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ABSTRACT
We work with a well-known model of reaction–diffusion type for brain
tumour growth and accomplish full 3-dimensional (3d) simulations of the
tumour in time on two types of imaging data, the 3d Shepp–Logan head
phantom image and anMRI T1-weighted brain scan from the Internet Brain
Segmentation Repository. The source term is such that we have logistic
growth. These simulations are obtained using standard finite difference
approximations with novel calculations to increase speed and accuracy.
Moreover, biological background to themodel, itswell-posedness together
with a variational formulation are given. The variational formulation enable
the feasibility of different derivations and modifications of the model.
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1. Introduction

Brain cancer is a common cancer worldwide; in 2012 it was the 17th one with nearly 256 thousand
new cases contributing to about 1.83% of the total number of new cancer cases diagnosed [14]. Typ-
ical treatment involves surgery, radiotherapy and chemotherapy but even with all the therapeutic
progress, brain tumours are still rarely completely curable. A helpful tool for comprehending can-
cer progression is to apply mathematical models and simulations to predict the evolution of the
disease. Standard models for brain tumour growth are built on partial differential equations of reac-
tion–diffusion type. Thesemodels describe the evolution of the tumour cell density and its interaction
with the underlying visible tissue structures like the grey matter, white matter and bones. An impor-
tant advantage of these models is that they can be validated in time using real patient data such as a
sequence of MRI images.

Cancer research is extending rapidly and constantly more complex models are designed for better
determining the growth of tumours. For beginners in the field it can be helpful to see simulations of
standard basic models to understand their performance and drawbacks. To the authors knowledge,
only two-dimensional simulations seem presented in the literature for the basic reaction–diffusion
models for tumour growth. Since the models are inevitably nonlinear the simplification to 2-
dimensions could render different and spurious behaviour. Thus, in the present work, we undertake
the laborious task of doing full 3-dimensional simulations for two cases: The standard 3-dimensional
Shepp–Logan phantom [42] and an MRI T1-weighted brain scan [40] from the Internet Brain Seg-
mentation Repository (IBSR) (see [20]) describing a more complex geometry. We aim to not use any

CONTACT Rym Jaroudi rym.jaroudi@liu.se

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in anymedium, provided
the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2019.1613526&domain=pdf&date_stamp=2020-04-29
mailto:rym.jaroudi@liu.se
http://creativecommons.org/licenses/by-nc-nd/4.0/


1152 R. JAROUDI ET AL.

commercial solvers for partial differential equations but show instead how a rather straightforward
finite difference scheme can be employed combined with recent imaging techniques [1] to render
the simulations. We also show how existence and uniqueness of a solution to the reaction–diffusion
model can be obtained using basic concepts of weak formulations. It is then natural to also present a
variational formulation that can aid in deriving and modifying the reaction–diffusion model.

The presented numerical simulations building on [1] with biological and mathematical back-
ground to the model are the main novelties of the present work. Since modelling of tumours involves
both medical and mathematical insights it is believed that collecting such in one work with full sim-
ulations will be useful for interdisciplinary teams where participants typically have either a strong
medical or mathematical background but not both. Thus, having a brief overview containing both
medical and mathematical aspects can help in quickly bridging the gap between clinicians and
mathematicians.

For the outline, in Section 2, we present some background on the biological context and imag-
ing for brain tumours. In Section 3, we expound highlighted studies on various types of brain
tumour growth models based on reaction–diffusion equations according to brain structure using
data imaging. Sections 2 and 3 are extracted from our work presented in [21]. Section 4 is devoted
to mathematical analysis of reaction–diffusion equations and their well-posedness. In Section 5, we
introduce a variational formulation of the problem. In Section 6, for completeness, we give details
of the numerical implementation; the similar scheme is presented in our paper [23] for an inverse
problem. Additionally, we show in this section results of numerical simulations of the growth of
two types of tumours using full 3-dimensional imaging data. Finally, some conclusions are given in
Section 7.

2. Background on brain tumours

2.1. Biological context

A tumour is an abnormal growth of normal tissue cells due to genetic and epigenetic events. After
the tumour grows to a certain size, it starts to actively infiltrate healthy tissue. This invasion is one
of the hallmarks of cancer, as described by Hanahan and Weinberg [18]. It is often the final step of a
malignant tumour and leads to metastasis and to eventual death of the patient.

Brain tumour cells are widely known to be highly diffusive and infiltrating compared with other
types of tumours. They consist of motile cells and are not nearly as dense as others. These cells go out
of the original tumour mass, move extremely quickly and wander far away from the tumour centre
via natural pathways of higher diffusivity, such as brain white matter fiber tracts. Consequently, the
tumour mass has no well-defined edges and it fills up space within the cranial cavity. It can compress,
shift, invade and damage healthy brain tissue thereby interfering with normal brain functions causing
clinical symptoms such as headache, seizures, neurological and cognitive deficits.

