk+1 +s; ū�i (·), ei(tk+1))∈ Ei �Xi,s ⇒ ei(tk+1 + s; ū�i (·), ei(tk+1)) ∈ Ei,
∀s ∈ [0,Tp].

Proof of Statement 3: To prove this statement we begin with:

Vi
(
ēi

(
tk + Tp; ū�i (·), ei(tk+1)

)) − Vi(ēi
(
tk + Tp; ū�i (·), ei(tk)

)
≤ LVi

∥∥ēi (tk + Tp; ū�i (·), ei(tk+1)
) − ēi

(
tk + Tp; ū�i (·), ei(tk)

)∥∥ .
(A8)

Consulting with Remark 4.2 we get that the two terms inside the
norm are respectively equal to: ēi(tk + Tp; ū�i (·), ei(tk+1)) = ei(tk+1)+∫ tk+Tp
tk+1

gi(ēi(s; ei(tk+1)), ū�i (s)) ds, and ēi(tk + Tp; ū�i (·), ei(tk))= ēi(tk+1)

+ ∫ tk+Tp
tk+1

gi(ēi(s; ei(tk)), ū�i (s)) ds. Subtracting the latter from the former
and taking norms on both sides we get: ‖ēi(tk + Tp; ū�i (·), ei(tk+1))

−ēi(tk + Tp; ū�i (·), ei(tk))‖ ≤ ‖ei(tk+1) −ēi(tk+1)‖ +Lgi
∫ Tp
h ‖ēi(tk +

s; ū�i (·), ei(tk+1)) −ēi(tk + s; ū�i (·), ei(tk))‖ ds. By applying the Grönwall-
Bellman inequality we obtain: ‖ēi(tk + Tp; ū�i (·), ei(tk+1)) −ēi(tk +
Tp; ū�i (·), ei(tk))‖ ≤ ‖ei(tk+1) −ēi(tk+1)‖ eLgi (Tp−h). By applying
Lemma 4.3 for t = tk and τ = h we have: ‖ēi(tk + Tp; ū�i (·), ei(tk+1))

−ēi(tk + Tp; ū�i (·), ei(tk))‖≤ w̄i
Lgi
(eLgi h − 1) eLgi (Tp−h).

Hence (A8) becomes:

Vi
(
ēi

(
tk + Tp; ū�i (·), ei(tk+1)

)) − Vi(ēi
(
tk + Tp; ū�i (·), ei(tk)

)
= LVi

w̄i

Lgi
(eLgi h − 1) eLgi (Tp−h). (A9)

Since the solution to the optimisation problem is assumed to be fea-
sible at time tk, all states fulfill their respective constraints, and in
particular, from (A5), the predicted state ēi(tk + Tp; ū�i (·), ei(tk)) ∈ i.
This means that Vi(ēi(tk + Tp; ū�i (·), ei(tk)) ≤ εi . Hence (A9) becomes:
Vi(ēi(tk + Tp; ū�i (·), ei(tk+1))) ≤ εi +LVi

w̄i
Lgi
(eLgi h − 1) eLgi (Tp−h). From

Assumption 4 of Theorem 4.1, the upper bound of the disturbance
is in turn bounded by: w̄i ≤ ε�i−εi

LVi
Lgi

(eLgi h−1) eLgi (Tp−h)
. Therefore: Vi(ēi(tk +

Tp; ū�i (·), ei(tk+1))) ≤ ε�i , or, expressing the above in terms of tk+1
instead of tk: Vi(ēi(tk+1 + Tp − h; ū�i (·), ei(tk+1)))≤ ε�i . This means that
the state ēi(tk+1 + Tp − h; ū�i (·), ei(tk+1)) ∈ �i. From Assumption 4.4,
and since �i ⊆ �i, there is an admissible control signal κi(ēi(tk+1 +
Tp − h; ū�i (·), ei(tk+1))) such that: ēi(tk+1 + Tp; κi(·), ēi(tk+1 + Tp −
h; ū�i (·), ei(tk+1))) ∈ i. Hence, overall, it holds that:

ēi
(
tk+1 + Tp; ũi(·), ei(tk+1)

) ∈ i. (A10)

Piecing the admissibility of ũi(·) from (A6) together with conclusions (A7)
and (A10), we conclude that the application of the control input ũi(·) at
time tk+1 results in that the states of the real system fulfill their intended
constraints during the entire horizon [tk+1, tk+1 + Tp]. Therefore, overall,
the (sub-optimal) control input ũi(·) is admissible at time tk+1 according to
Definition 4.1, whichmeans that feasibility of a solution to the optimisation
problem at time tk implies feasibility at time tk+1 > tk. Thus, since at time
t= 0 a solution is assumed to be feasible, a solution to the optimal control
problem is feasible for all t ≥ 0.

Appendix 9. Convergence analysis
The second part of the proof involves demonstrating that the state ei is
ultimately bounded in i. We will show that the optimal cost J�i (ei(t))
is an ISS Lyapunov function for the closed loop system (6), under the
control input (11), where: J�i (ei(t)) � Ji(ei(t), ū�i (·; ei(t))). For notational
convenience, let us as define the following terms:

• u0,i(τ ) � ū�i (τ ; {ei(tk)) as the optimal input that results from the solu-
tion to Problem 1 based on the measurement of state ei(tk), applied at
time τ ≥ tk;

• e0,i(τ ) � ēi(τ ; ū�i (·; ei(tk)), ei(tk)) as the predicted state at time τ ≥ tk,
that is, the predicted state that results from the application of the above
input ū�i (·; ei(tk)) to the state ei(tk), at time τ ;

• u1,i(τ ) � ũi(τ ) as the admissible input at τ ≥ tk+1 (see (A6));
• e1,i(τ ) � ēi(τ ; ũi(·), ei(tk+1)) as the predicted state at time τ ≥ tk+1,

that is, the predicted state that results from the application of the above
input ũi(·) to the state ei(tk+1; ū�i (·; ei(tk)), ei(tk)), at time τ .

Before beginning to prove convergence, it is worth noting that while
the cost Ji(ei(t), ū�i (·; ei(t))), is optimal (in the sense that it is based
on the optimal input, which provides its minimum realisation), a cost
that is based on a plainly admissible (and thus, without loss of gener-
ality, sub-optimal) input ui �= ū�i will result in a configuration where:
Ji(ei(t),ui(·; ei(t)))≥ Ji(ei(t), ū�i (·; {ei(t))).

Let us now begin our investigation on the sign of the difference between
the cost that results from the application of the feasible input u1,i, which we
shall denote by J̄i(ei(tk+1)), and the optimal cost J�i (ei(tk)), while recalling
that: Ji(ei(t), ūi(·)) = ∫ t+Tp

t Fi(ēi(s), ūi(s)) ds + Vi(ēi(t + Tp)):

J̄i
(
ei(tk+1)

) − J�i (ei(tk))

= Vi
(
e1,i(tk+1 + Tp)

) +
∫ tk+1+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds

− Vi
(
e0,i(tk + Tp)

) −
∫ tk+Tp

tk
Fi

(
e0,i(s),u0,i(s)

)
ds. (A11)
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Considering that tk < tk+1 < tk + Tp < tk+1 + Tp, we break down the two
integrals above in between these integrals:

J̄i
(
ei(tk+1)

) − J�i (ei(tk))

= Vi
(
e1,i(tk+1 + Tp)

) +
∫ tk+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds

+
∫ tk+1+Tp

tk+Tp
Fi

(
e1,i(s),u1,i(s)

)
ds

− Vi
(
e0,i(tk + Tp)

) −
∫ tk+1

tk
Fi

(
e0,i(s),u0,i(s)

)
ds

−
∫ tk+Tp

tk+1

Fi
(
e0,i(s),u0,i(s)

)
ds. (A12)

Let us first focus on the difference between the two intervals in (A12) over
[tk+1, tk+1 + Tp]:∫ tk+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds −

∫ tk+Tp

tk+1

Fi
(
e0,i(s),u0,i(s)

