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ABSTRACT 

 

Drug-induced cardiotoxicity has resulted in a thorough evaluation of patient doses, 

treatments, and rehabilitation. One of the most commonly prescribed chemotherapeutic agents is 

cyclophosphamide. The active metabolite, acrolein, is one of the most potent inducers of 

cardiomyopathy. In this study, research was conducted on the H9c2 (2-1) cardiomyocyte cell line 

derived from the embryonic myocardium of rattus norvegicus to assess its competency for 

evaluation of the change in poly (ADP-ribose) polymerase (PARP) activity. The application of 

this model to study the effects of acrolein on PARP activation was chosen as an ideal 

determinant of cell damage produced by nitrogen mustards. To verify the legitimacy of this 

model, cardiomyocytes were exposed to acrolein in varying concentrations and time durations 

with a subsequent protein concentration measurement determined through the BCA Protein 

Assay. After the normalization of samples through volume adjustments and verification of 

sufficient protein, other aliquots were subjected to a PARP Assay in order to measure PARP 

activity. PARP was activated at exposure concentrations of 75 μM in all trials, with an average 

detection of 0.00569 ± 0.001 mU/200ng protein. Other concentrations showed varying degrees 

of PARP activation, verifying the model’s competency. PARP activation implies the potential 

use of this model for further research into targeted molecular therapy of PARP inhibition. 

Therefore, this model has the ability to be used as an assessment tool for the combined use of 

PARP inhibitors and chemotherapeutic agents; it can be useful for future research investigating 

the use and efficacy of PARP inhibitors in reducing drug-induced cardiotoxicity.  
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CHAPTER ONE 

Introduction 

 

Drug-Induced Cardiotoxicity 

Drug-induced cardiotoxicity is one of the most pertinent concerns of drug development 

and regimens. This cardiac damage can manifest as cardiomyopathy, valvular disorders, 

arrhythmias, infarctions, and heart failure. One of the most important disorders is 

cardiomyopathy, which is the replacement of healthy cardiac tissue with scar tissue. This can 

create an enlargement of the heart (dilated cardiomyopathy, usually associated with left 

ventricular dysfunction, causing abnormal rhythms and contraction/relaxation forces), a 

thickening of cardiac muscle (hypertrophic cardiomyopathy, heart cannot pump blood 

effectively) or making the heart more rigid (restrictive cardiomyopathy, heart cannot expand 

properly) (McCartan et al., 2012). These conditions are very serious, as the accumulation of scar 

tissue results in decreased cardiac output and abnormal electrical rhythms (Yeh et al., 2004). The 

manifestation of these symptoms results in arrhythmias (atrial fibrillation, severe QT 

prolongation linked to ventricular tachycardia), valvular disorders, and heart failure. 

Cardiotoxicity risk may be increased in patients with confounding factors, such as atherosclerotic 

disease, obesity, hypertension, previous myocardial infarctions, and other major heart conditions. 

Other risk factors for heart problems include the rate of drug administration, age, gender, and 

radiation to the cardiac region (Shakir & Rasul, 2009; Kamezaki et al., 2005; Feenstra et al., 

1999; Goldberg et al., 1986).  
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Induced cardiotoxicity can occur through a wide variety of drugs, including anti-

inflammatory drugs, such as prednisone, immunomodulating agents, such as methotrexate, 

alkylating agents, such as cyclophosphamide, and beta blockers, which are currently being tested 

as an adjuvant therapeutic intervention for cancer patients (Feenstra et al., 1999). Initial results 

have shown beta blockers to engender a synergistic effect with chemotherapeutic agents for 

decreasing tumor metastasis and recurrence (Nagaraja et al., 2013; Pasquier et al., 2011). As this 

new role for beta blockers is further investigated, results indicating its potential role in heart 

failure must be acknowledged. The critical component of all of the aforementioned inducers of 

cardiotoxicity is that each subtype is commonly prescribed during chemotherapeutic regimens. 

This is a critical issue because this form of toxicity is induced by humans. Most of the drugs 

known to cause cardiotoxicity currently have existing alternatives on the market, thus rendering 

resultant cardiotoxicity preventable. Currently, there are no known anthracyclines or alternatives 

to cyclophosphamide that produce the same positive effects and yet completely eliminate the risk 

of drug-induced cardiomyopathy (Feenstra et al., 1999). Therefore, research conducted with the 

intention of finding ways to mitigate the cardiotoxic effects produced from these drugs is 

paramount for increasing the quality of life and attempting to achieve the optimum level of 

health and wellness for each patient.   

One class of drugs that have been consistently linked to drug-induced cardiomyopathy is 

alkylating agents. Alkylating agents have a DNA alkylation mechanism of action. Effects can be 

seen through mispairing (guanine pairs to thymine instead of the normal G=C hydrogen bond), 

scission, and inter/intrastrand crosslinking (Preuss, 2015). Heart issues tend to linearly 

correspond to the cumulative dose of alkylating agents. In other words, as the dose increases, the 

magnitude and severity of heart problems increases. The best prediction for cyclophosphamide 
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induced acute cardiotoxicity is based on dose concentration, not the cumulative dose, which is 

reflected through the onset of heart failure shortly after drug administration (Yeh et al., 2004; 

Dow et al., 1993).  

The incidence of myocardial failure ranges from 11.36%, with doses varying from 87±22 

mg/kg/day to 174±34 mg/kg/day (Braverman et al., 1991), to 19% lethality, with doses of 180 

mg/kg over four days (Gottdiener et al., 1981). However, cardiotoxicity may be attributed to the 

administered dose, the total cumulative dose, or can be completely independent of any dose 

analysis (Shakir & Rasul, 2009). Alkylating agents are unable to target cancerous cells, thus 

causing changes in the genetic material of healthy cells as well as malignant cells. This 

contributes to many of the stereotypical side effects of chemotherapy, including cardiotoxicity. 

The onset of negative side effects may occur immediately after treatment, or near the end of the 

patient’s life. In addition, it is important to note that chemotherapeutic regimens often include 

multiple drugs. Combining multiple drugs with different toxicities and mechanisms of action can 

help to overcome the limited log kill hypothesis associated with individual drug treatment. The 

effects of this combination have been shown to decrease tumor mutation rate and the 

development of resistant tumor cell populations (Foo & Michor, 2015; Housman et al., 2014; 

McDermott et al., 2014). Most combination therapies are prescribed with the intention of 

changing resultant side effects and efficacy; by overlapping drugs with partial toxicities, near 

additive cytotoxic effects can be achieved with minimum peripheral damage. The combination 

can be given over intensive pulse courses in order to allow the patient more time to regenerate 

bone marrow, thus decreasing the risk of infection. A clinical remission for most tumor types 

results from the additive effect of an average of three different chemotherapeutic agents (Frei & 

Eder, 2003). For example, one of the most common adjuvant breast cancer chemotherapeutic 
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regimes includes 5-Florouracil, epirubicin, and cyclophosphamide, consisting of an S-phase cell 

cycle specific pyrimidine analog, an anthracycline, and an alkylating agent, respectively 

(Erselcan et al., 2000; Bergh et al., 1998). The combined action of these drugs results in 

eliminating cancerous cells remaining after surgery and has shown to increase the number of 

positive patient outcomes (Jamieson et al., 2014).  

Often, chemotherapeutic regimens consist of more than three agents. For example, the 

most common regimen for Non-Hodgkin lymphoma includes Rituximab, cyclophosphamide, 

doxorubicin, vincristine, and prednisone, consisting of a monoclonal antibody, an alkylating 

agent, a topoisomerase inhibitor, a tubulin binder, and an anti-inflammatory agent, respectively 

(McCloskey et al., 2013; Luminari & Federico, 2011). This combination therapy, commonly 

known as R-CHOP, illustrates that multiple drugs with different mechanisms of action, targets, 

and toxicities confound the ability to directly correlate drug-induced cardiotoxic effects with one 

specific agent (King & Perry, 2001). However, severe toxicities, such as myocardial ischemia, 

still result (Federman & Henry, 1997). This type of ischemia-reperfusion is systemic and has 

been investigated for analysis of PARylation after this type of injury. This has resulted in 

research that investigates the role of PARP in global ischemia reperfusion in vivo, indicating the 

potential for PARP inhibitors to prevent myocardial dysfunction (Zhou et al., 2006; Fiorillo et 

al., 2002; Fiorillo et al., 2003). In addition to being administered as combination therapy, the 

dose administered is not always consistent (Brockstein et al., 2000; Nieto et al., 2000; Goldberg 

et al., 1986; Appelbaum, et al., 1976). As a result, it is often difficult to conclusively attribute 

heart conditions to a specific chemotherapeutic agent in the clinical setting. Thus, most of the 

existing literature connecting cardiotoxicity with specific chemotherapeutic drugs is associated 

with in vitro analyses (Inoue, et al., 2008). However, cardiotoxicity is consistently seen in 
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patients receiving cyclophosphamide treatment. Currently, the dose-limiting effect in therapeutic 

regimens containing cyclophosphamide is cardiotoxicity (Nishikawa et al., 2015). 

 

Nitrogen Mustards 

Nitrogen mustards are the most commonly prescribed alkylating agents (Colvin, 2003). 

These drugs are generally cell cycle nonspecific and directly act on DNA during all phases of the 

cell cycle, including the resting stage, in order to prevent replication (Fitzakerley, 2015). This is 

done mainly by cross-linking purine nucleobases between strands, thus preventing cell division 

(Bignold, 2006). This type of DNA damage induces cell death reflective of necrosis, id est, 

independent of apoptotic regulators (Zong, et al., 2004). In addition to damaging the DNA, these 

drugs also induce severe immunosuppression and damage the bone marrow. In addition, P450 

mixed function oxidase enzymes catalyze reactions for drug metabolism and synthesis of lipids, 

proteins, cholesterol and steroids. Essentially these enzymes, in conjunction with oxygen and 

NADPH, induce polymorphisms to any xenobiotic substances which enter the body, creating 

polar metabolites. These result in deactivation (and thus drug elimination), hormone synthesis, or 

bioactivation. The latter can result in cancer chemotherapy or mutagenesis carcinogenesis 

(Anderson et al., 1995). 

Cyclophosphamide is one of the most useful chemotherapeutic agents. It has been 

commonly prescribed to patients over the past forty years for a wide range of cancers and for 

kidney disease in children. It is a prodrug, and must be converted through the cytochrome P450 

system and bioactivated post absorption after oral or intravenous administration in order to 

achieve cytostatic effects (C.S. Chen et al., 2004). Absorption by the body is faster with oral 

administration than with intravenous, which is reflected through peak plasma concentrations 
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occurring at 1.32 versus 5.97 hours (Juma et al., 1979). The active metabolites of 

cyclophosphamide are considerably more mutagenic and teratogenic than the drug itself (Hales, 

1982). Bioactivation of the polar metabolites occurs primarily in the liver through CYP2A6, 

3A4, 3A5, 2B6, 2C8, 2C9, 2C18 and 2C19 to form 4-hydroxycyclophosphamide (Helsby et al., 

2010; Griskevicius et al., 2003; Huang et al., 2000). This product, existing in equilibrium with its 

tautomer aldophosphamide, is heavily favored in this reaction (Nishikawa et al., 2015; Moore, 

1991). Another transformation, albeit less favored, occurs through CYP3A4, 2B6, and 3A5 in 

order to form chloro-acetaldehyde and 2-dechloroethyl cyclophosphamide (Makowski, 2015). 

The products from the favored reaction are further oxidized to form carboxycyclophosphamide. 

However, this final reaction is not driven to completion and the remaining aldophosphamide 

diffuses into cells where it is cleaved to the active metabolites carboxyethylphosphoramide 

mustard and acrolein (Micetich, 2014; Hardman et al., 1996). Both of these metabolites and up to 

25% of the parent compound are eventually eliminated from the body (Tomita et al., 2004).  

Acrolein (C3H4O), the simplest unsaturated aldehyde, is created endogenously as an 

active metabolite of multiple nitrogen mustards, the most notable being cyclophosphamide. 

