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ABSTRACT 

This study investigated the applicability of a general model of physics students’ problem-

solving experiences that suggests there are four dynamic factors affecting the problem-solving 

process: categorization, goal interpretation, resource relevance, and complexity.  Furthermore, it 

suggests an overarching control factor called stabilization, which describes the inter-relatedness 

of the other factors over the problem-solving process.  Think-aloud protocols of problem-solving 

experiences were used to investigate the model.  Results of the study showed that conceptual 

resources had a significant impact on the success of problem-solving attempts.  Participants who 

exhibited a lack of understanding of physics concepts were less likely to check their work, use 

diagrams effectively, set subgoals, or to use geometric or trigonometric resources, and were more 

likely to use a formula-driven search for a solution than those who exhibited evidence of 

conceptual understanding.  However, conceptual understanding did guarantee problem-solving 

success.  Mathematical and procedural knowledge was also seen as important. 

While many of the specific observations were consistent with the existing literature, the 

model provides an alternative framework with which to understand and synthesize those 

observations.  The model was shown to be partially successful in describing participants’ 

problem-solving experiences.  Categorization, resource relevance and goal interpretation were 

supported to varying degrees; however, there was less evidence to support the construct of 

complexity.  Determination of evidence for stabilization was guided by a working definition 

based on the participants’ search for a stable understanding of the problem.  Implications of these 

results for research and practice were noted. 
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CHAPTER ONE: INTRODUCTION 

The development of competence in problem solving has traditionally been a primary goal 

of physics instruction.  Physics instructors would argue that conceptual understanding is a 

necessary prerequisite for success in problem solving, yet research has shown that students 

generally do not to call on conceptual knowledge as they attempt to solve unfamiliar physics 

problems.  Instead, students tend to resort to trial and error equation-matching, looking for 

equations that contain the unknown quantity and attempting to fit the equation to the problem at 

hand (Heyworth, 1999; Savelsbergh, Jong, & Ferguson-Hessler, 2002; VanLehn, 1998). It has 

also been shown that students frequently refer to examples while solving problems, but that they 

do not consider the differences between the examples and new problem situations, and often 

apply equations from the examples incorrectly. (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; 

Chi & VanLehn, 1991).  Furthermore, although students in general have sufficient mathematical 

resources learned in their calculus and/or algebra-trigonometry courses, they often fail to 

recognize those resources as being relevant to the solution of physics problems (Bassok, 1990; 

Bassok & Holyoak, 1989; Cui, Rebello, & Bennett, 2005; Ozimek, Engelhardt, Bennett, & 

Rebello, 2004; Tuminaro & Redish, 2003). 

While there has been a considerable amount of research done in the area of physics 

problem solving, most of this research has focused on the identification of various processes and 

strategies students use in the solution of problems (Chi, Glaser, & Rees, 1982; Dhillon, 1998; 

Larkin, McDermott, Simon, & Simon, 1980a; Savelsbergh et al., 2002), or on the differences 

between expert and novice problem solvers (Chi, Feltovich, & Glaser, 1981; Finegold & Mass, 
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1985; Larkin et al., 1980a). Studies such as these are descriptive in nature, seeking to identify the 

cognitive processes students undertake as they solve problems.  Other studies have focused on 

the development of computer models that emulate the problem-solving process (Larkin, 

McDermott, Simon, & Simon, 1980b; Ross & Bolton, 2002; VanLehn, 1998).  The models 

developed to date, particularly the computer models, tend to focus on one aspect of the problem-

solving process, while de-emphasizing other aspects.  Few of the models discussed in the physics 

education literature to date have considered the motivational or attitudinal aspects of problem 

solving.  While work has been done in these areas (Elby, 1999, 2001; Hammer, 1994, 2000; 

Redish, Saul, & Steinberg, 1998), it is only recently that attitudes and personal perspectives have 

been directly investigated in relation to problem solving (Cummings & Lockwood, 2003).  What 

is needed is a general model of students’ problem-solving experiences, one which includes not 

only the strategies students apply but also the resources and personal perspectives they bring to 

the process. 

Further evidence on the need for additional investigation into physics problem solving 

comes from a resource letter published in the American Journal of Physics (Hsu, Brewe, Foster, 

& Harper, 2004).  This letter, published as a “guide to the literature on research in problem 

solving, especially in physics” (p. 1147), lists 109 references on problem solving.  However, 

only 17 of those references were published in 2000 or later, and of those, only 9 were physics-

specific.  Additionally, only 4 of those 9 were reports on research; the remainder were reports on 

instructional strategies, computer applications or tutorials, or student workbooks.  While some 

research has appeared in the literature since the publication of the resource letter, much of the 

work has been focused on specific aspects of problem solving, such as transfer (Cui et al., 2005; 
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Ozimek et al., 2004), the use of multiple representations (Leone & Gire, 2005; Rosengrant, 

Heuvelen, & Etkina, 2004, 2005), problem context (Park & Lee, 2004), or in the use of specific 

instructional strategies (Grossman, 2005).  There is a need for further investigations into general 

problem-solving models, and especially into the applicability of alternate models of problem 

solving. 

McGinn & Boote (2003) have proposed a model of mathematical problem solving that 

might be useful for representing students’ experiences in solving physics problems. Their model 

identifies four primary factors that influence the problem-solving process: categorization, goal 

interpretation, resource relevance, and complexity. The attractiveness of the McGinn and Boote 

model lies in the fact that the factors that make up the model have, for the most part, been 

identified in the literature as being significant to the problem-solving process. The four primary 

factors are brought together with a fifth factor, stabilization, which describes the inter-relatedness 

of the other four factors over the problem-solving process. Stabilization is a dynamic process in 

which the problem-solver seeks to reach a balance, or congruence, among the other factors, until 

a stable understanding of the problem is achieved. Unlike linear models of problem solving, the 

stabilization model attempts to represent the continually shifting evaluations of factors 

undertaken by the problem solver. 

The purpose of this study was to investigate the applicability of the McGinn and Boote 

(2003) model of problem solving to the experiences of students enrolled in introductory, 

calculus-based college physics courses.  The primary research question was “To what extent 

does the stabilization model describe physics students’ problem-solving experiences?” 

Investigation of this question required exploration of the secondary questions “What are the 
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basic processes that physics students undertake as they attempt to solve physics problems?” and 

“What resources do students bring to the problem-solving process?”  The goal was to develop a 

clearer understanding of where and why students experience difficulties when solving physics 

problems.  Understanding the actions taken by students in their problem-solving processes is a 

critical component in the development of models to describe those processes.  In the sections that 

follow, literature relevant to this study will be reviewed, and case studies will be presented.  

Analysis of the protocols from the study will outline the problem-solving processes observed.  

The results of the application of the stabilization model will be presented, and the strengths and 

deficiencies of the model will be discussed. 
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CHAPTER TWO: LITERATURE REVIEW 

The development of problem-solving skills is an important goal of introductory physics 

instruction.  As a result, a considerable body of research has been undertaken in an effort to 

understand the problem-solving process.  Because of the highly mathematical nature of most 

physics problems, much of the research in physics problem solving has common historical roots 

with mathematical problem-solving research.  In the past twenty years, however, physics 

education research has matured into a legitimate specialized field, with research programs 

focused on the unique combination of conceptual, intuitive and mathematical skills that comprise 

problem solving in physics. 

Research in physics problem solving can generally be divided into three broad categories: 

expert-novice studies, which attempt to characterize the differences between expert and novice 

problem-solving processes; pedagogical studies, which focus on instructional strategies for 

improving problem-solving skills; and computer-based studies, which attempt to model the 

problem-solving process through computer algorithms.  There is, of course, considerable overlap 

among these areas.  More recently, in recognition of the role of conceptual understanding in 

successful problem solving, researchers have begun looking at the relationships between 

concepts and problem solutions. 

This review will begin with a synopsis of both historical and recent work in the area of 

mathematical problem solving that has particular relevance in the domain of physics.  It will then 

move to studies that specifically targeted physics problem solving.  This discussion will include 

various aspects of both expert-novice studies and problem-solving models.  Next, more recent 
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work investigating the role of conceptual understanding will be connected to the previous 

studies.  The review will include a discussion of the limitations of the methodologies typically 

used to investigate problem-solving processes.  Finally, the McGinn and Boote (2003) 

stabilization model will be described, with a discussion of how their model relates to, as well as 

differs from, the models used in earlier studies. 

 

Mathematical Problem Solving 

Research into problem solving, as well as the emphasis on problem solving in the 

disciplines, can be traced back to the classic work How to Solve It (Pólya, 1945).  Pólya, through 

a self-study, identified a number of heuristics, or “mental operations useful for the solution of 

problems” (p. 2).  Additionally, he identified a four-step problem-solving process general enough 

to apply to any discipline, with the use of heuristic strategies integrated throughout the problem-

solving process.  His model suggested that if one is to be successful in solving a problem, one 

must first understand the problem.  Strategies such as drawing figures, the use of appropriate 

notation or symbolism, and separating the conditions of the problem are used at this point.  

Second, the problem solver should find the connection(s) between the data given in the problem 

and the unknown, eventually obtaining a plan for solution of the problem.  It is in this step that 

heuristics play the most prominent role.  Pólya suggested such strategies as finding related 

problems, breaking the problem into smaller steps, choosing a different unknown to solve for, or 

temporarily changing the conditions of the problem (for example, looking at extremes).  Third, 
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the problem solver carries out the plan developed in step two.  Finally, the solution is examined 

for accuracy, possible alternative solutions, and possible applicability to other problems. 

The promise of Pólya’s work was that if particular strategies used by experts within a 

discipline could be identified, those strategies could be explicitly taught to students.  This would 

conceivably reduce the time needed for students to become proficient problem solvers.  

Unfortunately, the promise of general heuristics was not fulfilled.  Despite many attempts, 

general heuristics as a means to improve problem-solving performance have not been found to be 

easily teachable or transferable.  According to Schoenfeld (1985a), there are several reasons for 

the lack of success.  Primary among these is the fact that heuristics alone cannot assure problem-

solving proficiency.  Learners must have an adequate domain-specific knowledge base, as well 

as a certain level of sophistication in the use of that knowledge, before heuristics become a 

useful tool.  In other words, a problem solver must become reasonably proficient within a 

domain before he or she can make effective use of heuristics.  In addition, the learner must 

possess adequate control mechanisms to guide the problem-solving process (Sweller, 1983).  

These are the metacognitive skills that provide the problem solver with the ability to recognize 

when to abandon a technique that is proving fruitless, and when to continue with a process that is 

burdensome but which may well lead to a solution (Dhillon, 1998). An additional factor 

contributing to the difficulty of teaching general heuristics is that heuristics are complex 

processes.  The various heuristics as used by proficient problem solvers are not characterized in 

sufficient detail to make them directly useful to students (Schoenfeld, 1985a). 

It should be noted that the statement concerning the limited success in teaching heuristics 

does not imply complete failure.  For example, Schoenfeld (1985a) carried out a series of studies 
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on the teaching of heuristics to mathematics students.  However, he framed his studies to take 

into account the limitations he identified for the teaching of heuristics.  That is, he taught the 

techniques to adult learners with mathematical backgrounds that included at least introductory 

calculus, and who were working on problems that were within their grasp given their 

mathematical background.  Using a limited selection of five heuristic strategies, he found that the 

direct teaching of domain-specific strategies did result in modest but significant increases in 

problem-solving ability.  Likewise, Oladunni (1998) looked at the teaching of both heuristics and 

metacognitive strategies in a comparison study.  He found that while metacognitive strategies 

provided the largest improvement in problem-solving skills, the teaching of heuristics did result 

in modest gains.  One interesting result from Oladunni’s study is the fact that high-ability 

students, as measured by a pre-test, realized the greatest gains in problem-solving skill.  This 

supports Schoenfeld’s assertion that one must already be moderately proficient within a domain 

to make effective use of heuristics. 

Analogical techniques have also been an important area of research in mathematical 

problem solving (Cummins, 1992; Gick & Holyoak, 1980; Schoenfeld & Herrmann, 1982).  

Analogical problem solving involves either comparing a new problem to other problems one 

already knows how to solve, or recognizing a new problem as a member of a category of 

problems that one is familiar with.  For example, in algebra, a problem solver might recognize a 

problem about the time needed to fill a vat with liquid as being analogous to a problem about the 

time to travel to a given destination: Both problems belong to the category of rate problems.  

Recognizing the category to which a problem belongs enables the problem solver to recall a 

general solution strategy, or schema, which can be applied to the new problem.  The ability of 
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students to identify the category to which a problem belonged has been shown to be dependent 

on the level of processing students are asked to undertake while reading the problems prior to 

categorization (Cummins, 1992).  Students who were asked to make comparisons between 

problems were generally able to sort new problems according to problem structure, and to 

recognize a new problem as belonging to a particular category.  In contrast, students who were 

only asked to analyze individual problems, or were given no instructions other than to read the 

problems, tended to sort problems according to surface features such as whether the problems 

involved moving objects or money.  Students who made appropriate categorizations were also 

able to successfully solve the problems at a higher rate.  Specific training in heuristic techniques 

and in identifying problem categories also seems to improve the ability of students to make 

appropriate categorizations (Schoenfeld & Herrmann, 1982).  These results suggest that the use 

of analogy is a powerful strategy in problem solving.  The problems used in the cited studies of 

analogy in mathematics are typical of those seen in an introductory algebra or geometry course.  

As a result, these studies do not address the issue of analogical comparison and transfer of 

similar solution strategies across domains. 

The use of analogical examples is a strategy frequently seen in the problem solving 

attempts of physics students (Chi et al., 1989; Chi & VanLehn, 1991; Cummins, 1992; VanLehn, 

1998).  Students taking introductory physics courses, particularly at the college level, are also 

expected to bring with them a number of mathematical skills necessary for the solution of 

problems in physics.  These two observations make the question of whether the skills and 

strategies learned in mathematics courses readily transfer to physics problems of particular 

interest (Bassok, 1990; Bassok & Holyoak, 1989; Cui et al., 2005; Ozimek et al., 2004).  Bassok 
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and Holyoak studied students who learned problem categories either through algebra or physics; 

for example, arithmetic sequences or series.  They found a high degree of transfer to physics 

problems when students learned problem categories and solutions through algebra instruction, 

but very little transfer when the problem categories were learned in the context of physics 

problems.  The likely reason for this unidirectional transfer, according to Bassok and Holyoak, is 

the result of content-specific derivation of learned solution techniques in a physics context.  The 

difference between the types of variables used in physics problems and those used in algebra 

problems is also believed to affect transfer. Many of the variables encountered in introductory 

algebra are extensive, involving only one measured entity.  Extensive variables, such dollars, 

meters, or time, are conceptually less difficult than intensive variables, which involve more than 

one entity combined as a single unit.  While intensive variables are certainly used in other 

domains, they are typically explicitly stated as rates, such as in miles per gallon or dollars per 

year, rather than given specialized names such as velocity or acceleration as they are in physics.  

As a result, problems involving intensive variables are perceived to be more difficult than those 

involving extensive variables, even when the solution technique is identical.  Transfer of solution 

techniques between problem categories learned with an extensive variable to a similar problem 

involving intensive variables is lower than that between problems with the same type of variable. 

One possible explanation for the lack of transfer between physics and algebra that was 

not noted by Bassok and Holyoak (1989) and Bassok (1990) lies in the way in which the 

problems used in the studies were stated.  The authors provide several examples of the physics 

problems used in their studies.  As an example, consider the following arithmetic sequence 

problem in a physics context: 
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 “What is the acceleration (increase in speed each second) of a train, if its speed increased 

uniformly from 15 m/s at the beginning of the 1st second, to 45 m/s at the end of the 12th 

second?” (Bassok, p. 529) 

This problem is stated much like a sequence problem would be stated in an algebra text.  It is 

not, however, in the format that a typical physics textbook would use.  This same problem might 

be stated in a physics text as follows: 

 What is the acceleration of a train that starts from a speed of 15 m/s and reaches a speed 

of 45 m/s after 12 s? 

It could be argued that the format of the former problem informs students who had learned 

solution techniques in an algebra context of the fact that the problem, although in an unfamiliar 

context, was a sequence problem.  The parenthetical comment “increase in speed each second” in 

particular could be interpreted as a hint to students to use a sequence technique.  In fact, hints 

have been found by other researchers to have a strong positive influence on the rate of transfer 

between analogical problems, even between different contexts (Anolli, Antonietti, Crisafulli, & 

Cantoia, 2001; Gick & Holyoak, 1980; Perfetto, Bransford, & Franks, 1983).  Physics students, 

familiar with problems stated in the form of the latter example, would be less likely to recognize 

a sequence problem stated in typical algebraic format: 

 “Jaunita went to work as a teller in a bank at a salary of $12,400 per year and received 

constant yearly increases coming up with a $16,000 salary during her 13th year of work.  

What was her yearly salary increase?” (Bassok, 1990, p. 529) 

Here, the format of the problem is so unlike the analogous physics problem previously stated that 

is seems unlikely students who learned sequences only within the domain of physics would find 
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a cue within the problem to inform them that it is equivalent in form to an acceleration problem.  

The context of the learned solution technique, in combination with the differences in problem 

statement format, suggests that transfer between problems would be unlikely.  It would be 

interesting to see if problem statement format had a direct effect on the level of interdomain 

transfer of solution techniques, if the high rates of transfer noted by Bassok would be seen if the 

physics problems used were stated in forms more typical of problems in physics texts, or if hints 

to physics students resulted in higher transfer rates to problems outside the domain of physics; 

however, no such studies were found in the literature. 

More recent studies have looked at transfer between trigonometry (Ozimek et al., 2004) 

or calculus (Cui et al., 2005) and physics.  In a study of second-semester engineering physics 

students, Cui et al. found that the students in their study were able to solve calculus problems 

without difficulty, but were unable to solve isomorphic physics problems.  The researchers noted 

that the students’ primary difficulties were in setting up the problems, such as in choosing limits 

or appropriate variables of integration, rather than with the calculus per se.  They also noted that 

students were unsure about what criteria they should apply to determine when calculus should be 

used in a physics problem.  Ozimek et al. found similar results in transfer from trigonometry.  In 

their study, students were found in general to have retained their trigonometry knowledge, but 

were unable to apply it to isomorphic problems in physics.  However, Ozimek et al. also looked 

at transfer from two “contemporary” perspectives; one which viewed transfer in light of the 

students’ ability to apply prior knowledge to learn to solve problems in a new context; and the 

other which viewed transfer as an ability to recognize similarity relations between the prior 

knowledge and the new context.  When applying these perspectives of transfer, the researchers 
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found that there was evidence of transfer in the areas of geometrical and functional applications 

of trigonometry.  Both of these studies suggest that students need considerable support and 

scaffolding in order to successfully apply knowledge from their mathematics courses to physics 

courses.  Just as earlier studies showed that hints can greatly increase the transfer of knowledge 

between analogical problems across different contexts (Gick & Holyoak, 1980; Perfetto et al., 

1983), scaffolding during instruction of problem-solving instruction can act as the “hint” to 

increase transfer of knowledge from mathematics to physics. 

 

Physics Problem Solving 

Research in physics problem solving began in earnest in the early 1980s.  At that time, 

much of the work focused on expert-novice differences (Chi et al., 1981; Finegold & Mass, 

1985; Larkin et al., 1980a).  These studies were not designed to develop a model for problem 

solving, but rather to identify those factors that distinguished expert problem solvers from 

novices.  Among the most robust and oft-repeated results of the expert-novice studies is 

recognition of the tendency of novices to categorize physics problems according to surface 

features, first noted in the seminal work of Chi, Feltovich and Glaser (1981).  When asked to 

group a selection of problems according to similarity of solution, novices tend to sort the 

problems according to the visual similarities of tangible objects in the problem statement.  

Focusing on surface features resulted in categories such as “pulley problems” or “incline 

problems.”  These results have been replicated in various forms by a number of researchers 

(Cummins, 1992; Jong & Ferguson-Hessler, 1986; Savelsbergh et al., 2002; Snyder, 2000).  
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When asked how they might approach the solution to a problem, novices respond only in vague, 

general statements, and tend to list equations they might try to apply to the problem (Chi et al., 

1981).  This suggests that the novice’s focus is on the unknown quantity and the equations that 

will provide a value for it (Savelsbergh et al., 2002).  Further evidence to support this view of 

novice problem solving comes from analysis of problem-solving protocols.  Novices’ attempts at 

problem solutions are guided by search processes, as they work backward from the unknown 

solution to the known quantities.  They often attempt a one-step solution, selecting an equation 

because it contains the unknown quantity.  Other unknowns within the chosen equation become 

new target quantities, with new equations chosen to find those values.  This process of equation 

selection and solution continues until a solution to the problem is found (Chi et al., 1982; 

Dhillon, 1998; Heyworth, 1999; Larkin et al., 1980a; Savelsbergh et al., 2002).  At each step 

after an equation is chosen, the novice must reevaluate and decide how to proceed.  This 

equation-driven solution process often takes place bereft of any understanding of the physical 

principles underlying the problem situation.  Novices’ problem-solving schemata are thus 

surface-feature-oriented and equation-driven.  To the novice, the equations are the knowledge 

(Larkin et al., 1980a).  This is in contrast to the expert’s view, in which the principles are the 

knowledge, and equations are simply a way to represent that knowledge. 

Knowledge of principles acts in other ways to guide the experts’ problem-solving 

processes.   Experts were found to categorize physics problems according to the underlying 

physics principles that would used to solve the problem, resulting in categories such as 

“Newton’s second law” or “conservation of energy” (Chi et al., 1981; Chi et al., 1982).  

Categorization of problems according to physics principles is indicative of the central importance 
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that principles play in the problem-solving processes of experts (Savelsbergh et al., 2002).  

Problem solving begins with a qualitative analysis of the states and conditions implicit in the 

problem statement, a step that novices rarely take (Chi et al., 1982).  These conditions act as 

cues, suggesting the principle applicable to the problem situation.  Most importantly, how to 

solve the problem is encoded with categorization, so that recall of the principle calls up the entire 

procedure for obtaining the solution (Chi et al., 1981; Larkin et al., 1980a; Savelsbergh et al., 

2002).  The automated sequences and principle-indexed knowledge form a schema that guides 

the problem-solving process.  Once initiated, the solution process proceeds with a forward-

working strategy, moving from known quantities to the unknown solution.  Experts select 

equations not because they contain the unknown quantity, but rather because all quantities but 

one are known.  Knowing that the intermediate quantity is attainable, they proceed as if it is 

already known, repeating the process until the desired quantity is reached (Chi et al., 1982; 

Dhillon, 1998; Larkin et al., 1980a). 

 

Conceptual Understanding and Problem Solving 

The results of expert-novice studies have provided a general description of the 

characteristics of both experts and novices.  In particular, the studies showed the importance of 

understanding the physical principles underlying a problem.  Recognition of the importance of 

principles has led to investigations of the relationships between conceptual understanding and 

problem solving. 
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The importance of conceptual knowledge is clearly seen in the results of those studies 

targeting the differences between good and poor novice problem solvers.  Researchers have 

suggested that there are three general areas that distinguish these two groups.  First, good and 

poor novice problem solvers differ in the strategies they use.  Poor problem solvers tend to use a 

formula-driven, working-backwards approach, much like the novices in expert-novice studies 

(Heyworth, 1999; VanLehn, 1998).  Second, good problem solvers, like experts, use a qualitative 

description of the problem to guide the solution process (Chi et al., 1989; Finegold & Mass, 

1985; Heyworth, 1999; Jong & Ferguson-Hessler, 1986; Robertson, 1990).  Finally, novices who 

are better problem solvers have much better conceptual understanding than do poor problem 

solvers (Heyworth, 1999; Jong & Ferguson-Hessler, 1986; Kim & Pak, 2002; Robertson, 1990; 

VanLehn, 1998).  According to Schoenfeld (1985a), problem solvers who possess poorly 

structured concept systems will interpret a problem situation to fit their inaccurate conceptions, 

focusing on obvious surface features while ignoring important facts and/or properties related to 

the problem situation.  Clearly, conceptual understanding is a critical component in successful 

problem solving.  However, increased conceptual understanding does not automatically translate 

into increased problem-solving ability (Hoellwarth, Moelter, & Knight, 2005; Hung & Jonassen, 

2006).  A study carried out at California Polytechnic State University found that students in an 

active-learning-mode class that emphasized concepts had far higher scores on a standard measure 

of conceptual understanding than their counterparts in a traditional lecture-lab course, but scored 

on average at or below the level of the students in the traditional course on quantitative problem-

solving exams (Hoellwarth et al., 2005).  While it could be argued that the difference in 

emphasis for the two courses was in large part the determining factor in these results, the results 
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also suggest, as noted by Hoellwarth et al., that for maximum problem-solving proficiency 

students should be taught both concepts and explicit problem-solving skills.  It should also be 

noted that it is possible for novices to memorize algorithms and equations with little conceptual 

understanding and be reasonably successful problem solvers, a fact that is evident in the results 

of several studies (Heyworth, 1999; Kim & Pak, 2002; Robertson, 1990; VanLehn, 1998).  

However, novices who rely on algorithms for problem solving have been found to be limited in 

their ability to solve transfer problems which are structurally different yet conceptually similar to 

problems they were previously successful in solving (Chi et al., 1989; Robertson, 1990; 

VanLehn, 1998). 

Novices with incomplete or inaccurate integrated knowledge structures can often make 

conceptually correct statements about a problem, even as far as selecting the correct physics 

principle to apply to a given problem.  During the problem-solving process, novices will then 

rely on incorrect conceptions or everyday intuition to solve the problem, rather than thinking 

through the implications of the application of the chosen principle (Robertson, 1990; Schoenfeld, 

1985a).  There are two possible explanations for this behavior.  One is simply that the conceptual 

knowledge is incomplete, leading to incorrect application of the chosen principle (Hammer, 

2000; Kim & Pak, 2002; Robertson, 1990).  This explanation supports what Maloney and Siegler 

(1993) have called conceptual competition, in which a novice possesses more than one 

alternative understanding of physical phenomena at a time (see also Mildenhall & Williams, 

2001).  These alternative conceptions coexist and compete with each other in the cognitive 

structure of the learner.  One conception or another might be used in a given problem, depending 

on the problem solver’s extent of understanding and cues within the problem statement.  The 
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other possible explanation is that novices possess sufficient conceptual understanding, but that 

understanding is not supported by adequate procedural knowledge.  There is some evidence that 

a significant portion of the difficulties that arise in problem solving are a result of deficiencies in 

applying knowledge already possessed by the problem solver (Chi et al., 1989; Finegold & Mass, 

1985; Hammer, 2000; Kim & Pak, 2002; Maloney, 1994).  The presence of knowledge in 

memory does not mean that one can access that knowledge and use it to solve a problem 

(Perfetto et al., 1983).  Declarative knowledge about a domain must be coupled with adequate 

procedural knowledge to facilitate successful problem solving. 

Researchers investigating expert-novice differences have suggested that students 

generally have the declarative knowledge needed to solve introductory physics problems (Chi et 

al., 1989; Chi et al., 1981; Savelsbergh et al., 2002; Sherin, 2001).  They can, for example, state 

Newton’s second law and can make inferences about related physics concepts (Chi et al., 1989), 

and might be able to make some basic statements about general conditions for applicability of 

the law.  What novices are lacking is a deep understanding of the principles, represented by a 

knowledge structure rich in connections between related information that makes the principle 

applicable to the solution of a problem.  A problem solver must know more than just the 

statement of a principle; he or she must also know how that principle relates to other concepts.  

In short, he or she must know the structure of the discipline (Dufresne, Gerace, Hardiman, & 

Mestre, 1992).  Dhillon (1998) called this aspect of domain knowledge structural knowledge.  

Just as important as structural knowledge is situational or procedural knowledge (Chi et al., 

1989; Chi et al., 1982; Dhillon, 1998; Jong & Ferguson-Hessler, 1986; Larkin & Simon, 1995; 

Robertson, 1990; Savelsbergh et al., 2002).  This procedural knowledge allows the problem 
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solver to make productive use of the features of the problem, knowing which physics principles 

are valid, conditions of applicability of those principles, how to connect mathematics to the 

concept and the problem at hand, and how to detect errors.  Procedural knowledge is highly 

domain-specific, although it may be integrated with general mathematical procedures.  It is this 

integrated declarative and procedural knowledge that novices frequently lack. 

The approach taken to solve a problem depends in large part on the extent of one’s 

structural and procedural knowledge.  The procedural knowledge the problem solver has 

available is based on previous experiences in similar problems (Savelsbergh et al., 2002).  Since 

previous problem solutions form the basis of the existing procedural knowledge, the novice is 

placed in a situation in which the more successful past problem-solving attempts have been, the 

more likely that the problem solver will possess the procedural knowledge needed to solve a new 

problem.  Furthermore, good problem solvers have the metacognitive skills to recognize when 

they don’t understand, and are likely to follow that admission of lack of understanding with an 

appropriate search for understanding (Chi et al., 1989).  Novices often fail to recognize when 

they don’t understand, either because they lack the metacognitive skills to monitor their own 

understanding, or because they do not recognize the need for conceptual understanding in the 

problem-solving process (Elby, 1999; Hammer, 1989).  Unfortunately, the same skills that are 

needed to recognize success (or failure) in problem solving are the same skills needed to produce 

a correct problem solution.  If a problem solver lacks the ability to correctly solve a problem, he 

or she is also unlikely to recognize when a solution is incorrect (Dunning, Johnson, Ehrlinger, & 

Kruger, 2003). 
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Part of the procedural knowledge required for successful problem solving in physics is 

knowledge of the use of multiple representations of physical situations, including but not limited 

to verbal, mathematical, graphical, and pictorial representations.  Typical introductory courses in 

physics include instruction in the use of these representations as an aid to conceptual 

understanding and problem solving.  Domain-specific representations such as free-body 

diagrams, energy bar charts, and state diagrams are of particular interest in understanding how 

physics students solve problems.  Recent studies suggest that students who make appropriate use 

of diagrammatical representations have a greater likelihood of success in problem solving (Leone 

& Gire, 2005; Rosengrant et al., 2005), but that use of a physically and/or conceptually incorrect 

diagram results in a greater chance of error than no use of diagrams at all (Rosengrant et al., 

2004).  If students do not recognize the relevance of the diagram to the physical situation in the 

problem statement, they are likely to consider the diagram as nothing more than a short-hand 

method of keeping track of known information rather than a tool for connecting the verbal 

problem statement to the mathematics needed for the solution.  The problem solver must have 

the appropriate procedural skills to make use of multiple representations of physical situations, 

including knowledge of how to construct a good diagram, confidence in computational 

processes, and the processes needed to connect the various representations to physics principles 

(Larkin & Simon, 1995).  

The mathematics and physics literature that has been discussed to this point has provided 

a wealth of knowledge about problem-solving processes.  The differences between expert and 

novice problem solvers have been delineated, as have some of the differences between good and 

poor novices.  The importance of conceptual understanding has been emphasized and linked to 



 21

the procedural knowledge needed for success in problem solving.  Despite the fact that these 

studies have provided a wealth of information on problem solving, the studies have shortcomings 

that limit the applicability of the information provided.  While the same statement could be made 

about virtually all investigations of human behavior, it is important to recognize those 

limitations.  In the next section, some of the strengths and shortcomings of the methods used in 

previous studies will be addressed. 

 

Methodological Limitations 

Although the problem-solving research that has taken place to date has provided us with 

important information about problem-solving processes, there are limitations to the applicability 

of the studies, primarily as a result of the methodologies used.  Because of natural variability in 

human behavior, no conclusions drawn from problem-solving studies will have universal 

applicability.  Understanding the limitations of the various methods used to study problem-

solving behavior will help assure that the information obtained from problem-solving research 

can be used to the greatest possible benefit. 

Early studies in problem solving involved the use of introspective techniques, in which 

the researcher investigated his or her own thought processes.  The primary limitation of self-

study is that one can never be sure that one’s problem-solving behavior is typical.  It is also not 

possible to know for sure that one is appropriately tracing the important steps in the thought 

process.  According to modern information-processing theory, the only thoughts available for 

processing are those thoughts that are attended to in working memory, under the immediate 
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attention of the thinker (Ericsson & Simon, 1993).  In problem solving in particular, many 

processes are automated, and take place without access through working memory.  This is the 

type of automation, for example, that causes an experienced driver to go through the motions of 

driving without conscious attention to the myriad small actions that make up the process of 

operating a vehicle (Bereiter & Scardamalia, 1993).  These automated processes limit the 

problem-solving processes that can be related to others, either verbally or through the written 

word.  A second limitation of self-study methods is that the data to be analyzed are processes that 

take place in the consciousness of a single observer, and are thus not available for verification or 

replication by other observers (Ericsson & Simon, 1993; Someren, Barnard, & Sandberg, 1994).  

In relation to problem solving, self-studies tend to be undertaken by experts, and as a result the 

processes described by self-study are the processes undertaken by experts.  Pólya (1945), for 

example, was an expert mathematician who developed his four-step problem-solving model 

through the process of studying his own expert problem-solving processes.  The result is that 

while his model might describe expert behavior very well, it would not be expected to be 

applicable to novice mathematics problem solvers. 

Another related limitation of Polya’s (1945) study is that the model he developed 

describes problem solving as a linear, step-by-step process.  This is a general limitation that is 

seen in many models, which assume that problem solving can be described in terms of a linear or 

cyclical process.  A prime example of a linear model in the domain of physics is the Minnesota 

problem-solving model (Heller & Heller, 2000; Heller, Keith, & Anderson, 1992), which has 

been taught as a problem-solving strategy in introductory physics courses.  Linear models such 

as Polya’s and the Minnesota model tend to be based on idealized, expert behavior in situations 
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that are familiar to the problem solver.  Research into the behavior of novices, or of experts 

solving unfamiliar or particularly difficult problems, suggests that such step-wise problem-

solving behavior occurs only in problem situations that are familiar to the problem solver.  While 

it can certainly be argued that a primary goal of problem-solving instruction in physics is to get 

novices to solve problems in the same manner as experts, it is important to recognize that such 

linear models are essentially models of exercise solving (Bereiter & Scardamalia, 1993; 

Schoenfeld & Herrmann, 1982; Singh, 2002). 

Schoenfeld and Herrmann (1982) noted this limitation in relation to the expert-novice 

studies that were prevalent in the early 1980s.  Apart from possessing superior domain-specific 

knowledge and considerably more experience, experts also tend to be older than the novices used 

in the studies, and more likely to possess a greater aptitude for the domain.  In the domain of 

physics, the problems used in expert-novice studies tended to be typical practice problems such 

as might be seen in introductory physics texts.  While textbook problems generally are problems 

to novices, they tend to be perceived as exercises by experts (Bereiter & Scardamalia, 1993).  

There have been a few attempts to address this shortcoming by looking at the problem-solving 

behavior of experts on more difficult or unfamiliar problems (Singh, 2002).  In these cases it was 

found that experts resort to more novice-like behavior, relying on means-ends analysis or other 

“weak” problem-solving techniques. 

Another significant limitation of expert-novice studies is that they tend to treat both 

experts and novices as homogeneous groups.  There are qualitative differences in both levels and 

styles of expertise, just as there are for novices.  Treating each group as a uniform whole 

necessarily loses some of these distinctions.  There have also been only limited attempts to 
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delineate between true expert problem solving and that of experienced novices, who may be 

proficient problem solvers but who lack the integrated knowledge structure of a discipline 

possessed by experts.  There have been some attempts to bring out some of the distinctions 

between good and poor novice problem solvers (Chi et al., 1989; Finegold & Mass, 1985; 

Heyworth, 1999; Jong & Ferguson-Hessler, 1986; Joshua & Dupin, 1991; Snyder, 2000).  

Clarifying the differences between successful and unsuccessful novices is of particular 

pedagogical importance.  Knowledge of the characteristics of successful novices can inform 

instruction, allowing physics educators to make techniques and strategies used by successful 

novices an explicit component of introductory physics courses. 

Given that so many studies over a period of over two decades have provided very similar 

qualitative results, one could argue that the particular limitations of expert-novice studies have 

not hindered the understanding of the general characteristics of novice or expert problem solving 

in physics.  However, with some exceptions, the majority of these studies have been descriptive 

in nature.  Current models of problem solving in physics tend to focus on the series of steps 

taken and equations generated, while ignoring aspects of the problem-solving process such as 

qualitative analysis, metacognitive strategies, and conceptual understandings (Chi et al., 1982).  

Focusing on steps and procedures limits the applicability of the results of these studies to the 

improvement of problem-solving instruction in physics.  Although a multifaceted description is a 

critical first step to developing understanding of problem-solving behaviors, physics education 

researchers must look beyond description towards informing those instructional practices that 

will assist in the development of problem-solving skills.  To do this, a more complete 

understanding of problem-solving processes must be developed, one which takes into account 
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those aspects of problem solving that simple descriptions are not able to account for.  One 

research methodology that has been developed to address the limitations of descriptive studies is 

the think-aloud method.  Although several different versions of think-aloud studies have been 

discussed in the literature, the main assumption of all versions is the same: that it is possible to 

instruct subjects to think out loud during the process of problem solving in a way that does not 

alter the problem-solving process, and that analysis of the resulting protocols can provide 

valuable insight into the various aspects of problem solving that are not addressed in purely 

descriptive models (Ericsson & Simon, 1993; Someren et al., 1994; Taylor & Dionne, 2000).  In 

the next section, the think-aloud methodology will be discussed, and arguments provided for its 

use as the method of choice for investigating problem-solving processes. 

 

Think-Aloud Methods 

If one is to understand problem solving, one must observe the problem-solving process.  

In addition, one must have some way of inferring the cognitive activities taking place in the mind 

of the problem-solver as he or she works towards a solution.  This philosophy has led to the use 

of the think-aloud protocol as the method of choice for investigating problem-solving processes.  

A number of the studies discussed in previous sections have utilized think-aloud methods for all 

or part of their data (see for example Bassok, 1990; Chi et al., 1982; Dhillon, 1998; Schoenfeld, 

1985a).  During think-aloud sessions, participants are asked to concurrently verbalize their 

thought processes as they attempt to solve problems, which allows for observation of solution 

strategies in real time.  The problem-solving session is audio and/or video recorded, and the 
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recorded protocols are analyzed using one of several qualitative techniques. By focusing on the 

actions taken and cognitive processes verbalized, it is hoped that a characterization of the 

problem-solving process can be obtained.  It is also possible to collect quantitative data, such as 

the number of errors per solution or time to solution.  However, because of the additional 

cognitive load that verbalization of the problem-solving process can place on the solver, it has 

been suggested that quantitative protocol data is not particularly reliable (Chi et al., 1982). 

Early use of verbalization techniques raised concerns about the validity of the technique 

(Nisbett & Wilson, 1977).  As problem-solving research matured as a field of study, the use of 

verbal data has also matured.  Through the application of the information-processing model and 

verbalization theory, think-aloud methodology has gained respectability as a valid, reliable 

technique for gathering data about cognitive processes (Ericsson & Simon, 1993; Schoenfeld, 

1985b; Someren et al., 1994; Taylor & Dionne, 2000).  Verbal think-aloud methods avoid some 

of the limitations of introspective techniques by treating the verbal data objectively, since the 

protocols are not interpreted by the subject of study and are available for review by anyone.  

However, in order for think-aloud techniques to produce data which accurately reflect the 

cognitive processes of the subject, there are several conditions that must be met, both in the 

collection of the verbalizations and in the subsequent analysis. 

The first requirement for obtaining protocols which represent a direct correspondence 

between the thoughts of the subject and the verbalizations produced is that the thoughts be 

verbalized concurrently with the problem-solving process.  According to the information-

processing model of human cognition, the only information that is available for verbalization is 

information which is in working memory, under the immediate attention of the problem solver 
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(Ericsson & Simon, 1993).  Instructions to the subject to verbalize information not normally 

heeded during problem solving will result in additional information brought into working 

memory, which can in turn result in changes in the course and structure of the problem-solving 

process (Schoenfeld, 1985b).  The primary reason for these changes is an increase in the 

cognitive load.  Studies comparing silent problem solving with think-aloud protocols have shown 

that if instructions to the problem solver emphasize only to think out loud, and not to explain or 

analyze his or her actions, there is little additional cognitive load and the course of the problem 

solution is not changed (Ericsson & Simon, 1980). 

Concurrent verbalization has been shown to provide the direct correspondence to 

cognitive processing needed for analysis of problem solving, but there are situations in which 

retrospective protocols can also provide valuable information.  If only retrospective techniques 

are used, the reliability of the verbalizations produced is found to decrease as the time between 

the task and the report increases (Ericsson & Simon, 1993).  However, if retrospective reports are 

taken immediately following the task completion, valuable information can still be obtained.  

Combining retrospective reports with other records of the problem-solving process, such as the 

written solution and/or videotape, can help assure the validity of the information obtained 

(Ericsson & Simon, 1980; Taylor & Dionne, 2000). 

The use of retrospective reports, or debriefings, alone generally results in insufficient 

information from which to deduce the problem solver’s cognitive processes.  In particular, the 

problem solver might have difficulty remembering all that he or she did, or might present his or 

her thought processes as more coherent than they actually were.  The problem solver’s memory 

of the processes used is guided by knowledge of the result obtained, which could cause the 
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problem solver to report more generalized strategies than were actually used (Someren et al., 

1994).  However, when retrospective debriefing is used in conjunction with concurrent think-

aloud protocols, the data from each source can act as a means of validation for the other.  The 

think-aloud protocol provides directly observable behavior against which the validity of 

retrospective debriefing statements can be compared, while the retrospective debriefing data can 

be used to verify and clarify the researcher’s interpretations of the think-aloud protocols in 

situations in which the researcher must draw inferences from the data (Schoenfeld, 1985b; 

Taylor & Dionne, 2000).  This is particularly important in light of the fact that even in the best of 

situations, think-aloud protocols will not be complete.  During the course of any problem-solving 

situation, there will be certain cognitive processes that are automated, which do not enter 

working memory and are therefore not available for verbalization.  Likewise, there are thoughts 

that will not be verbalized simply because of the time required for verbalization (Ericsson & 

Simon, 1993; Someren et al., 1994).  Estimates suggest that under the very best conditions 

information can be obtained every second for verbal data, while the information processes that 

are taking place may only be in the range of a few tens to a few hundreds of milliseconds long 

(Larkin et al., 1980a).  Thus there will always be situations in which the researcher must infer, on 

the theoretical basis of the coding and the actions/verbalizations prior to and following, what 

cognitive processes the problem solver undertook during a pause in the verbalization.  

Triangulation between the think-aloud protocols and retrospective debriefings makes the 

inferences less problematic (Taylor & Dionne, 2000). 

