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ABSTRACT 

Signal detection theory (SDT) has proven to be a robust and useful statistical model for 

analyzing human performance in detection and decision making tasks. As with many models 

extensions have been proposed in order capture and represent the real world to a greater degree. 

Multidimensional Signal Detection Theory (MSDT) has had success in describing and modeling 

complex signals, signals that are comprised by more than one identifiable component dimension. 

Fuzzy Signal Detection Theory (FSDT) has had success in modeling and measuring human 

performance in cases where there exist ambiguity in the signal or response dimension 

characteristics, through the application of fuzzy set theory to the definition of the performance 

outcome categories.  Multidimensional Fuzzy Signal Detection Theory (MFSDT) was developed 

to accommodate simultaneously both the multidimensionality of a signal and the fuzzification of 

outcome categories in order to integrate the two extensions. A series of three studies were 

performed to develop and test the theory. One study's purpose was to develop and derive 

multidimensional mapping functions, the aspect of MFSDT where MSDT and FSDT were 

integrated. Two receiver operating characteristic (ROC) studies were performed, one simulated 

and one empirical. The results from both ROC analysis indicated that for perceptually separable 

and perceptually integral complex stimuli that MFDST is a viable methodological approach to 

analyzing performance of signal detection tasks where there are complex signals with ambiguous 

signal characteristics.  
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CHAPTER 1: INTRODUCTION 

Signal Detection Theory (SDT) is a statistical model for measuring and describing 

performance for detection and decision making tasks.  It is used in a variety of research domains 

including but not limited to psychology, engineering and medicine.  For example, SDT has been 

used to analyze performance of individual baggage screener in detecting threat items passing 

through x-ray baggage screening with the use of threat image projection (TIP), in which realistic 

looking x-ray images of threat objects (i.e. guns, knives) are inserted into images during normal 

baggage screening operation. (Hofer & Schwaninger, 2005).   In the medical sciences SDT has 

been used to evaluate different magnetic resonance techniques, blood oxygenation level 

dependent (BOLD) vs. echo-planar imagine and signal targeting (EPISTAR), with use for 

functional brain imaging (Siewert, Bly, Schlaug, Thangaraj, Warach, & Edelman, 1996) as well 

as different medical imaging techniques in general (Swets, 1979).  SDT is also applicable to the 

evaluation of diagnostic systems (Swets & Pickett, 1982), alarms (Parasuraman, Hancock, & 

Olofinboba, 1997), and in the design and operation of automation (Parasuraman, Sheridan, & 

Wickens 2000; Sorkin & Woods, 1985).  

The Traditional SDT Model 

Signal Detection Theory emerged from engineering and Decision Theory. It was 

originally applied to the detection of psychophysical stimuli in noise, such as auditory signals in 

communication systems (Peterson & Birdsall, 1953) or visual signals on radar displays (Tanner 

& Swets, 1954).   In SDT the psychophysical stimulus to be detected is referred to as the signal 

and all other environmental events are defined as noise.  Green and Swets (1966) delineate the 

decision making event as comprised of three parts; 1)  the state-of-the-world,  2)  the information 

presented to the observer, i.e., the magnitude of the evidence variable and, 3) the decision 
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regarding the classification of the stimulus as a signal or non-signal event.  The state-of-the-

world is essentially the ground truth regarding whether the stimulus presented is a member of the 

category 'signal' or 'noise'.  The information refers to stimulus properties presented to the 

observer, which comprises the evidence variable.  The decision is the response by the observer 

regarding whether the signal is present or absent or, more generally, the category (as defined in 

the specification of the state of the world) to which the stimulus event belongs.  While typically 

dichotomous, the response can be multicategorical (MacMillan & Creelman, 2005).  For each 

stimulus presentation the observer responds affirmatively (i.e. signal present) if the stimulus 

magnitude is larger than an internal value, referred to as the criterion, and the observer responds 

negatively regarding signal presence if the stimulus magnitude is less than the criterion. Four 

possible outcomes result from the combination of the two states-of-the-the world and the two 

response alternatives. 

 

 

 

State of the World 

Alternatives 

          Response Alternatives 

 S N 

 

s 

P(S|s) 

Hit (H) 

P(N|s) 

Miss(M) 

 

n 

P(S|n) 

False Alarm (FA) 

P(N|n) 

Correct Rejection (CR) 

Figure 1. Truth table for SDT that maps the state-of the-world to observer response. Adapted 
from Green and Swets (1966). S = Affirmative response regarding signal presence, N = Negative 
response regarding signal presence, s = the signal is present, n = the signal is absent ('noise' or 
non-signal). 
 

These outcomes can be specified as the conditional probabilities of each possible 

response by state of the world combination. For example, a correct detection or hit (H) is the 

probability of responding that a signal is present given that the state of the world was in the 
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category signal.   The four outcomes provide performance information regarding the accuracy of 

the observer, but in SDT these scores can be used to compute indices of perceptual sensitivity 

and response bias (criterion setting).  Sensitivity refers to the capacity of the observer (or non-

human detector) to distinguish signal from noise events.  An observer who achieves higher signal 

detection performance will have higher sensitivity and therefore will have a higher rate of correct 

rejections and a lower rate of false alarms. For example, Bonnel, Mottron, Peretz, Trudel, 

Gallun, and Bonnel (2003) investigated pitch sensitivity in high functioning autistics using two 

auditory perceptual tasks and found compared to neuro-typical individuals, high functioning 

autistics exhibited higher pitch sensitivity (i.e. they were able to detect tones others were unable 

to, they were more sensitive to the detection of tones).  

Response bias refers to the tendency of the observer to respond 'signal present' versus a 

'signal absent', and it is determined by the magnitude of the evidence variable at which the 

observer sets the decision criterion.  The response bias of an observer can be described as lenient, 

unbiased, or conservative.  A lenient criterion would indicate a lower magnitude value of the 

stimulus for the observer to respond in the affirmative to the signal presence. A lenient criterion 

results in more hits but at the cost of more false alarms. A conservative criterion would indicate a 

higher magnitude of the stimulus (the evidence variable) that is required for the observer to 

respond in the affirmative regarding signal presence. A conservative criterion results in fewer 

false alarms but at but at the cost of fewer correction detections. An  example of response bias, 

Thomas and Houge (1976) used SDT analysis in their construction of model for jury decision 

making, and they reported that  among other decision criteria, that the juror instructions 

regarding the definition of reasonable doubt affected response bias, the more lenient definitions 

were associated with more lenient the response biases. Response bias in this case was defined as 
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the jurors’ willingness to render a guilty vote. The study also found that the severity of the case 

and of its punishment influenced response bias. Jurors adopted a more conservative response bias 

(i.e., they adopted a stricter criterion for a "guilty" decision") if it was a criminal case with severe 

punishment attached. 

       SDT being a statistical model of human performance in decision making and detection is 

based on five statistical assumptions (for more detailed descriptions of the statistical model, see 

Green & Swets, 1966, MacMillan & Creelman, 2003): 

1) Noise is always present in a detection system and it is normally distributed with a 

variance, σn
2 = 1 

2) When a signal is added to the noise, the distribution shifts along the sensory 

dimension as shown in Figure 2. The equal variance model assumes that the variance 

of the distribution remains unchanged when shifted, σs
2 = σn

2 = 1 

3) The observer is both the sensor and decision maker 

4) The observer adopts a decision criterion in order to determine whether a signal is 

present 

5) Sensitivity and bias are independent of one another. 

These assumptions are reflected in the decision space defined by the model and illustrated in 

Figure 2. 
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Figure 2.  Representation of the Signal Detection Theory decision space. The x-axis represents 
the magnitude of the evidence variable. 

The decision space consists of two normal distributions, the right-most normal distribution is the 

distribution of noise (assumption 1) and the left-most normal distribution  is the distribution of 

the signal embedded in the noise (assumption 2). The line labeled criterion beta, is the minimum 

magnitude of the evidence variable at which the observer responds affirmatively. If the 

magnitude of x is greater than this criteria then the observer decides the signal is present, if the 

magnitude is less than the observer decides the signal is not present. Note that the criterion beta 

line in Figure 2 is the SDT measure response bias. The distance between a two distributions is 

the metric for sensitivity.  

Extensions of Signal Detection Theory 

One strength of SDT is that it provides measures of performance that represent different 

components of detection and decision making tasks. As with many mathematical or statistical 

models modifications of the initial theory have been proposed in order to refine the model into a 

better representation of real world decision making.  Two variants of SDT have shown potential 
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for achieving this goal, Multidimensional Signal Detection Theory (MSDT) for stimuli that vary 

on more than one stimulus dimension and Fuzzy Signal Detection Theory (FSDT) for cases in 

which the state of the world on stimulus or response alternatives are not mutually exclusive 

categories.  

Multidimensional Signal Detection Theory 

Multidimensional Signal Detection Theory (MSDT) was derived from General 

Recognition Theory (GRT; Ashby & Townsend, 1986) and it may be considered a multivariate 

generalization of signal detection theory.  GRT was developed to in order to explain how the 

different perceptual dimensions, e.g. orientation, shape, hue, brightness, etc, are combined in the 

perceptual processing of a stimulus.  Ashby and Townsend (1986) argued that because the 

perceptual process itself is non-observable, the perception of the stimulus must first undergo 

some form of decision processes, which based on the direct perception of the stimulus selects an 

appropriate response.  This argument is similar to the assumption of SDT in which the observer 

adopts a decision criterion in order to determine whether a signal is present or not. By assuming 

that the perceptual dimensions of the stimulus are multivariate normal distributions, the normal 

distributions being an assumption of SDT, GRT can be used as a multivariate extension of SDT 

(Ashby & Townsend, 1986), thus creating MSDT. 

In GRT, for a single detection or discrimination event the observed stimulus is 

represented by a point in the multidimensional perceptual space and variability is introduced in 

an aggregation of perceptual response over multiple repetitions of the stimulus (Ashby, 2000). 

This aggregation results in a multivariate probability distribution, i.e. 𝑓𝑓𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖(𝑓𝑓,𝑦𝑦) for a 

presentation of a complex stimulus AiBi which is a specific combination of two perceptual 

dimensions A and B, as well as marginal distributions of perceptual effects on each perceptual 
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dimensions, i.e. 𝑔𝑔𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖(𝑓𝑓) and 𝑔𝑔𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖(𝑓𝑓) for presentation of  a complex stimulus AiBi, as seen in 

Figure 3.    

 
Figure 3. Example of GRT with unequal variance probability distributions. Illustration based on 

Ashby and Townsend (1986). 

 

The circles shown in Figure 3 are a plane cutting of the four bivariate probability 

distributions f(x, y) at a given height creating an equal probability contour for each distribution.  

Figure 4 illustrates the transformation from bivariate probability distributions to equal 

probability contours. A plane cutting takes a 3-dimensional probability distribution such as f1 in 

Figure 4a and  transforms it into a 2-dimensional equal probability contour, such as f1(x,y) in 

Figure 4b or fA2B1(x,y) in Figure 5. Ashby and Townsend (1986) note that for many common 

probability distributions, such as the bivariate normal distributions seen in Figures 4 and 5, all 

contours have the same shape so it is sufficient to represent each distribution as a single contour.   
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Figure 4. (a) Graph of bivariate probability distributions f1(x, y) and f2(x, y) for two stimulus S1 
and S2 (b) Cross sections of Figure 4(a) resulting in contours of equal probability. Illustrations 
based on Ashby and Townsend (1986). 
 

GRT assumes the observer partitions the perceptual region along each dimension and 

associates a response label with each partition, so that if prompted with a specific stimulus the 

response of the observer would be determined by which partition the stimulus is perceived to 

represent in the multidimensional space.  An example of one type of these partitions can be seen 

in Figure 3 as delineated by two response criterion cA for determining signal on the dimension A 

along the x-axis and cB for determining signal on the dimension B along the y-axis.   

 An important aspect of MSDT studies is the use of complete identification experiments, 

as it provides a methodology to determine the relationships between the multiple component 

dimensions. These experiments create stimuli by combining factorially all levels of the different 

perceptual dimensions. For the simple case, assume two levels for both a brightness dimension 

(A1 and A2) and a loudness dimension (B1 and B2).  Combining factorially the two perceptual 

dimensions would result in four stimuli, A1B1, A1B2, A2B1, and A2B2, with four possible 

response sets for an observer to choose from when identifying the stimulus, a1b1, a1b2, a2b1, and 

a2b2.   

As an example of how GRT and the multidimensional space are structured, consider a 

hypothetical study examining the perceptual dimensions comprising a siren, specifically the 
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brightness of the siren and the loudness of the siren In terms of the multidimensional perceptual 

space, assume the component Ai of the brightness dimension is associated with x, and the 

component Bi of the loudness dimension is associated with y.  The function 𝑓𝑓𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖(𝑓𝑓,𝑦𝑦) is the 

perceptual distribution associated with each stimulus AiBi. By taking a cross section of each of 

the four f(x,y) functions  mapped in the same multidimensional space, an equal probability 

contour is graphed in the two dimensional, x and y,  for each f(x,y) function by taking a cross 

section of the f(x,y) functions. The result would look something like Figure 5. 

 
Figure 5.  Equal probability contours for each of the four AiBi created by taking a cross section 
from each of the probability distribution functions𝑓𝑓𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖(𝑓𝑓, 𝑦𝑦). Illustration based on Ashby and 

Townsend (1986). 
 
For any of the stimuli presented to the observer, the perceptual event lies on the point (x, y) in 

the multidimensional space, for example the point in the fA2B2(x, y) contour in Figure 5. Based 

on the internal criteria the observer decides which response to assign to the perceptual event.  For 

example if the observer is shown the stimulus A2B2, the perceptual point may lie as shown as a 

dot in Figure 6 and based on their internal criteria (the dotted lines in Figure 6) the point is 

perceived as lower in magnitude than cA and greater in magnitude than cB, and therefore would 

respond a1b2, a hit in terms of signal detection.  The location in the two-dimensional space of a 

stimulus in relation to the criteria set along the dimensions, will determine the categorical 

response of the observer. If the observer were to set their criteria, cA and cB, as shown in Figure 
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6, their response would be A2B2, as the magnitude of the stimulus event is greater than both the 

cA and cB criteria.  For the present example, cA would represent the criterion label for the 

magnitude of brightness dimension and cB would be the criterion for the level of the loudness 

dimension.  

 
Figure 6. Equal probability contours with a point representing the perceptual event which occurs. 
Dotted lines are the criteria set by the observer. Illustration based on Ashby and Townsend 
(1986). 

 
Perceptual independence, perceptual separability, and decisional separability. One 

of the strengths of GRT is that it specifies the relationships among the dimensions that define a 

complex stimulus. Specifically, the dimensions may be perceptually independent of one another, 

they may be perceptually separable (but not independent), or the decision regarding category 

membership along the dimensions may be separable or integral. These concepts from GRT are 

referred to as perceptual independence, perceptual separability and decisional separability, 

respectively. Perceptual independence is defined as the statistical independence of the perceptual 

effects of the components of a single stimulus. For instance, in the case of the two components of 

a siren, that the perceptual effect of the brightness of the siren does not affect the perceptual 

effect of the loudness of the siren indicates that the dimensions are perceptually independent. 
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This can be tested by showing that the associated covariance parameter between the two 

components is equal to zero.  

Perceptual separability refers to whether the perceptual effect of one dimension is 

affected by the perceptual level of other dimension. That is, two dimensions A and B would be 

perceptually separable if all perceptual effects of A were unaffected by variations in the 

perceptual levels of B.   An example of two perceptually separable dimensions are shape and hue 

(Maddox, 1992). Variations in the hue dimension do not affect the perception along the shape 

dimension. If the perceptual effects of  dimension A are affected by variations in the perceptual 

levels of dimension B and the perceptual effects of dimension B are affected by the perceptual 

levels of dimension A, then the two dimensions are perceptually integral, also known as 

perceptually integral.  An example of two perceptual integral dimensions are hue and brightness 

(Maddox, 1992).  Variations along the hue dimension influence perception along the brightness 

dimensions.  

If dimension A is perceptually separable from B and B is perceptually separable from A, 

the dimensions are said to be mutually perceptually separable. However if dimension A is not 

perceptually separable from dimension B but B is perceptually separable from A, (or vice versa, 

if dimension B is not perceptually separable from dimension A but dimension B is perceptually 

separable from dimension A), then the dimensions are said to have asymmetric perceptual 

separability.  An example of asymmetric perceptually separable dimensions was reported by 

Ashby and Lee (1991), who observed that the orientation and size of a line had asymmetrical 

perceptual separability. When judging the size of the line the orientation did not affect the 

observer's perception however when judging orientation the size of the line did influence the   
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observer's perception of the orientation. Note however, that previous work by Garner and 

Felfoldy (1970) demonstrated that the size and orientation of lines were perceptually separable.   

Decisional separability refers to whether the decision regarding the level of a stimulus on 

a dimension is dependent on the perceptual effects of the any other dimension. If for the bivariate 

case both levels of dimension A (A1 and A2, see Figure 7) the only decision boundary used by 

the observer was y0 , the decision criterion for B, then there would be decisional inseparability. 

However if for decisions about A, decision criteria x0 was used and for decisions about B 

decision bound y0 was used then the dimensions are considered decisionally separable.  Figure 6 

illustrates a hypothetical two level-two perceptual dimension multivariate mapping where 

decisional separability exists, the fact that the two decision criteria, x0 and y0, are parallel to the 

coordinate axis is evidence of decisional separability.  

 

Figure 7. Example of two dimensional MSDT. Each circle represents a cross section of a three 
dimensional distribution of two normally distributed stimuli. The dotted lines in the figure are 
the decision criteria for dimension X and dimension Y. Illustration based on figure from 
Macmillan and Creelman (2005).   
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Figure 8.  Based on figure from Maddox and Ashby (1996), showing a hypothetical set of equal 
probability contours and decision bounds 

However, in the hypothetical example illustrated in Figure 8, decisional separability has 

been violated, evident in the fact the decisional criterion (cB) for component B is diagonal rather 

than parallel with the x-axis.  

 Example of MSDT vs. SDT. MacMillan and Creelman (2005) describe an example of 

how MSDT can provide a better model that one-dimensional SDT for complex or compound 

stimuli.  Using the combination of two perceptually independent dimensions, brightness and 

loudness (Figure 9a), MacMillan and Creelman describe various representations of the decision 

boundary of the observer in the two dimensional space.  The null (non-signal) stimulus S1's 

equal probability contour is centered at the point (0, 0) on the graph and the signal stimulus S2's 

equal probability contour is center at the point (d'x, d’y).  Figure 9b illustrates the use of a single 

component to make the decision, essentially transforming the compound problem back into a 

one-dimensional SDT problem. Using this decision bound (or criterion) the observer would 

respond affirmatively regarding signal presence if the stimulus magnitude exceeds the criterion 

level on the loudness dimension across all levels of brightness, in essence a single criterion result 

in one-dimensional SDT problem by removing the brightness dimension from the decision 
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processes. Figure 9c illustrates the maximum decision rule in which any stimulus greater in 

magnitude than both single decision bounds are included. The observer would respond ‘yes’ if 

both components (x, y) of the stimulus magnitude was greater than its respective decision bound 

(x decision bound, y decision bound).  Figure 9d illustrates the minimum decision rule in which 

the area less than either or both decision lines is categorized as a non signal. If the observer 

perceives the stimulus magnitude across either dimension to be greater than their internal 

criterion for that dimension they will respond affirmatively.  Figure 9e illustrates the  Optimal or 

Diagonal rule which shows only the signal distribution, S2, not the null distribution, S1, centered 

at 0,0 as in the other illustrations.  With the optimal rule the decision axis runs between the 

means of the signal distributions and has the criterion perpendicular to the decision axis. In the 

optimal rule both perceptual dimensions contribute to the decision process in a way that strong 

evidence in one dimension can compensate for weaker evidence in the other dimension. Of these 

decision rules the optimal rule performs the best. This is evident when examining the ROC 

curves of the four decision rules (Figure 10).  
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Figure 9. Multidimensional Decision Rules. The shaded area in diagrams above represent the 
area of multidimensional space in which the observer would respond a signal is present. a. 
Illustration of complex problem. b. Single Component c. Maximum Rule d. Minimum Rule e. 
Optimal (Diagonal) Rule. Illustrations from Macmillan and Creelman (2005).   