Brain tumours are classified based on their origin into primary brain tumours that start in the
brain and remain there, and metastatic brain tumours that have spread to the brain from another
location in the body. Gliomas are a type of brain tumour that make up about 30% of all primary and
metastatic brain tumours and about 80% of all malignant brain tumours [17]. The classification is as
Grade I through Grade IV according to the World Health Organization (WHO) grading system [32]
based on how aggressive the tumour cells of the biopsied tissue appear under a microscope.

Low-Grade Gliomas (LGG) include grade I (astroglial variants that can be cured with complete
surgical resection) and grade II (diffusively infiltrating LGG that make surgery difficult with high
probability of recurrences: astrocytomas, oligodendrogliomas and mixed gliomas). They are slow
growing tumours that look almost normal and infiltrate into normal brain ground tissue. Their
progression to a high-grade glioma is almost inevitable [27].

High-Grade Gliomas (HGG) include grade III (Anaplastic astrocytomas) and grade IV (Glioblas-
tomas Multiforma GBM). They look abnormal and are characterized by rapid proliferation,
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infiltration into large areas. Theymight also have a necrotic core, form new vascularization to support
growth and push the surrounding tissue causing a mass-effect [11].

The median survival time is 7.5 years for LGG (grade II) and 18 months for astrocytomas (grade
III) with treatments. For GBM, it is 17 weeks without treatment, 30 weeks with radiotherapy and 37
weeks with both surgical resection and radiotherapy.

Besides grading, staging is used to communicate whether and where a tumour has spread in the
brain. Staging is typically inferred based on morphological assessment using imaging techniques like
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) [13].

2.2. Imaging

The most common MRI sequences include T1 and T2 weighted images. Gadolinium contrast agent
can be administered to the patient in order to acquire T1with contrast agent weighted images (T1Gd).
T2 weighted FLAIR images (T2-FLAIR) stands for Fluid Attenuation Inversion Recovery T2 images.
It is similar to T2 images but with a better contrast due to the attenuation of the signal coming from
the cerebro-spinal fluid (CSF). These sequences are preferably performed in at least 2-orthogonal
planes or obtained with a 3-dimensional (3D) sequence that is reformatted into orthogonal planes
(i.e. 3D-T2 FLAIR) [33].

The usual delineated structures of the tumour are the necrotic core, the proliferative rim and the
edema. The necrotic core and the proliferative rim are visible on the T1Gd MRI. On the T2 FLAIR,
one can delineate the edema of the tumour.

Diffusion Weighted Imaging (DWI) uses the diffusion of water molecules in tissues to generate
contrast in MR images and can be used to calculate the Average Diffusion Coefficient (ADC). A
special kind of DWI, Diffusion-tensor imaging (DTI), has been used extensively to map white mat-
ter tractography in the brain. It involves more directions of interrogation than standard DWI but
provides additional parameters and abilities over DWI. DTI provides information on anisotropic dif-
fusion characterized by eigenvectors (direction) and eigenvalues (magnitude), which can be used to
derive numerous parameters. The Fractional Anisotropy (FA) derived from DTI is a measure of the
directional nature of water diffusivity. It is often anti-correlated to the ADC: high ADC values result
in low FA values.

AlthoughMR is themain diagnostic tool for diseases of the central nervous system,Computational
Tomography (CT) is still a valuable modality in the imaging of brain tumours (CT involves X-rays
which MR does not). CT is superior in detecting calcification, hemorrhage, and in evaluating bone
changes related to a tumour [12].

Finally, advanced imaging techniques can also be used such as perfusion images which reveal
tumour and tissue vascularity and MR spectroscopy which reveals the tumour metabolic profile.

3. Background on brain tumour growthmodels

The choice of a model is largely guided by the available data. In fact, observations at the microscopic
(histological) scale are used to design very detailed mathematical tumour growth models [34]. These
proposed theoretical models take the form of ordinary differential equations (ODEs) involving only
the density of cells in the tumour:

du
dt

= f (u),

where u(t) > 0 is the tumour cells density at time t and f ∈ C1 is a function describing the cells
proliferation rate through general frameworks for tumour growth kinetics. Its expression is given by
the generalized logistic equation:

f (u) = ρuαβ(1 − u1/β)γ ,
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where α, β , γ are non-negative real numbers and β > 0.
Standard models for the growth of brain tumours are classified according to the function f and

include:

f (u) =

⎧⎪⎨
⎪⎩

ρu α = 1,β = 1, γ = 0 Exponential,
ρu(1 − u) α = 1,β = 1, γ = 1 Logistic,
−ρu ln(u) α = 1,β → +∞, γ = 1 Gompertz,

(1)

where ρ > 0 is the proliferation rate.
The simplest growth assumes a linear relationship of the tumour cell density, resulting in expo-

nential growth stating that cellular division obeys a cycle, with doubling time ln(2)/ρ. This renders
a biologically accurate description of tumour growth on time scales that are short in comparison to
the life expectancy after the initial tumour development [4]. The logistic and gompertz type growth
functions are considered to encapsulate the effect of amaximal capacity of tumour cells incorporating
cell population decay with respect to a given carrying capacity.