)
ds

≤
∣∣∣∣∫ tk+Tp

tk+h
Fi

(
e1,i(s),u1,i(s)

)
ds −

∫ tk+Tp

tk+h
Fi

(
e0,i(s),u0,i(s)

)
ds

∣∣∣∣
≤ LFi

∫ Tp

h

∥∥ēi (tk + s; ū�i (·), ei(tk + h)
) − ēi

(
tk + s; ū�i (·), ei(tk)

)∥∥ ds.
(A13)

Consulting with Remark 4.2 for the two different initial conditions
we get: ēi(tk + s; ū�i (·), ei(tk + h)) = ei(tk + h) + ∫ tk+s

tk+h gi(ēi(τ ; {ei(tk +
h)), ū�i (τ )) dτ , and ēi(tk + s; ū�i (·), ei(tk)) = ei(tk)+

∫ tk+h
tk gi(ēi(τ ; ei(tk)),

ū�i (τ )) dτ + ∫ tk+s
tk+h gi(ēi(τ ; ei(tk)), ū�i (τ )) dτ . Subtracting the latter from

the former and taking norms on either side yields:∥∥ēi (tk + s; ū�i (·), ei(tk + h)
) − ēi

(
tk + s; ū�i (·), ei(tk)

)∥∥
≤ ‖ei(tk + h)− ēi(tk + h)‖ + Lgi

∫ s

h
‖ ēi

(
tk + τ ; ū�i (·), ei(tk + h)

)
− ēi

(
tk + τ ; ū�i (·), ei(tk)

) ‖ dτ . (A14)

By using Lemma 4.3 and applying the the Grönwall-Bellman inequal-
ity, (A14) becomes: ‖ēi(tk + s; ū�i (·), ei(tk + h))−ēi(tk + s; ū�i (·), ei(tk))‖≤
w̄i
Lgi
(eLgi h − 1) eLgi (s−h).
Given the above result, (A13) becomes:∫ tk+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds −

∫ tk+Tp

tk+1

Fi
(
e0,i(s),u0,i(s)

)
ds

≤ LFi
w̄i

L2gi
(eLgi h − 1)(eLgi (Tp−h) − 1). (A15)

With this result established, we turn back to the remaining terms found
in (A12) and, in particular, we focus on the integral:

∫ tk+1+Tp
tk+Tp Fi(e1,i(s),

u1,i(s)) ds.We discern that the range of this integral has a length equal to the
length of the interval where (14) of Assumption 4.3 holds. Integrating (14)
over the interval [tk + Tp, tk+1 + Tp], for the controls and states applica-

ble in it we get:
∫ tk+1+Tp
tk+Tp ( ∂Vi

∂e1,i gi(e1,i(s),u1,i(s)) +Fi(e1,i(s),u1,i(s))) ds ≤ 0

⇔ Vi(e1,i(tk+1 + Tp)) + ∫ tk+1+Tp
tk+Tp Fi(e1,i(s),u1,i(s))ds ≤ Vi(e1,i(tk + Tp)).

The left-hand side expression is the same as the first two terms in the right-
hand side of equality (A12). We can introduce the third one by subtract-
ing it from both sides: Vi(e1,i(tk+1 + Tp)) + ∫ tk+1+Tp

tk+Tp Fi(e1,i(s),u1,i(s)) ds

−Vi(e0,i(tk + Tp)) ≤ LVi
w̄i
Lgi
(eLgi h − 1) eLgi (Tp−h). Hence, we obtain:

Vi
(
e1,i(tk+1 + Tp)

) +
∫ tk+1+Tp

tk+Tp
Fi

(
e1,i(s),u1,i(s)

)
ds − Vi

(
e0,i(tk + Tp)

)
≤ LVi

w̄i

Lgi
(eLgi h − 1) eLgi (Tp−h). (A16)

