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ABSTRACT 

In highly autonomous robotic systems, human operators are able to attend to their own, 

separate tasks, but robots still need occasional human intervention. In this scenario, it may be 

difficult for human operators to determine the status of the system and environment when called 

upon to aid the robot. The resulting lack of situation awareness (SA) is a problem common to 

other automated systems, and it can lead to poor performance and compromised safety. Existing 

research on this problem suggested that reliable automation of information processing, called 

diagnostic aiding, leads to better operator SA. The effects of unreliable diagnostic aiding, 

however, were not well understood. These effects are likely to depend on the ability of the 

operator to perform the task unaided. That is, under conditions in which the operator can 

reconcile their own sensing with that of the robot, the influence of unreliable diagnostic aiding 

may be more pronounced. When the robot is the only source of information for a task, these 

effects may be weaker or may reverse direction. The purpose of the current experiment was to 

determine if SA is differentially affected by unreliability at different levels of unaided human 

performance and at different stages of diagnostic aiding. This was accomplished by 

experimentally manipulating the stage of diagnostic aiding, robot reliability, and the ability of 

the operator to build SA unaided. Results indicated that while reliable diagnostic aiding is 

generally useful, unreliable diagnostic aiding has effects that depend on the amount of 

information available to operators in the environment. This research improves understanding of 

how robots can support operator SA and can guide the development of future robots so that 

humans are most likely to use them effectively. 
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CHAPTER ONE: INTRODUCTION 

Statement of the Problem 

Robotic systems for war are evolving rapidly. One reason for this is a United States 

congressional mandate that at least one-third of military systems be unmanned by 2015 

("Building unmanned ground vehicles," 2003). Unmanned systems will be capable of a wider 

range of autonomous behavior while working in closer collaboration with people. On the 

battlefield, robots may support and execute missions, select tactics, and understand political 

contexts (Chen, Haas, & Barnes, 2007). Future robots will be “co-combatants with teams of 

Soldiers in complex tactical environments” (United States Army Research Laboratory, 2011, 

para. 3). 

In highly autonomous robotic systems, human operators are able to attend to their own, 

separate tasks, rather than directly operating the robot to accomplish its primary task. Because 

this a major benefit of these systems, robots are being developed to function with as little human 

intervention as possible (Cosenzo, Parasuraman, & De Visser, 2010). Nevertheless, as robots 

grow in capability, they will continue to need occasional human intervention (Burke, Murphy, 

Coovert, & Riddle, 2004). For highly autonomous robot systems to succeed, imperfect robots 

must, therefore, handle complex tasks while still allowing humans to intervene when they fail. 

The Out-of-the-Loop Performance Problem 

Robot autonomy makes robot work possible by multiplying the effort of humans and 

freeing them from dangerous or undesirable tasks. Under conditions of high robot autonomy, 

human operators attend to their own tasks almost exclusively. In this scenario, it can become 
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difficult for humans to determine the status of a system and of its environment when called upon 

to aid a robot. The goal-directed, high-level knowledge held by the human operator is known as 

situation awareness (SA; Rousseau et al., 2004). When a robot is highly autonomous and 

reliable, the details of its task are largely unimportant to the performance of tasks allocated to the 

human. When a robot is not fully reliable, however, the human must devote additional cognitive 

resources to correct, supplement, or mitigate its mistakes. Such demands can negatively affect 

both SA and performance (Endsley, 1995). A resulting lack of SA under conditions of 

automation failure has come to be known as the out-of-the-loop performance problem (Endsley, 

1995) and the out-of-the-loop unfamiliarity problem (Wickens, 2002).  

The Problem of Unreliable Robot Autonomy 

The out-of-the-loop performance problem characterizes a common problem of capable, 

autonomous robots (Wickens, 2002). Robustness in robot capabilities remains a challenge to 

robotics (Stancliff, Dolan, & Trebi-Ollennu, 2005). As new capabilities are developed, robots 

may be able to perform new tasks, but reliability will be limited, especially initially. For human 

operators to take advantage of new robot capabilities, operators must be able to recover from 

robot failures. 

When robots fail, they may do so in non-obvious ways. The need for a shift from full 

autonomy to operator intervention may not be pronounced. For example, a robot may navigate 

terrain independently but become stuck in the mud. Because its wheels are spinning normally, it 

does not sense that something is amiss and makes no notification to its human operator. This 

scenario is quite different from one in which there is an obvious failure of a complete subsystem. 

For example, a pilot may need to revert to an alternate method of navigation or control when an 
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instrument in the cockpit fails or displays a value out of range. A combination of signals in the 

automation (the blank display or wrong value), combined with pilot knowledge and SA, indicate 

that a task previously handled by automation must be performed manually.  

Because of the complexity and remoteness of environments in which robots work, robot 

failures may include instances in which a robot provides apparently valid information that is 

based on incorrect sensing. Although this type of failure may occur in other systems, and robots 

also fail in more easily detectable ways, a pressing problem is dealing with subtle sensing errors 

in a system separated from its operator by task assignment. That is, the operator and robot have 

different roles, making it difficult or unnecessary to monitor each action of the robot. These 

types of failures are not mechanical failures (such as when the robot is stuck and cannot 

complete the task), but rather failures in robot sensing and intelligence (i.e., the robot completes 

the task but does so incorrectly). At present, measuring a robot’s confidence or meta-awareness 

of its sensors is a more difficult problem than sensing (for example, Eski, Erkaya, Savas, & 

Yildirim, 2010). Consequently, robot mistakes may be detectable only through cross-checking 

with other data, and failure at lower levels (i.e., sensing) may only have noticeable consequences 

at higher levels (i.e., decision making). From the operator’s perspective, a shift takes place when 

a robot fails; what previously did not need to be known by the operator must now be attended. 

To maintain SA, interventions are needed to support the operator’s information processing under 

conditions of robot unreliability.  
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Existing Approaches 

An early response to the problem of operator SA was to investigate how automation, such 

as performed by a robot, or lack of automation, in a task may affect SA (Kaber & Endsley, 

1997). As a form of automation, the robot’s involvement in the task can be described as the level 

of automation. The general case of automation has been widely studied (see Parasuraman, 

Sheridan, & Wickens, 2000). An early taxonomy applicable to robots was developed by Sheridan 

and Verplank (1978) and expanded upon by Parasuraman, Sheridan, and Wickens (2000). 

Importantly, their taxonomy expanded upon prior models by including what task is automated in 

addition to how much automation is used. Under this model, the level of automation for a robot 

can be described as: (a) the levels of information processing in which the robot participates (i.e., 

what), and (b) the conditions under which the robot participates in each process (i.e., when). 

The first two levels of this model are the focus of the current investigation because they 

map clearly onto Endsley’s (1988) levels of SA (Horrey, Wickens, Strauss, Kirlik, & Stewart, 

2009). Horrey et al. (2009) described a model in which information acquisition (stage 1 

automation), leads to information analysis (stage 2 automation). Information acquisition (stage 1) 

is linked to level 1 SA, perception of elements, by sensation, perception, and attention. 

Information analysis (stage 2) is linked to level 2 SA, comprehension of the situation, by 

cognition, integration, and working memory. The first two levels of the model are the two stages 

of diagnostic aiding (Wickens & Dixon, 2007). Robots perform the information acquisition 

(stage 1) stage of diagnostic aiding when they gather relevant information through their sensors. 

Robots perform information analysis (stage 2), when they integrate multiple pieces of sensor 

data or when they integrate sensor data with previously stored or externally provided 
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information. Thus, information acquisition (stage 1) is a precursor to information analysis (stage 

2), and a robot that performs both stages operates at a higher level of automation than one that 

only performs information acquisition (stage 1). Automation that provides the later stage of 

diagnostic aiding leads to better decision making (Dexter, Willemsen-Dunlap, & Lee, 2007) and 

performance (Goodrich et al., 2007) in operators while lowering their workload (Manzey, 

Richenbach, & Onnasch, 2012).  

Although robot diagnostic aiding may be beneficial to SA, the literature suggests that this 

relationship is highly sensitive to the presence of unreliability in the robot, and that the two 

stages of diagnostic aiding (i.e., information acquisition and information analysis) may be 

differentially affected. Performance decreases as the reliability of a diagnostic aid falls 

(Madhavan & Phillips, 2010). While unreliable information negatively impacts performance, the 

effect may be stronger for information analysis (stage 2) automation than for information 

acquisition (stage 1) automation (Rovira, McGarry, & Parasuraman, 2007; Sarter & Schroeder, 

2001). 

Mediators of the reliability-to-performance relationship have been investigated (e.g., trust 

and its impact on reliance; Madhavan & Wiegmann, 2007), but researchers have not addressed 

cognitive mediators. Specifically, there is a lack of understanding of the effects of reliability in 

information processing on an operator’s ability to build and maintain SA. Theoretically, poor SA 

should explain the performance outcomes. Further, operators make use of other strategies to 

mitigate the problems caused by limited automation reliability (Johnson et al., 2009) and rely 

upon automation more than their own diagnoses when automation performs more reliably than 

the operator’s unaided performance level (Madhavan & Wiegmann, 2007). One relevant case 
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remains unexplored: what is the effect of unreliable diagnostic aiding on SA when the operator is 

unable to perform the task effectively when unaided? 

In a recent meta-analysis, Wickens, Li, Santamaria, Sebok, and Sarter (2010) reported 

only five studies that investigated the effects of level of automation on performance and SA. 

They noted, “The situation awareness data are too few to create any well defined trend” (p. 391). 

This need was addressed by the current empirical study. Specifically, the purpose of this research 

was to investigate whether: (a) diagnostic aid reliability affects SA and performance in the same 

way, and (b) how this relationship may change as a function of different levels of unaided human 

performance. 

Research Needs Addressed by the Current Study 

A study addressing how the stage of diagnostic aiding, robot reliability, and unaided task 

performance interact to affect SA is important for several reasons. First, it may provide cognitive 

explanations for the effects of these constructs on performance. Past research has focused on 

either performance or non-cognitive mediators, such as misuse or disuse, while not addressing 

how these constructs may affect the knowledge held by the operator.  

Second, because unaided human performance is an important, yet often overlooked, 

consideration for robot system design, this research will lead to understanding of how robots and 

humans can work interdependently to support the operator’s SA. This will mean that any 

unreliability of the robot can be managed to minimize its negative impact, while the operator will 

receive support at the most appropriate time and to the degree needed. 
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Third, understanding of the determinants of SA within human-robot interaction will 

provide foundational knowledge needed to build the next generation of highly autonomous 

robotic systems. In order to implement autonomy effectively, we need to know how the 

operator’s cognition may be affected. Of course, it would be ideal to make robots more 

autonomous and reliable while having human operators only perform tasks at which they excel 

(Sheridan, 2000). In reality, however, each of these variables is often one half of a tradeoff that 

must be made in order to satisfy other requirements for mission success. Reliability, especially, 

may be limited as early robots implement new forms of technology. The current study is also 

useful for understanding human cognition under various conditions of robot performance while 

simultaneously providing a foundation for applied researchers in the implementation of more 

effective future robots. 

Purpose of the Current Study 

Theoretical Perspective 

The purpose of this study was to determine the conditions under which diagnostic aiding 

would contribute to operator SA, given limitations of robot reliability, on the one hand, and 

unaided human task performance, on the other. Because the stages of diagnostic aiding (Wickens 

& Dixon, 2007) map cleanly onto Endsley’s first two levels of SA (1988), diagnostic aids that 

perform information analysis (stage 2) as well as information acquisition (stage 1) should lead to 

higher levels of SA than information acquisition (stage 1) alone. However, this relationship has 

been observed only under cases of perfect robot reliability.  
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Under imperfect reliability, two outcomes are possible, depending on the unaided 

performance of the operator. In the first case, the operator has a moderate or better capability to 

perform the task and build SA. In the presence of an unreliable robot, the challenge of integrating 

incorrect robot information should lower operator SA. Further, increasing the stage of diagnostic 

aiding (that is, adding automation of information analysis [stage 2]) should lower operator SA to 

a greater degree, because the operator must reconcile multiple, potentially unreliable or incorrect, 

pieces of information. The literature suggests that reconciling robot errors is more difficult in an 

integrated form (Rovira, McGarry, & Parasuraman, 2007; Sarter & Schroeder, 2001).  

In the second case, consider an operator who has little or no ability to perform the task 

unaided. Even in the presence of an unreliable robot, I hypothesized that the operator would rely 

upon the robot completely. While the robot’s reliability may have been poor, it would still offer a 

benefit to operators, and its use would be adaptive. These operators would have higher SA under 

higher stages of diagnostic aiding because they were dependent on the robot. 

Study Variables 

 

Figure 1. Model of relationships among study constructs. 
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The current study tested this theory by investigating the three-way interaction of stage of 

diagnostic aiding, robot reliability, and potential unaided SA on operator SA, while controlling 

for the amount of information provided by the robot (see Figure 1). The three independent 

variables were defined as follows. First, diagnostic aiding was defined as a form of automation 

operating at one of two levels. Stage 1 diagnostic aiding was defined as information acquisition. 

Stage 2 diagnostic aiding was specified as information acquisition with information analysis. 

Second, robot reliability was manipulated at three levels (60%, 80%, and 100%) and defined as 

the percentage of the time that sensing performed by the robot is correct. The three levels of 

reliability were selected to span across the range at which diagnostic aiding may be implemented 

and could be useful. Specifically, the lowest level (60%) was selected because it was at the 

bottom end of the 95% confidence interval for the minimum reliability level identified by 

Wickens and Dixon (2007) at which diagnostic aiding is still useful. The frequency of the robot’s 

presentation of information was controlled across conditions. The robot’s presentation of 

information was unidirectional. That is, there was no feedback loop to the robot, and the robot 

did not learn from its mistakes within a mission.  