Such models give a better understanding of cancer initiation and progression by describing the
tumour growth process at the cellular level and its interaction with the micro-environment (e.g. in
[2] Basanta et al. used evolutionary game theory to build a model that allows to understand certain
specific aspects of glioma progression such as the emergence of diffusive tumour cell invasion in Low-
Grade tumours and in [26] Kansal et al. developed a three-dimensional cellular automaton model
of brain tumour Gompertzian growth). However, these models do not take into account the spatial
arrangement of the cells at a specific location or the spatial spread of the cancerous cells.

Partial differential equations (PDEs) are suited to describe the space and time evolution of cell den-
sities. They are in fact the tool of choicewhen studying tumour growth and diffusion into surrounding
tissue. An early study by Cruywagen et al. [10] proposed to use a reaction–diffusion framework for
modelling the dynamics of a human brain tumour (HGG). In that study they consider the evolu-
tion of the brain tumour cell population to be largely governed by proliferation and diffusion. This
basic model was formulated by Murray in [36] as a conservation equation. Letting u(x, t) be the cells
density at a position x (pixel or voxel location in the brain) and at a time t, the governing model is:

∂u
∂t

= div(J) + f (u),

where div is the divergence operator and J is the diffusional flux of cells taken according to Fick’s law
as proportional to the gradient of the cell density, that is J = D∇u, with ∇ the gradient operator and
D the diffusion coefficient of cells in the brain tissue.

Boundary conditions are imposed to prevent cells from leaving the finite space domain (the skull),
with a point-source initial condition of the cell densityϕ(x) = u(x, 0) simulating the start of a tumour.
The general form of the model is then given by:

∂tu − div(D∇u) − f (u) = 0 in� × (0,T)

u(0) = ϕ in�

D∇u · n = 0 on ∂� × (0,T),

(2)

where� is the brain region inside the skull and n the outward unit normal vector to the boundary ∂�.
In early works, the proliferation of tumour cells was assumed to be exponential f (u) = ρu and the

diffusion tensor D isotropic in a homogeneous brain structure �:

D = dI,

where I is the identity matrix and d> 0 a constant value for the diffusion coefficient. This kind of
tensor allow tumour cells to diffuse equally in all directions and all across the brain.
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Murray [35], related the velocity v of the tumour growth to the proliferation rateρ and the diffusion
coefficient d such that v = 2

√
ρd. This work lead the way to studies by Tracqui [45] that gave rise to

the first approximations of model parameters d and ρ using CT scans for HGG.
The effect of therapy has been included in this model using an additional term describing the

death of tumour cells due to therapy (e.g. Cruywagen et al.modelled the effects of chemotherapy on
two subpopulations of HGG cells resistent and sensitive [10] and Woodward et al. focused on the
resection effect on LGG and HGG in [46]).

An extension of the model to 3-dimensions has been done by Burgess et al. in [5] for LGG and
HGG.

In later studies, reaction–diffusion models have been used to describe HGG growth in the het-
erogeneous environment of the brain. In [43], Swanson et al. take into account the brain tissue
heterogeneity assuming that the tumour cells proliferation was also exponential and the diffusion
tensor D of equation (1) was isotropic but spatially dependent:

D = d(x)I,

where I is the identity matrix and the diffusion coefficient is

d(x) =
{
dg in grey brain tissue,
dw in white brain tissue,

where dw >> dg > 0 corresponding to the observation that tumour cells move faster on white
matter [16].

Swanson et al. [44] extended themodel to 3-dimensions taking advantage of the information about
white and greymatter areas extracted from the BrainWeb anatomical atlas [8,9]. They showed how the
model parameters could be estimated using only in vivo post-contrast T1 weighted and T2 weighted
MRI data.

While the greymatter ismostly homogeneous, tumour cells are known to use the fibrous structures
of the white matter to invade new areas. Moreover, observations showed that tumour cells tend to
follow the preferred directions of water diffusion, which can be measured using magnetic resonance
diffusion tensor imaging (MR-DTI). In this context, refining on the differential motility of tumour
cells in different tissues, many authors constructed inhomogeneous diffusion tensors D to model the
diffusion of tumour cells from the Diffusion Tensor Images (DTI):

D = D(x).

The tensor construction method consisted of using isotropic (spherical) tensors in grey matter and
anisotropic (ellipsoid) diffusion in white matter.