 

Figure 10. ROC Analysis of the four decision rules. Illustration from MacMillan and Creelman 
(2005). 

For the  ROC curves shown in Figure 10 the closer the bend in the curve is to the top left corner, 

indicating a high hit rate and low false alarm rate, the more ideal the signal detection 

performance of the observer.  As evident in the figure, the three multidimensional rules 
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(optimal/diagonal, maximum rule, minimum rule) outperformed the single component or 

traditional SDT case, indicating that for complex stimuli MSDT may provide a better 

representation than SDT of how the observer categorized the multidimensional stimuli. The 

present investigation extended this logic to the case of the fuzzy signal detection model. 

Fuzzy Signal Detection Theory 

In most research and application of SDT the stimulus and response categories are 

mutually exclusive such that the state of the world is categorized as either present or absent, and 

the response from the observer is a decision that the signal is present or absent. Hancock, 

Masalonis and Parasuraman (2000), suggested that in many real world applications it is difficult 

define the true state of the world, and that this ambiguity adds to the difficulty of evaluating 

detection performance.  Defining the categories of signal and non-signal can depend on 

contextual factors including the person(s) who define the possible state of the world and the 

decision alternatives.  In some cases characteristic features of the signal itself is ambiguous and 

thus difficult to define because its perceptual properties contain elements of both signal and 

noise.   

Szalma and Hancock (2013) describe one example of this phenomenon in the case of 

threat detection. Knowledge regarding the characteristics of threat items, such as a potential 

weapon hidden in a bag passing through x-ray baggage screening devices or an improvised 

explosive device (IED) placed on the side of a road, are often difficult to know in operational 

settings because the items are often ambiguous. Take for example a long thin tapered object 

viewed in a handbag passing through x-ray, this may be the threat object, a knife blade, or it may 

be a nail file, a non-threat object, as both share similar perceptual properties which indicate a 

signal. It is possible to know the identity of the item upon removing the object from the handbag 
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(i.e. a posteriori), however in operational settings the observer must make a decision for action 

(i.e. whether to manually search the bag) almost immediately upon inspection of the ambiguous 

object on the x-ray screen In  situations such as these the forced categorization of  stimulus 

definition into signal or noise required by SDT may result in loss of information regarding the 

true nature of the stimulus events.   Parasuraman, Masalonis and Hancock (2000) proposed 

Fuzzy Signal Detection Theory (FSDT) to address this problem.  

 Fuzzy Signal Detection theory combines principles of fuzzy set theory with those of 

SDT.  Fuzzy set theory, is a mathematical theory which permits elements of sets to 

simultaneously belong to multiple sets within the set universe. In contrast to traditional set 

theory, in which a set element has either full (one) or no (zero) membership in a set, fuzzy set 

theory allows for an element to belong simultaneously to a certain degree to one or more sets in 

the defined universe. In the case of FSDT, a stimulus in the environment  can simultaneously 

belong to a degree to both the set 'signal' (s) and the set 'noise' (not s), indicating that the variable 

has elements or properties of both. Thus, FSDT allows for the non-mutually exclusive 

categorization of the signal and response dimensions, thereby eliminating the limitation 

regarding crisp categorization. That is, rather than a mutually exclusive classification of a 

stimulus as either a signal (s = 1) or noise (s = 0) event, in FSDT the stimulus has a degree of 

"signalness” represented by a value between 0 -1.  For example, if the signal membership value 

of the stimulus is of 0.8, it would indicate that the stimulus has a moderately high degree of 

signal-ness but also retains characteristics of "noise-ness".  Additionally, observer response can 

also defined as a fuzzy set, such that a response can belong to both the response sets "yes, signal 

represent" or "no, signal absent" to varying degrees (Parasuraman,  Masalonis, and Hancock, 

2000). 
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Mapping functions. The membership value in a fuzzy stimulus set is defined through the 

use of mapping functions. Mapping functions transform the physical value of the stimulus (or 

response options provided to the observer) into a membership value in the set signal s (or the set 

response r). Mapping functions can be derived based upon theoretical considerations, established 

empirical evidence, or regulatory standards (Parasuraman et al., 2000). As an example 

application, Parasuraman et al. (2000) described a mapping function for detection of potential 

midair aircraft collisions, a task that confronts that air traffic controllers (see Figure 11). In 

traditional SDT (crisp) terms, a signal is defined as an instance in which two aircraft are within 5 

nautical miles horizontally from one other, as defined by the FAA. However, air traffic 

controllers often use different separation distances based on current context to make decisions 

regarding corrective action. The example mapping function which could be used for this scenario 

was s = 1/ [1+ (a/10)5], in which 'a' was the separation of the aircraft in nautical miles.  For 

example if the two aircraft are 10 nm apart their signal membership0 would be s = 0.5 or if the 

aircraft were 9 nm apart their signal membership would be s = 0.65. Figure 11 illustrates this 

particular mapping function as well as its crisp counterpart.  
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Figure 11. Fuzzy signal mapping function from Parasuraman et al. (2000). 

FSDT procedure. Upon establishing mapping functions for the stimulus and response 

sets, the resulting s-r pairs are subsequently transformed using mixed implications functions that 

assign each s-r pair membership values in the four fuzzy criteria sets. In SDT the four potential 

performance outcomes are by transforming the observer response and stimulus value data via the 

truth table in Figure 1.  In FSDT, the transformation occurs using the aforementioned mapping 

functions in order to define membership values in both the signal and response sets. These 

memberships values are then used to calculate the four possible performance outcomes for each 

trial (hits, misses, false alarms, and correct rejections) using a set of mixed implication functions 

described by Parasuraman et al. (2000). The definitions for each outcome are summarized in 

Equations 1-4, in which s is the membership value of the stimulus in the set signal, and r is the 

membership value of the response in the set 'response' ('yes' response).  While membership 

values are bound by the range [0-1], they are not to be confused with proportions. Consider a 

single s-r pair with outcome membership H=0.11, M=0.24, FA = 0, and CR = 0.65, the hit 
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membership value of 0.11 is not the same as saying hits were 0.11 (or 11%) of the signal trials 

but rather that signal and response pair corresponding to a given stimulus presentation belongs 

0.11 to the set hit, as it also belongs 0.24 to the set miss, does not belong at all to the set false 

alarm and belongs 0.65 to the set correct rejection. 

Hit H = min (s, r) (1) 
Miss M = max (s- r, 0) (2) 
False Alarm FA = max (r- s, 0) (3) 
Correct Rejection CR = min (1- s, 1- r) (4) 

 
Note that as fuzzy sets a signal-response pairing can result in simultaneous membership in more 

than one outcome category.   It should be noted that using the mixed implication functions with 

mutually exclusive membership (s = 1 or r = 1) or non-membership (s = 0 or r = 0) values, results 

in the four possible outcomes corresponding to the crisp SDT's truth table. Additionally,  the 

outputs of Equations 1-4 can  be used to calculate rates (proportions) for each fuzzy outcome 

category by summating over multiple trials using the formulas summarized in Equations 5-8 

(Parasuraman, et al., 2000). 

Hit Rate HR = ∑(min(si, ri))/ ∑(si) for i = 1 to N (5) 
Miss Rate MR = ∑(max(si- ri, 0)) / ∑(si) for i= 1 to N (6) 
False Alarm Rate FAR = ∑(max(ri - si,. 0))/ ∑(1-si) for i = 1 to N (7) 
Correct Rejection Rate CRR = ∑(min(1 - si, 1 - ri))/ ∑( 1-si) for i = 1 to N (8) 

 
 

Parasuraman, et al. (2000), suggest that the fuzzy hit and false alarm rates obtained using these 

procedures can be used with the well-established formulas for computation of sensitivity and 

bias.  Several empirical studies have supported the application of these procedures (Masalonis & 

Parasuraman, 2003; Murphy, Szalma, & Hancock, 2004; Szalma et al., 2006; Szalma & 

Hancock, 2013). 

ROCs and FSDT. In analyzing signal detection and diagnostic system data, estimation 

of a Receiver Operating Characteristic (ROC) is a useful technique for evaluation of decision 
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making systems (Swets & Picket, 1982). ROCs provide information regarding how the 

conservatism of the operator's decision criterion varies with hit and false alarm rates for a given 

sensitivity (Swets, Dawes and Monahan, 2000).  Additionally the transformation of ROCs in to 

z-score form, zH = bzF +a, provides traditional performance measures of a detection or decision 

making task (e.g. β, d') and it can be used to determine whether data meets the statistical 

assumptions of SDT.  The z-score form of an ROC can inform us whether the data meets the 

assumptions of normality and equal variance. A linear ROC function (z-score form) that 

indicates that the normality assumption of SDT has been met and if the slope of the function b = 

1, then the equal variance assumption has been met.   

ROC analysis has been of particular value in validating the use of FSDT.  The FDST 

decision space was unspecified when the model was proposed, however practitioners of FSDT 

are to use traditional SDT performance measurements that are derived from SDT's decision 

space and thus require that SDT assumptions be met. It is assumed the structure of the FSDT 

decision space is of the same form as that of the traditional SDT decision space (Figure 2), but it 

is unclear how the fuzzy set membership in both signal and noise can be integrated into the 

traditional decision space representation, as the latter defines the categories as which use 

mutually exclusive distributions. Given ROC analysis can be used to test SDT assumptions from 

the outcomes of a SDT task,  ROC has been used to validate application of SDT performance 

measures to FSDT as well as whether the outcome rates calculated via FSDT methodology result 

in data that conforms to traditional SDT assumptions. 

Since the proposal of the FSDT in 2000, several studies have tested the tenability of the 

model by examining the underlying assumptions of FSDT. Empirically, FSDT has been 

successfully implemented in experiments ranging from discrimination of morphed images 



22 
 

(Szalma, Oron-Gilad, Saxton, & Hancock, 2006), temporal discriminations (Szalma & Hancock, 

2013) to vigilance tasks (Stafford, Szalma, Hancock, & Mouloua, 2003).  It has also been applied 

to archive air traffic control data (Masalonis & Parasuraman, 2003). Many of these studies used 

the ROC analysis approach to determine whether FSDT, as an extension of SDT, conformed to 

the fundamental statistical assumptions of the latter model thereby validating the use of 

traditional performance measures.  

Szalma and O'Connell (2011), conducted a series of Monte Carlo simulations in order to test 

the assumptions of FSDT in a statistical simulation rather than an applied experimental 

setting.  The results of the Monte Carlo simulations, indicated that FSDT analysis is capable of 

meeting both the normality and equal variance assumption required to use traditional SDT 

performance measures. Further, the studies indicated that sensitivity increases when applied to 

situations using categorical or continuous signal and/or responses, indicating FSDT may be a 

preferential choice compared to SDT for these situations.  

Development of Multidimensional Fuzzy Signal Detection Theory  

Through MSDT's modeling of a complex stimuli by its multiple component dimensions 

there is an improvement on the traditional SDT model because additional information about the 

stimuli is captured that would otherwise be lost by treating the unidimensional. Adding a 

multidimensional aspect to FSDT should provide a more accurate representation of the real 

world than SDT when a complex stimuli is used in conjunction with categorical or continuous 

signal or response sets.  

The general premise of adding a multidimensional component to FSDT is to change the 

mapping function from a univariate to multivariate and to use this function to define the fuzzy 
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signal and response sets as specified in FSDT. For present work, this multivariate mapping 

function will be of the form: 𝑆𝑆 =  ∑ 𝑤𝑤𝑖𝑖𝑛𝑛𝑖𝑖=1 𝑠𝑠𝑖𝑖(𝑎𝑎𝑖𝑖) + C 
w1 + ... + wn = 1 

(9) 

 

in which 𝑠𝑠𝑖𝑖(𝑎𝑎) is the mapping function for each individual dimension,  𝑤𝑤𝑖𝑖 is the weight 

associated with each dimension which determine the magnitudes of the dimensions that 

contribute to category membership, and C is a constant (or an interaction term in the case of 

inseparability).  The term (a) is the stimulus value used to compute the signal membership value 

from the mapping function 𝑠𝑠𝑖𝑖(𝑎𝑎)  or the response value used to compute the response 

membership value from the mapping function𝑟𝑟𝑖𝑖(𝑎𝑎). Note that while 𝑠𝑠𝑖𝑖(𝑎𝑎) is used here to show 

the signal mapping function S, the same equations can be applied using the set 𝑟𝑟𝑖𝑖(𝑎𝑎) to develop a 

multivariate response mapping function R.  Additionally the weights are bound by the value of 

one in order to preserve the scaling of the membership value of S between the values of 0 and 1.  

MFSDT example. The procedure used with MFSDT is the same method used by FSDT 

with an additional step for developing the weights to use for each function. Using the same 

combination of two perceptually independent dimensions, brightness and loudness that were 

used in the section discussing MSDT, the first step is to derive unique signal membership 

mapping functions for each of the two dimensions.  Figure 12 shows two plausible cases of 

mapping functions where one where the individual dimension mapping functions are similar and 

one where the mapping functions differ.   
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 Brightness s1(a1) Loudness s2(a2) 

Case 1: 

Same 

  

Case 2: 

Different 

 
 

Figure 12. Two plausible scenarios of mapping functions for a complex signal comprised of 
brightness and loudness to be used by MFSDT. 

In both scenarios the brightness function s1(a1), a1 is measured by value from the Munsell Color 

System and the loudness function s2(a2), a2 is measured by decibels. All of these mapping 

functions are similar to functions derived by other basic stimuli using psychophysical 

measurement methodologies (i.e. Method of Limits) in previous FSDT research (Szalma & 

Hancock, 2013; Szalma & O'Connell, 2011; Murphy, Szalma, & Hancock, 2004).   

After defining the individual dimension mapping function, MFSDT requires the 

additional step of determining the weights of each dimension to be used in generating a 

combined mapping function of the two dimensions. These weights may be derived theoretically 

or empirically. Three different weight combinations were used for the purposes of this example. 

The first weight combination assumes that both dimensions have an equivalent effect on the 

signal perception and assign both individual functions a weight of 0.5, resulting in a combined 
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mapping function S(a1,a2) = 0.5s1(a1) + 0.5s2(a2), where s1(a1) is the mapping function for the 

brightness dimension and s2(a2) is the mapping function for the loudness dimension. The second 

weight combination assume the brightness dimension has a weight of 0.7 and the loudness 

dimension has a weight of 0.3, resulting in a combined mapping function of   S(a1,a2) = 0.7s1(a1) + 

0.3s2(a2).  The third weight combination assume the brightness dimension has a weight of 0.3 

and the loudness dimension has a weight of 0.7, resulting in the combined mapping function of 

S(a1,a2) = 0.3s1(a1) + 0.7s2(a2).   

Since both individual dimension mapping functions are simply discretely defined signal 

membership values  for eleven different values of a, the combined mapping function is the 121 

possible combinations of pairings of the 11 brightness values (a1) with the 11 loudness values 

(a2)  with their signal membership values defined by the combined mapping function equation. 

Figure 13 illustrates the three different weight combined mapping functions for the two 

individual mapping function cases. 
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Individual Functions S(a1,a2) = 0.5s1(a1) + 0.5s2(a2) S(a1,a2) = 0.7s1(a1) + 0.3s2(a2) S(a1,a2) = 0.3s1(a1) + 0.7s2(a2) 
Same: 

 

   

Different: 

 

   

Figure 13. Combined mapping functions for three potential weight options, 50/50, 70/30, and 30/70 for both individual functions 
scenarios. 
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With a combined mapping function defined, MFSDT is now used in the same as FSDT.  In order 

to proceed with a FSDT/MFSDT analysis of data a response mapping function must also be 

defined. For this example, 10 categories of response were used, resulting in the mapping function 

shown in Figure 14.  

 
Figure 14. Response mapping function for 10 categories of response. 

 

With the decision space unspecified in FSDT and therefore MFSDT as well, ROC 

analysis is a useful tool for understanding what effects manipulations may have when using 

either model. In order to compare the five possible models for this combined stimulus pair 

(Brightness only FSDT, Loudness only FSDT, and three Combined Brightness and Loudness 

MFSDT), an ROC was calculated using three different possible response bias types.  The first 

response type (lenient) entailed an observer who responded always one or two categories higher 

than the what the "true" state of the world was for each possible stimuli The second response 

bias type (unbiased) entailed an observer responding always one category higher than the true 

state of the world or one category less than the true state of the world for each possible stimuli.  

The final response bias type (conservative) entailed an observer who responded always one or 
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two categories less than what the true state of the world was for each possible stimuli.  Table 1 

shows the resulting outcome rates using the rate functions defined in Parasuraman, Masalonis, 

and Hancock (2000) for the similar individual mapping function case and Table 2 shows the 

resulting outcome rates for the differing individual mapping function case. Note that both cases 

were computed using hypothetical data in order to illustrate the MFSDT procedures.  

Table 1. The four possible outcome rates for each of the five models using similar individual 

dimension mapping functions, calculated using FSDT for the individual dimensions and MFSDT 

for the three combined dimensions. 

 HR MR FAR CRR 

BRIGHTNESS     

Lenient 0.984589 0.015411 0.289946 0.710054 

Unbiased 0.878425 0.121575 0.120652 0.879348 

Conservative 0.710274 0.289726 0.010326 0.989674 

     

LOUDNESS    

Lenient 0.897143 0.102857 0.194839 0.805161 

Unbiased 0.745143 0.254857 0.065484 0.934516 

Conservative 0.546857 0.453143 0 1 

     

50/50 COMBINED    

Lenient 0.997026 0.002974 0.184071 0.815929 

Unbiased 0.833475 0.166525 0.044409 0.955591 

Conservative 0.585981 0.414019 0 1 

     

70/30 COMBINED     

Lenient 0.989863 0.010137 0.21729 0.78271 

Unbiased 0.838823 0.161177 0.065796 0.934204 

Conservative 0.607848 0.392152 0.000091 0.999909 

     

30/70 COMBINED     

Lenient 0.979241 0.020759 0.173335 0.826665 

Unbiased 0.80401 0.19599 0.046385 0.953615 

Conservative 0.565544 0.434456 0 1 
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Table 2. The four possible outcome rates for each of the five models using differing individual 

dimension mapping functions, calculated using FSDT for the individual dimensions and MFSDT 

for the three combined dimensions. 