Third, potential unaided SA was defined as the percentage of relevant elements within the 

mission environment that the operator could reasonably access without the robot’s assistance. It 

was manipulated at three levels (good [90%], moderate [50%], poor [10%]) that corresponded to 

the proportion of relevant mission elements that the operator could obtain information about 

without use of the robot. Put simply, it was how much information the operators could access 

and use on their own. 
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The dependent variable, operator SA, was defined as the percentage of relevant mission 

elements known by the operator during the mission. A measure of SA using objective questions 

about the mission elements was modeled after the SA Global Assessment Technique (SAGAT; 

Endsley, 2000a). SAGAT is an objective measure of SA whereby the task is paused mid-mission, 

and participants are prompted to answer objective questions. SA was also measured through 

participant self-assessment using the Situation Awareness Rating Technique (SART; following 

the methodology of Endsley et al., 2000a). SART is a subjective self-report measure of SA that 

was administered after each mission. SART consists of ten questions within three subscales: 

demand on attentional resources, supply of attentional resources, and understanding of the 

situation.  
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CHAPTER TWO: LITERATURE REVIEW 

Situation Awareness 

Situation awareness (SA) describes the relevant knowledge held by an operator while 

performing a task. Endsley (1988) created a model in which SA is a high-level, goal-directed 

information-processing function as part of a sensation-decision-action cycle. Within this model, 

SA has three levels: (a) perception of elements in the current situation, (b) comprehension of the 

current situation, and (c) projection of future status. Although these are not intended to be strictly 

hierarchical, higher-level comprehension develops through integration of lower level perception 

(Endsley, 2000b). There is an ongoing debate regarding whether SA should represent a state of 

knowledge or a process (Rousseau, Tremblay, & Breton, 2004), but the present study focused on 

SA as an outcome. Generally, SA is goal-directed, high-level knowledge that results from an 

individual’s information processing within an environment (Rousseau et al., 2004). This 

definition implies that the process aspect of SA is human information processing. SA has been 

demonstrated to be a determinant of performance across systems (Durso & Sethumadhavan, 

2008; Wickens, Li, Santamaria, Sebok, & Sarter, 2010). Because it is the knowledge needed to 

perform a task, SA, by definition, supports performance in tasks requiring maintenance of 

dynamic, complex knowledge of task states.  

Theoretical Issues Surrounding SA 

As a construct, SA arose from observations of fighter pilots, who considered it an 

intuitive skill long before it was investigated scientifically (Harwood, Barnett, & Wickens, 

1988). As a consequence, the science of SA has required some time to catch up to its use in the 
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field. This mismatch has resulted in a construct that is challenging to measure and inconsistently 

defined. These issues deserve brief discussion to better frame the use of the construct in this 

research.  

Process versus outcome. Endsley’s model of SA borrows from information processing 

theory (Tenney & Pew, 2006) and blends state and process by considering SA at three levels. 

Outcomes at these three levels (perception, comprehension, and projection) are intertwined with 

process. Some theorists have proposed that SA is better described as two constructs, the process 

(situation assessment) and the outcome (SA; Endsley, 1995; Pew 1994; Salas, Cannon-Bowers, 

Fiore, & Stout, 2001), while others claim the two are theoretically and practically intertwined 

(Vidulich, Dominguez, Vogel, & McMillan, 1994). A lack of comparability across measurement 

techniques (Endsley, Sollenberger, Nakata, & Stein, 2000) complicates both theory building and 

measurement. Note that current models and prior research blend process and outcome as taking 

place at the individual cognitive level. This research, therefore, defined SA as the resultant 

knowledge from the process of situation assessment. Generally, it can be said that SA is goal-

directed, high-level knowledge that comes as a result of an individual’s information processing 

within an environment (Rousseau et al., 2004). 

What is a Robot? 

It is important to operationally define the term robot and distinguish it from related 

constructs, because there is no widespread agreement on the meaning of the term. When asked 

his definition, Engelberger said, "I can't define a robot, but I know one when I see one" (as cited 

in "Your view: How would," 2007). The term originally came from Karel Čapek’s 1920 play, R. 
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U. R. (Čapek, 1920). In the play, robots were assembled creatures made of lab-grown organs 

designed to perform mechanical labor. Modern definitions of a robot tend to envision 

electromechanical systems, and they vary in how a robot is distinguished from other forms of 

agents.  

Agents 

At minimum, a robot is an agent. An agent is an “an instantiation of an object together 

with an associated goal or set of goals” (Luck & d’Inverno, 1995, p. 55). Common to the 

definitions of agency are a distinguishable entity capable of performing a task or goal. I will use 

this broad construct to refer to either people or robots as goal-oriented, task-performing entities 

with the caveat that agent refers to little more than the ability to execute a task and is not an 

implication of similarity to people. 

Operational Definition of Robots 

The capabilities that distinguish an agent from a robot are needed to qualify the definition 

of a robot. For purposes of this research, a robot is an electromechanical device or system that 

performs a task or goal, is physically embodied, senses the world, and acts upon the world. 

Embodiment distinguishes a postal truck from an e-mail server; the latter does not have “a body” 

nor interacts with the world by using its body for sensation and action (Kiesler, Powers, Fussell, 

& Torrey, 2008). Being physically embodied implies that the agent acts upon the world. Acting 

upon the world distinguishes the postal truck from a postal scale. Moving, traversing, carrying, 

building, and attacking are all actions upon the physical world. The world is further distinguished 

from a closed, controlled area by its complexity; robots must perform in unpredictable 
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environments. This distinguishes a robot from a dishwasher, which acts upon a limited and 

highly controlled environment. Finally, robots are closed-loop systems in that their behavior is 

affected by the result of their own sensing. 

Applications of the Operational Definition 

Animatronics, animated machines, are not robots when their actions are preprogrammed 

and do not change based on their own sensing. Being a robot implies that the agent is capable of 

sensing the world and incorporating the sensor input (even minimally or combined with the 

actions of a human operator) into future behavior. A hammer acts upon the physical world but 

does not sense the world. Similarly, an industrial “robot” on a manufacturing line may not be 

considered a robot by this definition. The ISO defines a robot as an “automatically controlled, 

reprogrammable, multipurpose manipulator programmable in three or more axes” (International 

Organization for Standardization, 1994). If the industrial “robot” simply parrots a preprogramed 

task in an open loop system, it falls outside the operational definition for the present work. 

Level of Automation as a Metric of Robot Autonomy 

Definition and Taxonomies 

The degree to which a robot is involved in the task has been called the level of robot 

autonomy. Autonomy has origins in the Greek word autonomia, which means independence 

(“Autonomy,” 2011). The United States Department of Defense defines an autonomous 

battlefield entity as one “that does not require the presence of another battlefield entity in order 

to conduct its own simulation in the battlefield environment” (United States Department of 
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Defense, 1998, p. 91). Robot autonomy is the extent to which the behavior of a robot results 

from integration of its own sensing (Franklin & Graesser, 1997) and the extent to which it makes 

decisions not mediated by other entities (Luck & D'Inverno, 1995). Robot autonomy is generally 

discussed as a quality integrating the robot’s capabilities and authority across a series of tasks 

(Johnson et al., 2010). Although autonomy is an intuitive quality of robots, there are few 

developed quantitative models that describe robot autonomy (an exception is Goodrich, McLain, 

Anderson, Sun, & Crandall, 2007), and fewer still that include operational definitions at a level 

required for the current empirical investigation.  

Robot behavior can be considered to belong to the broader class of automation. 

Automation is any “device or system that accomplishes (partially or fully) a goal that was 

previously, or conceivably could be, carried out (partially or fully) by a human operator” 

(Parasuraman, Sheridan, & Wickens, 2000, p. 287). By considering robot behavior as 

automation, one can describe the robot’s involvement in a particular task as the level of 

automation.  

This study considered the level of automation to be a quantifiable measure of robot 

autonomy. Thus, the two terms are very similar; the level of automation is a way to quantify the 

level of robot autonomy. 

The level of automation (LOA) can be described as how fully a system carries out the 

task; the taxonomy was that of Sheridan and Verplank (1978), who described levels from full 

operator control to complete task execution by automation. The current study used the level of 

automation as an operational definition for robot autonomy.  
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Models of Level of Automation 

The effects of automation on performance may depend on how automation is defined 

(i.e., what is automated) in relation to how performance is defined (i.e., what must be 

accomplished). Parasuraman, Sheridan, and Wickens (2000) offered, separately, a text revision 

(see Table 1) and an expansion of Sheridan and Verplank’s (1978) levels of automation, which 

added a second dimension, information processing stage, to describe what tasks are performed. 

Thus, information acquisition (stage 1), information analysis (stage 2), decision selection (stage 

3), and action implementation (stage 4) each have an independent level of automation that can 

vary from low to high. 

Table 1  

Parasuraman, Sheridan, and Wickens (2000, p. 287, Table 1) levels of automation 

Level  Description 

10 The computer decides everything, acts autonomously, ignoring the human. 

9 Informs the human only if it, the computer decides to 

8 Informs the human only if asked, or 

7 Executes automatically, then necessarily informs the human, and 

6 Allows the human a restricted time to veto before automatic execution, or 

5 Executes that suggestion if the human approves, or 

4 Suggests one alternative 

3 Narrows the selection down to a few, or 

2 The computer offers a complete set of decision/action alternatives, or 

1 The computer offers no assistance: human must take all decisions and actions 

 

The first two levels of this model are known as diagnostic aiding (Wickens & Dixon, 

2007). Diagnostic aiding encompasses automation of information processing as a precursor to 

(and excluding) decision selection (stage 3) and action implementation (stage 4). The two stages 

of diagnostic aiding support the first two levels of Endsley’s model of SA, respectively (Horrey, 

Wickens, Strauss, Kirlik, & Stewart, 2009). Horrey et al. (2009) described a model in which 
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information acquisition (stage 1) leads to information analysis (stage 2). Information acquisition 

(stage 1) is linked to level 1 SA, perception of elements, by sensation, perception, and attention. 

Information analysis (stage 2) is linked to level 2 SA, comprehension of the situation, by 

cognition, integration, and working memory. 

Robots perform the information acquisition (stage 1) when they gather relevant 

information through their sensors. Robots perform information analysis (stage 2), when they 

integrate multiple pieces of sensor data or when they integrate sensor data with previously stored 

or externally provided information. Thus, information acquisition (stage 1) is a precursor to 

information analysis (stage 2), and a robot that performs both stages operates at a higher level of 

automation than one that only performs information acquisition (stage 1). In other words, 

diagnostic aiding is the automation of information processing, and the two stages of diagnostic 

aiding can be expected to support the corresponding first two levels of SA. 

Effects of Automation on Performance 

Moderated effects of automation. Examination of the research on diagnostic aiding, and 

on the general case of automation, revealed that while diagnostic aiding is generally effective in 

both traditional systems such as aviation (Rudisill, 2000), as well as robot-specific applications 

(Goodrich et al., 2007), diagnostic aiding can be detrimental (Kaber & Endsley, 2004; Ruff, 

Narayanan, and Draper, 2002; Yeh, Wickens, & Seagull, 1999). The conditions under which 

diagnostic aiding is detrimental are poorly understood, however. This suggests that, although 

automation is a helpful technology, the relationship is moderated by other constructs. Evidence 

for the existence of moderators is discussed next. 
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Effects on SA and performance. In contrast to workload, studies do not show a 

unilateral benefit for higher levels of automation on performance and SA. Taking a broad view 

across automation research, the results are inconsistent. The literature’s equivocal findings 

describing the effects of level of automation on SA (Kaber & Endsley, 2004) may have been due 

to an operationalization of level of automation that confounded the level (that is, the amount of 

automation involvement) with what is automated.  

An illustration of this is the difference between management by consent and management 

by exception. In management by consent, operators are required to respond before the robot takes 

action. Conversely, in management by exception, the robot will perform its programmed action 

unless the operator intervenes. Under the Parasuraman et al. (2000) 10-level taxonomy of levels 

of automation (see Table 1), this is the difference between automation at level 5 and automation 

somewhere between levels 6 and 7. Ruff, Narayanan, and Draper (2002) found performance of 

remotely operated vehicles to be better in a management-by-consent scenario, in which the 

operator was required to approve a robot’s decision. If automation was unilaterally better, 

performance should have been higher in the management-by-exception condition. However, 

participants in the management-by-exception condition had lower performance. Jentsch et al. 

(2012) found the opposite: performance was better at higher levels of reliable automation. 

Rehfeld (2006) found higher performance and SA at lower levels of automation under Endsley 

and Kaber’s level of automation taxonomy (1999). Chen, Barnes, and Harper-Sciarini (2011) 

highlighted this discrepancy and suggested the existence of mediators. By taking a more nuanced 

approach to level of automation (by manipulating what as well as when) and by restricting the 
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investigation to automation of the information processing that occurs before decisions and 

actions are made, these mediators will be explored. 

As previously discussed, the what of automation has been modeled by Parasuraman et al. 

(2000). However, much of the applied literature has taken a how much approach to measuring 

and manipulating the level of automation. Although it is understandably easier to manipulate the 

presence or functionality of an entire system, research needs to specify the stage as well as the 

amount of automation. Horrey and Wickens (2001) adapted this approach and found that both 

information acquisition (stage 1 diagnostic aiding) and information analysis (stage 2 diagnostic 

aiding) led to better performance than an unaided condition on a battlefield simulation task, with 

the information analysis (stage 2) aid leading to a greater reduction in errors compared with the 

information acquisition (stage 1) aid. The authors suggested that the removal of cognitive 

integration by the information analysis (stage 2) aid reduced the cognitive demands on the 

operator, leading to superior performance. However, memory probe questions suggested that 

relevant items were processed more deeply with information acquisition (stage 1) diagnostic 

aiding (Horrey & Wickens, 2001).  

The addition of information analysis (stage 2) automation to information acquisition 

(stage 1) automation has been shown to have a greater effect on decisions than information 

acquisition (stage 1) alone (Dexter, Willemsen-Dunlap, & Lee, 2007). In a study of 

anesthesiologists, nurses, and hospital housekeepers, operating room management information 

was presented as either a command display, which provided recommendations (stage 2), or a 

status display, which made decision-relevant information available (stage 1). When making 

decisions in subsequent scenarios, participants without either type of aid performed less 
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accurately than random chance. Decision making, both a cognitive outcome and a performance 

measure, was improved only by the command display (status displays did not have a significant 

effect on decision accuracy). Further, incorrect command displays had greater costs associated 

with them for trust, and users were more likely to follow erroneous recommendations that did not 

affect safety. From this, Dexter et al. (2007) concluded that command displays are preferable but 

carry additional costs when their recommendations are incorrect. 