Using a 3d segmented MRI atlas, Clatz et al. [7] proposed a model coupling between reaction
diffusion and the mechanical constitutive equations to simulate the mass effect (brain deformation
induced by the tumour invasion) during GBMs growth. In the reaction diffusion equations, they used
exponential growth for the tumour cells proliferation to simplify themodel and assumed that in white
matter the anisotropic diffusion ratio is the same for water molecules and tumour cells:

D(x) =
{
dgI in grey matter,
dwDwater in white matter,

whereDwater is the water diffusion tensor in the brain measured by the DTI, i.e. the spatial diffusion
of water molecules by MRI per voxel. It contains the full diffusion information along six directions.

To increase the tensor anisotropy in whitematter without changing its orientation and also favour-
ing the appropriate orientations when fiber crossing occurs, in their proposed LGG growth model
[24] Jbabdi et al. have introduced a formulation which takes into account the possible equality of
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the two largest eigenvalues corresponding to a possible fiber crossing keeping exponential growth for
proliferation and isotropic diffusion in grey matter:

D(x) =
{
dgI in grey matter,
V(x)[diag(αe1(x)dw, dg , dg)]V(x)T in white matter,

where V(x) represents the matrix of sorted eigenvectors obtained by decomposing Dwater(x); e1(x)
is the normalized largest eigenvalue (between 0 and 1) of Dwater(x) and α is a normalization factor
such that the highest e1 value in the brain becomes 1. In this framework, the LGG growth model is
directly applied to the extracted tensors without any additional registration.

Finally, let us mention that besides the prediction of brain tumour growth some authors
[15,19,22,28,39] have recently used these image-based reaction–diffusion models for source
localization.

4. Reaction–diffusionmodels

In the remaining part of this work, we denote for simplicityD(x) by D. We shall investigate existence
and uniqueness of a solution to

∂tu − div(D∇u) − f (u) = 0 in � × (0,T)

D∇u · n = 0 on ∂� × (0,T)

u(x, 0) = ϕ in �.

(3)

We first introduce some function spaces. The space L2(0,T;X), where X is a Hilbert space, consists
of those measurable functions u(·, t) : (0,T) → X, with

∫ T

0
‖u(·, t)‖2X dt < ∞.

By Ck([0,T];X), we denote the functions u for which the mapping u(·, t) : [0,T] → X have continu-
ous and bounded (in the usual norm) derivatives of order up to k ≥ 0. The spaceHk(�), k> 0, is the
standard Sobolev space of functions with weak and square integrable derivatives up to order k, with
trace space Hk−1/2(	).

Concerning the existence and uniqueness of a solution to (3), there are several different options to
prove this. On an abstract level, the problem can be recast as

u′
t + Bu = f (u(t))

u(0) = ϕ

making it essentially an ODE in the time-variable but with values in a function space. Here, B corre-
sponds to the divergence term, and generates a semi-group S, see [38, Theorem 7.2.5]. Existence and
uniqueness of what is known as a mild solution,

u(t) = S(t)ϕ +
∫ t

0
S(t − s)f (u(s)) ds

is given by [38, Theorem 6.1.2] (in the space C(0,T;H1(�))). However, this abstract machinery takes
some effort to get into and since we have tumour growth in mind, we also outline a second route to
show existence and uniqueness which is more direct and can be useful from a computational side.
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Multiplying (3) by an element v ∈ H1(�) and using integration by parts in the space variables
(a Green formula), incorporating the zero flux condition on the boundary, give∫

�

u′
t(x, ·)v(x) dx +

∫
�

D∇u(x, ·) · ∇v(x) dx =
∫

�

f (u(x, ·))v(x) dx. (4)

An element u is termed a weak solution to (3) provided that (4) holds and u(x, 0) = ϕ.
To approximate the time-derivative in (3), we apply the backward difference

u′
t(x, tk) = uk(x) − uk−1(x)

τ
,

where tk = (T/N)k, k = 0, 1, . . . ,N, is a uniformmesh on the time interval [0,T] with step size τ =
T/N, and uk(x) = u(x, tk).

Employing this time-discretization in (4) together with evaluating the nonlinear term at the
previous mesh point, we derive the identity∫

�

uk(x) − uk−1(x)
τ

v(x) dx +
∫

�

D∇uk(x) · ∇v(x) dx =
∫

�

f (uk−1(x))v(x) dx, (5)

or by rewriting this,

1
τ

∫
�

uk(x)v(x) dx +
∫

�

D∇uk(x) · ∇v(x) dx =
∫

�

(
f (uk−1(x)) + uk−1(x)

τ

)
v(x) dx. (6)

This is then a standard linear elliptic problem for uk (for k= 0 the condition u(x, 0) = ϕ is used).
Existence and uniqueness of uk ∈ H1(�) is settled via the Lax–Milgram lemma, see [6, Chapter 1].
Note that this holds for any of the different tensors D described in the previous sections, in fact a
piecewise continuous tensor can be used.