 HR MR FAR CRR 

BRIGHTNESS     

Lenient 0.934158 0.065842 0.221973 0.778027 

Unbiased 0.789534 0.210466 0.084241 0.915759 

Conservative 0.604658 0.395342 0.002883 0.997117 

     

LOUDNESS    

Lenient 0.960337 0.039663 0.256914 0.743086 

Unbiased 0.828429 0.171571 0.004032 0.995968 

Conservative 0.65728 0.34272 0 1 

     

50/50 COMBINED    

Lenient 0.99925 0.00075 0.197901 0.802099 

Unbiased 0.839156 0.160844 0.050484 0.949516 

Conservative 0.591549 0.408451 0 1 

     

70/30 COMBINED     

Lenient 0.975804 0.024196 0.193906 0.806094 

Unbiased 0.805496 0.194504 0.05719 0.94281 

Conservative 0.571308 0.428692 0 1 

     

30/70 COMBINED     

Lenient 0.999412 0.000588 0.223543 0.776457 

Unbiased 0.851803 0.148197 0.064781 0.935219 

Conservative 0.613278 0.386722 0 1 

 

These rates are then used to calculate ROC statistics as well as traditional SDT measures of bias 

and sensitivity.  Table 3 summarizes the results of an ROC on the models for the similar 

individual mapping function case and Table 4 summarizes the results of the ROC on the models 

for the differing individual mapping function case. 
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Table 3. Displays the sensitivity and criterion bias calculate for the Brightness FSDT, Loudness 

FSDT and the three combined Brightness and Loudness MFSDTs for the similar individual 

mapping function case. 

Model Az a b Conservative 
βln 

Unbiased  
βln 

Lenient 
 βln 

Brightness 
FSDT 

0.965 2.567 1.0 2.061 1.284 0.536 

Loudness 
FSDT 

0.943 2.241 1.0 2.185 1.560 0.911 

50/50 
Combined 
MFSDT 

0.982 2.966 1.0 2.761 1.902 0.829 

70/30 
Combined 
MFSDT 

0.975 2.780 1.0 2.533 1.687 0.720 

30/70 
Combined 
MFSDT 

0.976 2.789 1.0 2.642 1.859 0.897 

 

Table 4. Displays the sensitivity and criterion bias calculate for the Brightness FSDT, Loudness 

FSDT and the three combined Brightness and Loudness MFSDTs for the differing individual 

mapping function case.  

Model Az A b Conservative 
βln 

Unbiased  
βln 

Lenient 
 βln 

Brightness 
FSDT 

0.95 2.320 1.0 2.112 1.468 0.883 

Loudness 
FSDT 

0.968 2.620 1.0 2.484 2.029 0.768 

50/50 
Combined 
MFSDT 

0.982 2.972 1.0 2.756 1.877 0.775 

70/30 
Combined 
MFSDT 

0.970 2.666 1.0 2.516 1.729 0.825 

30/70 
Combined 
MFSDT 

0.979 2.876 1.0 2.614 1.712 0.690 

 

The ROC of the similar mapping function case showed an increase in sensitivity for the 50/50 

combined MFSDT analysis (Az = 0.982), 70/30 combined MFSDT (Az = 0.975) and the 30/70 

combined MFSDT (Az = 0.976) compared to the individual FSDT analysis of the brightness 

dimension (Az = 0.965) and the individual FSDT analysis of the loudness dimension (Az = 
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0.943).  The ROC of the differing mapping function case also showed an increase in sensitivity 

for the three combined mapping MFSDT analysis (50/50 combined Az = 0.982, 70/30 combined 

Az = 0.97, 30/70 combined Az = 0.979) compared to the individual FSDT analysis of the 

brightness dimension (Az = 0.95) and the loudness dimension (Az = 0.968). This result mirrors 

the Macmillan and Creelman example for MSDT, by treating the two dimensions together as a 

complex stimuli rather than analyzing each dimension individually results in an increase in an 

increase in sensitivity.  Figures 15 and 16 illustrate how the combined MFSDT z-score form 

ROCs  move toward the top left hand corner for similar and different  mapping function cases 

respectively, in the same vein that the Macmillan and Creelman ROC (Figure 10) indicates an 

increase in sensitivity. Again it should be noted that these data are hypothetical and intended to 

illustrate the MFDST procedures. 

  \ 
Figure 15. Z-score form ROC for the 5 model types (Brightness FSDT, Loudness FSDT, 50/50 
Combined MFSDT, 70/30 Combined MFSDT, and 30/70 Combined MFSDT)) for the similar 
individual mapping function case. 

 

2

2.5

3

3.5

4

4.5

5

0 1 2 3

Z
(H

)

Z(FA)

z-Score ROCs for Similar Mapping 

Function Case

Brightness

Loudness

50/50

70/30

30/70



32 
 

 
 
Figure 16. Z-score form ROC for the 5 model types (Brightness FSDT, Loudness FSDT, 50/50 
Combined MFSDT, 70/30 Combined MFSDT, and 30/70 Combined MFSDT) for the differing 
individual mapping function case. 

Assuming the observer uses decision strategy that is based on both dimensions rather than 

relying solely on a signal dimension of a complex stimuli, MFSDT may result in a better model 

for analyzing decision making tasks appropriate for FSDT analysis when complex stimuli are 

involved.   

Creation of stimuli. To evaluate the influence of  the separability of the dimensional 

stimuli on the derivation of mapping functions, two complex stimuli were created using basic 

psychophysical dimensions which are known from previous research to have decisional 

separability and in one case known to be perceptual separable and in the other case perceptually 

integral.  Complex stimulus, C1, will combine the two simple dimensions, hue  and shape, which 

are known to be perceptually separable (Garner, 1977)  and complex stimulus C2 will combine 

the two simple dimensions, hue and saturation, which are known to be perceptually integral 

(Burns & Shepp, 1988).   In order to facilitate the mapping functions from FSDT the use of the 

Munsell color system to specify hue and saturation allows for a single hue value to be used rather 
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than a multi-value combination of hue used in other color specifications, for example RGB.  

Additionally with the use of the Munsell color system, a single increase in any of the Munsell 

values is the same perceptual increase anywhere along the scale.   

Munsell Color System. The Munsell Color System was developed by Albert H. Munsell 

as a method way to describe and categorize color. During multiple revisions of the color solid, a 

3-d representation of all possible perceivable hue, saturation and brightness combinations, 

Munsell used professional experts in color, such as psychologists and optometrists, in order to 

measure perceptual differences of the three aspects of color in his system (Nickerson, 1976).  

The resulting irregular color solid has three axis representative of the different qualities of color, 

hue, saturation and brightness with a perceptually uniform step for any increase along an axis.  

Hue was divided into five main colors, red (R), yellow(Y), green(G) ,blue(B) and 

purple(P) and five intermediary colors, red-yellow(RY), yellow-green(YG), green-blue(GB), 

blue-purple(BP), purple-red(PR). There are a total of 10 steps between each principal color, and 

the numerical value of a hue increased by 2.5 for each perceptual step. For example going from 

5B (named blue) to 5P (named purple), has the following hues specified in between: 5B, 7.5B, 

10B, 2.5BP, 5BP, 7.5BP, 10BP, 2.5P and 5P.  

Brightness, referred to as value in the Munsell color system, ranges from 0 (black) to 10 

(white). Numbers between 0 and 10 are various shades of grey which get lighter the higher the 

value.   

Saturation, referred to as chroma in the Munsell color system, uses a scale step of 2 to 

indicate a perceptual step in saturation.  The higher the chroma the more vivid the color. A color 

with 0 value/ 0 chroma would be black, a color with a 10 value/ 0 chroma, would be white, and 

any value between 0 and 10 with a chroma of 0 would be grey. While no upper limit exists for 
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chroma, there are however limitations to what can be reproduced on computer displays. 

Reproducible chroma values very between hue and value combinations, thus resulting in 

irregular shape of the color solid.  For example, for 5P (purple) with value equal to 5 there are 14 

possible chroma values (0-26), compared to 5B where at the same value level there are only 4 (0-

6). 

Newhalll, Judd, Nickerson (1943) developed what is known as the Munsell renotation 

system, which consists of colors which fall within the Macadam limits (MacAdam, 1935), or the 

limits of what colors humans can actually perceive.  Additionally they defined each Munsell 

color in terms of the 1931 Commission International de l'Eclairage (CIE) color specification.  

With this data the Munsell renotation system can be reproduced on an electronic display using 

transformations of the CIE values into RGB vales needed for electronic color specification.  

Overview of Sequence of Studies 

 A series of three studies were conducted in order to test the viability of Multidimensional 

Fuzzy Signal Detection Theory. Each study was conducted with two stimulus sets, one in which 

the stimuli were perceptually separable, i.e., shape and hue, and one in which the stimuli were 

perceptually integral, i.e., saturation and hue. The first study examined the perceptual properties 

of the dimensions in order to derive each individual component dimension's mapping function, 

as well as how the component dimensions interacted with one another, in order to derive 

potential weights for the complex mapping function. The second study focused on model fit and 

simulation. Model fit was used to determine what the individual component dimension weights 

for the complex mapping function and an ROC simulation similar to that reported by Szalma and 

O'Connell (2011) was conducted to test the viability of the derived complex mapping functions. 
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The final study was an empirical ROC conducted to test the tenability of the overall theory in an 

experimental setting.   
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CHAPTER 2:  THE DERIVATION OF MAPPING FUNCTIONS (STUDY 1A) 

Method 

Participants. Thirty-two participants (11 males, 21 females) ranging in age from 17 to 28 

(M = 19.15, SD = 2.13), participated in this study. All participants were students at the 

University of Central Florida and received course credit as compensation for participation.  

Materials. The three individual dimensions of the two complex stimuli were evaluated 

separately, shape, hue, and saturation. The shape stimuli consisted of polygons ranging in 

number of sides from 6 to 36 (30 total) with the size of 3 inches (7.26 cm) at the maximum 

height and width.  These were selected based on a previous FSDT study in which these stimuli 

were employed. In order to display the hue and the saturation, a 3 inch (7.62 cm) by 3 inch (7.62 

cm) square was used, as it is perceptually separable from both perceptual properties and not in 

the range of shapes used for the polygon stimulus. The hue stimuli ranged from 2.5BP and 5P in 

the Munsell color system and was displayed at a brightness value of 5 and saturation value of 10 

chroma.  The saturation stimuli ranged from chroma 2 to 10 in the Munsell color system and 

were displayed at a brightness of 5 and hue of 7.5BP. Figure 17 displays the range in stimulus 

magnitude for the hue and saturation dimensions used in this study. This particular range was 

chosen as it resulted in the highest number of hue-saturation combinations which are displayable 

on a standard computer monitor.   
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 Hue 
  2.5BP 5BP 7.5BP 10BP 2.5P 5P 
Chroma 2       

4       
6       
8       
10       

Figure 17. Grid display of the Munsell color system to be used in the experiments. The columns 
are the changes in hue from values 2.5BP to 5P. The rows are the changes in chroma (saturation) 
from 2 to 10. The value (brightness) is held constant at 5. 

The LCD monitor displaying the stimulus was calibrated to Illuminant D50 (CIE, 2004) using a 

X-Rite CMUNDIS ColorMunki Display. A visual basic program was created to orchestrate the 

presentation of stimuli and the recording of participant responses.  The same computer and 

monitor was used for each participant.  

Procedure.  Prior to beginning the experimental tasks each participant was tested for 

normal color vision using the Ishihara Color Vision Test (Ishihara, 1993). After evaluating the 

participants color vision the participant was instructed to view pairs of stimuli and respond as to 

which of the pair of stimuli best answered a question regarding similarity to the criterion 

stimulus (e.g., a circle). The stimulus pairs remained on the screen until the participant selected a 

response.  

For the hue and saturation dimensions the stimulus pairs were comprised of a fully 

factorial combination of levels along each dimension. Thus, each level of hue was paired with 

each other level of hue for a total of fifteen pairs. Each level of saturation was paired with each 

other level of saturation for a total of ten pairs. However for the shape stimulus because the fully 

factorial combination of shape pairs was 465 pairs, the shape stimuli were grouped into sets of 

similarly sided polygons. The sets were as follows: {6,7,8}, {10,11,12}, {13,14,15}, {16,17,18}, 

{19,20,21}, {22,23,24}, {25,26,27}, {28,29,30}, {31,32,33}, {33,34,35,36}. In each case the 

number indicates the number of sides of the polygon stimulus. For each participant one element 
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of each set was randomly selected to be paired with a randomly selected element from each of 

the other sets. This resulted in a total of forty-five stimulus pairs.  

Each stimulus was paired with questions which determined which of each presented pair 

was closer in similarity to the extreme values of the stimulus. Each question was asked both in 

the form "more like" and "less like".  For the shape pairs, participants were asked either "Which 

shape is more like a circle?" or "Which shape is less like a circle?" For hue pairs, participants 

were asked "Which color is more blue?" or "Which color is less blue?". For saturation pairs, 

participants were asked "Which color is more vivid?" or "Which color is less vivid?” Each of the 

six stimulus/question combinations were presented three times each and presented separately. 

Participants were able to take a small break after each stimulus/question combination if needed.                                                                                                                              

Results  

Two of the thirty two participants were color blind, as a result those responses were 

excluded from analysis of the hue and the saturation conditions, and are thus not included in the 

following calculations. Additionally, one participant did not understand the question for the 

saturation condition even after multiple attempts at clarification by the experimenter; therefore 

these responses are also not included in calculations for saturation.  

Two methods were used to calculate potential mapping functions, one being the 

proportion of paired comparison trials on which a given stimulus was selected as more similar to 

the target value, and the second being Thurstone scaling which applies a normalization and 

scaling process to the paired comparison judgments. 

 Similarity judgment frequencies. For each participant the frequency of responding that a 

given stimulus level was determined to be greater in similarity to the extreme high values (circle 

for the shape stimulus, purple for the hue stimulus and vivid for the saturation stimulus) was 
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tallied.  These frequencies were then summed over all participants. The summed frequencies 

were then divided by the total number of times that stimulus was presented in a pair. Table 5 

shows for the stimulus saturation the frequency count for each level of saturation for all 

participants, the number of times the saturation level was presented, and the proportion of 

presentations where that saturation level was determined to be more vivid than the saturation 

level it was presented with for each level of saturation.  

Table 5. Frequency count, number of presentations, proportion presentations perceived as more 

vivid for each level of saturation.    

Chroma Frequency # of 

Presentations 

Proportion 

more vivid 

2 34 744 0.045 
4 191 744 0.257 
6 355 744 0.478 
8 549 744 0.737 
10 731 744 0.983 

 

To transform these data this into a mapping function the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑎𝑎) value for each 𝑎𝑎 (chroma 

level) value was set equal to the proportion of presentations the chroma level was judged to be 

more vivid. The resulting mapping function is illustrated in Figure 18.  
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Figure 18. Saturation mapping function derived from the proportion each level was perceived as 
greater than another level.   

Table 6 shows the frequency count for each level of hue for all participants, the number of times 

the hue level was presented, and the proportion of presentations of stimulus pairs on which the 

respective hue level was judged to be more purple. 

Table 6.  Munsell value, frequency count, number of presentations, proportion presentations 

perceived as more purple for each level of hue (mapping function a value).    

Hue  Munsell Value Frequency # of 

Presentations 

Proportion 

more purple 

1 2.5BP 91 960 0.095 
2 5BP 173 960 0.180 
3 7.5BP 353 960 0.367 
4 10BP 578 960 0.602 
5 2.5P 758 960 0.789 
6 5P 901 960 0.939 

 

The mapping function was determined by setting the 𝑠𝑠ℎ𝑠𝑠𝑢𝑢(𝑎𝑎) for each 𝑎𝑎 (hue level) equal to the 

proportion of stimulus pairs on which a given hue value was judged to be more purple. Figure 19 

illustrates the resulting mapping function.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10

S
(a

)

a (Chroma)

Saturation Mapping Function



41 
 

 

Figure 19. Hue mapping function derived from the proportion each level was perceived as 
greater than another level.   

Table 7 shows for the stimulus shape the frequency count for each level of shape for all 

participants, the number of times the shape level was presented, and the proportion of 

presentations where each shape level was determined to be more like a circle than the stimulus to 

which it was compared.  
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Table 7. Frequency count, number of presentations, proportion presentations perceived as more 

like a circle for each level of shape 

Number of 

Sides of Polygon 

Frequency # of 

Presentations 

Proportion 

more like a 

circle 

6 8 660 0.012 
7 4 392 0.01 
8 4 610 0.007 
9 54 558 0.096 
10 51 356 0.143 
11 96 778 0.123 
12 94 456 0.206 
13 144 591 0.247 
14 150 676 0.222 
15 139 425 0.327 
16 218 590 0.369 
17 228 736 0.310 
18 278 630 0.441 
19 260 573 0.454 
20 227 580 0.391 
21 268 503 0.533 
22 423 800 0.529 
23 285 511 0.558 
24 322 480 0.671 
25 333 572 0.582 
26 530 788 0.673 
27 499 691 0.722 
28 466 650 0.717 
29 384 533 0.720 
30 650 809 0.803 
31 383 494 0.775 
32 494 599 0.825 
33 308 336 0.917 
34 561 662 0.847 
35 210 286 0.734 
36 569 717 0.794 

 

The mapping function was determined by setting the 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢(𝑎𝑎) for each 𝑎𝑎 (number of sides of 

shape) equal to the proportion of presentations where the level of shape was determined to be 

more like a circle.  Figure 20 illustrates the resulting mapping function. 
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Figure 20. Shape mapping function derived from the proportion each level was perceived as 
greater than another level.  

A problem with mapping function  in Figure 20 is that as you increase in number of sides 

you may decline in signal membership, where logically the more sides a polygon has the more it 

looks like a circle. The decline in signal membership is likely due to differences in sampling of 

each stimulus, as the proportion estimate for each individual side is unlikely to have reached 

stability.  In order to address this problem the analytic procedure was replicated but with the 

stimuli organized into the aforementioned sets.  Table 8 shows the resulting table which includes 

the frequency each set was said to be greater than another set, the number of times each set was 

presented, and the proportion of times the set was determined to be more like a circle than the 

other sets.  
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Table 8. Frequency count, number of presentations, proportion presentations perceived as more 

like a circle for each set 

Set  Frequency # of 

Presentations 

Proportion 

more like a 

circle 

{6,7,8} 16 1728 0.009 
{9,10,11} 201 1728 0.116 
{12,13,14} 388 1728 0.225 
{15,16,17} 585 1728 0.339 
{18,19,20} 765 1728 0.442 
{21,22,23} 975 1728 0.564 
{24,25,26} 1183 1728 0.684 
{27,28,29} 1340 1728 0.775 
{30,31,32} 1514 1728 0.876 
{33,34,35,36} 1648 1728 0.954 

 

The mapping function was determined by setting 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢(𝑎𝑎) equal to the proportion of 

trials the level of shape was perceived to be more like a circle for each 𝑎𝑎 (number of sides) as 

determined by the set that 𝑎𝑎 belongs. Figure 21 shows the resulting mapping function.   

 

Figure 21. Shape mapping function derived from proportion each set was perceived as greater 
than another set.  