The second requirement for meaningful think-aloud protocols is related to the task 

undertaken by the participants.  As noted previously, there are certain processes that are 
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automated in any problem solution.  As a general example, suppose one step in a problem 

required the addition of 2 and 5.  The problem solver might verbalize “2 and 5 is 7,” but if one 

was to ask the problem solver how they knew that 2 and 5 was 7, the subject would not be able to 

verbalize that process.  Likely responses might be that he or she “just knew,” or that it “was 

memorized.”  Single-digit addition is so automated that it cannot be verbalized; the answer is 

retrieved directly from long term memory without intervening processing in working memory.  

This factor in the collection of think-aloud protocols is particularly relevant in relation to expert 

problem solvers, whose basic problem-solving processes may be chunked and automated (Chi et 

al., 1982; Larkin et al., 1980a; Savelsbergh et al., 2002).  To avoid this source of incomplete 

think-aloud protocols, it is important for the task provided to participants to be difficult enough 

so that its solution is not automated, yet at the same time be solvable by at least some portion of 

the participants, and not so difficult as to discourage verbalization (Ericsson & Simon, 1993; 

Someren et al., 1994; Taylor & Dionne, 2000). 

The final requirements for obtaining useful think-aloud protocols are related to the actual 

protocol collection procedures.  Participants should be provided with clear verbal and written 

instructions that emphasize the need for accurate, continual verbalization without explanation or 

interpretation (Schoenfeld, 1985b; Someren et al., 1994).  The researcher should not interrupt the 

protocol unless absolutely necessary, and then only with neutral reminders to “Keep talking.”  In 

addition, participants should be provided with adequate time to practice the thinking-aloud 

process until they are comfortable with it.  Thinking aloud is natural to most people, and so 

introduces little or no additional cognitive load (Ericsson & Simon, 1993); however, it is 
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important to provide practice problems to put participants at ease and to assure that the 

instructions were interpreted in the way the researcher intended (Schoenfeld, 1985b).  

One significant benefit of the use of the think-aloud method is that it allows the various 

aspects of problem solving identified in other studies to be investigated in the real-time context 

of problem solving.  For example categorization, typically investigated using problem-sorting 

tasks (Chi et al., 1981; Savelsbergh et al., 2002), can be studied during actual problem-solving 

activities.  In addition, they provide access to knowledge about cognitive activities that would 

not be apparent from simple observation of completed written solutions.  This focus on the 

actions taken, coupled with the verbalizations of cognitive processes, has provided a more 

complete view of problem solving.  For example, think-aloud protocols of problem solvers have 

resulted in a number of computer models designed to emulate the problem-solving behavior of 

both experts and novices (Larkin et al., 1980b; Plotzner, 1994; Ross & Bolton, 2002).    

However, even with think-aloud protocol data, there is still much to be learned about problem 

solving.  

The studies and methods discussed so far have provided a rich view of problem solving 

in physics.  The differences between expert and novice problem solvers have been delineated, as 

have some of the differences between good and poor novices.  The importance of conceptual 

understanding has been emphasized and linked to the procedural knowledge needed for success 

in problem solving.  A more complete view of the problem-solving process must take these 

known factors into account, integrating the results of expert-novice studies with conceptual 

understanding, the use of cognitive resources, and procedural knowledge.  It should reflect the 

dynamic nature of the problem-solving process while integrating the robust results of previous 
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problem-solving studies.  One possible candidate for such a model is that proposed by McGinn 

and Boote (2003). 

 

The McGinn and Boote Model 

The McGinn and Boote (2003) model of problem solving was developed as a result of 

self-study research in mathematical problem solving.  As noted previously, there are limitations 

to the applicability of self-study techniques.  However, the use of introspection to help 

understand mathematical problem solving is not without precedent.  To provide one notable 

example, the basis of Pólya’s (1945) historic four-step problem-solving model outlining the use 

of heuristics was the result of an examination of his own problem-solving processes. 

The need for an alternative model of problem solving arises from recognition of the fact 

that purely cognitive models focus on problem solving as a series of discrete steps, divorced 

from the social, material, motivational and emotional aspects of the process.  These aspects of 

problem solving, and of learning in general, have been acknowledged in the physics education 

literature (for example, see Redish et al., 1998), but have only recently been investigated in 

direct relation to physics problem solving (Cummings & Lockwood, 2003). 

McGinn and Boote (2003) set out on their self-study as a result of a desire “to understand 

the processes of problem solving and what could be learned by solving problems” (pp. 88 - 89).  

In particular, they wanted to understand how various social, material and conceptual resources 

were recognized and used to support problem-solving efforts.  As a result of their study, they 

learned that even highly structured and well-defined problem statements often led to problem 
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solving efforts that were not necessarily highly structured or well defined.  While the 

mathematical backgrounds of the authors preclude them from being categorized as true novices, 

they found that frequently, when faced with a difficult problem, their problem-solving activities 

became far more novice-like.  Similar results were found in the domain of physics, when experts 

were faced with particularly difficult problems (Singh, 2002).  Experiences in struggling with 

difficult problems led McGinn and Boote to recognize that problem difficulty, and their personal 

perceptions of difficulty, were a major factor in understanding their problem-solving 

experiences.  This realization caused them to set out to determine what caused a problem to be 

perceived as difficult. 

Their experiences in attempting to solve problems led McGinn and Boote (2003) to 

identify a continuum of problem difficulties.  This continuum ranges from trivial exercises with 

automated solutions to ill-defined difficulties, or predicaments.  Automated activities are those 

things which are done essentially without active consideration of the processes involved, such as 

single-digit addition.  Exercises are defined as problems that have been categorized and are 

solvable by automated solution procedures.  It is in the case of exercises that step-wise solution 

processes are most often observed.  Difficulties occur when appropriate resources are not 

recognized, the problem cannot be categorized, the complexity of the problem is high, and/or the 

goal of the problem is not recognized or appropriately interpreted.  In this case, a solution is not 

possible.  According to McGinn and Boote, the two extremes of this continuum represent 

situations in which no problem solving takes place.  If the solution is automated, there is no 

problem.  Likewise, if the problem is ill-defined and the problem solver has no conceptual or 
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procedural understandings upon which to base the solution, no problem solving takes place.  It is 

the area between those two extremes that is of most interest to problem-solving research. 

Analysis of their problem-solving experiences led McGinn and Boote (2003) to identify 

two levels of factors that influenced problem difficulty.  At the first level are four factors: 

categorization, goal interpretation, resource relevance and complexity.  At the second level is one 

factor, stabilization, which describes the shifting inter-relationships of the other four factors over 

time during the problem-solving process.  The second-level factor is needed because, according 

to this model, a problem solver’s perception of problem difficulty is related not just to the four 

previously identified factors, but also to how the relationships between those factors change over 

time.  Understanding of the possible relationships that might arise during the problem-solving 

process requires an understanding of the individual first-level factors. 

The first factor, categorization, has been fully documented in both the mathematics and 

physics problem-solving literature.  Many of the early expert-novice studies focused on 

differences in problem categorization (Chi et al., 1981; Chi et al., 1982; Cummins, 1992; Larkin 

et al., 1980a; Medin, 1989).  A problem that is properly categorized has been recognized as 

belonging to a certain genre of problems, for example, a conservation of energy problem.  

Categorization of a problem often allows for recall of a general problem-solving procedure, so 

that the solution becomes automated and is, in effect, no longer a problem but rather an exercise. 

Closely related to categorization is goal interpretation, which is defined essentially as an 

understanding of how a solution should look.  If the goal of a problem is adequately interpreted, 

the problem solver understands the general pattern that the solution will follow.  Sweller (1983) 

noted that clearly specified goals that are properly interpreted by the problem solver serve two 
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purposes.  First, they act as a feedback mechanism to guide the problem solver to a solution, and 

to assist in the choice of strategies selected to apply to the problem (Vollmeyer, Burns, & 

Holyoak, 1996).  This is particularly important when means-ends analysis is being employed in 

the search for a solution.  A second, related function is as a control mechanism.  If a chosen path 

is not proving to be fruitful, knowledge of the goal directs the solver to search for alternate 

solution paths.  For experts, the categorization of a problem is in large part tied to the 

interpretation of the problem goal, and solution patterns are tied to the categorization.  Together, 

categorization and goal interpretation affect what, if anything, will be learned from the solution 

process.  If a problem is categorized in such a way that the solution pattern is automated and the 

solution itself is trivial, the solver learns little.  When the solution process is not automatic, the 

solver is cognitively engaged with the process, and the possibility for learning is high.  In this 

regard, it is important to note that the answer is only one part of an acceptable solution (McGinn 

& Boote, 2003).  In contrast, students often approach problem solving as if the final answer is the 

only important part of the solution.  This attitude was reported by Good (1984), who found that 

experts view problem solving as a process, while novices view it as a recall task (see also Singh, 

2003); and by research suggesting that novices’ solution attempts are unknown- and equation-

driven (Chi et al., 1981; Larkin et al., 1980a; Savelsbergh et al., 2002).  However, it is not only 

during automated solutions that the possibility of no learning occurs.  Sweller notes that 

equation-driven solutions guided by means-ends analysis can lead to situations in which nothing 

is learned from the solution process, which in turn results in little or no transfer to new situations. 

Of particular importance in physics problem solving is resource relevance.  This factor 

refers to the various conceptual, material and social resources that the problem solver brings to 
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the solution attempt.  There are two closely related aspects to this factor.  First, the solver must 

have available and recognize existing resources as relevant to the solution process.  The second 

aspect is related to the idea of transfer; it refers to the recognition of domain knowledge which 

can be applied to the problem at hand, even if the new situation is in a domain outside that of the 

existing knowledge.  Schoenfeld (1985a; see also Schoenfeld & Herrmann, 1982) looked at 

resource recognition in mathematical problem solving and found that novices frequently fail to 

use the conceptual resources available to them.  Recently this factor has received renewed 

attention in the physics education research literature.  Physics educators often claim that many of 

their students do not have the mathematical background to become successful problem solvers in 

physics.  However, recent studies in physics parallel the results reported by Schoenfeld, showing 

that students in physics in general possess adequate knowledge within the domain of 

mathematics, but do not recognize its relevance within the domain of physics (Cui et al., 2005; 

Ozimek et al., 2004; Tuminaro & Redish, 2003).  As noted earlier, similar results have been 

reported in relation to conceptual resources (Chi et al., 1989; Hammer, 2000; Kim & Pak, 2002; 

Savelsbergh et al., 2002; Sherin, 2001). 

The final first-level factor in the McGinn and Boote (2003) model is complexity, which is 

simply an indication of the number of steps or operations needed to reach a solution.  Regardless 

of the level of mathematical sophistication required for a problem solution, the problem is 

perceived as difficult if it requires a large number of discrete steps to attain the solution, an 

observation that has also been noted in the domain of physics (Foster, 2007; Reif & Heller, 

1982).  A problem with one step, or at most a few steps, is viewed as simple, and in fact might be 

perceived as an exercise rather than a problem. 
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The four primary factors discussed so far work together to affect the solver’s perception 

of problem difficulty.  For a problem to be perceived as solvable, the solver must believe the 

problem is appropriately categorized, the goal is correctly interpreted, relevant resources are 

available, and that the level of complexity is reasonable.  If a problem is improperly categorized, 

or resources are unavailable or unrecognized, the problem might be perceived as unsolvable.  At 

the other extreme, if all four factors are rated as low, the solution might be automated, and the 

problem is perceived as a mere exercise.  Thus the perception of problem difficulty is determined 

by the inter-relatedness of the four factors over time.  If perceptions of the factors are 

inconsistent with each other, such as if the recognized resources do not support the 

categorization of the problem, the solver is forced to re-evaluate his or her perception of the four 

factors (McGinn & Boote, 2003). 

The shifting of relationships between the four primary factors over time during the 

solution attempt is called stabilization, the second-level factor in the McGinn and Boote (2003) 

model.  According to the model, a stable representation of the problem must be attained in order 

for a solution to be reached; that is, there must be a stable relationship among the four factors.  

Thus problem solving can be considered to be an active search for stability in the problem, 

represented by the relationships between the factors of categorization, goal interpretation, 

resource relevance and complexity.  If all factors are stabilized, all that remains is computation. 

McGinn and Boote (2003) originally established their description of problem solving as a 

means of identifying the factors that affect problem difficulty.  Other researchers have looked at 

problem difficulty, including aspects of the recognition of goals (Larkin et al., 1980a; Sweller, 

1983; Vollmeyer et al., 1996), categorization (Chi et al., 1981; Snyder, 2000), context (Chi et al., 
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1989; Larkin et al., 1980a), the use of diagrams (Larkin & Simon, 1995; Leone & Gire, 2005; 

Rosengrant et al., 2004, 2005), and mathematical complexity (Bassok & Holyoak, 1989; Reif & 

Heller, 1982).  Recent work by Foster (2007) provides a framework for determining problem 

difficulty based on twenty-one traits grouped into three major categories: Approach to the 

Problem, Analysis of the Problem, and Mathematical Solution.  Approach to the Problem 

includes those traits of a problem that affect the problem solver’s choice of concepts and 

principles to apply to the problem, but not the actual choice itself.  This includes such things as 

goal interpretation, context, level of abstraction, and the number of principles required for the 

solution.  This category as described by Foster has considerable overlap with aspects of 

categorization as described by McGinn and Boote, as well as with goal interpretation and 

complexity.  Analysis of the Problem includes those traits that affect the translation of the 

problem into a physics representation, including the actual categorization, use of diagrams, and 

generation of equations.  This category also overlaps with McGinn and Boote’s use of 

categorization as a factor affecting problem difficulty, as well as with complexity, although 

Foster’s definition of complexity as a factor is much broader that that defined by McGinn and 

Boote.  Foster’s final category, Mathematical Solution, relates primarily to the level of 

mathematics utilized in the problem, but also includes aspects of complexity as defined by 

McGinn and Boote. 

Despite the considerable amount of research into the factors that affect problem 

difficulty, none of the researchers have extended their interpretation to the point where it would 

be applicable to the entire problem-solving process.  McGinn and Boote’s (2003) understanding 

of problem difficulty seems to go beyond simply identifying factors; rather, they seem to suggest 
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actions that take place during the process of solving a problem.  It does not require a significant 

extension of McGinn and Boote’s descriptions of factors to formulate a framework for the 

problem-solving process.  For example, the contention that the categorization of a problem 

would affect the problem solver’s perception of the difficulty of the problem suggests that 

categorization is an action that the problem solver must carry out at some point during the 

process of solving the problem.  Likewise, if recognition of resource relevance affects problem 

difficulty, then it seems clear that the problem solver must recognize the relevance of their 

available resources to the solution of the problem.  That is, recognition of applicable resources is 

an action that the problem solver must carry out.  Of particular interest in this interpretation of 

McGinn and Boote’s work is the superordinate factor, stabilization.  This factor is defined in 

terms of the shifting relationships between the other four factors over time.  However, it can also 

be interpreted as the use of the other four factors in the process of a search for a stable 

understanding of the problem.  In order for a problem to be solvable, the problem solver must 

reach an understanding of the problem in terms of interpreting the goals, accessing relevant 

resources, making appropriate categorizations, and navigating the perceived or actual complexity 

of the problem.  That is, stabilization is an action that the problem solver must undertake in order 

to reach a solution to the problem. 

Viewed simultaneously as a way to describe both problem difficulty and the problem-

solving process, McGinn and Boote’s (2003) model could be considered a hybrid: In assessing 

those factors that determine how difficult a problem is perceived to be, we are determining the 

steps that the problem solver must take in order to reach a stable understanding of the problem 

and, ultimately, a solution.  As a model, it suggests that problem solving is the process of 
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searching for a stable understanding of the problem at hand, a situation that may not be reached 

until a solution is found.  While attempting to stabilize understanding, the problem solver utilizes 

relevant resources, attempts to categorize the problem, and interprets the goal of the problem, all 

while navigating the complexity of the problem.  Up to the point where the problem is solved, 

there is always the possibility that destabilization might occur.  The problem solver, previously 

believing that the problem is fully understood, may reach an impasse in the solution process, 

forcing a reassessment of the problem situation. 

While the identified factors can be considered as actions in a problem solving process, it 

is important that they not be interpreted as a sequence of steps.  As noted by McGinn and Boote 

(2003), as well as other researchers (Bereiter & Scardamalia, 1993; Schoenfeld & Herrmann, 

1982; Singh, 2002), step-wise problem solving only takes place when the problem solver is 

working on problems that are familiar.  That is, step-by-step problem solving only takes place 

when the problem solver is working on an exercise.  In real problem solving, the problem solver 

follows no discernable steps or pattern, but might instead wander between categorization, 

utilizing resources, reinterpreting goals and subgoals, all while struggling with the perceived 

complexity of the problem.  It is this manner that the proposed McGinn and Boote model differs 

from traditional linear or cyclical models of problem solving. 

There are several other differences between this proposed model and traditional cognitive 

models of problem solving.  As noted, the primary difference is that there are no discrete steps or 

stages in the problem-solving process, as suggested by Pólya (1945) and others (Schoenfeld, 

1985a; Singh, 2003).  According to the McGinn and Boote (2003) model, the problem will be 

solved in a step-wise fashion only if the factors are rated low and stabilized, at which point it is 
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an exercise rather than a problem.  Second, there is an on-going assessment of the problem as 

perceptions of the four factors change over the course of the solution attempt.  Rather than 

proceeding in linear or cyclical fashion, the solution process may proceed in an apparent random 

fashion, what McGinn and Boote call “flailing about” (2003, p. 103).  Finally, the model arises 

from the interplay among social, material and cognitive aspects of problem solving.  Neither 

cognitive nor situative aspects of problem solving alone are adequate to describe the problem-

solving process proposed by this model. 

The McGinn and Boote (2003) stabilization model was developed through an 

investigation of problem solving in mathematics.  Problem solving in physics is also highly 

mathematical, suggesting that the model could be applicable to that domain as well.  This study 

investigated the applicability of the stabilization model to novice problem solvers in the domain 

of physics.  The model is particularly attractive because, as discussed earlier, the four first-level 

factors have already been identified by other researchers as being important indicators of success 

in physics problem solving.  The findings of Singh (2002) with regards to the problem-solving 

behavior of experts attempting particularly difficult problems also raised important questions 

about what it means when we say we trying to model problem solving.  The problem-solving 

processes of novice physics problem-solvers have been well-documented by other researchers 

(Chi et al., 1981; Finegold & Mass, 1985; Jong & Ferguson-Hessler, 1986), and models have 

been developed to describe those processes (Larkin et al., 1980b; VanLehn, 1998).  The 

characteristics of experts solving similar problems have also been documented (Chi et al., 1982; 

Heyworth, 1999; Larkin et al., 1980b).  When a novice exhibits problem-solving processes that 

show higher levels of automation, appropriate categorization, and a forward-working strategy, 
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we say that the problem solver is exhibiting more expert-like behavior.  But at that point, the 

problem is no longer a problem; it is an exercise.  Likewise, Singh demonstrated that when faced 

with a difficult problem, experts behave more like novices.  In this respect, it could be argued 

that the models that describe expert behavior are models of exercise solving.  Ideally, a model of 

problem-solving should be general enough that it can describe the behavior of a wide range of 

experience, from novices to experts.  The problem-solving behavior of experts solving familiar 

types of problems is easily characterized by step-wise models; it is the highly variable problem-

solving behavior of novices that is more challenging. 
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CHAPTER THREE: DESIGN AND METHODOLOGY 

The purpose of this study was to investigate the applicability of the McGinn and Boote 

(2003) model of problem solving to the experiences of students enrolled in introductory, 

calculus-based college physics courses.  The primary research question was “To what extent 

does the stabilization model describe physics students’ problem-solving experiences?” 

Investigation of this question required exploration of the secondary questions “What are the 

basic processes that physics students undertake as they attempt to solve physics problems?” and 

“What resources do students bring to the problem-solving process?”  The challenge for any 

model of problem solving is in describing the problem-solving experiences of novices, who 

possess incomplete conceptual and procedural knowledge and a limited number of pattern-

induced schemata.  Expert-novice studies have done an excellent job of helping us understand 

what experts do, and the differences between the general characteristics of expert problem 

solving and those of novices.  What is needed is a model that will enable a deeper understanding 

of the specific processes undertaken by novices as they attempt to solve problems.  Even more 

powerful would be the demonstration of a general model that would be valid for both experts and 

novices.  This study investigated the applicability of a model of problem solving that has a level 

of generality that might make it applicable to both experts and novices.  The applicability to 

novice problem solvers is more problematic, given that previous researchers have demonstrated 

that novices tend to carry out problem solutions in a less organized fashion than experts.  For this 

reason, this investigation of the McGinn and Boote (2003) model focused on novices. 
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Procedure 

The primary data for the study was collected using an integrated approach, combining 

concurrent think-aloud protocols with retrospective debriefing.  This methodology was chosen in 

order to investigate the various factors associated with the stabilization model within the context 

of actual problem solving.  Participants were asked to verbalize their thought processes during 

the solution of physics problems typical of those found in introductory physics textbooks (see 

Appendix A).  Each participant was provided with both verbal and written instructions (see 

Appendix B), and was provided with practice problems to use for becoming comfortable with 

thinking aloud while problem solving.  Because the McGinn and Boote model (2003) notes the 

importance of material resources, participants were invited to bring a physics text, calculator, 

and/or other material resources with them to the problem session.  The problem sessions were 

videotaped for later transcription and analysis.  Practice problems were also videotaped with the 

intent of putting the participants at ease with the presence of the video equipment while they 

were solving problems. 

The researcher conducted semi-structured, retrospective debriefing interviews 

immediately following the problem-solving sessions, during which the participant and researcher 

reviewed the videotape of the session.  The debriefing session consisted of the researcher asking 

questions directed at clarifying the steps taken during the problem solution and determining the 

participants’ perceived points of difficulty in that process. While some of the categories of 

questions could be anticipated in advance, the details of the questions used could not, as they 

were based on the specific processes and procedures used by individual participants.  In addition, 
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more general questions related to problem solving in general were asked.  The retrospective 

session was audiotaped for later transcription and analysis.  Complete problem sessions, 

including the debriefing, ranged in length from approximately one hour to just over two hours. 

Following transcription, several layers of analysis took place, first to characterize the 

actions taken by individual participants.  Participants were grouped according to error indicators, 

and group characteristics were determined.  Finally, the protocols were reviewed according to 

the framework of the stabilization model to ascertain the extent to which the model applied to the 

problem-solving experiences of the participants.  At each point parallel analysis was carried out 

by an independent reviewer as means of validating the interpretations of the researcher.  To 

assure that the factors that make up the stabilization model were operationalized in a manner 

consistent with the original study (McGinn & Boote, 2003), one of the authors of that study 

(Boote) also served as a reviewer. 

 

Participants 

Participants were obtained from a pool of volunteers solicited from introductory, 

calculus-based physics courses.  The researcher visited six physics classes, three at a research 

university and three at a community college.  During those visits the researcher explained the 

purpose of the study and solicited volunteers to participate in the study.  In addition, the 

researcher provided written text of the same information to a colleague at a second university, 

which was read aloud in one elective laboratory class to solicit for additional volunteers.  At the 

time of solicitation, volunteers were asked to provide information concerning mathematical 
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preparation, SAT/ACT scores, and current grade in their physics course (see Appendix C).  This 

process resulted in a pool of 47 potential participants, which included both men and women of 

various ethnicities.  All volunteers were contacted to schedule a problem-solving session; of 

those nineteen responded and made appointments.  Three volunteers did not keep their scheduled 

appointments and did not respond to follow-up contacts.  The remaining 16 participants 

completed problem-solving sessions.  However, there were four participants whose resulting 

protocols were not used in the analysis, for reasons to be discussed in Chapter 4. The remaining 

12 participants included seven university and five community college students, with three 

females and nine males.  The age of the participants ranged from 19 to 22, with one exception 

who was 43.  The majority (10) was Caucasian; two were Hispanic.  All participants had 

completed at least one semester of calculus-based physics; several had completed two or three 

semesters.  The majority of participants reported declared majors of physics or engineering.  A 

summary of participant demographics can be seen in Table 1. 
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Table 1: Participant Demographics 

Participant Sex Age SAT# School 
Type†

Last or Current 
Physics Course‡

Last Math 
Course* 

Major* 

Alex M 43 NR CC Physics I Calculus I Computer Engineering 

Andrew M 19 1010 CC Physics I Calculus I Engineering 

Arnold M 20 1190 U Physics III Linear Algebra Physics 

Art M 22 1180 U Physics II Linear Algebra Physics 

Ben M 21 1200 U Physics II Calculus I Physics 

Beth F 20 1280 U Physics I Honors Diff. Equations Mathematics 

Betty F 19 1340 U Physics I Honors AP Calculus BC Psychology 

Bob M 21 NR U Physics III Diff. Equations Physics 

Brittany F 19 NR U Physics III Calculus II Physics 

Carl M 19 NR CC Physics I Calculus I Pre-med 

Chuck M 20 1230 CC Physics II Calculus I Engineering 

Cory M 19 1000 CC Physics I Calculus I Engineering 

# NR: Not reported 
†  CC: Community college; U: University 
‡ Generic titles 
*As self-reported 

 

 

Problems 

The problems used in this study were chosen from a selection of introductory-level 

physics textbooks, or from problems written by the researcher.  Care was taken to ensure that the 

problems selected were of a suitable level of difficulty.  If the selected problems were too easy, 

participants might have perceived the problems as exercises, resulting in automated problem-

solving processes that would contribute little to the investigation (Ericsson & Simon, 1993; 

Someren et al., 1994; Taylor & Dionne, 2000).  On the other hand, if the selected problems were 

too difficult, few participants would have been able to solve them, again leading to protocols that 
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provided only minimal information.  The problems selected were required to be difficult enough 

to be perceived as problems to the majority of the participants in the study, to assure that 

protocols of the solution process provided rich data.  In order to assess the level of difficulty, a 

group of problems selected by the researcher was reviewed by a physics instructor who was not 

otherwise associated with this research.  The instructor was asked to judge the difficulty of the 

sample problems, and to provide an estimate of the percentage of students in his classes who 

would find the problems particularly challenging.  Based on the feedback from the instructor, a 

small group of problems was selected for use in the study.  Through the course of collecting the 

earliest protocols, the researcher ultimately settled on three problems which appeared to satisfy 

the research criterion for appropriate level of difficulty.  These problems were characterized by 

the fact that they required multiple steps and concepts for successful completion of the problem, 

and could be solved with alternate methods.  The problems used in the study can be seen in 

Appendix A. 

Data Analysis 

Videotaped problem-solving sessions were transcribed verbatim, using a line-numbered 

format without punctuation.  Natural pauses, obvious implied punctuations, and obvious changes 

in the nature of the activity carried out by the participants were used for the initial separation of 

lines.  Transcriptions also included non-verbal actions taken by the participants, such as drawing 

diagrams, referring to references, using a calculator, or referring to problem statements.  All 

identifying information was removed from the transcripts, which were labeled with the 

participants’ chosen pseudonyms to help assure confidentiality. 
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The 12 protocols that resulted from the data collection process were first reviewed to 

ascertain the level of success the participants had reached with the problem.  In order to facilitate 

comparisons between participants, only one problem was used for the analysis, even if the 

individual attempted two or three.  All of the participants to whom this applied had completed 

Problem 1 (see Appendix A); since that is the problem that the majority of all participants had 

completed, it was the problem selected from their protocols for inclusion in the analysis. 

The next step was to carry out an initial careful reading of the protocols while referencing 

the written work of the participants.  The goal was to ascertain where students made mistakes, a 

task which was not unlike an instructor grading an exam.  Once an error was noted, a 

determination was made as to the nature of that error, with errors categorized as primarily 

procedural, mathematical or conceptual.  Because this step required a certain level of judgment 

and inference on the part of the researcher, three protocols were provided to a physics instructor 

not otherwise associated with this research for verification of the error categorization.  In all 

three cases, the judgments of the reviewer were in agreement with those of the researcher.  The 

protocols were then divided into three groups: Group A, whose members made primarily 

procedural/mathematical errors; Group B, whose members made primarily conceptual errors; 

and Group C, whose members made no errors. 

Once the nature of the errors was determined, the protocols were reviewed again, and the 

basic activity being carried out by each individual was noted.  The goal of this analysis was to 

determine if the members of each of the groups had any problem-solving characteristics in 

common.  At this level, no attempt was made to interpret the actions of the participants.  It was 

literally a listing of steps taken, including such actions as reading the problem statement, drawing 
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a diagram, writing an equation, and so on.  Because the majority of the steps noted were 

universally carried out by all participants, a second pass was made through the protocols to note 

the context and manner in which the actions took place.  After completing the step analysis for 

each participant, a list of the characteristics of each protocol was created.  Included in this list 

were such items such as whether or not the participant checked his or her work, stated goals or 

unknowns, referred to formula sheets or books, and so on. 

An initial coding scheme based on the McGinn and Boote (2003) model of problem 

solving was then used to code the transcribed protocols.  Initial coding categories included the 

four first-level factors identified by the model: categorization, goal interpretation, resource 

relevance, and complexity.  The second-level factor, stabilization, was used as a fifth category.  

An additional category for actions and verbalizations not related to problem solving was 

included.  Each of the categories was clarified by use of conjectured prototypical statements that 

would be coded within that category (see Appendix D).  The coding scheme was tested on three 

protocols selected at random from the pool of transcribed data, to determine if the identified 

categories were sufficient to fully code the protocols.  To test the reliability of the coding 

scheme, a second coder was asked to code the same three randomly selected protocols, and the 

inter-coder reliability factor, Kappa, was determined. 

When coding was complete, the coded protocols were analyzed within the framework of 

the stabilization model.  Think-aloud methodology can be applied from two perspectives: theory 

verification or theory building.  This investigation had aspects of both perspectives.  Because the 

stabilization model is new, there was an aspect of using the data to build and modify the theory.  

Yet at the same time, most aspects of the model have been previously identified in the research 
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literature as being important to the problem-solving process, so the analysis also included an 

aspect of verification, assuring that those previously identified factors fit within the framework 

of the stabilization model.  The goal of this portion of the analysis was to determine if the 

majority of protocol fragments were found to be coded within the context of the model.  If so, the 

implication is that the model is applicable to the problem-solving experiences of the participants.  

If, on the other hand, a large portion of the protocol fragments were not coded, the results would 

suggest that the model is inadequate.  Segments of the protocol that could not be coded 

correspond to cognitive processes or sub-processes that are not explained by the model, thus 

suggesting that a modification of the model is required.  According to Someren et al. (1994), 

there are three possible reasons for deviations between the coded protocols and the model to 

which they are compared.  First, the protocols might show processes that are not predicted by the 

model, suggesting that it is incomplete.  Second, the model might predict processes that are not 

seen in the protocols, suggesting that the model overspecifies the process it is intended to 

describe or that an aspect of the model is invalid.  Third, the protocols may show processes in a 

different order than predicted by the model.  This third possibility is not applicable to the 

stabilization model, as it specifically excludes step-by-step processes except in the case of 

exercises.  The analysis of the protocols in this study was carried out with the understanding that 

there were two possible explanations for a small number of deviations from the model.  The first 

possibility is that the model, while basically applicable, needs minor adaptation.  This possibility 

corresponds to a generalization of the first two interpretations by Someren et al.  The second 

possible explanation is that the minor deviations are a result of individual differences within the 

problem-solving process rather than a global failure of the model.  Ideally one would like such 
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individual differences to fit within the framework of the model, and realistically it is probably 

not possible to distinguish between the two alternate explanations. 

 

Limitations and Assumptions 

The primary assumptions for this study were the assumptions associated with the use of 

verbal protocol data.  First, it was assumed that verbal behavior is recordable behavior that can 

be observed and analyzed like any other behavior.  Second, it was assumed that the participants 

in the study were actually verbalizing the cognitive processes that they were attending to during 

the problem-solving process; in other words, we trusted the verbal reports.  This is essentially an 

empirical issue, in that the verbal reports could be validated with other recorded information, 

such as the videotapes and written solutions.  Overriding both of these assumptions is 

information-processing theory, which places constraints on the cognitive processes that are 

verbalized.  Fundamental among these is that cognitive processes can be described in terms of 

the sequences of information processes that the participant attends to during the course of the 

problem solution.  Other assumptions included that the information verbalized was the 

information that was under immediate attention in working memory, and that information 

retrieved directly from long term memory without intermediate processing was not available for 

verbalization (Ericsson & Simon, 1993).  Processes that were automated would fall into this 

category.  It can also be expected that not every thought was recorded, primarily because the 

process of verbalizing thoughts takes longer than simply thinking those thoughts.  Estimates 

suggest that under the very best conditions information can be obtained every second for verbal 
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data, while the information processes that are taking place may only be in the range of a few tens 

to a few hundreds of milliseconds long (Larkin et al., 1980a).  This means that some level of 

inference was required as the verbal protocols were reviewed.  The use of videotaping and post-

session interviews helped reduce the level of inference required, and allowed for validation with 

the participant when necessary (see, for example, Taylor & Dionne, 2000). 

The study also had limitations.  As with any verbal protocol study, the large time 

commitment necessary to transcribe, code and analyze the protocols limited the amount of data 

that were used.  In addition, many interpersonal differences in the cognitive processes 

undertaken by the participants were expected to be, and were, observed.  While it was expected 

that all participants in the study would be novices in the area of physics problem solving, it was 

also expected that there would be considerable variation in ability.  Each of these factors limits 

the extent to which the results of the study can be generalized. 

An additional limitation of the study is that it did not test the social resource aspect of the 

model.  Examples of social resources would be the interactions between students as they work on 

problems together, or the interactions between a student and a professor.  This study focused on 

the actions and strategies carried out by single individuals; to investigate social interactions as 

they relate to problem solving would require the observation of dyads or triads as they work 

together to solve a problem, or of in-field interactions between professors and students.  Such 

observations add a level of complexity to the analysis that is beyond the scope of this study.  

This is not to say these interactions should not be studied, as socially-situated cognitive theory 

suggests that social interactions are a critical aspect of learning.  Likewise, the study did not 

address motivational, emotional, or epistemological factors related to problem solving.  In the 



 53

domain of physics, investigations of physical phenomena are often carried out moving from the 

simple to the complex.  By understanding the basic underlying principles, we have a foundation 

upon which to build understanding of the nuances and perturbations that occur in more complex 

systems.  The same argument can be applied to building understanding of problem solving in 

physics.  If an initial test of the stabilization model shows that the model is applicable to 

individual students’ problem-solving experiences in relation to their primarily cognitive actions, 

the groundwork would be laid for future investigations of applicability of the model to situations 

in which problem solving involves social resources.  Additional studies could then investigate 

emotional, motivational and epistemological issues, which are perhaps best investigated outside 

of actual problem-solving activities. 

The level of expertise of the participants used in the study is an additional limitation.  

Ultimately the goal is to find a model of problem solving that is applicable to all levels of 

expertise.  The challenge for any model is not to describe the organized, highly automated 

behavior of experts, but rather to describe the less organized, highly variable behavior of 

novices.  If a general model of problem solving can be found to apply to the problem-solving 

behavior of novices, the next logical step would be to test the model on experts.  Clues to the 

applicability of the model to more experienced novices could be inferred from the results of this 

study, as it is expected that any group of novices will contain persons with varying degrees of 

problem-solving ability.  If the model applies to the problem-solving experiences of more expert-

like novices as well as to those who struggle with problems, it would suggest that the model 

could be extended into the realm of expert behavior.  This is not, however, to suggest that the 
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results of this study could be generalized to expert behavior; rather, it suggests the possibility of 

further investigations involving expert problem solvers. 

 

Confirmation Bias 

Confirmation bias is the tendency to search for, notice, or place more weight on evidence 

that supports one’s hypotheses, while at the same time ignoring or giving less credence to 

evidence that is counter to those hypotheses (Nickerson, 1998).  It is a form of selection bias 

which leads one to collect only such evidence that supports the desired outcome of a study.  In 

effect, confirmation bias results in one seeing what one is looking for and what one expects to 

find.  Confirmation bias appears to be a normal human tendency, and as such care must be taken 

to establish conditions to avoid it.  The primary way that this is done is by application of the 

standard rules of the scientific method; that is, researchers should seek evidence to attempt to 

disprove their hypotheses rather that to confirm them. 

Nickerson (1998) suggests that the tendency to find what one is seeking is particularly 

strong when an investigation involves taxonomies, or categories.  If a group of categories exists, 

the tendency is to view information obtained in an observation in terms of those categories.  

Given that the factors that make up the stabilization model are in effect categories of actions, 

special care had to be taken in this study to avoid confirmation bias.  Nickerson provides several 

examples of cases within the domain of science in which repeated presentation of evidence 

contrary to the hypothesis induced change, even when the researcher held strong belief in his or 

her hypothesis.  Thus, to reduce the possibility of confirmation bias in this study, the analysis 
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was carried out with an active search for data that did not support the applicability of the 

stabilization model.  The focus of the analysis on clearly identifying the actions taken by the 

participants prior to attempting to apply the stabilization model was helpful in that respect.  The 

use of an independent reviewer to carry out analysis and coding on several randomly selected 

protocols also served to reduce the possibility of confirmation bias. 
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CHAPTER FOUR: PRELIMINARY ANALYSIS AND CASE STUDIES 

The primary research question for this study was “To what extent does the stabilization 

model describe physics students’ problem-solving experiences?”  In order to adequately address 

this question, we must first understand the actions taken by physics students as they attempt to 

solve problems.  Several layers of analysis were required to attain a level of understanding which 

would allow testing of the model at a reasonable level of confidence.  In this chapter the results 

of the preliminary analysis of the protocols will be described in a stepwise fashion.  This 

preliminary analysis was focused on obtaining descriptions of the actions taken by the 

participants, with no attempt to interpret those actions in light of the stabilization model.  

Excerpts from analyzed protocols will be provided, so that the reader can more fully understand 

the steps taken.  After the actions taken by the participants are fully characterized, those actions 

will be interpreted in a way that integrates the retrospective debriefing interviews with the 

protocol data.  Finally, case studies will be provided to illustrate the primary findings in relation 

to the actions taken by the participants. 

 

Initial Analysis 

Sixteen participants completed problem-solving sessions, using five different problems.  

Three of the participants attempted two problems, and one attempted three.  It became apparent 

early in the process of gathering data that two of the original problems were not appropriate for 

the study.  The first problem involved only one concept for its solution, and was quickly 

completed by the two participants who attempted it.  According to the requirements for the 
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collection of verbal protocols, a problem that is too easy results in protocols that give little 

insight into the problem-solving process (Ericsson & Simon, 1993; Someren et al., 1994; Taylor 

& Dionne, 2000).  Because the problem appeared to not fit the criterion of appropriate level of 

difficulty, it was eliminated from the pool of potential problems.  The participants who had 

solved the deleted problems had also completed an alternate problem, so the deletion of the 

problem did not result in deletion of the participants.  The second problem was used only once, 

and was found upon review to require the use of a concept not generally covered in a typical 

introductory level course.  It too was deleted from the pool of questions.  The remaining three 

problems can be seen in Appendix A.  Twelve participants attempted Problem 1, three attempted 

Problem 2, and two attempted Problem 3. 

The protocols of four of the participants who completed problem sessions were not 

included in the final analysis.  The requirements for the collection of verbal protocol data include 

the stipulation that the collection of the data put little or no additional cognitive load on the 

participant beyond that required for the problem-solving attempt (Ericsson & Simon, 1980).  

Two of the participants explicitly expressed considerable difficulty in translating thoughts from 

their native language to English for verbalization.  The process of translation was clearly placing 

additional cognitive load on the individuals during the problem-solving process.  Because of this, 

it was determined that the conditions under which their protocols were collected did not meet the 

requirements for valid verbal data, and their protocols were not included in the analysis.  The 

third individual attempted two problems during his problem session during the course of forty 

minutes, and was unable to move beyond writing down basic given information.  The 

expressions of self-criticism that made up his protocol would make an interesting psychological 
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study, but provided no insight into the problem-solving process.  Because the individual did no 

problem solving, his protocol was not included in the analysis.  The protocol of the fourth 

individual was not included in the analysis because of technical difficulties during the collection 

of the protocol. 

The remaining twelve protocols were first reviewed to ascertain the level of success that 

the participants had reached with the problem.  This first review resulted in three groups: one 

which was characterized by the fact that they ended the problem session before reaching a 

solution; a second group which contained participants who completed the attempted problem but 

with errors; and a final group which included those individuals who successfully completed the 

problem with the correct answer.  The second group was by far the largest, containing nine 

individuals.  One participant did not complete his solution, and two completed their problems 

with a correct solution. 

The next step was to carry out an initial careful reading of the protocols while referencing 

the written work of the participants and their comments during the post-session interviews.  

Taylor and Dionne (2000) have suggested that the use of retrospective debriefing data can be 

used to verify and clarify the researcher’s interpretations of the think-aloud protocols in 

situations in which the researcher must draw inferences from the data.  In order to take maximum 

advantage of the information gathered in the debriefings and to facilitate further analysis of the 

protocols, the statements made by participants during the interviews were tabulated next to the 

sections of the protocols to which they applied.  Tabulation of post-session interview questions 

and answers next to the sections of the protocols to which they referred allowed for cross-

referencing during the second level of analysis in situations where additional information was 
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needed in order to interpret the actions taken by the participant.  The primary result of this 

second reading was to find that there were two broad sub-categories within the group who 

completed the problem with errors: those participants whose errors were a result of conceptual 

difficulties, and those who made primarily procedural and/or mathematical errors.  This 

observation parallels that made by Chi, et al. (1989), who found that errors occurred either as a 

result of math errors or of what they called inference errors, which were essentially references to 

physics concepts applicable to the problem.  In most cases, determination of type of error was 

inferred easily from the actions and verbalizations of the participants.  For example, after 

carrying out some initial calculations, Betty realized she had forgotten to take into account the 

force of friction: 

 “but I have to account for friction… friction not going to count on this [referring to 
diagram] so it’s going to oppose the motion so the force the motion is like this [indicating 
direction with pencil] this will have… so the force backwards… the unintelligible 
energy… is going unintelligible up to a point… how does friction come in… so kinetic 
energy minus the force of friction is going equal to the potential energy… it should…” 

 
Betty proceeds to write the equation she verbalized, subtracting the force of friction from the 

kinetic energy, and completes the problem.  Her conjecture that it is the force of friction that is 

subtracted from the kinetic energy rather than the work done by friction has the appearance of a 

conceptual error.  In comparison, Arnold also applies energy concepts to the solution of his 

problem, but to a section of the problem with no friction: 

 “[writing an equation] one half m v squared… equals m g h… cause that’s where its 
coming from… all right… that cancels that [canceling mass terms]… v equals the square 
root of two g h… all right h in this case is going to equal… sohcahtoa …we have 
opposite over hypotenuse sine three hundred sine five degrees… so the change in 
elevation is twenty six point… one meters… so the change in velocity… square root of 
two… two times nine point eight times twenty one point six… change in velocity is 
going to be twenty two point six meters per second so final velocity is the initial plus the 



change which is going to be forty four point six meters per second before it goes up the 
incline…” 

 
Arnold verbalizes that he is calculating a velocity, takes the square root of that velocity, and adds 

it to the initial velocity.  In other words, he is treating the velocity in his equation as a ∆v, and in 

fact later refers to it as a change in velocity and writes: 22.6 m
sv∆ = .  However, the correct 

expression is not 21
2 mv  as he has written, but rather ( )2 2 21 1 1

2 2 2
2

f i f iK mv mv m v v∆ = − = − .  