Acrolein reacts with nucleophilic sites, including protein thiol moieties through addition and 

Schiff base formation (ATSDR, 2007). It is highly reactive, forming acrolein-thiol conjugates 

and actively inhibiting aldehyde dehydrogenase-1 (Ren et al., 1999; Bunting & Townsend, 

1998). It is highly unstable and volatile at standard temperature and pressure, readily reacting via 

polymerization with oxidizing agents (Arntz et al., 2012; LoPachin, et al., 2009). In order to 

minimize these effects, acrolein is stabilized with the reducing agent hydroquinone, C6H6O2 

(Parry, 1948). Therefore, simultaneous exposure of cardiomyocytes to hydroquinone was 

performed to detect potential direct and indirect data interferences. The chosen concentrations of 
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acrolein and hydroquinone were decided based on in vitro experimental observation and 

prediction for clinical relevancy. Normal doses of intermittent cyclophosphamide therapy are 

administered intravenously at 40-50 mg/kg/day (400-1800 mg/m2) over a period of two to five 

days; for continuous daily therapy, doses normally range from 1-2.5 mg/kg/day; during the R-

CHOP regimen, cyclophosphamide is given intravenously at 400-1500 mg/m2 for each day of the 

treatment (US FDA, 1959). As with all chemotherapeutic regimens, the dosage may be adjusted 

based on the patient’s individualized response. The concentrations chosen for this research 

experiment were translated from the higher clinical exposures and encompass exposure 

concentrations much higher than prescribed in the clinical setting (e.g., 125µM). However, these 

acrolein concentrations are commonly seen in patients with Alzheimer’s disease and in patients 

with renal failure. In this latter situation, the inability of the kidneys to filter out the acrolein 

results in its high sequestering. Accumulated protein-bound acrolein has been measured up to 

180µM in patients with renal failure (Sakata et al., 2003). This accretion of acrolein allows a 

somewhat surjective function between laboratory and clinical experimentation to be formed. In 

other words, the laboratory exposures, ranging from 50-125µM, can be observed in the clinical 

setting.  

Acrolein induces p53 activation and apoptosis in human alveolar macrophages, 

keratinocytes, and bronchial epithelial cells via induction of the mitochondrial pathway (Roy et 

al., 2010; Tanel & Averill-Bates, 2005). TP53 tumor suppressor gene activation, leading to 

increased p53 protein production, results in cell cycle arrest and failure to permit DNA repair. 

Premature aging and cell degradation results from p53 accumulation (Nicolai et al., 2015). One 

of the most severe disorders associated with acrolein toxicity is hemorrhagic necrosis. This is 

commonly associated with high-dose regimens of cyclophosphamide and is often fatal 
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(Katayama et al., 2009). Acute, high-dose regimens limit immune responses through NFκB 

suppression, which increases patient risk for secondary infections (Horton et al., 1999). On the 

other hand, chronic, low- to average-dose regimens have been associated with enhanced 

inflammatory responses, such as those observed induced by NFκB, which leads to inflammation 

and injury (Moghe et al., 2015). Observed in the heart, this can result in myocarditis. However, 

low-dose regimens have been shown to engender adaptive effects against future doses received 

at higher concentrations (Sthijns et al., 2014). This could prove beneficial for patients receiving 

chronic treatments and should be investigated further with respect to potential drug regimens.  

Due to the difficulty of maintaining and the fragility of primary cardiomyocytes in 

culture, in conjunction with ethical concerns relative to animal studies, the H9c2(2-1) cardio 

myoblast cell line was implemented. This line is a subclone of the cell line derived from BDIX 

rattus norvegicus by Kimes & Brandt (1976). Since then, this embryonic line has been 

thoroughly researched and continues to be utilized throughout biochemical, pharmacological, 

and electrophysiological research (Hescheler et al., 1991). An imperative characteristic of this 

line is its ability to retain elements of signaling pathways existing in cardiac cells, such as 

differentiating to myotubes and retaining a cardiac muscle phenotype (Branco et al., 2015; 

Sardão et al., 2007; van der Putten et al., 2002; Menard et al., 1999). In addition, these cells have 

been shown to respond similarly to hypertrophic responses seen in primary cardiomyocytes 

(Watkins et al., 2011). Recently, the H9c2(2-1) line has been used to investigate cyclooxygenase 

inhibitors (Sakane et al., 2014), the interactions between PARP-1 and the RNF146 (ring finger 

protein 146) gene (Gerö et al., 2014), anthracyclines (Studzian et al., 2015), nitrogen mustards 

(Nakamura et al. 2010), flavonoids (Chen et al., 2014), and many other things. This model 

continues to be highly regarded and implemented in the research setting. 
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Poly (ADP-Ribose) Polymerase 

Poly(ADP-Ribose) polymerase (PARP) is a subfamily of 17 cell signaling enzymes 

which greatly influence genomic stability, metabolic processes at the cellular level, cell 

replication, and cell death (Otto et al., 2005; Hassa & Hottiger, 2008). Each of these enzymes are 

comprised of four main domains: N-terminal DNA binding, ADP-ribosylating catalytic, caspase-

cleaved, and auto-modification (Kow & Doetsch, 2005). The N-terminal DNA binding domain is 

comprised of two zinc fingers which systematically identify DNA discontinuities. These can 

bind to an allosteric site on the DNA, thus initiating single-strand break (SSB) or double-strand 

break (DSB) repair pathways (Ahel et al., 2008; Ikejima et al., 1990). In most cases, this induces 

the formation of PAR chains (hydrolyzed by poly (ADP-ribose) glycohydrolase), which rapidly 

consumes NAD+ and ATP, producing nicotinamide in the process termed PARylation (Reviewed 

in Amé et al., 2004). This nicotinamide acts to reversibly inhibit PARP through a negative 

feedback loop. Stability of intracellular NAD+ and ATP levels is also sustained through 

competition for free NAD+. This is extremely important in preventing excess NAD+ and ATP 

depletion which can lead to cell lysis and necrosis through decreased glycolysis and 

mitochondrial respiration (De Vos et al., 2012). This can be seen through competition between 

the tumor suppressor sirtuin-1 and PARP-1 (Kolthur-Seetharam et al., 2006). Sirtuin-1 also acts 

to inhibit E2F-1, whose expression is otherwise controlled by PARP-1 (Nogueiras et al., 2012). 

The catalytic domain contains a BRCA1 C-terminus motif and auto-PARP sites, which are 

associated with PARP catalytic activities, such as NAD+ hydrolysis and its cascading effects. 

This domain serves to link the family members with respect to phylogeny (Perina et al., 2014). 

This unique catalytic motif serves as an exclusion mechanism for members of the PARP family: 

if the domain is present, they are included in the superfamily regardless of DNA binding 
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capabilities (Swindall et al., 2013). The caspase-cleaved domain is responsible for caspase-9 and 

caspase-3 mediated cleavage, which plays an important role in the type of cell death that occurs 

(De Vos et al., 2012). The auto-modification domain contains the BRCA1 C-terminus (BRCT) 

domain, which limits enzyme activation through its regulation of hetero-ADP-ribosylation and 

has been linked to the interactions between PARP and DNA (Drew, 2015; D’Amours et al., 

1999; Kameshita et al., 1984).  

Out of all the different family members, PARP-1 (with a molecular weight of 116 kDa) 

has been subjected to the most research due to its proliferation, regulation of transcription, 

modification to chromosome structure and function, and cellular signaling (Wacker et al., 2007; 

Monaco et al., 2005).  The catalytic activity of PARP-1 is located at the carboxy-terminal region 

(Swindall et al., 2013; Eustermann et al., 2011) and its basal activity is irrespective of DNA 

damage (Kow & Doetsch, 2005). PARP-1 DNA repair commences with early recognition and 

subsequent bending of the nicked region. Permitted by the sugar-phosphate backbone gap, this 

bending (approximately 100°) enables the correct repair method to be chosen based on nick 

physiognomies (Kow & Doetsch, 2005). These repair methods most commonly consist of base 

excision repair, SSB repair, and DSB repair through non-homologous end joining and 

subsequent homologous recombination (Beck et al., 2014; Saberi et al., 2007; Frank-Vaillant & 

Marcand, 2002). 

Catalytic activity of PARP-1 is controlled by the auto-modification BRCT domain 

described above, in addition to a WGR amino acid domain (so named for the amino acid residues 

tryptophan (W), glycine (G), and arginine(R)), which has been shown to offer protective effects 

from oxidative stress in vitro (Li et al., 2014; Altmeyer et al., 2009). The location and 

composition of the BRCT and WGR domains allows PARP-1 to be phylogenetically 
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distinguished from the other family members (Daugherty et al., 2014; Ruf et al., 1998). The 

PARylation PARP-1 undergoes with DNA binding results in its ability to regulate p53 and RNA 

polymerases I and II (Swindall et al., 2013). In addition, PARP-1 controls transcription through 

direct regulation of the aP2, Cox-2, E2F-1, and Oct1 transcription factors (Erener et al., 2011; 

Lin et al., 2011; Nie et al., 1998). These transcription factors are important in promoting gene 

expression relevant to DNA replication and cell growth (e.g., the pRb protein acts as a cell cycle 

checkpoint for E2F-1) (Simbulan-Rosenthal et al., 2003). In some instances, PARP-1 can change 

the function of transcription factors. For example, this occurs in NFκB, where PARP-1 directly 

interacts with p50 and p63 subunits in order to modify protein function (Kameoka et al., 2000). 

This change to NFκB protein function prevents the activation of immune responses such as 

inflammation (Petrilli et al., 2004). With all of these influential characteristics, PARP-1 has a 

clear upstream effect on cell regulation.  

PARP-1 impacts three main forms of cell death: necrosis, parthanatos, and apoptosis. 

Necrotic cell death is mediated by PARP-1 activation of JNK (c-Jun N-terminal kinase), most 

notably JNK1, which induces large-scale DNA cleavage and fragmentation (Xu et al., 2006). It is 

important to note that TNF (tumor necrosis factor)-induced necrosis is now considered 

independent of the PARP pathway due to the fact that inhibition of PARP-1 prevents the 

activation of the PARP pathway by methyl methanesulfonate, but fails to prevent TNF-induced 

necroptosis. In addition, interference with ceramide generation or the function of receptor-

interacting proteins still results in necrosis through the PARP pathway, yet it obstructs TNF-

induced necrosis (Sosna et al., 2014). When severe oxidative stress occurs, PARP-1 initiates 

poly(ADP-ribosyl) formation which induces translocation of cytochrome c and AIF 

(mitochondrial apoptosis-inducing factor) to the nucleus. Translocation causes DNA cleavage 
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and fragmentation, eventually resulting in parthanatos (PARP-1 mediated cell death) or apoptosis 

(Andrabi et al., 2006). Parthanatos and apoptosis are very similar and display the same form of 

AIF translocation and caspase-3 mediated cleavage (albeit late activation with parthanatos); 

however, their distinct causes (parthanatos from excess PAR and apoptosis from cell signaling) 

distinguish between the two (Fatokun et al., 2014). It has been demonstrated in cardiomyocytes 

that cytochrome c and AIF translocation induced by oxidative stress can be decreased with 

PARP inhibitors through mitochondrial transmembrane potential reduction (M. Chen et al., 

2004).  

 

The Role of PARP in Acrolein-Induced Cardiomyopathy 

Inhibiting PARP may reduce toxic effects and offer protection against cytotoxicity and 

apoptosis, which has been suggested in numerous studies (Conklin et al., 2015; Samol et al., 

2011; Tanel & Averill-Bates, 2007; Szabó, 2005; Hall, 1980). The relationship between PARP-1 

and apoptosis, most notably the change in mitochondrial function, causes increased intracellular 

sodium and calcium levels which contributes to cardiomyopathy and other heart ailments (Szabó, 

2005). The application of PARP inhibitors can attenuate the mitochondrial injury associated with 

nitrogen mustards, thereby conserving energy and preserving myocardial function (Virág et al., 

1998; Satoh et al. 1994).  In addition to generically decreasing toxicities, PARP inhibitors have 

also been associated with eliminating negative effects related to cardiac reperfusion (Reviewed 

in Jagtap & Szabó, 2005; Szabó, 2005). In a cardiac reperfusion study on isolated rat hearts 

conducted by Yamazaki and associates (2004), the PARP inhibitor 3-aminobenzamide was able 

to improve heart function by suppressing oxidative stress. These cardioprotective effects of 
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PARP inhibitors validates continued research in order to discover the potential these enzyme 

inhibitors have in therapeutic interventions. 

 

Purpose 

Acrolein induces apoptosis via activation of the mitochondrial pathway and has been 

shown to produce DNA damage in vivo, leading to multiple ailments including cardiomyopathy 

(Ismahil et al., 2011; Luo et al., 2007; Uchida et al., 1998). PARP is involved in apoptosis, and 

PARP inhibition has been shown to offset oxidative damage (Lupo & Trusolino, 2014; Eliasson 

et al., 1997; Zhang et al., 1994). As a result, the H9c2 (2-1) cardiomyocyte cell line was 

investigated as a potential model for further examination of acrolein-mediated cardiomyopathy. 

In order to help elucidate the role of PARP in acrolein-induced cell toxicity, this research was 

conducted. Consistent with contemporary literature, the H9c2 (2-1) cardiomyocyte cell line 

should form a competent model for evaluation of PARP activation from acrolein exposure (Roy 

et al., 2010; Conklin et al., 2015; Dong et al., 2013; Tanel & Averill-Bates, 2005). 
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CHAPTER TWO 

Methods 

 

This study was divided into two main sections: the first (initial time trial) was conducted 

with an aim of determining an appropriate exposure duration for optimum testing of the 

cardiomyocytes; the second (trials 1-3) was conducted using refined methods for obtaining trial 

data.  