The sequence of functions {uk} can then be interpolated into a time-dependent approximation
simplest by defining this to be piecewise constant at each interval [tk−1, tk), alternatively to be linear
at each such interval. This is known as the Rothe approximation. It is then possible to show that, as the
step size τ decreases, the interpolated function tends to a solution of (4) in the appropriate norms.
In this way, existence of a weak solution can be shown. For the linear case, an introduction to the
method of Rothe is given in [25, Chapter 1].

For the uniqueness, assume that there are two weak solutions u and ũ to (3). Put w = u − ũ, then
w satisfies a relation of the form (4) with f (u) in the right-hand side replaced by f (u) − f (ũ) and
ϕ = 0. Note that (4) can be extended to hold for v, which are piecewise constant in time, and by a
limiting argument this relation holds for all v(x, t) ∈ L2(0,T;H1(�)). Hence, choosing v=w in the
weak relation for w, we have∫

�

w′
t(x, ·)w(x, ·) dx +

∫
�

D∇w(x, ·) · ∇w(x, ·) dx =
∫

�

(f (u(x, ·)) − f (ũ(x, ·)))w(x) dx. (7)

Integrating in time over [0, t] in the first term noting that ∂tw2 = 2w′w and estimating the second
term in the left-hand side of (7) from below, we obtain

‖w(x, t)‖2L2(�)
+ ‖∇w‖2L2(Qt)

≤ C
∫ t

0

∫
�

(f (u(x, ·)) − f (ũ(x, ·)))w(x) dx dt. (8)

The function f is assumed to be Lipschitz continuous, hence we can further estimate using this and
Cauchy’s inequality,

‖w(x, ·)‖2L2(�)
+ ‖∇w‖2L2(Qt)

≤ C‖w‖2L2(Qt)
. (9)

According to a version of Grönwall’s lemma, see [41, p. 25], this implies that the left-hand side is zero,
which in turn, since t with 0< t<T was arbitrary, forces w= 0 in QT and we have uniqueness.
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The above steps albeit on a more general level is performed in [41, Chapter 8], where the reader
can find full details on the above arguments, which renders the following result ([41, Theorem 8.33
and Proposition 8.37]).

Theorem 4.1: Let ϕ ∈ L2(�). Then there exists a unique weak solution u ∈ L2(0,T;H1(�))with u′
t ∈

L2(0,T; L2(�)) to the reaction–diffusion problem (3), and this element u depends continuously on the
data.

It is possible to give an interpretation of theNeumann condition for aweak solution, see [30, Chap-
ter 4.7.2, Example 2], and one can prove a similar result for a weak solution with a non-homogeneous
Neumann condition. Regularity of the weak solution can also be shown, in fact, existence and unique-
ness for classical solutions in spaces of Hölder continuous and differentiable functions have been
derived, see [29, p. 491, Theorem 7.4].

There is also another concept of a solution to (3), which is usually termed a very weak solution. In
this formulation, one multiplies (1)3 with a function v(x, t) and integrates over both time and space
to have a relation

∫
QT

uv′
t dx dt +

∫
QT

D∇u · ∇u = −
∫
QT

f (u)v dx dt +
∫

�

ϕv(x, 0) dx,

for v ∈ L2(0,T;H1(�)) ∩ H1(0,T; L2(�)) with v(T, x) = 0. Thus, no derivative in time is directly
imposed on u in this formulation. One can show existence and uniqueness of a very weak solu-
tion as well [41, Chapter 8.7] (for an application, the concept of a very weak solution was used
in [3] to reconstruct boundary data for the heat equation). The reader can verify that a mild solu-
tion is a very weak solution as is a weak solution. We also point out that spaces of the form
L2(0,T;Hk(�)) ∩ Hs(0,T; L2(�)) is sometimes denotedHk,s(QT); for properties and trace theorems,
see [31, Chapter 2].

5. Variational formulation

Variational formulations can be useful in designing mathematical models. Moreover, variational
formulations have been pivotal for image enhancement methods. In this section, we briefly show
how to generate a more general brain tumour growth model by finding a functional E such
that the stationary form of the reaction–diffusion equation (2) is the Euler–Lagrange (E–L)
equation corresponding to E. This means that the stationary points of the functional satisfies
Equation (2). Mathematically, we have the following result, where F is convex and D is positive
definite:

If f (u) is the Gâteaux derivative of F(u) with respect to u, then

E(u) = 1
2

∫
�

(u − u0)2 dx + λ

2

∫
�

|D∇u|2 dx + λ

∫
�

F(u) dx

is the functional which corresponds to the E–L equation (2).
To verify this, we have to calculate the (Gâteaux) derivative of E(u) to find its stationary points.