Arnold appears to understand the physical principles he needs to solve the problem, but makes an 

error when he applies those principles.  One might argue that it was a conceptual error in his first 

statement that caused his difficulties, since it ignores the initial kinetic energy that should be with 

the potential energy.  However, Arnold appears to understand the transfer of potential energy 

into kinetic energy – “cause that’s where it’s coming from” – and he both verbalizes and writes 

∆v, suggesting that his original intent was to calculate the change in velocity.  As a result, 

Arnold’s error was categorized as primarily procedural/mathematical. 

The example of Arnold’s error illustrates one of the difficulties of carrying out this 

analysis.  Occasionally it was not clear whether an error was conceptual or 

procedural/mathematical.  Four of the five participants who exhibited conceptual difficulties 

appeared to have partial conceptual understanding, suggesting a transitional stage in developing 

understanding (Maloney & Siegler, 1993; Mildenhall & Williams, 2001).  For those participants, 

it was often difficult to determine the difference between a procedural difficulty and a conceptual 

error.  Sometimes those differences were clarified in the post-session interviews, such as when 

Beth described why she multiplied an expression for gravitational potential energy by the 

coefficient of friction (“because that’s where the friction is”).  Other times the determination had 
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to be made from the context of the protocol itself.  Taken out of context, Arnold’s first statement 

might be categorized as a conceptual error.  Similarly, participants would occasionally make 

both conceptual and mathematical errors simultaneously at a given point in the solution process.  

This required the researcher to take the error made in the context of the statements and actions 

taken by a participant, and to make a judgment as to the primary difficulty experienced by the 

participant.  The type of error inferred by the verbalizations and actions carried out could often 

be supported by statements made in the retrospective debriefings.  Because of the difficulty of 

judging the type of error, three random protocols in which the participant made errors were 

provided to a second physics instructor who was not otherwise associated with this research.  

The classifications made by the independent reviewer were in all cases in agreement with the 

judgment of the researcher. 

Because the type of errors made seemed to be an important difference in the protocols of 

the members of the second group, the group was divided into two subgroups: Group A, whose 

members made primarily procedural and/or mathematical errors, and Group B, containing those 

who made primarily conceptual errors.  It was also determined that the participant who did not 

complete his problem had considerable conceptual difficulties.  As a result, that participant was 

included in Group B.  Finally, it was noted that one member of the original group of participants 

with errors had completed the problem correctly down to the next to the last line, at which point 

he incorrectly copied a number from his calculator.  Because his solution would have been 

correct if not for that minor error, he was moved to Group C with the other participants who had 

completed the problems correctly.  This inclusion of a participant with a minor error in the group 

with no errors is in agreement with steps taken by other researchers in the analysis of student 
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problem solving (Leone & Gire, 2005).  The final composition of the groups used for further 

analysis is seen in Table 2, where it is seen that for easy reference each participant has been 

assigned a pseudonym which corresponds alphabetically to the group to which they are assigned. 

 

Table 2: Group Definitions and Membership 

Group Defining Characteristic Members 

A Mathematical/Procedural Errors Alex, Andrew, Arnold, Art 

B Conceptual Errors Ben, Beth, Betty, Bob, Brittany 

C Problem completed correctly Carl , Chuck, Cory 

 
 

The next step was to see if the members of the three groups had any problem-solving 

characteristics in common.  The protocols were carefully reviewed, and the basic activity being 

carried out by the individual at each step was noted.  No attempt was made to analyze or 

interpret the actions of the participants at this point.  Instead, the listing of steps included such 

things as reading the problem statement, drawing a diagram, writing an equation, and so on.  

This process is illustrated by the protocol of Beth, which can be seen in Appendix E.  To verify 

an accurate identification of the steps taken by each problem solver, the step analysis was also 

carried out by an independent reviewer on a randomly selected protocol from each group.  The 

steps listed by the reviewer were largely in agreement with those listed by the researcher, even 

when different terminology was used.  For example, the researcher listed the following steps 

taken by Alex at the beginning of his protocol: refers to problem statement, gathers info, and 

categorizes.  For the same segments, the reviewer listed reads problem, underlines givens, and 

decides on momentum. 
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The step analysis of the protocols revealed that there were a number of actions that were 

universally carried out by all the participants in this study.  These steps included reading the 

problem statement, drawing diagrams, writing equations, and using a calculator.  Other steps 

were not universal, but were carried out by the majority of participants, such as stating the goal 

or unknown, checking work, and stating the type of problem.  Because there were several steps 

that were almost universally carried out by the participants, the important part of the analysis was 

not that they occurred, but rather the manner in which they occurred.  Was a diagram used for the 

construction of equations that helped support the solution to the problem?  Or was the diagram 

simply used as a method of illustrating the quantities given in the problem statement?  It is the 

answers to questions such as these that characterize the three groups of protocols. 

 

Group Characteristics 

After completing the step analysis for each participant, a list of the characteristics of each 

protocol was created.  Included in this list were such items such as whether or not the participant 

checked his or her work, stated goals or unknowns, referred to formula sheets or books, and so 

on.  We continue with the example of Beth by showing the characteristics of her protocol in 

Table 3. 

 



 64

Table 3: Characteristics of Beth's Protocol 

Implicit categorization of problem 

Checks work 

No explicit statement of goal(s) 

Makes primarily forward progress 

Does not refer to formula sheet, book or problem statement during solution 

Writes both symbolic and numeric equations; solves only numerically 

Makes occasional reference to her diagrams 

Diagram is not fully used to construct the equations used in the solution 

Pauses at several points to consider her approach to the problem 

 
 

Several of the characteristics shown in Beth’s protocol require further explanation.  

Categorization has been shown to be an important step in problem solving (Chi et al., 1981; Jong 

& Ferguson-Hessler, 1986; Savelsbergh et al., 2002; Snyder, 2000).  At this level of analysis, no 

attempt was made to determine the basis from which categorization took place; instead, the 

analysis focused simply on determining whether or not some form of categorization took place.  

Participants in this study who categorized the problem they attempted did so in one of two ways.  

The first was an explicit statement of the type of problem, as exhibited in the protocol of Chuck: 

 “all right… so maybe we should do this from an energy perspective I think we should say 

that… this part where Jill goes into the jumps in the sled could say that… momentum is 

conserved so…” 

Chuck has clearly and explicitly stated how he will approach the problem, and he carries through 

on the categorization in his solution.  The second way in which categorization was exhibited was 

through the process of selecting a solution method.  Participants did not explicitly state the type 
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of problem, but started solving the problem with a chosen approach and continued with that 

approach throughout their solution.  This form of implicit categorization is seen in Cory’s 

protocol, when he says “OK… so first we have the truck… which is going down slope it has the 

weight force… do the free body diagram of the truck…” and then follows up a short time later 

with “f net on the x axis equals the mass times the acceleration.”  Although Cory does not 

explicitly state “this is a Newton’s second law problem,” he draws a free body diagram, applies 

the mathematical statement of the second law, and carries through on this approach to the end of 

the problem.  This inference is supported in the post-session interview, when he states that he 

“started drawing the free body diagram” and that “the force way of looking at it” would be the 

best approach. 

All the participants in this study drew diagrams as part of their solution process, but how 

they used those diagrams varied considerably.  Some participants drew a diagram at the start of 

their solution, but did not refer to it at all during the solution process.  Other participants referred 

to the diagram to show directions of motion, to indicate components of displacement, or to 

determine angles.  At the highest level of use, the diagrams were used to help construct the 

equations that were used to solve the problem.  This was evidenced by direct correspondence 

between the quantities labeled on the diagram and the quantities included in the equations, by the 

participant directly referencing the diagram as the equations were written, and was supported by 

the verbalizations of the participants.  Use of diagrams to construct equations was found to be a 

universal characteristic of the Group C participants, and by the Group A participants, although 

not as obviously so.  Similar observations were noted by Rosengrant et al. (2005), who found 
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that the most successful problem solvers were able to use their diagrams to help construct the 

mathematical representations (equations) used to solve the problem. 

Another characteristic of most of the protocols, including Beth’s, is one or more pauses in 

the solution during which the participant would consider his or her approach to the problem.  The 

interlude during which the participant considers the approach is not a pause in the strictest sense 

of the word, since there appears to be active processing taking place.  Perhaps the best way to 

describe this pause would be a search for, or verification of, an understanding of the problem.  It 

is a rather complex characteristic, involving a number of activities.  During a pause, the 

participant might consider the type of problem, what equations might be used, or whether an 

approach other than the one currently being used might be better.  Sometimes the search would 

lead a participant to refer to a book to consider an example or look for an equation, while at other 

times he or she might review what has already been done to see if the physical situation warrants 

the approach taken.  In the case of Beth, a significant amount of time is spent in the search for an 

approach to the problem: 

 “ok so I know its initial kinetic energy is that going to help… no it’s not it doesn’t matter 
I know its initial velocity then it slides down the slope for this given period of time ok so 
[writing an equation] velocity equals distance times time I don’t know time… I do know 
d I do know v I can find t ok… traveling down the slope does that matter… no… it 
shouldn’t then it goes up then it’s going back up it’s going back up the ramp... does that 
matter kinetic ener... should I use kinetic energy I already know v [referring to 
diagram]… I already know v the velocity’s changing I have to find how far along if I 
know the vel… the velocity that’s not going to help me…he applies the brakes wait he 
applied the brakes velocity’s changing… (sighs) applying the brakes doesn’t do… 
because his truck starts sliding he doesn’t actually slow down so velocity is still the 
same…” 

 
During this interlude Beth appears to be trying to make sense of the problem as she refers to her 

diagram, states her unknown quantity (“I have to find how far along…”), and refers to her own 
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embodied knowledge, all while questioning herself about which solution method she should use 

(“should I use kinetic energy…”).  It is interesting to note that the members of Group C, who 

solved the problem correctly, spent only minimal, if any, time considering the approach they 

would take.  In contrast, the members of Group B, who exhibited conceptual errors, in general 

spent a great deal of time searching for an understanding that would lead to an approach to the 

problem.  Observations such as this led to the justification for determining the characteristics of 

each participant’s actions. 

The reason for determining the primary characteristics of each participant’s actions was 

to determine whether or not there was a common list of characteristics for each of the groups of 

protocols.  While there was considerable overlap in the actions taken by the participants 

regardless of their success with the problems, there were certain features that seemed to be more 

characteristic of each of the groups.  These group characteristics are seen in Table 4. 
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Table 4: Group Problem-Solving Characteristics 

Group Characteristics 

A 

Frequent checks of work 

Steady forward progress 

Diagrams used to construct the equations used 

References to formula sheet or book for checking equations 

Occasional to frequent pauses to consider approach 

B 

Infrequent or no checks of work 

Occasional backward progress (starting new approach or ‘going back’) 

Diagrams not used consistently to construct the equations used 

Frequent references to formula sheet or book for solution approach 

Frequent pauses to consider approach 

C 

Frequent checks of work 

Continual forward progress 

Diagrams used extensively to construct the equations used 

Few if any references to formula sheet or book 

Few if any pauses to consider approach 

All groups 

Explicit or implicit categorization of problem 

Explicit or implicit statement of goal(s) – Group C all explicit 

Use of both symbolic and numerical equations 

Group A: Errors in solution; concepts ok 
Group B: Errors in solution; concept errors 
Group C: Solution correct 

 

Although the primary purpose of this study was to test the applicability of the stability 

model of problem solving, a secondary purpose was to determine at what points in the problem-

solving process students have difficulties.  If students making similar categories of errors have 

similar characteristics, that information could be used to inform the development of a framework 

for physics problem-solving instruction.  It is important to note, however, that within the groups 

there was still variation in the actions undertaken by the participants.  The group characteristics 

should be considered as broad descriptions within a continuum of problem-solving behaviors.  
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Not every Group A participant, for example, exhibited exactly the behaviors listed as 

characteristic of Group A.  However, each Group A participant had more in common with other 

Group A participants than he or she did with members of the other two groups. 

Several features of the group characteristics are worthy of further discussion.  First, there 

were several characteristics that were found in the protocols of all participants.  All participants 

in this study drew one or more diagrams as part of their solution.  This is not surprising given 

that the use of diagrams, including sketches and more domain-specific diagrams such as free 

body diagrams, are an integral part of physics instruction.  Recent work in the area of multiple 

representations has raised questions about the efficacy of diagrams in helping students become 

better problem solvers.  Rosengrant et al. (2005) found that while use of a free body diagram or 

other diagrammatical representation was correlated with a higher probability of reaching a 

successful solution, use of a diagram did not guarantee success.  In fact, they found that in many 

cases an incorrect diagram was worse that not using a diagram at all.  As noted by Larkin and 

Simon (1995), it is not enough to draw a diagram; the diagram must be correct, and one must 

have the procedural knowledge required to connect that diagram to both relevant physical 

principles and the mathematics required for the solution. 

Another characteristic found in the protocols of all participants was the explicit or 

implicit statement of the goals or subgoals of the problem.  This is an interesting feature, given 

that the problems used in the study were in the format of typical textbook problems with clearly 

stated goals; that is, they included statements such as “how far” or “how fast” as part of the 

problem statement.  However, all of the problems required more than one step for their solution, 

so that there were subgoals that must be attained in order to reach a final correct answer.  The 



 70

recognition of a goal or subgoal has been found to be an important factor in problem-solving 

success (Sweller, 1983).  When a goal is recognized, it acts as a control mechanism for the 

problem-solving process, guiding the problem solver in the choice of solution method.  This 

would be especially important for novice problem solvers, who have been found to frequently 

use means-ends analysis or search procedures to solve unfamiliar problems (Chi et al., 1982; 

Dhillon, 1998; Heyworth, 1999; Larkin et al., 1980a; Savelsbergh et al., 2002). 

Although all participants made some sort of statement of goal or subgoal, the manner in 

which the statements were made varied according to group.  Group C participants, for example, 

all made at least one explicit statement of a goal during their problem statement, as seen in the 

protocol of Cory: 

 “Now we’re gonna try to find the final velocity… ca…because this velocity here 

[referring to diagram] but we’re trying to find the final velocity at the bottom…” 

In this case Cory is referring not to the final goal of the problem, but rather a subgoal that he 

must reach in order to continue with his solution.  In contrast, most of the goal-related statements 

made by the members of Groups A and B tended to be embedded in other verbalizations, if they 

were made at all. This type of implicit statement is illustrated by Brittany as she tries to 

determine what solution method she will use: 

 “he’s traveling down the mountain so gravity’s pulling down… how far does the truck 

go… before coming to a stop… maybe I want to use kinematics on this…” 

Brittany appears to be making a statement of the ultimate goal of the problem, but it seems to be 

made almost as an aside, as she is reviewing the physical characteristics of the problem and 

considering possible approaches to the problem. 
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An unexpected feature of the protocols was that nearly all participants made either 

explicit or implicit categorizations of the problem they attempted.  There is a large body of 

literature suggesting that novice problem solvers are generally unable to make an appropriate 

categorization, or that they make categorizations solely on the basis of the surface features of the 

problem (Chi et al., 1981; Chi et al., 1982; Cummins, 1992; Larkin et al., 1980a; Medin, 1989).  

Despite the many studies showing the difficulties that novices have with categorization, there is 

some evidence suggesting that novices can make appropriate categorizations and statements 

about applicable physical principles (Chi et al., 1989; Savelsbergh et al., 2002).  This does not 

imply that they know how to proceed once they make an appropriate categorization, since 

categorization must be coupled with the necessary structural and procedural knowledge to 

complete the problem.  The actions of the participants of this study seem to support this notion.  

However, caution should be applied in interpreting the protocols in this way.  Only seven of the 

12 participants made explicit statements of categorization, such as “collision that means I want to 

use momentum to solve this” or “so then we probably need to use Newton’s second law in order 

find… ah the acceleration.”  One participant provided no indication that the problem was 

categorized, while for the remaining four participants categorization was implied by the actions 

taken during the solution process.  This would include, for example, statements such as “do the 

free body diagram of the truck” followed by calculations of net force, or by observing that the 

participant started to solve the problem from an energy perspective and carried that choice 

through to the solution of the problem.  It is unclear whether this implicit categorization would 

satisfy the criteria required as indication of categorization as referenced in earlier studies, or if 

the participants, when asked to state a category or type of problem, would have been able to do 
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so.  There is also only minimal evidence as to the basis used by the participants to make their 

categorizations. 

 

Case Studies 

The characteristics of each group are best understood in the context of the protocols 

themselves.  In order to provide the best possible understanding of the problem-solving 

experiences of the participants, this section will present an exemplary protocol from each of the 

three identified groups.  In addition, an exceptional case from Group B will be provided as a 

counterexample.  The protocols will be integrated with explanations provided by the participants 

in the retrospective debriefings, and with commentary including description and analysis.  While 

reviewing the exemplary cases it is important to recognize the interpersonal differences in the 

actions taken by the participants, and to consider the general characteristics of each group.  No 

single participant can epitomize every feature of the general characteristics of each group, but 

when taken as a whole it becomes clear that the members of a given group have more in common 

with each other than with the members of other groups.  The full partitioned protocols for each of 

the exemplars, including their written work, can be found in Appendix F. 

The case studies were chosen by carefully reviewing the protocols, and selecting a 

participant whose actions best exemplified the group characteristics identified in the initial 

analysis.  As previously noted, individual differences in problem-solving approaches preclude 

any single participant as having exactly the characteristics of the group; however, care was taken 

to select the individual that was most representative.  The cases which follow include large 
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segments of the verbalizations of the participants, interspersed with commentary to orient the 

reader to the features and evidence used to characterize the actions of the problem-solvers.  

Segments of the post-session interviews are also included when the comments made by the 

participant in the interview serve to further clarify the actions taken, or to support the inferences 

made in relation to the actions.  Each case study is followed by a brief analysis in which the 

general features of the protocol are discussed. 
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Group A: Alex 

Alex, who works on Problem 2 (see Appendix A), begins by reading the problem 

statement out loud, underlining the given values as he encounters them.  As he reads, it appears 

that he is also interpreting the problem.  This assumption is supported by the fact that he makes a 

categorization during this first read-through of the problem: 

 “mmm let’s see… Jack and Jill are sledding uh-oh angle… on a snow covered hill ok 
that’s important… let’s see friction constant… kinetic friction ok it’s sledding down a 
snow covered hill that is inclined here’s where I get my angle at an angle of twenty 
degrees to the horizontal what’s that mean… I guess that means the x axis… Jill mass ok 
we got mass runs at four meters per se… meters per second oh that’s a velocity across the 
top of the hill landing on a five kilogram sled which is at rest ooo… collision that means I 
want to use momentum to solve this…which at rest at the very edge of the hill her brother 
Jack stands at rest a distance of fourteen point six meters down the slope as Jill pa Jill 
passes Jack thirty meters he jumps onto the back of the sled oop two problems… eh two 
collision problems looks like it…” 

 
As Alex reads the problem statement, he categorizes the situation as first one, then two 

collisions, and notes that he will use momentum to solve the problem.  He also appears to be 

making an initial assignment of a coordinate system.  However, his comment about the x axis 

foreshadows the procedural difficulties he will have later in his solution.  Alex proceeds by 

listing the quantities given in the problem statement.  Although Alex has verbalized an initial 

categorization of the problem, it does not appear that he has attained a complete understanding of 

the problem situation or of how he should proceed with his solution.  He seems to struggle with 

the details of the procedures he is utilizing, and expresses doubt about his approach: 

 “let’s go ahead… hmmm… what do I need to do… I need to figure out the x right this is 
going to be a two dimensions it’s going to be an x dimension and a y dimension now 
what have I got here what what do I have here I have an angle here… twenty degrees and 
the radius total distance is forty meters ok… so what I need to do I need to figure out… I 
need to figure out I don’t know what why I’m figuring this out but I think that it’s going 
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to be important I need to figure out… what the actual distance are in the x and the y… ah 
dimensions so…let’s make a ninety degree angle… ninety degrees… degrees… so y is 
gonna be the sine… and x is gonna be the cosine… so we know ok we take the radius and 
the radius is forty meters…” 

 
Here we see the beginnings of Alex’s procedural difficulties.  He knows the problem involves 

momentum, and states this knowledge several times during the solution process.  But his 

approach suggests that he is unsure of how to handle the fact that the collision is taking place on 

an incline.  The motion takes place entirely along a line, but the presence of the slope prompts 

Alex to treat the problem as two-dimensional.  Even after starting this process, he is unsure about 

whether or not it is correct.  In the post-session interview his uncertainty about this approach 

becomes even more evident.  When asked about his comment “I don’t know what why I’m 

figuring this out but I think that it’s going to be important” he states: 

 “I was thinking I realized you know what I’m probably gonna need this in a free body 
diagram somewhere because it’s in the free body diagram that I dissect the x and the y… 
and I knew with an angle as soon as I see an angle I go I hate angles because I have to 
think I have to sit there and I have to use trigonometry to figure out what the x and the y 
value is for the forces and I don’t like to do that so but… you know I said well you know 
what I might as well get that started I might as well figure this out and I’ll worry about it 
later…” 

 
Alex has at this point completed his initial diagram and listing of the quantities given in 

the problem, as seen in Figure 1. 



Figure 1: Alex's First Sketch 

 
After completing his diagram, Alex goes on to calculate the components of the displacement 

down the incline.  He evaluates his answer for reasonableness, and then refers to his book for 

momentum formulas: 

 “we know that the momentum’s going to be conserved so I know… [writing equation] 
momentum of Jill plus momentum… the sled… is going to equal the momentum of Jill 
on the sled ok what’s momentum mass times velocity of Jill… so mass mass Jill velocity 
of Jill times plus mass of the sled times the velocity of sled equals the… mass of Jill and 
the sled so it’s I guess that’s gonna be four [referring to the subscripts on the symbols] 
Jill on sled it’s gonna be four the mass of that’s gonna be fifty five… and… what’s gonna 
be the velocity… well let’s figure that out oh this is gonna be simple…” 

 
At this point in the solution it appears that Alex has settled on an approach to the problem.  He 

seems to believe that from this point the solution will proceed quickly, as evidenced by his 

comment about the ease of solution.  He has not used the components he calculated for the 

positions, but apparently does not think that he needs them.  This interpretation is further 

supported by his comments during the post-session interview, during which he states that he was 

very confident that this was going to be a simple problem: 
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 “I thought it was just gonna be a simple at that point I thought it was going to be a simple 
momentum problem oh I already know most everything I don’t have to think I’ll just 
throw in some numbers into the formula and churn away and I’ll be done…” 

 
After writing his equation for momentum conservation, Alex proceeds to calculate the 

final velocity of the sled and Jill, but then stops to consider the friction. 

 “did I forget… oh I’m forgetting about the coefficient of friction uh-oh… I should have 
known this is this not as easy as I thought it was… oh hold on wait a second no no no no 
no no no friction hasn’t come into play yet…how far down the hill… is Jack… stands at 
rest at a distance of fourteen point ah ok… fourteen point six meters down the slope… all 
right that’s another problem now I have to figure out… how fast the sled is going when it 
gets to Jack…” 

 
After considering the friction, Alex realizes that he has another problem to solve.  He 

recalculates the x and y components of the displacement down this slope, this time using the 

distance between Jack and Jill as the displacement, and moves on to constructing a free body 

diagram, seen in Figure 2. 

 

Figure 2: Alex's Free-Body Diagram 
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It is not clear from his comments why he has decided to do a free body diagram.  In the post-

session interview Alex provides information suggesting that the diagram was an attempt to find a 

solution process: 

 “I started doing this before I truly realized what I was doing it for why I was doing it but 
it was just something that ah it’s it’s like if I get into trouble I run back to the free body 
diagram and the picture rep representation…  so anyway that’s ah so I so I ah I think for 
awhile I was confused I was swimming I was just doing calculations and I didn’t know 
why… and I think it’s even at this point I don’t know what I’m doing it isn’t until I make 
reference to the formulas… it wasn’t until then that I started to feel comfortable with the 
problem at this point I’m just treading water...” 

 
After calculating the combined weight of Jill and the sled, he completes the free body 

diagram.  It is at this point that Alex makes a major procedural error.  The primary difficulty is 

that he draws his coordinate system in a standard vertical-horizontal orientation, instead of with 

the x axis corresponding to the slope.  This choice, while not physically incorrect, dramatically 

increases the complexity of the problem: 

 “we have… force of gravity five hundred and thirty nine newtons downward and we 
know…ok this is twenty degrees this way [drawing slope in quadrant II of coordinate 
system]… and ninety degree angle… that’s twenty degrees… and this angle must be… 
seventy degrees [drawing normal vector]… and we know…  that… what do we know… 
we know that that’s gonna equal to the five hundred thirty nine but how much in the x 
how much in the y this is where I always this is where I always mess up so let’s not try to 
mess up ok let’s think about this now… we know that the radius is gonna equal five 
hundred and no… five hundred and thirty nine newtons ok…” 

 
This approach gives Alex the correct magnitude of the normal force (506.5 N), but his 

interpretation is that it is the component of the normal perpendicular to horizontal ground, with 

an additional horizontal component of 184.4 N.  Further evidence of his belief that the normal 

force is equal in magnitude to the weight is seen when he calculates the friction force using the 

weight of 539 N: 
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 “ok I need the total amount ok it’s the coefficient… friction times the the normal force so 

that coefficient what was the coefficient point one… equals point one… so then point one 

times five thirty nine newtons… ok.” 

Alex proceeds to calculate the x and y components of the friction in his coordinate system.  After 

completing the free body diagram, he seems to lose track of where he is going with the problem: 

 “all right now I’ve got my free body diagram forces… what do I care… what do why did 
I do all that what’s the point… I’m lost what am I doing… ok… time to do a pictorial all 
right pictorial may save me we’ve got a hill… it’s going down twenty degrees… here to 
here… here’s the sled… and Jill… that was a momentum problem we solved that… now 
we have to get to Jack… ok all we have to do to get to is get to Jack once I get to Jack 
then Jack becomes a momentum problem… and then get to the bottom of the hill and 
that’ll be oh my god it’s four problems… oh… this is hard… ok let me think about 
this…” 

 
At this point Alex is realizing the complexity of the task before him.  During the post-session 

interview he states “I’m obviously I’m panicking… I’m realizing that I now have four problems 

to solve…”  He recovers fairly quickly, however, and moves to find an approach to the solution: 

 “well if you find out ah… I need the acceleration once I know the acceleration then I can 
figure out what the velocity is when they get to Jack all right that’s what the free body 
diagram is for second law calculations and of course there’s an angle so I have to figure it 
out in the x and the y directions…” 

 
He proceeds to calculate the x and y components of the acceleration.  After completing these 

calculations, he briefly considers “putting them back together… to get the acceleration in the 

direction of the twenty degrees…” but instead calculates the components of the velocity in the x 

and y directions of his coordinate system.  He still seems unsure of where he is going with the 

problem, and once again verbalizes an attempt to find an appropriate approach to the problem: 

 “did I figure this out right… let me look at the kine you know what let me look at the 
kinematic equations… that’s what that’s what I’m messing up I just wasted all this time 
well maybe not let me think ok… we know that… ok here’s what we need to do… ok 



what am I figuring out what do I need ok it’s a collision problem once we get so we’re 
gonna need the mass and the velocity that’s what I need once I get to Jack how do I 
figure out the velocity… ok I know what the acceleration is… I know what the positions 
are… I know what the… need the final velocity and I know what the initial velocities are 
ok all right… [referring to his calculated values] this is the acceleration in the x 
dimension this is the acceleration in the y direction these are accelerations ok… these are 
velocities in x and y directions all right let me think about this now… where is… ok here 
are the distances these are what I need for the position ok all right here we go we’ll use 
this one…the formula I’m gonna use velocity final squared equals velocity initial squared 
plus two times acceleration of the… x final plus the x initial ah oh ook I need… I I need 
on my pictorial diagram I need a coordinate system…” 

 
Alex draws a sketch, seen in Figure 3, showing the slope and its horizontal and vertical distances 

above his original slope diagram, then uses his chosen equation to calculate the x and y 

components of the velocity of the sled just prior to the second collision.   

 

Figure 3: Alex's Second Sketch 

 

Alex appears to run into difficulty for a short time when he calculates the y component of the 

velocity: 

 “all right take the squ oh no that’s gonna be… an imaginary number… what have I done 
something wrong… acceleration is that a scalar or a vector… it’s a vector… what have I 
done wrong I’ve messed up on the signs again oh… that kills me... signs kill me… is it 
important yes… [long pause]… what am I doing what should I do now I need to I need to 
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go and I need to walk through this and I need to figure out… why it’s not a negative… ok 
let me think about this now… how did I get… point wh how did I get the acceleration… I 
got the acceleration from my free body diagram and the second law pairs… and that 
makes sense because it’s accelerating down right… ok so that’s correct all right now… 
the velocity the velocity should be a negative… ok where’s the velocity how’d I figure 
out the velocity velocity came from here [referring to calculations]… ok… ok… velocity 
I figured out the velocity… I should have used… three hundred forty degrees instead of 
twenty degrees… what would have happened how would that would have looked… if I 
had done that… ok three point six five times the cosine three forty degrees is gonna 
equal… right but… the cosine… what’s going on use the sine sine for the y… negative 
ah ok… that’s where I made my mistake cause it’s going downhill all right now what did 
I use that for what did I use that for… so velocity… it doesn’t matter… it doesn’t 
matter… ok… five here… we have this… well… maybe it’s not important I know it is 
but… I just I gotta keep going ok let me think about this so…” 

 
What Alex actually has done is reversed the initial and final velocities in his equation; however, 

he does not find this mistake until later in the solution.  He proceeds with his solution despite the 

fact that he has not resolved his sign problem.  After referring to the book to see how to put the 

components “back together,” he calculates the magnitude of the final velocity.  After a quick 

evaluation of the magnitude of the answer, Alex proceeds with the solution.  In comparison to 

the first part of the problem, the remainder of the solution goes fairly quickly.  He begins by 

considering the collision between Jack and the sled: 

 “ok now the second part of the problem the third no this is the third part of the problem 

momentum… ok we’ve got Jill on sled… that’s eight point… eight point four right… ok 

we don’t need we it’s a momentum problem I don’t nee I don’t care about the angles…” 

Despite the fact that he feels two dimensions are needed for the velocity and acceleration 

portions of the problem, Alex is not concerned about the angle when working with momentum 

conservation.  During the post-session interview he states: 

 “at that point I’m thinking hey I never did the angles in the first problem… and then I 
realized that that was one of the nice things about the momentum you don’t care about 
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the angles… I don’t know why but it just popped in my head that I didn’t need to know… 
what what the angle was because oh I know because I’m… it’s it’s it’s just a one 
dimensional problem…” 

 
It is not clear, either from the protocol or the interview, why Alex believed the angles were 

important for velocity and acceleration but not for momentum.  He also provides no insight into 

why he considered the motion down the hill to be two-dimensional at the same time he 

considered the collision to be one-dimensional.  This uncertainty seems to be at the root of his 

procedural difficulties.  With an appropriate choice of coordinate system for his free body 

diagram and the kinematics calculations, the entire problem would have been one-dimensional, 

and the complexity of the problem would have been reduced dramatically. 

From this point Alex’s solution parallels that of the first half of the problem.  He 

calculates the x and y components of the velocity, draws a free body diagram, and calculates the 

acceleration in the x and y directions.  It is while calculating the final velocities in the x and y 

directions that Alex realizes his earlier mistake with the sign of the velocity: 

 “all right focus back to the formula… initial velocity here is the initial velocity x 
direction the initial velocity is five point three five squared plus two times two point four 
three ah here we go initial position is going to be… hold on it’s final position final 
position first…” 

 
He corrects his mistake, and then goes back to his earlier work: 

 “my calculations for the second problem may be wrong let’s go back to that… those silly 
signs… oh no it’s on this page… signs… this is reversed [referring to the initial and final 
positions in the calculation of velocity] this should be here this should be here… that 
makes sense ok… all right… I feel so much better now that I know what’s going on with 
the signs… I inverted the positions… all right… ok no problem… whew… it’s not going 
to cascade through the work all right everything I’ve got is fine so far is ok…” 
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After checking that the error did not propagate through his solution, he calculates the magnitude 

of the final velocity, reviews the problem statement to make sure he has answered the question, 

and declares that he has the answer. 

Like many of the other participants in this study, Alex evaluated his work at various 

points.  His evaluations frequently support the interpretation that his conceptual knowledge was 

fairly well-developed.  Evidence for this lies in the fact that he assessed not only the magnitude 

of the numbers, but the signs and physical interpretations as well.  For example, when calculating 

the acceleration in the y direction, he obtains a negative answer: 

 “does that make sense… yea cause we’re going downhill… ok so that would be the 

negative y direction ok so does this makes sense yes…” 

Another example that suggests a reasonable level of conceptual understanding comes after Alex 

calculates the velocity of the sled after Jack jumps on: 

 “my god… that slowed ’em down quite a bit… does it make sense… the mass 

increased… so the velocity had to shrink… it had to… ok…” 

The apparent contradiction between Alex’s verbalized conceptual understanding and the 

convoluted path he takes to reach a solution to the problem is in agreement the results reported 

by other researchers concerning the conceptual knowledge of students.  In particular, it has been 

noted that students frequently have sufficient declarative conceptual knowledge, but lack the 

procedural knowledge needed to successfully solve problems (Chi et al., 1989; Chi et al., 1981; 

Savelsbergh et al., 2002).  As noted by Hoellwarth et al. (2005), conceptual understanding does 

not necessarily equate to effective problem solving.  Alex appears to be an exemplary example of 

this assertion. 
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It is interesting to note that despite the unnecessary complexity that Alex injects into the 

problem by his choice of coordinate system, he gets an answer that is numerically correct.  

Indeed, if no mistakes had been made he should have obtained the correct answer, since the 

coordinate system was not physically incorrect, just unnecessarily complex.  Alex makes an error 

in assuming that the normal is equal to the weight in his calculation of friction, which is 

primarily a conceptual error.  However, because the coefficient of friction is so small the error is 

correspondingly small.  Later in the problem, in the calculation of the final velocity in the y 

direction, he makes a math error, but once again the magnitude of the error is small.  The overall 

result is that Alex’s answer is correct to the first decimal point, which is within the limits of the 

significant figures appropriate to the problem. 

Alex’s protocol in general exhibits all the characteristic features of Group A participants.  

Although he makes one conceptual error in understanding the normal force, his primary 

difficulties appear to be procedural.  He makes steady, although slow, progress in his solution.  

The mathematics of Alex’s solution are fully supported by the diagram he draws, even though 

his choice of coordinate system increases the complexity of his solution.  Alex makes frequent 

checks of his work, checking the magnitudes, signs, and physical sense of calculated quantities.  

He also uses his formula sheet to check equations, but not as a search for a solution process.  

Finally, he pauses frequently to consider his approach to the problem. 
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Group B: Brittany 

Brittany, who works on Problem 1 (see Appendix A), begins by reading the problem 

statement and writing down the given information as she encounters it.  She then draws a sketch 

showing the truck and the two slopes, which she labels with the given information.  At this point 

she refers to her textbook: 

 “ok… mmm… ahm… I’m trying to find a formula that fits…  the uhm problem I’m 
given mass velocity… and I got angles… so I need to find… a uhm… sort of a… a 
collision… problem… that’s two dimensional collisions… I like to look at examples they 
help me the most… mmm… I can’t exactly find what I’m looking for… [pause]… I’m 
confused… the problem is there’s these problems [referring to examples in the book] 
don’t involve friction and it’s based on a frictionless surface and this one involves… 
friction and I have to find a formula that involves that ah there we go… ha found it…” 

 
Brittany does not seem to understand what type of problem she is dealing with, and refers to her 

book for help.  Apparently cued by the given information of mass and velocity, she starts by 

looking in the chapter on collisions.  She states that she is confused, because the examples she 

refers to do not include friction.  She turns to the section on friction and states that she has found 

what she is looking for.  In the post-session interview Brittany states that she was looking for “a 

formula that involves friction or an example that I could look… and compare.”  She also 

indicates that she likes use examples.  When asked during the interview how she knows if she 

has the right example, she says that she “[writes] down what is given… compare to what they 

have and I kind of…work around it.”  In reference to this problem, she also states that she was 

looking for how to do a free body diagram, which is the next step she takes in her solution: 

 “ok…let’s do the diagram… truck is traveling down a mountain road when it hits a thick 
patch of ice…in a panic the driver hits the brakes which…without friction down the 
slope… and it’s a five degree slope… that’s what it’s traveling on… it’s without 
friction… it’s five degrees… so you have a normal force… and we have m g sine theta… 



that’s theta… and this is m g… and there’s no friction back so… mmm… m g cosine 
theta… and… since there’s no friction we just solve for m g sine theta…” 

 
 

Figure 4: Brittany's Free-Body Diagram 

 

Brittany’s sketch (see Figure 4), which was copied from an example in her book, is technically 

not a free body diagram, but it does show the forces acting on the truck.  However, it appears that 

she has indicated the total weight force rather than the cosine component as directly opposing the 

normal force.  She determines that the force down the incline is mgsinθ, although she has 

obtained this information from the example she is referring to in the text as she writes the 

equation, not from the diagram she has drawn.  She writes equations for the sum of the forces in 

the x and y directions which are symbolically correct.  The value of the force in the x direction is 

calculated correctly, but she makes her first error in calculating the y component of the force: 

 “and the normal force is m g… and the total forces in the y direction… are… uhm 
[referring to example]… n minus m g cosine theta… so fifteen hundred kilograms times 
ten meters per second minus fifteen hundred kilograms times ten meters per second times 
cosine of five degrees…fifteen hundred times ten… one five zero zero zero minus… 
times ten times cosine five… oops… which equals four nine four two point nine two… 
minus one five… fourteen point… equals fifty seven point oh eight…. and that’s equal to 
m a… m a y equals zero… ok” 
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Here it is seems that Brittany is following the example in her book without considering its 

relevance to the problem she is solving.  She states that “the normal force is mg” and proceeds to 

calculate a value for the net force using the normal as mgcosθ, and then writes: 

57.08 0.y yF ma= = =∑  

She apparently does not understand why mass times acceleration in the y direction is zero, and 

does not recognize the mathematical contradiction in her written equation. 

At this point Brittany refers to the problem statement again and draws a new diagram 

(seen in Figure 5) showing the two slopes and the given information. 

 

Figure 5: Brittany's Sketch 

 

Brittany then enters into a lengthy verbalization which appears to be an attempt to make sense of 

the problem and to find a way to solve it: 

 “f equals m a [writing equation]… in the x direction… huh… I just now realized I have a 
distance [erases f = ma]… and I need to find distance… hmm [referring to an example in 
the text of an object on a slope]…oh that could unintelligible that doesn’t help… he’s 
traveling down the mountain so gravity’s pulling down… how far does the truck go… 
before coming to a stop… maybe I want to use kinematics on this… I think they have one 
of those… nice tables… ah there found them [referring to table of kinematics formulas in 
textbook]… finally… uhm… and I have distance… x i we’re not really given position so 
that doesn’t work… [writes d2 = ? on diagram] distance two is distance one… I got the 
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two mixed up its initial velocity equals twenty two meters per second… its final velocity 
will equal zero meters per second… its initial distance… three hundred me oops 
meters… and it wants the final distance... ok … uhm… I’m gonna assume… ok… yea… 
now I’m just trying to figure out which formula I need… now that I finally realize what I 
have… uhm… the first slope angle one five degrees angle two is ten degrees… uh-huh 
and we have mu one point eight on the second slope… don’t need time… could find … 
no… no… don’t have acceleration don’t have time… acceleration’s… the key [referring 
to textbook]... velocity… acceleration (unintelligible) constant acceleration… 
acceleration… do they not have… force of gravity is m g… x direction… equals that 
[circles answer for sum of forces in x direction] uh-huh… have that… huh… now I need 
the distance distance… I’ve got all that… I need to find distance…” 

 
Brittany appears driven by her attempts to find the correct formula, an interpretation supported 

by her comments during the problem session and the post-session interview.  She repeatedly 

states that she is looking for a formula, refers to equations in her book, and when asked about the 

use of formulas in the retrospective debriefing states that she “think[s] what I have that can just 

fits and see if it works… so… I mean I just look at my symbols and see if it matches up with 

their symbols.” 

After referring to an example showing an object on a slope in the section on kinematics, 

and to the table of equations, Brittany indicates that she has found the formula she wants: 

 “ah-ha found it [writing equation] distance equals one half of a x t squared… and a x is 
given… g sine theta… ok…. uhm… I’m gonna use the equation [writing equation]… v x 
of that squared equals two a x d… so that one’s gonna be zero equals two x d… and that 
a x is gonna be ten meters second times sine of ten degrees ten times sine ten degrees… 
one point seven… four… um-hmm… so two times one point seven four distance…” 

 
At this point Brittany’s conceptual and mathematical difficulties become apparent.  The example 

she refers to shows an object sliding from rest down an incline.  The only information from the 

example that is relevant to the current problem is the acceleration formula (ax = g sinθ), which 

would give the acceleration of the truck down the first incline.  Brittany uses this formula and 



correctly calculates the acceleration, but then applies it to the upward incline.  She states that the 

final velocity of the truck is zero, and carries out the following sequence of steps: 
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There are two major errors here.  First, Brittany has applied the acceleration appropriate to the 

downward slope to the upward slope.  Second, she writes an invalid mathematical expression.  

One might interpret this as a careless mistake if not for the steps she takes next: 

 “that didn’t take that’s including the friction though… I left that part out… so… ok… 
scratch that [referring to example with object on level surface]… a x equals negative 
coeffriction [sic] g ok… ah… hmm… ok… that’s the movement [indicating direction on 
slope]… so that’s gonna equal mu of one point eight times ten meters per second… and 
that equals negative one point eight times ten negative eighteen… and uhm 
unintelligible… v of x final equals two a x d that’d be zero squared equals two times… 
negative eighteen and that’s times d negative thirty six… d equals thirty six… oops 
finally…” 

 
Brittany refers to another example in the book, this time one which shows an object on a level 

surface being acted on by friction.  She takes a formula from the example ( )xa gµ= − which is 

inappropriate for an object on an incline, and applies it to her problem.  When she uses that 

expression to calculate the final position of the truck, she makes exactly the same mathematical 

error as in her previous attempt at the solution: 

0 2( 18 )
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Not only does Brittany fail to recognize the mathematical impossibility of her equation, she does 

not seem at all bothered by the negative sign.  She simply does not include it in her final answer. 
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Brittany appears to be hindered by both conceptual and mathematical difficulties.  She 

relies heavily on formulas and examples to help her solve problems, but as a result of her 

conceptual difficulties she does not recognize when an example or formula is inappropriate for 

the problem she is attempting.  Her use of examples is characteristic of the analogical problem-

solving behavior noted by other researchers (Chi et al., 1989; Chi & VanLehn, 1991; VanLehn, 

1998).  She apparently recognizes her lack of conceptual understanding.  In reference to a 

question about examples, Brittany states that in her introductory physics course she “pretty much 

used the book if you have the book you’re fine… sometimes without the use of a book… it’s just 

not very…very you know step by step which I like…”  She also states that on “hypothetical stuff 

I’m stuck.” 