 

Cell Culture 

This experiment was conducted in vitro using embryonic myocardium from rattus 

norvegicus, cell line H9c2 (2-1). This cell line was chosen due to its ability for continued 

propagation and its relevance to cardiotoxicity. The line itself was obtained from the American 

Type Culture Collect (ATCC) (CRL-1446; Manassas, VA) and arrived in the Environmental and 

Occupational Health Cell Culture Laboratory (Tampa, FL) in February 2015. The line was 

cultured in a humidified atmosphere of 5% CO2 at 37°C. Complete supplemented medium was 

created with Debulcco’s Modified Essential Medium (Corning, Manassas, VA) from a mixture 

of HEPES buffer (Sigma, St. Louis, MO), fetal bovine serum (ATCC), and penicillin-

streptomycin (ATCC) prior to use (see appendix 1). Complete supplemented medium was stored 

in a sterilized 4°C environment until it was needed for culturing plated cells or for diluent 

purposes. This process of complete DMEM media use was continued until approximately 0.75 

inches of solution remained. At this point, the remaining solution was discarded and new 
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complete supplemented medium was created to reduce contamination and degradation. In 

addition to this change in complete DMEM media, supplemented media used for culturing cells 

was changed roughly every other day. At 85-90% confluence, approximately every five days, 

cardiomyocytes were disaggregated with 0.1% Trypsin EDTA in PBS (Corning, Manassas, VA) 

(see appendix 2). The supernatant resulting from warm trypsinization was either frozen for long-

term storage (rate-controlled), reconstituted in supplemented DMEM and plated out for directed 

experimentation, or split at a subcultivation ratio of 1:4 and plated for further propagation. If 

reconstituted for experimentation, the cell concentration and viability was evaluated prior to 

plating through trypan blue dye exclusion viability assessment (Lonza Cologne GmbH, 2012). 

For this procedure, cells underwent trypsinization and were reconstituted with supplemented 

DMEM (see appendix 2). An aliquot of the re-suspended cell solution was combined with trypan 

blue (0.1% trypan blue in DPBS; Corning) in a 1:1 ratio. The number of cells and viability was 

evaluated with the use of a hemocytometer. 

The line underwent eleven passages before exposure to acrolein commenced. As cells are 

subject to morphological changes with each passage, it is important to note that cell shape 

changes did not naturally occur as of passage fourteen. However, complete omission of natural 

changes cannot be ruled out; as of passage fourteen, cells had started forming domes, indicative 

of loss of contact inhibition and cell differentiation. Exposure to acrolein occurred only after 

cells were given adequate time to reattach to the plates. Acrolein exposure resulted in 

morphological changes: mainly the cell structure changed from a long fusiform shape to a 

multinucleated, condensed spherical shape. 
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Cell Treatment  

For all trials, cells were counted and viability was assessed using trypan blue exclusion 

with the use of a hemocytometer prior to plating for experimentation. For the initial time trial, 

H9c2 (2-1) cells were plated in three 6-well plates (Corning) at approximately 100,000 cells per 

well and allowed to attach over a 36 hour time span. For trials 1-3, cardiomyocytes were plated 

in 24-well plates (Celltreat, MA) at approximately 100,000 cells per well and permitted 36 hours 

to attach. Prior to acrolein exposure, 10X PARP buffer was mixed and then used in the mixture 

of lysis buffer (see appendix 4 and 5); 0.3% hydroquinone solution was created with 0.3% 

hydroquinone (Sigma, St. Louis, MO) and ddH2O in a ratio of 1:1 until appropriate volumes 

were achieved; inert conditions were prepped. Upon receiving acrolein (Sigma-Aldrich, St. 

Louis, MO) under inert conditions, its density was calculated in order to ensure appropriate 

volumes for dilution. This was done by extracting 100μL from under inert conditions, weighing 

the acrolein under sterile conditions, and applying basic algebra (by using the equation 

density=[mass/volume]). The density was used to calculate its molarity and the appropriate 

dilution volumes were determined by applying basic algebra (by using the equation C1V1 = 

C2V2, where C1 is the concentration of acrolein received from Sigma-Aldrich, V1 is the unknown 

variable which will be the volume of acrolein necessary for desired dilution, C2 is the desired 

concentration, and V2 is the desired volume). Acrolein was extracted and homogenized with 

ddH2O in a 1:1000 ratio to ensure that the correct amount from the density calculation (2.157 x 

10-4 µL) was obtained (Newton, 1991; EPA, 2015). Cells then underwent the exposure 

procedure: both the 0.3% hydroquinone solution and acrolein solution underwent serial dilutions; 

supplemented medium was aspirated and subsequently followed with a PBS wash and the 

addition of the appropriate concentration (50-125 µM) of the control (0.3% hydroquinone in 
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completely supplemented DMEM) or the treatment (acrolein in completely supplemented 

DMEM).  

For the initial time trial, plates were incubated corresponding to their appropriate 

exposure duration (three plates: one with an exposure duration of 25 minutes, one with an 

exposure duration of 55 minutes, and one with an exposure duration of 75 minutes). These cells 

were all exposed to either 75µM of 0.3% hydroquinone or 75µM of acrolein. For trials 1-3, cells 

were exposed to varying concentrations ranging from 50-125µM of 0.3% hydroquinone or 

acrolein and incubated for 55 minutes (see appendix 3). During the incubation, the remaining 

steps (addition of PMSF and DTT) of lysis buffer creation were completed. After the appropriate 

exposure duration was reached, cells were removed from the incubator, waste was aspirated, and 

75µL lysis buffer was added to each well. Cell lysates were extracted and divided into two 

aliquots, one for protein quantification and one for the PARP assay. A minimal amount of 

residue was left upon recovery of cell lysates from the treated plates. Assessment of protein 

concentrations was conducted on one subgroup of lysates, a blank, and a lysis buffer control. The 

second subgroup of cell lysates was stored per manufacturer’s instructions at -80°C until the 

PARP assay could be conducted. 

 

Protein Quantification via BCA Protein Assay 

In order to evaluate PARP activation, protein concentrations must be determined to 

adequately prepare the samples for the PARP assay. In order to determine protein concentrations, 

protein quantification was simultaneously run in duplicates on bovine serum albumin (BSA) 

protein standards and samples, according to the Pierce BCA colorimetric kit’s (Pierce, Rockford, 

IL) manufacturer instructions (see appendix 4). The amount of protein detected was determined 
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via spectrophotometer (BioTek μQuant) exposure to 562 nm averaged across samples with 

similar expected concentrations. A standard polynomial was derived from the BSA protein 

standards and appropriate calculations were made to account for dilutions and protein present in 

the lysis buffer control. The final number was used to normalize the samples for the PARP assay 

by permitting determination of the volume of sample and the volume of PARP buffer diluent 

needed for each well during the PARP assay. Samples that produced insufficient protein (see 

results section) were not subjected to the PARP assay. 

 

Poly (ADP-Ribose) Polymerase Assay 

Colorimetric poly (ADP-ribose) polymerase assays quantify the inclusion of biotinylated 

PARP onto histone proteins. It is often used to assess DNA damage and to determine whether 

DNA damage was attributed to non-apoptotic cells. In this study, its use was intended for the 

measurement of PARP-1 activity in cell lysates. The second subgroup of cell lysates, previously 

stored at -80°C, were used to assess the amount of PARP-1 activity produced from treatment. 

This assay was run in triplicates on 96-well high-binding spectra plates (Perkin Elmer) with 

PARP HSA standards simultaneously run for each plate. The PARP colorimetric assay kit used 

was a modification from that produced by Trevigen in 2013 in order to decrease overall costs 

(see appendix 5). This modification was previously verified within appropriate statistical 

significance and validated for cell culture use. This assay was comprised of three main sections, 

relative to the day on which they were performed: histone plating, blocking step, and detection. 

The PARP assay culminated in the determination of PARP activity measured via 

spectrophotometer at an exposure of 450 nm and averaged across samples with similar 

concentrations and treatment methods.   
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CHAPTER THREE 

Results 

 

The initial trial was conducted with the goal of determining an appropriate exposure 

duration before treatment with different concentrations of acrolein. In the initial trial, trypan blue 

exclusion assessment showed that the cells were 95.33% viable.  

 

Protein Quantification Results from Initial Time Trial 

Cardiomyocytes were treated with 75μM acrolein and protein quantification was run on 

lysates to detect protein concentrations and ensure the appropriate use of the PARP assay. 

Standard concentrations of bovine serum albumin were run simultaneously to the samples. The 

standard curve for the BCA protein quantification assay produced an R2 value of 0.997. As 

depicted in Figure 1, an exposure duration of twenty-five minutes produced an average 

concentration of 1,479.362±599 μg/mL; an exposure duration of fifty-five minutes produced an 

average concentration of 911.474±275.558 μg/mL; an exposure duration of seventy-five minutes 

produced an average concentration of 883.161±161.495 μg/mL. All averages were blanked 

against the lysis buffer control of 2277±112.544 μg/mL to account for possible interference. The 

aliquots from each well produced sufficient protein measured in the protein quantification assay 

to permit an effective PARP assay to be run on the replicates. Appropriate sample dilutions for 

the PARP assay were determined from the detected protein concentrations.
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Figure 1: Concentrations of protein detected after treatment of cardiomyocytes 

with 75μM acrolein at 25, 55, and 75 minutes. There is a weak trend depicting 

increased protein concentration with decreased exposure duration. 

 

 

PARP Activity Detection Results from Initial Time Trial 

PARP activity detection upon cardiomyocyte exposure to 75μM acrolein were clustered 

with an absorbance around 0.3 micro unit of PARP activity per 200 ng of protein (per well). As 

shown in Figure 2, an exposure duration of twenty-five minutes produced an average PARP 

activity detection of 0.26±0.064 μU/200ng protein; an exposure duration of fifty-five minutes 

produced an average of 0.348±0.199 μU/200ng protein; an exposure duration of seventy-five 

minutes produced an average of 0.299±0.071 μU/200ng protein. The line of best fit assumed a 

polynomial of order two, producing an R2 value close to 1. All averages were blanked against the 

lysis buffer control in order to account for possible interference. The standard curve for the 

PARP assay for quantification of values against known PARP enzyme concentrations (not 

shown) produced an R2 value of 0.994.  
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Despite the result’s standard deviation of 0.199, an exposure duration of fifty-five 

minutes was chosen due to the highest detection irrespective of standard deviation, detection 

above the control, and its consistency with the literature (Roy et al., 2009). Acrolein exposure of 

cardiomyocytes was chosen to be given in concentrations of 50 μM, 75 μM, 100 μM, and 125μM 

based primarily on a literature review, with exposures around 100 μM producing the most 

consistent results (Wang et al., 2011; Luo et al., 2007; Kehrer et al., 2000).  

 

Figure 2: PARP activity detected after treatment of cardiomyocytes with 75μM of 

acrolein at 25, 55, and 75 minutes. Time of 25 mins produced an average detection of 

0.26±0.064, a time of 55 mins produced an average detection of 0.348±0.199, and a 

ime of 75 mins produced an average detection of 0.299±0.071, with all units in micro 

units of PARP activity per 200ng of protein.  

 

Trials 1, 2, and 3 were conducted to evaluate PARP activity upon treatment of 

cardiomyocytes with different acrolein concentrations for an exposure duration of fifty-five 

minutes. Trypan blue exclusion cytotoxicity assessment showed that cell viability was 96.15%, 

93.67%, and 96.01% for trials 1, 2, and 3, respectively. In these trials, cardiomyocytes were 
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treated with varying acrolein concentrations and protein quantification was run on lysates on 96-

well plates in duplicates to ensure appropriate protein concentrations existed to run the PARP 

assay. Standard concentrations of bovine serum albumin were run in duplicates simultaneously 

to the samples for each plate. 

 

Protein Quantification Results from Trial 1 

Protein quantification of samples from trial one was run in duplicates on two 96-well 

plates. The standard curve for the BCA protein quantification assay from plate 1 produced an R2 

value of 1 (rounded up from 0.9999). The standard curve for the BCA protein quantification 

assay from plate 2 produced an R2 value of 0.999. The aliquots from each well produced 

sufficient protein in the protein quantification assay to permit an effective PARP assay to be run 

on the replicates after proper dilutions. 