We start by finding the derivative of the second term of E.
Let

R(u) = 1
2

∫
�

|D∇u|2 dx.
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Let then v ∈ C1(�) be an arbitrary function not equal to zero (v �= 0), we compute the Gâteaux
derivative as follows:

∂uR(u)v = lim
ε→0

1
2ε

∫
�

(|D∇(u + εv)|2 − |D∇u|2) dx

= lim
ε→0

1
2ε

∫
�

(|D∇u|2 + 2ε(D∇u)tD∇v + ε2|D∇v|2 − |D∇u|2) dx

=
∫

�

(D∇u)tD∇v dx

and by applying Green’s first identity, the above expression results in∫
�

(D∇u)tD∇v dx =
∫

∂�

Dv(D∇u · n) dS −
∫

�

Dvdiv(D∇u) dx.

Using the Neumann boundary condition D∇u · n = 0, the previous equation reads

∂uR(u)v = −
∫

�

Dvdiv(D∇u) dx.

For the derivation of the Gâteaux derivative of the first and second term of E, let

S(u) = −
∫

�

F(u) dx.

Then let v ∈ C1(�) be an arbitrary function not equal to zero (v �= 0), we compute the Gâteaux
derivative as follows:

∂uS(u)v = lim
ε→0

−
∫

�

F(u + εv) − F(u)
ε

dx

= −
∫

�

∂

∂ε
F(u + εv)|ε=0 dx

= −
∫

�

F′(u + εv)v|ε=0 dx.

It follows that

∂uS(u)v = −
∫

�

F′(u)v dx.

Thus, with this expression we can find the derivative of both the first and second term of E (by
choosing F appropriately).

Since v �= 0 and D has non-zero elements dii �= 0, the E–L equation is therefore

u − u0 − div(D∇u) − f (u) = 0 in � × (0,T)

u(0) = ϕ in �

D∇u · n = 0 on ∂� × (0,T),

(10)

where

F′(u) = f (u). (11)

One can then introduce what is known as artificial time marching, where a problem of the form (2)
is solved to steady-state using explicit time-stepping, the steady state then being (10).
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For the sake of completeness, we give the corresponding functions F for the standard terms f
of (11):

• f (u) = ρu⇒F(u) = ρu2/2 + C
• f (u) = ρu(1 − u)⇒F(u) = ρ(u2/2 − u3/3) + C
• f (u) = −ρu ln(u)⇒F(u) = −ρ(u2/2 ln(u) − u2/4) + C.

The constantC should be chosen such that F is non-negative. In this general context, f and Fmodel
respectively a local and a total proliferation of the tumour cells. Let us mention that, if we define F as
the entropy of the system F(u) = −ρ ln(u), then a better choice of the local proliferation function f
will be a mixed model of exponential and gompertz models: f (u) = ρu − ρu ln(u).

6. Numerical simulations

In the numerical experiments, we consider the test case of isotropic diffusion with logistic growth in
a heterogeneous domain:

∂tu − div(D∇u) − ρu(1 − u) = 0 in � × (0,T)

D∇u · n = 0 on ∂� × (0,T)

u(x, 0) = ϕ in �,

(12)

where 0 ≤ u(x, t) ≤ 1 is the normalized tumour cell density, � is the domain representing the brain
and

D(x) =
{
dwI, in white matter,
dgI, in gray matter,

where I is the 3 × 3 identity matrix and ρ, dw and dg are positive constants. Letting�w and�g be the
regions of white matter and the grey matter in the brain, respectively, we can write the tensorD(x) as

D(x) = a(x)dwI + b(x)dgI, (13)

where

a(x) =
{
1, x ∈ �w
0, x /∈ �w

and b(x) =
{
1, x ∈ �g ,
0, x /∈ �g .

The initial tumour cell density, shown in Figure 1, is assumed to be a three-dimensional Gaussian
distribution:

u(x, 0) = ϕ = 1√
||(2π)3

exp
(

−1
2
x′−1x

)

with a diagonal covariance matrix  = 1.3I (leading to a product of three independent Gaussian
distributions), where the mean is zero and | · | is the determinant. In the code developed for the
simulations, one can replace this initial distribution with another function, however, we only present
result for this ϕ since it is standard in tumour modelling to have Gaussian initial distributions.

6.1. Data

We use two types of three-dimensional (3d) imaging data. The first setting is the standard 3d
Shepp–Logan phantom [42] describing a simple geometry, and the second setting is an MRI T1-
weighted brain scan [40] from the IBSR [20] describing a more complex geometry.
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Figure 1. Initial tumour cell density u(x, 0) = ϕ.

Figure 2. Hypothetical segmentation of� in the 3d Shepp–Logan image.

In the synthetic setting of the 3d Shepp–Logan phantom, we manually selected hypothetical white
and gray matter regions as shown in Figure 2. Unlike in the 3d Shepp–Logan image, the MRI data
image has ground truth segmentation of white and gray matter regions provided by experts, see
Figure 3 for illustration of these regions. In these two figures, the regions are shown on three different
and orthogonal planes (slices) through the brain; the planes used are as is illustrated for example in
the last image in Figure 4.