Thurstone-Scale Method.  For each participant the frequency for each stimulus level 
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for each stimulus pairing is then divided by the total number of trails on which that pairing was 

presented. This proportion is then converted into z-score using the cumulative normal probability 

function. The z-scores are then summed over all pairings for each stimulus level. The average z-

score for each level is then adjusted by subtracting the lowest obtained z-score average from 

each of the other averaged z-scores.  In cases where the proportion computed for a stimulus 

pairing was zero or one, an arbitrary adjustment of 0.0001 was added or subtracted respectively, 

before converting into z-score form, because the z-score of zero and the z-score of one evaluates 

into infinity. Table 9 shows for each saturation level the average z-score, z-score after scale 

adjustment, and proportion of highest z-score. 

Table 9. Average Z-score and Scaled Z-score produced by Thurstone scaling for each level of 

saturation  

Chroma Average Z-score Z-score 

adjusted  

Proportion of 

highest Z-score 

2 -1.715 0 0 
4 -1.024 0.692 0.162 
6 -1.288 0.427 0.100 
8 1.467 3.183 0.744 
10 2.56 4.276 1 

 

The mapping function is then generated by setting 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑎𝑎) equal to the proportion of each 

saturation levels adjusted z-score out of the highest adjusted z-score. Figure 22 shows the 

resulting mapping function. 
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Figure 22. Saturation mapping function produced by Thurstone scaling.  

Table 10 shows for each hue level the Munsell value for hue, average z-score, z-score after 

scaling adjustment and the proportion of highest z-score. 

Table 10.  Munsell value, average z-score, adjusted z-score and the proportion of highest z-score 

for each level of hue (mapping function a value).    

Hue  Munsell Value Average Z-

Score 

Z-score 

adjusted  

Proportion of 

highest Z-score 

1 2.5BP -1.50 0.00 0.00 
2 5BP -1.25 0.247 0.079 
3 7.5BP -0.700 0.800 0.256 
4 10BP 0.454 1.954 0.624 
5 2.5P 1.201 2.702 0.863 
6 5P 1.631 3.131 1.00 

 

The mapping function is generated by setting 𝑠𝑠ℎ𝑠𝑠𝑢𝑢(𝑎𝑎) equal to the proportion of each hue level's 

adjusted z-score to the highest adjusted z-score. Figure 23 shows the resulting mapping function.  
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Figure 23. Hue mapping function produced by Thurstone scaling. 

For shape stimuli treating each level pairing separately is problematic because of the large 

stimulus set for this dimension. While structural zeros and ones appear in the case of both of the 

hue and saturation dimensions, the majority of the data is neither. In the case of shape, only 254 

of the 868 specific-pair responses are neither a one nor a zero. This is due to the fact some 

pairings were not sampled and presented to the thirty-two participants, and participants achieved 

a high success rate for determining correctly which shape in a pair was more like a circle.  

Collapsing across the shape stimulus sets helps mitigate the number of zero and one cells since 

each combination of sets were observed by all participants. The problem with high success rate 

still exists, as there are no errors for 40% of the set combinations, but this is preferable to the 

71% zeros and ones when treating the shapes levels separately (see Appendix A for non-

collapsed data). Table 11 shows for each shape set the average z-score, z-score after scale 

adjustment, and proportion of highest z-score. 
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Table 11. Average z-score, adjusted z-score and the proportion of highest z-score for each shape 

set.  

Set  Average Z-score Adjusted Z-

score 

Proportion of 

highest z-score 

{6,7,8} -2.776 0.00 0.00 
{9,10,11} -2.401 0.375 0.068 
{12,13,14} -2.063 0.712 0.129 
{15,16,17} -1.184 1.591 0.289 
{18,19,20} -0.678 2.098 0.381 
{21,22,23} 0.635 3.411 0.619 
{24,25,26} 1.403 4.179 0.759 
{27,28,29} 1.930 4.707 0.855 
{30,31,32} 2.299 5.074 0.921 
{33,34,35,36} 2.732 5.508 1.00 

 

The mapping function for each 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢(𝑎𝑎) equal to the corresponding proportion of highest z-

score for each 𝑎𝑎 (number of sides) as determined by the set the 𝑎𝑎 belongs to.  Figure 24 plots the 

resulting mapping function.  

 

Figure 24. Shape mapping function determined by Thurstone scaling.   
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Discussion 

Parasuraman et. al (2000) notes that mapping functions should be determined either 

empirically, theoretically or through regulatory standards, however there are currently no 

guidelines in existence as to how to choose between valid empirical methods that result in vastly 

differing mapping functions.  While establishing guidelines for empirical methods is outside the 

scope of this work, decisions had to be made regarding which mapping functions to use for each 

of the individual component dimensions. Guilford (1928) suggested a shortcut in the steps of 

calculation required for Thurstone scaling by tabulating the total number of times a given 

response was selected regardless of what it was paired with and then proceeding with the 

analysis, rather than treating each response/comparison pair separately.  This tabulating across 

responses is the same as the similarity judgment frequencies, thus the difference between the two 

methods of analyzing paired comparison data lies mainly in the fact that the Thurstone scaling 

does a z-score transformation and then scales the z-scores based on the lowest observed z-score 

value.  In previous FSDT research the empirically derived mapping functions have been in the 

form of an ogive function, which is the form of the cumulative normal distribution function. 

Hence, a useful initial guideline for selecting a method for empirical mapping function derivation 

to use Thurstone scaling unless there is evidence indicating the process is not appropriate. This 

guideline is not suggested as the best way to determine mapping functions in general, but rather 

as an approach to mapping function selection between these two specific methods in this specific 

case.   

The two generated hue functions shown in Figure 19 and Figure 23 are both of the ogive 

form.  The difference between the two shapes is in the exaggeration of the inflections. Figure 19 

has shallower changes at inflection points than Figure 23.  Following the aforementioned 
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guideline for determining which function is more appropriate, the hue function developed by 

Thurstone scaling was therefore used. 

The form  of the shape function is difficult to determine from Figure 20 and Figure 24 

since each individual shape's signal membership is determined by the its set value therefore it 

shares the same signal membership as at least two other shapes.  By plotting the set values only 

once the shape the overall shapes of the functions are easier to observe. Figures 25 and 26 plot 

this for Figures 20 and 24 respectively.   

 

Figure 25. Single point form of Figure 20, the proportion greater method's mapping function for 
shape.  
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Figure 26. Single point form of Figure 24, the Thurstone scaling method's mapping function for 
shape.  

As shown by Figure 25 the function appears to only have a slight noticeable curve at the higher 

shape values. Any other changes in slope of the line are difficult to discern visually, giving the 

appearance of a straight line until set {24,25,26}. Figure 26 shows a very shallow o-give 

function with the point for the set {15,16,17} slightly higher than one would expect of a typical 

o-give form, though still less than the next higher set up {18,19,20}.  The less than ideal o-give 

function shape could be a product of the 40% perfect discrimination in the observed data. A set 

with less than perfect discrimination between comparisons with other sets would vary to a 

greater degree with a point following along an o-give function, than sets with more perfect 

discriminations between comparisons with other sets. With no evidence indicating that it is 

inappropriate to use Thurstone scaling, our guideline indicates the shape function should also be 

derived via Thurstone scaling should be used.  

 The saturation functions shown in Figure 18 and Figure 21 have the largest discrepancy 

in describing how saturation values translate into signal membership values. The data in Figure 
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18 can easily be described accurately with a straight line. The linear equation y = 0.1177x - 

0.2065 fits the data with a R2 = 0.9983.  Furthermore, 81% of participants had perfect 

performance, and this subset data can be described by the linear equation y = 0.125x - 0.25 with 

a fit of R2 = 1.  Unlike the other two dimensions, hue and shape, Figure 21 shows that with 

saturation that the resulting mapping function from the  Thurstone Scaling method fails to 

conform to the o-give function shape that is expected with data that is normally distributed.  It 

predicts that a color with saturation of chroma = 6 has less signal membership than a color with 

more saturation (chroma = 4), which when dealing with saturation while controlling other color 

dimensions (brightness and hue) does not make logical sense. All things being equal an increase 

in saturation should result in an increase in signal-ness.  This combined with the fact that the data 

can be described with a very high degree of accuracy by a linear equation, suggests that applying 

a normalization process inappropriate. Therefore using our decision guideline, the saturation 

function should be the function determined by similarity judgment frequencies.  
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CHAPTER 3: THE SPECFICATION OF STIMULUS DIMENSONALITY 

(STUDY 1B) 
Method 

Participants. Three women ranging in age between 22 and 45 volunteered to participate 

in this study. All had normal or corrected 20/20 vision and normal color vision. One woman was 

an undergraduate lab assistant in the same lab as the author and the other two women were 

acquaintances of the author.  

Materials.  Two complex stimuli were created for this experiment. Complex stimulus C1  

combined hue and shape, and complex stimulus C2 combined hue and saturation. Since this 

experiment uses traditional MSDT tasks a factor complete factorial design of the extreme high 

and low levels of the individual dimensions of the complex stimuli comprised the four stimulus 

combinations A1B1, A1B2, A2B1, and A2B2 used.  Figure 27 shows the combined stimuli used for 

this portion of the experiment.  The combined stimuli used for C1 are defined as follows: A1B1 is 

low hue-hexagon, A1B2 is low hue-circle, A2B1 is high hue-hexagon, A2B2 is high hue-circle. The 

combined stimuli used for C2 are defined as follows:  A1B1 is low hue-low saturation, A1B2 is 

low hue-high saturation, A2B1 is high hue low saturation A2B2 is high hue high saturation.  

 C1    C2  

 A1 
Low Hue 

A2 
High Hue 

  A1 
Low Hue 

A2 
High Hue 

B1 
Hexagon 

   B1 
Low Sat. 

  

B2 
Circle 

   B2 
High Sat. 

  

Figure 27. Combined stimuli C1 and C2 used for weight generating portion of experiment. Note: 
not actual presentation size. 
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Each shape was 3inches x 3inces at its greatest width and height for both complex stimuli. The 

LCD monitor displaying the stimulus was calibrated to Illuminant D50 (CIE, 2004) using a X-

Rite CMUNDIS ColorMunki Display. A visual basic program was developed to display stimuli 

and record participant responses. Each participant completed the experimental protocol on the 

same computer and monitor.  

Procedure.  The conditions employed in this experiment were based on those used in 

Maddox and Ashby (1996).  Each complex stimulus was tested in ten separate conditions. The 

conditions were as follows:  

1. Complete-Identification Condition: All four stimuli (A1B1, A1B2, A2B1, and A2B2) are 

used. The participants are asked to identify which of the four stimuli was presented.  

2. Filtering A: All four stimuli (A1B1, A1B2, A2B1, and A2B2) are used.  The participants are 

asked to identify the level of stimulus on dimension A.  

3. Control Condition A-1:   The stimuli used are the complex stimuli where dimension B is 

at non-signal level (A1B1, A2B1). The participants are asked to identify the level of the 

stimulus on dimension A.  

4. Control Condition A-2: The stimuli used are the complex stimuli where dimension B is at 

signal level (A1B2, A2B2). The participants are asked to identify the level of the stimulus 

on dimension A.  

5. Redundancy Condition A-:  The stimuli used are the complex stimuli A1B1 (both 

dimensions are at non-signal level) A2B2 (both dimensions are at signal level). The 

participants are asked to identify the level of the stimulus on dimension A. 

6. 4: Redundancy condition A+: The stimuli used are the complex stimuli A1B2 (dimension 

A is at non-signal level and dimension B is at signal level) and A2B1 (dimension A is at 
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signal level, dimension B is non-signal level). The participants are asked to identify the 

level of the stimulus on dimension A. 

7. Filtering B: All four stimuli (A1B1, A1B2, A2B1,and A2B2) are used.  The participants are 

asked to identify the level of stimulus on dimension B.  

8. Control Condition B-1:  The stimuli used are the complex stimuli where dimension A is 

at non-signal level (A1B1, A1B2). The participants are asked to identify the level of the 

stimulus on dimension B.  

9. Control Condition B-2: The stimuli used are the complex stimuli where dimension A is at 

signal level (A2B1, A2B2). The participants are asked to identify the level of the stimulus 

on dimension B.  

10. 7-8:  Redundancy Condition B+ and B-: The stimuli are the same as used in conditions 

A- and A+ but participants are asked to identify the level of the stimulus on dimension B. 

Table 12 summarizes the generic structure of the conditions by showing which stimuli are used 

for each condition as well as what the participant is asked to identify.  
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Table 12. Chart indicating which stimuli combinations are used for each condition as well as the 

identification to be made by the participant. 

 
Table 13 replicates Table 12 but specified for the complex stimulus C1, hue and shape.  

 

 

 

 

 

 

Condition A1B1 A1B2 A2B1 A2B2 Identify 

Identification  X X X X Complete 
Identification 

Filtering A X X X X Level of Dimension 
A 

Control Condition A-1 X  X  Level of Dimension 
A 

Control Condition A-2  X  X Level of Dimension 
A 

Redundancy Condition A- X   X Level of Dimension 
A 

Redundancy Condition A+   X X  Level of Dimension 
A 

Filtering B X X X X Level if Dimension 
B 

Control Condition B-1 X X   Level of Dimension 
B 

Control Condition B-2   X X Level of Dimension 
B 

Redundancy Condition B- X   X Level of Dimension 
B 

Redundancy Condition B+  X X  Level of Dimension 
B 
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Table 13. Experimental stimuli used in each condition for Complex stimuli C1. The x indicates 

that pairing of stimuli is used for that condition. Blue is defined as the low-hue and purple as the 

high-hue. 

 

On any given trial a randomly selected stimulus appropriate for its given condition was displayed 

on the screen for 300ms after which response options appeared on screen.  The response options 

remained on screen until the participants selected a response. The identification made by the 

participant and the participant's response time was recorded for all conditions.  The Identification 

condition and the Filtering conditions consisted of 90 trials each. The control and redundancy 

conditions consisted of 45 trials each.  In each session the participants completed all ten 

conditions for complex stimulus C1 and all ten conditions for complex stimulus C2. Short breaks 

Condition Blue 

Hexago

n 

Blue 

Circle 

Purple 

Hexago

n 

Purple 

Circle 

Identify 

Identification X X X X Blue Hexagon, Blue 
Circle, Purple 
Hexagon, or Purple 
Circle 

Filtering A X X X X Color(Blue or 
Purple) 

Control Condition A-1 X  X  Color (Blue or 
Purple) 

Control Condition A-2  X  X Color (Blue or 
Purple) 

Redundancy Condition 
A- 

X   X Color (Blue or 
Purple) 

Redundancy Condition 
A+  

 X X  Color (Blue or 
Purple) 

Filtering B X X X X Shape (Hexagon or 
Circle) 

Control Condition B-1 X X   Shape (Hexagon or 
Circle) 

Control Condition B-2   X X Shape (Hexagon or 
Circle) 

Redundancy Condition 
B- 

X   X Shape (Hexagon or 
Circle) 

Redundancy Condition 
B+ 

 X X  Shape (Hexagon or 
Circle) 
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occurred between each condition.  For each participant the first session consisted of 10 extra 

practice trials for the identification and filtering tasks and 5 extra practice trials for the control 

and redundancy conditions. Participants completed a total of eight sessions. The condition order 

and session order (where session refers to a set of conditions) was randomized across 

participants.   

Results 

Complex Stimulus 1 - Shape/Hue. Analysis of the identification condition for complex 

stimulus C1 resulted in the confusion matrices for Participants 1-3 in tables 14-16, respectively.   

Table 14. Confusion Matrix on Complex Stimulus C1 (Shape/Hue) for Participant 1 

 Response 
Stimulus a1b1 

(Blue Hexagon) 
a1b2 
(Blue Circle) 

a2b1 
(Purple 
Hexagon) 

a2b2 
(Purple Circle) 

a1b1 (Blue Hexagon) 153 1 5 1 
a1b2 (Blue Circle) 0 172 0 2 
a2b1 (Purple 
Hexagon) 

4 0 198 0 

a2b2 (Purple Circle) 0 7 2 175 
 

Table 15. Confusion Matrix on Complex Stimulus C1 (Shape/Hue) for Participant 2 

 Response 
Stimulus a1b1 

(Blue Hexagon) 
a1b2 
(Blue Circle) 

a2b1 
(Purple 
Hexagon) 

a2b2 
(Purple Circle) 

a1b1 (Blue Hexagon) 180 0 4 0 
a1b2 (Blue Circle) 0 168 1 0 
a2b1 (Purple 
Hexagon) 

1 1 162 0 

a2b2 (Purple Circle) 0 1 1 201 
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Table 16. Confusion Matrix on Complex Stimulus C1 (Shape/Hue) for Participant 3 

 Response 
Stimulus a1b1 

(Blue Hexagon) 
a1b2 
(Blue Circle) 

a2b1 
(Purple 
Hexagon) 

a2b2 
(Purple Circle) 

a1b1 (Blue Hexagon) 166 4 5 0 
a1b2 (Blue Circle) 2 162 1 0 
a2b1 (Purple 
Hexagon) 

1 0 175 1 

a2b2 (Purple Circle) 0 4 5 194 
 

All three confusion matrices are fairly sparse with respect to errors, indicating participants 

achieved a high degree in accuracy for identifying which of the four shape/hue stimuli was 

presented.   Grtools package (Soto & Zheng, 2015) in the software R was used to analyze the fit 

of the identification data to a hierarchy of traditional GRT models which indicate the separability 

and independence of the data. Table 17 lists the various models fitted as well as their AIC fit 

statistic for all 3 participants. The model with the lowest AIC indicates the best fit.  Figures 28-

30 plot the best fitting model generated by grtools for each of the participants.  

Table 17. Traditional GRT models and fit statistics for All Participants.   

 Participant 1  Participant 2 Participant 3 
Model AIC AIC AIC 
{PI, PS, DS}  238.615 132.447 255.242 
{1_Rho, PS, DS} 238.447† 122.261† 251.309† 
{PS,DS} 256.118 142.081 270.393 
{PI, PS(A), DS} 240.754 144.720 265.194 
{1_Rho, PS(A), DS} 244.918 132.741 262.180 
{PS(A), DS} 279.139 175.219 296.233 
{PI,PS(B),DS} 244.813 142.678 261.504 
{1_Rho, PS(B), DS} 247.002 133.518 259.551 
{PS(B), DS} 280.545 181.922 294.716 
{PI,DS} 252.831 154.370 279.203 
{1_Rho, DS} 261.198 166.285 291.168 
{DS} 339.314 235.209 356.211 

Note: PI - Perceptual Independence, PS - Perceptual Separability, DS - Decisional 

Separability, †- Best fitting model 
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Figure 28. Best GRT Model Fit - {1_Rho, PS, DS} of Hue and Shape for Participant 1.  

 

Figure 29. Best GRT Model Fit - {1_Rho, PS, DS} of Hue and Shape for Participant 2.  



61 
 

 

Figure 30. Best GRT Model Fit - {1_Rho, PS, DS} of Hue and Shape for Participant 3.  