 As depicted in Figure 3, an acrolein concentration of 50μM produced an average protein 

concentration of 246.885±63.631 µg/mL, whereas the hydroquinone concentration of 50 μM 

produced an average concentration of 332±78 µg/mL; an acrolein concentration of 75 μM 

produced an average protein concentration of 387±243 µg/mL, whereas the hydroquinone 

concentration of 75 μM produced an average concentration of 908±318 µg/mL; an acrolein 

concentration of 100 μM produced an average protein concentration of 764±149 µg/mL, whereas 

the hydroquinone concentration of 100 μM produced an average concentration of 1262±407 

µg/mL; an acrolein concentration of 125 μM produced an average protein concentration of 

1051±404µg/mL, whereas the hydroquinone concentration of 125 μM produced an average 

concentration of 1111±418 µg/mL.  
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Figure 3: Trial 1 concentrations of protein detected after treatment of cardiomyocytes 

for fifty-five minutes. Cells treated with 50 μM, 75 μM, 100 μM, and 125 μM of 

acrolein (blue) and hydroquinone (red). When blanked against the lysis buffer 

control, the resulting protein concentrations show increasing protein concentration 

with increasing exposure. 

 

 

Protein Quantification Results from Trial 2 

Protein quantification of samples from trial two was run in duplicates on two 96-well 

plates. The standard curve for the BCA protein quantification assay from plate 1 produced an R2 

value of 1 (rounded up from 0.9999). The standard curve for the BCA protein quantification 

assay from plate 2 produced an R2 value of 0.990. The results from this assay were more 

inconsistent than those produced from trial 1, as insufficient protein was detected after blanking 

against the corresponding lysis buffer control in four of the acrolein-exposed wells (accounting 

for 16.67% of the acrolein-exposed wells and 3.03 % of the total number of wells) and four of 

the hydroquinone-exposed wells (accounting for 16.67% of the hydroquinone-exposed wells and 

3.03% of the total number of wells). As these wells produced insufficient protein, corresponding 
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aliquots were not used for PARP detection testing. These wells were disregarded in the 

calculation of average protein concentrations shown in Figure 4.  

 

Figure 4: Trial 2 concentrations of protein detected after treatment of 

cardiomyocytes for fifty-five minutes. Cells treated with 50 μM, 75 μM, 100 μM, 

and 125 μM of acrolein (blue) and hydroquinone (red). When blanked against the 

lysis buffer control, the resulting protein concentrations show no significant 

correlations with exposure concentrations. 

 

As depicted in Figure 4, when blanked against the lysis buffer control, an acrolein 

concentration of 50 μM produced an average protein concentration of 2832 ±169 µg/mL, 

whereas the hydroquinone concentration of 50 μM produced an average concentration of 

2238±302 µg/mL; an acrolein concentration of 75 μM produced an average protein concentration 

of 2536±304 µg/mL, whereas the hydroquinone concentration of 75 μM produced an average 

concentration of 2183±517µg/mL; an acrolein concentration of 100 μM produced an average 

protein concentration of 2912±678 µg/mL, whereas the hydroquinone concentration of 100 μM 

produced an average concentration of 2944±815 µg/mL; an acrolein concentration of 125 μM 
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produced an average protein concentration of 2693±122 µg/mL, whereas the hydroquinone 

concentration of 125 μM produced an average concentration of 3190±705 µg/mL. 

 

Protein Quantification Results from Trial 3 

Protein quantification of samples from trial three was run in duplicates on two 96-well 

plates. The standard curve for the BCA protein quantification assay from plate 1, corresponding 

to the lower concentrations, produced an R2 value of 0.999. The standard curve for the BCA 

protein quantification assay from plate 2, corresponding to higher concentrations, produced an R2 

value of 0.997. The results from this assay were more inconsistent than those produced from trial 

one, but less inconsistent than trial two, as insufficient protein was detected after blanking 

against the corresponding lysis buffer control in three of the acrolein-exposed wells (accounting 

for 12.5% of the acrolein-exposed wells and 2.14% of the total number of wells) and two of the 

hydroquinone-exposed wells (accounting for 8.33% of the hydroquinone-exposed wells and 

1.43% of the total number of wells). As these wells produced insufficient protein, corresponding 

aliquots were not used for PARP detection testing. These wells were disregarded in the 

calculation of average protein concentrations shown in Figure 5. As depicted in Figure 5, when 

blanked against the lysis buffer control, an acrolein concentration of 50 μM produced an average 

protein concentration of 515±350 µg/mL, whereas the hydroquinone concentration of 50 μM 

produced an average concentration of 380±171 µg/mL; an acrolein concentration of 75 μM 

produced an average protein concentration of 279±142 µg/mL, whereas the hydroquinone 

concentration of 75 μM produced an average concentration of 259±151 µg/mL; an acrolein 

concentration of 100 μM produced an average protein concentration of 605±303 µg/mL, whereas 

the hydroquinone concentration of 100 μM produced an average concentration of 
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613±203µg/mL; an acrolein concentration of 125 μM produced an average protein concentration 

of 805±247 µg/mL, whereas the hydroquinone concentration of 125 μM produced an average 

concentration of 858±333 µg/mL.  

 

Figure 5: Trial 3 concentrations of protein detected after treatment of 

cardiomyocytes for fifty-five minutes. Cells treated with 50 μM, 75 μM, 100 μM, 

and 125 μM of acrolein (blue) and hydroquinone (red). When blanked against the 

lysis buffer control, the resulting protein concentrations show no significant 

correlations with exposure concentrations. The protein concentrations from cells 

treated with acrolein are similar to the protein concentrations from cells treated with 

hydroquinone.  

 

 

PARP Activity Detection Results from Trials 1 and 2 

PARP activity detection upon cardiomyocyte exposure to varying acrolein concentrations 

varied significantly. This PARP assay was run in triplicates on aliquots collected from trials one 

and two and it required the use of three different plates. The standard curve for this PARP assay 

for plate one produced an R2 value of 0.996, the standard curve for plate two had an R2 value of 

0.985, and the standard curve for plate three produced an R2 value of 0.996. For Figure 6, the R2 
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value for the polynomial line of best fit was 0.0921, indicative that absorbance measurements 

cannot be precisely predicted through the acrolein exposure concentration. As illustrated in 

Figure 6, an acrolein concentration of 50 µM over an exposure duration of fifty-five minutes 

produced an average PARP activity detection of 0.000402±0.001 μU/200ng protein; an exposure 

over fifty-five minutes to an acrolein concentration of 75 µM produced an average PARP 

activity of 0.00736±0.0004 μU/200ng protein; an acrolein concentration of 100 µM produced an 

average of -0.00521±0.002 μU/200ng protein for an exposure duration of fifty-five minutes; an 

exposure duration of fifty-five minutes to an acrolein concentration of 125 µM produced an 

average PARP activity detection of 0.00648±.006 μU/200ng protein. All averages were blanked 

against the lysis buffer control on its corresponding plate in order to account for possible 

interference.  

  

Figure 6: Trials 1 & 2: PARP activity detected after treatment of cardiomyocytes with 

50 μM, 75 μM, 100 μM, and 125 μM of acrolein at an exposure duration of 55 

minutes. Acrolein concentrations of (a) 50 μM produced an average of 

0.000402±0.001; (b) 75 μM produced an average of 0.00736±0.0004; (c) 100 μM 

produced an average of .-0.00521±0.002; (d) 125 μM produced an average of 

0.00648±.006 with all units in μU/200ng protein.  
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Recall the fact that acrolein is stabilized with hydroquinone due to its innate chemical 

properties at standard temperature and pressure. As a result, in order to contribute PARP 

activation to acrolein instead of hydroquinone, simultaneous exposure of cardiomyocytes to 

hydroquinone was performed. As shown in Figure 7, the amount of PARP activity detected from 

125 μM and 50 μM acrolein-exposed cells was considerably higher (22 times and 8.69 times, 

respectively) than the amount detected from cells exposed to 125 μM and 50 μM of 

hydroquinone. In addition, the amount of PARP activity detected from 100 μM and 75 μM 

acrolein-exposed cells was about the same (1.627 times and 1.052 times, respectively) as that 

detected from corresponding hydroquinone-exposed cells.  

 

Figure 7: Trial 1 & 2: Ratio of PARP detection in cells treated with acrolein to those 

treated with hydroquinone. Depiction of the ratio of acrolein exposure with respect 

to hydroquinone exposure for corresponding concentrations. Hydroquinone 

exposures were adjusted to account for the percent of hydroquinone used to stabilize 

the acrolein (0.3%). 
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PARP Activity Detection Results from Trial 3 

PARP activity detection upon cardiomyocyte exposure to varying acrolein concentrations 

had less numerical variation in trial three, with the highest return resulting from an acrolein 

concentration of 75 µM. As illustrated in Figure 8, PARP activity was measured over an 

exposure duration of fifty-five minutes (all with the units of micro units of PARP activity for 

400ng of protein per well) and an acrolein concentration of 50µM produced an average PARP 

activity detection of 0.00260±0.002; exposure to an acrolein concentration of 75 µM produced 

an average of 0.00402±0.001; an acrolein concentration of 100 µM produced an average PARP 

activity detection of 0.00286±0.001; exposure to an acrolein concentration of 125 µM produced 

an average PARP activity detection of 0.00226±0.001.  

 

Figure 8: Trial 3: PARP activity detected after treatment of cardiomyocytes with 50 

μM, 75 μM, 100 μM, and 125 μM of acrolein at an exposure duration of 55 minutes. 

Acrolein concentrations of (a) 50 μM produced an average of 0.00260±0.002; (b) 75 

μM produced an average of 0.00402±0.001; (c) 100 μM produced an average of 

0.00286±0.001; (d) 125 μM produced an average of 0.00226±0.001, with all units of 

μU/400ng protein. All averages were blanked against the lysis buffer control in order 

to account for possible interference. 
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All PARP activity averages were blanked against the lysis buffer control on its corresponding 

plate in order to account for possible interference. The standard curve for this PARP assay for 

plate one produced an R2 value of 0.999 and the standard curve for this PARP assay for plate two 

had an R2 value of 0.989. For Figure 8, the R2 value for the polynomial line of best fit was 0.718.  

Similarly to trials 1 and 2, cells treated with varying concentrations of hydroquinone were 

also evaluated for PARP activation. As shown in Figure 9, the amount of PARP detected from 

hydroquinone-exposed cells was about the same as that detected from acrolein-exposed cells, as 

all ratios were around 1.0. The concentration of 100µM produced a somewhat higher ratio, 

reflective of data obtained from the ratio of PARP detection in acrolein versus hydroquinone-

treated cells from trials one and two. 

 

Figure 9: Trial 3: Ratio of PARP detection in cells treated with acrolein to those 

treated with hydroquinone. Depiction of the ratio of acrolein exposure with respect 

to hydroquinone exposure for corresponding concentrations. Hydroquinone 

exposures were adjusted to account for the percent of hydroquinone used to stabilize 

the acrolein (0.3%). 
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All PARP Activity Detection Results 

In order to more effectively navigate the resulting PARP activities, data from all trials 

was combined. However, due to small sample size and different units, it is ignorant to assume 

variances of all trials are equal. To account for this, the larger of the two standard deviations 

were evaluated against the averaged standard deviations. For exposures of 75 and 100µM, these 

deviations remained the same. The PARP assay for trials one and two was performed at the same 

time under the same conditions. The PARP assay for trial three was performed at a later date 

under different human factor conditions but under the same laboratory conditions. As illustrated 

in Figure 10, PARP activity detection was assessed for varying concentrations of acrolein (all 

with the units, µU/200-400ng protein). An acrolein concentration of 50 µM produced an average 

PARP activity detection of 0.00150±0.001; exposure to an acrolein concentration of 75 µM 

produced an average PARP activity detection of 0.00569±0.001; an acrolein concentration of 

100 µM produced an average PARP activity detection of -0.00118±0.002; exposure to an 

acrolein concentration of 125 µM produced an average PARP activity detection of 

0.00145±0.004.  

In Figure 10, the line of best fit assumed a polynomial of order three (R2=1), predicting 

the highest averaged protein concentration to be around 67µM (blue) for all trials. However, 

because this data is simple with a linear prediction, a trendline characteristic of a polynomial of 

order two was also examined, producing an R2 value of 0.0921. As this is an average from 

previous experiments, all averages were blanked against the lysis buffer control according to the 

aforementioned and the standard curves resulted in R2 values ranging from 0.985 to 0.999, as 

mentioned above. 
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Figure 10: Average PARP activity detected after treatment of cardiomyocytes at 55 

mins averaged for all trials. All had units of µU/200-400ng protein. Acrolein 

concentrations of (a) 50 μM produced an average of 0.00150±0.001; (b) 75 μM 

produced an average of 0.00569±0.001; (c) 100 μM produced an average of -

0.00118±0.002; (d) 125 μM produced an average of 0.00145±0.004. 
 