The literature offers support for diagnostic aiding as an effective intervention for 

reducing workload, increasing SA, and supporting performance. Further, I have provided support 

for the stages of diagnostic aiding (Wickens & Dixon, 2007) to be used to specify what task is 

automated, with information analysis (stage 2) being a higher level of automation than 

information acquisition (stage 1). However, inconsistent findings suggest the presence of 

additional complexity in this relationship.  

Hypothesis 1: Under perfect reliability, diagnostic aiding that performs acquisition 

and analysis (stage 2) will lead to better operator SA than one that performs acquisition 

alone (stage 1; a simple effect).  

Hypothesis 1a: Under perfect reliability, diagnostic aiding that performs acquisition 

only (stage 1) will lead to better level 1 SA but not level 2 SA (a simple effect).  

Hypothesis 1b: Under perfect reliability, diagnostic aiding that performs acquisition 

and analysis (stage 2) will lead to better level 1 SA and level 2 SA (simple effects). 

Two hypothesized moderators of this relationship, reliability and task complexity, will be 

explored next. 
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Reliability 

Global Effects of Reliability 

Reliability is the effective performance of an automated system. Unreliability, then, is the 

inability of an automated system to perform a task as intended by the designer of the system. The 

present research aimed to see if SA and performance are affected by reliability in the same way, 

and differently at different levels of unaided human performance. As the reliability of automation 

falls, human performance declines; operators may have difficulty compensating for degraded 

information (Wickens & Dixon, 2007). Dixon, Wickens, & McCarley (2006) found that 

performance was better in a non-automated condition than in either miss-prone or false alarm 

prone automation. Madhavan and Phillips (2010) found that participants using a 90% reliable 

decision aid in an X-ray baggage-screening task achieved more hits and fewer false alarms than 

those using a 70% reliable decision aid.  

Wickens and Dixon (2007) found evidence across studies that the relationship between 

reliability and reliance is affected by task demand. Even if operators are aware of the true 

reliability of the system, they may continue to rely upon imperfect automation in order to 

preserve cognitive resources. The focus of the present study was not on the highest levels of task 

demand in which the operator can do little but blindly follow the automation. Instead, 

unreliability may affect global performance through the automation’s inability to contribute 

accurate information.  

Trust and reliance. Trust and reliance are two mediators of the reliability-performance 

relationship that have been examined extensively. These two constructs are related, as trust has 

been found to affect performance through reliance (Parasuraman & Riley, 1997). Trust is an 
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affective state (Lee & Moray, 1992) that has been defined as “the reliance by one agent that 

actions prejudicial to the well being of that agent will not be undertaken by influential others” 

(Oleson, Billings, Kocsis, Chen, & Hancock, 2011, p. 176). Several studies examining trust (e.g., 

May, 1993; Oakley, Mouloua, & Hancock, 2003) have found that operator detection of 

automation failures worsens as reliability improved. In these studies, operators were responsible 

for monitoring automation to determine if it was functioning properly. The goal of the research 

was to determine how operators’ perceptions of the reliability of the system drive their behavior, 

which has been supported in subsequent research (Chen & Barnes, 2012; Madhavan & Phillips, 

2010; Wickens & Dixon, 2007). While findings may appear to suggest that increased reliability 

reduces an operator’s ability to detect automation failure states, they share a critical difference 

from the present research; participants were not provided with the specific reliability of the 

automation. In May’s study (1993), participants were not told of the specific reliability of the 

system so as to maximize their trust in the system. Additionally, the automation-monitoring task 

was presented to the participants as a secondary task. If participants did not understand the true 

reliability of the system, they may have inappropriately relied upon (or completely disregarded) 

the automation, which was the effect the researchers aimed to find. Thus, these outcomes may be 

best explained as inappropriate trust, which led to inappropriate reliance. This is an important, 

but different, issue from operator strategy selection given automation with known unreliability. 

While understanding of these mediators has guided engineering and provided insight into 

performance outcomes, little work has been done to examine the effects of information 

processing unreliability on the operator’s ability to build and maintain SA, especially when the 

operator is aware of the true reliability of the system a priori. In other words, the performance 
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outcomes have been studied more than the information processing mediators. Consequently, 

there is a lack of understanding of the cognitive mediators of the relationship between 

automation reliability and performance. In their meta-analysis, Wickens, Li, Santamaria, Sebok, 

and Sarter (2010) found only five studies that investigated the level of automation on 

performance and SA under conditions of automation. They noted, “The situation awareness data 

are too few to create any well defined trend” (p. 391). This need was addressed by the current 

empirical study, which studied three levels of system reliability and predicted:  

Hypothesis 2: Operator SA will be higher at higher levels of robot reliability (a main 

effect). 

Reliability at Each Level of Decision Aiding 

In a study examining the impact of incorrect information on mission-critical decisions 

under time pressure, Ehrlich et al. (2011) found no effects on performance of recommendations 

(analogous to information analysis [stage 2]) versus recommendations along with justification 

(analogous to information analysis and acquisition [stage 1 and stage 2]). Both forms of decision 

aiding were helpful when accurate and detrimental when inaccurate. For inaccurate 

recommendations and justifications, the authors concluded that participants could have been 

biased towards the recommendations even when justifications were included. In Ehrlich et al., 

the effects of the justifications (a form of level 1 SA) alone were not investigated. This left the 

question of whether or not operators made better decisions when the incorrect data was provided 

directly (as was the case with justifications) or provided in an integrated form (as was the case 

with recommendations). 
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 The literature suggests that while unreliable information negatively impacts performance, 

the effect is much stronger for information analysis (stage 2) automation than for information 

acquisition (stage 1) automation (Rovira, McGarry, & Parasuraman, 2007). Sarter and Schroeder 

(2001) found that a diagnostic aid that provided recommendations (information analysis [stage 

2]), rather than status information (information acquisition [stage 1]), had a greater performance 

cost when the automation was not reliable. Rovira and colleagues (2007) found that unreliability 

degraded operator accuracy at three levels of increasingly automated information analysis (stage 

2). Unreliability did not have a significant effect on accuracy in the information acquisition 

(stage 1) condition, however.  

Crocoll and Coury (1990) found a similar pattern of results with an airplane identification 

task. In a study manipulating status (information acquisition [stage 1]) and recommendation 

(information analysis [stage 2]) information, the group receiving only status information was the 

least affected by inaccuracy in the automation. In line with this finding, Skitka, Mosier, and 

Burdick (1999) found that introduction of imperfect automation that monitored system state led 

to an increase in missed events.  

One explanation of this effect is automation bias (Cummings, 2004); it is a form of 

misuse in which erroneous, automated recommendations are trusted, and conflicting information 

is disregarded. While this explains an operator’s decision to rely upon automation or do without, 

it does not explain differences in attention or cognitive processing. In other words, it explains 

affect and behavior, but not SA.  

Parasuraman and Wickens provided a cognitive explanation for why lower stages of 

diagnostic aiding may lead to better SA: “The user must continue to generate the values for the 
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different courses of action. As a result, users may be more aware of the consequences of the 

choice and of the possibility that the choice may be incorrect because of a faulty automated 

diagnosis” (2008, p. 514). This may explain the empirical findings of Horrey and Wickens 

(2001). When operators perform information analysis (stage 2), they perform additional 

processing that may keep them “in the loop”. Consequently, the operators’ information analysis 

(stage 2) should lead to better SA during robot unreliability. 

Galster, Bolia, and Parasuraman (2002) found that performance on a target detection task 

improved when an information status cue was added, even though this cue was not perfectly 

reliable. When a higher level of aiding was added in the form of decision suggestion, 

performance was not improved, unless the information status cue was also included. This 

suggests that under conditions of unreliability, operators may be able to recover from erroneous 

information provided by information acquisition (stage 1) automation more easily than from 

information analysis (stage 2) automation. In summary, when reliability is limited, access to 

lower-level data can help an operator to remain in the loop (Johnson, Saboe, Prewett, Coovert, & 

Elliott, 2009). 

Hypothesis 3: Under imperfect reliability, automation of information analysis (stage 

2) will lead to lower SA unless the operator would otherwise have poor SA without the aid 

(an interaction effect). 

Hypothesis 3a: Under imperfect reliability, automation of information analysis 

(stage 2) will lead to lower SA when the operator would otherwise have moderate (50%) SA 

without the aid (a simple effect). 
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Hypothesis 3b: Under imperfect reliability, automation of information analysis 

(stage 2) will lead to lower SA when the operator would otherwise have good (90%) SA 

without the aid (a simple effect). 

Potential Unaided Situation Awareness 

Definition 

In a recent review of levels of automation and automation reliability literature, Johnson et 

al. (2009) found evidence for mediators in the relationship between automation reliability and 

performance. In some tasks, imperfect automation had a severe, negative impact on performance. 

In others, the impact was minimal. Johnson et al. concluded that the differences were due to the 

availability of other, non-automation strategies for completing the task.  

The availability of these strategies should be considered from an operator-centric 

perspective. That is, it is less important whether or not an alternative task completion strategy is 

available than whether the operator is aware of, and able to utilize, the strategy. Thus, an 

operator’s SA in an unaided task captures individual cognitive performance. Potential unaided 

SA is the relevant knowledge that is available and held by an operator in the absence of 

diagnostic aiding. It can be thought of as performance on the cognitive aspects of the task 

independent of any automation. It is not paradoxical to distinguish potential unaided SA from the 

SA of an operator using a diagnostic aid. By manipulating this construct, I evaluated the impact 

of three scenarios spanning the realistic range of potential unaided SA: one in which the operator 

can independently obtain nearly all information needed to perform the task (“good [90%] 

potential unaided SA”), one in which the operator cannot obtain any substantial amount of the 
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information needed to perform the task (“poor [10%] potential unaided SA”), and one in which 

half the information is available to the operator (“moderate [50%] potential unaided SA”), which 

reflects an even distribution of information available to operator and automation. 

Diagnostic Aiding and Potential Unaided SA 

One case is unexplored; what are the costs and benefits of diagnostic aiding when 

operators would otherwise have poor SA? Based on the literature, this would occur when task 

complexity (and thus workload) is very high. By manipulating characteristics of the task, 

unaided situation awareness can be manipulated. If operators demonstrate exceptionally low SA 

in the absence of a diagnostic aid, then the presence of even a fairly unreliable aid should be 

beneficial. Although studies have included difficult tasks, no research has been conducted 

investigating operator use of unreliable automation in tasks while manipulating potential unaided 

SA. Johnson et al. (2009) pointed out that providing operators with lower stages of diagnostic 

aiding becomes problematic as workload increases with the amount of data to be managed. 

Empirical data supports this claim (Rovira et al., 2007). Thus, a non-linear relationship may 

exist.  

Madhavan and Wiegmann (2007) suggested that operators behave differently in the face 

of automation unreliability, depending on their own ability to perform the task unaided. 

Specifically, their easy-errors hypothesis says that errors on tasks that operators could perform 

themselves undermine trust and lead to disuse. Conversely, when the automation performs more 

reliably than the operators’ unaided performance level, operators will tend to rely upon the 

automation more than their own diagnoses. This behavior is adaptive (Dzindolet et al., 2003), as 

long as the operator is aware of the true reliability of a system.  
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In line with this hypothesis, Lee and Moray’s (1992) results suggest that operators’ 

automation use is affected by their ability to perform the task unaided. Both performance and 

trust were measured as outcomes from automation failure a task simulating a juice pasteurization 

factory. The researchers found that both trust and performance were negatively affected by 

automation failure, with performance recovering faster than trust. At the same time, participants 

tended to increase their use of automation as operators dealt with the fault. Lee and Moray 

suggested that operators’ confidence in their own abilities affected automation use more than 

trust in the automation.  

Additionally, there is evidence that operators adjust their behavior based on their 

perceptions of system reliability (Chen & Barnes, 2012; Madhavan & Phillips, 2010). This leads 

to two implications: (a) operators’ knowledge of how automation fails will affect compliance 

with the automation, and (b) in difficult tasks, operators may (appropriately) rely on imperfect 

automation. Again, this behavior may be an appropriate strategy to dealing with unreliability 

across a system.  

Hypothesis 4: When the operator would otherwise have poor SA, automation of 

information analysis (stage 2) will lead to better SA (an interaction effect). 
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Summary and Hypotheses 

 

Figure 2. Research model with hypotheses. 

As previously stated, this research tested for three effects: reliability of robot sensing, 

stage of diagnostic aiding, and potential unaided SA. The literature suggests that high robot 

reliability is beneficial. However, few robots are perfectly reliable, and even unreliable robots 

may be useful under some circumstances. Through this research, I aimed to find the conditions 

under which unreliable robots can still contribute to the SA of an operator. SA is an important 

determinant of performance across complex systems. However, under high levels of autonomy 

and low levels of reliability, operators may lose SA as they become disconnected from critical 

elements in the environment. A list of expected confounding variables, and the strategies that 

will be used to measure or exclude their effects is presented in Appendix A. 

To review, the following hypotheses were tested as part of my research model (see Figure 

2): 



 

 30 

Hypothesis 1: Under perfect reliability, diagnostic aiding that performs acquisition and 

analysis (stage 2) will lead to better operator SA than one that performs acquisition alone (stage 

1; a simple effect).  

 

Figure 3. Hypothesized effects of level of automation on SA under perfect reliability 

(Hypothesis 1). 

 

Hypothesis 1a: Under perfect reliability, diagnostic aiding that performs acquisition only 

(stage 1) will lead to better level 1 SA but not level 2 SA (a simple effect).  