Brittany’s work is characteristic of the Group B protocols.  She makes multiple 

conceptual and mathematical errors, and on one occasion changes her approach and goes back to 

change a quantity she has already calculated.  She takes only two pauses to assess her work; once 

when she checks that her calculator is in the correct mode, and a second time when she realizes 

she has forgotten to take friction into account.  While her free body diagram appears superficially 

correct, her actions suggest that is was copied directly from an example referred to in the text.  

Later, when she refers to examples for formulas for the acceleration caused by friction, Brittany 

does not recognize that the examples she chooses provide equations that are inappropriate for the 

problem at hand.  She pauses frequently to search for way to solve the problem, and seems to 

characterize the search for a one-step solution noted in a number of expert-novice studies (Chi et 

al., 1982; Dhillon, 1998; Heyworth, 1999; Larkin et al., 1980a; Savelsbergh et al., 2002).  

Brittany refers to her book repeatedly in a search for “a formula that involves friction or an 
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example that [she] could look… and compare.”  She seems to be an example of the typical 

novice, using a formula-driven search for the solution to the problem.  For Brittany, as for many 

novices, the equations are the knowledge (Larkin et al., 1980a). 

 



Group C: Cory 

Cory, who solves Problem 1 (see Appendix A), starts the problem-solving process by 

reading the problem statement out loud and writing down given information as he encounters it.  

He then states that it would be helpful to him to read the problem silently, which he does.  

Immediately after reading the problem silently, he starts drawing two sketches showing the two 

slopes labeled with the given information.  He moves on to discussing the solution while drawing 

a free body diagram (seen in Figure 6): 

 “OK… so first we have the truck… which is going down slope it has the weight force… 
do the free body diagram of the truck x axis… the y axis… mm…. mm… five degree 
slope… have the weight force… the normal force… there’s no friction force it’s just just 
sliding…” 

 

Figure 6: Cory's First Free-Body Diagram 

 

Cory does not explicitly categorize the problem, but his immediate launching into a free body 

diagram can be interpreted as implicit categorization of the problem as a second law situation.  

This interpretation is supported by two observations.  First, Cory does not deviate from his 
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chosen approach, carrying it through to the completion of the problem.  Second, during the post-

session interview he notes that he briefly considered work and energy, but then decided that 

“cause when I knew you had to find the ah acceleration… I started drawing the free body 

diagram” and that “the force way of looking at it” would be a better approach. 

Cory’s activities from this point on suggest that he knew where he was going in the 

problem from the start of his solution.  The remainder of the problem-solving session was 

devoted to alternately calculating quantities, assessing his work, and referring to the problem 

statement to verify information.  This problem appeared not to be a problem for Cory; it was an 

exercise.  He calculates the weight of the truck, finds the components of the weight, and moves 

on to applying Newton’s second law: 

 “f net…f net equals…f net is on that in this direction [indicating down the slope]… f net 
on the x axis equals the mass times the acceleration… which equals… mm… cosine of 
five degrees… cause it’s the opposite… cosine of five degree times fourteen… seven… 
seven hundred newtons… so cosine whoa… opposite sine… sine of five degrees… sine 
of five degrees times fourteen seven hundred… equals… twelve eighty one point one 
eight nine newtons… which equals the f net…twelve… eighty one point one eight nine 
newtons…. the mass equals…ok talking about the mass not the weight ok … minus 
fifteen zero zero… kilograms… which equals… times the acceleration equals… twelve 
eighty one point one eight nine newtons… acceleration equals this over this… twelve 
eighty one point one eight nine divided by fifteen zero zero… acceleration whoa equals 
twelve eighty one… twelve eighty one point one eight… fifteen equals… the acceleration 
equals eight point five four meters per second square… now we’re gonna try to find the 
final velocity… ca…because this velocity here [referring to diagram] but we’re trying to 
find the final velocity at the bottom…” 

 
This segment illustrates the main features that characterize Cory’s solution.  First, he uses his 

free body diagram in conjunction with Newton’s second law to develop the equations he will 

solve.  As noted in the recent work by Rosengrant et al. (2005), the use of diagrams to construct 

the equations used to solve a problem is suggestive of well-developed conceptual and procedural 



resources.  Second, Cory carries out on-going evaluation of his work, such as when he notes that 

he should be using sine rather than cosine for the component of the weight down the slope.  

Finally, he pauses to verbalize a goal for the next step in his solution: “we’re trying to find the 

final velocity at the bottom…” 

The actions Cory takes throughout his solution seem to suggest that he has solid 

conceptual understanding and well-developed metacognitive skills.  After noting that he must 

find the velocity at the bottom of the first slope, he selects an equation, substitutes in the known 

values, and calculates the velocity.  He then stops to consider the answer: 

 “I can tell this answer makes sense because if you’re going down the hill and there’s no 
friction you’re gonna go from… twenty two meters per second to thirty one meters per 
second so your velocity increase… that makes sense…” 

 
This type of ongoing analysis of both the physical situation and the numbers he has calculated 

takes place throughout Cory’s solution, even as he is outlining the next steps he will take.  After 

calculating the velocity at the base of the first slope, Cory draws a new free body diagram (seen 

in Figure 7), calculates the components of the forces and the friction, and then the acceleration. 

 
 

Figure 7: Cory's Second Free-Body Diagram 

 94



 95

He pauses to consider his goal and the physical conditions that will allow him to calculate it: 

 “all right… we wanna find the final position it say how far along the truck ramp does the 
truck go before coming to a stop… so if we’re trying to find the final position we can use 
this equation … final velocity square equals initial velocity square plus two acceleration 
final position minus initial position… final velocity is gonna be zero cause the cars gonna 
go all the way up and come back down… but the maximum position is gonna comes 
when the velocity’s zero… zero equals the initial velocity… the initial velocity is thirty 
one point five six six… squared plus two the acceleration… acceleration is negative 
nineteen point zero seven… initial position is gon the final position is what we’re looking 
for and initial position is zero…” 

 
Cory seems to know what he has to find, how the physical situation relates to the unknown 

quantity, and how he is going to reach that goal.  He quickly finishes the exercise. 

In his final evaluation of the answer, Cory refers to the problem statement and briefly 

considers whether another approach (momentum and impulse) might have worked as well.  He 

rapidly dismisses the idea (“whoa”) and declares the problem solved.  Cory is the only 

participant who considered possible alternative approaches, a step which Pólya (1945) identified 

as a feature of effective problem solving.  In the post-session interview Cory notes that he knew 

he was done with the problem, but wondered whether another approach would have been easier. 

Cory’s protocol illustrates all of the features of the Group C characteristics.  He makes 

continual progress in his solution, and does not pause to consider whether his chosen approach is 

correct.  His actions and verbalizations seem to suggest that he knew after reading the problem 

statement what approach he should take to solve the problem.  Cory uses diagrams effectively to 

help generate the equations he uses to solve the problem, and makes no reference to a formula 

sheet or his book.  Finally, he carries out frequent evaluation of his work, considering the 

magnitudes, signs, and physical sense of the quantities he has calculated.  Cory appears to exhibit 

more expert-like behavior than many of the participants. 
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Group B: Ben – an Exception 

Ben’s protocol is included in the cases not because he was an exemplar of his group, but 

rather because he was an exception.  In fact, his actions during the problem solution attempt were 

so unlike any other participant that the possibility of making him a group unto himself was 

considered.  In the end it was the apparent conceptual inadequacies exhibited in his protocol that 

resulted in his being included as a member of Group B.  Here we consider his actions as he 

attempts Problem 1 (see Appendix A). 

Like all of the participants, Ben starts by reading the problem statement.  The first 

difference noted in what Ben does as compared to the other participants is that he starts a sketch 

before he reads the entire problem statement: 

 “all right a truck with a mass of fifteen hundred kilograms is traveling down a mountain 
road at twenty two meters per second when it hits a thick patch of ice… all right you need 
to start by drawing a truck traveling [drawing diagram]… with a velocity of twenty 
meters… so let’s draw a box… truck it’s got a mass of fifteen hundred kilograms um is 
traveling… down a mountain road so we’ll just… use a y axis for down [drawing vertical 
line downward from sketch]…” 

 
The premature start on the diagram results in Ben having to alter his diagram, seen in Figure 8, 

after he reads a little further in the problem statement: 

 “in a panic the driver hits the brakes which fail causing the truck to slide essentially 
without friction down the five degree slope ok that changes that [erases vertical line, 
draws slope]… five… equals… five degrees… theta equals five degrees… after traveling 
down the slope for a distance of three hundred meters…the driver manages to get the 
truck onto a runaway ramp… so he goes three hundred meters on that axis [labels 300 m 
on slope]…” 

 



Figure 8: Ben's Sketch 

 

From this point Ben continues reading the problem statement and completes the diagram, which 

accurately represents the information in the problem statement.  He then refers to his notes, and 

considers the approach he will take with the problem: 

 “coefficient of frictions [verbalizing topics as he looks through notes]… force and motion 
mass… total forces… distance… motion… that’s work… kinetic energy… collisions… 
velocity… harmonic motion… I don’t know what happened to… what section was that… 
friction… there’s no friction I want to find… [writing an equation] distance is velocity 
over time… no… distance over time is velocity… so velocity times time is equal to 
distance… we’ve got… two triangles [referring to diagram]… and… given that’s ninety 
degrees and that’s ninety degrees and that’s a right triangle need to get… the velocity… 
after he slides to here [indicating common base of slopes]… and then… using this 
coefficient of friction and the velocity…” 

 
At this point it seems as if Ben has a general plan for the problem, as he gestures at the base of 

the slopes and states that he will “need to get… the velocity… after he slides to here… and 

then… using this coefficient of friction and the velocity…”  The apparent solution process that 

this verbalization suggests is valid, but he seems not to know how to carry out the process he has 

described.  He has also written an equation for average velocity which would not be applicable to 
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this problem situation.  Ben refers to his book, and appears to be once again considering possible 

approaches: 

 “motion…motion… all right… force equals mass times acceleration… all right g equals 
nine point eight meters per second… and the velocity… after… force of friction… its 
kinetic so its going to be…kinetic friction sliding… is when an object is in motion… ok 
[referring to example in book] force of kinetic friction…is equal to the coefficient of 
kinetic friction times n where n…I presume is…mass times gravity…in the opposite 
direction of gravity… n…two…so you’re looking at… the force is going to equal mass 
times gravity times the sine of theta mass g sine theta is equal to force… is going to lead 
to my change… in distance… so I need fifteen hundred times nine point eight times sine 
of… five degrees…” 

 
In this segment Ben has found an example in his book that shows an object sliding down an 

incline, which is an appropriate analogical example for this problem.  However, the example 

does not show the calculation of the normal force, and he states that the normal force is “mass 

times gravity… in the opposite direction of gravity,” a statement that would be correct only if the 

object was on level ground.  He does obtain from the example the correct expression for the 

force in the direction of the incline, and correctly infers that it is that component of the force that 

is relevant to the motion down the incline.  Ben proceeds to calculate the force, and then the 

acceleration: 

 “that’s… sine of five… so that’s negative point nine five nine for the sine of five times 
nine point eight… times… mass which is fifteen hundred… gives you a number which is 
equal to force divided by the mass which we just multiplied by… fourteen hundred and 
unintelligible divided by the mass is equal to the acceleration… if that’s a negative 
[referring to force and acceleration] that’s gonna be a negative...” 

 
So far Ben appears to be doing fine.  He carries out the calculation correctly, but seems bothered 

by value of -9.40 m/s2 that he gets for the answer: 

 “that can’t be right…force is equal to mass…the distance… derivative… plus t all 
right… the derivative of the distance is gonna be v plus t equals d prime… ah… both 
derivatives are gonna equal one that’s using the product rule… so… d prime… still I’m 
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not in the right direction ah…looking for… how far along the truck ramp does the truck 
go before coming to a stop…” 

 
What Ben has done, but does not notice, is put his calculator into radian mode instead of degree 

mode.  This mistake led to the unreasonable answer for the acceleration, which clearly troubled 

him.  In the post-session interview he states that “the number itself was wrong and I could look 

at it and tell… it’s just too big.”  It is unclear from either the protocol or the interview what Ben 

meant by his reference to the derivatives. 

From this point Ben seems to get caught up in the defining equations for physical 

quantities that he finds in the book.  Most of the remainder of the time he spends working on the 

problem is spent looking through the book: 

 “so its going… so it [sighs]… d prime… that’s a prime [referring to the acceleration he 
calculated]… velocity acceleration…. instantaneous acceleration… velocity… relative 
acceleration… velocity over time… motion in two dimensions and we’re traveling that 
way [gesturing diagonally]… velocity…” 

 
At the point where Ben mentions two dimensions he has referred to an example in the book on 

relative velocity, with a boat on a river.  He gestures between his work and the example, then 

returns to his work: 

 “velocity in the I’m gonna call this side a this side b velocity b direction… er velocity… 
of b v… we know velocity… this part’s velocity… constant acceleration… it should be 
all constant acceleration constants of revolution… I guess I’ll go back to this” 

 
After apparently trying to fit his problem to the relative velocity example, he returns to his 

notebook, and finds another example with an object on a slope: 

 “acceleration along the x axis… is going to be… acceleration… is going to be nine point 
eight gravity… times sine of theta one… (pause) ok so velocity… I have to find velocity 
final… acceleration deceleration… lets work with change in time velocity equals 
derivative of x in relation to change in time or… change in distance over change in 
time… t in reference… so [writing equation] change in v… is equal… delta v over delta t 
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equals a… and we want a prime…we want yea a prime to get v final for right here [point 
between two slopes] we’ve got v initial to be in the equation for that problem the b side 
of it” 

 
Ben verbalizes the same formula for the acceleration down the slope that he used previously, but 

does not calculate the value again.  He then starts referring to defining equations, but his 

verbalizations and written work do not provide any indication of how they will apply to his 

problem.  Yet at the same time, it seems that he still has a general idea of what he needs to do: 

“get v final for right here we’ve got v initial to be in the equation for that problem the b side of 

it.”  In other words, he knows that if he finds the velocity of the truck at the bottom of the first 

slope, it will be the initial velocity for the second slope.  Ben refers again to his notebook, and 

writes an equation: 

 “change in… average v times… a [writing equation]… delta x… delta x is equal to… 
average v… delta x equals v final velocity final squared minus velocity initial squared 
over 2… but a equals… average speed instantaneous velocity… velocity on the x axis… 
instantaneous velocity… in the x direction…equals the limiting value of the ratio delta x 
over delta t as delta t approaches zero…displacement delta x also approaches zero as 
delta t approaches zero… velocity one of x…equals…” 

 
Ben refers to his book and his notebook throughout this segment.  He writes an equation that 

could be useful, but ultimately does not use it.  He verbalizes a list of topics from the section of 

the book he is referring to, and then reads the formal definition of instantaneous velocity.  When 

asked during the retrospective debriefing about the equation he wrote, he states that at this point 

he was confused about where he was going with the problem, and did not use the equation 

because “I wasn’t finding the…number [acceleration] that I was looking for and I couldn’t really 

conceptualize the equation to get that number.” 
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Ben seems to be unable to make any further progress in his solution attempt.  As he had 

stated several times previously, he knows he wants to find the velocity, but does not appear to 

have any idea how to go about it.  He continues to refer to his book and his notes, gestures over 

his diagram as he considers the motion of the truck, and verbalizes several comments without 

any apparent connection to the problem: 

 “I still want v (sighs)… d prime… ok we’ve got d… d prime… is how fast that’s 
changing… he’s just going… that’s v… v prime… one point eight velocity here [point 
between slopes]… sine no… sine of five degrees… times… velocity’s moving that 
way… that’s down… a vector quantity… it’s going to be slowing it down… times the 
velo what… oh… so the sine of five times twenty twenty two meters… sine of twenty 
two... that’s not right… sine of five… actually it’d be sine of… one fifty five… times… 
my friction… and its three hundred meters… [writing equation] x squared plus y squared 
equals three hundred… what would you get… twenty two (sighs)… rate of change 
multiplied out with rate of change… is gonna be… sine is opposite… cosine is adjacent 
so its gonna be cosine… of five… ok…multiply…distance…good night to this…” 

 
At this point Ben states that he is stuck and ends the problem session. 

It is difficult to characterize what Ben’s primary difficulties are.  He seems to know what 

he has to do (“need to get the velocity… after he slides to here”), but appears to lack the 

procedural skills to accomplish the task, and is never able to get to the point where he can begin 

to think about how he will handle the second slope.  It also appears that Ben is deficient in 

conceptual understanding.  Several aspects of his problem attempt appear to support this 

assertion.  He draws a sketch of the physical situation, but does not start trying to solve the 

problem until he has referred to examples in the book and his notes.  In the retrospective 

debriefing, he indicates that he was looking for “how sine of theta and gravity equated into the 

acceleration.”  He goes on to clarify: 

 “I was gonna look for the static I mean the kinetic friction and how it equated 
in…and…also…how the sine or cosine of theta equated in I thought I had that kind 
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of…figured out…and…I needed to figure out how acceleration…how the change in 
acceleration affected the final velocity at the bottom.” 

 
He was asked what he meant by change in acceleration, to which he replied, “what the 

acceleration was to get the velocity final so from velocity initial to velocity final using the 

acceleration.”  Again, it is not clear what his conceptualization of acceleration and its relation to 

velocity is.  He states “change in acceleration,” but then correctly indicates that there would be a 

change in velocity.  His statements suggest the velocity-acceleration confusion that is commonly 

seen in students in introductory physics courses. 

As Ben proceeds with his solution attempt, he verbalizes a mathematical statement of 

Newton’s second law, but does not draw a free body diagram.  Instead, he copies a formula for 

the force down the slope from an example.   The answer he obtained as a result of having his 

calculator in the wrong mode appears to have set Ben off track in his solution, and he never 

recovers.  The remainder of his solution attempt is spent referring to the book and his notes.  He 

spends a considerable amount of time reviewing irrelevant examples and reading defining 

equations.  We will never know how Ben might have proceeded if his calculator had been in the 

correct mode, which would have given him the correct value of the acceleration.  But it appears 

from his actions that he lacked the control mechanisms, as well as the conceptual and procedural 

skills, needed for success. 

 

Summary of Participant Actions 

The layers of analysis carried out on the protocols to this point focused on the actions 

carried out by the participants.  This analysis first suggested that the participants could be 
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divided into three broad groups: those who completed their problems successfully, those who 

completed the problem with primarily only mathematical and/or procedural errors, and those 

who exhibited significant conceptual errors.  Further analysis showed that these groups were 

relevant, in that the members of the groups had certain problem-solving characteristics in 

common.  Group A participants, who completed their problem with mathematical or procedural 

errors, appeared to have reasonably good understanding of underlying physics concepts.  They 

made steady, if slow, forward progress in their solutions, making high-level use of diagrams to 

connect to the mathematics of the solution, and making frequent checks of their work.  If they 

used texts or formula sheets at all, it was as a means of checking that they had remembered the 

form of an equation correctly.  Group B participants exhibited significant conceptual 

inadequacies, which limited their ability to successfully complete their problems.  They were 

seen to make frequent use of texts or formula sheets to search for an approach, to make only 

lower-level use of diagrams in their solution, and to make few if any checks of their own work.  

Group C participants, who completed their problems correctly, were found to carry out their 

solutions in a more or less step-wise fashion, with high-level utilization of diagrams to connect to 

the mathematics of the solution, while making frequent checks of their own work.  They also 

made few, if any, references to texts or formula sheets. 

This preliminary analysis was undertaken with the goal of describing as completely as 

possible the actions taken by the participants as they attempted to solve the problems they were 

given.  Only minimal interpretation of those actions took place, limited to what was required to 

develop the description adequately.  The purpose of this stage of the analysis was to reach an 
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understanding of the actions of the participants at level that would serve to strengthen the next 

step in the analysis: the attempt at application of the stabilization model. 
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CHAPTER FIVE: RESULTS 

Once the actions taken by the participants were identified and the group characteristics 

were determined, the initial coding scheme informed by the McGinn and Boote (2003) 

stabilization model (see Appendix D) could be tested against the protocols.  However, the first 

attempt at applying the stabilization model to the partitioned protocols suggested that there were 

features of the protocols that were not able to be coded with the original five factors.  In 

particular, it was noted that most participants spent a considerable amount of time verbalizing the 

calculation of various quantities during their solutions.  While calculation was not one of the 

factors identified by McGinn and Boote (2003), it is nonetheless an action taken during the 

course of problem solving and must be taken into account in any description of the problem-

solving process.  In fact, several participants in this study made errors during calculations; not 

coding specifically for calculations would eliminate the context in which those errors took place.  

For this reason an additional coding category was added to the coding scheme, not as an 

additional factor in the model to be tested, but as a way to account for those periods of time in 

which the participant was actively carrying out a calculation.  That the independent reviewer, 

who was initially provided only the original coding scheme, also noted the need for a category to 

account for calculation further supports its inclusion.  After some consideration, it was decided 

that an algebraic manipulation of a symbolic relationship, such as solving for a particular 

variable, would also count as a calculation.  It should be noted that McGinn and Boote did 

mention calculation in their original work, but only to note that once a problem was stabilized, 

with a known solution path, “all that remained was computation” (p. 100). 
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The second feature that could not be accounted for by the original coding scheme was the 

ongoing evaluation of work carried out by the majority of the participants.  McGinn and Boote 

(2003) discuss ongoing assessment in their original formulation of the stabilization model.  In 

their discussion of the factors and actions that relate to problem difficulty, they note that there 

was ongoing assessment in relation to the four identified factors of categorization, goal 

interpretation, resource relevance and complexity as they evaluated and reevaluated their 

approach to a given problem.  It was this ongoing assessment in search of a stable understanding 

of the problem that McGinn and Boote associated with the process of stabilization.  There was a 

considerable body of evidence of this type of assessment activity in the protocols of the 

participants of this study as they attempted to reach an understanding of the physical situations 

described in their problems and searched for an approach to the problem, particularly in 

Group B.  But there was an additional form of assessment that took place which is not mentioned 

in the original study by McGinn and Boote.  The majority of participants of this study paused at 

one or more points to evaluate the work they had already completed.  This evaluation consisted, 

for example, of considering the magnitude or sign of a calculated number, assessing the accuracy 

of a written equation, or checking whether the correct angle or vector component had been used.  

Because these self-checks of work were carried out by the majority of participants, it was 

decided that an additional code to account for those episodes was needed.  The independent 

reviewer also noted that there appeared to be two levels of assessment taking place, although in 

his first analysis he did not add an additional code to distinguish between the two. 

With additional codes to account for calculation and evaluation in place, an attempt at 

application of the stabilization model to the partitioned protocols could take place.  According to 
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McGinn and Boote (2003), the factors of categorization, complexity, resource relevance, and 

goal interpretation are primary to the problem-solving process, while stabilization is an 

overarching factor describing the inter-relatedness among the four primary factors.  That is, the 

four primary factors form the foundation of the problem-solving process, while stabilization 

governs the manner in which those factors interact with each other.  The superordinate status of 

stabilization suggests that it should be evidenced as an activity that overlays, or encompasses, the 

other four factors.  If stabilization is a valid factor, we should see the problem solver addressing 

issues of resources, complexity, categorization and goals as sub-actions within the process of 

stabilization, as part of the search for a stable understanding of the problem.  This interpretation 

informed the decision to code the protocols for the four primary factors first, and then to review 

the coded protocols to look for evidence of stabilization. 

In the sections that follow, each of the primary factors will be reviewed in relation to the 

McGinn and Boote (2003) model and to evidence of the factors suggested by other researchers.  

These factors then will be discussed in relation to findings from the protocols generated in this 

study.  In particular, explanations of the decisions and assumptions made with regards to 

determination of evidence of the factors will be explained.  Finally, aspects of the protocols that 

were inconsistent with each of the factors in the stabilization model will be described, as well as 

those features that seem to validate them. 
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Categorization 

Categorization has long been recognized as an important factor in the problem-solving 

process.  The results of early expert-novice studies in the domain of physics suggested that 

novices are unable to adequately categorize physics problems, focusing on surface features rather 

than underlying physics principles (Chi et al., 1981; Chi et al., 1982).  More accomplished 

problem solvers categorize according to underlying principles that are linked with a solution 

process, or schema, so that recall of the principle calls up the entire procedure for obtaining the 

solution (Chi et al., 1981; Larkin et al., 1980a; Savelsbergh et al., 2002).  As noted by McGinn 

and Boote (2003), appropriate categorization of a problem results in the problem being perceived 

as easier, even if all the details of the solution are not recalled. 

Categorization can affect problem complexity in other ways, particularly within the 

domain of physics.  Many problems can be solved in more than one way, with one method 

typically resulting in a more complex solution process.  This was the case for the problems used 

in this study.  Each of the problems had portions that could be solved either with Newton’s 

second law or work-energy relationships.  In all three problems, application of work and energy 

resulted in a less complex solution process.  The category decision made by the participants thus 

had a direct impact on the length and complexity of the solution.  For the participants of this 

study, there was no clear connection between problem-solving proficiency and choice between 

alternate solution processes. 

Although early expert-novice studies suggested that novices were unable to categorize 

physics problems appropriately, more recent studies provide evidence that introductory physics 
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students frequently do have sufficient conceptual knowledge to appropriately categorize 

problems and select appropriate physics principles (Hammer, 1996; Kim & Pak, 2002; 

Robertson, 1990).  However, they are unable to carry the categorization through to the successful 

solution of a problem, either because their knowledge is incomplete, or because they lack the 

procedural knowledge required for applying the chosen principle. 

The categorization studies of Chi et al (1981) and others asked participants to simply 

group sample problems on cards by type or category.  No study was found in the domain of 

physics that looked explicitly at the phenomenon of categorization within the context of think-

aloud protocols.  As a result, a decision had to be made regarding those verbalizations that would 

be considered as evidence that categorization had taken place.  Examination of the actions taken 

by the participants in this study showed that explicit statements of categorization were made by 

seven of the twelve participants.  For example, immediately after reading his problem statement, 

Chuck states “all right… so maybe we should do this from an energy perspective I think we 

should say that… this part where Jill goes into the jumps in the sled could say that… momentum 

is conserved so…”  Likewise, Beth spends a few minutes considering possible approaches to her 

problem, then states “ok so I do know the energy kinetic energy the other kind of energy’s going 

to be potential energy got it.”  Although her statement is not of the form ‘this is an energy 

problem,’ it is clear that she has decided what approach she should take in the problem, and she 

carries through with that approach to the end of the problem.  In all but one case the explicit 

statements of categorization made by the participants in this study were correct. 

The other way in which categorization was evident was implicitly, through the choice of 

solution process.  Because no actual statement of problem type was made, the researcher had to 
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make a judgment as to whether or not the actions taken by the participant represented actual 

categorization.  This type of categorization was described earlier in the case of Cory, who drew a 

free body diagram and applied the mathematical statement of Newton’s second law to his 

problem.  Although Cory never stated “this is a second law problem,” his actions seem to suggest 

that he had made a categorization.  Because determination of categorization in these cases 

required inference from the actions of the participants, a more rigorous test was applied to cases 

of implicit categorization.  In order for the actions taken by a participant to be considered as 

evidence of implicit categorization, the participant’s actions must show that he or she chose a 

solution process based on a particular physics principle (i.e. Newton’s second law), and that 

process was followed to the end of the solution attempt.  Four participants in this study were 

found to have taken actions that met these criteria for implicit categorization.  One participant 

provided no clear indication of categorization of any kind.  A summary of indications of 

categorization is seen in Table 5. 
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Table 5: Indications of Categorization 

Group Participant Explicit Implicit 
Apparent 

Conceptual 
Basis 

Category 

Alex √  √ Momentum/Second law 

Andrew  √  Second law 

Arnold √  √ Work-Energy 

A 

Art  √  Second law 

Ben    None 

Beth √  √ Energy 

Betty √  √ Work-Energy 

Bob  √  Second law 

B 

Brittany √   Collision* 

Carl √   Second Law 

Chuck √  √ Momentum/Work-Energy 

C 

Cory  √ √ Second Law 

*Invalid categorization; eventually completes attempt without clear categorization 

 

 
Based on the evidence collected in the protocols, the majority of the participants in this 

study appeared to make appropriate categorizations of the problems they attempted, although the 

basis of those categorizations was sometimes questionable.  This is in agreement with the results 

cited by other researchers, which indicate that students in general have the declarative knowledge 

needed to solve physics problems (Chi et al., 1989; Hoellwarth et al., 2005; Savelsbergh et al., 

2002).  The results of this study are also seem to support the assertion that the declarative 

knowledge needed to adequately categorize a problem does not necessarily imply complete 

conceptual or procedural knowledge.  Despite the fact that the majority of participants were able 

to make appropriate categorizations, only three participants were able to carry that categorization 

through to the successful completion of the problem.  The largest group in the study, Group B, 
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showed significant conceptual gaps in their knowledge, as evidenced by both the verbalizations 

and the post-session interviews.  For those participants in Group A whose conceptual 

understanding appeared more robust, there were still deficiencies in the procedural knowledge 

needed for successful application of the principles they selected. 

The two exceptions in this discussion of categorization were among the weaker problem 

solvers.  Brittany initially explicitly categorized her problem as a collision problem, apparently 

cued by the fact that the problem statement listed mass, velocity and angles.  She did not carry 

through on this inappropriate categorization, and eventually reached an answer based on 

application of force principles.  However, she never clearly categorized the problem, basing her 

work instead on formulas culled from examples she referenced in her textbook.  Ben, on the 

other hand, never gives any indication of categorization, and ends his problem-solving attempt 

before reaching a solution. 

The choice of categorization was also observed to affect problem complexity, as reported 

by McGinn and Boote (2003).  Participants who selected work-energy relationships over 

Newton’s second law in general completed solutions that were shorter than the solutions of those 

participants who used the second law to solve the same problem.  Alex’s protocol is a prime 

example of how problem categorization can affect solution complexity.  He correctly categorized 

the first part of Problem 2 (see Appendix A) as a momentum problem, and then chooses 

Newton’s second law to apply to the second part of the problem.  This was an appropriate 

choice, but one which resulted in more lengthy solution than one based on work-energy 

principles would have been.  In addition, Alex categorized the motion constrained to an incline 

as a two-dimensional problem, which additionally increased the complexity of the problem. 
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In short, the protocols from this study seem to support the validity of problem 

categorization as an important factor in the problem-solving process in introductory physics.  

This is not surprising given the large body of literature related to categorization both in physics 

and mathematics problem solving.  What is notable about these results is that nearly all the 

participants, even those whose problem-solving sessions provided evidence of significant 

conceptual difficulties, were able to make appropriate categorizations within the context of 

problem solving.  However, the basis upon which those categorizations were made is 

questionable.  Only six of the participants had any apparent conceptual basis for their 

categorizations, and of those, in only three of those cases did the conceptual understanding 

appear robust and not at least partially based on surface features of the problem.  The results of 

this study also highlight the relationship between categorization and complexity, the next factor 

to be discussed. 

 

Complexity 

McGinn and Boote (2003) note that the number of operations needed to complete a 

problem solution influences the perceived difficulty of the problem.  An increase in the number 

of discrete steps needed to reach a solution makes it more difficult for the problem solver to see 

how they will get from the initial state to the final goal state.  This would have particular 

relevance to the experiences of novices, who frequently rely on means-ends analysis to solve 

unfamiliar problems.  The measure of the number of steps to reach a solution is defined by 

McGinn and Boote as complexity. 
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In this study, only one participant made explicit reference to the complexity of the 

problem attempted as defined in the stabilization model.  Alex, when he realizes that the sled-on-

a-hill problem has four distinct parts, makes the comment “and then get to the bottom of the hill 

and that’ll be oh my god it’s four problems… oh… this is hard…”  In the post-session interview, 

Alex indicates that when he realized there were four parts to the problem he was “panicking” 

because he saw the task as far more difficult than he originally perceived it to be.  In fact, earlier 

in the problem, at a point when he believed the problem to involve only the application of 

conservation of momentum, he stated “this is gonna be simple…”  An increase in the perceived 

number of steps needed to reach the solution resulted in Alex modifying his assessment of the 

difficulty of the problem. 

Although Alex’s statements concerning the difficulty of the problem he attempted appear 

to support the stabilization model’s definition of problem complexity, he was an exception.  No 

other participant made an explicit statement concerning problem complexity or difficulty.  There 

were a few isolated statements that might be considered as statements of complexity; however, 

given the context in which they took place it is difficult to ascertain whether they were 

statements of complexity or simply statements about the next steps that must be taken in the 

solution process.  The statements that come closest to meeting the definition of complexity as 

outlined in the stabilization model are those made by Ben and Andrew.  Early in the problem, as 

he is considering the approach he will take, Ben states that he will “need to get the velocity after 

he slides to here… and then using this coefficient of friction and the velocity…”  Likewise, 

about midway through his solution, Andrew notes “I have the time that it takes me to get right 

here… how far along the truck so I can find the final velocity now that I know the acceleration 
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here the final velocity at which I can get this here will be the initial for this ramp… if I’m not 

mistaken…”  Ben and Andrew have alluded to the number of steps, even though they do not 

specifically mention them.  Later in the problem Andrew notes “I know this is three hundred I’m 

trying to find this [x2] so three hundred this is given [velocity] then this is given [acceleration] I 

have two unknowns I have this [x2] I have the time…”  Again, no specific mention of the 

number of steps is made, but he notes that there are two unknowns to deal with.  A similar 

statement concerning two unknowns was made by Carl during the course of his solution. 

Other than the four participants already mentioned, there were no apparent statements 

related to problem complexity.  All that can be determined from these results is that the 

verbalizations of these participants do not appear to support the contention that problem solvers 

consciously consider the complexity of a problem as part of their solution process.  The results of 

the study must be considered as inconclusive with regards to the factor of complexity. 

 

Goal Interpretation 

The stabilization model defines goal interpretation as knowledge about how the solution 

should look (McGinn & Boote, 2003).  Goal interpretation is closely tied to categorization, since 

the categorization of a problem is often linked to recall of a complete solution pattern, or schema, 

at least for more experienced problem solvers.  To the expert, the complete solution is a way in 

which information about the problem situation can be communicated.  To better understand the 

concept of a solution pattern communicating information, and to illustrate the relationship 

between categorization and goal interpretation, consider again the example of Alex.  He 
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categorized the non-momentum conservation portions of his problem in terms of Newton’s 

second law, and further categorized the problem as two-dimensional, despite the fact that the 

motion was constrained to a line.  His categorization automatically set a solution pattern based 

on components of the vector quantities involved in the problem.  In other words, his 

categorization determined what the solution would look like.  Alex’s solution then communicates 

information about components of forces and accelerations that would not have been 

communicated if he had categorized the situation as a work-energy problem. 

As noted by McGinn and Boote (2003), the answer is also part of the overall goal.  Goal 

interpretation takes into account the fact that the answer is only one part of a complete solution, 

even though for many novices the answer might be considered as the only important part of the 

solution.  Providing only the answer to a problem does not communicate information about the 

assumptions and/or approximations that might have been made during the course of the solution, 

nor about the principles applied for that solution.  Knowledge of the final goal, or answer, does 

not necessarily imply knowledge of how to reach that goal, a situation that is well-understood by 

every student who has ever looked in the back of a textbook for an answer.  The problems used 

in this study were well-defined, in that the final goal was stated in the problem statement.  

However, all of the problems required multiple steps to reach the final goal, so that there were 

unstated subgoals that must be reached for a successful solution.  The number of subgoals within 

a solution was dependant upon the problem attempted and the approach chosen by the 

participant.  That is, although the overall goal was stated in the problem description, the subgoals 

were related to the categorization of the problem. 
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Once an understanding of goal interpretation was reached, a decision had to be made as 

to the criterion to be used as evidence of goal interpretation within the protocols.  The basis of 

the definition of goal interpretation is the solution pattern as established in large part by the 

subgoals within the problem.  Informed by this definition based on subgoals, this study used a 

criterion that sought evidence of goal interpretation in the verbalizations of the subgoals that 

defined the solution pattern.  The justification for this decision was that if a participant was able 

to verbalize a goal or subgoal, he or she had some knowledge of what the solution pattern should 

look like.  To strengthen the evidence, the subgoals verbalized by each participant were 

compared with the actual solution pattern produced.  Final determination of whether or not goal 

interpretation was evident was made on the basis of the level of agreement between the 

verbalized subgoals and the actual solution path. 

In the first pass through the protocols, any goals and subgoals actually verbalized by the 

participants were noted.  Table 6 summarizes the results of this review, which showed that every 

participant made at least one statement of the final problem goal beyond the reading of the 

problem statement.  In addition, all but two participants made at least two statements of subgoals.  

In these results, repeated statements of the same subgoal were treated as a single statement.  

Problem goals and subgoals were often verbalized several times, so that the total verbalizations 

made by the participants varied from one to eight goal statements, and from zero to 11 subgoal 

statements. 
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Table 6: Verbalizations of Goals and Subgoals 

Group Participant Verbalized 
Final Goal 

Verbalized 
Subgoal(s)* 

Subgoals define 
solution pattern 

Solution pattern 
matches expert 

Alex √ √ (7) √  

Andrew √ √ (6) √ √ 

Arnold √   √ 

A 

Art √ √ (4) √ √ 

Ben √ √ (3)   

Beth √    

Betty √ √ (3) √  

Bob √ √ (2)   

B 

Brittany √ √ (3) √  

Carl √ √ (5) √ √ 

Chuck √ √ (5) √ √ 

C 

Cory √ √ (4) √ √ 

*Repeated statements of same subgoal grouped as one statement 

 
 

Comparison of the verbalized subgoals with the actual solution steps showed that in 

seven of the 12 protocols, the subgoals defined the solution path; that is, the pattern of steps 

indicated in the verbalizations matched the pattern of steps carried out in the solution.  Two 

participants verbalized no subgoals to compare to, and one participant (Ben) verbalized subgoals 

that represented a valid solution pattern but was unable to proceduralize those subgoals.  In 

several cases, the actual solution included more steps than were verbalized, but these were cases 

when an additional calculation was required to reach the stated subgoal.  For example, Alex 

verbalizes that he needs to calculate the friction force, and then calculates the normal force first.  

Four of the protocols fell in this category. 

Two of the participants expressed subgoals that at first did not appear to match the 

solution they actually carried out.  Bob verbalizes two subgoals: find the acceleration and find 
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the final position.  In his solution, he uses kinematics equations in an attempt to generate a 

symbolic relationship for the final position in one step, calculates an (incorrect) acceleration 

which he then substitutes into his symbolic relationship.  Although in his solution Bob does 

eventually calculate acceleration and final position, he carries out a number of steps prior to 

those calculations which are not verbalized.  For this reason, his solution was determined not to 

match the verbalized subgoals.  Likewise, Cory carries out a number of steps in his solution that 

are not verbalized.  Cory is an interesting case in relation to goal interpretation, as he is one of 

the individuals who reached a correct solution.  He verbalizes subgoals only for the second half 

of his solution, and for that portion the subgoals match the solution steps.  For the entire first half 

of the solution, he carries out steps which parallel the calculations he performs for the second 

half of the solution, but without verbalizing the subgoals of those calculations.  Although it 

appears that Cory knows what the solution pattern should look like, he does not verbalize that 

pattern.  However, because the verbalized subgoals for the second half of the problem mirror the 

steps taken in the first half, his protocol was categorized as matching the verbalization of 

subgoals. 

It is important to note that the condition of matching verbalized subgoals and solution 

does not indicate a valid solution process.  As noted earlier, the protocols of all Group B 

participants showed significant conceptual errors in application of physics principles.  However, 

as seen in Table 6, Group B participants were also less likely to provide verbalized subgoals that 

matched actual solution steps they took.  Although two of the five Group B members provided 

verbalized subgoals that matched their actual solution steps, both of the solutions contained 

conceptual errors.  Likewise, both of the verbalized paths represented possible valid solutions, 



but the participants lacked the conceptual and procedural knowledge needed to carry out the 

solutions correctly. 

Another aspect of goal interpretation that is inherent in its definition in McGinn and 

Boote (2003) lies in knowledge of the magnitude, direction and units of the answer.  For a good 

problem solver, this sense of how the answer should look begins to be developed early in the 

solution of the problem.  Understanding of how the answer should look, both for the overall goal 

of the problem and the subgoals needed to attain it, provides cues to the problem solver as to 

whether or not he or she is making progress in the solution (see also Sweller, 1983).  This aspect 

of goal interpretation is illustrated in the protocol of Andrew.  Early in his solution, Andrew 

draws a diagram (Figure 9) and indicates the horizontal plane at the base of the incline as the 

distance that he is looking for. 

 
 

Figure 9: Andrew's Sketch 

 

 120



 121

In other words, he has interpreted the question “How far along the truck ramp does the truck go 

before coming to a stop?” as asking for the horizontal distance.  Later in the problem he 

reevaluates that interpretation: 

 “and this is how far along the truck… on the truck ramp does the truck go before coming 
to stop… so… earlier I was explaining this distance I thought it was going this distance 
[indicating horizontal distance] no this is the three hundred there so… what is that 
distance [indicating distance along upward slope]…” 

 

Andrew has reinterpreted the goal of the problem based on the work he has carried out up to that 

point.  Unlike Andrew, problem solvers without a clear sense of what the final answer should 

look like would not have the cues needed to alert them to the presence of errors or 

misinterpretations of the goals of the problem. 

Understanding these results in relation to goal interpretation was difficult.  In order 

facilitate further understanding, the steps that would be taken by an expert in solving the 

problems were listed.  Because each of the problems could be solved either with work/energy 

principles or by application of Newton’s second law, the expert steps for each method were 

listed, and were verified by an independent physics professor.  The steps taken by the 

participants were then compared to the expert’s steps.  This comparison, which is also seen in 

Table 6, was far more enlightening than looking at the participants’ protocols in isolation.  

Comparison to an expert solution path showed that each of the Group C participants verbalized a 

solution pattern based on subgoals that matched the expert pattern.  This was true even in the 

case of Cory, who did not verbalize the first half of his solution.  The majority of the solution 

paths of the Group A participants also matched those of the expert, further supporting the 
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original categorization of this group as exhibiting mathematical or procedural errors only.  The 

only exception was Alex, who incorrectly categorized his problem as two-dimensional. 