 

Summary of Results 

PARP was activated at exposure concentrations of 75 μM in all trials, with an average 

detection of 0.00569 ± 0.001 µU/200-400ng protein. As shown in Figures 6, 8, and 10, standard 

deviation is relatively small, demonstrating lower variance and thus assigning more significance 

to the result. PARP may or may not have been activated at exposure concentrations of 50 μM, 

with average detection of 0.000402 ± 0.001 µU/200ng protein in trials 1 & 2, and an average 

detection of 0.00260 ± 0.002 µU/400ng protein; in trial 3. PARP may or may not have been 

activated at exposure concentrations of 100 μM due to low values (detection of 0.00286 ± 0.001 

µU/200ng protein in the first two trials; -0.00118 ± 0.002 µU/400ng protein; in trial 3). PARP 

may or may not have been activated at exposure concentrations of 125 μM, as standard 
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deviations were comparatively very large in the first two trials. Ignoring large standard 

deviations, PARP was activated at acrolein exposure concentrations of 125 µM.  Overall, the 

ratios determined from comparing the PARP activities detected from acrolein-exposed cells 

(stabilized with 0.3% hydroquinone) and the PARP activities detected from 0.3% hydroquinone-

exposed cells demonstrate that the hydroquinone could have been masking the effects of PARP 

activation, could have been solely responsible for PARP activation, or other outstanding factors 

could have contributed. However, the considerably higher ratios of PARP activation from 

acrolein-exposed cells (concentrations of 50 µM and 100 µM) compared to PARP activation 

from hydroquinone-exposed cells (concentrations of 50 µM and 100 µM) in trials 1 & 2 suggest 

that the PARP activities detected was attributable to acrolein.
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CHAPTER FOUR 

Discussion 

 

Throughout this process, treatment specifics were modified in order to increase accuracy 

and efficacy of experimental trials. In the initial trial, exposure duration was optimized by 

holding acrolein concentrations constant. The acrolein concentration of 75µM was chosen due to 

its relevance and inclusion in standard in vitro exposure practices (Wang et al., 2011; Luo et al. 

2007). The exposure duration of 55 minutes was chosen due to its consistency with the 

aforementioned literature. The standard deviation for 25 minutes and 75 minutes was much 

lower than that observed for an exposure duration of 55 minutes. This could be due to 

individualized sampling that occurred for each plate: the plates with the lowest time and highest 

time were not subject to the same time constraints imposed on protein isolate and lysate 

extraction. For future testing and further optimization of acrolein and hydroquinone exposure 

durations, multiple plates could be tested at varying exposure durations in many subsets. In other 

words, the testing of exposure durations of 25 minutes, 55 minutes, and 75 minutes could have 

been divided into three consecutive but distinct sections, each with multiple plates staggered with 

different start times. This would act to tighten up the data by decreasing standard deviations. 

For the initial trial, the PARP assay was run assuming 200 nanograms (ng) of protein per 

well would be sufficient for capturing PARP activity. This number was determined based on the 

unknown PARP nuclear fraction and studies conducted on a HepG2 cells in response to H2O2 

exposures. Calculating appropriate solvent volumes and subsequent sample dilutions was based 
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on this assumption. Because detection of PARP-1 activity measured using the PARP assay in 

this trial was minimal, the 200 ng of protein per well assumption was increased to 400 ng of 

protein per well for all subsequent trials. This permitted appropriate dilutions with an increased 

probability of capturing intact PARP-1 activity. Reflected in the data, this modification achieved 

its goal.  

As the trials were performed, refinement with respect to the lysis buffer control was also 

made. In the original trial, the lysis buffer control absorbance was read on an unrelated sample, 

as all of the lysis buffer was consumed in the process of cell treatment. This detergent is 

extremely important in that it destroys the membranes and permits a pH-controlled lysate to be 

obtained. Potential differences in concentrations could have resulted in minute differences 

between absorbances. As the unknown samples from each trial were blanked against the lysis 

buffer control, these small differences could drastically impact the results.  

The results from trials one and two showed that the amount of PARP activity detected 

from 125μM and 50μM acrolein-exposed cells was considerably higher (22 times and 8.69 times, 

respectively) than the amount detected from cells exposed to 125μM and 50μM of hydroquinone, 

with 125µM producing a detection that was 253.2% that of the 50μM exposure. This implies 

acrolein activates PARP. In addition, the amount of PARP activity detected from 100 μM and 75 

μM acrolein-exposed cells was about the same as that detected from corresponding 

hydroquinone cells (with 100 μM having a 108.3% detection with respect to 75 μM). This 

implies acrolein may or may not activate PARP. Data from trials one, two, and three produced 

results with high standard deviations but relatively low variance.  

Interestingly enough, the amount of PARP activity obtained from cells treated with 

acrolein was about the same as that of cells treated with hydroquinone. This could be explained 
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by a failure to maintain a strict pH throughout all wells and throughout all procedural steps. 

However, the ratio of PARP detection in cells treated with acrolein to those treated with 

hydroquinone became more distinct in trial three. The differences between PARP activity for 

acrolein and hydroquinone as time went on might be indicative of learning through repetition and 

reflect increased accuracy with increased trial number. 

As with all major experimental studies, data discrepancies resulting in high standard 

deviations could be impacted by human error. As is reflected by the data, standard deviations 

(and therefore variances) became smaller with more advanced trials. This is indicative of 

laboratory technique enhancement. Advancement of lab techniques could also account for 

potential environmental conditions: potential differences between plates could have existed in 

the time elapsed between complete individual exposures of each well and placement in 

controlled conditions (i.e., the incubator with a humidified atmosphere of 5% CO2 at 37°C). In 

addition to these potential environmental differences, deviation from standard trypsinization 

procedures for H9c2 (2-1) occurred as the cells were centrifuged at room temperature instead of 

4°C due to equipment restrictions (ATCC, 2014; Moreira et al., 2014; Louch et al., 2011; Engel 

et al., 1999). However, it is important to note that all of the cell viabilities fell within the 

expected range as pre-determined by American Type Culture Collect, and therefore no revisions 

were made to propagation or trypsinization procedures between trials. 

In order to increase the number and accuracy of data points and to further elucidate the 

role of PARP-1 inhibition in reducing acrolein toxicity, methodology and techniques should be 

refined. Increasing the number of samples engenders statistical power and associated increased 

significance (Noordzij et al., 2009). As a result, increasing the number of samples run for 

different durations should be performed in a future experiment. Based on the results from this 
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study, additional increases in protein density should be examined as a method for increasing the 

chances of capturing PARP activity. Different exposure durations should also be evaluated 

within smaller increments, such as every five minutes. Decreasing the intervals could potentially 

result in a more increased protein return and a more accurate calculation of intact PARP-1 

activity. In addition, different concentrations of acrolein and hydroquinone could be assessed to 

determine more pronounced toxicities. Adding a few extra concentrations that exceed 125µM 

could be beneficial for a more thorough investigation into the acute toxic endpoints associated 

with the exposure of H9c2(2-1) to acrolein. 

Further testing involving the use of Western blotting techniques should be performed for 

qualitative data which will identify the specific amino-acid sequences after protein isolation and 

quantification. This has the potential to detect specific translocations and caspase cleavages 

which will definitively link the occurring processes to observed data. Further elucidation of 

caspase involvement can be uncovered with the inclusion of fluorescent microscopy. This 

technique involves flurochrome staining of nucleic components. Depending on the fluorescent 

lifetime, these components communicate back through the emission of different wavelengths. 

This technique permits individualized selection for execution or initiator caspases and can 

identify and label active caspases within cells (Reviewed in Grabarek et al., 2002). This 

technique can delineate between types of cell death and quantify apoptosis which would be 

beneficial for further investigation into the role between PARP and acrolein-induced toxicities 

(Ribble et al., 2005).  

In addition to the aforementioned, other common drug interferences should be 

investigated. One of the most important confounders is sodium-2-mercaptoethane sulfonate, 

C2H5NaO3S2, which is often given to patients to alleviate dose-limiting symptoms. As the name 
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suggests, this thiol compound is a sulfhydroyl donor. Upon intravenous delivery to a patient, this 

drug readily oxidizes in systemic circulation to disodium-2,2’-dithio-bis-ethane sulfonate, which 

is pharmacologically inert (Masuda et al., 2011). It is further reduced to mesna (trade name: 

MesnexTM) in the kidneys and then the free sulfhydroyl group acts through conjugate addition to 

bind to and inactivate the very electrophilic (i.e., sulfhydroyl acceptor) acrolein in the bladder 

before acrolein has time to interact with cardiac muscle tissue (Kurowski & Wagner, 1997). The 

nontoxic conjugates are excreted in urine (Brock et al., 1982). This chemo-protectant drug is 

commonly prescribed to patients undergoing therapeutic regimens that include the use of 

nitrogen mustards, due to its ability to prevent drug-induced hemorrhagic cystitis and hematuria 

without altering the chemotherapeutic effects of antineoplastics (Altayli et al., 2012; Manikandan 

et al., 2010; Andriole et al., 1987). Although the effects of mesna on drug-induced cardiotoxicity 

has yet to be experimentally elucidated, its mechanism of action implies mesna’s relevance in 

reducing acrolein-induced cytotoxicity. Therefore, further tests with the inclusion of mesna 

should be performed. 
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CHAPTER FIVE 

Conclusion 

 

Due to the clinical implications from acrolein-induced cardiotoxicity, and ethical 

considerations with in vivo models, formation of an in vitro method of analysis is paramount. 

This research sought to determine whether or not the H9c2 (2-1) cardiomyocyte cell line was an 

appropriate model for evaluating the change in poly (ADP-ribose) polymerase (PARP) activity 

with acrolein-induced cellular toxicity. Multiple studies have gauged the efficacy of this cell line 

through numerous types of research, which is accentuated through the viability assessment 

performed in this study and the continued propagation success of the line. An exposure duration 

of fifty-five minutes was chosen due to its high detection and variation in protein concentrations 

obtained from acrolein-treated cells with respect to the control. Protein concentrations, 

determined via the BCA Protein Quantification Assay, were high enough for most wells to 

undergo appropriate dilutions for the PARP assay. The PARP assay permitted evaluation of 

PARP-1 activity. In most circumstances, hydroquinone-exposed cells had roughly the same 

subsequent PARP-1 activity as acrolein-exposed cells. This implies that the hydroquinone could 

have been concealing the effects of acrolein exposure. PARP-1 was activated at exposure 

concentrations of 75 μM in all trials. Other concentrations showed potential PARP activity. 

Thus, this model can be refined and used for further characterization of the role of PARP in 

acrolein-induced cardiomyopathy. 
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APPENDIX 1. 

 

 Protocol for Creation of Complete Supplemented Medium 

 

 

1.1 Purpose 

 

To prepare complete, supplemented cell culture media. 

 

1.2 Scope 

 

This procedure was used to prepare 10% Fetal Bovine Serum supplemented media for H9c2 

(2-1) cell culture. The complete, supplemented cell culture media was developed prior to use 

and stored at 4°C. 

 

1.3 Materials and Reagents 

 

1.3.1 70% EtOH (Denatured) stored at room temperature 

1.3.2 Dulbecco’s Modified Essential Medium (DMEM) stored in 4°C refrigerator 

1.3.3 Fetal Bovine Serum (FBS) stored in -20°C freezer 

1.3.4 Penicillin-Streptomycin stored in -20°C freezer 

1.3.5 HEPES buffer, stored in 4°C refrigerator 

 

1.4 Procedure 

 

1.4.1 Obtain a 500 mL bottle of DMEM media from refrigerator and warm to room 

temperature in a water bath of 37°C.  

1.4.2 Obtain 10% FBS media, pre-mixed and stored in 50 mL conical vials at -20°C, and warm 

to room temperature in a water bath of 37°C.  

1.4.3 Obtain and warm 100U/mL of penicillin and 100mg/mL of streptomycin to room 

temperature in a water bath of 37°C.  

1.4.4 Obtain 10mM HEPES buffer from refrigerator and warm to room temperature in a water 

bath of 37°C.  

1.4.5 Sterilize all with 70% EtOH (denatured) and place under sterilized hood 

1.4.6 Add 5.6 mL 10mM HEPES buffer to 500 mL DMEM 

1.4.7 Add 56 mL 10% FBS to supplemented DMEM 

1.4.8 Add 5.6 mL penicillin-streptomycin mixture to supplemented DMEM 

1.4.9 Lightly agitate container to mix contents 

1.4.10 Sterilize, label appropriately, and store at 4°C for future use 
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APPENDIX 2. 

 

Protocol for Cell Subdivision of Attached Cells 

 

Adapted from Xiaoyuan Kong, M.D. (Dr. Fant Lab, Orig. January 2010) 

 

1.1 Purpose 

 

To appropriately subdivide attached cells for further propagation or experimentation. 

 

1.2 Scope 

 

This procedure was used to subdivide H9c2 (2-1) cardiomyocytes from the embryonic 

myocardium of rattus norvegicus. 