Hypothesis 1b: Under perfect reliability, diagnostic aiding that performs acquisition and 

analysis (stage 2) will lead to better level 1 SA and level 2 SA (simple effects). 

Hypothesis 2: Operator SA will be higher at higher levels of robot reliability (a main 

effect). 
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Figure 4. Hypothesized effect of reliability on SA (Hypothesis 2). 

 

Hypothesis 3: Under imperfect reliability, automation of information analysis (stage 2) 

will lead to lower SA unless the operator would otherwise have poor (10%) SA without the aid 

(an interaction effect) 
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Figure 5. Hypothesized effects of level of diagnostic aiding under good (90%) and moderate 

(50%) potential unaided SA (dashed area) and imperfect reliability (Hypothesis 3). 

Hypothesis 3a: Under imperfect reliability, automation of information analysis (stage 2) 

will lead to lower SA when the operator would otherwise have moderate (50%) SA without the 

aid (a simple effect). 

Hypothesis 3b: Under imperfect reliability, automation of information analysis (stage 2) 

will lead to lower SA when the operator would otherwise have good (90%) SA without the aid (a 

simple effect). 

Hypothesis 4: When the operator would otherwise have poor (10%) SA, automation of 

information analysis (stage 2) will lead to better SA, even when the diagnostic aid is unreliable 

(an interaction effect). 
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Figure 6. Hypothesized effects of level of diagnostic aiding under poor (10%) potential unaided 

SA (dashed area) and imperfect reliability (Hypothesis 4). 

  

 



 

 34 

CHAPTER THREE: METHODOLOGY 

Task Setting 

The experimental scenario was a cordon and search task. In military operations, cordon 

and search is “conducted to seal (cordon) off an area in order to search it for persons or things 

such as items, intelligence data, or answers to PIR (primary intelligence requirements)” (United 

States Army, 2009, pp. 5-8). The management of relevant mission information is a critical part of 

operational safety and mission effectiveness in cordon and search, as well as in other military 

operations (United States Army, 2006). 

According to the Army, “every Soldier is a sensor” (United States Army, 2008, pp. 9-1). 

This concept appropriately extends to robots when mission knowledge may be distributed across 

human and robot agents, with each agent having unique and complementary information. The 

current experimental scenario was used as an example of military operations requiring 

management of dynamic information distributed across agents. 

SA in Cordon and Search 

Because the definition and content of SA, and ultimately its measurement, are inherently 

tied to the task (Schuster, Keebler, Zuniga, & Jentsch, 2012), the mission goal must carry clearly 

definable knowledge requirements. In cordon and search, the elements in the environment 

include the potential targets of the search (for example, friendly or hostile individuals) and their 

relevance to mission goals (for example, identification of hostile individuals in a room clearing 

task). Based on this, in a simple collaborative cordon and search mission with two entities 

(human and robot), SA can be operationalized as follows: 
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Level 1 SA (perception): Knowledge of the existence of individuals, their locations, 

and/or their identifying characteristics. 

Level 2 SA (comprehension): Knowledge of whether the individuals perceived at level 1 

are friendly or hostile. 

Level 3 SA (projection): Knowledge of the future states (for example, future locations) of 

individuals understood at level 2. 

Because all individuals in a scenario are relevant to the participant’s mission goal, 

whether the robot or participant can sense them directly, this operationalization of SA included 

all individuals in the building. The difficulty of maintaining SA in complex, yet highly 

automated, environments like aviation is a demonstrated example of the out-of-the-loop 

performance problem (Wickens, 2002). To examine this problem, this study applied information 

management requirements to a military operation. This task is relevant because object detection 

and biometric identification (e.g., facial recognition) are tasks robots perform with imperfect 

reliability in real-world environments. However, over time, automation performance in this task 

in the field can be expected to improve. In the current study, cordon and search served as a 

mission where a robot could be implemented at various levels of decision aiding while allowing 

for clear manipulation of reliability and potential unaided SA.  

Design 

The current study used a 2 (information acquisition [stage 1] vs. information acquisition 

with analysis [stage 2]) x 3 (60% reliable, 80% reliable, 100% reliable) x 3 (poor [10%] potential 

unaided SA, moderate [50%] potential unaided SA, good [90%] potential unaided SA) mixed 
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factorial design (see Table 2). Stage of diagnostic aiding and potential unaided SA were within-

subjects independent variables to increase sensitivity. A literature review suggested a low 

potential for interactions between individual differences and these two IVs (see Appendix C). 

Because of the potential for carry-over effects (Chen & Barnes, 2012; Madhavan & Phillips, 

2010), robot reliability was a between-subjects independent variable. The dependent variable 

was SA of the participant.  

Table 2  

Experimental design with independent variables 

IV 1: Stage of 

diagnostic aiding 

(within subjects) 

IV 2: Robot reliability 

(between subjects) 

IV 3: Potential unaided 

SA (within subjects) 

Information 

acquisition (stage 1) 

100% Poor (10%) 

Moderate (50%) 

Good (90%)  

 

80% Poor (10%) 

Moderate (50%) 

Good (90%)   

 

 60% Poor (10%) 

Moderate (50%) 

Good (90%) 

 

Information 

acquisition with 

analysis (stage 2) 

100% Poor (10%) 

Moderate (50%) 

Good (90%) 

 

60% Poor (10%) 

Moderate (50%) 

Good (90%) 

 

 60% Poor (10%) 

Moderate (50%) 

Good (90%) 
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Participants 

Participants were 64 students recruited from the University of Central Florida’s 

psychology undergraduate participant pool using the SONA Systems web site. Participants 

received course credit in exchange for participation. The research protocol was submitted to the 

University of Central Florida Institutional Review Board (IRB) for approval and to the United 

States Army for headquarters-level administrative review prior to the start of data collection.  

Of the 64 participants, 17 were excluded from the analysis. Of these, two participants 

chose to end the study early, one participant was dismissed due to technical problems with the 

apparatus, and one participant was dismissed after falling asleep. The remaining 13 were 

excluded because they were not presented with one entire SART or objective SA assessment 

questionnaire due to a software malfunction. All subsequent analyses were performed following 

the removal of these participants, resulting in a sample of 47 participants.  

A power analysis was conducted (Faul, Erdfelder, Buchner, & Lang, 2009) to determine 

the number of participants needed to detect a medium effect (f  = .2) at an alpha level of .05 with 

a power level of .8. With each participant completing 12 trials (two instances of each 

combination of the within-subjects variables), the estimated sample size was 36 participants, 

suggesting that the final sample provided sufficient power. 

The sample included 20 males and 27 females ranging in age from 18 to 47 years (M = 

20.89, SD = 4.32). Refer to Table 8 for the frequencies of each gender by between-subjects 

condition. All participants in the sample reported that they were native speakers of English, did 

not have color-deficient vision, and did not have prior military experience.  
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Materials 

Mission Environment 

 

Figure 7. Experimental apparatus consisting of a laptop computer, mouse, and participant rule 

set reference card. 
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Figure 8. Screen capture showing the mission display with first-person view and robot-provided 

information. 

A non-stereoscopic, three-dimensional virtual environment was used to present a first-

person view of the mission environment on a computer monitor. A discrete event simulation of 

each mission was developed a priori. In each mission, a number of friendly and hostile 

individuals entered and left a building through multiple doorways. The robot and participant both 

monitored the building. The robot had the added ability of being able to see through interior, but 

not exterior, walls. Thus, the robot could aid the participant by seeing individuals that were 

outside of the participant’s view. The participant and robot’s positions were fixed. Within the 

simulation, a pre-rendered mission video 16.51 cm wide by 10.88 cm tall (approximately 15.4° 

by 10.19° degrees of visual angle) was displayed. The video showed the participant’s perspective 

and showed individuals exiting and entering the building. During-mission and post-mission 

questionnaires were administered on the same computer. 
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The participants’ goal was to determine how many people were inside the building at the 

present time and whether they were friendly or hostile individuals. To accomplish this goal, 

participants had to gather and integrate information from the robot.  

Participants were trained on a rule set used to determine hostility. The four characteristics 

are listed in Table 3. The conditions under which an individual was hostile are listed in  

Table 4. 

Table 3  

Characteristics of individuals in the building 

Characteristic Possible values 

Uniform color Green, Red, Blue 

Armed Armed, Unarmed 

Wearing a helmet Helmet, No helmet 

Running Running, Walking 

 

Table 4  

Conditions under which individuals were determined to be hostile 

Hostile (if and only if) 

Green uniform and armed, or 

Armed and wearing a helmet, or 

Red uniform and running 

Robot Team Member 

The participant worked with a simulated robot (see Figure 9) to complete the shared goal 

of identification of friendly and hostile individuals. Although simulated, the robot could be 

thought of as performing an equivalent task to the human but with the added ability to see 

through the interior walls of the current building. The robot was stationary, and it had one or two 

features, depending on the condition: person recognition with feature identification (information 

acquisition [stage 1]) and person identification (information analysis [stage 2]). 
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Figure 9. Photo of the robot team member presented to the participant. The robot monitored for 

the presence of individuals and could see through walls.  

 

Stage of Diagnostic Aiding Manipulation  

Information acquisition (stage 1) condition. In the information acquisition (stage 1) 

condition, the robot monitored the door and updated its status display whenever an individual 

was detected. The robot was able to sense physical characteristics about the individual (e.g., 

uniform color, wearing a helmet, armed or not) and report these characteristics to the participant 

in a continuously updated list of individuals. The communication channel between the robot and 

the human was perfectly reliable, and the robot would always report the information it sensed. 

That is, when the robot sensed an individual, it always communicated that information to the 

participant, and the communication was accurate with respect to the robot’s sensing.  

The robot was not always accurate in its sensing of the physical characteristics, 

depending on the condition. The only error committed by the robot was in its sensing. 

Specifically, the errors committed by the robot were errors of classification only. That is, the 
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robot never missed an individual who was present nor falsely reported the presence of an 

individual who was not there. For an individual who was present, however, the robot could 

report one of their characteristics, uniform color, incorrectly. 

The reliability of the participants’ robot was explained in a tutorial video (see Appendix I 

for the video content and Appendix J for the script). This video provided the exact error rate of 

the robot, explained the kinds of mistakes the robot could make, and offered examples to 

illustrate the impact of the error rate. It was explained that mistakes were independent; a series of 

mistakes did not make a future mistake less likely, and vice-versa. 

 

  

Figure 10. Demonstration of output from the information acquisition (stage 1) robot. In the 

experiment, this data was updated live and presented in a list. Note, P = participant, R = robot. 

 

Information acquisition with analysis (stage 2) condition. In the information 

acquisition with analysis (stage 2), the robot performed information acquisition (stage 1) as 

described in the previous step. However, before reporting to the participant, the robot used the 
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physical characteristics to make a determination about the hostility of the individual. In addition 

to their own first-person viewpoint, participants were only shown the friendly or hostile status as 

reported by the robot (see Figure 11). The information analysis (stage 2) performed by the robot 

was deterministic (i.e., any combination of physical characteristics can be used to classify the 

individual as friendly or hostile) and perfectly reliable. 

   

Figure 11. Example of output from the information acquisition with analysis (stage 2) robot as 

viewed by the participant. It was updated in real time. Note, P = participant, R = robot. 

 

Robot Reliability Measure 

The reliability of the robot’s information acquisition (stage 1) was manipulated. 

Reliability was defined as the likelihood that the robot would provide information that would 

lead to a correct conclusion. In order to provide a consistent backstory to participants across the 

stages of diagnostic aiding, reliability was manipulated at the feature level; errors took the form 

of incorrect sensing of a single feature. However, the only errors that were made by the robot 

were errors that led to an incorrect conclusion (i.e., the incorrect determination of hostility). In 
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this way, the consequence of each robot error was held constant across conditions. An annotated 

example showing how the robot’s errors translated into the participant’s display is shown in 

Appendix E. 

Errors were presented to the participant as independent events. Each time the robot 

sensed an individual, there was a 40%, 20%, or 0% chance of the robot sensing the wrong 

uniform color, leading it to misinterpret the individual’s hostility. For example, in the 60% 

reliability condition, if the robot had just made two errors, the probability that it would make an 

error on the next individual remained at 60%. However, to control for the number of errors 

experienced by participants, errors were predetermined so that the participant experienced the 

correct percentage of robot errors across the mission. 

Three levels of reliability were selected to span across the range at which diagnostic 

aiding may be implemented and could be useful. The lowest level (60%) was at the bottom end 

of the 95% confidence interval for the minimum reliability level identified by Wickens and 

Dixon (2007) at which diagnostic aiding is still useful. Wickens and Dixon’s finding was based 

on a meta-analysis, which showed a drop-off of performance to below chance near 71% 

reliability. Importantly, the lowest level of reliability used in this study (60%) was above chance, 

so using the robot should have provided a benefit if the participant could not otherwise obtain the 

same information.  

Low (60%) reliability. In the low reliability condition, the robot made errors in its 

perception of uniform color. Incorrect feature perception led to incorrect determination of 

hostility in 60% of the individuals reported on by the robot. 
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Moderate (80%) reliability. In the moderate reliability condition, the robot made errors 

in its perception of uniform color. Incorrect feature perception led to incorrect determination of 

hostility in 20% of the individuals reported on by the robot. 

High (100%) reliability. In the high reliability condition, the robot was consistently 

accurate. 

Potential Unaided SA Manipulation 

The potential unaided SA of the participant without the robot was also manipulated. The 

participant’s SA was quantified as the completeness and correctness of their knowledge of 

individuals in the building at a particular point in time. Thus, potential unaided SA was 

operationally defined as the proportion of people in the building that the participant could see 

and identify if the robot were not present. Because participants could only see within their 

current room in the building, the participant’s unaided SA was limited to the proportion of 

people entering and existing within the current room. As a manipulation check, the potential 

unaided SA manipulation was tested to see if it predicted the participant’s SA. 