Adding the inequalities (A15) and (A16) it is derived that:
∫ tk+Tp
tk+1

Fi(e1,i(s),

u1,i(s)) ds − ∫ tk+Tp
tk+1

Fi(e0,i(s),u0,i(s)) ds +Vi(e1,i(tk+1 + Tp)) + ∫ tk+1+Tp
tk+Tp

Fi(e1,i(s),u1,i(s)) ds−Vi(e0,i(tk + Tp))≤ LFi
w̄i
L2gi
(eLgi h − 1)(eLgi (Tp−h) − 1)

+LVi
w̄i
Lgi
(eLgi h − 1) eLgi (Tp−h), and therefore (A12), by bringing the inte-

gral ranging from tk to tk+1 to the left-hand side, becomes: J̄i(ei(tk+1))

−J�i (ei(tk)) + ∫ tk+1
tk Fi(e0,i(s),u0,i(s)) ds ≤ LFi

w̄i
L2gi
(eLgi h − 1)(eLgi (Tp−h) −

1) +LVi
w̄i
Lgi
(eLgi h − 1) eLgi (Tp−h). By rearranging terms, the cost difference

becomes bounded by: J̄i(ei(tk+1)) −J�i (ei(tk)) ≤ ξiw̄i − ∫ tk+1
tk

Fi(e0,i(s),

u0,i(s)) ds, where: ξi� 1
Lgi
(eLgi h − 1)[(LVi + LFi

Lgi
)(eLgi (Tp−h) − 1)+ LVi ] >

0, and ξiw̄i is the contribution of the bounded additive disturbance wi(t)
to the nominal cost difference; Fi is a positive-definite function as a sum
of a positive-definite u�

i Riui and a positive semi-definite function e�i Qiei.
If we denote by mi � λmin(Qi,Ri) ≥ 0 the minimum eigenvalue between
those of matrices Ri,Qi, this means that: Fi(e0,i(s),u0,i(s)) ≥ mi‖e0,i(s)‖2.
By integrating the above between the interval of interest [tk, tk+1] we get:
− ∫ tk+1

tk Fi(e0,i(s),u0,i(s)) ≤ −mi
∫ tk+1
tk ‖ēi(s; ū�i , ei(tk))‖2 ds. This means

that the cost difference is upper-bounded by: J̄i(ei(tk+1)) −J�i (ei(tk)) ≤
ξiw̄i −mi

∫ tk+1
tk

‖ēi(s; ū�i (·), ei(tk))‖2 ds, and since the cost J̄i(ei(tk+1))

is, in general, sub-optimal: J�i (ei(tk+1))− J̄i(ei(tk+1)) ≤ 0: J�i (ei(tk+1))

−J�i (ei(tk))≤ ξiw̄i −mi
∫ tk+1
tk ‖ēi(s; ū�i (·), ei(tk))‖2 ds. Let�i(ei) � J�i (ei).

Then, between consecutive times tk and tk+1 when the FHOCP is solved,
the last inequality reforms into:

�i
(
ei(tk+1)

) −�i (ei(tk))

≤
∫ tk+1

tk

(
ξi

h
‖wi(s)‖ − mi‖ēi(s; ū�i (·), ei(tk))‖2

)
ds. (A17)

The functions σ(‖wi‖) � ξi
h ‖wi‖ and α3(‖ei‖) � mi‖ei‖2 are class K

functions, and therefore, according to Lemma 4.4, �i(ei) is an ISS
Lyapunov function in Ei. Given this fact, the closed-loop system is
input-to-state stable in Ei. Inevitably then, given Assumptions 4.3 and
4.4, and condition (3) of Theorem 4.1, the closed-loop trajectories for
the error state of agent i ∈ V reach the terminal set i for all wi(t)
with ‖wi(t)‖ ≤ w̄i, at some point t = t� ≥ 0. Once inside i, the tra-
jectory is trapped there because of the implications3 of (A17) and
Assumption 4.4.

In turn, this means that the system (6) converges to zi,des and is
trapped in a vicinity of it – smaller than that in which it would have
been trapped (if actively trapped at all) in the case of unattenuated dis-
turbances –, while simultaneously conforming to all constraints Zi. This
conclusion holds for all i ∈ V , and hence, the overall system of agents V is
stable.
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