 

1.3 Materials and Reagents 

 

1.3.A 70% EtOH (Denatured) stored at room temperature 

1.3.B Dulbecco’s Phosphate-Buffered Saline (DPBS) stored at room temperature 

1.3.C Dulbecco’s Modified Essential Medium (DMEM) stored in a sealed plastic bag in a 4°C 

refrigerator 

1.3.D 0.1% Trypsin EDTA stored in -20°C freezer 

 

1.4 Procedure 

 

1.4.A General Preparation 

1.4.A.A UV sterilize for 40 minutes; sterilize hands and don lab gloves 

1.4.A.B Obtain a bottle of complete, supplemented DMEM media from 4°C refrigerator 

and warm to room temperature in a water bath of 37°C.  

1.4.A.C Turn on hood vacuum, light, and blower 

1.4.A.D Swab inside of hood with 70% EtOH (Denatured) 

1.4.A.E Swab microscope stand with 70% EtOH (Denatured) 

 

1.4.B Specific Procedural Preparation 

1.4.B.A Swab medium and DPBS with 70% EtOH (Denatured) and place in hood 

1.4.B.B 0.1% Trypsin EDTA 

1.4.B.B.1 Remove from -20°C  
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1.4.B.B.2 Place in a water bath of 37°C for a few minutes until warm 

1.4.B.B.3 Dry container completely 

1.4.B.B.4 Swab with 70% EtOH (Denatured) and place in hood 

1.4.B.C Remove cells from incubator and place under microscope to check health and 

confluence, place inside hood 

 

1.4.C Aspirate Old Medium 

1.4.C.A Attach 10mL seriological pipette to pipettor 

1.4.C.B Extract old media and place into “Cell Culture Waste” container 

1.4.C.C Discard pipette, reseal waste container 

 

1.4.D DPBS Rinse 

1.4.D.A Attach 5mLor 10mL seriological pipette to pipettor 

1.4.D.B Dispense 5mL DPBS to the sides of each Petri dish, or 1mL DPBS to the sides of 

each well (for 6 well plates) 

1.4.D.C Gently rotate in cardinal directions 

1.4.D.D Aspirate DPBS from cells and place in waste container 

1.4.D.E Discard pipette 

 

1.4.E Trypsinization and Cell Detachment 

1.4.E.A Attach 5mLor 10mL seriological pipette to pipettor 

1.4.E.B Add 2mL 0.1% Trypsin EDTA to the sides of each Petri dish, or 0.5mL 0.1% 

Trypsin EDTA to the sides of each well (for 6 well plate) to start trypsinization 

1.4.E.C Discard Pipette 

1.4.E.D Gently rotate in cardinal directions to evenly cover surface 

1.4.E.E Incubate at 37°C for 5 minutes  

 

1.4.F Stop Trypsinization, isolate cells, re-suspend cells 

1.4.F.A Remove cells from incubator 

1.4.F.B Add 5mL DMEM to the sides of each Petri dish to stop Trypsinization, or 1mL 

DMEM to the sides of each well (for 6 well plates) to stop the reaction 

1.4.F.C Transfer to sterile 15mL conical centrifuge tube(s), washing wells with medium to 

ensure all cells are collected  

1.4.F.D Label conical tube(s) and discard pipette 

1.4.F.E Place tube(s) into Whisperfuge and balance appropriately 

1.4.F.F Centrifuge at room temperature for 5 minutes at 125 x g  

1.4.F.G During centrifugation, prepare new Petri dishes or plates and add appropriate 

volumes of DMEM 

1.4.F.H Remove tubes from centrifuge and place back into hood 

1.4.F.I Attach sterile pipette to pipettor 

1.4.F.J Aspirate supernatant, making sure the pellet is not touched 

 

1.4.G Subdivide or Freeze for long-term storage 

1.4.G.A If archiving cells 

1.4.G.A.1 Reconstitute pellet with 1mL freezing medium, place in sterilized cryo 

tube (1.0 – 1.3mL per cryo tube), store in freezer at -80°C 
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1.4.G.B If subdividing  

1.4.G.B.1 Add 5mL Media to 15mL conical tube(s) and mix thoroughly to re-

suspend pellet 

1.4.G.B.2 Distribute suspended cells into Petri dishes or wells 

1.4.G.B.3 Note: If cells are to be separated into Petri dishes or multi-well plates with 

a predetermined concentration (e.g., for experimentation), cells must be 

counted via Hemocytometer (Refer to Trypan Blue Exclusion Protocol) 

1.4.G.C Gently rotate in Cardinal directions to evenly distribute cells 

 

1.4.H Clean-up 

1.4.H.A Check cells with microscope, and return to 37°C incubator 

1.4.H.B Close and sterilize all media/reagent bottles with 70% EtOH (Denatured), wrap in 

Parafilm, sterilize with 70% EtOH (Denatured) and return to the appropriate 

storage location (found in Appendix 2 Section 1.3) 

1.4.H.C Sterilize hood surface with 70% EtOH (Denatured) 

1.4.H.D Turn off light and blower in hood 

1.4.H.E Turn off water bath 

1.4.H.F UV sterilize for 40 minutes 

1.4.H.G Remove gloves and wash-up 
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APPENDIX 3. 

Protocol for Acrolein and Hydroquinone Exposures 

1.1 Purpose 

 

To exposure cells to acrolein and hydroquinone in a safe and effective manner. 

 

1.2 Scope 

 

This procedure was used to expose H9c2 (2-1) cardiomyocytes from the embryonic 

myocardium of rattus norvegicus to acrolein and hydroquinone. 

 

1.3 Materials and Reagents 

 

1.3.A 70% EtOH (Denatured) stored at room temperature 

1.3.B Acetone-hexane mixture for sterilization 

1.3.C Dulbecco’s Phosphate-Buffered Saline (DPBS) stored at room temperature 

1.3.D Dulbecco’s Modified Essential Medium (DMEM) stored in a sealed plastic bag in a 4°C 

refrigerator 

1.3.E Triton X-100 

1.3.F PARP 10X buffer, stored at room temperature 

1.3.G 1mM DTT, stored at 4°C 

1.3.H 1mM PMSF 

1.3.I 400 mM NaCl, stored at 4°C 

1.3.J 0.3% hydroquinone solid, stored at room temperature 

1.3.K Acrolein, stored under inert conditions 

1.3.K.A Molecular Weight of Acrolein = 56.06 g/mol 

1.3.L Nitrogen air, stored at room temperature 

1.3.M ddH2O, ultrapure H2O, stored at 4°C  

 

1.4 Preparation 

 

1.4.A General Preparation 

1.4.A.A UV sterilize for 40 minutes; sterilize hands and don lab gloves. 

1.4.A.B Obtain a bottle of complete, supplemented DMEM media from 4°C refrigerator 

and warm to room temperature in a water bath of 37°C.  

1.4.A.C Turn on hood vacuum, light, and blower. 

1.4.A.D Swab inside of hood with 70% EtOH (Denatured). 
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1.4.A.E Gather all appropriate materials for experimentation, and appropriately sterilize 

and place in exact locations for use. 

 

1.4.B Preparation of 1x Lysis Buffer 

1.4.B.A Calculate the total volume needed based on acrolein-treated samples, 

hydroquinone-treated samples, and lysis buffer controls  

1.4.B.B Add 0.9% of the total volume calculated in 1.4.B.A of Triton X-100 to a 10mL 

previously-autoclaved conical vial. 

Note: we use 0.9% because there is already 0.1% triton X-100 in the PARP 10x 

buffer which will be added in step 1.4.B.D 

1.4.B.C Warm NaCl (400 mM) to room temperature and then add 10% of the total volume 

calculated in 1.4.B.A of NaCl to the 10mL vial (e.g., 400μL if making 4mL 1x 

lysis buffer). 

1.4.B.D Add 10% of the total volume calculated in 1.4.B.A of 10X PARP buffer to the 

10mL vial (e.g., 400μL if making 4mL 1x lysis buffer). 

Note: if 10X PARP buffer needs to be mixed, see Protocol for Poly (ADP-Ribose) 

Polymerase Assay. 

1.4.B.E Set on ice.  

Note: Immediately before use, add DTT and PMSF 

 

1.4.C Preparation of Vials for Sample Collection 

1.4.C.A Label and organize appropriate number of previously-autoclaved 0.5mL vials for 

PARP assay 

1.4.C.B Label and organize appropriate number of previously-autoclaved 0.5mL vials for 

protein quantification   

1.4.C.C Add 75μL saline into the protein quantification “unknown” vials. 

 

1.4.D Preparation of Control Dilution (0.3% hydroquinone solution) 

1.4.D.A Calculate the final volume needed using total number of wells and assuming 

200µL of loss per well using the general formula: Final volume of solution = 

200 µL for control wells x (# of control wells) x 2 (to account for loss)  

1.4.D.B Weigh a previously-autoclaved 2.5 mL vial 

Weigh out 0.006g of hydroquinone and dilute with ultrapure dH2O until volume is 

equal to the calculated final volume. 

 

1.4.E Preparation of Inert Conditions  

1.4.E.A Sterilize needles with acetone-hexane mixture, allow time to air-dry 

1.4.E.B Prepare and label a 0.5 mL collection tube 

1.4.E.C Obtain 10 cc syringe with needle end attached and flush out ambient air a few 

times and place tip into a cork 

1.4.E.D Prepare 2 nitrogen-filled balloons. Using ambient air pump, fill the balloons a few 

times, allowing them to deflate in order to stretch latex. 

1.4.E.E Fill balloon with nitrogen gas: after inserting nitrogen plastic tube into balloon, 

twist balloon to prevent leaks and fill with nitrogen. 

1.4.E.F Remove balloon from nitrogen plastic tube and twist 

1.4.E.G Insert open end of 10cc syringe into balloon and move balloon up tube  
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1.4.E.H Allow balloon to untwist. 

1.4.E.I Crimp top onto new container, insert blue-tipped venting needle and insert needle 

attached to nitrogen balloon. Check to ensure air is leaving from the blue-tipped 

needle. Leave for 10 mins to allow nitrogen to displace ambient air. 

1.4.E.J Repeat for second balloon and insert this one into acrolein-container (no venting 

needle needed). 

 

1.5 Procedure 

 

1.5.A Acrolein Extraction 

1.5.A.A Attach 10 µL syringe to the 12” dosing needle with parafilm. 

1.5.A.B Flush dosing needle with ambient air twice and then flush with nitrogen air (pull 

up 10 µL nitrogen from new container, expel into open air. Repeat). 

1.5.A.C Insert dosing needle into acrolein, pull up 10 µLVERY SLOWLY, and then 

halfway remove the dosing needle until the tip is in air (still in acrolein bottle). 

Pull up about 4 µL air VERY SLOWLY from acrolein container. 

1.5.A.D Remove needle from acrolein container and dispense into the 0.5 mL stock vial 

which will be used for experiment.  

1.5.A.E Secure, sterilize, and replace acrolein stock storage container and needles to their 

appropriate storage locations.  

 

1.5.B Preparation of Acrolein Dilutions 

1.5.B.A Pipette 499.5μL ddH2O into previously-autoclaved 1.5mL stock vial 

1.5.B.B Extract 0.5μL acrolein from the 0.5mL stock vial and place into the 1.5mL vial 

containing the ddH2O. Homogenize. 

1.5.B.C Extract 4.73μL of the acrolein-ddH2O solution from the 1.5mL vial and add to 

5mL warmed DMEM.  

1.5.B.D Progress through serial dilution for both acrolein and the 0.3% hydroquinone 

solution to obtain correct concentrations for the current trial. In this experiment, 

concentrations of 50μM, 75μM, 100μM, and 125μM were needed. 

 

1.5.C Exposure of Cells to Acrolein  

1.5.C.A Working with one row or column at a time, remove media from wells and place in 

regular waste container.  

1.5.C.B Wash wells with 400μL DPBS per well, gently rotating in cardinal directions and 

then extracting and placing in regular waste container. 

1.5.C.C Add appropriate concentration of 200µL of hydroquinone stock solution in 

ddH2O to each well for the control wells. 

1.5.C.D Add appropriate concentration of 200μL acrolein stock solution in ddH2O to each 

well for the acrolein-exposed wells. 

1.5.C.E Move trays in cardinal directions and then incubate in a humidified atmosphere of 

5% CO2 at 37°C for the appropriate timing for each plate (either 25 minutes, 55 

minutes, or 75 minutes, depending on the plate and trial).  

 

1.5.D Finish 1x Lysis Buffer Preparation 
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1.5.D.A Obtain the 10mL vial containing most of the 1x lysis buffer ingredients that was 

incubated on ice.  

1.4.E.K Add 0.1% 1mM DTT of the total volume calculated in 1.4.B.A to the 10mL vial 

(e.g., 4μL if making 4mL 1x lysis buffer). 

1.4.E.L Add 0.5% 1mM PMSF of the total volume calculated in 1.4.B.A to the 10mL vial 

(e.g., 20μL if making 4mL 1x lysis buffer). 