In the current study, one explanation for any effects of “good (90%)” potential unaided 

SA might have been that the robot provided confirmation of information already known by the 

participant. In the “moderate (50%)” and “poor (10%)” potential unaided SA conditions, the 

diagnostic aiding provided unique information not otherwise known by the human. This was 

done to mirror a real world scenario in which the robot’s primary purpose is to act as a uniquely 

contributing sensor. Any observed effects may or may not apply to robots that exist primarily to 

offer confirmation of known information. 
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To ensure that the robot acted as a uniquely contributing sensor while preventing 

complete separation of the robot and participant’s tasks, individuals that were directly visible to 

participants moved in one of three ways. In the first (see Figure 12), individuals entered in view 

of the participant, remained in the visible room, and then exited in view of the participant. In the 

second (see Figure 13), individuals entered in view of the participant but walked into another 

room before leaving the building. Finally, in the third (see Figure 14), individuals entered in 

another room but walked into the visible room before leaving the building. Visible individuals 

were randomly assigned one of these three movement paths, and the frequency of each 

movement path was approximately equal within each mission. 

 

Figure 12. Arrows represent the movement of individual 1. Approximately one-third of visible 

individuals were always visible to the participant.  
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Figure 13. Arrows represent the movement of individual 2. Other individuals entered the 

building in view of the participant but exited out of the participant's view. The paths are 

examples only; each individual had a unique path.  

 

Figure 14. Arrows represent the movement of individual 3. Approximately one-third of visible 

individuals entered the building out of the participant’s view but moved into the visible room 

before exiting.  

Poor (10%) potential unaided SA. In the “poor (10%)” potential unaided SA condition, 

the participant was able to view 2 of the 20 people entering and exiting due to the participant’s 

position and the layout of the building. That is, 10% of the relevant events (individuals entering 

or leaving) occurred in the participant’s field of view (see examples in Appendix F). 

Moderate (50%) potential unaided SA. In the “moderate (50%)” potential unaided SA 

condition, the participant was able to view 10 of the 20 people entering and exiting due to the 
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participant’s position and the layout of the building. That is, half (50%) of the relevant events 

(individuals entering or leaving) occurred in the participant’s field of view. 

Good (90%) potential unaided SA. In the “good (90%)” potential unaided SA 

condition, the participant was able to see 18 of the 20 people in the building as they entered or 

exited, or 90% of the individuals.  

Biographical Data Form 

Participants were asked their age, gender, visual acuity, ability to detect color, and prior 

military experience.  

Informed Consent and Debrief Form 

Participants participated in an informed consent process as required by the IRB (see 

Appendix G). At the conclusion of the study, participants were provided with a debrief form 

describing the purpose of the study and the manipulations (see Appendix H). 

Measures 

Objective Situation Awareness Assessment  

An SA measure was developed based on the SAGAT method described by Endsley 

(2000a). The questions used in the measure were based on the current state of the mission and 

were objective in that they had a single correct answer. Two questions were asked, each 

classified as measuring one of Endsley’s three levels of SA (perception or comprehension). 

Because the mission goals did not involve prediction of future states, no questions were asked at 

Endsley’s third level of SA, projection. 
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To assess level 1 SA, participants were asked for the uniform color of the last individual 

who entered the building at either entrance. To assess level 2 SA, participants were asked for the 

friendly or hostile status of the last individual who entered the building at either entrance. 

Answers to these questions were scored as correct or incorrect. The percentage of correct 

responses for each item resulted in two measures, uniform color accuracy and status accuracy. 

Participants were told that these questions would be asked. 

Situation Awareness Rating Technique (SART) 

The Situation Awareness Rating Technique (SART) is a self-report measure of SA to be 

administered after each mission. The SART consists of ten questions within three subscales: 

demand on attentional resources, supply of attentional resources, and understanding of the 

situation. Participants rated their SA on each of the ten dimensions using Likert-type items from 

1 (“Low”) to 7 (“High”). The mean response of each subscale was calculated, and these numbers 

were summed using the following formula: supply of attentional resources + understanding of 

the situation - demand on attentional resources = SART score. This followed the methodology of 

Endsley et al. (2000a).  

Performance Measure 

Participants were also asked to report, separately, the number of friendly and hostile 

individuals currently in the building. Because the goal of the participants was to maintain 

accurate counts throughout the mission, count accuracy was used as a performance measure. 

This measure scored as 1 for having both friendly and hostile counts correct and 0 if either were 
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incorrect. The mean of four measurements during each mission was computed and used as the 

performance score for the mission. 

Metacognitive Measures 

At the conclusion of each mission, participants were asked to rate their own performance, 

the performance of the robot, and the performance of the human-robot team. Three items asked 

participants to rate their ability to identify individuals without the robot’s help, their ability to 

identify individuals with the help of the robot, and the robot’s ability to identify individuals. 

Each was measured using Likert-type items ranging from 1 (“Low”) to 7 (“High”). 

Spatial Ability 

Spatial ability was measured using the Guilford-Zimmerman Spatial Orientation test and 

scored as the number of items answered correctly.  

Procedure 

Table 5  

Experiment timeline 

Time (hours:minutes from start) Event 

0:00 Participant arrival; informed consent process and 

completion of biographical data 

0:10 Spatial ability measure 

0:20 Video introduction 

0:32 Practice missions 

0:38 Missions 1-12 

1:52 Debrief; participant dismissal 

 

Upon arrival, the experimenter presented the informed consent process to the participant. 

Next, the participant was seated at a computer workstation to complete the pre-task measures of 
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biographical data and spatial ability. Following this, the participant was shown a video 

presentation explaining the study procedures, introducing the purpose and goals of the task, 

demonstrating the interface, and describing the robot. This video was the same for all 

participants with the exception of the portion that described the robot; it differed across 

conditions of robot reliability. The participant was told the percentage of the time that the robot 

would make errors, that the robot’s errors would occur randomly, and that the errors would be 

limited to the classifications of uniform color. The participants were told that when they could 

not see individuals, they should rely upon the information provided by the robot. The participants 

were also presented with preferred strategies for accomplishing their mission goals (see 

Appendix J). The SAGAT procedure was explained.  

Next, participants completed two two-minute minute practice missions plus 12 “live” 

missions lasting four and a half minutes each. In the first practice mission, the robot was not used 

so that participants could first gain familiarity with the task. For each mission, the participant 

was seated in front of a computer workstation. On this computer, the mission video was played 

and surveys were administered. After being asked if they were ready to begin, the participant 

was directed to click a button that started the mission timer and began playing the mission video. 

The mission video displayed the participant’s view of a doorway and showed individuals 

entering and exiting the building through the doorway. Meanwhile, as explained to the 

participant beforehand, the robot team member was watching both the front and back doors and 

reporting people as they were detected. Below the mission video, on the same monitor, a chat 

window showed two lists of individuals identified by the robot. The leftmost list showed 

individuals in the room visible to the participant. The rightmost list showed individuals within 
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the building but outside the room visible to the participant. When the robot detected an 

individual, it added the individual to the appropriate list. When an individual left the room, they 

were removed from the list. The lists included the characteristics of the individual (i.e., the 

individual’s uniform color, whether or not they were armed, whether or not they wore a helmet, 

and if they were running or walking) in the information acquisition (stage 1) condition. In the 

information acquisition with analysis (stage 2) condition, the robot only reported the presence of 

a “friendly” or “hostile” individual.  

Meanwhile, at four points during each mission, the mission window was minimized and 

the objective SA questions were displayed. Questions were asked at a randomly selected, but 

predetermined, time within 10 seconds after the first, second, third, and fourth minute of the 

mission. No time limit was provided for responses to the SA questions. After the participant 

responded to an SA question, they were presented with a button that allowed them to continue 

the mission. The participant’s video feed ended after four and a half minutes, which did not 

include the time taken to respond to the objective SA questions. The SART was administered at 

the conclusion of each mission along with the metacognitive measures.  

The mission procedure continued until all missions were completed. After the last 

mission finished, the study concluded. Participants were debriefed and dismissed. 
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CHAPTER FOUR: RESULTS 

Statistical analyses were performed using SPSS version 20 with an alpha level of .05, 

unless otherwise stated.  

Demographic Variables 

Means, standard deviations, and intercorrelations for study variables are presented in 

Table 6. Two significant correlations indicated that more senior students tended to be older and 

that males tended to have higher spatial ability. 

Table 6  

Descriptive statistics and intercorrelations among study variables 

Variable M SD 1 2 3 4 5 

1. Age 20.89 4.32 –     

2. Year in school 2.51 1.04 .50** –    

3. GPA 3.17 0.44 .51 -.05 –   

4. Spatial orientation 18.40 10.04 -.21 -.30* .01 –  

5. Gender 0.57 0.50 -.08 .18 .07 -.49** – 

* p < .05. ** p < .01. Gender was coded as 0 = male, 1 = female. 

Check of Random Assignment 

To check the effectiveness of the random assignment, a series of one-way analyses of variance 

(ANOVAs) were conducted using demographic information as the dependent measure. These 

means are listed in   
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Table 7; differences in means across conditions were small and did not reach statistical 

significance, with the exception of the number of years in school; participants in the 80% 

reliability condition had, on average, been at the university less (M = 2.00 years, SE = 0.18) than 

those in the 60% reliability (M = 2.73 years, SE = 0.28, p = 0.05, d = 0.79) and the 100% 

reliability (M = 2.81 years, SE = 0.28, p = 0.03, d = 0.86) conditions. Although significant, these 

differences were comparatively small, and no further relationships with years in school were 

found through additional analyses. 

Additionally, a two-way Pearson χ2 test was computed to determine whether there was an 

association between the question, “Do you wear prescription glasses or contact lenses” and 

experimental condition. This test was not significant, p = .07. In all, these checks suggested that 

the random assignment was successful at distributing participants across conditions. 

To avoid the effects of gender confounding the manipulation of reliability, the last 11 

participants were randomly assigned to conditions based on their gender. A two-way Pearson χ2 

test was conducted to determine whether there was an association between gender and 

experimental group. This test was not statistically significant, p = .97. Table 8 lists sample sizes 

for gender by condition. 
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Table 7  

Group means and standard deviation for demographic variables by condition 

Variable Overall 

 

M (SD) 

60% 

Reliability 

M (SD) 

80% 

Reliability 

M (SD) 

100% 

Reliability 

M (SD) 

df F p 

Age 20.89 (4.32) 20.53 (2.20) 19.50 (0.97) 22.63 (6.80) 2, 44 2.30 .11 

Year in 

school 

2.51 (1.04) 2.73 (1.10) 2.00 (0.73) 2.81 (1.10) 2, 44 3.23 .049 

GPA 3.17 (0.44) 3.23 (0.48) 3.13 (0.48) 3.16 (0.36) 2, 42 0.21 .81 

Spatial 

orientation 

18.40 

(10.04) 

21.60 (9.13) 14.94 (7.59) 18.88 

(12.25) 

2, 44 1.79 .18 

 

Table 8  

Sample size listed by gender and condition 

Gender Overall 

 

60% 

Reliability 

 

80% 

Reliability 

 

100% 

Reliability 

 

Male 20 6 7 7 

Female 27 9 9 9 

Total 47 15 16 16 

Tests of Hypotheses 

The effects of the study manipulations were tested using a series of 3-reliability x (2-level 

of decision aiding x 3-potential unaided SA [x 2-trial]) mixed model ANOVAs, one for each 

measure of SA.  
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Intercorrelations 

Intercorrelations among the dependent measures were calculated at each level of the 

within-subjects manipulations. These are presented in Tables 9-14. The pattern of correlations 

suggested a strong positive relationship between the objective level 1 (i.e., uniform color 

accuracy) and level 2 (i.e., status accuracy) SA measures. This relationship appeared to diminish 

as potential unaided SA increased. A relationship between the SART and the objective SA 

measures was not observed, but both the SART and the objective measures were correlated with 

performance. These results suggested that each of the SA measures captured elements of SA that 

were useful for task performance. At the same time, the SART may measure different aspects of 

SA than are captured by the objective measures. 

Table 9  

Intercorrelations among dependent measures for poor (10%) potential unaided SA with 

acquisition (stage 1) aiding 

Variable M SD 1 2 3 4 

1. Uniform color accuracy SA .45 .26 –    

2. Status accuracy SA .55 .22 .83** –   

3. SART 19.22 7.70 .22 .16 –  

4. Performance .35 .28 .30* .36* .29* – 

* p < .05. ** p < .01. N = 47 for all measures. 
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Table 10  

Intercorrelations among dependent measures for moderate (50%) potential unaided SA with 

acquisition (stage 1) aiding 

Variable M SD 1 2 3 4 

1. Uniform color accuracy SA .69 .22 –    

2. Status accuracy SA .74 .16 .69** –   

3. SART 20.01 8.33 .06 .03 –  

4. Performance .47 .31 .46** .28 .20 – 

* p < .05. ** p < .01. N = 47 for all measures. 

Table 11  

Intercorrelations among dependent measures for good (90%) potential unaided SA with 

acquisition (stage 1) aiding 

Variable M SD 1 2 3 4 

1. Uniform color accuracy SA .72 .13 –    

2. Status accuracy SA .73 .09 .52** –   

3. SART 17.82 7.67 -.19 -.08 –  

4. Performance .36 .28 .26 .48** .19 – 

* p < .05. ** p < .01. N = 47 for all measures. 

Table 12  

Intercorrelations among dependent measures for poor (10%) potential unaided SA with analysis 

(stage 2) aiding 

Variable M SD 1 2 3 4 

1. Uniform color accuracy SA .41 .18 –    

2. Status accuracy SA .66 .15 .05 –   

3. SART 20.50 7.44 .03 .19 –  

4. Performance .35 .25 .02 .28 .25 – 

* p < .05. ** p < .01. N = 47 for all measures. 
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Table 13  

Intercorrelations among dependent measures for moderate (50%) potential unaided SA with 

analysis (stage 2) aiding 

Variable M SD 1 2 3 4 

1. Uniform color accuracy SA .36 .16 –    

2. Status accuracy SA .72 .17 .07 –   

3. SART 20.10 7.07 -.10 .22 –  

4. Performance .53 .33 .32* .31* .30* – 

* p < .05. ** p < .01. N = 47 for all measures. 