The analysis of the protocols with respect to goal interpretation, defined as knowledge of 

the solution pattern, suggests that in order to reach a successful solution, the problem solver must 

be able to verbalize the necessary subgoals leading to that solution.  Additionally, the more 

expert-like the verbalized pattern is, the more likely it is that a correct solution will be reached.  

However, these results are not conclusive.  Arnold does not verbalize any subgoals in his 

solution, yet his solution pattern matches that of the expert.  Likewise, Cory verbalizes subgoals 

for only half of his solution, yet he also produces a solution which matches the pattern of that of 

an expert.  Based on the evidence of their protocols, it seems likely that both of these individuals 

knew what the subgoals and solution pattern were, but simply did not express them.  What 

appears clear from these results is that conceptual understanding is important for successfully 

solving unfamiliar problems, although it is not sufficient.  None of the Group B participants were 

able to verbalize an expert-like solution pattern, and none were able to correctly solve the 

problems they attempted.  This is not surprising, given the conceptual difficulties evident in their 

protocols.  But Group A participants, who seemed to have a reasonable level of conceptual 

understanding and in general produced expert-like solution patterns, were also not able to reach 

successful solutions.  These results parallel those reported by Hoellwarth et al. (2005), who 

found that increased conceptual understanding did not necessarily translate into increased 

problem-solving proficiency.  Understanding why conceptual understanding is necessary but not 

sufficient in physics problem solving leads one to consider the resources that problem solvers 

bring to their solution attempts. 
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Resource Relevance 

Resource relevance is another factor which has been well-documented in the literature.  

Schoenfeld (1985a) noted that students’ inability to recognize the relevance of their existing 

domain knowledge was a significant barrier to success in mathematical problem solving.  The 

highly mathematical nature of physics problem solving suggests that the same statement could be 

made about physics students.  This connection between physics problem solving and 

mathematical problem solving has been investigated by other researchers (Bassok, 1990; Bassok 

& Holyoak, 1989; Cui et al., 2005; Ozimek et al., 2004).  Their results in general suggest that 

novices within the domain of physics have difficulties in recognizing their mathematical 

knowledge as relevant to problem solving in physics. 

Other aspects of resource relevance are related to the ways in which students use the 

resources they do recognize as relevant.  Many physics students use examples as a resource in 

solving unfamiliar problems.  The manner in which those examples are used is related to the 

problem solver’s conceptual understanding and ability to recognize an example as relevant to the 

problem at hand (Chi et al., 1989; Chi & VanLehn, 1991; VanLehn, 1998).  In particular, 

problem solvers who lack sufficient conceptual understanding are more likely to copy 

information verbatim from an example, without considering its relevance to the problem they are 

attempting to solve. 

The investigation of resource relevance in this study began with a simple tabulation of the 

resources used by the participants.  The majority of the listed resources, seen in Table 7, were 

identified by McGinn and Boote (2003), but several were identified solely from the work of the 



participants in this study.  This list does not include all of the resources listed by McGinn and 

Boote, primarily because this study did not consider social resources.  The tabulated information 

shows that prior knowledge was the most frequently used resource, a finding which is not 

surprising.  As noted by Bruner (1996), the most important thing a student brings to the 

classroom is his or her prior knowledge. 

 

Table 7: Resources Explicitly Noted in Sessions 

Group A Group B Group C 

Resources* 
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Ruler √            
Material Colored 

Pens 
 √           

Textbook 
Formulas 

√    √   √ √    

Textbook 
Examples 

    √    √    

Formula 
Sheet 

√         √  √ 

Textual 
Resources 

Lecture 
Notes 

 √  √ √  √      

Geometry/ 
Trig. 

√ √ √ √ √ √ √   √ √ √ 

Physics 
Principles 

√ √ √ √  √ √ √  √ √ √ 

Physics 
Concepts 

√ √ √ √ √  √   √ √ √ 

Memorized 
Equations 

√ √ √ √ √ √ √ √  √ √ √ 

Units √   √  √       

Prior 
Knowledge 

Mnemonics   √         √ 

Memory of 
Lecture 

√ √  √         
Other 

Own Earlier 
Work  

√ √    √ √ √ √ √ √ √ 

* All participants used paper/pencil, calculator, algebra knowledge, problem statement and self-drawn 
diagrams. 
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The first information to come from the review of utilized resources was that all 

participants utilized algebraic knowledge in their attempted solutions, and in all but one case 

they used those resources correctly.  The exception was Brittany, who made two significant 

mathematical concept errors.  First, while summing the forces using an equation she copied from 

an example in her textbook, she writes: 

57.08 0y yF ma= = =∑ . 

She looks at the equation and states “ok,” apparently not recognizing the contradiction.  Later in 

the solution she writes: 

2

2

2

0 2

2(1.74)

3.473

fx x

x

v a d

a d

d

d

=

=
=
=

 

She again does not notice the mathematical impossibility of what she has written.  This same 

mistake is made again at a later point in the solution.  Brittany appears to have mathematical 

conceptual inadequacies, and apparently recognizes her deficiencies, as she states in her post-

session interview: “my weakest subject’s math… and I’m like well where did that negative sign 

come from I didn’t see it there so you know.” 

The other resource that was used by all the participants was self-drawn diagrams, as 

noted earlier in the analysis.  The current resource tabulation does not take into account the 

manner in which the participants used the diagrams they drew, an aspect of the protocols that 

will be discussed later.  However, it was found that use of diagrams to generate the equations 

used to solve the problem was a universal characteristic of Group C.  Use of diagrams in this 
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way was also seen in Group A, though not as obviously so.  Group B, the group with conceptual 

errors in their solutions, used their diagrams primarily as a means of recording the information in 

the problem statement or for determining angles and/or components. 

The most significant finding from the tabulation of resources used was the indication that 

Group B participants were lacking in their use of physics principles and conceptual 

understandings, which is not surprising given the evidence of conceptual errors in their 

protocols.  For the purpose of this analysis, physics principles were taken to mean formal 

principles within the domain of physics, such as Newton’s second law, conservation of energy, 

or conservation of momentum.  Conceptual understandings was taken to refer to knowledge of 

basic conditions within physical situations, such as the signs of velocities and accelerations, the 

fact that velocity is zero at the highest point in a motion, and that kinetic friction opposes the 

motion of an object.  Clearly these two ideas are related, but for the purpose of understanding the 

actions taken by the participants it was useful to separate them.  As illustrated by the protocols of 

Betty and Ben, it is possible to refer to basic physical concepts without reference to the 

underlying physical principles. 

All of the members of Groups A and C referred to fundamental physics principles in the 

solution of their problems, often making categorizing statements related to those principles.  

Likewise, they all made use of physical concepts, using appropriate signs for physical quantities, 

and taking note of such things as points where velocities were zero.  This was not the case for the 

Group B participants.  Two of the five Group B members made no reference to physics 

principles, and three of the five made no reference to basic concepts.  Only one participant, 

Betty, made use of both, although her understanding of the principles and concepts was flawed.  
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It was also noted that all Group A and Group C participants made use of geometrical and/or 

trigonometric knowledge, while only three of the five Group B participants did so.  The reduced 

use of geometrical and trigonometric knowledge by Group B participants could be related to the 

fact that many physics concepts, such as net force, are based on underlying geometrical concepts. 

Only two participants made reference to textbook examples during the course of their 

solution attempts, both of whom were members of Group B.  Coincidently, they both are 

exemplary models of students applying the results of examples inappropriately.  Both of these 

participants were attempting Problem 1 (see Appendix A).  During the course of his solution Ben 

refers to a relative motion example, and then tries to fit his problem to the inappropriate example.  

He even refers to the notation used in the book for the example, stating which of his variables 

correspond to the variables in the example.  Brittany, on the other hand, refers to a more 

appropriate example at first, but does not know what to do with the information it provides her.  

Later, when she realizes that the example did not include friction, she refers to a second example 

which does include friction, but which is on a level surface instead of an incline as her problem 

is.  Despite the fact that the example is not applicable to her problem, she uses the equation for 

acceleration from that example for her solution.  Both Brittany and Ben exhibit the inappropriate 

use of examples documented by other researchers (Chi et al., 1989; Chi & VanLehn, 1991; 

VanLehn, 1998). 

We can summarize these findings by noting that the participants in this study bring 

significant mathematical and conceptual resources with them to the problem-solving process, and 

for the most part are able to make appropriate use of those resources.  Participants who exhibited 

conceptual difficulties in their solutions were also less likely to have relevant resources to call 
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upon, an observation which supports the presumption that conceptual understanding is a 

necessary component of successful problem solving.  That it is not a sufficient component is 

evident in the protocols of Group A.  All of those participants made use of relevant mathematical 

and conceptual resources, and yet were unable to reach a correct solution.  It is important to note 

that this summary of use of resources does not consider whether those resources were applied 

correctly, or whether or not the conceptual resources used were accurate.  To connect the use of 

resources to the accuracy and correct use of those resources requires looking back at the initial 

analysis, where the determination of type of error took place.  It is also not apparent from a 

simple tabulation whether or not a conscious consideration of the appropriateness of a resource 

took place.  These considerations lead to the conclusion that while resource relevance is an 

important factor in problem solving, it is not evident from this study that conscious consideration 

of those resources took place on the part of the problem solver. 

 

Stabilization 

What makes a problem a problem, as opposed to an exercise?  This is essentially the 

question that McGinn and Boote (2003) were trying to answer through their introspective study 

of problem solving.  As noted earlier, the problem situations they encountered ranged from 

automated activities and exercises to solvable problems to unsolvable “difficulties” (p. 98).  It is 

the activities that qualify as problems that were of interest to McGinn and Boote, and to this 

study.  Problems are situations in which the problem solver does not have ready access to an 

automated means of solution (Schoenfeld, 1985a), and the four previously identified factors of 



 129

categorization, resource relevance, goal interpretation and complexity must be evaluated, 

balanced, and reevaluated to find a workable solution. 

McGinn and Boote (2003) suggest a model of problem solving that considers the 

changing relationships between the four previously identified factors as the problem solver 

attempts to find a solution.  The shifting of relationships between the four factors, moderated by 

ongoing assessment of the problem situation, is what McGinn and Boote called stabilization.  

They define it as a “shifting salience of primary factors… superordinate to the primary factors” 

(p. 99).  They note that when the problem solver’s perceptions of the factors are inconsistent with 

each other, reevaluation of the primary factors will result in actions taken to attempt to change 

the situation.  In other words, the process of problem solving is a search for a stable relationship 

between the four factors, corresponding to a stable understanding of the problem situation.  The 

search for stability requires an ongoing assessment of the problem situation, considering each of 

the factors in relation to the others.  When a problem is stabilized quickly and appropriately, all 

that remains for its solution is calculation.  On the other hand, if a problem is stabilized 

inappropriately, ongoing assessment may result in destabilization of the situation.  The need for 

destabilization may be cued by an impasse in the solution, or by the solution exceeding some 

conscious or unconscious threshold, such as if the problem is taking longer that expected to 

solve. 

Stabilization can be perhaps better understood in the context of metacognition, which is 

in effect the process of thinking about one’s own cognitive processes (Kuhn, 2000).  In relation 

to problem solving, metacognition acts as a control mechanism, informing the problem solver 

about whether or not progress is being made towards a solution.  The control process governs 
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selection and pursuit of appropriate solution processes, the selection of goals and subgoals (see 

also Sweller, 1983), recovery from inappropriate choices, resource allocation and general 

monitoring of the problem-solving process (Schoenfeld, 1985a).  Lesh (as cited in Schoenfeld) 

noted that in the process of working a problem, a novice might realize that a completely different 

conceptualization of the problem is needed than the one that he or she had to that time been 

working under, and in fact may go through several reconceptualizations of the problem before a 

solution is reached.  It is this monitoring process that is governed by metacognition, and is the 

type of activity that McGinn and Boote (2003) discuss in relation to stabilization, which is 

described in terms of the metacognitive ongoing assessment of whether or not progress is being 

made towards a solution.  Lesh also argues that weaknesses in novices’ conceptual and 

procedural systems result in problems with that control, leading to situations in which the 

problem solver may neglect important properties related to the problem, focus on surface 

features while neglecting underlying principles (see also Chi et al., 1981), lose track of overall 

goals while focusing on individual steps, or carry out individual steps incorrectly while 

remaining focused on the overall goals.  In this respect, it is not the attainment of a stable 

understanding that is important, but rather the metacognitive awareness to realize when progress 

was not being made; that is, the awareness of when destabilization is necessary.  Stabilization is 

thus suggestive of flexibility in problem solving, which is defined as the ability to change the 

direction of a problem-solving process in such a way that the fit between the problem situational 

constraints and the problem solver’s solution process can be optimized (Frensch & Sternberg, 

1989).   
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In order to evaluate the protocols in this study for evidence of stabilization, a working 

definition of stabilization had to be developed that would lend itself to the search.  In other 

words, what actions taken by the participants would qualify as evidence of stabilization?  

McGinn and Boote (2003) discuss an ongoing evaluation of the relationships among the four 

factors; that is, evaluation of problem category, relevant resources, appropriate interpretation of 

the goal, and identification of sufficient operations to reach the solution.  This definition was 

taken to mean that the problem solver is searching for a stable understanding of the problem that 

will lead to a solution.  This appears to be consistent with the McGinn and Boote definition, in 

that a thorough understanding of the problem will be reached through the processes of 

categorization and application of relevant resources, combined with knowledge of the goal state 

and any necessary subgoals, all taking place while navigating a reasonable number of operations.   

The alternate definition as the search for understanding that will lead to a solution has the 

advantage of providing something more concrete to look for in the protocols.  If the participant 

was considering solution options, verbalizing a search for understanding, but was not actively 

engaged in carrying out a solution, it was considered to be evidence of stabilization.  On the 

other hand, if the participant was actively engaged in carrying out a solution and then stopped to 

reconsider their approach, it was considered evidence of destabilization.  This assessment of 

approach to the problem excludes pauses to simply check work, such as when the participant is 

checking a calculation, evaluating the sign of an answer, or verifying the form of an equation.  

Assessment that qualifies as destabilization was considered to be an active consideration of the 

validity of the approach being taken.  Destabilization may be temporary, in that it does not 

change the course of the problem solution, or it may result in a significant change in approach.  
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Analysis of the protocols to determine whether or not there was evidence of stabilization or 

destabilization necessarily took place after the protocols were reviewed for the four primary 

factors, since stabilization is defined as an overarching factor governing the relationship among 

the other four.  That is, the process of stabilization or destabilization may involve a change in 

categorization, the use of resources, and consideration of the goal state and problem complexity. 
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Table 8: Indications of Stabilization 

Group 
Participant Stabilization Episodes as 

Verbalization of Search 
for Understanding 

Destabilization Episodes 
as Verbalization of Search 
for New Understanding 

Cues for Destabilization 

Andrew Continual; no explicit 
categorization 

Two; one resulting in 
change of course and one 
resulting in modification 
of approach 

Consideration of given 
information; impasse in 
solution 

Alex Continual with 
uncertainty evident 
throughout; explicit 
categorization 

Three; all resulting in 
change of course of 
solution 

Consideration of friction; 
impasse in solution (two 
times)  

Art Beginning; no explicit 
categorization 

One; result is affirmation 
of the approach being  
used 

Uncertainty regarding 
equations 

A 

Arnold None apparent; rapid 
categorization; step-wise 
solution 

None NA 

Beth Beginning; explicit 
categorization 

One; result is modification 
of approach 

Consideration of friction 

Bob Beginning with 
uncertainty evident 
throughout;  no explicit 
categorization; equation- 
driven solution 

Two; one resulting change 
of course and one 
resulting modification of 
approach 

Consideration of given 
information; impasse in 
solution 

Brittany Continual; no explicit 
categorization; example- 
and equation-driven 
solution 

Two; both result in change 
in course of solution 

Impasse in solution; 
consideration of friction 

Betty Beginning; explicit 
categorization 

One; result is modification 
of approach 

Consideration of friction 

B 

Ben Continual; no explicit 
categorization; equation- 
driven solution 

One; understanding never 
attained; no solution 
reached 

Magnitude of calculated 
quantity 

Chuck None apparent; explicit 
categorization; step-wise 
solution 

None NA 

Cory Beginning; no explicit 
categorization; stepwise 
solution 

None NA 

C 

Carl Beginning; no explicit 
categorization; stepwise 
solution 

One; result is affirmation 
of the approach being 
used 

NA 
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The review of the protocol data showed that nine of the 12 participants exhibited verbal 

evidence of thinking about how they should solve the problem (see Table 8).  Three of the 

participants, Chuck, Cory, and Arnold, showed no evidence of a search for an approach to their 

problems.  In each of these cases, the participant read the problem statement, immediately 

categorized the problem, and proceeded to engage in a more-or-less stepwise solution of the 

problem.  Cory and Chuck both obtained correct solutions for the problems they attempted, and 

their solutions matched the solution process of the expert.  Likewise, although Arnold made a 

minor error near the end of his problem, his basic solution process matched that of the expert.  

These observations are consistent with those made be McGinn and Boote (2003), who noted that 

when a problem is readily categorized, relatively automated solution procedures are activated.  

At this point the problem is, in effect, an exercise. 

The remainder of the participants all verbalized an active interpretation process indicative 

of a search for an understanding of the problem situation and identification of a solution 

approach at the beginning of their solution attempt.  In addition, four of those participants 

exhibited almost continual searches for understanding, frequently expressing questions about 

their approach to the problem or of their interpretation of the problem.  The searches carried out 

often made use of resources such as self-drawn diagrams, formula sheets, the problem statement, 

or textbooks, but did not involve any calculations or other progress towards a solution.  The 

distinction, as outlined in the criterion for evidence of stabilization, is that the participant was 

considering a solution, not actually carrying out a solution.  Beth provides an excellent example 

of the type of search for solution that was considered as a likely candidate for stabilization 

activities: 
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 “ok so I know its initial kinetic energy is that going to help… no it’s not it doesn’t matter 
I know its initial velocity then it slides down the slope for this given period of time ok so 
velocity equals distance times time I don’t know time… I do know d I do know v I can 
find t ok… traveling down the slope does that matter… no… it shouldn’t then it goes 
up… then it’s going back up it’s going back up the ramp... does that matter kinetic ener… 
should I use kinetic energy I already know v… I already know v the velocity’s changing I 
have to find how far along if I know the vel… the velocity that’s not going to help me… 
he applies the brakes wait he applied the brakes velocity’s changing… (sighs) applying 
the brakes doesn’t do… because his truck starts sliding he doesn’t actually slow down so 
velocity is still the same… ok so I do know the energy kinetic energy the other kind of 
energy’s going to be potential energy got it” 

 
Here we see Beth considering the problem situation, using problem statement, diagram and prior 

knowledge resources, and ultimately categorizing the problem.  After this interlude she engages 

in actively pursuing the solution using her chosen energy approach, which she carries through to 

the end of the problem.  Similar actions were taken by Bob as he considers possible approaches 

to his problem: 

 “ok we’ve got… got forces in the x direction forces in the y …and…I wonder if I could 
solve this with an energy concept hmm… actually yea I probably could that’s a good 
idea… let’s see… so if they want distance and if we use kinetic energy to find the 
velocity it was going… uhm… that won’t tell us… actually yea it would help… so… no 
they gave us the velocity already… all right ok never mind… so kinetic energy won’t 
help us there… good ok… brain fart there… so… soo… we need another basic uhh let’s 
see what one would work here… hmm… let’s see v final equals v naught plus… what is 
it… one-half a t… ah let’s look that up…” 

 
After considering forces, then energy, Bob settles on kinematics to solve his problem. 

For two of the participants (Art and Carl) there was only minimal evidence of an apparent 

search for understanding.  Carl starts his solution as if he already had a plan in mind.  He draws a 

free body diagram, and then a second diagram listing the known quantities from the problem 

statement.  He then pauses to consider what to do next: 

 “we have in ah initial position a initial time initial velocity and then we’ll have a final 
distance… final position a final time and a final velocity at that point the final position 
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will be zero meters the I mean the initial position the initial time will be zero and the 
initial velocity was given to be twenty-two meters per second… and then you we have 
the final position being five three hundred meters and the final time being unknown and 
the final velocity is what we’re calculating… so for the what we’re finding… the ramp is 
covered… how far along the truck ramp ramp does the truck go before coming to a stop 
hmm… in order to solve the problem we probably need the final velocity at a later time 
so yes that that is what we are solving for so then I look at my formula sheet and see what 
I can do with that… I know I know the final position I know the initial I know the ini ah 
initial velocity I do not know the time… acceleration… [refers to diagram] there would 
be… yes there would be an… because of the weight force of the truck there would be an 
acceleration so the truck is accelerating… so then we probably need to use Newton’s 
second law in order find the acc… ah the acceleration along the horizontal… the x…” 

 
This is the only pause during which Carl considers his approach to the problem.  Once an 

understanding was reached, his ultimate decision was to utilize the resources he had already 

made available (the free body diagram and kinematics information) to solve the problem.   

At the other end of the continuum were Brittany and Ben, who engaged in nearly 

continuous searches for a stable understanding of their problem.  Both of these participants were 

highly equation-driven, searching their books for equations and/or examples that would help 

them solve the problem.  This was particularly true of Brittany, who made several comments 

during her protocol indicating that she was “trying to find a formula that fits… the uhm 

problem…”  Although Brittany’s search for understanding took place throughout the protocol, 

her search was punctuated by pauses during which she would attempt various approaches.  In 

contrast, Ben appears to have decided on a solution process shortly after reading the problem 

statement.  He draws diagrams illustrating the problem situation, lists the known quantities, and 

then states: “need to get… the velocity… after he slides to here [point between the two slopes] 

and then… using this coefficient of friction and the velocity…”  After outlining this basic 

solution process, Ben refers to his book, but appears to be looking for specific formulas related to 
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friction.  He starts a solution based on his outline, but hesitates after he gets an answer for the 

acceleration that he doesn’t think is correct.  He states “that can’t be right…” and then starts 

again considering his approach to the problem.  The remainder of his protocol is a nearly 

continuous verbalization of formulas from the textbook, conditions in the problem, definitions, 

and reviews of the problem statement.  Ben never returns to an active attempt at the solution.  It 

appears from his statements that he is never able to balance his available resources (text, problem 

statement and prior knowledge) with the conditions of the problem.  In other words, Ben is 

unable to stabilize his understanding of the problem in a way that will lead to a solution. 

As seen in Table 8, there were eight participants who verbalized significant reevaluations 

of their solution process.  These episodes are particularly interesting, because they represent 

points in the solution process where the participant is questioning their initial understanding of 

the problem.  There were several apparent cues that led the participants into episodes of 

destabilization, which were interpreted as searches for a new understanding of the problem.  In 

five cases, destabilization was brought about by an impasse in the solution.  That is, when the 

participant realized that they were at a point where they could go no further, or where they 

realized they had too many unknown quantities, they were forced to reevaluate their approach to 

the problem.  Curiously, in four cases the reevaluation was cued by the participant realizing that 

friction, which they had previously ignored, played an important role in the problem situation.  

Other cues for destabilization included features of the problem statement, uncertainty regarding 

an equation, and the magnitude of a calculated quantity.  

The destabilization episodes carried out by the participants had three possible outcomes.  

The first, which was seen in only two participants, was an affirmation of the solution process 
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already being undertaken.  Art, who attempted Problem 1 (see Appendix A), calculates a velocity 

for the midpoint of the problem, and then stops to reconsider his approach: 

“ok, I’m trying to re… remember equ… ah it how to… if I need to… what I what I’m 
trying to solve for I’m trying to figure out what I’m trying to solve here and I am trying 
to solve for x ok… let me try to visualize it again make sense of the equations all right so 
time independent that’s fine oh wait a minute that’s right it’s gonna go to a stop so dig… 
final velocity’s going to be zero what am I thinking all right (laughs) all right so that’s 
fine yea same equation same equation…” 
 

Art’s reevaluation of his understanding seems to be cued by uncertainty about the equations he is 

using and how they relate to the goals of the problem.  Once he reestablishes his goal and relates 

the equations to that goal, he determines that his initial approach was appropriate. 

The second result of destabilization was to reach a new understanding of the problem that 

caused a significant change in the course of the solution, a result seen in the protocols of six 

participants.  The change in the course of the problem would either be in response to an impasse 

in the solution with the currently utilized method, or by recognition of a new section of the 

solution that required a new approach.  For example, Andrew starts his problem by using 

kinematics, but reaches an impasse in the solution when he realizes that the problem solution 

requires knowledge of acceleration.  He reviews his equations, but notes that he has three 

unknown quantities: time, velocity and acceleration:   

“ok, but what about this velocity here…mmm I wonder if I could get it from the 
beginning right to the end… I know this (indicating drawing) some acceleration 
(indicating equation) mmm… see if I can find some equations (refers to notes)… kinda 
wake up… my physics bulb… let’s see position acceleration initial oh I have this one x f 
equals x 1 plus v I the change in time time here time initial is zero seconds time the final 
time I don’t know… final time I don’t know plus one half a t squared…” 
 

This impasse causes Andrew to reconsider the problem situation by reviewing the problem 

statement and his diagrams, and reviewing the work he had already completed.  He draws a new 
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diagram, reviews the given information, and then notes the friction.  Consideration of the friction 

causes him to refocus his attention on the forces involved.  Andrew draws a free-body diagram, 

and continues with his solution by applying Newton’s second law.  In the post-session interview, 

Andrew states that he started trying to solve the problem with just kinematics, but that he got to a 

point where he felt he could not go any further: 

“because I wasn’t getting anywhere with just that (referring to kinematics) so I figure 
out… hey I have and I saw that there’s a frictional force there so I figured that had to help 
me somehow seeing that frictional force pulling it down everything’s going up a ramp 
you know with gravity affecting it so I just basically had run into a wall right there…” 
 

Bob verbalizes a similar reassessment of his approach to his problem.  Bob starts his problem 

with kinematics.  Later in the problem he briefly reconsiders his approach when he realizes he 

doesn’t have the acceleration he needs: 

 “we need the acceleration and that can be ah… that can be found with uhm… hmm let’s 
look at some other stuff here (refers to book)… let’s see here… unintelligible you don’t 
have time… hmm let’s see I know what I’m trying to find I need the acceleration… ya 
got… we got the now let’s see we have the velocity we got distance traveled we don’t 
have time but let’s see… ah ok let’s… let’s start by going through here and… listing all 
the stuff… the the ah listing all the forces that the truck is undergoing…” 

 
This interlude represents a pause during the solution process during which Bob is no longer 

actively working on the solution, but rather is considering where to go next.  Once he decides 

that looking at the forces will work, he carries his solution forward to completion.  Again, this 

verbalization seems to fit the criterion of search for a new understanding of the problem. 

The final observed result of destabilization was simply a modification of approach.  In 

this case, the participant would apparently note that the basic approach they were applying was 

appropriate, but that it needed to be modified to take into account new or just-realized 
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information.  For example, Beth decides to approach her problem from an energy standpoint.  

She calculates the distance requested in the problem statement, then pauses to evaluate her work: 

“ok does that make sense potential energy unintelligible I know the final kinetic energy is 
zero how far up does the truck go before coming to a stop therefore v final is zero ok 
potential energy though first it went down so I called that negative cause it started at zero 
so its going down and that had negative potential energy that makes sense also then since 
this is L d sine alpha (refers to sketch) I need to find d I know alpha… I never used the 
friction force… I never used the friction force shoot…” 
 

At this point Beth does not change her solution; she simply modifies the equation she has already 

written to account for friction. 

The examples provided here appear to provide evidence of problem solvers engaging in 

active searches for a stable understanding of the problem they attempted to solve.  However, it is 

important to note that stabilization does not necessarily imply a “correct” understanding of the 

problem; it implies only that the problem solver has reached his or her understanding of the 

problem.  The working definition of stabilization as search for a stable understanding used in 

this study appears to be consistent with McGinn and Boote’s (2003) definition as “shifting 

salience of primary factors” (p. 99).  If it is, then the data from the protocols, taken together with 

the evidence of the four primary factors, suggests that the stabilization model, while perhaps 

incomplete, might provide a framework for an alternate way of looking at problem solving in 

physics.  In order to provide for validation of the interpretations of the researcher, one protocol 

was selected at random from each of the groups and provided to a reviewer not otherwise 

associated with this research.  The goal was to determine if the coding scheme developed from 

the stabilization model was sufficiently developed, and to see if another physics professor 

analyzing the protocols within the framework of the coding scheme would reach conclusions that 
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were similar to those reached by this researcher.  In the next section the instructions provided to 

the independent reviewer will be described, and the results of his analysis reviewed. 

 

Results from the Independent Review 

Confirmation bias is the natural human tendency to seek out, or place more weight on, 

evidence that supports one’s hypothesis (Nickerson, 1998), which can lead researchers to collect 

only that evidence that supports the desired outcomes of a study.   In effect, confirmation bias 

results in one seeing what one is looking for and what one expects to find.  To reduce the 

possibility of confirmation bias affecting the conclusions of this study, the coding scheme and 

one protocol selected at random from each of the three groups of participants was provided to a 

reviewer who was not otherwise associated with this research.  This individual was not familiar 

with the McGinn and Boote (2003) study, nor with the research associated with this study; 

however, he was an experienced professor familiar with the teaching of problem solving in 

physics. 

The reviewer was provided with the coding grid and given the opportunity to ask 

questions to clarify the working definitions of each of the factors in the model.  He was then 

asked to review the protocols provided to him, with the purpose of assigning codes to the various 

verbalizations and actions taken by the participants, with special attention to those sections of 

code that did not appear to fit within the coding scheme.  He was also asked to indicate if he felt 

that additional codes were necessary to fully characterize the actions of the participants as they 

attempted to solve their problems. 
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After reviewing the protocols, the reviewer noted that a great deal of time during the 

problem-solving sessions was dedicated to the process of calculation.  As a result, he created a 

category for noting those segments of the protocols.  That an independent reviewer also noted the 

need for a code for calculation further supports the contention of this researcher that the 

problem-solving activities carried out by the participants could not be fully described without 

accounting for periods of verbalized calculations. 

The reviewer was then asked to comment on any problems or points of confusion noted 

during the process of coding the protocols.  His comments indicate that there were two factors 

that gave him difficulty as he was coding the protocols: complexity and stabilization.  In relation 

to complexity, he noted that the complexity of a mathematical operation consisted of more than a 

simple count of steps, suggesting, for example, that a five-step calculus problem was inherently 

more complex than a five-step algebra problem, simply because of the level of abstraction of the 

mathematics involved.  Therefore he felt that it was necessary as he was coding the protocols to 

expand the definition of complexity to take into account such activities as the participant 

verbalizing multiple unknown quantities, or even just a general expression of confusion.  In 

relation to stabilization, he commented on some difficulty recognizing when stabilization was 

taking place, stating that the definition in the coding scheme was “rather vague.”  He noted that 

at times assessment seemed to take place on two levels: a consideration of strategy, and a 

checking of the mechanics of the work.  These comments are again in agreement with the 

conclusions of this researcher in relation to stabilization. 

As a result of the comments made by the reviewer, he was provided with the description 

of the factors from the original McGinn and Boote (2003) paper.  He was also given the sections 
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on the working definition of stabilization and the need for an additional category for checking 

work from a draft of this paper.  He was then asked to review his coding of the protocols to see if 

he wanted to change any of his codings based on the information provided.  His review resulted 

in 34 changes in the original 203 segments coded, as well as 13 additions and five deletions.  Of 

the changes made, 13 were of an original coding of stabilization being changed to assessment, 

and six were of an original coding of calculation being changed to resource relevance in 

situations where an equation recalled from memory was written without being immediately 

utilized in a calculation.  The additions and deletions were a result of, in his words, “being more 

careful the second time through.” 

After the reviewer’s coding was complete, it was compared to the coding done by this 

researcher, using a quantified intercoder reliability measure known as Kappa, which is based on 

the measure of the percent of codes which correspond, corrected for marginal frequencies to take 

into account those codes which are used more or less frequently by one or the other of the 

coders.  If intercoder reliability is low, it suggests that the coding scheme is ambiguous.  In 

general, a Kappa of 0.70 is considered the minimum for an acceptable reliability (Someren et al., 

1994). 

To determine Kappa, a cross-table (seen in Table 9) was constructed which showed the 

correspondence between the codes assigned by the two coders.  The diagonal of the table 

represents those segments for which the coders were in agreement; that is, they assigned the 

same codes to the same segments.  All entries off-diagonal represent segments of disagreement.   

The differences in the marginal frequencies show the relative frequency with which each coder 

used a particular code.  For example, in Table 9 it can be seen that Coder 1 (the researcher) 
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coded for assessment (31 times) far more frequently than did Coder 2 (the reviewer; 18 times).  

The calculation for Kappa takes into account these differences by correcting the level of 

agreement for the expected proportion of codes corresponding based on the marginal 

frequencies.  This gives a conservative estimate of intercoder reliability, because “similar 

marginal frequencies will make Kappa low where one could argue that similar marginal 

frequencies themselves indicate intercoder reliability” (Someren et al., 1994, p. 130).  On the 

other hand, the proportion of codes in correspondence provides an optimistic estimate of 

reliability.  As a result, both proportion correspondence and Kappa are generally reported.  The 

full calculation for Kappa can be seen in Appendix G. 

 

Table 9: Cross-Table for Intercoder Reliability (Kappa) 

Coder 2: Reviewer 

Code RES CAT GOL COM CAL ASE NRP STA Total 

RES 49 7 7 4 9 1 0 7 84 

CAT 2 16 1 0 0 0 0 1 20 

GOL 7 1 13 0 0 0 0 2 23 

COM 0 0 0 2 1 0 0 0 3 

CAL 4 0 0 0 34 1 0 1 40 

ASE 2 0 0 4 6 16 0 3 31 

NRP 0 0 0 2 0 0 2 0 4 

STA 0 0 0 0 0 0 0 9 9 

C
o

d
er

 1
: 

R
es

ea
rc

h
er

 

Total 64 24 21 12 50 18 2 23 214 

RES: Resource Relevance 
CAT: Categorization 
GOL: Goal Interpretation 
COM: Complexity 
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The proportion correspondence for the coded protocols was found to be 0.66, with a 

Kappa of 0.57.  This level falls below the level considered acceptable for intercoder reliability, 

although not excessively so.  There are several possible reasons for this.  First, as noted in earlier 

discussions, the original definition of stabilization was somewhat vague.  This would make it 

difficult to ascertain when a stabilization activity was actually taking place.  Second, the 

reviewer’s coding showed some inconsistencies, such as a segment coded as calculation in one 

protocol, and an almost identical segment in another protocol being coded as resource relevance.  

This could possibly be a result of the conceptualization of the factors evolving in the mind of the 

reviewer as the coding took place.  Third, the interview with the reviewer following his coding 

revealed several conceptualizations of the factors that differed from those used by the researcher.  

The reviewer noted that he teaches that the choice of an equation automatically indicates the 

physics principles being applied to a problem.  As a result, the verbalization of the writing of an 

equation was often coded as categorization by the reviewer, rather than resource relevance as 

was done by the researcher.  Additionally, the reviewer indicated that an expression of confusion 

about the problem on the part of the participant was coded as an indication of complexity, while 

similar expressions typically indicated part of a destabilization process to the researcher. 

Stabilization seemed to be the most problematic for the reviewer to conceptualize, and 

was also the factor that limits the extent to which the quantification of intercoder reliability can 

be interpreted.  One of the primary differences in the two sets of coded protocols was that the 

reviewer only rarely coded for stabilization in conjunction with other factors, while the 

researcher viewed stabilization as a factor that could encompass other activities.  As a result, all 

but one of the reviewer’s segments coded for stabilization were in isolation; that is, the segment 
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was indicated as stabilization only.  In contrast, the researcher coded for the four primary factors 

first, and then reviewed the activities in relation to the others to look for evidence of 

stabilization.  As a result, the researcher’s codings for stabilization frequently encompassed two 

or more segments, which were additionally coded for the four primary factors.  The diagonal 

value for stabilization indicated in the cross-table is thus only indicative of those segments where 

both the reviewer and the researcher had noted stabilization.  Those cases where the reviewer 

noted stabilization and the researcher did not are seen in the off-diagonal entries.  Cases where 

the researcher indicated stabilization as encompassing other factors are not seen in the table, as 

the determination of Kappa cannot account for varying levels of factors.  There were a total of 52 

segments that fell in this category, falling into 10 individual episodes. 

According to Someran et al. (1994), there is no real solution to the problem of 

determining intercoder reliability when there are multiple levels of components involved.  Their 

recommended solution is to report the different levels separately.  This was done for the same 

protocols discussed above.  For the primary factors only, the proportion correspondence is 0.69, 

with a Kappa of 0.60.  This result suggests that there was some ambiguity in the factors of the 

coding scheme other than stabilization. 

The determination of the correspondence of the coding of stabilization is more 

problematic, given that it is the only factor in its level.  The proportion corresponding, indicating 

those segments for which the coders were in agreement, was 0.73, but Kappa was found to be 

only 0.14.  The value of the proportion corresponding is inflated by the fact that there were 147 

segments which were not coded by either coder as stabilization; that is, both coders are in 

agreement that the majority of the protocol segments do not represent stabilization activities.  
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There were a total of 67 segments that were coded by either the researcher or the reviewer (or 

both) as being representative of stabilization.  When only those segments coded as stabilization 

by either or both coders are considered, we find that the proportion corresponding is only 0.13 

and Kappa is essentially zero.  These results suggest that the coders were in close agreement in 

determining what activities were not stabilization, but were apparently not in agreement as to 

what activities actually did represent stabilization.  It should also be noted that all of the 

segments coded as stabilization by the researcher were also assigned codes corresponding to 

other, primary factors. 

In this chapter the results of applying the stabilization model to the protocols were 

discussed, and the points of agreement and disagreement with the model were pointed out.  The 

results of the independent review were presented, with the primary conclusion being that the 

reviewer was in agreement with the assertions made earlier in the chapter regarding the need for 

additional codes to account for calculation and checking of work.  The review also appears to 

support the statements regarding the need for a more concrete working definition for 

stabilization.  In the next chapter, the results of this analysis will be summarized, and the 

strengths and shortcomings of the model will be described.  In addition, the implications of the 

model for future research and the ways in which the results of this study might be used to inform 

physics teaching will be discussed. 
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CHAPTER SIX: SUMMARY AND CONCLUSIONS 

Problem solving is a highly complex activity, involving interplay between various 

conceptual, procedural, motivational, metacognitive, social factors and epistemological beliefs.  

It has been said that “problem solving is the most written about, but possibly the least 

understood, topic in the mathematics curriculum” (Lester, 1994, p. 661).  The same could be said 

for physics problem solving.  The majority of participants in this study exhibited similar levels of 

declarative knowledge and mathematical ability and carried out similar types of activities, such 

as drawing diagrams, listing known quantities, and stating physical principles.  In addition, the 

participants were mainly the same age and had completed similar levels of mathematics course 

work.  Yet despite these similarities, they showed varying procedural and overall problem-

solving abilities.  The question remains: What accounts for the variations in problem-solving 

abilities among problem solvers of similar educational backgrounds?  The answer most likely 

lies in the fact that problem solving in physics, as in mathematics, involves far more than just the 

simple recall of facts and procedures.  This study does not presume to answer the question of the 

absolute causes of variations in problem-solving proficiency, if indeed an answer is even 

attainable.  It does, however, provide some important observations about those variations.  In the 

sections that follow, the evidence provided by the participants will first be reviewed in light of 

the two secondary research questions: “What are the basic processes that physics students 

undertake as they attempt to solve physics problems?” and “What resources do students bring to 

the problem-solving process?”  Following the summary of processes and resources, the primary 

research question, “To what extent does the stabilization model describe physics students’ 
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problem-solving experiences?” will be addressed.  The implications of the results of this study 

for the instruction of physics problem solving will be discussed, and possible directions for 

future research suggested. 

 

Problem-Solving Processes 

Although variations in problem-solving abilities were observed, the specific processes 

undertaken by the participants as the attempted their solutions actually exhibited little variation.  

The majority of the participants listed known quantities, made use of diagrams, made accurate 

problem categorizations, exhibited sufficient mathematical ability, and referenced goals and 

subgoals within the problem solution. What differed was the success attained as these processes 

were carried out.  In this section the primary observations will be discussed in relation to the 

three groups of participants identified in the initial analysis of the protocols and the level of 

success each group reached. 

 

Observation One: Students Can Categorize 

This is perhaps one of the more surprising results of this study.  Although a few studies 

have suggested that students can make accurate categorizations of physics problems and select 

appropriate physics principles (Hammer, 1996; Kim & Pak, 2002; Robertson, 1990), none of 

these studies were undertaken in the context of actual problem-solving sessions.  The closest was 

the study by Robertson; however, all the problems in that study were Newton’s second law 

problems, and the focus of the study was to look for evidence of one particular physics concept: 
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the system concept.  Thus, the results of this study can be considered as unique, in that 

categorization of problem situations took place within the context of actual problem-solving. 

Analysis of the protocols in this study suggests that students can make accurate 

assessments of categorization of typical textbook physics problems.  In the context of physics 

instruction, students have cues as to what principles they should be applying to a given problem.  

If the topic of study is work and energy, and the problem to be solved is in the chapter on work 

and energy, the student knows that work and energy are the appropriate principles to apply to the 

problem at hand.  Similarly, Schoenfeld (1985a) noted that calculus students were highly 

effective at applying techniques of integration when they knew what technique they were 

supposed to use, such as when they were working exercises at the end of a particular chapter.  

But when faced with a problem where they had to decide what technique to use, they were far 

less effective.  There were no explicit cues in the problem statements used in this study to inform 

participants as to what techniques they should use to solve the problem.  As a result, any 

categorization made by the participants must be a result of prior understandings learned in their 

physics classes.  In every case but one, the participants in this study made appropriate 

categorizations of the problems they attempted.  Even in the case of the inaccurate 

categorization, the participant quickly abandoned the initial categorization and launched into a 

search for an alternate solution process.  While at the surface these results appear to be in direct 

conflict with the assertion that students do not appropriately categorize problems, it is possible 

that the categorizations are a result of students utilizing key words or tangible objects represented 

in the problem statements to make their categorizations.  This would be in agreement with the 

results found by other researchers who found that even accurate categorizations by students were 
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not based on physics principles (Chi et al., 1981; Jong & Ferguson-Hessler, 1986; Savelsbergh et 

al., 2002; Snyder, 2000).  Nonetheless, the fact that appropriate categorizations were made even 

by participants who exhibited significant conceptual misunderstandings suggests that physics 

instruction is effective in helping students learn to recognize the cues in problem statements that 

indicate appropriate solution methods.  However, recognition of the problem category does not 

imply knowledge of the underlying concepts, nor of appropriate procedures to reach the correct 

solution.  The majority of the participants in this study did not obtain the correct answer to the 

problem they attempted, despite the fact that they were able to correctly categorize the problem.  