The domain � represents the brain region (the union of the grey and white matter). In the com-
putations this corresponds to the 3-dimensional images representing the brain: In the Shepp–Logan
image, the total number of voxels is 256 × 256 × 256, thus � is a cube. For the MR1 T1-weighted
brain scan, the total number of voxels is 256 × 256 × 46, hence� is here a cuboid. The region outside
the skull is empty and only introduced for convenience as is common in finite difference methods.

6.2. Parameters

Table 1 shows the values chosen for the model parameters, that is values for the proliferation rate ρ

and diffusion rates dw and dg for Low Grade Glioma (LGG) and High Grade Glioma (HGG). The
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Figure 3. Ground truth segmentation of� in the MRI T1 image.

Figure 4. Position of the initial tumour cell density in the 3d Shepp–Logan image and its corresponding 3d planes.

Table 1. Parameters values for Low Grade
Glioma (LGG) and High Grade Glioma (HGG).

LGG HGG

ρ 0.012 0.009
dw 0.25 0.5
dg 0.01 0.25

variation of the parameter ρ influences the degree of the nonlinearity for the logistic source term,
see (1), in the PDE model (12).

6.3. Discretization

For numerical implementation of the reaction–diffusion model, we consider an evolution equation
of the form:

∂tu = Au + f (u),

where A is a spatially dependent linear differential operator containing derivatives on its diagonal.
The following explicit iterative discretization scheme is used in time due to its simplicity:

ui+1 = ui + hAui + hf (ui),



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1163

where i = 0, 1, . . . , is the current iteration, h> 0 is the stepsize and the matrix A, also known as the
stencil, can be expressed via a sparse representation making memory requirements less demanding.

We then also need to approximate the spatial derivatives present in A. We adopt a generic forward
Euler discretization strategy using finite differences approximating derivatives in parabolic PDEs [37].
Expanding the divergence term, we have:

div(D∇u) = div

⎡
⎣

⎛
⎝d11 0 0
0 d22 0
0 0 d33

⎞
⎠

⎛
⎝∂xu

∂yu
∂zu

⎞
⎠

⎤
⎦ = ∂x(d11∂xu) + ∂y(d22∂yu) + ∂z(d33∂zu), (14)

where the indices of d are the corresponding components in terms of rows and columns of D. We
point out that the elements of D are dependent on space as given in (13).

The terms in (14) involve derivatives up to second order.We approximate these derivatives by aver-
aging the forward, ∂+, and backward, ∂−, finite difference operators using the following alternating
scheme of forward and backward differences for the x -, y- and z -directions:

∂x(d11∂xu) ≈ 1
2
(∂+

x (d11∂−
x u) + ∂−

x (d11∂+
x u))

∂y(d22∂yu) ≈ 1
2
(∂+

y (d22∂−
y u) + ∂−

y (d22∂+
y u))

∂z(d11∂zu) ≈ 1
2
(∂+

z (d33∂−
z u) + ∂−

z (d33∂+
z u)). (15)

Letting the size of one voxel be 1 (other sizes can easily be adjusted for) given in each of the three
directions, we derive the forward ∂+ and backward ∂− finite difference operators as second-order
approximations from a third-order Taylor series expansion in the respective direction:

∂+
x u = u(x + 1, y, z) − u(x, y, z)

∂−
x u = u(x, y, z) − u(x − 1, y, z)

∂+
y u = u(x, y + 1, z) − u(x, y, z)

∂−
y u = u(x, y, z) − u(x, y − 1, z)

∂+
z u = u(x, y, z + 1) − u(x, y, z)

∂−
z u = u(x, y, z) − u(x, y, z − 1)

From this, we get the approximations:

∂x(d11∂xu) ≈ 1
2 [(d11(x + 1, y, z) + d11(x, y, z))(u(x + 1, y, z) − u(x, y, z))−

(d11(x − 1, y, z) + d11(x, y, z))(u(x, y, z) − u(x − 1, y, z))]

∂y(d22∂yu) ≈ 1
2 [(d22(x, y + 1, z) + d22(x, y, z))(u(x, y + 1, z) − u(x, y, z))−

(d22(x, y − 1, z) + d22(x, y, z))(u(x, y, z) − u(x, y − 1, z))]

∂z(d33∂zu) ≈ 1
2 [(d33(x, y, z + 1) + d33(x, y, z))(u(x, y, z + 1) − u(x, y, z))−

(d33(x, y, z − 1) + d33(x, y, z))(u(x, y, z) − u(x, y, z − 1))]. (16)

Since the boundary of � is the (curved) boundary of the brain (union of white and gray matter seg-
ments), special care is needed when computing the Neumann boundary condition on irregular grids.
We approach this problem by sequentially replicating the boundary voxels in the outward normal
direction of�. Any inconsistency for diagonal flow vectors have not been observed in the simulations,
in fact this straightforward strategy performs remarkably well.
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6.4. Setup

We run the model to obtain a synthetic tumour at a time T> 0 for the two different parameter con-
figurations (LGG, respectively, HGG) given in Table 1. Figures 4 and 5 show the initial setup of the
tumour cell density for the Shepp–Logan image and the MRI T1 data, respectively.