Table 14  

Intercorrelations among dependent measures for good (90%) potential unaided SA with analysis 

(stage 2) aiding 

Variable M SD 1 2 3 4 

1. Uniform color accuracy SA .71 .17 –    

2. Status accuracy SA .72 .20 .61** –   

3. SART 18.35 7.99 -.07 .02 –  

4. Performance .37 .24 -.06 .07 .19 – 

* p < .05. ** p < .01. N = 47 for all measures. 

Tests of Normality 

 Normality was assessed for each of the dependent variables. Significant skewness was 

defined as having a ratio of skewness to standard error of skewness greater than 1.96. This cutoff 

was a test of the null hypothesis that the data was normally distributed at an alpha level of .05. 

Significantly skewed levels of the interaction of the within-subjects variables are listed in Table 

15. A number of levels of each measure were skewed, but the only measure with a consistent 

pattern of skewness was the SART, which was negatively skewed. The robustness of ANOVA to 
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violations of normality in the population is a topic of debate but is improved with larger sample 

sizes (Tabachnick & Fidel, 2007). Given cell sizes of 15-16 and an overall sample size of 47, and 

to preserve interpretability of the findings, the dependent measures were not transformed prior to 

analysis. 

Table 15  

List of significantly non-normal dependent measures by levels of the within-subjects variables 

Measure Level of 

Potential 

Unaided 

SA 

Stage of 

Diagnostic 

Aiding 

Skew / Std. 

Error of 

Skew 

SART Low Acquisition -3.79 

SART Moderate Acquisition -3.26 

SART Good Acquisition -3.68 

 

SART Good Analysis -2.37 

Status accuracy Moderate Acquisition -2.74 

Status accuracy Good Analysis -2.93 

Uniform color accuracy Moderate Acquisition -3.18 

Uniform color accuracy Moderate Analysis 2.03 

Uniform color accuracy Good Analysis -4.46 

 

The assumption of homogeneity of variance was assessed for each ANOVA. Because the 

sample sizes were relatively equal, the significance test of Box’s M was ignored (Tabachnick & 

Fidel, 2007). Because of its sensitivity, the recommended probability level for this test was .001 

(Pallant, 2007). This test was significant only for the SART.  
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Finally, multivariate ANOVAs were used to avoid the assumption of sphericity on the 

within-subjects factors.  

Manipulation Check 

Uniform color accuracy. There was a statistically significant main effect for potential 

unaided SA on the level 1 SA measure, uniform color accuracy, F(2, 43) = 108.93, p < .001, 

partial η2 = .84. There were differences across all three conditions, and these differences were in 

the hypothesized direction (see Figure 15). Level 1 SA was highest at good (90%) potential 

unaided SA (M = .72, SE = .02) compared to both moderate (50%; M = .52, SE = .02, p < .001, d 

= 1.47), and poor (10%; M = .43, SE = .02, p < .001, d = 2.42) potential unaided SA. Moderate 

(50%) potential unaided SA lead to higher level 1 SA than poor (p = .002, d = 0.64). This result 

supported the manipulation check. 
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Figure 15. Uniform color accuracy as a function of levels of potential unaided SA. Error bars 

show standard errors. 

Status accuracy. The manipulation of potential unaided SA was expected to affect SA 

across the SA measures. There was a significant main effect for potential unaided SA on the 

level 2 measure, status accuracy, F(2, 43) = 34.63, p < .001, partial η2 = .62 (see Figure 16). 

Participants had a lower percentage of correct responses when potential unaided SA was poor 

(10%; M = .60, SE = .02) than when it was moderate (50%; M = .73, SE = .02, p < .001, d = 

1.15) or good (90%; M = .73, SE = .02, p < 0.001, d = 1.11).  
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Figure 16. Status accuracy as a function of potential unaided SA. Error bars show standard 

errors. 

SART. There was a significant main effect for potential unaided SA on the SART, F(2, 

43) = 8.97, p = .001, partial η2 = .29. Participants rated their SA as lower when they had good 

(90%; M = 18.06, SE = 0.98) potential unaided SA than either moderate (50%; M = 20.03, SE = 

0.94, p = .001, d = .30) or poor (10%; M = 19.85, SE = 0.98, p = .008, d = .30) potential unaided 

SA (see Figure 17). This was unexpected, as the good (90%) potential unaided SA missions 

should have had the highest ratings of SA.  
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Figure 17. SART scores as function of potential unaided SA. Error bars show standard errors. 

Hypothesis 1  

Hypothesis 1 was tested to confirm that reliable diagnostic aiding improved SA and that 

the stages of diagnostic aiding, information acquisition (stage 1) and information analysis (stage 

2), corresponded to the levels of SA, perception and comprehension, respectively. 

Uniform color accuracy. Hypothesis 1a: Under perfect reliability, diagnostic aiding that 

performs acquisition only (stage 1) will lead to better level 1 SA but not level 2 SA (a simple 

effect).  

For the measure of level 1 SA, an interaction between reliability and the stage of 

diagnostic aiding, showing greater SA for information acquisition (stage 1) diagnostic aiding 

than for analysis (stage 2) diagnostic aiding at perfect reliability, was expected to support this 
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hypothesis. This would support the conclusion that information acquisition (stage 1) aiding 

supports level 1 SA. 

The three-way interaction was examined first to determine whether the anticipated 

relationship depended on the level of potential unaided SA, but it was not statistically significant, 

F(4, 86) = 2.20, p = .076, partial η2 = .09. However, a significant two-way interaction between 

reliability and the stage of diagnostic aiding was observed, F(2, 44) = 6.34, p = .004, partial η2 = 

.22. Supporting this hypothesis, accuracy was higher with information acquisition (stage 1) at 

100% reliability (M = .71, SE = .03) than with information analysis (stage 2; M = .52, SE = .02, p 

< .001, d = 1.71). 

Status accuracy. Hypothesis 1b: Under perfect reliability, diagnostic aiding that 

performs acquisition and analysis (stage 2) will lead to better level 1 SA and level 2 SA (simple 

effects). 

An interaction between reliability and the stage of diagnostic aiding, showing greater SA 

for information analysis (stage 2) diagnostic aiding than for acquisition (stage 1) diagnostic 

aiding on a measure of level 2 SA was expected to support this hypothesis. Because this 

relationship may have depended on the level of potential unaided SA, the three-way interaction 

was examined first.  

The three-way interaction was significant, F(4, 86) = 5.86, p < .001, partial η2 = .21. 

However, mean differences at 100% reliability were not significant. Means for moderate (50%; p 

= .16, d = 0.47) and good (90%; p = .65, d = 0.15) potential unaided SA were in the anticipated 

direction, but the means for poor (10%; p = .53, d = 0.22) potential unaided SA showed a small, 
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albeit non-significant, advantage for information acquisition (stage 1). This interaction is further 

explained and illustrated below. 

SART. Because the SART did not distinguish between level 1 and level 2 SA, it was not 

expected to be sensitive to these effects. This was indeed the case, with an interaction between 

reliability and stage of diagnostic aiding not reaching significance, F(2, 44) = 2.45, p = .10, 

partial η2 = .10 (see Figure 18). 

 

Figure 18. SART as a function of reliability condition and stage of diagnostic aiding. The 

interaction did not reach significance. Error bars show standard errors. 

Hypothesis 2 

Given support for the manipulation of potential unaided SA and the utility of perfectly 

reliable diagnostic aiding, I next examined the effects of unreliability. Hypothesis 2 addressed 

the overall effect of reliability: 
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Hypothesis 2: Operator SA will be higher at higher levels of robot reliability (a main 

effect). 

While this hypothesis was supported, the relationship was more complex than what was 

predicted. It was expected that higher reliability would be associated with higher SA in a 

relatively linear fashion, especially for measures of level 2 SA, where the effect was expected to 

be strongest. This single linear effect was not observed (see Figure 18). 

Uniform color accuracy. A two-way interaction of potential unaided SA and reliability 

was found F(4, 86) = 8.74, p < .001, partial η2 = .29. Accuracy was higher in the 100% reliability 

condition (M = .57, SE = .03) than in either the 80% (M = .33, SE = .03, p < .001, d = 2.05) or 

60% (M = .40, SE = .03, p < .001, d = 1.45) conditions at poor (10%) potential unaided SA (see 

Figure 19). Differences were not significant at moderate (50%) or good (90%) potential unaided 

SA (p > .05 in each case). 
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Figure 19. Uniform color accuracy as a function of reliability condition and potential unaided 

SA. Error bars show standard errors. 

Status accuracy. For the level 2 SA measure, uniform color accuracy, examination of the 

three-way interaction suggested that the effect of reliability depended on the level potential 

unaided SA, so the two-way interaction of potential unaided SA and reliability was examined. A 

two-way interaction between these factors was significant, F(4, 86) = 13.69, p < .001, partial η2 = 

.25 (see Figure 20). Significant differences were observed at poor (10%) potential unaided SA; 

accuracy was higher at 100% reliability (M = .73, SE  = .03) than 80% (M = .54, SE = .03, p < 

.001, d = 1.84) and 60% (M = .54, SE = .03, p < .001, d = 1.84) reliability. These differences 

were also observed at moderate (50%) potential unaided SA; accuracy was higher at 100% 

reliability (M = .82, SE  = .03) than 80% (M = .68, SE = .03, p = .001, d = 1.21) and 60% (M = 

.68, SE = .03, p < .001, d = 1.25) reliability. At good (90%) potential unaided SA, SA was higher 
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at 80% reliability (M = .76, SE = .03) than at 60% reliability (M = .67, SE = .03, p = .05, d = 

0.10).  

 

Figure 20. Status accuracy as a function of reliability and potential unaided SA. Error bars show 

standard errors. 

SART. No significant main effects of reliability, nor any interaction effects, were found 

for the SART. There was a non-significant trend of higher SART scores in the 100% reliability 

condition, F(2, 44) = 2.95, p = .06, partial η2 = .19 (see Figure 21). Because none of the SART 

effects reached significance, with the exception of a main effect for potential unaided SA 

previously discussed, the remaining hypotheses were tested using the two objective measures of 

SA, status accuracy and uniform color accuracy. 
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Figure 21. SART as a function of reliability condition and potential unaided SA. Error bars show 

standard errors. 

Hypothesis 3 

While tests of Hypothesis 2 showed higher SA at perfect reliability than at imperfect 

reliability, this relationship was dependent on potential unaided SA. To see how the two stages 

of diagnostic aiding were differentially affected by this relationship, Hypothesis 3 was tested. 

Hypothesis 3a. Under imperfect reliability, automation of information analysis (stage 2) 

will lead to lower SA when the operator would otherwise have moderate (50%) SA without the 

aid (a simple effect). 

It was expected that for both level 1 and level 2 SA, unreliable information analysis 

(stage 2) would lead to lower SA than information acquisition (stage 1). This effect was expected 

to be strongest for level 1 SA.  
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Uniform color accuracy. For the level 1 SA measure, uniform color accuracy, the three-

way interaction was not significant, F(4, 86) = 2.20, p = .08, partial η2 = .09. However, a 

significant interaction was observed between potential unaided SA and stage of diagnostic 

aiding, F(2, 43) = 37.71, p < .001, partial η2 = .64 (see Figure 22). This suggested that the stage 

of diagnostic aiding affected SA differently at different levels of potential unaided SA, but this 

effect was similar across all levels of reliability. When potential unaided SA was moderate 

(50%), accuracy was higher with information acquisition (level 1; M = .69, SE = .03) than 

information analysis (stage 2; M = .36, SE = .02, p < .001, d = 1.72). This finding supports this 

hypothesis and, additionally, demonstrates the effect at perfect reliability. 

 

Figure 22. Uniform color accuracy as a function of stage of diagnostic aiding and potential 

unaided SA. Error bars show standard errors. 

Status accuracy. A similar pattern was observed in the level 2 SA measure, status 

accuracy. Based on the three-way interaction already reported, post-hoc testing revealed a 
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significant difference between information acquisition (stage 1; M = .74, SE = .04) and 

information analysis (stage 2; M = .62, SE = .04, p = .02, d = 0.83) diagnostic aiding at 60% 

reliability when potential unaided SA was moderate (50%; see Figure 23). This finding supports 

the hypothesis. Unlike the level 1 measure, which was found across levels of reliability, this 

effect was restricted to the lowest level of reliability, 60%. While the difference was not 

significant at 80% (p = 0.63, d = 0.15), the means were in the hypothesized direction. 

 

Figure 23. Status accuracy as a function of reliability and stage of diagnostic aiding at moderate 

(50%) potential unaided SA. Error bars show standard errors. 

Hypothesis 3b. Under imperfect reliability, automation of information analysis (stage 2) 

will lead to lower SA when the operator would otherwise have good (90%) SA without the aid (a 

simple effect). 

Based on the same two- and three-way interactions found for Hypothesis 3a, additional 

post-hoc testing was conducted at the good (90%) level of potential unaided SA. It was expected 
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that this hypothesis would be most evident at level 2 SA. No significant differences were found 

across the two stages of diagnostic aiding for status accuracy (see Figure 24; p = .27, d = 0.37 at 

60% reliability; p > .99, d = 0 at 80% reliability) or uniform color accuracy (p = 0.75, d = 0.06; 

see Figure 25). While the differences due to experimental effects cannot be distinguished from 

chance, the means were in the hypothesized direction at 60% reliability, with any observed 

differences disappearing at 80% reliability. In all, the results neither disconfirm, nor provide 

support for, this part of the hypothesis. 

 

 

Figure 24. Status accuracy as a function of reliability and stage of diagnostic aiding at good 

(90%) potential unaided SA. Error bars show standard errors. 
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Figure 25. Uniform color accuracy as a function of reliability and stage of diagnostic aiding at 

good (90%) potential unaided SA. Error bars show standard errors. 

 

Hypothesis 4 

The final tests examine the case in which an operator could not effectively build SA 

without the help of the robot. This effect was anticipated to be strongest at level 2 SA.  