For all three participants the best fitting GRT model was {1_Rho, PS, DS}, indicating that for all 

three there is perceptual separability (PS) and decisional separability (DS). The perceptual 

separability is also evident when examining the plots and the fact the paired z-score means, the 

center (x,y) coordinates for each 𝑓𝑓(𝑓𝑓, 𝑦𝑦), create a square pattern. In other words, both low level 

shape means (y-coordinates on bottom pair) are equivalent, both high level shape means (y-

coordinates on top pair) are equivalent, both low hue means (x-coordinates on left pair) are 

equivalent and both high level hue means (x-coordinates on right pair) are equivalent. The 

1_Rho (which reflects the relationship between the two dimensions) in the model indicates that 

perceptual independence was violated.  The violation to perceptual independence is evident in 

the slanted 𝑓𝑓(𝑓𝑓, 𝑦𝑦)s in the plots rather than circular 𝑓𝑓(𝑓𝑓, 𝑦𝑦) functions. 
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Means and standard deviations for both correct and error frequencies as well as response 

times for the filtering, control and redundancy tasks for all three participants are provided in 

Appendix B.  

Complex Stimulus 2 - Saturation/Hue. Analysis of the identification condition for 

complex stimulus C2 resulted in the confusion matrixes for participants 1-3 in Tables 18-20, 

respectively. 

Table 18. Confusion Matrix on Complex Stimulus C2 (Saturation/Hue) for Participant 1 

 Response 
Stimulus a1b1 

(Dull Blue) 
a1b2 
(Vivid Blue) 

a2b1 
(Dull Purple) 

a2b2 
(Vivid Purple) 

a1b1 (Dull Blue) 178 1 1 0 
a1b2 (Vivid Blue) 0 183 1 0 
a2b1 (Dull Purple) 8 0 173 0 
a2b2 (Vivid Purple) 0 3 1 171 

 

Table 19. Confusion Matrix on Complex Stimulus C2 (Saturation/Hue) for Participant 2 

 Response 
Stimulus a1b1 

(Dull Blue) 
a1b2 
(Vivid Blue) 

a2b1 
(Dull Purple) 

a2b2 
(Vivid Purple) 

a1b1 (Dull Blue) 165 1 22 0 
a1b2 (Vivid Blue) 0 169 1 0 
a2b1 (Dull Purple) 11 0 167 1 
a2b2 (Vivid Purple) 0 0 0 183 

 

Table 20. Confusion Matrix on Complex Stimulus C2 (Saturation/Hue) for Participant 3 

 Response 
Stimulus a1b1 

(Dull Blue) 
a1b2 
(Vivid Blue) 

a2b1 
(Dull Purple) 

a2b2 
(Vivid Purple) 

a1b1 (Dull Blue) 168 0 13 0 
a1b2 (Vivid Blue) 2 174 0 1 
a2b1 (Dull Purple) 5 0 166 2 
a2b2 (Vivid Purple) 0 2 3 152 

 

Similar to complex stimulus C1 the error frequencies all three confusion matrixes are fairly low, 

indicating participants had a high degree in accuracy for identifying which of the four  shape/hue 
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stimulus combinations was presented.  The largest source of confusion appears to be between the 

two hues at low saturation.  Grtools package in R was used to run a model fit of a hierarchy of 

traditional GRT models on the confusion matrixes in order to assess separability and 

independence. Table 21 shows the results of model fitting.  Figures 31-33 plot the best fitting 

model for each participant.  

Table 21. Traditional GRT models and fit statistics for All Participants.   

 Participant 1  Participant 2 Participant 3 
Model AIC AIC AIC 
{PI, PS, DS}  177.521 323.079 277.768 
{1_Rho, PS, DS} 168.942† 319.304 280.948 
{PS,DS} 185.718 335.878 300.614 
{PI, PS(A), DS} 183.580 343.955 291.921 
{1_Rho, PS(A), DS} 177.359 330.569 289.786 
{PS(A), DS} 212.519 357.866 325.665 
{PI,PS(B),DS} 190.710 293.219 274.662† 
{1_Rho, PS(B), DS} 183.396 292.267† 279.307 
{PS(B), DS} 212.337 323.678 314.623 
{PI,DS} 198.578 308.381 293.219 
{1_Rho, DS} 209.232 319.002 296.356 
{DS} 274.929 384.076 376.167 

Note: PI - Perceptual Independence, PS - Perceptual Separability, DS - Decisional 

Separability, †- Best fitting model 
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Figure 31. Best GRT Model Fit - {1_Rho, PS, DS} of Hue and Saturation for Participant 1. 

 

Figure 32. Best GRT Model Fit - {1_Rho, PS(B), DS} of Hue and Saturation for Participant 2. 
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Figure 33. Best GRT Model Fit - {PI, PS(B), DS} of Hue and Saturation for Participant 3. 
For Participant 1 the best fitting model was {1_Rho, PS, DS} indicating that the dimensions are 

perceptually separable and that there is decisional separability, however perceptual independence 

is violated. This is also evident in Figure 31 by the square orientation of the paired z-score means 

and the fact the 𝑓𝑓(𝑓𝑓, 𝑦𝑦)s are slanted. For Participant 2 the best fitting model was {1_Rho, PS(B), 

DS} indicating that the dimensions have asymmetrical perceptual integrality on the hue 

dimension and are decisionally separable, however like Participant 1 perceptual independence 

has been violated. The asymmetrical perceptual integrality on A is evident in the fact that the 

bottom pair of 𝑓𝑓(𝑓𝑓,𝑦𝑦)s are closer together along only the x-axis than the top pair of 𝑓𝑓(𝑓𝑓, 𝑦𝑦)s. 

The saturation mean(y-coordinate) for the low saturation 𝑓𝑓(𝑓𝑓,𝑦𝑦)s functions (bottom pair) remain 

the same and the saturation mean (y-coordinate) for the high saturation 𝑓𝑓(𝑓𝑓,𝑦𝑦)s functions (top 

pair) also remain the same.  This indicates that Participant 2 has higher sensitivity in judging hue 
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at high saturation when compared to low saturation.  In other words the level of saturation affects 

the perception of hue, but the level of hue does not affect the perception of saturation. 

For Participant 3 the best model fitting was {PI, PS(B), DS} which indicates that the 

dimensions are perceptually independent, decisionally separable and have asymmetric perceptual 

integrality on hue.  The perceptual independence is evident by the circular 𝑓𝑓(𝑓𝑓, 𝑦𝑦)s in Figure 33 

and the pattern of orientations of the 𝑓𝑓(𝑓𝑓, 𝑦𝑦)s is the same as that for Participant 2 indicating that 

the participant achieved higher sensitivity in judging hue at higher saturation values.  

Means and standard deviations for both correct and error frequencies as well as reaction 

times for the filtering, control and redundancy tasks for all participants are provided in Appendix 

B.  

 Discussion  

The intention of this study was twofold, i) to gather data to use in the next set of studies 

for the determination of weights and ii) to verify that for these ranges of the shape and hue 

dimensions used in combined stimulus C1 that perceptual separability observed in previous 

research holds and that the ranges of saturation and hue used in combined stimulus C2 that 

perceptual integrality holds as in previous studies.   While previous research indicates how the 

individual dimensions interact in terms of perceptual separability, the specific ranges of stimulus 

magnitude may differ from those used in the present study. The results for complex stimulus C1 

showed, for all three participants, that hue and shape were perceptually separable, a finding that 

follows the results from Garner (1977).  The results for two of the participants for complex 

stimulus C2 showed that hue and saturation had asymmetric perceptually integrality, that the 

perception of the level of hue was dependent on the level of saturation, but the perception of the 

level of saturation was independent of the perception of the level of hue.  The perceptual 
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integrality of hue and saturation is consistent with the results reported by Burns and Shepp 

(1988).  For one of the three participants complete perceptual separability was found for hue and 

saturation. This result could be due to the particular range of hue and saturation selected for this 

experiment and it is possible that differing values along the dimension continua would show 

different results regarding the separability of the two dimensions.  However, given the other two 

participants found the dimensions to be perceptually integral at the extreme dimension values, 

the two dimensions are probably perceptually integral along these ranges of the dimensions.  

For two of the three participants for both set of stimuli perceptual independence was 

violated, however this may be an artifact of the sparse confusion matrix. By populating the 

sparse matrices by adding a value of 1 to each cell, the best model fit becomes the same model in 

terms of perceptual and decisional separability but with perceptual independence no longer 

violated.  While this is not a suggestion to apply this technique when analyzing sparse confusion 

matrices, it does reveal that if the data was less sparse even by a small amount, perceptual 

independence would likely not have been violated.  To avoid this issue in future work, using less 

extreme values along each dimensions continuum should increase confusion since the stimuli are 

closer in physical value and therefore should have a lower degree of discernibility. For example, 

running the same complete identification task with the shape dimension having the low value be 

a dodecagon (twelve sided polygon) rather than a hexagon and the high value being a icosagon 

(twenty sided polygon) rather than thirty-six sided polygon should increase the confusion 

between the high and low values since the dodecagon has less of a discrepancy in the empty 

physical space that would be filled by a circle when compared to the hexagon and the icosagon 

while appearing more like a circle has discernible sides more like a polygon with fewer sides.    
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CHAPTER 4:  WEIGHT DETERMINATION (STUDY 2A) 

Method 

 In order to determine the appropriate weights for each combined mapping function, the 

data from the identification experiment was used to fit a MFSDT analysis to the MSDT results. 

The first step involved collapsing the MSDT data into hit (H), miss (M), false alarm (FA) and 

correct rejection (CR) rates in order to allow comparison to the MFSDT outcomes.  By treating 

each potential pair of comparisons separately a pattern of outcomes emerges from the 

identification matrix, as seen in Figure 34. 

 Response 
Category 1 2 3 4 

1 CR/CR/CR FA FA FA 
2 M H/CR/CR FA FA 
3 M M H/H/CR FA 
4 M M M H/H/H 

Figure 34. Outcomes based on all possible pairs of categories and responses.   

The diagonal values are each repeated three times because each cell is used in three comparisons. 

For example the category 2-response 2 is a hit when paired with category 1, but it is a correct 

rejection when paired with category 3 or with category 4 (Thus, H/CR/CR). From this table the 

frequencies for false alarms and misses is simple to calculate by summing the appropriate values 

in the table. That is, the total number of false alarms equals the sum of the frequencies from the 

cells labeled FA in Figure 34 and total number of misses equals the sum of the frequencies from 

the cells labeled M in Figure 34.  Hits and correct rejections are calculated by awarding partial 

credit of the frequencies along the diagonal in Figure 34. Thus, total hits is calculated by adding 

the frequency of  cell (4,4) with 2/3*the frequency of cell (3,3) and 1/3*the frequency of cell 

(2,2) from Figure 34 and total correct rejections is calculated by adding the frequency of cell 

(1,1) with 2/3*the frequency of cell (2,2) and 1/3*the frequency of cell (3,3). Category 1 was 



69 
 

defined as the low/low value of the combined stimulus and category 4 as the high/high value of 

the combined stimulus. The high/low pairing with the smallest distance from the low/low pair as 

determined by the grtools best model plot from Study 1b was set as category 2 and the high/low 

pairing with the farthest distance from the low/low pair was set as category 3.  This was done for 

each of the three participant's identification data.  

 The second step for fit comparisons required running a MFSDT analysis on the data from 

Study 1B's identification task.  This involves creating a response mapping function as well as a 

signal mapping function. The signal mapping function followed the proposed form of MFSDT 

combined mapping functions in conjunction with the mapping functions determined by Study 

1A. So the combined signal function was equal to a weight multiplied by the resulting value 

from the hue a passed into the hue mapping function added to 1 minus the same weight 

multiplied either to the result from the shape or saturation mapping functions depending on 

which complex stimulus was being analyzed.  The response mapping function was determined 

by Table 22. This response mapping functions results in the best fit for each weight.  

Table 22. Response mapping function for weight determination  

Hue Value Shape/Saturation Value r 

Low Low 0 

High Low weight 

Low High 1- 

weight 

High High 1 

 
This step is completed ten times, as it involved computing the MFSDT analysis with the weight 

set equal to 0.1 and increasing the weight by 0.1 until a maximum weight of 0.9. 
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The final step was to compute a chi-square test of model fit on observed MSDT outcomes 

and the expected outcomes created by the MFSDT analysis.  

Results 

To collapse the MSDT confusion matrices into a form usable for comparison to MFSDT 

the center z-score means of the best fitting model determined in Study 1b were used to determine 

the ordering of the four complex stimuli.  Table 23 shows the coordinates of each of the four 

shape and hue stimuli for each participant.  

Table 23. Z-score coordinates of each of the four Shape and Hue stimuli used in Study 1b for 

each of the three participants.   

 Blue Hexagon 
Z-Score 

 Blue Circle 
Z-Score 

 Purple Hex. 
Z-Score 

 Purple Circle 
Z-Score 

Participant X Y  X Y  X Y  X Y 
1 0.0 0.0  0.0 5.00  3.99 0.0  5.00 3.99 
2 0.0 0.0  0.0 5.19  4.61 0.0  5.19 4.61 
3 0.0 0.0  0.0 4.25  4.08 0.0  4.25 4.08 

 

Since Purple Hexagon's coordinates are closer to the Blue Hexagon coordinates than Blue 

Circle's coordinates, the ordering for all three participants is (1) Blue Hexagon, (2) Purple 

Hexagon, (3) Blue Circle and (4) Purple Circle.  

Table 24 shows the z-score coordinates of each of the four hue and saturation stimuli for 

each participant.  

Table 24. Z-score coordinates of each of the four Shape and Hue stimuli used in Study 1b for 

each of the three participants.   

 Dull Blue 
Z-Score 

 Vivid Blue 
Z-Score 

 Dull Purple 
Z-Score 

 Vivid Purple 
Z-Score 

Participant X Y  X Y  X Y  X Y 
1 0.0 0.0  0.0 5.05  4.37 0.0  4.37 5.05 
2 0.0 0.0  -1.21 5.25  2.70 0.0  3.85 5.25 
3 0.0 0.0  -0.95 4.64  3.45 0.0  3.81 4.64 
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Since for all three participants Dull Purple's coordinates are closer to Dull Blue's coordinates 

compared to the distance of Vivid Blue's coordinates from Dull Blue's coordinates, the ordering 

is (1) Dull Blue, (2) Dull Purple, (3) Vivid Blue, (4) Vivid Purple.  

Four separate chi squares were calculated for each weight. One chi-square was calculated for 

each participant and involved comparing the hit, miss, false alarm and correct rejection rates for 

each individual participant. Each of these three chi-squares has a degree of freedom equal to one.   

The fourth chi-square compared observed and expected outcome rates over all three participants. 

The overall chi-square has a degree of freedom equal to two.  Table 25 shows the chi-squares for 

each participant and the total chi-square for each of the weights tested for complex stimulus C1, 

shape and hue. Since the weights on hue and shape can be defined in terms of only hue (𝑤𝑤𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢 = 

1 - 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 ) only the weight on hue is listed.  

Table 25. Chi squares for individual participants and total chi-square for all hue weights tested 

for shape and hue.  𝑤𝑤ℎ𝑠𝑠𝑢𝑢 Participant 1 Participant 2 Participant 3 Total 
0.1 4.585 2.663 0.899 8.147 
0.2 3.599 2.007 0.834 6.440 
0.3 2.820 1.413 1.091 5.324 
0.4 2.233 0.897 1.747 4.877 
0.5 1.629 0.485 2.666 4.780 
0.6 1.599 0.298 4.256 6.153 
0.7 1.536 0.169 6.135 7.840 
0.8 1.635 0.111 8.68 10.426 
0.9 1.892 0.138 12.110 14.139 

  

The best fitting hue weight for Participant 1 is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.7, the best fitting hue weight for 

Participant 2 is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.8 and the best fitting hue weight for Participant 3 is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.2. Across 

all participants the best fitting hue weight is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.5. 
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Table 26 shows the chi-squares for each participant and the total chi-square for each of the 

weights tested for complex stimulus C2, hue and saturation. Again since the weighs can be 

defined in terms of only hue (𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 = 1 - 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 ) only the weight on hue is listed.  

Table 26. Chi squares for individual participants and total chi-square for all hue weights tested 

for hue and saturation.  𝑤𝑤ℎ𝑠𝑠𝑢𝑢 Participant 1 Participant 2 Participant 3 Total 
0.1 4.350 30.716 10.395 45.461 
0.2 3.384 21.366 7.899 32.650 
0.3 2.508 14.833 5.835 23.176 
0.4 1.735 10.151 4.162 16.048 
0.5 1.094 6.746 2.865 10.705 
0.6 0.742 4.078 1.955 6.776 
0.7 0.494 2.261 1.378 4.132 
0.8 0.367 1.086 1.624 3.077 
0.9 0.393 0.515 2.363 3.271 

  

The besting fitting hue weight for Participant 1 is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.8, the best fitting hue weight for 

Participant 2 is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.9, and the best fitting hue weight for Participant 3 is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.7. The 

best fitting hue weight over all participants is 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.8.  

Discussion 

 For shape and hue the weights for individual participants vary a great deal from 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 

0.2 to 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.8. Given the variation at the individual level using the total chi-square fit statistic 

for weight determination seems appropriate. Setting  𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.5 makes sense given the grtools 

model plots in Study 1b. For all participants the four stimuli create a rectangular pattern with 

similar distances between the sides, making the rectangle more like a square. A square pattern in 

the model plots would seem to indicate equal ability to tell the difference between the individual 

dimensions, which in turn would suggest that a weight which treats the two individual 

dimensions equally is appropriate.   Besides having the lowest chi-square for the total at 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 

0.5, all the individual participant chi-squares are below the chi-square value (χ2 = 3.84, df = 1) 



73 
 

indicating that the two models are different at a statistically significant level (α = 0.05). The 

combined mapping function is therefore determined to be  𝑆𝑆�𝑎𝑎𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢,𝑎𝑎ℎ𝑠𝑠𝑢𝑢� = 0.5 ∗ 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢�𝑎𝑎𝑠𝑠ℎ𝑠𝑠𝑎𝑎𝑢𝑢� +  0.5 ∗ 𝑠𝑠ℎ𝑠𝑠𝑢𝑢(𝑎𝑎ℎ𝑠𝑠𝑢𝑢) (10) 

 

Figure 35 plots the resulting combined mapping function.  

 

Figure 35. Combined mapping function for hue and shape.  

For hue and saturation all of the weights for the individual participants are all high, 

ranging from 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.7 to 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.9. However, the fit for Participant 2 does not minimize in 

the range between 0.1 and 0.9, in fact the smallest chi-square statistic found for Participant 2 is 

when  𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 1 (χ2 = 0.151). This is likely due the fact that difference between the false alarm 

outcomes appear to be driving how well the models fit, and the largest value in false alarms can 

only be created in this data via the hue mapping function. Excluding Participant 2 from the total 

chi-square value since it can be described via a unidimensional mapping function, the best fitting 

hue weight decreases to 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.7 (adjusted χ2 = 1.872) from  𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.8 (adjusted χ2 = 
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1.991).  Even including Participant 2, the individual chi-square fit statistics are all below the 

critical value (χ2 = 3.84, df = 1) indicating that the two models are equivalent at a statistically 

significant level (α = 0.05).  The combined mapping function is therefore determined to be   𝑆𝑆(𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛,𝑎𝑎ℎ𝑠𝑠𝑢𝑢) = 0.3 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛) +  0.7 ∗ 𝑠𝑠ℎ𝑠𝑠𝑢𝑢(𝑎𝑎ℎ𝑠𝑠𝑢𝑢).              (11) 
 

 

Figure 36. Combined mapping function for hue and saturation.  