This result emphasizes the need for the structural and procedural knowledge noted by Dhillon 

(1998) and others (Chi et al., 1989; Jong & Ferguson-Hessler, 1986; Larkin & Simon, 1995; 

Robertson, 1990; Savelsbergh et al., 2002). 

Despite the apparent clear categorizations made by the participants in this study, some 

caution must be applied to the interpretation of these results.  Although the participants were able 

make appropriate categorizations, there is little evidence in the protocols or in the post-session 

interviews as to the basis the participants used to make those categorizations.  Two participants 

provided clues as to one possible explanation for the observed categorization effects.  For 

example, Art explained his choice of a Newton’s second law approach to his problem: “always 

think of an inclined block on a plane type thing you know always gotta set up the ah… force 

diagram first…”  Likewise, Brittany states “I guess in Newton’s law when an object’s in motion 

down an incline… that’s what I first thought of…”  The seminal work of Chi et al. (1981;  see 

also Chi et al., 1982; Jong & Ferguson-Hessler, 1986) suggested that novices rely on the surface 

features of problem situations rather than underlying physics principles to make categorizations.  
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Based on the comments of Art and Brittany, it appears that they did just that, using the cue of 

‘incline’ to categorize the problem as a Newton’s second law problem.  This is a particularly 

relevant observation in the case of Brittany, whose protocol suggested that she had significant 

gaps in her conceptual understandings.  Even when the categorizations appeared to be made on 

the basis of conceptual understanding, there is evidence that the understanding was not 

necessarily robust.  Beth, for example, appears to make her choice of the use of energy on the 

basis of understanding of potential energy, but later makes a conceptual error in using potential 

energy in relation to the work-energy relationship.  While six participants appeared to make their 

categorizations on the basis of at least a limited conceptual understanding, in only three cases did 

that understanding appear robust enough to carry the problem solver through to the end of the 

solution process. 

 

Observation Two: Conceptual Understanding Affects the Use of Available Resources 

A review of the resources used by the participants in this study supports this observation.  

All of the participants in this study, with one exception, exhibited algebraic understanding at a 

level sufficient for the solution of the problems they attempted.  In addition, all of the 

participants of Groups A and C used geometrical and trigonometric principles, memorized 

equations, and physics concepts and principles in the solutions of their problems.  In comparison, 

only three of five participants in Group B used geometrical and trigonometric principles or 

physics principles, while only two of five referred to specific physics concepts.  The reduced 

level of use of physics concepts and principles is not surprising, given that membership in Group 
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B was based on evidence of conceptual misunderstandings in the protocols.  However, that 

conceptual errors in physics should be related to a reduced level of use of geometrical and 

trigonometric concepts is not as clear.  One possible explanation lies in the fact that many 

physics concepts and procedures are based on geometrical and/or trigonometric understandings.  

The methodology of this study did not allow for interpretation of why this connection is present; 

however, the fact that only participants who had conceptual difficulties exhibited a lack of 

application of geometrical and trigonometric concepts is suggestive of a connection worthy of 

further study. 

At the same time, there is no evidence that conceptual difficulties are associated with an 

increased likelihood of the use of textual references for the purposes of obtaining formulas.  

While Group B participants were more likely to use a textbook to look up formulas, when the use 

of a formula sheet was included in the category of formula references, there was no evidence of 

increased use according to group membership.  Two of four Group A members, three of five 

Group B members, and two of three Group C members referred to either the text or a formula 

sheet during the course of their problem solution.  However, the manner in which the references 

were used was dependent upon group membership.  Group A and Group C members used their 

textual references primarily to verify formulas; that is, they knew the formula they were looking 

for and used the reference to assure that they had remembered its form correctly.  Group B 

members, on the other hand, were more likely to use their textual references as part of their 

search for understanding leading to a solution process.  In this case, they did not know for sure 

what formula they were looking for, but used the reference in a search for a formula that would 

fit the information given in the problem statement. 
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The other way in which textbooks or notes were used in the problem solutions was as a 

resource of examples.  Only three participants in this study referred to example problems during 

the course of their problem solutions; two of those three were members of Group B who 

exhibited problem-solving processes that were equation- and example-driven, with little if any 

reference to specific physics principles.  The third was a member of Group A, who briefly 

referred to an example in his class notes to verify that the approach he was taking was correct. 

All participants in this study used diagrams as part of their solution process.  However, 

the manner in which those diagrams were used appeared to be dependent upon their exhibited 

level of conceptual understanding.  Group A and Group C participants, who were characterized 

by apparent sufficient understanding of physics concepts, tended to use diagrams as a means of 

generating the mathematical relationships used in their solutions.  This is in agreement with the 

results of Rosengrant et al. (2005), who found that successful problem solvers in physics used 

their diagrams to help construct the mathematical representations used in their problem solutions.  

In contrast, the members of Group B, who showed evidence of lack of understanding of physics 

concepts, used their diagrams primarily as a means of recording information provided in the 

problem statement or for visualization of the problem situation. 

 

Observation Three: Students Evaluate Their Work 

Pólya (1945) listed evaluation of work as an important part of the problem-solving 

process.  In his four-part problem-solving model, he indicated that the final step in a problem 

solution was evaluation of accuracy, consideration of alternate approaches, and an examination 
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of possible applicability to other problem situations.  More modern work in the area of problem 

solving groups the process of evaluation of accuracy in the realm of metacognitive monitoring, 

the self-evaluation of the problem-solving process.  There is some evidence to suggest that 

novices do not carry out ongoing evaluations of their work.  Dhillon (1998), for example, noted 

that while experts carried out evaluation of their work throughout their problem solutions, 

checking both the sense and mathematics of their work, novices tended to evaluate only at the 

end of their problem, and then primarily only to check the mechanics of the solution.  Schoenfeld 

(1985a) grouped checking work under the category of control, along with such actions as 

selecting reasonable solution methods and evaluating the effectiveness of an approach.  He 

emphasized the importance of verification of answers in his teaching of strategies for improving 

problem solving, but found that students were less likely than more experienced problem solvers 

to check their work at any time during their solution process.  However, Chi et al. (1982) did see 

evidence of evaluation processes in novice problem solvers in their seminal work on expertise in 

physics problem solving.  They noted the qualitative analysis of the problem situation often 

occurred throughout the problem-solving process, not just at the beginning. 

In general, the participants in this study did make ongoing checks of their work, 

particularly the members of Groups A and C.  The number of checks of work during the problem 

solution ranged from one to 18.  This ongoing evaluation looked at not only the mechanics of the 

work, such as if an equation had been solved correctly or the appropriate vector component was 

used, but also the magnitudes, units and signs of the quantities involved.  The analysis of the 

signs of quantities calculated is of particular interest, since in physics the signs of quantities are 

indicators of direction, and thus are tied directly to the physics concepts themselves. 
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All participants in this study made at least one check of their work during their solution 

attempt; however, the level of evaluation varied according to group membership.  Members of 

Group B, whose protocols showed evidence of conceptual misunderstandings, were far less 

likely to evaluate their work, with the number of checks made ranging from one to four times.  In 

addition, very few of the evaluations were conceptually substantive.  That is, few of the checks 

involved such things as units, signs or magnitudes of the quantities calculated.  Most of the 

evaluations made by Group B members were to check that an equation was written correctly or 

that the calculator was in the correct mode (angle measure as opposed to radian measure). 

In contrast, members of Groups A and C made many more evaluations of their work, 

ranging from five to eighteen checks, with one exception who made only two checks.  There 

were no noticeable differences between the two groups with respect to number or substance of 

the evaluations made.  Additionally, the majority of the checks were conceptually substantive.  

For example, Alex calculates a velocity using conservation of momentum, then pauses to 

consider the number he obtained: “my god… that slowed ’em down quite a bit… does it make 

sense… the mass increased… so the velocity had to shrink… it had to… ok…”  Here we see 

Alex not just checking his math, but checking the physical sense of his answer, using his 

knowledge of physics concepts to reference his check.  Members of Groups A and C also made 

more non-conceptual checks, such as checking equations, substitution of values into equations, 

and accuracy of math, than did the members of Group B.  As was noted in Observation One, 

conceptual understanding appears to affect far more than just the use of concepts within the 

solution process. 
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Observation Four: Students Use Goals and Subgoals to Guide Their Solutions 

Schoenfeld (1985a) emphasized the establishment of goals and subgoals as an effective 

problem-solving heuristic, but noted that teaching the use of subgoals is a difficult task.  The 

difficulty is primarily a result of the fact that defining subgoals for a problem requires an 

extensive set of other skills, many of which are domain-specific and based on conceptual 

understanding.  If goals and subgoals are utilized, they act as feedback for the solution process.  

If a subgoal is successfully attained, it indicates to the problem solver that the previous steps 

were correct, so that work can proceed on the next step in the problem (Sweller, 1983). 

Ten of the 12 participants in this study verbalized subgoals during the course of their 

solution attempt, with the number of stated subgoals varying from two to eleven.  Of those 

participants who verbalized subgoals, eight were able to utilize the stated goals to define their 

solution process, and five of those processes matched the solution that would be carried out by 

an expert.  There is no way of knowing whether or not the technique of setting subgoals was an 

explicit part of the mathematics and/or physics instruction experienced by the participants, but 

apparently it is a technique that they have learned to employ. 

As with the other observations noted in this study, it is illuminating to look at the 

differences in the use of subgoals among the three groups.  All three members of Group C used 

subgoals to guide their solution process, and their solution patterns matched those of an expert.  

Likewise, three of the four Group A members utilized subgoals; however, the one member who 

did not verbalize subgoals nonetheless used them in his solution, which matched the pattern of 
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the expert.  The only member of Group A whose solution did not match that of the expert was 

Alex, who had incorrectly categorized his incline problem as a two-dimensional problem. 

It is in Group B that differences in the use of subgoals become apparent.  Only two of the 

five members of Group B verbalized subgoals.  None of the members of this group generated 

solutions that matched the solution pattern of the expert, and one member ended the problem 

attempt prior to reaching a solution.  As was the case with the other observations of problem-

solving processes, we see those participants whose protocols suggest conceptual 

misunderstandings exhibiting significant differences in problem-solving behaviors from the other 

participants in the study. 

 

Conclusion Regarding Processes: Concepts Matter 

The initial analysis of the protocols simply grouped participants according to the types of 

errors, if any, made in the problem solutions.  Subsequent analysis showed that this grouping was 

consistent with other characteristics of the problem solvers that were not directly related to type 

of error.  Group A participants, who exhibited reasonable levels of conceptual understanding but 

who made mathematical and/or procedural errors, had more in common with Group C 

participants who obtained correct solutions than they did with Group B participants who made 

conceptual errors.  The similarities ranged from how frequently the participants made checks of 

their work to the ways in which they used diagrams in their solutions.  Participants who made 

concept errors were less likely to make substantive checks of their work, use diagrams to build 

mathematical relationships, have sufficient available resources, set subgoals, or to make 
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continual forward progress on their problems.  These participants were also more likely make 

frequent pauses to consider their approach, and to make use of a formula-driven search for a 

solution. 

None of the participants whose protocols showed evidence of conceptual errors were able 

to reach a successful solution to their problem, yet all but one of the participants with conceptual 

errors carried out a solution to the point of reaching an answer.  This supports the assertion that 

novice problem solvers are unable to monitor their own conceptual understandings (Chi et al., 

1989).  However, not all participants who exhibited evidence of conceptual understanding 

reached correct answers to their problems.  The fact that the presence of conceptual errors 

seemed to be related to other difficulties encountered by the participants does not imply that 

conceptual understanding is the only determining factor in the success of the problem solver.  As 

evidenced by Group A, mathematics and domain-specific procedures are also important.  This is 

in agreement with statements made by Chi et al. (1982), who noted that it is procedural 

knowledge that ultimately determines problem-solving success (see also Dhillon, 1998; Jong & 

Ferguson-Hessler, 1986; Savelsbergh et al., 2002).  Likewise, a recently reported study by 

Hoellwarth et al. (2005) indicated that instructional emphasis on concepts did not improve 

problem-solving ability.  Anecdotally, physics instructors often complain about students who 

claim that they understand the concepts but just can’t solve the problems.  The protocols of the 

Group A participants seem to suggest that there may be a basis for the students’ comments.  

Group A participants made statements both in their protocols and during the post-session 

interviews that implied they had a reasonable grasp of the concepts needed to solve the problems 

they attempted.  Yet because of mathematical or procedural difficulties, they were unable to 



 160

reach a correct solution.  As noted by Hoellwarth et al., conceptual understanding must be 

coupled with adequate procedural knowledge. 

Without further research, one can only conjecture about the reasons why participants with 

sufficient mathematical resources and conceptual understanding are unable to reach a successful 

solution.  However, the observations in this study suggest one possible reason.  In all but one 

case, participants reached the point in their solution where they got an answer, and in only one 

case did a participant question the validity of the answer obtained.  In other words, the 

participants apparently did not recognize that they had made an error.  This suggests that the 

mathematical and/or conceptual difficulties exhibited in the protocols do not, in general, cause 

the problem solver to become stuck, unable to proceed with the solution.  Rather, it suggests a 

lack of sufficient metacognitive monitoring skills necessary to realize when one has made a 

mistake.  This conclusion is supported by the fact that Group B participants made few checks of 

their work.  The evidence is less conclusive for Group A participants, who in general made as 

many checks of their work as the Group C participants.  However, the general observations 

related to monitoring of work is in agreement with the results of a study by Dunning et al. 

(2003), who compared the results of psychology students’ exams with the students’ perceptions 

of their success.  They found that the less competent the student was, the more likely he or she 

was to overestimate their level of success.  The reason, according to Dunning et al., is that the 

same knowledge needed for success is the same knowledge needed to recognize when one has 

made an error.  In relation to physics problem solving, this implies that the same procedural and 

conceptual skills needed to attain the correct solution to a problem are the same skills needed to 
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recognize those conceptual and/or procedural errors when they occur.  Blissfully unaware that a 

mistake has been made, the problem solver continues on to an answer. 

 

Application of the Stabilization Model 

The primary research question for this study was “To what extent does the stabilization 

model describe physics students’ problem-solving experiences?”  Addressing the secondary 

questions, “What are the basic processes that physics students undertake as they attempt to solve 

physics problems?” and “What resources do students bring to the problem-solving process?” 

resulted in a level of attention to and scrutiny of the protocols to allow the attempted application 

of the model to take place with a reasonable level of confidence.  In the previous section, the 

answers to the secondary research questions were addressed, with the overall result being 

recognition of the importance of conceptual understanding to the problem-solving process.  

However, it was also noted that conceptual understanding did not guarantee problem-solving 

success, unless it was accompanied by mathematical and procedural proficiency.  In this section 

the primary research question will be addressed.  The results of the study will be reviewed in 

light of the four primary factors, followed by a description of the attempt to apply the 

stabilization model to the protocols.  The section will conclude with an overall summary of the 

applicability and limitations of the stabilization model. 

Factor One: Categorization 

The results of this study suggest that the participants were able to make appropriate 

categorizations of the problems they attempted.  Seven of the 12 participants made explicit 
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statements of categorization, and all but one of those categorizations was correct.  Another four 

participants made implicit categorizations, a determination based on observation of a choice of 

solution method that was carried through to the end of the solution attempt.  Only one participant 

made no categorization of the attempted problem in any form. 

McGinn and Boote (2003) suggest that problem categorization is fundamental to the 

problem-solving process, affecting not only the solution schema that will be applied to the 

problem, but also complexity, resource allocation, and goal interpretation.  Evidence from this 

study supports this interpretation.  The problems used in this study could be solved by 

application of either Newton’s second law or work-energy principles.  The categorization choice 

made by the participant affected the knowledge and resources the problem solver had to bring to 

the solution, the subgoals that the problem solver had to meet to reach the final goal state, and 

the length of the solution.  In addition, the categorization affected the information that could be 

obtained from the solution.  The application of work-energy principles, for example, resulted in 

information about acceleration to be absent from the solution. 

That categorization should be supported by the results of this study as a valid factor in a 

problem-solving model is not surprising, given the volume of literature on the subject of 

categorization.  That all participants were able to make appropriate categorizations within the 

context of problem solving was unexpected.  The majority of categorization studies reported in 

the literature relate to problem sorting exercises (Chi et al., 1981; Jong & Ferguson-Hessler, 

1986; Schoenfeld & Herrmann, 1982), and none were found that addressed categorization in the 

process of think-aloud protocols.  In addition, the majority of those studies suggested that 

individuals with limited conceptual understanding were unable to make appropriate 
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categorizations based on underlying physics concepts.  The results of this study are consistent 

with the results of earlier studies in that regard.  However, the results of this study could be 

considered as unique with regard to categorization within the context of problem solving. 

As noted earlier, recognition of the fact that the participants made appropriate 

categorizations should not be interpreted as necessarily implying an underlying conceptual 

understanding.  Most of the participants appeared to be making their categorizations on the basis 

of surface features or cues in the problem statement.  Regardless of the basis for their 

categorizations, the participants did make appropriate categorizations of the problems that, in 

most cases, guided their solution attempts.  These results support categorization as a valid factor 

within the stabilization model. 

 

Factor Two: Complexity 

Problem complexity is defined by McGinn and Boote (2003) as the number of operations 

needed to complete the problem solution.  As noted in Chapter Five, only one participant in this 

study made explicit reference to the number of steps needed to complete his solution.  Three 

others made mention of the steps they needed to undertake in relation to subgoals of the problem, 

or of the fact that they had two unknown quantities to deal with, but it is not clear from their 

verbalizations whether those statements met the definition of complexity as laid out by McGinn 

and Boote.  Other than these four participants, there were no apparent statements related to 

problem complexity.  The lack of verbalized statements of complexity is not to say that the 

participants did not consider their attempted problems as difficult or complex.  Some of the 
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solutions carried out by the participants did have numerous steps, particularly those solutions that 

involved application of Newton’s second law.  It is also quite likely that in some cases, a lack of 

mathematical ability hampered the participant’s ability to solve the problem.  This was certainly 

the case with Brittany, who not only had conceptual difficulties but significant mathematical 

inadequacies as well.  One possible reason for the success of the better problem solvers in this 

study is that their comfort with the level of mathematics involved enabled them to automate 

some of the solution steps, so that despite the length of the solution the problem did not appear 

difficult to them.  Chuck, for example, carried out the solution for Problem 2 (see Appendix A) 

in a step-wise fashion despite the large number of steps involved.  In contrast, Alex had 

considerable difficulty navigating the solution of the same problem.  He often lost track of where 

he was, because the steps he was carrying out were not automatic, as evidenced by the fact that 

on several occasions he found it necessary to refer to his book for a formula or for the method for 

dealing with the magnitude of a vector.  Without a clear understanding of the goals and subgoals 

of the problem, the mathematics involved, and/or the conceptual understanding of underlying 

principles, problem solvers like Alex lack the resources to recognize the difference between a 

process is lengthy but correct and one which is lengthy because it is not correct (Dhillon, 1998). 

Part of the difficulty in interpreting the results of this study in relation to complexity lies 

in the narrow definition provided by the original researchers (McGinn & Boote, 2003).  While a 

greater number of steps to complete would make a problem more difficult, the level of 

mathematical sophistication of those steps would also clearly be important.  For example, one 

would expect that the completion of five calculus steps would be more difficult than the 

completion of five arithmetic steps. 
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There have been a number of studies that have investigated, either directly or indirectly, 

factors other than the length of a solution that affect problem difficulty.  Park and Lee (2004), for 

example, found that the situational context of a problem had a significant impact on the 

perceived difficulty of a problem (see also Foster, 2007; Reusser, 1988).  This was particularly 

true if the problem required the application of scientific concepts to everyday situations, where 

the problem solver’s common sense knowledge might interfere with the application of 

appropriate scientific knowledge.  Likewise, the observable or tangible objects in a problem 

situation are more concrete than the concepts and principles that must be used to solve it 

(Savelsbergh et al., 2002), making it more likely that the less experienced problem solver will 

focus on the surface features of the problem (Chi et al., 1981; Jong & Ferguson-Hessler, 1986; 

Snyder, 2000).  The focus on tangibles can also increase the level of perceived difficulty, since 

the problem solver will not be accessing the principles necessary for the solution of the problem.  

Finally, the quantities referred to in a typical physics problem are more complex than the 

quantities typically experienced in everyday life.  Many of the quantities are rates, but unlike 

rates in everyday life (such as miles per gallon), the rates in physics are given specialized names 

like velocity or acceleration that mask the fact that the quantity is a rate.  These intensive 

variables (Bassok, 1990) also act to increase the perception of problem difficulty, as does the 

application of particularly abstract scientific ideas or principles such as Gauss’ law, magnetic 

flux or a varying angular momentum vector (Foster, 2007). 

The studies described above have focused on the inherent features of the problem that 

affect problem difficulty.  McGinn and Boote (2003) state that a given situation becomes a 

problem when the problem solver’s standard practices break down.  The problem solver’s 
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perceptions of problem difficulty result from perceptions of whether or not he or she believes 

there are relevant resources available, the goals and subgoals of the problem are identified, the 

problem is appropriately categorized, and operations needed for solution can be implemented.  

However, one must remember that these perceptions of problem difficulty are primarily 

functions of the problem solver: Good problem solvers more know, and know what they know 

differently, than do poor problem solvers.  This implies that a five-step calculus-based problem 

could seem trivial to one problem solver while a five-step algebra problem seems overwhelming 

to another.  Thus the perceived difficulty of a problem is highly dependent upon the experience 

of the problem solver with a particular class of problem (Singh, 2002).  In this respect, problem 

difficulty is primarily a function of the characteristics of the problem solver, which may include 

factors such as disposition, motivation, intuition and interest (Lester, 1994).  This study focused 

on the more cognitive aspects of problem solving; as a result, these personal factors were not 

able to be accounted for. 

What can be determined from these results is that the verbalizations of these participants 

do not appear to support the contention that problem solvers consciously consider the complexity 

of a problem as part of their solution process.  However, there is limited evidence that some 

participants do take note of the number of steps they will have to go through to reach a solution, 

and of the difficulty that some participants had navigating the number of steps required for their 

solutions.  Because of this, the results of the study must be considered as suggestive yet 

inconclusive with regards to the factor of complexity.  It is suggested that a broader definition of 

complexity would assist in developing a deeper understanding of this construct and how it affects 

problem solving processes. 
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Factor Three: Goal Interpretation 

Goal interpretation is defined as knowledge about how the solution should look (McGinn 

& Boote, 2003).  Investigation of this factor led to questions concerning what features of the 

protocols should be considered as evidence of goal interpretation, primarily because the 

definition is somewhat ambiguous.  Informed by the work of Schoenfeld (1985a), it was 

determined that the goals and subgoals of a problem determine what the ultimate solution will 

look like.  As a result, evidence of goal interpretation was sought in the verbalizations of 

subgoals that led to the solution.  The evidence was then interpreted based on the level of 

agreement between the verbalized subgoals and the actual solution pattern.  This operational 

definition was verified by one of the authors (Boote) of the stabilization model as being 

consistent with the original definition. 

All but one of the participants in this study expressed two or more subgoals during the 

course of their solutions.  Upon review, it was noted that eight of the 12 participants expressed 

subgoals that matched their solution pattern.  That is, based on statements made prior to reaching 

each subgoal, it appeared that the participant knew what their solutions should look like.  In 

addition, four of the verbalized solution patterns matched the solution pattern of an expert 

solving the problem.  This further supports the definition of goal interpretation based on 

subgoals.   

However, the results are not as clear as for the categorization factor.  Three participants 

verbalized subgoals that matched their solution, but which did not match the solution pattern of 

an expert.  In other words, they verbalized their solution, but apparently did not know what the 
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correct solution should look like.  Also, one participant did not verbalize any subgoals, but 

nonetheless produced a solution which matched the solution pattern of an expert.  This latter 

example may be the result of activation of an automatic solution schema, or of the limitations of 

think-aloud protocol data, in that not all thoughts are verbalized.  Based on the evidence that 

eight of 12 participants verbalized subgoals that appeared to support their solutions, we conclude 

that the evidence is suggestive of goal interpretation as a valid factor in problem solving.  

However, based on the questions raised by the fact that all but one participant stated subgoals, 

while only eight produced solutions that matched the pattern of their stated subgoals, we must 

conclude that overall, while the evidence is suggestive of goal interpretation as a valid factor, it 

is not conclusive. 

 

Factor Four: Resource Relevance 

As was discussed in Chapter Five, the analysis of the protocols suggested that the 

participants in this study brought significant mathematical and conceptual resources into the 

problem-solving process.  The majority of the participants utilized sufficient algebraic resources, 

in ways that were appropriate to the problem.  There were two exceptions: Brittany, who 

demonstrated significant algebraic difficulties, and Ben, who did not complete enough 

calculations from which to judge his algebraic resources.  In addition, most participants 

demonstrated the geometric and/or trigonometric resources sufficient for application to their 

problems.  In this case the exceptions were two of the five Group B participants, who did not 
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utilize any geometrical/trigonometric resources despite the fact that the correct solution of the 

problem they attempted would have required their use. 

Another resource used by all the participants was self-drawn diagrams.  Most physics 

courses emphasize the use of sketches and domain-specific diagrams such as free body and 

vector diagrams, so the use of diagrams was a feature that was expected to be evident in the 

protocols.  The types of diagrams drawn and the manner in which the diagrams were used, 

however, varied across the groups.  Members of Group B tended to used diagrams primarily as a 

means of recording information given in the problem statement, or for visualization of the 

problem situation.  Members of Groups A and C, however, tended to use the diagrams not only 

for keeping track of information, but as conceptual tools for generating the mathematical 

representations used to solve the problem.  This is consistent with the results reported by 

Hoellwarth et al. (2005), who noted that students with higher levels of conceptual understanding 

were more likely to connect diagrams to the mathematics of a solution. 

It was in the use of physics principles and concepts that the three groups of participants 

were most different.  This is to be expected, given that the groups were defined in terms of the 

types of errors made during the course of the problem solutions.  All of the members of Groups 

A and C made explicit reference to physics principles and concepts in their solutions.  However, 

only three of five Group B members made reference to physics principles, and only two of five 

referred to specific concepts.  Only one Group B member made reference to both.  In addition, it 

appeared that members of Group B had fewer physics conceptual resources at their disposal than 

did the members of Groups A and C.  Even when statements of physics principles and/or 
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concepts were verbalized by the Group B participants, those statements frequently showed 

evidence of conceptual misunderstandings. 

The review of the protocols suggests that the majority of participants in this study had 

sufficient mathematical resources with which to complete their problem solutions.  And while 

some participants’ protocols suggested conceptual misunderstandings in the domain of physics, 

there were still seven of the 12 who appeared to possess sufficient declarative physics knowledge 

with which to reach a successful solution to their problem.  As noted in Chapter Five, it should 

be noted that the tabulation of resources used does not indicate whether the resources were 

applied correctly or whether the conceptual understanding expressed in the protocols was fully 

developed in the mind of the participant.  In fact, the protocols of Group B participants seem to 

support what Maloney and Siegler (1993) called conceptual competition, in which alternate 

conceptions exist in the mind of the novice problem solver (see also Mildenhall & Williams, 

2001).  It is also not apparent from the protocols or the post-session interviews whether or not a 

conscious consideration of the appropriateness of a resource took place.  It is quite likely in the 

case of some resources, such as algebraic knowledge, that the use of the resource is so automated 

that there was no need for consideration of its relevance.  McGinn and Boote (2003) note that 

identification of relevant resources is not difficult when a problem has been appropriately 

categorized.  A lack of evidence on the part of the Group C participants of a conscious 

consideration of resource relevance may be a result of their ease of categorization and their 

partially automated solution processes.  The lack of verbalized reference to resource choices on 

the part of the members of Groups A and B is more problematic, since their solution processes 

were clearly not as automated as those of Group C. 
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The observations described here and in Chapter Five suggest that there were two ways in 

which the use of resources was evident.  The first, simpler way is to support an already stable 

problem situation.  The problem solver already knows how he or she will solve the problem, and 

uses a formula sheet to verify the form of and equation, or creates a free body diagram to help 

visualize the forces acting on an object and to assist in the summation of those forces.  Cognitive 

resources also fall in this category, such as when the problem solver recalls a memorized formula 

or the procedure for solving a system of equations, or accesses conceptual knowledge about the 

relationship between friction and motion.  Far more complex is the use of resources in an attempt 

to reach an understanding of the problem.  In this case, the problem solver is attempting to reach 

a balance between the four primary factors, and the use of resources is directed to assist in 

attaining that balance.  The problem solver may in this case search for an example that might cue 

an appropriate categorization, which would in turn cue the correct equations to use.  This may in 

turn help the problem solver to recognize the level of complexity involved in the problem. 

This analysis suggests that the participants of this study made use of relevant 

mathematical and conceptual resources in ways that were in general appropriate to support their 

problem-solving processes.  These observations support the assertion that resource relevance is 

an important factor for consideration in a model of problem solving.  However, there is no 

evidence from the protocols that those resources were determined to be relevant through 

conscious processes on the part of the problem solver. 
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The Superordinate Factor: Stabilization 

McGinn and Boote (2003) define stabilization as a “shifting salience of primary factors… 

superordinate to the primary factors” (p. 99).  This rather vague definition was the first challenge 

to be met in attempting to apply the stabilization model to the protocols in this study.  The 

description of a problem given by McGinn and Boote provided the clues needed to develop a 

working definition that could be used to search for evidence of stabilization within the protocols.  

They state that a problem is a situation in which the four primary factors of categorization, 

resource relevance, goal interpretation and complexity must be evaluated and balanced in order 

to find a workable understanding of the problem.  They go on to note that when a problem is 

stabilized, all that remains is calculation; that is, the solution process is known.  It was also noted 

that a critical part of success in problem solving was related to destabilization, that is, knowing 

when a current understanding of a problem situation is inadequate and is not leading to a 

solution.  These descriptions led to the working definition of stabilization for this study: the 

search for an understanding of the problem that will lead to a solution.  If a participant was 

noted to be considering a solution, not actually carrying out a solution, it was considered as 

evidence of stabilization.  This working definition of stabilization was verified by one of the 

authors (Boote) of the stabilization model as being consistent with the original definition. 

Several examples of protocol segments that were deemed to be evidence of stabilization 

were provided in Chapter Five; they will not be repeated here.  However, the results of that 

analysis will be summarized.  First, it was noted that three participants exhibited no evidence of 

stabilization activities.  These participants were all members of Groups A or C, who almost 
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immediately categorized their problems and launched into apparently automated solution 

processes.  The solution process for these individuals seemed to be characteristic of the step-wise 

processes of competent problem solvers solving familiar categories of problems (Bereiter & 

Scardamalia, 1993; Schoenfeld & Herrmann, 1982; Singh, 2002).  For these participants, the 

problems were exercises.  This is consistent with statements made by McGinn and Boote (2003), 

who noted that when a problem is categorized appropriately and resources are readily available, 

the problem solution is highly automated and all that remains is calculation.  Two of the 

participants carried out activities that appeared to be searches for understanding early in their 

protocols, but decided on a solution process very quickly.  One of these participants was a 

member of Group C, who quickly carried out his solution with only a minor copying error at the 

end.  The other was a member of Group B, who determined a solution method, which was then 

carried out incorrectly and with conceptual errors.  Of the remaining participants, three carried 

out searches for understanding only near the beginning of their protocols.  Three others paused 

throughout their solutions to consider or reconsider their solution process.  One participant 

decided quickly on a solution method without any evidence of a search, but then stopped midway 

through his rather lengthy solution to reconsider if what he was doing was correct. 

There was also evidence of destabilization, but the monitoring that is part of the 

destabilization process was not always seen to be successful.  All participants in the study, with 

one exception, were able to reach an answer to the problem they attempted, despite evidence of 

conceptual and procedural difficulties.  The majority of the participants had episodes in their 

problem-solving processes that could be interpreted as searches for a new understanding of the 

problem, and most of those episodes resulted in at least a modification of approach if not an 
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actual change in the course of the solution.  Despite this, the monitoring process failed in most of 

those cases, as evidenced by the fact that only three participants reached a correct solution to 

their problem.  Despite destabilization, the metacognitive monitoring carried out as the 

participants searched for a stable understanding of the problem was not sufficient to catch the 

conceptual or procedural errors present in the solutions.  Chi and her colleagues (1989) noted 

that novice problem solvers were likely to detect and admit their lack of mathematical or 

procedural understanding, but were far less likely to detect gaps in their conceptual 

understanding.  This appears to be the case for the Group B participants, who proceeded to an 

answer despite significant conceptual errors.  However, why the participants in Group A were 

able to carry out destabilization activities and still proceed to an answer even with procedural or 

mathematical errors is less clear.  While some studies have suggested that novice problem 

solvers do not make ongoing checks of their work (Dhillon, 1998; Schoenfeld, 1985a), that was 

not the case in this study.  Despite ongoing checks, mathematical and procedural errors were still 

made.  Destabilization occurred, but the monitoring of work that takes place with it was not 

always successful. 

The results of this review of the protocols suggest that the participants in this study did 

carry out active searches for an understanding of the problem that would lead to a solution.  

During these apparent searches, the participants made use of their available resources, considered 

the goals and subgoals of the problem, and attempted categorization.  In addition, there is also 

evidence in the protocols that certain cues within the problem-solving process, such as reaching 

an impasse or the magnitude of a calculated quantity, can trigger destabilization: a reevaluation 

of the problem situation leading to a renewed search for understanding.  The evidence is also 



 175

supportive of McGinn and Boote’s assertion that stabilization is not needed when a problem is 

perceived as an exercise, as in the cases of Chuck, Cory, Arnold, and Carl.  At this point, the 

tentative conclusion is that stabilization is a valid construct as related to problem solving, in that 

it describes the problem solver’s active and conscious search for understanding and a valid 

solution process. 

 

Putting It Together: The Stabilization Model 

The previous section has summarized the extent to which the various components of the 

stabilization model were evident in the problem-solving protocols generated by the participants 

in this study.  Although the results were mixed, the question remains: When taken as a whole, is 

the stabilization model a valid descriptor for the problem-solving experiences of the participants?  

Or, to restate the primary research question: “To what extent does the stabilization model 

describe physics students’ problem-solving experiences?”  To address this question, the strengths 

and weaknesses of the model and the evidence supporting and refuting it must be evaluated. 

The strength of the model lies in the fact that three of the four primary factors that form 

the backbone of the model have already been identified through research in physics and/or 

mathematical problem solving as important factors in problem-solving success.  Categorization 

(Chi et al., 1981; Jong & Ferguson-Hessler, 1986; Savelsbergh et al., 2002; Snyder, 2000) and 

resource relevance (Cui et al., 2005; Ozimek et al., 2004; Schoenfeld, 1985a; Schoenfeld & 

Herrmann, 1982; Tuminaro & Redish, 2003) both have a long history in the literature and are 

well-documented.  The importance of goals and subgoals in problem solving has also been 
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documented (Sweller, 1983), although not so extensively as categorization and the use of 

resources. While there has been some mention of complexity was found in the literature (Foster, 

2007; Lester, 1994; Reif & Heller, 1982; Singh, 2002), the definitions used by other researchers 

appear to differ somewhat from that used by McGinn and Boote (2003).  Nevertheless, it would 

seem reasonable that the complexity of a problem would have a direct impact on problem-

solving success, particularly for the novice.  Of course, reasonableness does not guarantee 

validity.  Consideration of the evidence supporting each of these factors as a group must be 

taken into account in order to make a determination as to the applicability of the model. 

The evidence regarding two of the primary factors is particularly strong.  With one 

exception, all of the participants in this study were able to make appropriate categorizations of 

the problems they attempted.  Although it could not in general be determined on the basis of the 

protocols or the post-session interviews whether or not those categorizations were grounded in 

understanding of underlying physics principles or based on surface features, it appeared that 

participants were able to use their categorizations successfully in the search for a valid solution 

process based on their understanding of the problem.  That the basis of the categorizations could 

not be determined is not particularly problematic in relation to support of the stabilization model, 

as the model makes no mention of the basis of categorization.  Likewise, the protocols provide 

strong evidence of the use of relevant resources in the problem-solving process, albeit without 

evidence of conscious consideration of those resources. 

The evidence on goal interpretation is suggestive, but not conclusive.  Part of the 

difficulty in interpreting the results in light of this factor lies in the definition provided by 

McGinn and Boote (2003) as knowledge of how the solution should look.  The research design of 
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this study did not include methodology that would easily determine if the participant would 

know the form of the solution prior to actually carrying out that solution.  An operational 

definition based on stated subgoals, informed by earlier work by Schoenfeld (1985a) and verified 

by one of the authors (Boote) of the original stabilization model, was developed in order to look 

for evidence of goal interpretation.  Based on an assumption of agreement between the definition 

used in this work and that originally proposed by McGinn and Boote, the overall conclusion is 

that the data is suggestive of goal interpretation as a valid factor.  The data is not considered 

conclusive because although all but one participant stated subgoals as part of their solution 

process, only eight protocols showed solution paths that matched the verbalized subgoals.  That 

is, although the remainder of the participants stated subgoals, there was no evidence that those 

stated goals indicated knowledge of the solution process. 

Complexity was the only primary factor for which there was little direct supporting 

evidence in the protocols.  Only one participant explicitly stated any indication of knowledge of 

the complexity of the problem attempted, although three others made brief mention of the steps 

that needed to be taken or of the presence of two unknown quantities.  Therefore, it must be 

stated that the concept of complexity as a factor in problem solving as defined by McGinn and 

Boote (2003) is only minimally supported by the evidence exhibited in the protocols.  However, 

there is some evidence that some of the participants had difficulty navigating the complexity of 

their problems, suggesting that an expanded definition of complexity may be needed. 

Finally, the overarching factor of stabilization must be considered.  It is in stabilization 

that the limited definitions provided by McGinn and Boote (2003) prove to be most problematic.  

Because their definition was so vague, a new working definition informed by McGinn and 
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Boote’s descriptions of the stabilization process had to be developed.  If the working definition 

of stabilization as the coordination of a search for an understanding of the problem that will lead 

to a solution is valid, then there is strong evidence that the participants of this study did engage 

in active searches for an understanding of the problems they attempted to solve.  There was also 

evidence of destabilization, whereby situations arising within the solution process cued the 

problem solver to reevaluate their solution and engage in a renewed search for understanding.  In 

addition, the initial and renewed search processes involved the use of relevant resources, 

interpretation of goals, and attempts at categorization, which supports the assertion of 

stabilization as superordinate to the primary factors. 

The aspects of the problem-solving processes that were not addressed by the model must 

also be taken into consideration.  First, there is no mention of calculation or other mathematical 

manipulation in the description of the stabilization model.  This is potentially problematic.  It 

was noted during the review of the protocols that errors were often made not in the setup of the 

problem, but rather in the process of calculations.  Those errors then affected the portions of the 

solution that followed.  If a model is to fully describe problem-solving processes, it must take 

into account all aspects of that process.  Not accounting for calculations risks removing the 

context in which errors, which might affect the course of the solution, occur.  Second, it was 

noted that all participants evaluated their work during the course of their solutions.  The level of 

evaluation varied from superficial to extensive, but even so, it was a universal feature of the 

protocols in this study.  The same argument that was made in relation to calculations can be 

made for evaluation.  If an action is an important part of the problem-solving process, it should 

be integrated into any model describing that process.  That evaluation should be a part of a 
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problem-solving model is supported by the literature (Dhillon, 1998; Pólya, 1945; Schoenfeld, 

1985a). 

The previous discussion leads to the conclusion that while the evidence supporting at 

least one aspect of the stabilization model is inconclusive, the model does hold some promise for 

applicability to physics problem solving.  This conclusion is based on the operational definitions 

used in this study and verified by Boote (personal communication, October 11, 2006).  This is 

the primary shortcoming of the model as originally described.  Without sufficiently rigorous 

definitions of the factors, the model is left open to interpretation, much like that which was 

required in this study.  While care was taken to develop working definitions that were consistent 

with those originally proposed, and those definitions were verified by Boote, it must be 

recognized that if the model is described in terms that are too vague, there is danger of 

misinterpretation. 

Although stabilization, with appropriately rigorous definitions, could be considered as a 

model of problem solving, it might be more productive to consider it not as a model, but rather a 

descriptive framework.  The terminology of model implies some ideal, while descriptive 

framework is more suggestive of an aid to developing understanding.  If, on the other hand, 

further refinement of the framework including more rigorous definitions of its primary constructs 

shows that the framework is effective in describing both novice and expert behavior, then 

perhaps the status of model would be more appropriate. 

The model as described by McGinn and Boote (2003) does appear to predict the behavior 

observed by the novice problem solvers in this study.  For example, the model predicts that in the 

case of a problem that is quickly categorized and stabilized, the solution path is known and the 
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solution will proceed in an automated, step-wise fashion.  This is precisely the behavior 

exhibited by Chuck, whose problem solution matched that of the expert.  It also predicts that if 

the categorization is not valid, the problem is perceived as more difficult.  Alex’s protocol was 

an exemplary case of this situation.  Likewise, the model predicts that if categorization is not 

possible, the search for a solution can lead to what McGinn and Boote called “flailing about” 

(p. 103), behavior that was observed in Ben.  Further support for the applicability of the model 

comes from the post-session interviews.  When asked to describe how he usually goes about 

solving a problem, Arnold stated: 

 “the first think I like to do is just write down my knowns ahm and then draw a picture 
and somehow connect the knowns to the picture…and then figure out what kind of a law 
if not I already know figure out what kind of problem it is… uhm and then write down 
maybe a few relevant equations that might be helpful… I don’t usually like to calculate 
numbers until the end I like to end up with one final equation… and then just plug into all 
of it which I kind of did toward the end” 

 
Arnold’s description of his problem solving process indicates that he attempts to make sense of 

the problem (stabilizes the situation) by categorizing, gathering information and formulas (finds 

relevant resources), working to get a single equation (navigates the complexity), and working 

towards the goal (plugging in at the end).  Arnold describes a problem-solving process that 

sounds very much like that described by McGinn and Boote. 

That the framework as described was able to provide general descriptors of the behavior 

observed in the novices in this study suggests that the framework is solid.  That there were 

features of the protocols that were not fully supportive of or described by the framework 

suggests that it is incomplete.  Like any framework, in needs to be filled in with appropriately 

detailed structure.  The operational definitions used in this study could form the basis of a more 
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rigorous definition of the constructs that make up the model.  More concrete definitions or 

additional verification of the current working definitions would be required before further 

investigations into the applicability of the model take place.  Adding additional structure to the 

framework, such as an accounting of evaluation and calculation, would provide a more complete 

descriptive framework.  Interpreted as a descriptive framework, stabilization would not replace 

existing models of problem solving, but rather could be considered as an alternative way of 

viewing the process of problem solving.  Much like physics has alternate conceptions of light, all 

of which have validity in their areas of application, stabilization could be could be considered as 

an alternate conception of problem solving, providing another tool for developing understanding 

what is unquestionably a highly complex process. 