Hypothesis 4: When the operator would otherwise have poor (10%) SA, automation of 

information analysis (stage 2) will lead to better SA (an interaction effect). 

Uniform color accuracy. For the measure of level 1 SA, uniform color accuracy, the 

significant interaction between potential unaided SA and stage of diagnostic aiding was 

examined at the poor (10%) level of potential unaided SA. No significant differences were found  

(p = .35, d = 0.21; see Figure 22). 
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Status accuracy. To test Hypothesis 4 for the measure of level 2 SA, status accuracy, 

post hoc tests were conducted for the three-way interaction to examine differences across stage 

of diagnostic aiding when potential unaided SA was poor (10%). In support of the hypothesis, a 

significant difference was observed at 80% reliability (see Figure 26); information analyses led 

to better status accuracy (M = .73, SE = .03) than information acquisition (level 1; M = .36, SE = 

.04, p < .001, d = 2.65).  

 

Figure 26. Status accuracy as a function of reliability and stage of diagnostic aiding at poor 

(10%) potential unaided SA. Error bars show standard errors. 

Performance 

Because accuracy was an additional effect of interest, the hypotheses were tested for the 

performance metric, count accuracy. 
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Manipulation Check 

There was a significant main effect for potential unaided SA on performance, F(2, 43) = 

43.47, p < .001, partial η2 = .67 (see Figure 27). Participants had the highest accuracy when 

potential unaided SA was moderate (50%; M = .50, SE = .04) and lower accuracy when potential 

unaided SA was poor (10%; M = .35, SE = .03, p < .001, d = 17.55) or good (90%; M = .37, SE = 

.03, p < .001, d = 0.50). Although this was not in line with the manipulation, it can be explained 

by the presence of interaction effects discussed further below. 

 

Figure 27. Performance as a function of potential unaided SA. Error bars show standard errors. 

Hypothesis 1 

A three-way interaction between reliability, potential unaided SA, and stage of diagnostic 

aiding was found for the performance measure, F(4, 86) = 9.55, p < .001, partial η2 = .31. At 

100% reliability, a significant difference was observed between the levels of automation at the 
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moderate (50%) level of potential unaided SA (see Figure 28). Accuracy was higher with 

information analysis (stage 2; M = .65, SE = .82) than information acquisition (stage 1; M = .47, 

SE = .07, p < .001, d = 0.59). 

 

Figure 28. Performance as a function of stage of diagnostic aiding and reliability at moderate 

(50%) potential unaided SA. Error bars show standard errors.  

Hypothesis 2 

Examination of the three-way interaction suggested that the effect of reliability depended 

on the level of potential unaided SA, so the two-way interaction of potential unaided SA and 

reliability was examined. This interaction was significant, F(4, 86) = 13.69, p < .001, partial η2 = 

.39. At poor (10%) potential unaided SA, accuracy was higher at 100% reliability (M = .41, SE  

= .06) versus 80% (M = .25, SE = .06, p = .002, d = 1.16) and 60% (M = .27, SE = .06, p = .005, 

d = 1.05) reliability. At good (90%) potential unaided SA, no significant differences were 

observed across reliability (p > .10 in each case), but the pattern of means was in the anticipated 
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direction, with increasing accuracy as reliability increased. At moderate (50%) potential unaided 

SA, while there were again no significant differences (p > .10 in each case), the pattern of results 

was more like that of poor (10%) potential unaided SA (see Figure 29).  

 

Figure 29. Performance as a function of reliability level and potential unaided SA. Error bars 

show standard errors. 

Hypothesis 3 

Post-hoc testing of the previously reported three-way interaction of potential unaided SA, 

reliability, and stage of diagnostic aiding on count accuracy revealed a significant difference 

between information acquisition (stage 1) and information analysis (stage 2) diagnostic aiding at 

all three levels of reliability, although not the in the same direction (see Figure 28). In support of 

the hypothesis, participants at 60% were more accurate with information acquisition (stage 1) 

aiding (M = .61, SE = .08) than they were with information analysis (stage 2) aiding (M = .47, SE 

= .09, p = .005, d = 0.45). At 80% reliability, however, the direction of the relationship was 
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reversed, with participants being less accurate with information acquisition (stage 1; M = .34, SE 

= .07) than with information analysis (stage 2; M = .47, SE = .08, p = .01, d = 0.40). This trend 

continued at 100% reliability, with information acquisition (stage 1; M = .47, SE = .07) leading 

to worse SA than information analysis (stage 2; M = .65, SE = .08, p < .001, d = 0.57). 

Additional post-hoc testing was conducted at the good (90%) level of potential unaided 

SA (see Figure 30). No significant differences were found across the two stages of diagnostic 

aiding for counting accuracy at 60% (p = 0.28, d = 0.26), 80% (p = 0.19, d = 0.45), or 100% (p = 

0.51, d = 0.15) reliability. 

 

Figure 30. Performance as a function of reliability and stage of diagnostic aiding at good (90%) 

potential unaided SA. Error bars show standard errors. 

Hypothesis 4 

The effects anticipated under Hypothesis 4 did not significantly affect performance. At 

80%, the effect was in the expected direction (p = 0.12, d = 0.22; see Figure 31).  



 

 79 

 

Figure 31. Performance as a function of reliability and stage of diagnostic aiding at poor (10%) 

potential unaided SA. Error bars show standard errors. 

Metacognitive Measures 

Only potential unaided SA significantly affected participants’ ratings of their own 

performance, F(2, 43) = 3.99, p = .03, partial η2 = .16 (see Figure 32). Participants rated their 

own performance worst after poor (10%) potential unaided SA missions (M = 4.36, SE = 0.23) 

compared to both good (90%; M = 4.77, SE = 0.22, p = .02, d = 0.27) and moderate (50%; M = 

4.77, SE = 0.22, p = .007, d = 0.27) ones.  
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Figure 32. Participants’ self-rating of performance as a function of potential unaided SA. Error 

bars show standard errors. 

Participants’ ratings of the robot’s performance were significantly affected by reliability, 

F(2, 44) = 25.18, p < .001, partial η2 = .53 (see Figure 33). Participants rated the perfectly 

reliable robot higher (M = 6.07, SE = 0.28) than both 80% reliability (M = 3.80, SE = 0.28, p < 

.001, d = 2.02) and 60% reliability (M = 3.47, SE = 0.29, p < .001, d = 2.32). The two imperfect 

reliability conditions were not significantly different from each other, p = .42, d = 0.29. 
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Figure 33. Participants’ rating of the robot’s performance as a function of reliability. Error bars 

show standard errors. 

 

Participants’ ratings of the human-robot team’s performance were also significantly 

affected by reliability, F(2, 44) = 12.15, p < .001, partial η2 = .36 (see Figure 34). Participants 

rated the team higher at 100% robot reliability (M = 6.09, SE = 0.32) than both 80% reliability 

(M = 4.43, SE = 0.32, p = .001, d = 1.31) and 60% reliability (M = 3.97, SE = 0.33, p < .001, d = 

1.67). The two imperfect reliability conditions were not significantly different from each other, p 

= .31, d = 0.37. 
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Figure 34. Participants’ rating of the human-robot team’s performance as a function of 

reliability. Error bars show standard errors. 
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CHAPTER FIVE: DISCUSSION 

This study examined the effects of stage of diagnostic aiding, robot reliability, and 

unaided task performance on operator situation awareness (SA). While prior research had shown 

that unreliability of automated systems can critically affect their usefulness, the impact of 

unaided task performance had not been systematically considered. This study expanded upon 

prior research by: (a) studying how SA explains the relationship between automation factors and 

performance, and (b) studying whether the effects of automation unreliability depend on the level 

of automation while considering how unaided task performance may affect this relationship. 

Overall, the results showed that reliability is not the sole determinant of effective use of 

automation. Unaided operator performance affects this relationship such that unreliable 

automation can still provide a benefit; the SA drop-off as reliability falls is mitigated when 

operators cannot easily build their own SA. 

Effects of Stage of Diagnostic Aiding and Reliability 

Summary of Results 

Hypotheses 1 and 2 served to establish effects that have been demonstrated in other 

automated systems. The first was a link between the stages of diagnostic aiding and the levels of 

SA. Specifically, support for Hypothesis 1 established that automation of information acquisition 

(stage 1), led to better level 1 SA. Although it was also expected that perfectly reliable 

information analysis (stage 2) would lead to better level 2 SA than information acquisition (stage 

1), no significant differences were found to support this second effect. 
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Hypothesis 2 stated that operator SA would be higher at higher levels of robot reliability. 

This would have provided a cognitive explanation for the effects of unreliability on performance. 

Hypothesis 2 was supported, albeit with two caveats. First, significant differences were observed, 

but only between perfect and imperfect reliability. That is, no significant difference between the 

60% reliability and the 80% reliability conditions were observed on either of the SA measures. 

Second, the relationship depended on the level of potential unaided SA; the effects were 

observed only under poor (10%) or moderate (50%) potential unaided SA, but not under good 

(90%) potential unaided SA.  

Discussion 

These findings provide theoretical support for the what of automation according to 

Wickens and Dixon’s (2007) stages of diagnostic aiding. That is, information acquisition (stage 

1) improved level 1 SA. However, the expected relationship between information analysis (stage 

2) and level 2 SA was not observed. This suggests that the information analysis (stage 2) aid did 

not lead to better SA categorically. Understanding this finding requires further consideration of 

the performance data. At moderate (50%) levels of potential unaided SA (when participants were 

required to integrate their own information with the robot’s information to the greatest extent), 

information analysis (stage 2) led to higher performance than information acquisition (stage 1). 

While the information analysis (stage 2) aid did help performance over the lower level of aiding, 

it did not improve SA.  

As far as perfect reliability is concerned, it was hypothesized that the higher the level of 

the diagnostic aiding, the better for SA. Instead, it may be that even reliable diagnostic aiding 

can put an operator out-of-the-loop while still allowing good performance. In this scenario, 
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operators may make heavy use of the automation, thus improving performance but not SA. Thus, 

operators may exhibit good performance even without good SA.  

The evidence for Hypothesis 2 confirmed the extensive prior research showing the 

importance of automation reliability. Both level 1 SA and level 2 SA improved under perfect 

reliability. While performance and SA do fall as reliability drops, the degree to which this occurs 

differs depending on the operator’s unaided performance. At poor (10%) or moderate (50%) 

potential unaided SA, the robot could be expected to have a greater role in the task, so its 

reliability was more important. It could have been the case that under good (90%) potential 

unaided SA, enough of the task could be performed without the robot such that it its mistakes did 

not affect operator SA, perhaps because the person could compare robot responses with their 

own evaluation of the information. This conclusion is supported by the performance data; a main 

effect for reliability showed that 100% reliability led to superior performance than each level of 

unreliability.  

Potential Unaided SA 

Summary of Results 

Hypotheses 3 and 4 predicted SA under unreliability at different levels of potential 

unaided SA. Specifically, under unreliability, automation of information analysis (stage 2) 

should have led to lower SA when the operator would otherwise have moderate (50%) or good 

(90%) SA without the aid. Evidence for this effect was found at moderate (50%) potential 

unaided SA. Information acquisition (stage 1) was associated with better level 1 SA at all levels 
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of reliability and better level 2 SA at 60% reliability. The effect was not observed under good 

(90%) potential unaided SA.  

Hypothesis 4 considered the case when the operator was unable to effectively perform the 

task alone. When the participant could gather little information without the diagnostic aid, and 

reliability was 80%, information analysis (stage 2) was better. This significantly affected level 2 

SA, but not level 1 SA.  

Discussion 

The purpose of testing hypotheses 3 and 4 was to determine whether imperfect 

automation would provide a benefit as unaided performance varied. Hypothesis 3 was partially 

supported. More automation (i.e., information analysis [stage 2]) led to lower SA under limited 

reliability (i.e., 60%) when the operator had moderate (i.e., 50%) access to information in the 

environment. As with the previous hypotheses, and in line with the performance data, these 

effects were evident only at the moderate (50%) level of potential unaided SA. This further 

demonstrates that unaided operator performance affects the relationships established by prior 

research. That is, this finding confirms that it is more difficult for operators to build SA when 

unreliable information is integrated than when unreliable information is passed directly to the 

operator.  

An additional contribution is that the negative effect of unreliable integrated information 

depends upon unaided operator performance. This effect was not present when potential unaided 

SA was good (90%). Perhaps participants at the good (90%) level of potential unaided SA 

simply had enough information directly available to them that unreliability in the robot was not 
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detrimental; they were not forced to use the robot and could choose to ignore it. At the moderate 

(50%) and poor (10%) levels, the robot mediated more information.  

Under poor (10%) potential unaided SA, direct access to relevant information was very 

limited (e.g., 20% of individuals), necessitating use of the robot. Here, it was expected that even 

unreliable information analysis (stage 2) would provide a benefit over information acquisition 

(stage 1). This was the case, although with limitations. When the participant could not perform 

the task alone, information analysis (stage 2) was superior to information acquisition (stage 1) at 

80% reliability. This illustrates that even when reliability is limited, more automation is not 

always bad for SA. This finding expands upon prior literature that examined the out-of-the-loop 

performance problem as an issue of too much automation. Prior work has aimed to find an 

appropriate level of automation in which operators are neither out of the loop nor overburdened. 

Rather than trying to find an ideal level of automation, the current research examined what tasks 

could be automated while maintaining operator SA. In addition to considering what tasks are 

being performed by the automation, unaided performance should be considered as well. In this 

study, the expected linear drop in SA was not present for poor (10%) potential unaided task 

performance. 

In all, these findings provide evidence that the availability of information in the 

environment is a factor that should be considered in system design to maximize SA. When the 

operator can adequately perform the task alone, increasing the stage of unreliable automation 

will cause a detriment. However, when the operator’s task performance is otherwise very poor, 

even unreliable automation can lead to higher SA. At the same time, this does not mean that 
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reliability does not need to be considered; below a certain level of reliability, the benefit of 

increased automation disappears. 