Setting the hue weight higher than the saturation weight would indicate that the level hue 

affects the perception of the combined stimulus and thereby the signal membership more than the 

level of saturation.  The grtools plots for the asymmetric perceptually integral cases (Participants 

2 and 3), show that there is greater difference in the perception of the hue at high saturation 

levels, than at low levels of saturation. This can be described in terms of the equation if one were 

to assume that hue has a greater effect on the perception of the combined stimulus and the level 

of the saturation adds to the signal membership (or increases the perception of the hue). At low 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
,2

2
,2

1
,4

2
,4

1
,6

3
,2

2
,6

1
,8

3
,4

2
,8

1
,1

0

3
,6

2
,1

0

3
,8

4
,2

3
,1

0

4
,4

4
,6

5
,2

4
,8

5
,4

6
,2

4
,1

0

5
,6

6
,4

5
,8

6
,6

5
,1

0

6
,8

6
,1

0

S
(a

1
,a

2
)

Hue (a1), Saturation (a2)

Hue/Saturation Combined Mapping Function



75 
 

levels of saturation there is just the base difference in perception which is explained by only hue, 

and as you increase in saturation the signal qualities of the combined stimuli is amplified. 

Future work should consider collecting data from multiple complete identification tasks 

along the continuum of values of the dimension rather than employing the extreme categories. 

This should allow for less sparse confusion matrices when there is high discernibility between 

the extreme values of the dimension. Additionally, since FSDT is intended to be used when there 

is more confusion about the nature of the stimulus, i.e., the stimulus dimension has properties 

that are both signal and noise -like, the extreme values are the least representative of the fuzzy 

nature of the stimulus, so model fitting to these values may result in inappropriate or less than 

ideal weighting values.  
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CHAPTER 5: MONTE CARLO ROC ANALYSIS (STUDY 2B) 

Method 

Szalma and O'Connell (2011) demonstrated the viability of using a Monte Carlo 

simulation of a perceptual detection task and to generate FSDT data that can be submitted to 

ROC analysis to test whether the statistical assumptions of SDT extend to FSDT.  This 

methodology was adapted for the present work to test whether the selected mapping function for 

each complex stimulus can be successfully used to generate an FSDT analysis which satisfies the 

statistical assumptions of traditional SDT.  This procedure was applied to simulate both the C1 

and C2 complex stimuli.  

Data Generation.  The data generation is a three step process using multiple generated 

random variates.  In the first step, random pairs of values were generated, simulating the 

presentation of a trial to a participant. Each value was a discrete integer value sampled from the 

dimension appropriate range.  For hue the range was between one and six. For saturation the 

range was between 2 and 10, with only the even values capable of being sampled. For shape, the 

range was between 6 and 36. Since Green & Swets (1966) recommend a large number (e.g. 

greater than 500) of trials for deriving stable SDT estimates, 1000 random pairs of combined 

stimulus values were generated.  The second step involved simulations of variation in the 

observer’s response. This was introduced by simulating two forms errors of omission. The first 

form of error attempted to simulate the misperception of the physical stimulus, by creating a 

perceived value of the stimulus based on the generated value. This involved passing the 

generated values into a function which used the probabilities shown in Tables 27-29 to determine 

what each component dimensions was perceived as by the "observer" on a given trial. These 
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probabilities were chosen arbitrarily, as the goal was simply to introduce perceptual error 

however how much error did not matter. 

Table 27. Probability of perceived values for generated hue values 

 Perceived Value 
Generated Value 1 2 3 4 5 6 
1 0.66 0.19 0.08 0.04 0.02 0.01 
2 0.19 0.54 0.19 0.05 0.02 0.01 
3 0.08 0.19 0.45 0.19 0.05 0.04 
4 0.04 0.05 0.19 0.45 0.19 0.08 
5 0.01 0.02 0.05 0.19 0.54 0.19 
6 0.01 0.02 0.04 0.08 0.19 0.66 

 

Table 28. Probability of perceived values for generated shape values 

 Perceived Value 
GV 6- 8 9- 11 12-14 15-17 18-20 21-23 24-26 27-29 30-32 33+ 
6-8 0.6650 0.1700 0.0700 0.0300 0.0250 0.0200 0.0100 0.0090 0.0008 0.0002 
9-
11 

0.1700 0.4600 0.1700 0.1000 0.0500 0.0200 0.0172 0.0100 0.0020 0.0008 

12-
14 

0.0700 0.1700 0.441 0.1700 0.0700 0.0260 0.0200 0.0140 0.0100 0.0090 

15-
17 

0.0300 0.1000 0.1700 0.3528 0.1700 0.1000 0.0300 0.0200 0.0172 0.0100 

18-
20 

0.0250 0.0500 0.0700 0.1700 0.3490 0.1700 0.01 0.0260 0.0200 0.0200 

21-
23 

0.0200 0.0200 0.0260 0.1000 0.1700 0.3490 0.1700 0.0700 0.0500 0.0250 

24-
26 

0.0100 0.0172 0.0200 0.0300 0.1000 0.1700 0.3528 0.1700 0.1000 0.0300 

27-
29 

0.0090 0.0100 0.0140 0.0200 0.0260 0.0700 0.1700 0.4410 0.1700 0.0700 

30-
32 

0.0008 0.0020 0.0100 0.0172 0.0200 0.0500 0.1000 0.1700 0.4600 0.1700 

33+ 0.0002 0.0008 0.0090 0.0100 0.0200 0.0250 0.0300 0.0700 0.1700 0.6650 
Note. GV = Generated Value 
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Table 29. Probability of perceived values for generated saturation values. 

 Perceived Value 
Generated 
Value 

1 2 3 4 5 

1 0.72 0.20 0.05 0.02 0.01 
2 0.20 0.56 0.20 0.02 0.02 
3 0.05 0.20 0.50 0.20 0.05 
4 0.02 0.02 0.20 0.56 0.20 
5 0.01 0.02 0.05 0.20 0.72 

 
The second form of error, which was simulated was errors due to the observer missing the 

stimulus presentation, by introducing a 1% probability that the perceived value was 0 (no 

stimulus observed). The third step and final step takes the paired perceived values and transforms 

them into a response value. A continuous response function was used based on the ordering of 

paired stimuli given the weights derived in Study 2a and where in the ordering a particular 

stimulus pair occurred. For example, for hue and shape, the lowest possible saturation, 2, and the 

lowest possible hue, 1, creates the low end point and thus assigned a response value of zero and 

the highest possible saturation, 10, and the highest possible hue, 6, creates the high end point and 

thus assigned a response value of one.  Given 𝑤𝑤ℎ𝑠𝑠𝑢𝑢 = 0.7 a saturation of 2 and a hue (number of 

positions away from low point / most positions away from low point).  Figure 37 shows the base 

response mapping for hue and shape and Figure 38 shows the base response mapping function 

for hue and saturation.   
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Figure 37. Base response mapping function used in Monte Carlo ROC simulations for hue and 
shape.  

 

Figure 38. Base response mapping function used in Monte Carlo ROC simulations for hue and 
saturation. 
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Since ROC analysis requires the use of a minimum of three criterion values for Yes/No data, 

three responses are created for each generated pair of stimuli, corresponding to an unbiased 

criterion, a more lenient criterion, and a more conservative criterion. To achieve this the 

unbiased criterion is set equal to the base response mapping function, the lenient criterion is set 

to the base response mapping function plus 0.04, and the conservative criterion is set to the base 

response mapping function minus 0.04. Figure 39 and Figure 40 plot the three response mapping 

functions together for hue and shape, and hue and saturation, respectively.  

 

Figure 39. Three criterion response mapping functions used in Monte Carlo ROC stimulations 
for hue and shape. Note not all stimulus pairing are labeled on the x-axis in order to de-clutter 
the plot. The order of pairings is the same as Figure 37.  
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Figure 40. Three criterion response mapping functions used in Monte Carlo ROC stimulations 
for hue and saturation. 

To add variation in the responses a normal random variate with a mean of zero and a standard 
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outcome membership values an average frequency and rates, equations 5-8, were computed over 

the 1000 trials for each response criterion.  

This procedure was repeated over four thousand simulations and the average of the four 

different outcome frequencies and rates was computed. These simulations were computed for 

both for complex stimulus C1 and once for complex stimulus C2.  

Results  

Complex Stimulus C1: Shape and Hue. The simulation outputs the average frequency and 

rates for the four thousand simulations.  The mean frequencies and rates hits, false alarms, misses 

and correct rejections for each of the response criterion conditions are shown in Tables 30 and 31 

respectively for the hue and shape condition.  

Table 30. The average frequency for the four possible outcomes for each of the three response 

criterion simulated for hue and shape.  

 Hits Miss 
False 
Alarms 

Correct 
Rejections 

Lenient  429.50 72.86 113.04 374.63 

Unbiased 412.10 90.26 92.56 395.11 

Conservative 391.72 110.63 74.43 413.23 

 

Table 31. The average rates (proportion) for the four possible outcomes for each of the three 

response criterion simulated for hue and shape.  

 Hit Rate Miss Rate 
False Alarm 
Rate 

Correct 
Rejection 
Rate 

Lenient  0.855 0.145 0.227 0.752 

Unbiased 0.820 0.180 0.190 0.794 

Conservative 0.780 0.220 0.150 0.830 

 

Wicken's FitRoc (2002) was used for the ROC analysis. FitRoc calculated the z-score form 

ROCs by using maximum likelihood estimation to estimate the slope and intercept with the 

option to assume equal variance or not. FitRoc also tests the goodness of fit (χ2) of the resulting 
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linear equation and generates estimates for the perceptual sensitivity (Az) and response biases 

(βlog). Since FitRoc only allows integers to be entered into the software the frequencies from 

Table 30 were rounded to the nearest whole number.  Table 32 shows the FitRoc results for 

complex stimulus C1, hue and shape.  

 

Table 32. Displays goodness of fit, sensitivity, and criterion bias calculated for hue and shape. 

Stimulus χ2 A(z) A B Conservative 
βlog   

Unbiased 

βlog 
Lenient 
βlog 

C1 0.004 0.898 1.794 1.00 -0.231 0.038 0.290 
 
For complex stimulus C1, hue and shape, the predicted linear ROC was obtained, as shown in 

Figure 41. The predicted linear ROC's goodness of fit statistic (χ2 = 0.004, df = 2) was below the 

critical chi-square value (χ2 = 5.99, df = 2, α = 0.05) indicating that the predicted linear ROC 

function fir the observed data. The slope of the linear ROC fit to this data was equal to one 

indicating the equal variance assumption was met.  

 

 

Figure 41. Z-score form linear ROC based on Monte Carlo simulated data for Hue and Shape.  
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Complex Stimulus C2 - Hue and Saturation. The mean frequencies and rates hits, false 

alarms, misses and correct rejections for each of the response criterion conditions are shown in 

Tables 33 and 34 respectively for the hue and shape condition.  

Table 33. The average frequency for the four possible outcomes for each of the three response 

criterion simulated for hue and saturation.  

 Hits Miss 
False 
Alarms 

Correct 
Rejections 

Lenient  400.30 64.42 132.32 392.98 

Unbiased 385.93 78.79 108.59 416.70 

Conservative 368.43 96.30 88.01 437.29 

 

Table 34. The average rates (proportion) for the four possible outcomes for each of the three 

response criterion simulated for hue and saturation.  

 Hit Rate Miss Rate 
False Alarm 
Rate 

Correct 
Rejection Rate 

Lenient  0.861 0.138 0.247 0.734 

Unbiased 0.830 0.170 0.203 0.779 

Conservative 0.793 0.207 0.164 0.817 

 

 
Table 35. Displays goodness of fit, sensitivity, and criterion bias calculated for hue and 

saturation. 

Stimulus χ2 A(z) A B Conservative 
βlog   

Unbiased 

βlog 
Lenient 
βlog 

C2 0.030 0.895 1.770 1.00 -0.130 0.124 0.375 
 
For complex stimulus C2, hue and saturation, the predicted linear z-score form ROC was 

obtained, as shown in Figure 42. The linear z-score form ROC's goodness of fit statistic (χ2 = 

0.030, df = 2) was less than the critical chi-square value (χ2 = 5.99, df = 2, α = 0.05) indicating 

that the predicted linear ROC fit the observed data. The slope of the linear z-score form ROC 

was equal to one which indicates that the equal variance assumption was met.  
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Figure 42. Z-score form linear ROC based on Monte Carlo simulated data for Hue and 
Saturation. 

Discussion 

Multidimensional Fuzzy Signal Detection Theory (MFSDT) suffers from the same 

problem that regular FSDT does with regard to simulation. Whereas both MSDT and traditional 

SDT allows for simulation based on their respective decision spaces, the decision space for 

MFSDT and FSDT has not been clearly established (Szalma & Hancock, 2013). Part of the 

reason the structure of the decision space is ambiguous is there is nothing to indicate in the 

traditional SDT decision space the fuzzy aspect of the dimensions. While this may be resolved 

with future research, until it is resolved it leaves the problem as to how to simulate FSDT and 

MFSDT models.  Szalma and O'Connell (2011) suggested simulating the task rather through the 

use of random variates instead of simulating the decision space in order to create FSDT data that 

could be evaluated by ROC analysis. While the simulated data may not be exact model of the 

signal detection process, it can approximate one way the stimulus may be perceived and 

decisions made.  Study 2b adapted the method from Szalma and O'Connell (2011) and modified 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1 0 1 2

z(
f)

z(h)

Z-Score form ROC for Monte Carlo Data 

(Hue and Saturation)

Simulated Data

Predicted ROC



86 
 

it for use in simulating MFSDT data.  The main difference in the method aside from changes 

required to simulate multidimensional stimuli rather than unidimensional stimuli, was having to 

change the simulation to using discrete dimension values rather than continuous dimension 

values and through the use of a continuous rather than binary response mapping function.  

The discrete dimension values was accomplished through the use of probability mass 

functions (Tables 27- 29) rather than probability density functions. Additionally with the discrete 

dimension values a generated data pool was not required as the full universal set of potential data 

points could easily be defined. As a result the generated pairs were sampled from the full 

universe rather than a large subset of the universe.  

Using a continuous mapping function rather than a binary mapping function simplified 

the process of creating differing criterion. In the binary mapping function case, three random 

normal variates were used to represent the different decision criteria on any given trial and then 

the response membership value was determined based on whether the perceived value was 

greater or less than the decision criteria.   In the continuous case a simple manipulation of the 

response mapping was used to create additional criteria and each criterion's response 

membership value was based on what their respective response mapping functions evaluated to 

given the perceived value with variation added via a small normal variate.  

 Like Szalma and O'Connell (2011), the generated data from the Monte Carlo simulation 

was submitted to ROC analysis in order to determine whether the assumptions of SDT were 

violated by the signal detection variant, in Szalma and O'Connell's case FSDT and for Study 2b 

case MFSDT.  The results for the perceptually separable stimulus C1, hue and shape, and the 

perceptually integral stimulus C2, hue and saturation, showed that in each case a linear z-score 

form ROC fit the observed data. A linear z-score form ROC indicates that the normality 
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assumption was not violated by the data.  Both complex stimulus C1 and complex stimulus C2 

data fit a linear ROC model with a slope equal to one, indicating that the equal variance 

assumption was not violated.  Since both the normality and equal variance assumptions were met 

for both perceptually separable and perceptually integral stimuli there is evidence in favor of the 

viability of MFSDT. Because both the normality and equal variance assumptions are met, the use 

of traditional SDT performance measures such as d' and β is possible for MFSDT data.   

One thing of note is that for both complex stimulus C1 and complex stimulus C2 a large 

degree of clustering of the three criterion points is observed. This clustering is consistent with the 

results of previous empirical FSDT research (Murphey et. al, 2004; Szalma et. al, 2006, Szalma 

& Hancock, 2013) and simulation based FSDT research (Szalma and O'Connell, 2011). The 

reason for the clustering remains unclear, but it is likely that, because it occurs for FSDT, the 

reason for the clustering in MFSDT is an artifact the former model rather than due to a 

multivariate mapping function.  It is possible that less clustering may have observed if the 

differing response mapping function conditions were developed to be more extreme in their 

differences.   
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CHAPTER 6: EXPERIMENTAL TESTING AND ROC ANALYSIS (STUDY 3) 

Method 

Participants. One male participant age 30 and one female participant age 29 volunteered 

for this study. Each participant had normal or corrected 20/20 vision and normal color vision. 

Both participants were acquaintances of the author.  

Materials. Two sets of complex stimuli were used for this study, the previously defined 

perceptually separable complex stimulus C1 and the perceptually integral complex stimulus C2.  

Each complex stimulus set consisted of the fully factorial combination of the levels of each 

individual dimension. For C1, the shape dimension consisted of 31 levels of polygons ranging 

from, 6 sided to 36 sided, and the hue dimension has 6 levels of hue, 2.5BP to 5P, combining the 

two dimensions resulted in 186 unique polygon/hue stimuli. For C2, the saturation dimension 

consisted of 5 saturation levels, 2 chroma to 10 chroma (intervals of 2), and the hue dimension 

consisted of 6 levels of hue, 2.5 BP to 5P, combining the two dimensions resulted in 30 unique 

saturation/hue stimuli.  

Procedure.  The detection task required participants to monitor either a series of colored 

polygons (complex stimulus C1) or a series of colored squares (complex stimulus C2) at the 

center of a color-calibrated LCD screen for 300ms every four seconds. At the beginning of each 

session the participants were shown examples of a low signal and a high signal and were 

instructed to drag the indicator on a horizontal scroll bar to the position along a continuum 

between the low signal and the high signal they determined the presented image belonged.  For 

C1, the low signal was a blue hexagon and the high signal was a purple circle. For C2, the low 

signal was a dull blue square and the high signal was a vivid purple square.  
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Each participant completed six sessions, each of which lasted 1.0 to 1.5 hours in duration. 

Each session consisted of a practice session of 50 trials and a detection task session of 700 trials. 

In order to combat vigilance decrements, five minute breaks occurred every 15 minutes during 

the session. 

 The six session comprised of three sessions with different response bias condition for 

complex stimulus C1 and three sessions with differing response bias conditions for complex 

stimulus C2.  Response bias was manipulated by varying the probability distribution of the 

stimuli. For the unbiased conditions for both complex stimuli, each stimuli had an equal 

probability of being selected for presentation. For the lenient conditions stimuli determined via 

the mapping function to have a higher degree of similarity to the high signal had a higher 

probability of being selected for presentation than stimuli with a low degree of similarity (see 

Figures 43 and 44).  
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Figure 43. Signal base rate distribution for complex stimuli C1 (Hue/Shape) for lenient 
condition. For shape, all polygon sides of the same defined set used the same probability. 

 

Figure 44. Signal base rate distribution for complex stimulus C2 (Hue/Saturation) for lenient 
condition. 
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For the conservative conditions stimuli determined via the mapping functions to have a higher 

degree of similarity to the low signal had a higher probability of being selected for presentation 

than stimuli with a higher degree of similarity (see Figures 45 and 46). 