1.5.D.B Fill the 10mL vial up to the 2mL mark with chilled ddH2O  

1.5.D.C Gently homogenize.  

 

1.5.E Isolate Proteins and Extract Lysate 

1.5.E.A Working with one row or column at a time, extract contents from wells and place 

in hazmat acrolein P450 waste container. 

1.5.E.B Wash wells with 200μL DPBS and put in hazmat acrolein P450 waste container. 

1.5.E.C Add 75μL of the 1x lysis buffer to each well. 

1.5.E.D Repeat for all wells on the plate and then cover the plate. 

1.5.E.E Tap plate and incubate on ice for 30 mins 

1.5.E.F While the plate is incubating on ice: prepare the lysis buffer control in previously-

autoclaved 0.5mL vials by adding 150μL of 1x lysis buffer control to a 0.5mL 

vial for protein quantification and adding 150μL of 1x lysis buffer control to a 

0.5mL vial for PARP assay. Place on ice.  

1.5.E.G Working over ice, remove lysate from wells after 30 minutes incubation and place 

into labeled PARP tubes. Extract 7.5μL from the PARP tube and place in the 

corresponding protein quantification vial for each sample.  

1.5.E.H Store the PARP assay vials, including the 0.5mL tube containing 75μL lysis 

buffer control, in the -80°C freezer. 

1.5.E.I Store the protein quantification vials, including the 0.5mL tube containing 75μL 

lysis buffer control, in the -20°C freezer. Skip this step and proceed to the 

Protocol for Bicinchoninic Acid (BCA) Protein Assay if performed on the same 

day 

1.6 Clean-up 

 

1.6.A Close and sterilize all containers with 70% EtOH (Denatured), wrap in Parafilm, sterilize 

with 70% EtOH (Denatured) and return to their appropriate storage locations.  

1.6.B Turn off water bath. 

1.6.C Secure acrolein P450 hazardous waste container and place in storage locker. 

1.6.D Replace all materials in the hood to their proper locations and then sterilize hood surface 

with 70% EtOH (Denatured). Turn off light and blower in hood.  

1.6.E UV sterilize for 40 minutes. 

1.6.F Sterilize any other hood surfaces used with 70% EtOH (Denatured) (e.g., hood surface 

where acrolein was extracted from stock storage container). 

1.6.G Remove gloves and wash-up. 
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APPENDIX 4. 

Protocol for Bicinchoninic Acid (BCA) Protein Assay  

 

Adapted from Xiaoyuan Kong, M.D. (Dr. Fant Lab, Orig. October 2010) for Pierce BCA Protein 

Quantification Assay 

 

1.1 Purpose 

 

To determine protein concentrations.  

 

1.2 Scope 

 

This procedure was used to determine the amount of protein present after exposure of H9c2 

(2-1) cardiomyocytes from the embryonic myocardium of rattus norvegicus to acrolein. 

 

1.3 Materials and Reagents 

 

1.3.A 70% EtOH (Denatured) stored at room temperature 

1.3.B Lysis buffer control, stored temporarily at -4°C 

1.3.C Protein standards, or 0.2% Bovine Serum Albumin (BSA) if protein standards need to be 

made 

1.3.D Unknown samples, stored in freezer at -80°C 

1.3.E Pierce BCA reagent A, containing sodium carbonate, sodium bicarbonate, bicinchoninic 

acid and sodium tartrate in 0.1M sodium hydroxide, stored at room temperature 

1.3.F Pierce BCA reagent B, containing 4% cupric sulfate, stored at room temperature 

 

1.4 Procedure 

 

1.4.A General Preparation: can occur on a day prior to running the assay 

1.4.A.A Calculate working reagent volumes 

1.4.A.A.1 Reagent A: Determine the number of standards, the number of unknowns, 

and the number of controls and blanks and add them together. Then 

multiply by the number of replicates (i.e., 2) and appropriate volume per 

sample (i.e., 400μL) to account for potential loss 

1.4.A.A.2 Reagent B: Divide the volume obtained for reagent A by 50 to obtain a 

ratio of 50:1, Reagent A:B 

1.4.A.B Set up MicroQuant spectrophotometer for absorbance to be read at 562 nm 



 

62 
 

1.4.A.C Working under UV sterilized and 70% EtOH (Denatured) sterilized conditions 

with sterilized hands and lab gloves, turn on noncell culture incubator and allow 

it to warm to 37°C 

1.4.A.D Obtain previously-frozen unknown samples from the -80°C freezer and keep them 

on ice. 

 

1.4.B Protein Standard Preparation 

1.4.B.A If pre-prepared: obtain prepared samples from the -20 C freezer and keep on ice. 

Proceed to step 1.5. 

1.4.B.B If not pre-prepared:  
1.4.B.B.1 Prepare serial dilutions of 0.2% BSA with the buffer for standard BSA 

concentrations of 2,000 μg/mL, 1,000 μg/mL, 500 μg/mL, 250 μg/mL, 125 

μg/mL, 62.5 μg/mL, 31.25 μg/mL, and 15.63 μg/mL and keep on ice. 

1.4.B.C Combine reagent A and reagent B in 50mL sterile conical vial in appropriate 

volumes, as calculated in 1.4.A.A, to create the working reagent. Vortex. Keep on 

ice and dispense within 5 minutes of preparation. 

 

1.4.C 96-well Plate Procedure 

1.4.C.A Pipette 25 μL of each protein standard or unknown sample into the 96-well plate 

in duplicates, making sure to manually mix each sample beforehand. 

1.4.C.B Vortex and then pipette 25 μL of the lysis buffer control into the 96-well plate in 

duplicates. 

1.4.C.C Pipette 200 μL of working reagent to each well, making sure to vortex the reagent 

before plating for each duplicate. 

1.4.C.D Lightly tap plate for 5 seconds to ensure dispersion of contents across entire well. 

1.4.C.E Cover plate and incubate in the non-cell culture incubator at 37°C for 30 minutes.  

1.4.C.F Remove plate and allow it to cool to room temperature while covered 

1.4.C.G Measure absorbance at 562 nm using the BioTek μQuant spectrophotometer. 

 

1.5 Clean-up 

 

1.5.A Close and sterilize BSA container with 70% EtOH (Denatured), wrap in Parafilm, 

sterilize with 70% EtOH (Denatured) and return to 4°C refrigerator (if to be used within 7 

days) or to the -20°C freezer (for future use).  

1.5.B Replace other reagents to proper locations; turn off incubator. 

1.5.C Discard of the 96-well plate in a hazardous materials waste receptacle.  

1.5.D Clean up and sterilize work bench. 
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APPENDIX 5.  

Protocol for Poly(ADP-Ribose) Polymerase Assay 

1.1 Purpose 

 

To determine poly (ADP-ribose) polymerase-1 (PARP-1) activity. 

 

1.2 Scope 

 

This procedure was used to measure the amount of PARP activity present in cell lysate 

protein after exposure of H9c2 (2-1) cardiomyocytes from the embryonic myocardium of 

rattus norvegicus to acrolein. 

 

1.3 Materials and Reagents  for Day 1 (Histone Plating) 

 

1.3.A 70% EtOH (Denatured) stored at room temperature 

1.3.B Histone stock solution, stored at -20°C 

1.3.C Sodium carbonate (NaCO3), powder, stored at room temperature 

1.3.D Sodium bicarbonate (NaHCO3), powder, stored at room temperature  

1.3.E ddH2O 

 

1.4 Procedure for Day 1 (Histone Plating) 

 

1.4.A Mix 5mL of 100mM bicoarbonate [190 mM Na+] buffered histone plating solution 

Note: the following is calculated per 96-well plate, adjust measurements accordingly for 

the number of plates the assay will be run on. 

1.4.A.A Weigh out 48mg NaCO3 in a previously-autoclaved 15mL conical vial.  

1.4.A.B Add 4.3mg NaHCO3 to a previously-autoclaved 1.5mL vial.  

1.4.A.C Add enough ddH2O to the 1.5mL vial so that a total volume of 1mL is reached. 

Vortex and then add to the 15mL conical vial.  

1.4.A.D Add enough ddH2O to the 15mL conical vial so that a total volume of 5mL is 

reached. Vortex. 

1.4.A.E Add 500µL histone stock solution to the 15mL conical vial. 

1.4.A.F Vortex on high and slowly decrease speed to ensure maximum solubilization. 

1.4.A.G Keep on ice.  
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1.4.B Plate Histones 

1.4.B.A Obtain a non-sterile binding assay plate and place on an icepack with a piece of 

parafilm separating the two in order to prevent scratching of the plate. 

1.4.B.B Obtain histone plating solution and vortex it for 5 seconds. 

1.4.B.C Add 50µL of Histone Plating Solution to each well, remembering to recap and 

vortex solution for 3-5 seconds after plating every 5 wells. Add the solution to the 

center of the well, straight down, in order to effectively coat the entire bottom of 

each well with histone plating solution. DO NOT FORM BUBBLES. 

1.4.B.D Tap plate gently and then rotate in cardinal directions in order to distribute histone 

solution until each bottom surface of each well is completely covered with histone 

plating solution. 

1.4.B.E Tap plate gently for an additional 10 seconds. 

1.4.B.F Seal the open surface of the plate with parafilm so that no air is trapped in order to 

minimize evaporation. Leave parafilm on bottom to prevent scratching of plate. 

1.4.B.G Label plate and place a white plastic tray over top to ensure parafilm doesn’t pop 

up. Record time. 

1.4.B.H Refrigerate plate at 4°C overnight.  

 

1.5 Clean-up for Day 1 (Histone Plating) 

 

1.5.A NaCO3 and NaHCO3 containers should have been re-capped and stored in proper cabinet 

upon finishing weighing procedure.  

1.5.B Properly dispose of all other containers. 

1.5.C Sterilize precision scale and work bench.  

 

1.6 Materials and Reagents for Day 2 (Blocking Step) 

 

1.6.A 70% EtOH (Denatured) stored at room temperature 

1.6.B Dulbecco’s Phosphate-Buffered Saline (DPBS) stored at room temperature 

1.6.C 0.05% Tween-20 

1.6.D 10% Stock Bovine Serum Albumin (BSA) 

1.6.E Magnesium Chloride (MgCl2·6H2O), solid, or aqueous MgCl2·6H2O if pre-mixed and 

stored in refrigerator at 4°C 

1.6.F Triton X-100 

1.6.G Tris Base, powder 

1.6.H Hydrochloric Acid (HCl) 

1.6.I Autoclaved ultrapure H2O  

 

1.7 Procedure for Day 2 (Blocking Step) 

 

1.7.A General Preparation: can occur on the day prior to running day 2 (blocking step) of the 

PARP assay or can be done on the same day 

1.7.A.A Calculate dilution volumes by analyzing protein quantification data and 

normalizing against the standard curve. 
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1.7.A.B Make 10X PARP buffer  

Note: the following numbers will produce 10X PARP buffer solution with a total 

volume of 4mL. Adjust numbers for the amount required. 

1.7.A.B.1 Weigh out 242.2 mg tris base in a previously-autoclaved 15mL sterile 

conical vial. Dissolve in 2.5mL ultrapure dH2O. 

1.7.A.B.2 Add 656µL of 1.78M HCl to 15mL vial. 

1.7.A.B.3 Set pipette to 40µL. Use 70% EtOH (Denatured) to sterilize scissors. Add 

tip to pipette then use the sterilized scissors to cut the end of the pipette 

tip. Transfer 40µL of triton X-100 to the 15mL vial, by continuously 

drawing up and ejecting the mixture into the 15mL vial.  

1.7.A.B.4 Add 202.8µL BSA to 15mL vial. 

1.7.A.B.5 Add 160µL MgCl2·6H2O, in the aqueous form, to the 15mL vial. 

1.7.A.B.6 Add ultrapure dH2O to the 15mL vial until a volume of 4mL is reached. 

1.7.A.B.7 Vortex 10X PARP buffer solution until detergent is thoroughly mixed in.  

1.7.A.B.8 Sterilize vial and place in -20°C freezer for use tomorrow. 

 

1.7.B Make Phosphate Buffered Saline Supplemented with Tween-20 (i.e., PBS-T) at 0.05% 

1.7.B.A Divide a fresh 500mL bottle of DPBS into two sections (each with 250mL). 

1.7.B.B Add 125µL of tween-20 into one of the bottles. Re-cap. Lightly agitate and set 

aside.  

1.7.B.C Re-cap and sterilize the other 250mL of untreated DPBS for storage. 

 

1.7.C Make 3% BSA Blocking Buffer 

Note: the following is calculated per 96-well plate, adjust measurements accordingly for 

the number of plates the assay will be run on. 

1.7.C.A Obtain pre-made blocking buffer (10%, in DPBS) from 4°C refrigerator. Extract 

3mL and add to a previously-autoclaved 15mL conical vial.  

1.7.C.B Extract 7mL 1X DPBS and add to the 15mL vial. 