 

Limitations to Applicability and Generality 

This study addressed several of the limitations of previous studies discussed in Chapter 

Two.  McGinn and Boote’s (2003) original study was carried out utilizing introspective 

techniques.  In addition, neither of the original researchers could be categorized as novices in the 

field of mathematics.  As a result, one cannot be sure that the observations they made in 

developing the stabilization model were general enough to be applied beyond their own problem-

solving experiences, or whether they were unique to their own experiences as quasi-experts.  

This study addressed that shortcoming by looking specifically at novices, utilizing think-aloud 

protocol techniques which allowed for verification of McGinn and Boote’s observations in other 

problem solvers.  This study did not assume that problem-solving was a linear process, an 
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assumption that was the basis of a number of studies and strategies reported in the literature 

(Heller & Heller, 2000; Pólya, 1945; Schoenfeld, 1985a).  It also did not consider the novice 

problem solvers as a homogenous group; in fact, the preliminary analysis of the protocols 

emphasized that fact that the group was quite diverse in their problem-solving abilities.  An 

additional strength of the study was in that it investigated conceptual understanding in the 

context of the actual problem-solving process, an approach that has only recently begun to see 

attention in the literature (Hoellwarth et al., 2005; Hung & Jonassen, 2006). 

As in any study of human behavior, there are limitations to the applicability of the results 

of this study, and to the extent to which they can be generalized.  Most of the limitations are a 

result of the research methodology of the study, as discussed in Chapter Three.  Although the 

general limits of the study were outlined at that point, it would be prudent to review those 

limitations in light of the analysis undertaken and the results obtained.  There were also 

additional limitations that were noted as a result of the attempt to apply the stabilization model to 

the protocol data obtained. 

The primary assumptions outlined in Chapter Three are still considered valid.  These 

assumptions are those associated with the use of verbal protocol data, informed by information-

processing theory.  In short, we assume that verbal behavior can be recorded and analyzed and 

that participants verbalized the cognitive processes they actually attended to during their 

problem-solving sessions.  Information-processing theory holds that these verbalizations are of 

information under the immediate attention of the problem solver within their working memory.  

As a means of validating the data obtained, the sessions were videotaped, which allowed for the 
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researcher to review the session with the participant, to clarify actions, and to elaborate on any 

periods of silence in the protocols. 

It can be expected that not every thought will be recorded, primarily because the process 

of verbalizing thoughts takes longer than simply thinking those thoughts.  As noted earlier, 

estimates suggest that under the very best conditions information can be obtained every second 

for verbal data, while the information processes that are taking place may only be in the range of 

a few tens to a few hundreds of milliseconds long (Larkin et al., 1980a).  This means that a 

certain amount of inference was necessary as the verbal protocols were reviewed.  The use of 

videotaping and post-session interviews with the participants greatly reduced the amount of 

inference, and allowed for validation with the participant when inference was necessary (see, for 

example, Taylor & Dionne, 2000).  Even though videotaping allowed for validation and cross-

checking that would not have otherwise been possible, there were still questions that arose 

during the process of analysis.  A passing comment or action taken by the participant may not 

have been noted during the problem-solving session, but was seen during the transcription or 

analysis phase.  Although there were few of these situations, in those cases that did arise 

inferences had to be made in light of the context of the action and, whenever possible, supported 

by statements in the post-session interviews. 

A second limitation of this study is the small number of participants.  The large time 

commitment required to record, transcribe, code and analyze the protocols necessarily limits the 

amount of data that can be utilized in think-aloud protocol studies.  Because of this, extreme 

caution should be exercised in trying to generalize the results beyond the population from which 

the participants were drawn; that is, beyond similar groups of introductory calculus-based 
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college physics students.  However, it should be noted that there was variation in the problem-

solving abilities of the participants, from a level at which the participant could not finish the 

attempted problem to one in which the participant produced an expert-like solution pattern.  This 

suggests the possibility of extension to problem solvers of other abilities, although more study 

would be required. 

A significant limitation of the study was a result of the somewhat ambiguous definitions 

of the factors in the stabilization model as provided by the original authors (McGinn & Boote, 

2003).  There was no question about the meaning of categorization or resource relevance, as 

these were previously identified factors that are well documented in the literature.  Goal 

interpretation, while present in the literature, appeared to take on a slightly different meaning in 

the stabilization model than that traditionally used in the literature, which required the researcher 

to consider the ways in which goal interpretation might be evidenced in the protocols in this 

study.  The other two factors, complexity and stabilization, were constructs developed by 

McGinn and Boote through their original research and as such have only limited historical 

background in the literature from which to draw from.  This required the researcher to develop a 

personal understanding of those constructs, and then determine working definitions to use in 

analyzing the protocols.  Although great care was taken to assure that the working definitions 

were consistent with those used by McGinn and Boote, and were verified by consultation with 

one of the original authors (Boote) any interpretation of the results of this study must take into 

consideration that the working definitions that guided the analysis were this researcher’s 

interpretations of those constructs. 
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Finally, the original work by McGinn and Boote (2003) included discussions of the 

importance of social interactions in the problem-solving process.  According to the original 

model, social resources such as student-student and student-professor interactions must be 

included if a full understanding of problem solving is to be developed.  The importance of social 

interactions in the development of expertise within a domain has been noted by other researchers 

(Heller et al., 1992; Redish et al., 1998; Tobias, 1990).  Likewise, the importance of 

consideration of motivational, emotional, and epistemological factors was noted (Cummings & 

Lockwood, 2003; Hammer, 1994).  Cognitive activity is at the heart of problem solving.  If a 

model of problem solving cannot describe or explain the cognitive activities undertaken by the 

problem solver, then it would be pointless to see how it applies to the other factors, some of 

which are perhaps best studied outside the context of actual problem solving.  Thus we start with 

the heart of problem solving, verify its applicability there, and then move on to other factors.  For 

these reasons, although the relevance of those other factors is acknowledged, this study focused 

on the cognitive aspects of problem solving only. 

 

Implications for Instruction 

A number of research studies have resulted in recommendations for instructional practice.  

Schoenfeld (1985a), for example, used Pólya’s (1945) four-step problem-solving model to 

develop instruction in the use of heuristics for mathematics.  Likewise, the step-wise problem-

solving processes observed in experts has been used as a guide for teaching physics problem 

solving (Heller & Heller, 2000).  Some of these practices have attained a moderate level of 
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success (Heller et al., 1992), but in general instruction in physics problem solving has not made 

significant advances despite the increased understanding of both expert and novice behavior that 

has been the result of the past 25 years of research.  A large part of the reason is what we have 

learned: Expertise in physics problem solving, as in any domain, is the result of extended, 

deliberate practice over a long period of time (Bereiter & Scardamalia, 1993; Lester, 1994).  

Nonetheless, recommendations for good practice in problem solving instruction are still needed, 

with the goal of assisting students in the attainment of that goal. 

The most substantial outcome of the review of the participants’ behavior in this study was 

the observation that concepts matter.  While this might sound like stating the obvious, it is the 

level to which conceptual understanding was observed to be linked to the behavior of the 

participants that is of particular importance.  Participants who demonstrated a lack of 

understanding of basic physics concepts and principles were also less likely to use their 

geometrical/trigonometric resources, use diagrams to support their solutions, use examples or 

equations appropriately, check their work, or to generate subgoals to guide their problem-solving 

attempts.  This is not to imply that there is a causal relationship between lack of conceptual 

understanding and these other behaviors; however, the data do suggest a relationship.  The 

implication is that the increased emphasis on conceptual understanding that has been the focus of 

physics education reforms over the past two decades is addressing an important factor in helping 

students to develop effective problem-solving techniques.  Physics educators should continue 

that emphasis.  Some studies suggest that students believe that studying concepts will not help 

them get good grades, and that only by focusing on formulas and problem solving can they be 

successful in physics class (Elby, 1999).  Rather than emphasizing formulas and their algebraic 
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manipulation only, instructors should include emphasis on concepts, and incorporate the physical 

concepts into problem-solving instruction explicitly (Hammer, 1989). 

The results of this study also suggest that conceptual understanding is not the only factor 

in successful problem solving; procedural knowledge is also important.  Successful problem 

solving requires that conceptual and procedural knowledge be linked, so that recognition of 

particular physics principles within a problem calls up appropriate procedures for solving the 

problem.  It is this linked knowledge that a number of the participants in this study appeared to 

be lacking.  Problem solving skill is a traditional goal of physics instruction, but how to attain 

that goal is still a subject of debate.  The traditional approach is to assign students lots of 

problems; however, there is evidence to suggest that approach is not effective for the majority of 

students (Joshua & Dupin, 1991; Kim & Pak, 2002).  Similarly, the emphasis on conceptual 

understanding in recent years has not been shown to increase problem-solving ability 

(Hoellwarth et al., 2005; Hung & Jonassen, 2006).  Clearly an approach that finds a balance 

between procedural and conceptual knowledge is needed. 

At the same time, there were some features of effective problem solving that were 

exhibited by all participants, such as appropriate categorization and the use of diagrams.  The 

fact that these behaviors were seen even in unsuccessful problem solvers suggests that these 

features could be used as scaffolding to help support the development of appropriately linked 

conceptual and procedural knowledge through the course of problem-solving instruction.  An 

instructional process that started with the student’s surface-feature referenced categorization as a 

basis for linking to the underlying physics principles could be followed by instruction in 

generalized procedures for applying those principles to problem solving.  Instruction should 
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explicitly verbalize and model the connections between concepts and procedures.  The possible 

effectiveness of carrying through on this suggestion is supported by statements made by several 

participants during the post-session interviews, in which they mention that they utilize the 

techniques demonstrated by professors as they attempt to solve unfamiliar problems.  Alex, for 

example, mentioned trying to emulate his professors, Art mentioned learning to work in symbols 

because his professor encouraged him to do so, and Andrew stated that he typically calculates 

everything possible in case he needs it later because that’s what his professor taught him to do.  

The use of diagrams as connections to the mathematics of a solution should also be demonstrated 

and emphasized.  The idea is to link what students are already able to do – categorize problems 

and draw diagrams – to what they are not able to do – call up appropriate principles and 

procedures.  Explicit instruction in the use of subgoals to outline the problem-solving process is 

also encouraged. 

Suggestions for Future Research 

In the original paper describing the stabilization model, McGinn and Boote (2003) 

discuss the importance of non-cognitive factors to the problem-solving process.  These 

motivational, social, attitudinal, epistemological and emotional factors were not addressed by 

this study.  Other researchers in the domain of physics education have begun to look at issues 

such as expectations and epistemology (Elby, 2001; Hammer, 1994, 2000; Redish et al., 1998), 

attitudes (Cummings & Lockwood, 2003) and metacognition (Koch, 2001; Oladunni, 1998).  In 

her now-classic They’re Not Dumb, They’re Different: Stalking the Second Tier, Tobias (1990) 

reported on the importance of the social structure and interactions within the physics classroom 
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and department to the teaching and learning of physics.  If a modern model of problem solving is 

to address the many facets that make up effective problem solving, and how students learn to be 

effective problem solvers, testing of that model must investigate those factors.  This suggests 

several directions for future research.  Problem-solving sessions with dyads and triads would be 

a good place to start, given that six of the 12 participants in this study noted that they typically do 

homework problems with others.  In-field observations of interactions between students and 

professors and/or teaching assistants would also be relevant. 

The motivational aspects of physics problem solving are another area which has received 

only limited attention in the literature (Cummings & Lockwood, 2003; Elby, 1999; Redish, Saul, 

& Steinberg, 1998).  The actions taken by the problem solvers in this study suggest that this 

aspect is worth of further study.  Investigations in why students such as Ben end a problem-

solving attempt after only 10-15 minutes without reaching a solution, while other problem 

solvers such as Alex or Chuck continue on through a lengthy solution of 30-60 minutes might 

help us better understand the role of motivation in the development of competence in problem 

solving. 

The results of the analysis in this study suggest several other possible directions for future 

investigations.  Categorization in particular bears further study.  All but two participants were 

able to appropriately categorize the problem attempted, but there is little indication of the basis 

used to make those categorizations.  A closer look into categorization in the context of problem 

solving, with particular attention to determining whether surface features or underlying 

principles were used, could provide information on how best to scaffold to physics principles for 

those students who focus primarily on surface features.  Another possible avenue for future 
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research is suggested by the connections noted in this study between conceptual understanding 

and other aspects of the problem solving process.  A study connecting the results of commonly 

utilized tests of conceptual understanding, such as the Force Concept Inventory (Hestenes & 

Halloun, 1995; Hestenes, Wells, & Swackhamer, 1992), and think-aloud protocols of problem 

solving could further investigate those connections. 

As previously mentioned, the definitions of the some of the constructs that make up the 

stabilization model are somewhat vague.  If more robust definitions for complexity, goal 

interpretation and stabilization were to be established, further testing would be needed to 

establish the validity of the model.  For example, in relation to goal interpretation, it is not clear 

from the results of this study whether or not problem solvers truly know what the solution would 

look like.  Investigation of goal interpretation, perhaps in the context of identifying subgoals 

prior to the solution of the problem, could help answer that question.  In relation to complexity, it 

was noted that there are numerous other factors that appear to affect problem difficulty besides 

the number of steps needed to solve the problem.  One factor that was seen in this study but not 

addressed directly was the choice of solution methods.  In this study, all of the problems used 

had sections that could be solved either by application of Newton’s second law or by work-

energy principles, with the Newton’s law approach resulting in more steps needed to reach a 

solution.  Foster (2007) noted that a problem with more than one possible solution method was in 

general perceived as more difficult by students.  No other study was found in the literature that 

specifically addressed the choice of solution techniques, suggesting that it is an area in need of 

further investigation. 
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Finally, it was proposed in the introduction to this study that the establishment of a 

problem-solving model that was equally valid for both experts and novices would be a worthy 

goal.  Investigation of the applicability of the stabilization model to the problem-solving 

behavior of experts would be the next logical step in that process. 

The results of the testing of the stabilization model in this study were mixed.  Some 

aspects of the model, in particular categorization, resource relevance and goal interpretation, 

were strongly supported by the data.  This was expected, given the volume of research reported 

in the literature on these topics.  The construct of complexity, however, was not strongly 

supported.  Whether this was a result of problem solvers not consciously considering problem 

complexity or of a shortcoming of the methodology or of the working definition could not be 

determined.  Stabilization as a construct appeared to be supported by the data, but even that must 

be considered as inconclusive, given the vague definition provided by the original report.  

However, overall there seems to be enough evidence to support the model to warrant further 

study.  If the shortcomings in the definitions of model constructs can be addressed, the 

framework filled in with sufficient detail, and it is found to describe the problem-solving 

experiences of experts and novices alike, then the stabilization model may be able to attain the 

status of an alternate problem-solving model. 
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APPENDIX A: PROBLEMS USED IN THE STUDY 
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The problems selected for use in the study were gathered from introductory physics texts 

or were written by the Researcher.  The criteria for the problems were that a) they be of a level of 

difficulty such that they would be perceived as problems by the Participants, not exercises, b) 

they require the use of multiple concepts and steps in order to reach a successful solution, and c) 

they can be solved by more than one method.  From a pool of ten questions, the following three 

were ultimately selected for use in the study. 

 

 Problem 1: A truck with a mass of 1500 kg is traveling down a mountain road at 22 m/s 

when it hits a thick patch of ice.  In a panic, the driver hits the brakes, which fail, causing 

the truck to slide essentially without friction down the 5o slope.  After traveling down the 

slope for a distance of 300 m, the driver manages to get the truck onto a runaway truck 

ramp, which is inclined at an angle of 10o upwards from the horizontal.  The ramp is 

covered with a soft material, which results in a coefficient of friction of 1.8.  How far 

along the truck ramp does the truck go before coming to a stop? (Adapted from Young & 

Freedman, 2004, p. 279, problem 7.66) 
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 Problem 2: Jack and Jill are sledding on a snow-covered hill (µk = 0.1) that is inclined at 

an angle of 20o to the horizontal.  Jill (m = 50 kg) runs at 4 m/s across the top of the hill, 

landing on the 5 kg sled which is at rest at the very edge of the hill.  He brother Jack 

stands at rest a distance of 14.6 m down the slope.  As Jill passes Jack (m = 30 kg), he 

jumps onto the back of the sled.  They continue together on down the slope, reaching the 

bottom after traveling a total distance of 40 m along the slope.  How fast are they going 

when they reach the bottom of the hill? (Adapted from Serway & Beichner, 2000, p. 283, 

problem 20) 

 

 Problem 3: At the intersection of University Blvd. and Rouse Rd. a subcompact car with 

a mass of 950 kg traveling east collides with a truck of mass 1900 kg traveling north.  

The two vehicles become entangled as a result of the collision, and travel a distance of 

15 m at an angle of 66o north of east before coming to a stop.  The officer arriving on the 

scene measures the coefficient of friction between the tires and the road and finds that it 

has an average value of 0.85.  What was the speed of each vehicle just before the 

collision occurred? (Written by the researcher) 
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APPENDIX B: INSTRUCTIONS TO PARTICIPANTS 



 196

The purpose of this research is to gain a better understanding of how people solve physics 

problems.  The best way to learn about how people solve physics problems is to ask them to 

think aloud as they solve a problem.  We are not concerned with whether or not you ultimately 

get the correct solution to a problem; we are primarily interested in the processes you undertake 

as you attempt to solve a problem. 

 

When you think aloud, the goal is to verbalize as much as possible of what you are thinking.  

Almost everything you say will be important for the researchers as they attempt to develop a 

better model of problem solving.  You won’t be able to verbalize everything you think, but the 

idea is to verbalize as much as is possible, to provide the best report of your thinking processes.  

To achieve this, it is important that you talk constantly throughout the solution process. 

 

As you think aloud, don’t try to plan what you are going to say.  Your report does not have to be 

well structured or grammatically correct.  What is most important is that you accurately reflect 

your thoughts, or even fragments of your thoughts.  Ideally, you should verbalize directly what is 

going through your mind as you attempt to solve the problem, without paying too much attention 

to how it is coming out. 

 

Adapted from Taylor & Dionne (2000). 
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APPENDIX C: PARTICIPANT INFORMATION SHEET 
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Your interest in participation in the Physics Problem-solving Study is appreciated.  To 

help the researcher with the participant selection process, please provide the following 

information.  After all student information has been tabulated, students chosen to participate in 

the study will be contacted to set up an appointment to meet with the researcher. 

Your expressed interest in the study does not in any way obligate you to participate in the 

study if you are chosen.  Likewise, if you participate in the study, you have the right to withdraw 

from the study at any time for any reason without penalty. 

The information you provide on this form, or as a result of the study, will not be released 

to any person in any form that would enable you to be identified.  It will be held in confidence by 

the researcher, and all identifying information will be removed from the data collected before 

any results of the study are made public. 

 

Name _____________________________________________________________  Sex   M  /  F 

Phone __________________________ Email ________________________________________ 

Major _____________________________________________ Current physics grade _________ 

Last math class completed ____________________________________ Grade earned ________ 

SAT score: Composite _______ Quantitative _______ Qualitative _______ ACT score _______ 
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____ Which of the following best describes your reason for taking this class? 
a. It is a prerequisite for other courses. 
b. It is in my major field. 
c. I am interested in the material. 
d. I am taking it as an elective only. 

 
____ Which of the following best describes how you usually solve physics problems? 

a. Alone, as the material is presented in class. 
b. Alone, at the last minute before it is due or before an exam. 
c. With one other person. 
d. With a study group. 
e. By copying other people’s problems. 
f. By copying the solution manual. 

 
____ Which of the following best describes what you hope to learn from this class? 

a. Fundamental physics concepts. 
b. Problem-solving strategies. 
c. Both a and b. 
d. Nothing that will apply to future classes; I’m only taking the course because I have to. 
e. I’m not sure. 

 
____ Which of the following best describes your perceptions of the purpose of problem solving 

in physics courses? (You may include more than one response if appropriate.) 
a. A way to learn physics concepts. 
b. A way to learn mathematical procedures. 
c. Busy work with no real relevance to success in the course. 
d. A way to learn how to apply physics concepts to real-world situations. 
e. Useful for learning procedures, but having no real relevance to real-world situations. 
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APPENDIX D: CODING GRID 
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Table 10: Protocol Coding Grid 

Category Definition and Prototype Statements Code 

Categorization Participant expresses that a problem belongs in a particular 
category 
“This is a work-energy problem.” 
“I can apply the 2nd law here.” 

CAT 

Goal 
Interpretation 

Participant expresses what the problem is asking for and 
what the solution should look like 
“They are asking me to find the final velocity of the ball.” 
“It looks like I’m supposed to provide a proof.” 

GOL 

Resource 
Relevance 

Participant utilizes a particular material, conceptual, social or 
mathematical resource 
“I need the cosine component…” (participant reaches for 
calculator) 
“I don’t remember that formula…it’s in the book.” 
“There’s more than one unknown…I’ll need a system of 
equations.” 

RES 

Complexity Participant expresses an assessment of the difficulty of the 
problem 
“This is going to take several steps.” 
“Before I can find the final velocity, I need the acceleration.  
But all I know is the force.” 
“This is simple.  I just need to…” 

COM 

Stabilization Participant expresses an attempt to stabilize the problem 
“This can’t be right.  There are too many unknowns.” 
“Work-energy won’t work here.  There’s not enough 
information.” 
“Maybe I need to try momentum instead.” 

STA 

Not Related to 
Problem Solution 

Participant expresses verbalizations or carries out actions not 
directly related to the problem-solving process. 
“It’s warm in here.” 
“What was that noise?” 

NRP 
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APPENDIX E: BETH’S STEP FORMATTING 
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Table 11: Beth's Step Coding 

Verbalization Actions 
A truck with a mass of 1500 kg is traveling down a mountain road at 20 miles per 
hour when it hits a thick patch of ice lovely in a panic the driver hits the brakes 
which fail causing the truck to slide essentially without friction down a five degree 
slope after traveling down the slope for three hundred meters the driver manages to 
get the truck… onto a… runaway truck ramp which is inclined at ten degrees 
upward from the horizontal the ramp is covered with a soft material which results in 
a coefficient of friction of one point eight how far along… the truck ramp does the 
truck go before coming to a stop 

Refers to problem 
statement 

ok (refers to problem statement) the truck (starts writing) truck mass m is traveling 
down a mountain road at velocity v (draws arrow) when it hits a thick patch of ice 
ok in a panic it hits the brakes (writes a and draws arrow) point negative 
acceleration 

Refers to problem 
statement 
Writes given 
information 

truck slides without friction down the five degree slope (draws downward slope, 
labels angle) theta after traveling slowly down the ramp for a length of three 
hundred meters (labels slope L) the driver manages to get the truck onto a runaway 
ramp which is inclined ten degrees ten degrees up (draws slope, labels angle) use 
alpha  I have theta alpha has a coefficient of friction of one point eight (labels, then 
sighs) 

Draws diagram 

ok so I know its initial kinetic energy is that going to help… (pause) no its not it 
doesn’t matter I know its initial velocity then it slides down the slope for this given 
period of time ok 

Refers to 
knowledge 
Refers to diagram 

so velocity equals distance times time (writes equation)  I don’t know time… I do 
know d I do know v I can find t ok… traveling down the slope does that matter… 
no… it shouldn’t then it goes up (pause) 

Writes equation 
Refers to diagram 

then it’s going back up it’s going back up the ramp... does that matter kinetic ener... 
should I use kinetic energy I already know v… 

Refers to diagram 

I already know v (starts writing kinetic energy equation) the velocity’s changing I 
have to find how far along if I know the vel… the velocity that’s not going to help 
me… he applies the brakes wait he applied the brakes velocity’s changing… (sighs) 
applying the brakes doesn’t do… because his truck starts sliding he doesn’t actually 
slow down so velocity is still the same… 

Writes equation 
States goal 

ok so I do know the energy kinetic energy the other kind of energy’s going to be 
potential energy got it (finishes writing kinetic energy equation) 

Refers to 
knowledge 
Categorizes 
problem (implicit) 
Writes equation 

the initial… the change in kinetic energy is velocity final minus velocity initial 
there is no final velocity because its going to stop once it is… up the ramp although 
I don’t know how far… potential energy started at zero but then it went down it 
went down three hundred meters an angle of five degrees 

Writes equation 
Refers to diagram 

so times sine (starts drawing triangle) going down slope of five degrees (points to 
side of triangle) so sine… ok the first change is going down this far (indicates on 
sketch) the second change is going up… this I don’t want I don’t want to use d 
again (erases) I called this L I called this L we’ll call that L call that d sin alpha… 

Draws diagram 
Refers to diagram 
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ok the initial kinetic energy is go then gong to be one-half fifteen hundred times 
twenty meters per second… squared equals m g… uhm… (adds mg to potential 
energy statement already written) its fifteen hundred again so the fifteen hundreds 
are going to cancel fifteen hundred gravity and then that is ok I know L is three 
hundred times the sine of five I know the final is… d which I don’t know and the 
sine of ten… 

Writes equation 

(reaches for calculator) the fifteens canceled twenty two is squared (writes answer) 
ninety six point eight equals g times that mess (writes other side of the equation) ok 
we need to divide by g… (writes answer of 9.9) 

Calculates 

and that’s meters per second I have kilograms (gestures over previous line of work) 
two kilograms (indicating other side of equation) that’s meters per second squared 
got meters per second yea meters per second… equals… plus three hundred meters 
sine... 

Checks units 

wait a minute is that right… (pause) I’m dropping kinetic energy to potential 
energy why aren’t my units right… meters per second squared is all I have left over 
here I divided by kilograms on both sides… meters per second times meters… so I 
ha this should be nine point eight meters squared per second squared… then I 
divided by g yes I divided by meters per second so that is just seconds… so three 
hundred times five degrees equals… d… divide sine ten degrees… do I have meters 
I have meters yes… duh  squared 

Checks work 
Refers to work 

 (goes to calculator) nine point eight point nine plus three hundred times the sine of 
five…wait un-oh unintelligible calculator unintelligible nine point nine time plus 
three hundred times sine of five…is thirty six meters over sine of ten…which is 
point one seven…equals d which is equal to two hundred…two hundred twelve 
meters 

Calculates 

ok does that make sense potential energy unintelligible I know the final kinetic 
energy is zero how far up does the truck go before coming to a stop therefore v 
final is zero ok potential energy though first it went down so I called that negative 
cause it started at zero so its going down and that had negative potential energy that 
makes sense also then since this is L d sine alpha (gestures over sketch) I need to 
find d I know alpha… I never used the friction force… I never used the friction 
force shoot… (writes mu above d sine theta term in equation for potential energy) 

Checks work 
States goal 
Refers to problem 
statement 
Refers to diagram 
Checks work 

I multiply that… (pointing to same term in equation) I multiply that (pause) yes I 
multiply that by that by the sine d sine theta as well as that that’s here that’s here 
that’s here and that’s here (adding mu to various terms in the equation) that makes 
my answer a lot smaller… 

Refers to work 
Writes equation 

mu times one point eight times sine... that’s the sine of ten… is point three one 
makes it divide by that is… one hundred fifteen meters… 

Calculates 

to me that makes sense… there’s no friction over that one unintelligible it does 
make sense… ok I lost initial kinetic energy final potential energy… that canceled I 
got meters  

Checks work 
Checks units 

ok I’m done Ends problem 
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APPENDIX F: GROUP EXEMPLAR PROTOCOLS 
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Group A Exemplar: Alex 

(9:28:59) Researcher: When you’re ready you may begin. 
 
(9:29:01) All right this looks like a huge fortune cookie…  
 
mmm let’s see…Jack and Jill are sledding uh-oh angle…on a snow covered hill ok that’s 
important… let’s see friction constant (underlines mu k in problem statement)… kinetic friction 
ok it’s sledding down a snow covered hill that is inclined here’s where I get my angle at an angle 
of twenty degrees (underlines in problem statement) to the horizontal what’s that mean… I guess 
that means the x axis… Jill mass ok we got mass (underlines) runs at four meters per se… meters 
per second oh that’s a velocity (underlines) across the top of the hill landing on a five kilogram 
sled (underlines) which is at rest  
 
ooo… collision (writes ‘collision’ at top of problem statement) that means I want to use 
momentum to solve this…  
 
which at rest at the very edge of the hill her brother Jack stands at rest a distance of fourteen 
point six meters down the slope as Jill pa Jill passes Jack thirty meters (underlines 30 kg) he 
jumps onto the back of the sled  
 
oop two problems… eh two collision problems looks like it  
 
they continue together on down the slope reaching the bottom after traveling a total distance of 
forty meters (underlines) along the slope how fast are they going at the bottom of the hill 
 
(9:30:45) all right let me think about this… (reviewing problem statement) ok… reaching the 
bottom after traveling a total distance of forty meters along the slope so that’s the radius (writing 
r = on problem statement) the radius is going to equal (puts problem statement aside and starts on 
fresh sheet of paper) 
 
(9:31:00) what do I know let’s stop let’s stop and let’s focus let’s focus… all right let’s do what 
my knowns are what are my knowns (writing)… knowns ok… I’ve got Jack… I’ve got… Jill so 
two objects… I need to know what the mass and the velocity of each object are… Jack’s initial 
velo… well the masses aren’t gonna change… not yet… 
 
ok so the mass of Jack equal to thirty kilograms… and Jill ooh Jill’s a little bigger she’s fifty 
kilograms… ok and… Jill’s initial velocity… initial i equals four meters per second… no oh 
that’s not it (wrote next to Jack – corrects) Jack’s is zero… four meters per second for Jill did I 
get that right let me check  
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(refers to problem statement) Jack’s thirty kilograms zero cause he’s standing still… Jill’s fifty 
she’s running at four meters per second… 
 
(9:32:27) ok now… I think this is gonna be a momen… I think it’s gonna be two momentum 
problems…  
 
let’s go ahead… hmmm (starts drawing diagram)… what do I need to do… I need to figure out 
the x right this is going to be a two dimensions it’s going to be an x dimension and a y dimension 
now what have I got here (Researcher: could you speak up…) what what do I have here I have 
an angle here… twenty degrees and the radius total distance is forty meters ok…  
 
so what I need to do I need to figure out… I need to figure out I don’t know what why I’m 
figuring this out but I think that it’s going to be important I need to figure out… what the actual 
distance are in the x and the y… ah dimensions so… let’s make a ninety degree angle… ninety 
degrees… degrees… so y is gonna be the sine… and x is gonna be the cosine… so we know ok 
we take the radius and the radius is forty meters… that’s (writing equation) forty meters times 
the sine… twenty degrees will give me my y component…  
 
and that’s gonna be (calculating) forty sine  
 
oop hold on let me check my calculator… oop yea that’s what I thought it’s in radians because 
for some reason radians in calculus degrees in physics so I gotta remember that  
 
twenty degrees… ok what’s that hmm right rounding (writing) thirteen point seven meters in the 
y dimension all right now this is the x dimension forty meters cosine of twenty degrees equals 
(calculating) ok I don’t want to do all that all over again so I’ll just do that (working with 
calculator)… that that oh…  
 
does that sound right thirty seven point six meters in the x dimension… hmm ehh… yea that 
looks… that’s possible…  
 
(9:35:07) all right back to the problem I need… ok I’ve got the initial mass and initial velocity 
for Jill… and then she collides… the sle… ah I forgot the sled…  
 
the sled (refers to problem statement, adds info to list of knowns) has a mass of five kilograms 
and initial velocity… zero meters per second…  
 
all right this is definitely a momentum…  
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(refers to formula sheet) where’s my momentum stuff… huh got all my energy stuff all my 
kinematics stuff I don’t have any momentum stuff… that’s ok (refers to book)… momentum was 
chapter eight… go to the back of the chapter… and the summary should have what I need… huh 
was it chapter eight… no let’s see the last chapters were ten and eleven… were energy energy 
light and energy with calories… so nine nine should be the chapter that I’m looking for… does 
this stuff look ah ok there’s my impulse and there’s my momentum…  
 
(9:36:51) ok… so… we know that the momentum’s going to be conserved so I know…  
 
(writing equation) momentum of Jill plus momentum… the sled… is going to equal the 
momentum of Jill on the sled ok what’s momentum (writing equation) mass times velocity of Jill 
hmm what am I going to do that how am I going to tell Jack Jill and the sled apart ok I’m going 
to make this one this two this three (adding subscripts to previously listed masses)… so mass 
mass Jill velocity of Jill times plus mass of the sled times the velocity of sled equals the… mass 
of Jill and the sled so it’s I guess that’s gonna be four (adding combined mass to knowns list) Jill 
on sled it’s gonna be four the mass of that’s gonna be fifty five… and… what’s gonna be the 
velocity…  
 
(9:38:20) well let’s figure that out oh this is gonna be simple  
 
ok mass four times the velocity of four… ok well we know that the initial velocity of the sled is 
zero so we don’t have to worry about that ok let’s figure this out 
 
(writing equation) mass what that’s fifty times four don’t need a calculator for that it’s two 
hundred… plus zero equals fifty five v four ok let’s figure this out (calculating)… two hundred 
divided by fifty five equals ahh fractions hmm… hmm… I’m gonna go ahead and do an extra 
digit just because… so it’s gonna be three point six five meters per second all right that’s the first 
part of the problem ok that’s the first… 
 
(9:39:24) now… Jill… why do I need the unintelligible… unintelligible  did I forget… oh I’m 
forgetting about the coefficient of friction uh-oh… I should have known this is this not as easy as 
I thought it was… oh hold on wait a second no no no no no no no friction hasn’t come into play 
yet…  
 
how far down the hill (refers to problem statement)… is Jack… stands at rest at a distance of 
fourteen point ah ok… fourteen point six meters down the slope…  
 
all right that’s another problem now I have to figure out… how fast the sled is going when it gets 
to Jack… 
 
(9:40:24) all right… hmm… let’s read through these numbers but this time we’re gonna use 
fourteen point six (crossing through the 40 on the sine and cosine terms and writing in 14.6) 
fourteen point six fourteen point six that’s what I need…  
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ah I’m gonna let’s see (calculating) fourteen point six times the… sine of twenty degrees 
equals… five meters along the y axis… and let me see… cosine… thirteen point seven ok so he 
only actually travels thirteen point seven meters along the x axis…  
 
(9:41:21) all right free body diagram time let’s see (drawing)… this might be kinematics I think 
that’s what this is…  
 
ok… what is the force of gravity of Jill on sled that’s gonna be (calculating) fifty five times nine 
point eight meters per second squared  
ok we have (drawing)… force of gravity five hundred and thirty nine newtons downward and we 
know… ok this is twenty degrees this way (drawing)… and ninety degree angle… that’s twenty 
degrees… and this angle must be… seventy degrees (labeling)… and we know…  that… what 
do we know… we know that that’s gonna equal to the five hundred thirty nine but how much in 
the x how much in the y this is where I always this is where I always mess up so let’s not try to 
mess up ok let’s think about this now…  
 
we know that the radius is gonna equal (writing) five hundred and no (erasing)… five hundred 
and thirty nine newtons ok… in the y direction it’s going to be five hundred and thirty nine times 
the sine of seventy degrees ok  
 
(calculating) five thirty nine times the sine of seventy degrees is that right… yea… yea that’s 
that’s right ok so that means we have in the y direction the force of gravity… is going to be five 
hundred and six point five newtons and let’s see what it is in the other direction (calculating)… 
ok… ooh… ok force of… ok let’s get rid of that (erasing vector at seventy degrees) I don’t need 
you anymore… in the x direction it’s going to be one hundred and eighty four point three five 
newtons  
 
ok so… we’ve got acceleration here... so… oh force of friction again (drawing vector on 
diagram) at an angle ok twenty degrees and…  
 
(9:44:42) ok I need the total amount ok it’s the coefficient… friction times the the normal force 
so that coefficient what was the coefficient  
 
(refers to problem statement) point one up should have put that into my knowns (writes in list of 
knowns) ok f k equals now what’s the  
 
how he does it it’s a backwards u with a k  
 
equals point one… so then (writing equation) point one times five thirty nine newtons…  
 
ok that should be easy I shouldn’t ne really use (calculating) the calculator but I’ve made some 
really bonehead moves over the years so I’d better be safe that’s fifty three point nine  
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all right and that’s the radius now we have to figure out the x and the y have to figure out the x 
and the y… sine cosine I hate trigonometry…  
 
all right fifty three point nine sine twenty degrees what is that (calculating) fifty three point nine 
the sine of twenty degrees equals eighteen point four newtons of force… in the y direction ok all 
right so we’ve got something more pushing up on this thing… eighteen point four newtons ok 
and what is it in the x direction (calculating)… ok we have a fifty point six five newtons in that 
direction… ok…  
 
(9:46:56) all right now I’ve got my free body diagram forces… what do I care… what do why 
did I do all that what’s the point… I’m lost what am I doing… ok… time to do a pictorial all 
right pictorial may save me  
 
we’ve got a hill (drawing)… it’s going down twenty degrees… here to here… here’s the sled… 
and Jill… that was a momentum problem we solved that… now we have to get to Jack… ok all 
we have to do to get to is get to Jack once I get to Jack then Jack becomes a momentum 
problem…  
 
and then get to the bottom of the hill and that’ll be oh my god it’s four problems… oh… this is 
hard… ok let me think about this…  
 
well if you find out ah… I need the acceleration once I know the acceleration then I can figure 
out what the velocity is when they get to Jack all right that’s what the free body diagram is for 
second law calculations and of course there’s an angle so I have to figure it out in the x and the y 
directions 
 
(9:48:20) x dimension… what’s the sum of the x direction all right we’ve got a negative (writing 
equation) fifty cause it’s going in ah…  
 
always do that (labeling on free body diagram) plus x plus y… that’s why I lose points on my 
tests… 
 
ok…. fifty point six five and that’s a negative plus… plus one hundred and eighty four point 
three five equals mass times acceleration… right…  
 
and this is going to happen so what’s the f net f net is going to be it’s not going to be in the x or 
the y it’s gonna be both ok so it’s going that’s it f net is always in the direction of the 
acceleration… ok so what do we got…  
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oh we’ve got that it’s fifty five oh simple math time let’s see… negative fifty point six five plus 
one hundred and eighty four point three five equals divided by fifty five oh ok we have an 
acceleration of two point four three… in the x dimension what is it in the y dimension cause now 
we have to figure out what it is… in the y y we’ve got in the plus direction five zero six point 
five plus eighteen point four minus fifty three nine… ok… five (calculating) point six point five 
plus eighteen point four minus fifty three nine cosine negative twenty… and that’s gonna be the 
mass divi now what’s that divided by fifty five equals negative point two five meters per 
second… 
 
(9:50:43) does that make sense… yea cause we’re going downhill… ok so that would be the 
negative y direction ok so does this makes sense yes…  
 
ok now… (sighs) now we have to put them back together… to get the acceleration in the 
direction of the twenty degrees so…  
 
how do I do that… hmm… how do I do that… come on think… wait a second (pause)…  
maybe… what was the (refers to previous work)… here we got the three point six five… 
acceleration at twenty degrees… this needs to be broken into x and y pieces (pause)… am I 
doing this right… ok let’s think about this… think about this don’t worry about the time don’t 
worry about the time… ok this needs to be broken up…  
 
so this will be three point six five times the sine of twenty degrees… (calculating) three point six 
five times the sine twenty degrees equals… so we have one point two five in the y direction 
and… (calculating) cosine is … three point four three in the x direction all right ok now… from 
Jill to Jack…  
 
ok…. did I figure this out right… 
 
(9:53:09) (Researcher: keep talking) let me look at the kine (referring to equation sheet) you 
know what let me look at the kinematic equations… that’s what that’s what I’m messing up I just 
wasted all this time well maybe not let me think ok… we know that… ok here’s what we need to 
do… ok what am I figuring out what do I need ok it’s a collision problem once we get so we’re 
gonna need the mass and the velocity that’s what I need once I get to Jack how do I figure out 
the velocity… ok I know what the acceleration is… I know what the positions are… I know what 
the… need the final velocity and I know what the initial velocities are ok all right… this is 
(referring to previous work) the acceleration in the x dimension this is the acceleration in the y 
direction these are accelerations ok… these are velocities in x and y directions all right let me 
think about this now… where is… ok here are the distances these are what I need for the position 
ok all right here we go we’ll use this one… 
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(9:55:00) ahm ah let me think… oh jeez I used up all my paper… let me go (Researcher: you 
may you may go to the next page if you want) ok… all right let’s carry over what do I need to do 
(Researcher: if you need to you may remove this sheet and then we’ll just clip it back in if that’s 
helpful to you) I’ll you know what I’m not going to do that I’m going to go I need I know what I 
need… 
 
(9:55:24) I need… ok x dimension (writing)… y dimension… ok I need to know… the formula 
I’m gonna use (writing equation) velocity final squared equals velocity initial squared plus two 
times acceleration of the… x final plus the x initial ah oh ook I need… 
 
I I need on my pictorial diagram I need a coordinate system (adding to previous diagram) yes 
Instructor is gonna yell at me for that… you’re supposed to do that from the very beginning ok 
that’s probably why I’m having such a tough time with this problem ok we will make this the 
origin ok… blink blink (marking points on diagram)… all right we got two things we need to 
know about… ok this… is thirteen point seven meters (labeling)… this… is thirty seven point 
six meters… ok… total distance here… this is going to be thirteen point seven meters… and 
ah… wait a second… 
 
(9:57:02) (Researcher: Keep talking) I’m think oh um… this is what you would call pardon my 
language a brain fart I just stopped thinking I just stopped thinking ok well this is the problem 
I’m think I’m I’m looking at this five meters here in the in the y direction… and it doesn’t seem 
it drops five it just it drops five or does it drop more… cause we’ve got thirteen so its thirteen 
point seven div minus five… does that sound right…  
 
let’s see what would that thirteen point seven minus five would be ah… thirteen (calculating) 
point seven minus five would be eight point seven so this is an eight point seven from this 
coordinate system… so I’ve got now it’s gone thirteen point seven ok in the x direction and over 
here this is a total of fourteen point six that makes sense that makes sense ok overall it’s forty 
right that makes sense ok all right now… 
 
(9:58:15) x dimension ok final velocity that’s what I’m working for let’s do x dimension first… 
ok initial velocity in the x dimension was…  
 
(writing equation) three point four three and that’s gonna be squared and acceleration in the x 
direction was a positive… two point four three… initial x position was gonna be zero minus… 
no that’s final position and it went… ah final position thirteen point seven minus zero and that’s 
gonna equal final velocity squared… let’s do this now  
 