 

Figure 45. Signal base rate distribution for complex stimuli C1 (Hue/Shape) for conservative 
condition. For shape, all polygon sides of the same defined set used the same probability. 
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Figure 46. Signal base rate distribution for complex stimulus C2 (Hue/Saturation) for 

conservative condition. 
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Table 36. The four outcome frequencies for hue and shape data for Participant 1 calculated by 

each of the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 405.88 26.34 47.69 245.09 

Unbiased 351.17 15.89 69.51 288.44 

Conservative 275.79 13.74 68.02 367.45 

     

FSDT - Hue Function    

Lenient 372.5 70.55 81.06 200.88 

Unbiased 304.29 45.93 116.38 258.39 

Conservative 229.58 42.94 114.23 338.26 

     

FSDT - Shape Function    

Lenient 339.74 85.79 113.83 185.64 

Unbiased 299.85 84.03 120.83 220.30 

Conservative 224.13 82.41 119.68 298.78 
 

Table 37. The four outcome rates for hue and shape data for Participant 1 calculated by each of 

the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 0.939 0.061 0.163 0.837 

Unbiased 0.957 0.043 0.194 0.805 

Conservative 0.952 0.048 0.156 0.843 

     

FSDT - Hue Function    

Lenient 0.841 0.159 0.288 0.712 

Unbiased 0.869 0.131 0.311 0.689 

Conservative 0.842 0.158 0.252 0.748 

     

FSDT - Shape Function    

Lenient 0.798 0.201 0.380 0.620 

Unbiased 0.781 0.219 0.354 0.646 

Conservative 0.731 0.269 0.286 0.714 
 
Table 38 reports the goodness of fit (χ2) , estimate of perceptual sensitivity (Az),  response bias 

(βln), and estimates of the intercept (a) and slope (b) for the z-score form of the ROC analysis for 
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MFSDT, FSDT hue mapping function, and FSDT shape mapping function. As all three methods 

of analysis fit the equal-variance model, only the parameters of the equal variance model are 

reported. 

Table 38. Displays goodness of fit, sensitivity, and criterion bias calculated for all three methods 

of analysis for Participant 1 for hue and shape. 

Method χ2 A(z) A B Conservative 
βln   

Unbiased 

βln 
Lenient 
βln 

MFSDT 0.543 0.966 2.586 1.00 0.790 1.112 0.749 
FSDT - 
Hue 

5.175 0.884 1.688 1.00 0.417 0.540 0.355 

FSDT- 
Shape 

0.073 0.796 1.171 1.00 0.031 0.237 0.318 

 

For all three methods of analysis on C1 conditions for Participant 1, a predicted linear ROC was 

obtained (see Figure 47), indicating that the data for both MFSDT analysis and the two FSDT 

analysis was consistent with the assumption of normality. Additionally, as all three slopes of the 

z-score form ROC are equal to one, the data conforms to the equal variance assumption for all 

three methods of analysis.  The perceptual sensitivity for the MFSDT analysis (Az = 0.966) was 

higher than both the FSDT Hue mapping function analysis (Az = 0.884) and the FSDT shape 

mapping function analysis (Az = 0.796). 

 For the MFSDT and FSDT hue mapping function ROCs for Participant 1 the unbiased 

condition (βln-MFSDT =   1.112, βln-FSDT-Hue =   0.540) was more lenient than the lenient condition 

(βln-MFSDT =   0.749, βln-FSDT-Hue =   0.355).  However the unbiased condition for FSDT shape 

mapping function ROC (βln-FSDT-Shape =   0.237) for Participant 1 is more conservative than the 

lenient condition (βln-FSDT-Shape =   0.318). For all three method of analysis the conservative 

condition was the most conservative response bias.  
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Figure 47. Linear Z-score form ROCs for MFSDT, FSDT - Hue, FSDT - Shape analysis on hue 
and shape data for Participant 1  

 

For participant 2 the frequencies and rates of hits, false alarms, misses and correct 
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Table 39. The four outcome frequencies for hue and shape data for Participant 2 calculated by 

each of the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 417.44 15.63 91.23 200.70 

Unbiased 354.88 3.97 133.17 232.99 

Conservative 286.90 4.11 123.53 310.46 

     

FSDT - Hue Function    

Lenient 365.50 47.74 143.17 168.60 

Unbiased 311.91 29.41 176.14 207.54 

Conservative 233.64 37.78 176.78 276.80 

     

FSDT - Shape Function    

Lenient 384.01 68.89 124.65 147.45 

Unbiased 326.69 49.68 161.36 187.27 

Conservative 252.47 58.14 157.95 256.44 
 

Table 40. The four outcome rates for hue and shape data for Participant 2 calculated by each of 

the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 0.964 0.036 0.312 0.688 

Unbiased 0.989 0.011 0.364 0.636 

Conservative 0.986 0.014 0.285 0.715 

     

FSDT - Hue Function    

Lenient 0.884 0.116 0.459 0.541 

Unbiased 0.914 0.086 0.459 0.541 

Conservative 0.861 0.139 0.390 0.610 

     

FSDT - Shape Function    

Lenient 0.848 0.152 0.458 0.542 

Unbiased 0.868 0.132 0.463 0.537 

Conservative 0.813 0.187 0.381 0.619 
 

Table 41 reports the goodness of fit (χ2) , estimate of perceptual sensitivity (Az),  response bias 

(βln), and estimates of the intercept (a) and slope (b) for the z-score form of the ROC analysis for 
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MFSDT, FSDT hue mapping function, and FSDT shape mapping function. As all three methods 

of analysis fit the equal-variance model, only the parameters of the equal variance model are 

reported. 

Table 41. Displays goodness of fit, sensitivity, and criterion bias calculated for all three methods 

of analysis for Participant 2 for hue and shape. 

Method χ2 A(z) A B Conservative 
βln  

Unbiased 

βln 
Lenient 
βln 

MFSDT 4.919 0.961 2.501 1.00 1.789 2.294 1.731 
FSDT - 
Hue 

1.275 0.835 1.375 1.00 0.555 0.845 0.756 

FSDT- 
Shape 

0.319 0.797 1.175 1.00 0.343 0.596 0.542 

 

For all three methods of analysis of C1 for Participant 2, a predicted linear ROC was obtained 

(see Figure 48), indicating that the data for both MFSDT analysis and FSDT analyses was 

consistent with the assumption of normality. Additionally, as all three slopes are equal to one, the 

data conforms to the equal variance assumption for all three methods of analysis.  As with 

Participant 1, the perceptual sensitivity for Participant 2 for the MFSDT analysis (Az = 0.961) 

was higher than both the FSDT Hue mapping function analysis (Az = 0.835) and the FSDT 

saturation mapping function analysis (Az = 0.797). 

 For all three methods of analysis, Participant 2's response bias in the unbiased condition 

(βln-MFSDT =   2.294, βln-FSDT-Hue =   0.845; βln-FSDT-Shape =   0.596) was more lenient than the lenient 

condition (βln-MFSDT =   1.731, βln-FSDT-Hue = 0.756; βln-FSDT-Shape =   0.542). This differs from 

Participant 1, whose FSDT shape mapping function ROC showed the unbiased condition was 

more conservative than the lenient condition. 
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Figure 48. Linear Z-score form ROCs for MFSDT, FSDT - Hue, FSDT - Shape analysis on hue 
and shape data for Participant 2. 

Complex Stimulus C2 - Hue and Saturation. For Participant 1 the frequencies and rates of 

hits, false alarms, misses and correct rejections for complex stimulus C1 are shown in Table 42 

and 43, respectively, for MFSDT analysis, FSDT analysis with the unidimensional hue mapping 

function, and FSDT analysis with the unidimensional shape mapping function. 
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Table 42. The four outcome frequencies for hue and saturation data for Participant 1 calculated 

by each of the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 262.65 127.00 21.76 313.59 

Unbiased 265.59 83.54 26.01 349.86 

Conservative 195.27 94.20 21.79 413.73 

     

FSDT - Hue     

Lenient 223.64 154.29 60.78 286.29 

Unbiased 229.21 114.52 62.39 318.87 

Conservative 155.19 128.94 61.88 378.99 

     

FSDT - Saturation    

Lenient 264.06 152.93 20.36 287.66 

Unbiased 254.53 111.52 41.40 321.88 

Conservative 188.57 113.36 28.50 394.58 
 

Table 43. The four outcome rates for hue and saturation data for Participant 1 calculated by 

each of the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 0.674 0.324 0.065 0.935 

Unbiased 0.761 0.239 0.069 0.931 

Conservative 0.675 0.325 0.050 0.950 

     

FSDT - Hue     

Lenient 0.592 0.408 0.175 0.825 

Unbiased 0.667 0.333 0.164 0.836 

Conservative 0.546 0.454 0.140 0.860 

     

FSDT - Saturation    

Lenient 0.633 0.367 0.066 0.934 

Unbiased 0.692 0.308 0.114 0.886 

Conservative 0.625 0.375 0.067 0.933 
 

Table 44 reports the goodness of fit (χ2), estimate of perceptual sensitivity (Az), response 

bias (the natural logarithm of β: βln), and estimates of the intercept (a) and slope (b) for the z-
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score form of the ROC for MFSDT analysis, FSDT analysis using only the unidimensional hue 

mapping function, and the FSDT analysis using only the unidimensional saturation mapping 

function for Participant 1. As all three methods of analysis fit the equal variance model, only the 

parameters of the equal variance model are reported.  

Table 44. Displays goodness of fit, sensitivity, and criterion bias calculated for all three methods 

of analysis for hue and saturation for Participant 1. 

Method χ2 A(z) A B Conservative 
βln   

Unbiased 

βln 
Lenient 
βln 

MFSDT 1.674 0.930 2.084 1.00 -1.235 -0.779 -1.161 
FSDT - Hue 3.359 0.813 1.257 1.00 -0.605 -0.341 -0.450 
FSDT- 
Saturation 

0.890 0.897 1.790 1.00 -1.052 -0.655 -1.022 

 

For all three methods of analysis, the predicted linear ROC was obtained (see Figure 49), 

indicating that the data for both MFSDT analysis and FSDT analysis was consistent with the 

assumption of normality. Additionally, as all three slopes are equal to one, the data conforms to 

the equal variance assumption for all three methods of analysis.  The perceptual sensitivity for 

the MFSDT analysis (Az = 0.93) was higher than both the FSDT Hue mapping function analysis 

(Az = 0.813) and the FSDT saturation mapping function analysis (Az = 0.897). 

 For all three methods of analysis the Unbiased condition (βln-MFSDT =   -0.779, βln-FSDT-Hue =   

-0.341; βln-FSDT-Saturation =   -0.655) was more lenient than the lenient condition (βln-MFSDT =   -1.161, 

βln-FSDT-Hue =   -0.450; βln-FSDT-Saturation =   -1.022). 
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Figure 49. Linear Z-score form ROCs for MFSDT, FSDT - Hue, FSDT - Saturation analysis on 
hue and saturation data for Participant 1.  

For Participant 2 the frequencies and rates of hits, false alarms, misses and correct 

rejections for complex stimulus C2 are shown in Table 45 and 46, respectively, for all three 

methods of analysis. 
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Table 45. The four outcome frequencies for hue and saturation data for Participant 2 calculated 

by each of the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 363.08 53.47 45.94 262.52 

Unbiased 278.85 61.21 60.82 324.12 

Conservative 223.38 64.65 61.77 375.0 

     

FSDT - Hue    

Lenient 320.09 89.60 88.92 226.39 

Unbiased 233.33 95.45 106.34 289.88 

Conservative 179.18 104.56 105.97 335.30 

     

FSDT - Saturation    

Lenient 346.64 85.88 62.37 230.10 

Unbiased 277.92 88.47 61.75 296.85 

Conservative 228.28 74.93 60.75 366.20 
 

Table 46. The four outcome rates for hue and saturation data for Participant 2 calculated by 

each of the three models model  

 Hits Misses 
False 
Alarms 

Correct 
Rejections 

MFSDT     

Lenient 0.872 0.128 0.149 0.851 

Unbiased 0.820 0.180 0.158 0.842 

Conservative 0.776 0.224 0.141 0.859 

     

FSDT - Hue     

Lenient 0.781 0.219 0.282 0.718 

Unbiased 0.710 0.290 0.268 0.732 

Conservative 0.632 0.368 0.240 0.760 

     

FSDT - Saturation    

Lenient 0.801 0.199 0.213 0.787 

Unbiased 0.759 0.241 0.172 0.828 

Conservative 0.753 0.247 0.142 0.858 
 

Table 47 reports the goodness of fit (χ2), estimate of perceptual sensitivity (Az),  response 

bias (the natural logarithm of β: βln), and estimates of the intercept (a) and slope (b) for the z-



103 
 

score form of the ROC for MFSDT analysis, FSDT analysis using only the unidimensional hue 

mapping function, and the FSDT analysis using only the unidimensional saturation mapping 

function for  Participant 2. As all three methods of analysis fit the equal variance model, only the 

parameters of the equal variance model are reported.  

Table 47. Displays goodness of fit, sensitivity, and criterion bias calculated for all three methods 

of analysis for hue and saturation for Participant 2. 

Method χ2 A(z) A B Conservative 
βln   

Unbiased 

βln 
Lenient 
βln 

MFSDT 5.098 0.918 1.970 1.00 -0.300 -0.080 0.118 
FSDT - Hue 4.757 0.799 1.186 1.00 -0.208 -0.038 0.126 
FSDT- 
Saturation 

0.575 0.883 1.680 1.00 -0.329 -0.203 0.035 

 
As with Participant 1, all three methods of analysis for Participant 2 resulted in a predicted linear 

ROC was obtained (see Figure 50), indicating that the data for both MFSDT analysis and FSDT 

analysis was consistent with the assumption of normality. Additionally, as all three slopes are 

equal to one, the data conforms to the equal variance assumption for all three methods of 

analysis.  The perceptual sensitivity for the MFSDT analysis (Az = 0.918) was higher than both 

the FSDT Hue mapping function analysis (Az = 0.799) and the FSDT saturation mapping 

function analysis (Az = 0.883). 

 For all three methods of analysis of C2 for Participant 2, the response bias of the 

conservative condition (βln-MFSDT =   -0.300, βln-FSDT-Hue =   -0.208; βln-FSDT-Saturation =   -0.329)  was 

more conservative than the response bias for the unbiased condition (βln-MFSDT =   -0.080, βln-FSDT-

Hue =   -0.038; βln-FSDT-Saturation =   -0.203) which in turn was more conservative than the response 

bias for the lenient condition (βln-MFSDT =   0.118, βln-FSDT-Hue =   0.126; βln-FSDT-Saturation =   0.035). 

This differs from Participant 1 whose response bias in the unbiased condition was more lenient 

than their response bias in the lenient condition.  
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Figure 50. Linear Z-score form ROCs for MFSDT, FSDT - Hue, FSDT - Saturation analysis on 
hue and saturation data for Participant 2  

Discussion 

 The purpose of Study 3 was to empirically test the viability of MFSDT.  If a linear z-

score form ROC with a slope of one was found, this would be evidence that MFSDT met the 

normality and equal variance assumptions required to use traditional SDT performance 

measures, such as d' and β.  The results revealed that the statistical assumptions of SDT appear to 

extend to MFSDT. For both participants and both types of complex stimuli, perceptually 

separable and perceptually integral, MFSDT analysis yielded a linear z-score form ROC with a 

slope of one. This is consistent with results from previous unidimensional FSDT studies 

regarding the normality and equal variance assumptions of SDT when using fuzzy analysis and 

indicates the transformation of the mapping function from unidimensional to multidimensional 

does not violate these assumptions.  

While participants were asked to actively consider both dimensions of the stimulus when 

determining the stimulus signal-ness this does not preclude running a unidimensional FSDT 
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analysis on the data.  FSDT analysis can be applied to data where the stimulus to be detected has 

identifiable component dimensions, it but only uses the mapping function for one of these 

dimensions in the analysis. This may result in a loss of information regarding the observer's 

performance, but such information loss is likely to occur when a multidimensional stimulus is 

evaluated using a unidimensional SDT model.  By analyzing the data from Study 3 with 

MFSDT, FSDT using the hue mapping function, and FSDT using the shape or saturation 

mapping function depending on the complex stimulus, we are able to compare the two methods 

with the same response data. The results indicated an increase in sensitivity with MFSDT 

analysis when compared to either of the FSDT analysis for both participants and with both 

perceptually separable and perceptually integral stimulus dimensions.  These empirical results 

are consistent with the artificial example described in the introduction to this work as well as the 

comparison of MSDT to SDT with a brightness/loudness example from Macmillan and 

Creelman (2005).  

As with the simulated ROC in Study 2, a high degree of clustering of points on the ROC 

plots was observed for the differing bias conditions. As stated previously this clustering effect 

has been observed in multiple FSDT studies both empirical and simulated (e.g. Szalma & 

Hancock, 2013) and is likely a function of FSDT rather than the multidimensional aspect of 

MFSDT. However, with MFSDT analysis the difference between βln between conditions was 

typically larger than with either FSDT analysis, resulting in less clustering.   

 An additional item of note was that in some cases the bias manipulation did not result 

with the appropriate bias ordering. That is, in some cases what was to be a lenient manipulation 

yielded with response biases that were more conservative than an unbiased manipulation. This 

result of having bias manipulations not correspond to the expected response biases has been 
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observed in other FSDT studies (e.g., Szalma et al., 2006), though they used a different bias 

manipulation technique, payoff matrixes, rather than signal base rate manipulation to effect bias 

in the present investigation. The reordering of the biases may be due to the high degree of 

clustering between the separate bias conditions, and the reordering may be due to statistical error 

since the differences between the response biases are small. For example, Participant 2's 

response bias in the unbiased condition for complex stimulus C1 when analyzed by FSDT shape 

mapping function was βln  =   0.596  and the lenient condition was βln =   0.542, only a 0.054 

difference in βln.  
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CHAPTER 7: DISCUSSION 

An underlying goal of any statistical model is to model the true state of the world as closely as 

possible. While Signal Detection Theory is an extremely useful tool for analyzing information 

about detection tasks and describing observer's performance, it fails in capturing some aspects of 

real world detection. There have been proposed extensions of SDT which seek to account for 

information that SDT fails to capture, such as Multidimensional Signal Detection Theory and the 

potential multidimensional nature of signals, and Fuzzy Signal Detection Theory and the 

potential ambiguous nature of the signal and/or response. Multidimensional Fuzzy Signal 

Detection Theory attempts to integrate both MSDT and FSDT in order to capture more 

information about detection tasks where there are multiple identifiable dimensions to an 

ambiguous signal or response.  MFSDT retains the fuzzy set theory and mixed implication 

function procedure from FSDT in order to maintain the ability to describe fuzzy stimuli while 

modifying FSDT mapping functions to allow for signals or responses to be defined by multiple 

component dimensions.  The proposed form of MFSDT mapping functions was as shown in 

Equation 9.  𝑆𝑆 =  ∑ 𝑤𝑤𝑖𝑖𝑛𝑛𝑖𝑖=1 𝑠𝑠𝑖𝑖(𝑎𝑎𝑖𝑖) + C 
w1 + ... + wn = 1 

 
Where each component dimension had its own mapping function with which the combined 

mapping function scaled individual component mapping functions and summed all the scaled 

components.  The purpose of the present sequence of studies was to test the viability of this 

proposed multidimensional change to FSDT.  From MSDT it is known that the individual 

component dimensions may either be perceptually separable, where the level of one dimension 

has no effect on the perception of the level of the other dimensions, or perceptually integral, 

where the level of one dimension has an effect on the perception of the other dimension. The 
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manipulations in each of the three studies were applied to two difference kinds of stimulus 

combinations, one with a perceptually separable complex stimuli, hue and shape, and one with a 

perceptually integral complex stimuli, hue and saturation. This was done to test the validity of 

MFSDT and whether it is applicable to both types of multidimensional stimuli.   