1.7.C.C Cap the solution, invert it, and place on ice. 

 

1.7.D Washing Step 

Note: Perform the following steps for each plate. 

1.7.D.A Remove plate from 4°C refrigerator after overnight incubation.  

1.7.D.B Expel contents into sink by inverting the plate above the sink basin. *Rapid. 

1.7.D.C Tap plate 5 times on KimWipes to dry the wells. *Rapid. 

1.7.D.D Perform wash regime using multichannel pipettes 

1.7.D.D.1 Set timer to 5 minutes. 

1.7.D.D.2 Wash 1/2: add 200µL PBS-T to each well. Mix plate by lighting tapping 

with fingers for 10 seconds. Incubate at room temperature for five 

minutes, tapping plate for 10 seconds on every minute. Change KimWipes 

with every wash. 

1.7.D.D.3 Expel contents into sink by inverting plate above sink basin. *Rapid. 

1.7.D.D.4 Repeat step 1.7.D.D.2 and change out pipette tips on multichannel pipette. 

1.7.D.D.5 Expel contents into sink by inverting plate above sink basin. *Rapid. 

1.7.D.D.6 Wash 3/4: add 200µL DPBS to each well using multichannel pipette. Mix 

plate by lighting tapping with fingers for 10 seconds. Incubate at room 
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temperature for five minutes, tapping plate for 10 seconds on every 

minute. Change KimWipes with every wash. 

1.7.D.D.7 Expel contents into sink by inverting plate above sink basin. *Rapid. 

1.7.D.D.8 Repeat step 1.7.D.D.6 

1.7.D.D.9 After the final DPBS wash, invert plate above sink basin, place face-down 

on KimWipe for 3 seconds, then tap 5 times to remove contents. 

1.7.D.D.10 Add 100µL of the 3% BSA Blocking Buffer to each well using a 

multichannel pipette. 

1.7.D.D.11 Tap plate for 10 seconds to mix, seal with parafilm (wrap completely, 

leaving the protective plastic sheath or parafilm on the bottom of the plate 

in order to eliminate scratching. 

1.7.D.D.12 Incubate overnight in 4°C refrigerator. Record time. 

 

1.8 Clean-up for Day 2 (Blocking Step) 

 

1.8.A Close and sterilize Triton X-100 and aqueous MgCl2·6H2O containers with 70% EtOH 

(Denatured), wrap in Parafilm, sterilize with 70% EtOH (Denatured) and return to proper 

storage locations and temperatures. 

1.8.B Replace other reagents to proper locations. 

1.8.C Autoclave 10mL (per plate) of ultrapure dH2O overnight for day 3 (PARP Activity 

Detection) experimentation. 

1.8.D Clean up and sterilize work bench. 

 

1.9 Materials and Reagents for Day 3 (PARP Activity Detection) 

 

1.9.A 70% EtOH (Denatured) stored at room temperature 

1.9.B Dulbecco’s Phosphate-Buffered Saline (DPBS) stored at room temperature 

1.9.C Autoclaved ultrapure dH2O  

1.9.D 0.05% Tween-20 

1.9.E 10X PARP Buffer, created yesterday and stored at -20°C in freezer 

1.9.F PARP Enzyme-High Specific Activity (HSA) Standards, stored at -20°C  

1.9.G 10X PARP Cocktail solution, stored in freezer at -80°C 

1.9.H 10µg/µL of Sheared Herring Sperm DNA, stored in freezer at -80°C 

1.9.I biotinylated-NAD, stored at -20°C 

1.9.J Unknown samples, stored in freezer at -80°C 

1.9.K 10X Strep Diluent 

1.9.L 1.25 mg/mL Streptavidin-HRP  

1.9.M TMB (3,3’,5,5’-tetramethylbenzidine), stored at 4°C 

1.9.N 0.2M Stop HCl, stored at room temperature 

 

1.10 Procedure for Day 3 (PARP Activity Detection) 

  

1.10.A Make Phosphate Buffered Saline Supplemented with Tween-20 (i.e., PBS-T) at 0.05% 

1.10.A.A Add 125µL of tween-20 into the untreated 250mL DPBS from yesterday. Re-cap. 

Lightly agitate and set aside.  
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1.10.B Make 1X PARP Buffer 

1.10.B.A Dilute down 10X PARP buffer made yesterday or create new 10X PARP buffer 

and then dilute down to 1X PARP buffer. 

 

1.10.C Prepare PARP Enzyme-High Specific Activity (HSA) Standards 

Note: the following is calculated per 96-well plate, adjust measurements accordingly for 

the number of plates the assay will be run on. 

1.10.C.A Calculate the amount of 1X PARP Buffer required for dilution of samples and 

standards. 

1.10.C.B Label previously-autoclaved sterile 0.5mL vials as 10 units/well (u/w), 5 u/w, 

2.5u/w, 1u/w, 0.5 u/w, 0.05u/w, 0.01u/w and BLANK. Place vials on ice. 

1.10.C.C Add appropriate volumes of 1X PARP Buffer to corresponding vial, making sure 

to keep the vials on ice: 

  

PARP Standards 1X PARP Buffer (in µL) 

10 units/well 191.67 

5 units/well 100 

2.5 units/well 100 

1.0 units/well 120 

0.5 units/well 100 

0.05 units/well 135 

0.01 units/well 120 

BLANK 0 

 

1.10.C.D Dilute PARP HSA Standards  

Note: A unit is the amount of enzyme required to catalyze 1µmol of substrate to 

its final product in a time of 60 seconds. 

1.10.C.D.1 Add 8.33µL of the pre-made PARP HSA Standard to the 10 units/well 

vial. Agitate. 

1.10.C.D.2 Take 100µL from the 10 units/well vial and add to the 5 units/well vial. 

Agitate. 

1.10.C.D.3 Take 100µL from the 5 units/well vial and add to the 2.5 units/well vial. 

Agitate. 

1.10.C.D.4 Take 80µL from the 2.5 units/well vial and add to the 1.0 units/well vial. 

Agitate. 

1.10.C.D.5 Take 100µL from the 1.0 units/well vial and add to the 0.5 units/well vial. 

Agitate. 

1.10.C.D.6 Take 15µL from the 0.5 units/well vial and add to the 0.05 units/well vial. 

Agitate. 

1.10.C.D.7 Take 30µL from the 0.05 units/well vial and add to the 0.01 units/well 

vial. Agitate. 

1.10.C.D.8 Remember to keep all vials on ice if not being used. After “step-up” 

dilution, temporarily store the PARP HSA Standards on ice. 

 



 

68 
 

1.10.D Perform Wash Regime Using Multichannel Pipettes (preparing the PARP Cocktail 

Solution in step 1.10.E as the washes are completed).  

Note: Must be repeated individually for each plate. 

1.10.D.A Remove Histone-coated plate from 4°C refrigerator. 

1.10.D.B Follow steps 1.7.D.D. 1 – 12 for proper wash regime, completing a total of two 

consecutive rounds for PBS-T and then two consecutive rounds for DPBS (i.e., 4 

washes total). 

 

1.10.E Prepare Working PARP Cocktail Solution (Immediately Prior to Use) 

Note: the following is calculated per 96-well plate, adjust measurements accordingly for 

the number of plates the assay will be run on. 

1.10.E.A Thaw 10X PARP Cocktail solution on ice. 

Note: this solution contains both NAD+ and biotinylated-NAD at predetermined 

concentrations; the sum of both in the 1X working reagent is 3mM. 

1.10.E.B Dilute the 10X PARP Cocktail with autoclaved ultrapure dH2O in a 1:10 ratio in a 

15mL vial. 

1.10.E.C Dilute the 10µg/µL Sheared Herring Sperm DNA stock in a 1:10 ratio with 1X 

PARP Buffer, mixing gently by pipetting 

1.10.E.D Aliquot 20µL of the 1:10 dilution of Sheared Herring Sperm DNA:1X PARP 1X 

Buffer into the 15mL vial containing the 1X PARP Cocktail solution. Discard any 

remaining diluted DNA. 

1.10.E.E Add the biotinylated-NAD as late as possible to decrease degradation (36µL per 

pate). 

1.10.E.F Vortex cocktail to mix. 

 

1.10.F Plate Standards and Biological Samples  

Note: Must be repeated for each plate. 

1.10.F.A Remove 96-well plate from ice pack. 

1.10.F.B Gently mix PARP HSA Standards and then add 25µL to respective wells in 

triplicate. 

1.10.F.C Gently mix biological samples and then add 25µL to respective wells in triplicate. 

1.10.F.D Add 25µL of 1X PARP Cocktail solution to each well using a multichannel 

pipette. Tap plate for 10 seconds to ensure dispersion of solution across surface.  

1.10.F.E Incubate plate (covered) for 60 minutes at room temperature. 

 

1.10.G Prepare Streptavidin-HRP Substrate 

Note: Start this preparation with 20 minutes left on incubation from last step. 

1.10.G.A Prepare 1X Strep-diluent:  

1.10.G.B Combine 9944.3µL PBS-T with 50.7µL BSA for a total volume of 10,000µL 

(10mL). 

1.10.G.C Dilute 99.9µL 10X Strep-HRP Diluent with autoclaved ultrapure dH2O until a 

volume of 999µL is achieved. 

1.10.G.D Prepare stock streptavidin-HRP solution by adding 1µL of 1.25mg/mL conjugated 

streptavidin-HRP to 999µL 1X Strep-HRP Diluent. Gently mix. Extract 100µL of 

this solution and add to 5,900µL of 1X Strep diluent to bring the ratio up to 

1:60,000.  
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1.10.G.E Keep on ice until later use. 

 

1.10.H Perform Wash Regime Using Multichannel Pipettes  

Note: Must be repeated individually for each plate. 

1.10.H.A Remove Histone-coated plate from 4°C refrigerator. 

1.10.H.B Follow steps 1.7.D.D. 1 – 12 for proper wash regime, completing a total of three 

consecutive rounds for PBS-T and then three consecutive rounds for DPBS (i.e., 6 

washes total). 

1.10.H.C Remember to change multichannel pipette tips with each wash. 

 

1.10.I Add 1:60,000 Streptavidin-HRP 

Note: Must be repeated individually for each plate. 

1.10.I.A Add 50µL of 1:60,000 Streptavidin-HRP to each well using a multichannel 

pipette. 

1.10.I.B Mix for 10 seconds by gently tapping plate. 

1.10.I.C Incubate plate (covered) at room temperature for 60 minutes. 

 

1.10.J Perform Wash Regime Using Multichannel Pipettes  

Note: Must be repeated individually for each plate. 

Note: During the last wash, work through steps 1.10.K.A and 1.10.K.B 

1.10.J.A Follow steps 1.7.D.D. 1 – 12 for proper wash regime, completing a total of three 

consecutive rounds for PBS-T and then three consecutive rounds for DPBS (i.e., 6 

washes total). 

1.10.J.B Remember to change multichannel pipette tips with each wash. 

 

1.10.K Add TMB (3,3’,5,5’-tetramethylbenzidine) to Wells  

Note: Must be repeated individually for each plate. 

Note: TMB is light sensitive! 

1.10.K.A Prepare room conditions by turning off lights and protecting TMB from light by 

wrapping aluminum foil around container. Also wrap 5mL vial in aluminum foil. 

1.10.K.B Extract 4,848µL TMB and place into a previously-autoclaved sterile 5mL vial in 

the dark. Close and sterilize the stock TMB solution and return it to 4°C 

refrigerator. 

1.10.K.C Add 50µL TMB to each well in the dark, remembering to set the timer upon 

addition of TMB to the first well.  

1.10.K.D Incubate plate (covered) at room temperature for 15-20 minutes, depending on 

color intensity. Color should change from clear to blue. 

1.10.K.E Mix 0.2M HCl stock solution during incubation period if insufficient amount (will 

need approximately 6,500µL per 96-well plate). 

 

1.10.L Add Stop HCl to Wells  

Note: Must be repeated individually for each plate. 

Note: Must be added in the exact same sequencing as the TMB was added for each well. 

1.10.L.A Add 65µL of 0.2M HCl (Stop HCl) to each well. 

1.10.L.B Mix contents by gently tapping plate. 
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1.10.L.C Incubate plate (covered) at room temperature for 10 minutes. Color should change 

from blue to yellow.  

1.10.L.D During incubation time, set up MicroQuant spectrophotometer for absorbance to 

be read at 562 nm. 

 

1.10.M Measure absorbance at 562 nm using the BioTek μQuant spectrophotometer. 

  

1.11 Clean-up for Day 3 (PARP Activity Detection) 

 

1.11.A Close and sterilize any remaining containers.  

1.11.B Replace other reagents to proper locations. 

1.11.C Turn off spectrophotometer, remove plate(s) and place into hazardous materials waste 

receptacle.  

1.11.D Clean up and sterilize work bench. 
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