To aid the visualization, we created a numerical routine to render the corresponding 3d planes. In
those illustrations, it is in general easier to see the position and growth of the tumour.

In all the presented experiments, the time-step in the Euler scheme is 0.1. Other time-steps have
been tested and the approach seem stable with respect to this parameter. The problem is iterated over
time to illustrate the growth of LGG and HGG tumour types as well as to illustrate the behaviour of
the tumour near the boundaries of the brain.

6.5. Results

Figures 6 and 7 illustrate the simulation of the three-dimensional growth of both LGG and HGG
tumour types on respectively the 3d Shepp–Logan image and the MRI T1 image.

Figure 5. Position of the initial tumour cell density in the MRI T1 image and its corresponding 3d planes.

Figure 6. Low and High Grade Glioma in the 3d Shepp–Logan data for T = 40. (a) Low Grade Glioma and (b) High Grade Glioma.
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Figure 7. Low and High Grade Glioma in MRI T1 data for T = 40. (a) Low Grade Glioma and (b) High Grade Glioma.

Comparing the two grown tumours obtained both after 400 iterations (corresponding to T= 40),
we can see that the size of the HGG tumour is larger than the LGG tumour in both the 3d
Shepp–Logan set-up and in the MRI T1 model.

To further illustrate the growth in time, Figures 8–11 show, respectively, the progression in time
((a) T= 20, (b) T= 60 and (c) T= 80) of LGG and HGG tumours for the two types of data set-ups.

We observe that the tumour grows almost smoothly and uniformly in the simple geometric struc-
ture (shown in Figure 2) of the 3d Shepp–Logan image, see Figures 8 and 10. On the other hand,
within the more complex geometric structure (shown in Figure 3) of the MRI T1 image, the tumour
grows to become irregular in shape, see Figures 9 and 11.

Figures 12 and 13 show the shape that an advanced stage HGG tumour have grown to at time
T= 100 in respectively the 3d Shepp–Logan set-up and the MRI T1 data. From these figures, we see

Figure 8. Growth of LGG in the 3d Shepp–Logan image. (a) T = 20. (b) T = 60. (c) T = 80.

Figure 9. Growth of LGG in the MRI T1 data.(a) T = 20. (b) T = 60. (c) T = 80.
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Figure 10. Growth of HGG in the 3d Shepp–Logan image. (a) T = 20, (b) T = 60 and (c) T = 80.

Figure 11. Growth of HGG in the MRI T1 data. (a) T = 20, (b) T = 60 and (c) T = 80.

Figure 12. Grown advanced HGG shown in the 3d Shepp–Logan image.

Figure 13. Grown advanced HGG shown in the T1 MRI data.

that the model automatically takes into account the boundaries of the tumour progression. The ring-
shaped formation on the tumour in Figure 12 is due to the fact that the tumour has grown to reach
the boundary of the brain and is is pushing towards the skull. The irregularities on the surface of the
tumour in Figure 13 is explained likewise.

Moreover, we note that the tumour does not grow outside the skull as shown in the 3d
Shepp–Logan image (Figure 12) nor in the ventricles as shown the MRI T1 data (Figure 13).
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We have also generated the similar Figures 12 and 13 for the exponential and Gompertz models
(see (1) for parameters). Rather than overloading the presentation with figures, we report the follow-
ing leaving out the figures.Weobserved similar growth patterns for the exponential and theGompertz
models in both the Shepp–Logan model and the T1 MR1 image.

We end this section with some information about the computations. The numerical simulations
presented are done in MATLAB R2016a version 9.0 and executed on an ordinary workstation having
an Intel(R) Core(TM) i5-5200U CPU at 2.20 GHz. The total number of voxels in the Shepp–Logan
model is 256 × 256 × 256 and for the MRI T1-weighted brain scan it is 256 × 256 × 54 (we have
not taking into account any differences of resolutions in the x -, y- and z -directions). The total sim-
ulation time to generate Figures 12 and 13 are about 3 hours 30 minutes, respectively, 29 minutes.
No optimization of the code has been done and it is believed that computational time can be further
improved.

7. Conclusion

Reaction–diffusion equations have been surveyed and used in studying the growth of brain tumours.
Clinical andmathematical properties of themodel have been discussed, as well as a variational formu-
lation. Full three-dimensional numerical simulations have been performed for two different set-ups,
the 3d Shepp–Logan phantom and T1MRI data from IBSR, and for both low and high grade glioma.
Standard finite difference discretization of the space and time-derivatives are employed, generating a
simplistic approach that performs well. Already this basic model has the realistic properties seen in
the simulations such as automatic control that the tumour does not grow outside the skull. In fact,
simulations show how the tumour deformswhen it reaches regions into which it cannot grow further.
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