Mapping Functions   

 In order to use FSDT and consequentially MFSDT, information on the signal dimensions 

is needed in order to drive the development of mapping functions.  As noted by Parasuraman et 

al. (2000) mapping functions may be derived through regulations, theory or empirical 

observations. This should also be true for MFSDT, however given the lack of regulations or 

theory to drive the definition of mapping functions for hue, saturation, and shape, empirical 

observations were needed.  Pair-wise comparisons and Thurstone scaling were used to develop 

the individual mapping functions.  A clear result of applying these methods is that the 

development of valid mapping functions requires serious consideration of the methods applied, 

as empirical observations may result in drastically different functions depending on the way in 

which the data are collected and analyzed.  

The pair-wise comparison method appears to be an effective approach to obtaining 

relational information for stimuli to be used in a mapping function where the stimuli has a small 

number of potential levels. However when the stimuli, such as shape in this case, has a large 

number of potential combinations of stimulus levels, either a potentially prohibitively large 

sample size is needed to gather relational information about the full factorial combined pairs, or 

adjustments to the method are required, such as grouping stimuli into sets and comparing these 

sets against each other rather than comparing the specific stimulus levels. These adjustments may 

influence the form of the mapping function, as was the case with shape in the present 
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investigation, where unique signal membership values could not be empirically assigned to 

individual stimulus levels, and instead all members of a given set was assigned the same signal 

membership value.   

The use of Thurstone scaling as a method of analysis for developing mapping functions 

was also successful but with caveats. For both the hue and the adjusted shape pair-wise data, 

applying the scaling was successful with no indication of problems with applying a 

normalization process to the results. For saturation however when the Thurstone scaling was 

applied the resulting mapping function was influenced by the forced normalization processes in a 

way that made the function non-monotonic. When the function was calculated through the 

frequency of target similarity judgments without a normalization adjustment, the function was 

increasing and monotonic, i.e., each increase in magnitude resulted in an increase in signal 

membership value. However, when Thurstone scaling and thus normalization was applied the 

ordinality of stimulus levels were violated, i.e., there were cases in which signal membership 

value decreased compared to signals with a lower physical magnitude. While there is no 

theoretical requirement that a signal membership value must increase as signal magnitude 

increases, saturation has been studied in both psychophysics (e.g. Gorden, Abramov, & Chan, 

1994)  and MSDT research (e.g. Garner and Felfoldy, 1977).  Indeed, hue, saturation and shape 

were selected for the present investigation because the properties of these dimensions have been 

well established by previous research. Hence, for saturation there is no logical reason why such a 

loss of ordinality should occur, indicating that for this dimension applying a normalization 

procedure was not appropriate.   

As of now there has been no research with regard to the effects of systematic 

manipulation of mapping functions on FSDT outcomes, and while that question is outside the 
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scope of this research, these results do indicate that method and analysis for empirical 

observations does have an effect on the shape of the resulting mapping function. That is the form 

of a mapping function may be influenced by the method used to derive it.   As such it is advisable 

to consider whether or not the empirical method one uses to develop your mapping function is 

appropriate for the perceptual dimension of interest.  

Determining Scale Factor 

One way to establish a multidimensional mapping function is to derive a weighted 

combination of the mapping function for each individual component dimension. Established 

MSDT methodologies, specifically a complete identification task, a redundancy and control tasks 

and a filtering task, can be employed to determine these weights or scale factors. Aside from 

providing a way to determine the scale factors methods were used to verify the results of 

previous research that hue and shape are perceptually separable and hue and saturation are 

perceptual integral.  Most of the information collected from the MSDT tasks was, in the end, 

unnecessary for determining scale factors. The best approach to developing the scale factors 

empirically was to adjust the scale factors on the complex mapping function and fit the function 

outcomes to the confusion matrixes that resulted from the complete identification task.  Hence, 

this method was not without its problems. First, the confusion matrix from the complete 

identification experiment had to be transformed into the four SDT outcomes. While many of the 

cells on the confusion matrix were identifiable as belonging to only one outcome, there are cells 

which could be defined as more than one outcome. The multiple outcomes of a single cell was 

accounted for however the result was to fit to the modified MSDT results rather than fit to 

MSDT results.  
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A second problem was one of extremes, extreme performance and extreme stimuli. For 

all three participants the confusion matrix from the complete identification experiment was 

sparse, that is to say the participants did not commit many errors. For example, no participants 

ever responded to a purple circle by identifying it as a blue hexagon. With any form of SDT, the 

closer to perfect performance the participants are the more difficult it is to fit the model.  This 

may be due to the fact the end points of each individual dimension range were used for the 

complete identification task and there was therefore very little confusion in identifying whether a 

stimuli is at the lowest level or at the highest level.  For instance, participants experienced little 

difficulty in determining that a presented shape was either a hexagon or a circle. Using the end 

points for the complete identification made the FSDT analysis less than ideal. According to our 

mapping functions, any of the three stimuli types either have a low signal membership value 

between 0.0 and 0.05 or a high signal membership value between 0.95 and 1.0.  With 

membership values that close to the end points of signal membership values, the outcome 

membership values would in many cases mimic the crisp case where one outcome membership 

would receive a membership value of one, and the other outcomes would have a membership 

value of zero. Essentially with any given event only one outcome would be increase in 

membership value, rather than membership credit being given to multiple of the four potential 

outcomes. As the goal was to try to fit a multidimensional mapping function to the MSDT data, 

this method may have been hindered by acting like the crisp case rather than the fuzzy one, since 

when the values are that close to one or zero, the combined mapping function value was 

determined almost exclusively by one of the individual component mapping functions, instead of 

both component dimension mapping function contributing to the combined signal membership.   
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A potential way of solving some of these problems would be to choose non-endpoint 

levels in the range of stimuli, so that there is more uncertainty as to the level of stimulus in the 

complete identification task.  This should result in a less sparse confusion matrix, as well as 

allowing FSDT to benefit from assigning membership values to potentially more than one 

outcomes on a given trial.  A second way could be as simple running only one of the MSDT 

tasks as oppose to the five tasks run in this study, so that a larger N could be achieved, allowing 

for techniques such as factor analysis or multiple regression to be used rather than relying on 

trying to fit FSDT and MSDT together.   

MFSDT and ROC Analysis 

Since MFSDT is an extension of FSDT there is nothing in the traditional SDT decision 

space which indicates the fuzzy aspect of the theory and therefore the structure of the theoretical 

decision space is unclear (Szalma & Hancock, 2013). FSDT research has shown that information 

regarding the tenability of FSDT can be gained through the use of ROCs, specifically 

determining whether the normality and equal variance assumptions of SDT are being met 

(Murphy, et al., 2004; Szalma, et al. 2006; Szalma & O'Connell, 2011; Szalma & Hancock, 

2013).  Since ROC analysis was successfully applied to FSDT, MFSDT tenability was tested 

using the ROC approach as well. One ROC was computed from data derived from a simulated 

decision task involving both of the complex stimuli. The results from the simulated ROC 

indicated that MFSDT was viable for both perceptually separable and perceptually integral 

complex stimuli and that it did not violate the traditional SDT assumptions of normality or equal 

variance. The second ROC analysis used both complex stimuli in an empirical decision making 

task, and the results were consistent with those obtained with the simulated data. Thus, the 
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evidence indicates that MFSDT is viable and that combining the two models does not result in 

violations of the normality and equal variance assumptions. 

MFSDT and Applied Research  

 The operational definitions of signal or response categories in operational contexts are 

often more complex than in laboratory settings. In the laboratory, information regarding the 

signal and response is fully defined; the experimenters know the true state of the world, as they 

often define it. However, in the real world, the true state of the world is often unknown or 

unclear, in that the definition of what constitutes an instance of the category ‘signal’ is 

sometimes not easily specified as mutually exclusive categories. It was this fact of uncertainty 

that motivated the development of FDST. FDST is ideally suited to capture ambiguity of the 

signal category itself that is often present in signal detection tasks in operational environments. 

MFSDT is also ideally suited to capture that ambiguity, and to extend the model to cases in 

which the stimulus categories cannot or should not be represented as a unidimensional variable. 

However, use of MFSDT requires a level of understanding about the signal or response that 

FSDT does not necessitate. In order to derive weights one must understand the components of 

that comprise a complex signal. MFSDT in applied research could be used as an additional 

technique for identifying how component dimensions affect human performance in decision and 

detection tasks.  

Conclusions and Future Work 

One area unique to MFSDT that needs further examination is how to develop the scaling 

factors (weights) for the multidimensional mapping function. While the use of MSDT to gather 

information about the individual component dimensions was effective, there are potentially many 

other ways both empirically and theoretically to drive the determination of scale factors.  
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However most of the issues to be resolved for MFSDT are the same as what needs to be done for 

FSDT.  

Mapping functions in general need further exploration, both in how best to develop them 

since method and analysis have significant effects on the shape of the functions, and how 

differences in the form of mapping functions affect the fuzzy outcomes. In addition, to date work 

with MFSDT and FSDT has focused solely on the signal mapping functions. The form of 

response mapping function has not been investigated. The mixed implication functions are 

determined not only by the signal membership value of an event but also the response 

membership value, making the response mapping function just as important as the signal 

mapping function in the determination of fuzzy outcomes.  

 The meaning of response bias needs to be explored further with regards to FSDT and thus 

MFSDT. Research on both methods has shown high degree of clustering of ROC points with 

both empirical and simulated data indicating the manipulation of response bias have a small 

effect on the position of the points in ROC space. The cause for this clustering is unknown, but 

may be related to difficulty setting a fuzzy criterion or potentially in the empirical cases to be a 

factor of experimental design.  It is possible that traditional SDT methodology for bias 

manipulation such as base rate manipulation and payoff matrices are not appropriate for 

experiments using fuzzy sets. The fact that biases often do not conform to their expected 

manipulated conditions may be evidence of the inappropriate nature of these methods.  

Alternatively, the clustering may be due to compression resulting from the mathematical and 

statistical procedures.  

Despite the theoretical and methodological issues that need to be resolved in the 

development of mapping functions and the determination of scale factors, the results from both 
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the simulated ROC and the empirical ROC in the present set of studies indicate that a 

multidimensional fuzzy mapping function and thus MFSDT may be a viable tool for analysis of 

signal detection tasks. Additionally, given the evidence of normality and equal variance 

assumptions being met for data derived using these methods, the use of SDT performance 

metrics such as d' and β is appropriate for MFSDT.  MFSDT offers a potentially useful 

methodological approach to modeling performance for complex signal detection tasks
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APPENDIX A: THURSTONE SCALING FOR INDIVIDUAL SHAPE LEVELS 
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Table A- 1. Average Z-score, Adjusted Z-Score and Proportion of highest z-score for each level 

of shape (number of sides). 

Number of 

Sides of Polygon 

Averaged Z-

score 

Adjusted Z-

score 

Proportion of 

highest z-score 

6 -4.05 0.371 0.046 
7 -4.385 0.039 0.005 
8 -4.424 0.00 0.00 
9 -3.776 0.648 0.081 
10 -3.557 0.867 0.108 
11 -3.677 0.748 0.093 
12 -3.050 1.374 0.171 
13 -3.43 0.994 0.124 
14 -2.567 1.858 0.232 
15 -2.396 2.028 0.253 
16 -2.502 1.922 0.24 
17 -1.736 2.688 0.335 
18 -1.613 2.811 0.351 
19 -1.971 2.454 0.306 
20 -0.510 3.915 0.489 
21 -0.690 3.735 0.466 
22 0.215 4.64 0.579 
23 -0.627 3.797 0.474 
24 0.662 5.087 0.635 
25 0.756 5.18 0.464 
26 0.928 5.352 0.668 
27 1.465 5.890 0.735 
28 1.687 6.112 0.763 
29 2.329 6.754 0.843 
30 2.350 6.775 0.846 
31 3.166 7.59 0.947 
32 1.290 5.714 0.713 
33 3.404 7.829 0.977 
34 2.548 6.973 0.870 
35 3.588 8.013 1 
36 1.559 5.983 0.747 
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APPENDIX B: RESULTS OF FILTERING, CONTROL AND REDUNDANCY 

TASKS 
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Table B - 1. Means and Standard Deviations for Correct and Error Response Times and Percent 

Correct by Condition for Participant 1 and the Hue - Shape condition 

 Hue Condition  Shape Condition 
 Correct  Error  Correct  Error 
Condition M SD %  M SD  M SD %  M SD 
Filtering 607.

9 
319.
9 

98.
2 

 565.
2 

194.
2 

 580.
2 

286.
2 

96.
3 

 414.
4 

191.
5 

Control 1 581.
1 

262.
5 

98.
3 

 777.
0 

491.
1 

 536.
8 

228.
9 

98.
1 

 271.
4 

80.9 

Control 2 546.
4 

270.
1 

98.
1 

 365.
0 

177.
5 

 544.
3 

243.
0 

97.
8 

 547.
6 

200.
3 

Redundanc
y + 

565.
3 

309.
6 

99.
2 

 930.
3 

494.
2 

 520.
3 

307.
2 

98.
9 

 354.
5 

173.
8 

Redundanc
y - 

579.
3 

259.
4 

98.
1 

 781.
9 

357.
5 

 572.
2 

259.
0 

98.
3 

 449.
3 

148.
2 

 

Table B - 2. Means and Standard Deviations for Correct and Error Response Times and Percent 

Correct by Condition for Participant 2 and the Hue - Shape condition 

 Hue Condition  Shape Condition 
 Correct  Error  Correct  Error 
Condition M SD %  M SD  M SD %  M SD 
Filtering 447.

3 
234.
5 

98.
3 

 329.4 137.
5 

 436.
2 

203.
2 

97.
6 

 241.
4 

197.
5 

Control 1 459.
1 

263.
9 

98.
9 

 1087.
5 

711.
6 

 442.
7 

237.
0 

99.
1 

 623.
0 

522.
2 

Control 2 422.
5 

209.
5 

99.
2 

 270.0 85.6  433.
2 

211.
4 

98.
6 

 318.
0 

268.
4 

Redundanc
y + 

463.
1 

252.
4 

99.
4 

 1154.
0 

789.
9 

 420.
8 

277.
6 

98.
1 

 233.
6 

137.
3 

Redundanc
y - 

438.
4 

224.
1 

97.
8 

 807.0 475.
7 

 413.
0 

189.
5 

99.
7 

 358.
0 

0.0* 

   * - no standard deviation due to only a single data point. 
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Table B - 3. Means and Standard Deviations for Correct and Error Response Times and Percent 

Correct by Condition for Participant 3 and the Hue - Shape condition  

 Hue Condition  Shape Condition 
 Correct  Error  Correct  Error 
Condition M SD %  M SD  M SD %  M SD 
Filtering 280.

2 
145.
1 

97.
9 

 124.
3 

58.9  309.
1 

151.
2 

94.
6 

 124.
9 

68.4 

Control 1 259.
3 

118.
9 

98.
6 

 102.
6 

28.1  319.
1 

147.
2 

95.
8 

 92.1 40.6 

Control 2 291.
6 

159.
4 

97.
2 

 107.
4 

59.2  309.
2 

170.
6 

93.
9 

 137.
1 

77.1 

Redundanc
y - 

277.
5 

136.
8 

98.
0 

 106.
7 

27.6  256.
0 

107.
1 

99.
4 

 132.
0 

55.2 

Redundanc
y + 

277.
9 

135.
9 

97.
5 

 154.
0 

150.
4 

 292.
4 

158.
6 

98.
3 

 199.
7 

234.
2 

 

Table B - 4. Means and Standard Deviations for Correct and Error Response Times and Percent 

Correct by Condition for Participant 1 and the Hue - Saturation Condition. 

 Hue Condition  Saturation Condition 
 Correct  Error  Correct  Error 
Condition M SD %  M SD  M SD %  M SD 
Filtering 686.

6 
342.
2 

95.
7 

 667.
4 

482.
0 

 575.
4 

248.
5 

97.
6 

 614.
6 

340.
7 

Control 1 572.
3 

245.
8 

98.
3 

 418.
3 

129.
9 

 532.
0 

271.
1 

98.
1 

 427.
6 

244.
1 

Control 2 553.
0 

227.
7 

98.
6 

 648.
4 

480.
4 

 533.
5 

252.
2 

97.
5 

 415.
6 

154.
0 

Redundanc
y - 

524.
5 

235.
7 

98.
3 

 342.
7 

116.
7 

 543.
2 

226.
3 

98.
6 

 333.
4 

130.
0 

Redundanc
y + 

597.
6 

389.
3 

96.
9 

 589.
4 

236.
4 

 555.
3 

318.
5 

96.
9 

 320.
1 

105.
0 
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Table B - 5. Means and Standard Deviations for Correct and Error Response Times and Percent 

Correct by Condition for Participant 2 and the Hue - Saturation Condition. 

 Hue Condition  Saturation Condition 
 Correct  Error  Correct  Error 
Condition M SD %  M SD  M SD %  M SD 
Filtering 527.

9 
739.
6 

95.
4 

 540.
6 

362.
4 

 441.
1 

224.
4 

97.
9 

 536.
3 

494.
5 

Control 1 488.
3 

273.
7 

95.
2 

 597.
9 

246.
0 

 415.
8 

195.
4 

99.
2 

 259.
3 

35.8 

Control 2 404.
3 

198.
3 

98.
9 

 299.
8 

144.
2 

 417.
8 

212.
7 

99.
4 

 202.
5 

44.5 

Redundanc
y - 

418.
1 

173.
0 

99.
4 

 382.
0 

99.0  423.
3 

215.
4 

99.
4 

 460.
0 

55.2 

Redundanc
y + 

483.
4 

351.
8 

98.
3 

 415.
7 

205.
8 

 405.
8 

232.
8 

98.
1 

 287.
1 

129.
2 

 

Table B - 6. Means and Standard Deviations for Correct and Error Response Times and Percent 

Correct by Condition for Participant 3 and the Hue - Saturation Condition. 

 Hue Condition  Saturation Condition 
 Correct  Error  Correct  Error 
Condition M SD %  M SD  M SD %  M SD 
Filtering 350.

4 
172.
9 

95.
9 

 290.
2 

296.
0 

 306.
9 

174.
9 

91.
5 

 215.
2 

146.
8 

Control 1 321.
5 

136.
5 

98.
0 

 115.
6 

32.2  278.
4 

146.
5 

96.
9 

 108.
6 

48.9 

Control 2 272.
1 

177.
1 

97.
8 

 116.
6 

52.1  292.
0 

151.
5 

96.
4 

 109.
9 

32.0 

Redundanc
y - 

290.
0 

198.
0 

97.
2 

 180.
6 

232.
3 

 287.
5 

168.
2 

97.
5 

 133.
2 

46.2 

Redundanc
y + 

284.
6 

144.
7 

98.
6 

 77.6 46.5  259.
7 

141.
3 

97.
2 

 144.
6 

78.9 
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