(calculating)… three point four three squared thank god for calculators… eleven point seven six 
plus… two point four two times two equals that times thirteen point seven equals… sixty six 
point five eight… add those together… eleven point seven six plus sixty six point five eight 
equals that oh uh square root… square root of that is gonna be eight point eight so final velocity 
in the x direction is eight point eight meters per second all right let’s do it for y… 
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(writing equation) final velocity f plus ok… initial velocity in the y direction… is one point two 
five and it should be a negative… right… it doesn’t matter because I’m squaring it anyway… 
plus… two times acceleration in that in the x direction which is a negative point two five and 
initial position is… aoh polo… do I have thirteen point seven twice… thirteen point seven… oh I 
do… oh that’s confusing… ok… initial so it’s thirteen point seven… for that minus the final 
position so eight point seven so oh that’s five…  
 
so (calculating) one point two five squared one point five six… and this is gonna be negative… 
ok… two times point two five equals point five times that’s two point five… so one point five 
six minus two point five equals negative point nine four…  
 
(10:01:54) all right take the squ oh no that’s gonna be… an imaginary number… what have I 
done something wrong (referring to previous work)… acceleration is that a scalar or a vector… 
it’s a vector… what have I done wrong I’ve messed up on the signs again oh… that kills me... 
signs kill me… is it important yes (referring to previous work)… (long pause)… what am I doing 
what should I do now I need to I need to go and I need to walk through this and I need to figure 
out… why it’s not a negative… ok let me think about this now… how did I get… point wh how 
did I get the acceleration (referring to previous work)… I got the acceleration from my free body 
diagram and the second law pairs… and that makes sense because it’s accelerating down right… 
ok so that’s correct all right now… the velocity the velocity should be a negative… ok where’s 
the velocity how’d I figure out the velocity velocity came from here… ok… ok… velocity I 
figured out the velocity… I should have used… three hundred forty degrees instead of twenty 
degrees… what would have happened how would that would have looked… if I had done that…  
 
ok (calculating) three point six five times the cosine three forty degrees is gonna equal… right 
but… the cosine… what’s going on use the sine sine for the y… negative ah ok… that’s where I 
made my mistake cause it’s going downhill all right now what did I use that for what did I use 
that for… so velocity… 
 
(10:04:56) (refers to v2 equation – slaps paper) it doesn’t matter… it doesn’t matter… ok… five 
here… we have this (referring to values in equation)… well… maybe it’s not important I know it 
is but… I just I gotta keep going ok let me think about this so… I don’t think I’m going to bother 
taking the point five… so… the final velocity in the y direction is gonna be point nine seven…  
 
it’s gonna be in the negative direction… cause it’s going in the y direction ok…  
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so now I need to put ’em together… ok… how do I do that… how do I put them back together 
that’s in the very beginning (refers to book) that’s with vectors… vectors… vectors in the 
coordinate system… it’s gonna be chapter three page seventy eight…  seventy eight I know I 
should know how to do this but… I don’t feel like thinking so let’s go to the book seventy eight 
seventy eight scalars and vectors… now let’s go just go right to the back it should be there… 
should be there in the summary… all right… oh of course duh ok… now all right ok so it’s x 
squared plus y squared equals r squared well root r… ok… all right here we go… ah x what’s x x 
is…  
 
(calculating) eight point eight… squared plus… negative nine no negative point nine seven 
squared… so the final velocity is going to be… eight point eight five (sighs)… 
 
(10:07:56) does that sound right… ok we started out what was the initial velocity of sled on 
Jill… three point six five… that was it that one’s it right there… three point six five you’ll never 
be neat… you’ll never be neat… ok does that make sense… oh man he’s definitely well yea… 
that’s oh… that’s that’s pretty fast… I guess… 
 
(10:08:29) ok now the second part of the problem the third no this is the third part of the problem 
momentum… ok we’ve got Jill on sled… that’s eight point… eight point four right… ok we 
don’t need we it’s a momentum problem I don’t nee I don’t care about the angles…  
it’s the mass four velocity four plus mass of Jack is three mass of three velocity three equals 
mass five velocity five this is so much easier than that kinematics stuff… all right Jack is thirty 
and he’s standing still so I don’t care… about him ok fifty five for that the velocity is… eight 
point eight five… ah the further along the messier I get oh well as long as the problem’s right 
what do I care eight five… and then what’s the final velocity…  
 
here we go ok (calculating)… so it’s fifty five times eight point eight five equals blah blah blah 
divided by eighty five equals… ooh five point seven meters per second (refers to previous 
work)… 
 
my god… that slowed ’em down quite a bit… does it make sense… the mass increased… so the 
velocity had to shrink… it had to… ok… 
 
(10:10:41) now… back to a two dimensional kinematic problem… what do we got left here all 
right hey no problem… go to the formula go to the formula use the formulas remember the 
formulas will save you… formulas will save you… free body diagrams will save you… picture 
diagrams will save you… ok look at the problem that’s what I need (indicating vf

2 equation) let’s 
do the x dimension x dimension what do we know… oh I have to go figure out what the velocity 
is in the x dimension  
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that’s (writing equation)  five point seven times the cosine of three hundred and forty degrees… 
ok (calculating) five point seven times the cosine of three hundred and forty degrees equals right 
fine it’s positive it’s a positive number it’s going in the positive x direction therefore that’s cool 
five point seven sine three forty equals what I don’t’ know… negative negative one point nine 
five ok so unintelligible initial velocity in the x direction equals… five point three five and the 
velocity initial in the y direction equals a negative one point nine five don’t forget the period ok 
got that… (chuckles)…  
 
(10:12:23) acceleration… free body diagram time (drawing)… free body diagram free body dia 
hold on (scribbling through diagram) stop it stop it be neat… be neat… be neat (starting new 
diagram with ruler) stop panicking… stop worrying about the time… ok eighty five… what’s 
eighty five  
 
(calculating) eighty five times nine point eight equals eight hundred and thirty three newtons 
we’ve got a force over this way… seventy degrees it’s gonna be eight thirty three… but what is 
it… along the y axis… we’ve got (calculating) sine of seventy degrees…  
 
come on come on you stupid machine there you go  
so it’s gonna be seven hundred eighty two point seven this way… and what is it in the other 
way… it’s gonna be something because it’s gonna be acceleration has to be downhill cosine… 
stop it there we go… two eight five newtons in x direction y direction… ok friction… twenty 
degrees… (calculating) eight thirty three times point one equal ok so we got eighty three point 
three… eighty three point three sine twenty degrees equals… twen… ok so it’s twenty eight 
point five… why are you doing this oh acceleration duh ok… unintelligible (calculating) 
cosine… seventy eight point three newtons…  
 
(10:14:44) all right let’s figure this out now what do I got… what are the forces let’s think about 
this let’s think about this… gravity duh… gravity… normal force… is going to be perpendicular 
to the surface… friction is gonna be in the opposite direction of the motion the motion is that 
way (indicating on diagram) that’s the acceleration so that’s f net… ok let me think… oh second 
law pair that’s for the x dimension take a two dimensional problem and make it two one 
dimensional problems ok what do we got neg let’s do the negatives first  
 
(writing equation) negative seventy eight point three plus… two hundred and eighty five equals 
eighty five times a… all right that’s simple we can do this one eight seven point three… that’s a 
negative right yea plus two hundred and eighty five equals two oh six point seven divided by the 
mass… which is eighty five comes to two point four three acceleration in the x dimension… cool 
we’re rollin’ now y dimension y dimension what do we got here what are the negatives… do we 
care about the y dimension yea we do…  
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we’re unintelligible biggest negative is ah eight thirty three (calculating) cause that’s the 
negative y coordinate plus… twenty eight point five… plus seven eight two point seven equals 
negative number of course it’s gonna be a negative number because it’s going down… negative 
y direction so… acceleration of y is gonna be… negative twenty one point eight… ok… ok… 
 
(10:17:58) so I’ve got the acceleration part and I’ve got all right because I used… a pictorial 
diagram I know the position stuff is so let’s plug it in and this is it this is it ok first x do the x first 
what’s x velocity of x oh my god you’ve lost it in all this now I know why you’re supposed to be 
neat… there it is… what’s that… that’s the velocity (labels)…  
 
what’s the acceleration… wait a second… twenty one point eight… that’s not right… what are 
you thinking you’ve gotta redo that… let me think about this… oh you nitwit you forgot to 
divide it (calculating) by the mass… there we go that’s better point negative point two five… gee 
surprise surprise the acceleration in the y direction is the same because it’s the gravity… so it 
should be the same in the x direction too is it… what was it last time (referring to previous work) 
ch yea… it’s con accel of course it wouldn’t change why are you doing all this work well at least 
you’re on the right track ok… it doesn’t matter it was it was it was practice it’s you need the 
practice…  
 
all right focus back to the formula… initial velocity here is the initial velocity x direction the 
initial velocity is (writing equation) five point three five squared plus two times two point four 
three ah here we go initial position is going to be… hold on it’s final position final position 
first… thirty seven point six minus… thirteen point seven there’s that that’s ah that’s confusing 
ok… equals final velocity in the x direction… of x… what’s that is that a one or a seven ok… 
 
(calculating) thirty seven point six minus thirteen point seven equals twenty three point nine five 
point three five to the second power is twenty eight point six twenty eight point six… two point 
four three times two equals four point eight six… times twenty three point nine equals that… 
plus twenty eight point six equals that… and the square root of that is gonna be twelve ok so 
what am I oh final velocity final velocity of x is gonna be twelve meters per second what is it 
gonna be for y…  
(10:20:27) negative one point nine five… (calculating) three point three point eight… initial 
position is going to be… negative eight point seven… because the final position is zero… so I 
don’t have to worry about that…  
 
two times ah that’s gonna be negative (drops pencil)… that’s why I’ve ok that ok… they’re 
timesing each other that one was a negative that one was a negative that’s why it becomes 
positive ok all right… negative (writing) so it’s negative five times no negative point five… 
 
(calculating) let’s just point five times eight point seven… equals four point three five… plus 
three point eight plus three point eight close that square root of that… it’s two point eight five… 
final velocity in the y direction however…  
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(10:21:59) my calculations for the second problem may be wrong let’s go back to that… those 
silly signs… oh no it’s on this page… signs… (pause)… this is reversed (refers to positions in 
calculation of Jill’s final velocity) this should be here this should be here… that makes sense 
ok… all right… I feel so much better now that I know what’s going on with the signs… I 
inverted the positions… all right… ok no problem… whew… it’s not going to cascade through 
the work all right everything I’ve got is fine so far is ok… go back… what was I… what was I 
doing… 
 
(10:22:56) ok two point eight five is the final velocity so let’s go and let’s figure that out… blink 
(calculating) blink… it’s gonna be… what is it gonna be… oh it’s x… eight point eight is that it 
hold on… there it is right there… whew… (calculating) twelve squared plus two point eight five 
squared and that… twelve point three meters per second is the final velocity… 
 
(10:23:46) you know what… how’s the problem begin with… Jack and ok what do I want… 
Jack and Jill are sledding on a snow covered hill that is inclined an angle of twenty degrees to the 
horizontal blah blah blah blah blah… and Jill’s overweight… she’s running at four point meters 
per second… across… up on the hill… brother stands… Jill passes what do I want they came 
down what am I looking for how fast are they going at the bottom of the hill… that’s it I got it I 
got it what was it… where is it I better right that down… it’s twelve… answer right there… 
that’s what I want  
 
(10:24:32) I’m done 
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Group B Exemplar: Brittany 

Researcher: Ready – you may begin 
 
(4:21:20) (starts writing) I always like to write down what I’m given first I have a truck mass of 
fifteen hundred kilograms and it’s traveling down a mountain road with a speed of twenty two 
meters per second when it hits a thick patch of ice in a panic the driver hits the brakes which fail 
causing the truck to slide essentially without friction … towards the five degree slope so slope 
with an angle of five degrees after traveling down the slope for a distance of three hundred 
meters the driver manages to get the truck onto a runaway truck ramp which is inclined at an 
angle…(adds “hill” to first angle written) ramp…ten degrees upwards…from the horizontal the 
ramp is covered with a soft material which results in a coefficient of friction of… so mu is one 
point eight how far along the truck ramp does the truck go before coming to a stop so 
that’s…(writes d then erases) I’ll do x…mmm 
 
(4:22:46) mmm…it’s traveling down a mountain road… when it hits a patch of ice (starts 
drawing rectangle, labels with mass and velocity)…mm twenty two meters…down a five degree 
slope…(unintelligible under breath – starts drawing incline) five degrees travels a distance of 
three meters (labels) three hundred meters (referring to problem statement) to get the 
truck…which is inclined…(draws second incline) that’s ten degrees…coefficient of friction one 
point eight… 
 
(4:23:53) (Researcher: be sure to speak up) ok…(opens textbook – turning pages) mmm… 
 
(4:24:19) (Researcher: keep talking tell me what you’re thinking) ahm…I’m trying to find a 
formula that fits… the uhm problem I’m given mass velocity…and I got angles…so I need to 
find… a uhm…sort of a…a collision…problem…(continues turning pages) that’s two 
dimensional collisions…(unintelligible…I like to look at examples they help me the 
most…mmm…(turns to table of contents) I can’t exactly find what I’m looking 
for…(pause)…(taps rhythm on book)…  
 
(4:26:23) (turns pages to chapter on collisions) I’m confused…(turns back to table of contents, 
then back to collision chapter) the problem is there’s these problems don’t involve friction and 
it’s based on a frictionless surface and this one involves…friction and I have to find a formula 
that involves that (turning back to table of contents) ah there we go….(turns to section on 
friction) ha found it…(pause – turning pages more slowly – looking at examples) 
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(4:27:39) (returns to work page) ok…let’s do the diagram…(refers to problem statement) truck is 
traveling down a mountain road when it hits a thick patch of ice…in a panic the driver hits the 
brakes which…without friction down the slope (starts drawing) …and it’s a five degree slope 
(erases, then draws again)…that’s what it’s traveling on…it’s without friction…it’s five 
degrees…so you have a normal force (starts drawing arrows on diagram) …and we have m g 
sine theta… that’s theta (labels angle on diagram)…and this is m g…and there’s no friction back 
so…mmm… m g cosine theta…and…since there’s no friction we just solve for m g sine theta… 
 
so the total forces in the x direction…m g unintelligible one thousand five hundred kilograms 
times (Researcher: be sure to speak up) does it matter if I used nine point eight or ten 
(Researcher: what you would normally do) I’ll just make it easy…times sine of five degrees… 
 
(calculating) fifteen hundred times ten times make sure I’m in degrees yep sine five and given 
the total force is one thirty zero seven point three four… 
 
and the normal force is m g…and the total forces in the y direction… are…uhm… (starts writing 
equation) n minus m g cosine theta…so fifteen hundred kilograms times ten meters per second 
minus fifteen hundred kilograms times ten meters per second times cosine of five degrees… 
 
(calculating) fifteen hundred times ten…one five zero zero zero minus…times ten times cosine 
five…oops…which equals four nine four two point nine two…minus one five…fourteen 
point…equals fifty seven point oh eight….and that’s equal to m a…m a y equals zero…ok 
 
(4:32:16) (refers to problem statement) after traveling down the slope for a distance of three 
hundred meters… 
 
(starts drawing new diagram) travels down the slope distance (labeling) three hundred 
meters…five degree slope the driver manages the truck onto a runaway truck ramp which is 
inclined at an angle of ten degrees upwards…this is the trucker’s slope… from the 
horizontal…this is the horizontal…that’s ten degrees that’s five degrees (labeling on 
diagram)…the ramp is covered with a soft material which results in a coeffriction of one point 
eight…(sighs) ok… 
 
(4:33:22) (starts writing equation below diagram) f equals m a…in the x 
direction…huh…(Researcher: tell me what you’re thinking) (erases equation) I just now realized 
I have a distance…(taps paper with pencil) and I need to find distance unintelligible  
 
(4:33:56) (refers to book – turns pages – still in friction section) …hmm… (pause)… oh… that 
could (looking at example with object on slope) unintelligible …that doesn’t help… 
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(4:34:48) (refers to problem statement) he’s traveling down the mountain so gravity’s pulling 
down…how far does the truck go…before coming to a stop… maybe I want to use kinematics on 
this… (turning pages)… I think they have one of those…nice tables (laughs)… ah I think I found 
it…(continues turning pages) …should be one unintelligible … (continues turning pages) … 
(period of silence while continuing to look through book)… ah there found them… finally 
(laughs) …(referring to kinematic equations in textbook) 
 
(4:36:55) (Researcher: keep talking) …uhm… and I have distance… unintelligible ..x i (writing) 
we’re not really given position (erasing) so that doesn’t work…(writes velocity on diagram)… 
(reads problem statement under breath – gestures over diagram with pencil while reading – 
writes d2 = ? on diagram) distance two is distance one…I got the two mixed up (starts writing 
known information under diagram) it’s initial velocity equals twenty two meters per second…it’s 
final velocity will equal zero meters per second… it’s initial distance… three hundred me oops 
meters… 
 
and it wants the final distance... ok …uhm…I’m gonna assume… ok… yea…  
 
(4:39:07) (Researcher: tell me what you’re thinking) now I’m just trying to figure out which 
formula I need…now that I finally realize what I have (laughs)… uhm…the first slope (starts 
writing) angle one five degrees angle two is ten degrees…uh-huh and we have mu one point 
eight on the second slope…don’t need time…could find … no… no…don’t have acceleration 
don’t have time…acceleration’s…the key...  
 
(starts turning pages of book) velocity… acceleration (unintelligible) constant acceleration… 
acceleration… (continues turning pages of book) …do they not have…force of gravity is m g… 
(reviewing previous calculations on page) x direction… equals that (circles answer for sum of 
forces in x direction – 1304.34) uh-huh… have that… 
 
(4:42:10) (Researcher: keep talking) huh… now I need the distance (phone rings in background) 
distance…perfect huh (chuckles) …I’ve got all that … 
 
I need to find distance…ah-ha found it (referring to example with object on slope) distance 
equals one half of a x t squared… and a x is given… g sine theta…ok….uhm… I’m gonna use 
the equation… v x of that squared equals two a x d…so that one’s gonna be zero equals two x 
d… and that a x is gonna be ten meters second times sine of ten degrees  
 
(calculating) ten times sine ten degrees…one point seven… four… um-hmm…so two times one 
point seven four distance (calculating)…(writes answer)…  
 
(4:44:17) that didn’t take that’s including the friction though (starts turning pages of book) …I 
left that part out…so…ok…scratch that…  
 
(starts writing new equation) a x equals negative coeffriction g ok… ah…hmm…  
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(refers to book – looks at example on level surface with friction) ok… that’s the movement… so 
that’s gonna equal mu of one point eight times ten meters per second…and that equals negative 
one point eight times ten negative eighteen… and uhm…  
 
uhm unintelligible (crosses out previous answer for d – starts writing new equation) v of x final 
equals two a x d that’d be zero squared equals two times…negative eighteen and that’s times d 
 
(calculates) negative thirty six…d equals thirty six…oops (erases – rewrites answer with units – 
boxes answer) finally… (drops pencil, puts cover on calculator) 
 
(4:46:13) (Researcher: done) yes (Researcher: ok) 
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Group C Exemplar: Cory 

Researcher: You may begin. 
 
(5:43:42) (Participant reads problem out loud – begins writing information as reading) a truck 
with a mass of… fifteen hundred kg… (starts writing) so mass equals fifteen… hundred 
kilograms… is traveling down a mountain road… at twenty two meters per second (writes) the 
velocity equals twenty two meters per second… when it hits a thick patch of ice… (pause) in a 
panic the driver hits the brakes… which fail causing the truck to slide essentially without friction 
down… a five degree slope… after traveling down the slope for a distance of three hundred 
meters… the driver manage to get up the truck and onto a runaway truck ramp which is incline 
of ten degrees upward from the horizon… the ramp is covered with a soft material which is 
result in a coefficient of friction of one point eight how far along the truck ramp does the truck 
go before coming to stop (pause) 
 
(5:45:13) usually it helps me when I read the problem not out loud… 
 
Researcher: You, you do what you normally do when you solve a problem. (Participant pauses 
while reading silently) 
 
(5:45:32) (begins drawing slope on paper) the initial velocity is twenty two meters per second 
when he hits a thick patch of ice… in a panic the driver hits the brake… which fail… causing the 
truck to slide essentially without friction down…the five degree slope… slope with five… the 
slope has five degrees (draws horizontal line at base of slope and labels angle)… five degree 
slope… and slides down (gestures with pencil down the slope drawn)… after traveling down the 
slope for a distance of three hundred meters… the driver manage to get the truck onto a 
runway… runaway truck ramp which is inclined 10 meters upward… (draws slope on paper) ten 
meters upward ten degrees upward… from the horizontal the ramp is covered with a soft 
material which is a result in a coefficient of friction of one point eight… how far along the truck 
ramp does the truck go before coming to stop… 
 
(5:47:10) ok… so first we have the truck… which is going down slope (starts diagram on page) 
it has the weight force… do the free body diagram of the truck (erases first diagram, starts again) 
x axis… the y axis… mm… mm… five degree slope… have the weight force… the normal 
force… there’s no friction force its just just sliding… truck the mass of fifteen hundred 
kilograms is traveling down the mountain… road… at twenty two meters per second when it hits 
a thick patch of ice… in a panic the driver hits the brake which fail… causing the truck to slide 
essentially without friction down the five degree slope… 
 
(5:48:52) ok... so to here (marks spot on problem statement, gestures over free body diagram)… 
the weight force is gonna be... fifteen hundred kilograms… is the mass… weight equals mass 
times acceleration…  
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weight equals the mass… fifteen hundred times acceleration which is nine point eight (uses 
calculator)… times nine point eight… the weight equals fourteen hun..fourteen thousand seven 
hundred newtons… (pause) (draws triangle at midpoint of free body diagram) 
 
(5:49:57) Researcher: Keep talking. 
 
Oh yea… ok… (gestures with pencil on free body diagram) right here we have… the um… x 
component of the weight force and the y component of the weight force… 
 
um… (writing equation) f net on the y component equals mass times acceleration there’s no 
acceleration… so it equals zero… which equals… the normal force… minus… the y component 
of the weight force… 
 
(5:50:46) ok… y component of the weight force equals… (writing mnemonic) soh-cah-toa… 
(draws triangle below mnemonic; moves to free body diagram) ok so we have (moving to free 
body diagram)… five degrees here… that means that… oh… I was just going to get that angle 
there… if that’s five degrees that’s ninety… it is ninety here… 
 
this right here is gonna be… (uses calculator) ninety minus five… eighty five… and then five 
degrees is this angle cause this is a ninety degree angle too (erases triangle previously drawn 
under mneumonic)… 
 
the triangle is like looks like this… mm… just like this… five degree angle… the hypotenuse 
is… fourteen seven hundred… ok the y component is gonna be the adjacent side which is the y... 
so cosine of five degrees equals adjacent over hypotenuse… 
 
fourteen seven hundred… fourteen seven hundred… times cosine of five degrees equals… the y 
component of the weight force… the normal force… is gonna equal the same… cause there’s no 
movement… 
 
(5:53:03) ok… so… (uses calculator) fourteen seven hundred times cosine of five equals… 
fourteen six four four… (pause)  
 
that’s not right… ok… (moves pencil over to previously calculated weight) fourteen… ok its 
smaller than this… that’s the y component of the weight which equals… the normal force… so 
we don’t have any acceleration in the y axis… mm 
 
(5:53:53) f net… f net equals… f net is on that in this direction (writes on free body diagram)… f 
net on the x axis equals the mass times the acceleration… which equals… mm… (pause) cosine 
of five degrees… cause it’s the opposite… 
 
cosine of five degree times fourteen… seven… seven hundred newtons… so cosine  
 



whoa… opposite sine… sine of five degrees… 
 
sine of five degrees times fourteen seven hundred… equals… twelve eighty one point one eight 
nine newtons… which equals the f net… 
 
(5:55:18) twelve… eighty one point one eight nine newtons… the mass equals… 
 
ok talking about the mass not the weight  
 
ok … minus fifteen zero zero… kilograms… which equals… times the acceleration equals… 
twelve eighty one point one eight nine newtons… acceleration equals this over this… 
 
(uses calculator) twelve eighty one point one eight nine divided by fifteen zero zero… 
acceleration whoa equals twelve eighty one… (pause, goes to calculator) unintelligible… twelve 
eighty one point one eight… fifteen equals… the acceleration equals eight point five four meters 
per second square (takes up problem statement after writing answer)  
 
(5:56:44) now we’re gonna try to find the final velocity… ca… because this velocity here but 
we’re trying to find the final velocity at the bottom (indicates points on diagram)…  
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o

(moves to equation sheet) ok we’re gonna use this equation here (indicates 

on equation sheet) cause we know the final velocity we know the initial 

velocity the acceleration but we don’t know how much time this happens… so we’re gonna have 
to use this equation here cause we know everything here… 

2 2 2 ( )ov v a x x= + −

 
the final velocity… that’s what we’re looking for 
 
(starts writing equation) the final velocity square equals the initial velocity squared initial 
velocity is… (looking at previous work) initial velocity… twenty two meters per second (starts 
writing) twenty two meters… initial velocity is twenty three meters per second…and all this is 
squared… plus two acceleration equals point eight five four… the change in position initial 
position is zero (erases zero just written) the final position is three hundred and the initial 
position is zero.. 
 
ok so final velocity equals the square root of (goes to calculator) twenty two squared… squared 
plus two times point eight five four times three hundred… the square root of (writing answer)  
nine nine six point four… that equals (goes to calculator)… the square root of… answer… thirty 
one point five six five… point six meters per second… 
 
I can tell this answer makes sense because if you’re going down the hill and there’s no friction 
you’re gonna go from… twenty two meters per second to thirty one meters per second so your 
velocity increase… that makes sense… 
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(5:59:39) like… (turns page) final velocity equals (transferring information to second page)… 
thirty one point… five six six… meters per second… um all right…  
 
(picks up problem statement) after traveling down the slope for a distance of three hundred 
meters...  meters per second unh-k… the driver manage to get to the truck onto a runaway truck 
ramp which is inclined at an angle of ten degrees upward… from the horizontal…  
 
ok so now we have (starts drawing)… free body diagram… we know f net is gonna be this way 
(draws arrow to indicate direction)… we have the weight force (draws arrow on diagram)… the 
friction force… if the truck is moving upwards (indicates with hand) then the frictions gonna be 
pointing this way (draws on diagram)… the friction with a coefficient… so (writing) mu is 
gonna equal one point eight…  
 
ok… (picks up problem statement) through the… the driver manage to get to the runway run 
which is inclined at an angle of ten degrees upward… (starts drawing triangle on diagram) ten 
degrees upward… so then that means that’s gonna be eighty (indicating on diagram) and that’s 
gonna be ten degrees… ok (starts erasing part of diagram) I can erase this right here… ten 
degrees… the ramp is covered with a soft material which is a result in a coefficient of friction of 
one point eight how far along the truck ra… how far along the truck ramp does the truck go 
before coming to a stop… all right… 
 
(6:02:03) Final velocity… all right… so we have the normal force (indicating on diagram) the 
weight force and the friction force… (labeling arrows on diagram) the weight force and the 
normal force… mm…  
 
(writing) the summation of the y component of forces equals mass times acceleration 
acceleration is zero… so its zero… all right…  
 
right here (indicating on diagram) we have then on the y component we have the normal force… 
minus the y component of the weight force… uhhuh… on…  
 
ok so we need to find the normal force… the weight… 
 
we find the weight back here (turning back page) to be… the weight is fourteen seven hundred 
newtons…  
 
wi I’m doing this right now cause I need to find… the normal force to find the normal force 
times mu equals the…normal force times mu equals the force the kinetic friction force…  
 
mm-k fourteen thousand is the weight force (indicating diagram) I’ll have a triangle like this… 
(drawing new triangle below previous diagram) ten degrees… un… the weight force is the 
hypotenuse fourteen seven hundred… the y component and the x component… the y component 
is… (writing) soh-cah-toa… ok we’re looking yea the y component is the adjacent…  
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cosine of ten degrees times fourteen seven hundred… equals the y component… which equals 
the normal force…  
 
(uses calculator) cosine of ten degrees times fourteen… seven hundred… equals one four four 
seven six point six seven… newtons… that’s gonna be the normal force 
 
(6:05:17) (moves to diagram) ok I have the normal force… (very quietly reading problem) 
incline of upwards unitelligible the ramp is covered with a soft material which is… (louder) how 
far does the truck ramp does the truck go before coming to stop… ok… uh-huh… 
 
(6:05:37) Ok so… now we’re getting into the (starts writing) summations… on the y 
component… which equals mass times acceleration  
 
we’re trying to find the acceleration in this case… which equals…  
 
we have n… no we don’t have n (erasing)… so the only things on the x component is gonna be 
the friction force which is negative… minus… the x component of the weight… the x 
component of the weight is gonna equals to sine of ten degrees times fourteen seven hundred…  
 
(uses calculator) so I just change this… to sine of ten degrees times fourteen seven hundred… 
the weight equals twenty five fifty two point six… three newtons… huh… ok… that’s gonna be 
equal to… the weight component of the x….  
 
now… f k equals n times mu… which equals n… equals… n equals fourteen four seven six 
times six seven… times mu mu equals one point eight… 
 
(uses calculator) fourteen four seven six point seven six times one point eight… the friction force 
equals twenty six zero five eight point one six eight newtons… the summation of y component 
equals mass… mass times…  
 
ok (erasing) we’re trying to find acceleration so… 
 
acceleration equals… minus f k minus the weight force over the mass… acceleration equals… 
minus kinetic friction which equals twenty six zero five… eight point one six eight… minus the 
weight force… the weight force is twenty five fifty two point six three… all divided by the mass 
the mass is… hmm…  
 
(refers to problem statement) the mass of the cart is (writing) fifteen hundred kilograms ok…  
 
(uses calculator) negative two six zero five eight minus two five five two point six three divided 
by fifteen zero zero… (writing) acceleration equals nineteen point zero seven meters per second 
squared 
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(6:09:39) All right… we wanna find the final position it say how far along the truck ramp does 
the truck go before coming to a stop… so if we’re trying to find the final position we can use this 
equation… final velocity square equals initial velocity square plus two acceleration final position 
minus initial position… final velocity is gonna be zero cause the cars gonna go all the way up 
and come back down… but the maximum position is gonna comes when the velocity’s zero…  
zero equals the initial velocity… the initial velocity is thirty one point five six six… squared plus 
two the acceleration… acceleration is negative nineteen point zero seven… initial position is gon 
the final position is what we’re looking for and initial position is zero…  
 
(uses calculator) ok… so I have this right here (indicating initial velocity term) is adding goes to 
subtracting minus thirty one point five six six… squared divided by… by this (indicating term 
with acceleration and change in position) its multiplying goes dividing two nineteen point zero 
seven… equals the final position… (uses calculator) negative thirty one point five six six square 
root of two divided by… two times negative nineteen point zero seven… (writing) equals 
negative twenty six but since its going up in this direction its gonna be twenty six point one… 
three meters… ok 
 
(6:12:18) (picks up problem statement) A truck with a mass of fifteen hundred kilograms… we 
can use momentum to solve this too… cause we know the initial mass initial velocity… mmm 
can we use momentum… no… ok if we want to use momentum… (starts writing) mass… 
momentum equals the ma… the mass times velocity… which equals mass times velocity 
(fading) momentum impulse… no (erasing)… unintelligible… unintelligible…impulse if we 
could find the impulse… whoa (louder) how far along the truck ramp does the truck go before 
coming to stop... twenty six point thirteen meters… ok… 
 
Researcher: That’s it? 
 
(6:13:32)That’s it. 
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Group B Exception: Ben 

Researcher: You may begin. 
 
(10:23:18) All right a truck with a mass of fifteen hundred kilograms is traveling down a 
mountain road at twenty two meters per second when it hits a thick patch of ice… all right you 
need to start by drawing a truck traveling… with a velocity of twenty meters… 
 
so let’s draw a box (starts drawing a box)… truck its got a mass of fifteen hundred kilograms 
(labels box) um is traveling… down a mountain road so we’ll just… use a y axis for down 
(draws an arrow vertically downward from one end of box) velocity of twenty two meters per 
second he hits a thick patch of ice… so here equals fifteen hundred kilograms (writes at top of 
page) v equals twenty two meters per second (writes under mass) in a panic the driver hits the 
brakes which fail causing the truck to slide essentially without friction down the five degree 
slope ok that changes that (erases previously drawn vertical arrow)… (draws slope next to box, 
labels angle) five… equals… five degrees… theta equals five degrees (writes under velocity at 
top of page)… (pause) 
 
(10:25:02) Researcher: keep talking 
 
(10:25:05) after traveling down the slope for a distance of three hundred meters… the driver 
manages to get the truck onto a runaway ramp… so (starts labeling distance on slope) he goes 
three hundred meters on that axis… and… (reading under breath -  unintelligible) in a panic 
(reading under breath - unintelligible) after traveling down the slope for a distance of three 
hundred meters the driver manages to get the truck onto a runaway truck ramp… which is 
inclined at an angle of ten degrees upwards from the horizontal… the ramp is covered with a soft 
material which results in a coefficient of friction how far along the truck ramp does the truck go 
before coming to a stop 
 
(10:25:53) ok so we… know the coefficient of friction from the ice… essentially none… after 
traveling down the slope (reading under breath – unintelligible) manages to get the truck onto a 
runaway truck ramp so he goes down the road three hundred meters and then he hits the runaway 
truck ramp which has an inclination of… (draws second upward incline) ten degrees (labels 
slope)… this… so (writes at bottom of list of known quantities) theta two equals ten degrees… 
and the coefin of coefficient of friction… is going to be one point eight… (writes at bottom of 
list of unknown quantities) one point eight… 
 
(10:26:49) (drops pencil and reaches for notebook, flips pages of notebook) coefficient of 
frictions… force and motion mass… total forces… distance… motion… that’s work… kinetic 
energy… collisions… (continues flipping pages)… velocity… (reading from notes) harmonic 
motion… I don’t know what happened to… (continues flipping pages)… what section was 
that… friction… there’s no friction 
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(10:28:32) (lays notes aside and reaches for book) I want to find… (opens book but does not 
refer to it, picks up pencil)  
 
distance is velocity over time (writes equation at top of page)… no… distance over time is 
velocity (erases equation)… so velocity times time is equal to distance… 
 
we’ve got… (draws perpendicular line between two previously drown slopes) two triangles… 
and… given that’s ninety degrees and that’s ninety degrees and that’s a right triangle (draws 
under upward slope) need to get… the velocity… after he slides to here (indicating the low point 
between the two slopes)… and then… using this coefficient of friction and the velocity… 
 
(10:29:46) (reaches for book again, refers to table of contents) motion… motion… (pause – 
reading table of contents) 
 
(10:30:33) (opens book to first page of chapter one) all right… force equals mass times 
acceleration… all right g equals nine point eight meters per second (writes under previous 
velocity equation)… and the velocity… after… (refers to book again – flipping pages) force of 
friction… (finding friction in text) its kinetic so its going to be… kinetic friction (reading in text) 
sliding… is when an object is in motion… (continues reading) 
 
(10:32:06) (turns pages of book back to earlier pages; goes back to friction page) 
 
(10:32:20) Researcher: keep talking 
 
(10:32:22) ok force of kinetic friction… is equal to the coefficient of kinetic friction times n 
where n… I presume is… mass times gravity… in the opposite direction of gravity… (flips back 
one page and refers to an example with an object on a slope) n… two… so you’re looking at 
(reading)… the force is going to equal mass times gravity times the sine of theta  
 
(10:33:07) (goes back to paper and starts writing) mass g sine theta is equal to force… (gestures 
over diagram) is going to lead to my change… in distance… so I need (starts writing) fifteen 
hundred times nine point eight times sine of… five degrees… 
 
that’s… (reaches for calculator) sine of five… (speaks under breath while using calculator – 
unintelligible) so that’s negative point nine five nine for the sine of five times nine point eight… 
times… mass which is fifteen hundred… gives you a number which is equal to force divided by 
the mass which we just multiplied by… (continues punching buttons on calculator – has not 
written any results at this point) fourteen hundred and unintelligible divided by the mass is equal 
to the acceleration… 
 
(writes result) if that’s a negative that’s gonna be a negative (adds negative to answer written)... 
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(10:35:56) that can’t be right… force is equal to mass… the distance… derivative… (speaking 
under breath – unintelligible) plus t 
 
(10:35:10) Researcher: speak up please 
 
(10:35:12) all right… the derivative of the distance is gonna be v plus t equals d prime… ah… 
both derivatives are gonna equal one that’s using the product rule… so… d prime… (pause) still 
I’m not in the right direction (returns to book)… ah… looking for… 
 
(looks to problem statement) how far along the truck ramp does the truck go before coming to a 
stop… so its going… so it… (sighs)… d prime… (pause)… that’s a prime… that’s a (writes 
check next to number on paper)… (mumbles under breath – unintelligible) velocity 
acceleration… 
 
(refers to book) instantaneous acceleration… (continues flipping pages of book)… velocity… 
relative acceleration… velocity over time… (is referring to section in book on relative velocity – 
stops at an example showing boat crossing a river) motion in two dimensions and we’re traveling 
that way (gestures in diagonal direction)… velocity… 
 
(10:38:01) Researcher: be sure to speak up for me 
 
(10:38:02) velocity in the I’m gonna call this side a this side b (indicating the two slopes 
previously drawn) velocity b direction… er velocity… of b v… 
 
we know velocity… (starts turning pages of book) this part’s velocity… constant acceleration… 
it should be all constant acceleration (continues to turn pages of book) constants of revolution… 
 
I guess I’ll go back to this (puts book aside, picks up notebook, starts turning pages) 
(Unintelligible as turns page – stops at an example with an object on an incline) acceleration 
along the x axis… is going to be… acceleration… is going to be nine point eight (refers to 
example in notebook – picks up calculator) gravity… times sine of theta one… (pause) ok so 
velocity… (unintelligible – under breath) I have to find velocity final… acceleration 
deceleration… (refers to notebook) lets work with change in time velocity equals derivative of x 
in relation to change in time or… change in distance over change in time… t in reference… 
 
so change in v (starts writing)… is equal… delta v over delta t equals a… and we want a 
prime… 
 
we want yea a prime to get v final for right here (indicating point between two slopes) we’ve got 
v initial to be in the equation for that problem the b side of it 
 
(10:41:44) (refers to problem statement) the ramp is covered with a soft material which results in 
a coefficient of friction of one point eight… (pause)… change in… average v times… a… 
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(writing) delta x… delta x is equal to… 
 
(pause – refers to notebook) average v… (pause) delta x equals v final velocity final squared 
minus velocity initial squared over 2… but a equals… (pause)… 
 
(refers to notebook – mumbles – refers to textbook)… average speed instantaneous velocity… 
velocity on the x axis… instantaneous velocity… (reading aloud from text) in the x direction… 
equals the limiting value of the ratio delta x over delta t as delta t approaches zero… 
displacement delta x also approaches zero as delta t approaches zero… (long pause – reading 
text)… 
 
(10:44:53) (writing) velocity one of x… equals… I still want v… (sighs)… (gestures over 
diagram) 
 
(10:45:19) Researcher: keep talking 
 
(10:45:22) d prime… ok we’ve got d… d prime… is how fast that’s changing… he’s just 
going… (pause) that’s v… v prime… (long pause)… (draws right triangle indicator – mumbles – 
unintelligible) one point eight (writes on upward slope) velocity here (indicating point between 
two slopes)…. 
 
(10:46:39) (gets calculator) sine no… sine of five degrees… times… 
 
velocity’s moving that way (holds hands together, backs of fingers touching, to make two 
slopes)… that’s down… a vector quantity… it’s going to be slowing it down… times the velo 
what… oh… so the sine of five times twenty twenty two meters… sine of twenty two... that’s not 
right… sine of five… actually it’d be sine of… one fifty five… (gestures over diagram)… 
times… my friction… and its three hundred meters… (long pause)… 
 
(writing) x squared plus y squared equals three hundred… what would you get… twenty two… 
(sighs)… rate of change multiplied out with rate of change… is gonna be… sine is opposite… 
cosine is adjacent so its gonna be cosine (writes)… of five… (mumbles – unintelligible) 
 
(10:49:43) ok… multiply… distance… good night to this… (pause) 
 
(10:50:08) can I just say that I’m stuck 
 
Researcher: you can 
 
(10:50:15) ok cause…I’m pretty much stuck and… 
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APPENDIX G: CALCULATION OF KAPPA 



For reference purposes, Table 9 from Chapter 5 is repeated here. 

 
 

Table 9: Cross-table for Intercoder Reliability (Kappa) 
Coder 2: Reviewer 

Code RES CAT GOL COM CAL ASE NRP STA Total 

RES 49 7 7 4 9 1 0 7 84 

CAT 2 16 1 0 0 0 0 1 20 

GOL 7 1 13 0 0 0 0 2 23 

COM 0 0 0 2 1 0 0 0 3 

CAL 4 0 0 0 34 1 0 1 40 

ASE 2 0 0 4 6 16 0 3 31 

NRP 0 0 0 2 0 0 2 0 4 

STA 0 0 0 0 0 0 0 9 9 

C
o

d
er

 1
: 

R
es

ea
rc

h
er

 

Total 64 24 21 12 50 18 2 23 214 

RES: Resource Relevance 
CAT: Categorization 
GOL: Goal Interpretation 
COM: Complexity 

 
 

The proportion correspondence of the results of two independent coders is determined by adding 

the entries on the diagonal, which correspond to segments coded the same by both coders, and 

dividing by the total number of coded segments.  For the data above, this is 

Proportion correspondence = 
141

.66
214

=  

This is an optimistic estimate of the reliability of the coding scheme, as it does not take into 

account the effect of one coder applying one or more codes at a higher or lower rate than the 

other coder.  These effects are seen in the marginal values, such as in Table 9 where it can be 

seen that Coder 1 was more likely to use the code ASE (31 times) than Coder 2 (18 times).  To 

take into account this variation in the proportions of the different coding categories used by the 
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coders, the expected proportion corresponding is calculated.  This is done by multiplying and 

adding marginal frequencies: 

64 84 24 20
.1174 .0105

214 214 214 214

21 23 12 3
.0106 .0008

214 214 214 214

50 40 18 31
.0437 .0122

214 214 214 214

2 4 23 9
.0002 .0045

214 214 214 214

× = × =

× = × =

× = × =

× = × =

 

The sum of these marginal frequencies is the expected proportion corresponding, in this case 

0.1999.  The measure of the intercoder reliability, Kappa, is defined to be the proportion 

corresponding corrected for the marginal frequencies.  It is determined by: 

 
      (proportion corresponding – expected proportion corresponding) 
Kappa  =  _____________________________________________________________________________

 (1 – expected proportion corresponding) 
 

For this data,  

(.6588 .1999)
Kappa 0.57

(1 .1999)

−
= =

−
 

Kappa can be considered as a conservative estimate of the reliability of the coding scheme. 
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Because stabilization is an overarching factor which may encompass the use of other factors, this 

analysis was repeated with the row and column corresponding to stabilization (STA) removed.  

In this case, the proportion corresponding is 0.6911 and the sum of marginal frequencies is 

0.2282, giving a Kappa of 0.60. 
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APPENDIX H: INTERNAL REVIEW BOARD LETTERS 
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