Subjective Measurement of SA 

The differences observed between objective and subjective measures of SA showed again 

that these measurement techniques capture different facets of the SA construct. This was evident 

in the pattern of intercorrelations among the measures and performance. SART captured 

elements important to task performance that were unique from the level 1 and level 2 SA 

captured by the objective measures. Consequently, the SART may be relevant, but it measures 

something different than both task performance and behavioral SA. 

The SART offers the least clear distinction between level 1 and level 2 SA. Theoretically, 

the SART is sensitive to different levels of SA to the extent that participants knew the distinction 

between the two levels and weighted their responses based on these levels. In other words, 

participants would have needed to know that knowledge of individual characteristics alone was 

insufficient and lowered their ratings accordingly for the SART to measure level 2 SA. In the 

present study, it was unlikely that participants made this distinction considering their 

unfamiliarity with the task and that they received no feedback on their task performance. Further, 

to be sensitive to SA, participants needed to know what they did not know. Even accepting that 

this may be possible under the best circumstances, the novice level of participants on this task 

probably made calibrating expectations for SA difficult. 

Ultimately, the SART may have utility in situations where operators have a high quality 

mental model of the environment in which they work and thus have a basis for making self-
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reports of their own knowledge. The SART is a subjective measure, but it may also be a holistic 

measure that is affected by a complex mix of task familiarity, attitudes, and other factors. 

Conclusions 

Implications 

The finding that the utility of unreliable automation depends on the level of automation 

provides additional support for the findings of Rovira, McGarry, and Parasuraman (2007) and 

Sarter and Schroeder (2001). Under unreliability, automation of information analysis (stage 2) 

led to lower SA than information analysis (stage 1) when the operator had moderate (50%) 

potential unaided SA. This study added to these past findings by providing cognitive 

explanations for previously found effects on performance. Additionally, this research considered 

how unaided human performance might have affected these relationships. When the participant 

could gather little information without the diagnostic aid, and reliability was 80%, information 

analysis (stage 2) lead to better level 2 SA. The findings that: (a) that the impact of automation’s 

unreliability on SA and performance is affected by the level of unaided human performance, and 

(b) that SA is a mediator of this relationship, have a number of implications for both theory and 

practice.  

Theoretical implications. This research contributes to our understanding of automation 

reliability by showing that having direct access to information changes the nature of the 

relationship between automation reliability and SA. When some information can be gathered 

directly, fallible information analysis (stage 2) automation hinders SA more than information 

acquisition (stage 1) automation, likely because operators have limited means to uncover the 
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source of the error. When it is difficult to gather information directly, however, adding 

information analysis (stage 2) does not hinder SA, and it may provide a benefit, even at the same 

level of automation reliability. This may seem to contradict prior research suggesting a stable 

point below which automation hinders performance, but a likely explanation is that the effect 

depends on additional factors that were not previously considered. In much of the prior research, 

operators were able to take over when automation failed. In this study, unaided performance was 

manipulated. In situations where operators cannot perform the task on their own, later stages of 

even unreliable automation can be beneficial. Reliability remains an important factor in effective 

use of automation, but its impact on SA and performance depend on what the operator can 

accomplish without the automation. 

The findings confirm that diagnostic aiding is a useful taxonomy for describing the 

cognitive tasks handled by automation and that reliable diagnostic aiding is useful for reducing 

cognitive load, improving SA, and supporting task performance. It is useful to consider what is 

being automated and not just how much automation is being used. This research connects 

Endsley’s (1994) levels of SA with the stages of diagnostic aiding (Wickens & Dixon, 2007); it 

supports Horrey et al.’s (2009) theory that stages of diagnostic aiding have corresponding effects 

on levels of SA. The inclusion of information acquisition (stage 1) provides operators with a 

measurable increase in level 1 SA. At the same time, automation of information analysis (stage 

2) leads to better performance. This is because level 1 SA is not sufficient on its own to perform 

the identification task; it is only when this information is integrated that it becomes level 2 SA. 

This research also has implications for Endsley’s (1994) model of SA. Under this model, 

SA at level 1 is the foundation for SA at level 2. The results of this study support this taxonomy; 
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the two measures were strongly correlated and consistently predicted performance, with the level 

2 measure displaying slightly stronger correlations with performance. The level 1 and the level 2 

SA measures were generally sensitive to the same manipulations, with the level 1 SA measure 

finding a more widespread effect of level of diagnostic aiding (i.e., across all levels of reliability) 

than level 2 SA (which found a significant effect only at 60% reliability). Thus, level 1 SA 

supports level 2 SA, which was a significant predictor of task performance. Because of the 

applied nature of the SA construct, care must be taken to avoid self-referential definitions of 

knowledge (e.g., using good performance to identify what needed to be known which, in turn, 

improved performance). In this study, I attempted to minimize this problem by creating a task 

where management of quantifiable elements was essential to task performance. This 

methodology resulted in a situation where information corresponding to level 1 SA was 

withheld. Under the model, these operators would have good level 2 SA and poor level 1 SA, 

which should not be possible if level 1 is the foundation of level 2 SA. It could also have been 

the case that if the information at level 1 was not needed to perform the task, it stopped being 

part of SA, leaving only level 2 information. The results, which do not completely settle this 

issue, provide more support for the former conclusion. While information acquisition (stage 1) 

clearly supported level 1 SA, the conditions under which information analysis (stage 2) lead to 

higher SA were shown on both level 1 and level 2 SA measures. 

The results provide a starting point for reconciling studies finding a positive relationship 

between reliability and performance with those finding a negative relationship. Past studies have 

found a performance decrement as reliability increased but remained imperfect. In this study, in 

contrast, the 60% reliable aid never led to better SA or performance than the 80% reliable one. 
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Because participants were trained on the true reliability of the robot, this outcome suggests that a 

performance decrement as reliability increases (but remains under 100%) would be due to 

inappropriate trust, rather than operator strategy selection. Even in the lowest reliability 

condition with information analysis (stage 2) diagnostic aiding, 60% SA and performance could 

have been achieved by ignoring everything except the robot’s output. Participants tended not to 

do this; they did not follow the robot indiscriminately. If the robot had been ignored, participants 

would have been limited to 10% SA and performance. Participants tended to score above this 

level. Even at the lowest level of reliability, the robot still had an advisory role. Thus, this study 

suggests that a priori knowledge of automation reliability may be a factor in the relationship 

between reliability and performance. 

Practical implications. These results offer a number of recommendations for the design 

of future automated systems working interdependently with people. For system design, reliability 

improves performance, an effect that is mediated by SA. Perfect reliability is the best-case design 

scenario but rarely, if ever, possible. This research offers potential solutions for the problem of 

increasing technological capability with limited reliability. One such solution could be 

implemented in the robot; a future robot could anticipate the performance of its human operator 

and adjust its capability accordingly. For example, if the robot is uncertain of its results but 

knows the human operator can easily see all relevant elements in the situation, it should provide 

low-level information so that the operator remains in the loop. Conversely, if the robot is 

uncertain of its results but also anticipates poor unaided performance (perhaps smoke makes it 

difficult for the operator to see), it should provide integrated information. In this way, future 

robot systems could support an operator at the time and to the degree needed while minimizing 
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the negative effects of unreliability. The results of SA and metacognitive analyses showed that 

60% and 80% reliability were both significantly worse than 100% reliability but not significantly 

different from each other. However, when considering the operator’s ability to perform the task 

unaided, 80% reliability had similar effects on SA as perfect reliability. The effectiveness of 

information analysis (stage 2) diagnostic aiding also depended on unaided performance, and it 

provided a benefit over information acquisition (stage 1) at 80% reliability. Ultimately, the 

information processing needs of the task, the operator’s ease of acquiring information, and the 

difficulty of information integration may determine what levels of reliability are useful. By 

considering these factors, system designers can implement more effective robots. 

Based on the results of this study, the capability of the system should be balanced against 

the ease at which the operator can override or ignore the automated system. If operators have 

reasonable options for turning off the automation, then providing filtered, low-level data is 

preferable if much of that data are likely to be wrong. If turning off the automation means 

missing important system or environmental information, however, then even unreliable 

automation may still be useful. In that case, system designers should maximize the capability of 

the system to allow human operators to obtain the most benefit. 

Although this study was primarily about system design, these results offer a number of 

recommendations for selection and training. This study demonstrated that an operator’s unaided 

performance affects the impact of reliability. While unaided performance was manipulated in 

this study across missions with different characteristics, selection and training may also improve 

unaided performance. Consequently, reliability may become more important as operators build 

expertise due to training or selection. In this case, it may be helpful to provide experts with the 
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ability to request low-level data to support their SA when the data may be unreliable. 

Additionally, novice operators may see the most benefit from unreliable automation. When 

possible, training should include information about the true reliability of the system, feedback 

about operator performance, and strategies for mitigating the effects of unreliability. 

Limitations of the Study 

Due to the diversity of automated systems and the challenge of measuring applied 

cognition, several limitations of this study should be discussed. The first is due to the nature of 

the SA construct and challenges associated with its measurement. While the results show how 

SA may be improved, the magnitude of SA is a useful metric only for comparison across very 

similar tasks. Because SA is a measure of relevant knowledge, each task has different knowledge 

requirements that are not easily compared. Quantifying this knowledge remains a challenge in 

real-world situations where all relevant knowledge may not be known. The purpose of this study 

was to see how manipulations of diagnostic aiding, robot reliability, and unaided task 

performance interacted to affect SA. Using a controlled experiment allowed conclusions to be 

made about how SA may be affected in relative terms (i.e., identification of interventions that 

will improve versus hinder SA). However, specific predictions about the magnitude of SA 

improvement in a real world task are not possible. Because of the importance of relevant 

information underlying the SA construct, and the fact that relevance is wholly task-dependent, 

two dissimilar tasks cannot be compared to evaluate which one results in better SA. 

In line with this is variation observed across measurement techniques. Although both the 

SART and the objective measure quantified SA, they measured different facets of the construct. 

Theoretically, a self-report measure of SA can only assess what an operator believes is known 
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relative to what the operator believes needs to be known (Jones, 2000). A major limitation with 

this technique is that operators may suffer from “unknown unknowns” in that they are not aware 

of what knowledge is needed. In this study, participants may have had difficulty calibrating their 

expectations for good SA. While the objective measures did not suffer from this issue, their 

effectiveness depended on the knowledge measured being necessary for task performance. I 

sampled this knowledge by measuring objective SA multiple ways. My finding that the objective 

measures did not provide exactly the same pattern of results was due primarily to whether level 1 

or level 2 SA was assessed. Another source of differences may have been in the strategies used 

by participants. For example, some participants may have prioritized awareness of uniform color 

after seeing it in the questionnaire, even though this was not their primary task. 

Both the task and the participant pool leave some questions about expert performance 

unanswered. The participants in this study were novices at both the task and the domain of 

military operations. Because of this, the task and its training were constructed to be within a 

difficulty range that avoided ceiling and floor effects. While the results confirm that the task did 

fall within this difficulty range, it is not known how these effects may vary for experts in more 

complex environments. Real world systems require operators to deal with more complexity than 

was presented in this study. In this study, participants tracked the movement of individuals with 

five characteristics among three locations (outdoors, the visible room, and the hidden room). In a 

real world task, operators may need to track many more interacting elements.  

The study conclusions are also limited to diagnostic aiding. The later stages of 

automation, decision selection (stage 3) and action implementation (stage 4) were not measured, 

but, more importantly, they were not part of the task. This was a tradeoff made to distinguish the 
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information processing components of the task from the psychomotor components of the task. In 

order to ensure that the SA measure captured the knowledge needed for the task, the task itself 

was an information management mission. In a task spanning all possible levels of automation, 

operators would be responsible for applying the knowledge gained in the early stages to make a 

decision, such as a decision to remain in place or move to a new waypoint. Because of this, level 

3 SA, projection of future states, was neither important in the task nor a focus of the study.  

Areas for Future Study 

A future study could add to these findings by expanding the reliability manipulation in 

two ways. First, it could add additional levels of reliability. While 100% reliability was different 

from both 80% and 60% reliability, the two levels of imperfect reliability did not significantly 

differ in the resulting SA. By adding additional levels of reliability between 60% and 100%, the 

effects of imperfect reliability can be more clearly distinguished. 

Second, a future study could make more refined distinctions between reliability and 

perceptions of reliability. Reliability is different from operators’ perceptions of system 

reliability, and research should look at cases where the true reliability of the system is known to 

the operators. Anecdotally, a few participants in the 60% reliability condition stated that the 

robot made a large number of mistakes or that it was wrong more often than it was right, even 

though that was not the case. A future study could add perceptions of system reliability or 

provide more exposure to the true reliability level with guided feedback, to see if alerting 

participants to automation errors leads to more accurate perceptions of system reliability. 

Future research can also extend these findings by expanding the task to encompass the 

other stages of automation. In a task spanning all possible levels of automation, operators would 
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be responsible for applying their task knowledge. An unknown question is the degree to which 

feedback provided to the operator about the success or failure of their decision making may 

influence the relationship between unaided performance and SA. The SART might be more 

useful when operators are provided with feedback on their decision making as they gain better 

understanding of the information they need to know. 

Finally, a future challenge will be the application of these findings to settings in which 

the necessary information is difficult to model a priori. Future battlefields will lead to 

complexity in information acquisition, analysis, and decision making. The present research 

would be augmented by research examining how the relationship between SA and the operator’s 

potential unaided SA, reliability, and level of automation is affected when the environment is 

highly dynamic, requiring adaption not only in information processing, but also in strategy 

selection. This could be accomplished by testing these effects in a real-world, complex 

environment. In doing this, future research should measure what is automated and not just how 

much automation is used; diagnostic aiding provides a useful framework for comparing the 

effects of diverse forms of automation that perform similar information processing tasks. 
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APPENDIX C: 

CONFOUNDING VARIABLE TABLE 
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Table 16  

Confounding variables 

Confounding 

Construct 

Study 

Constructs 

Affected 

Directionality 

& Type 

Effect 

size 

Method of 

control 
Measure References 

Robot reliability 

SA 

Interactive 

effects with 

level of 

automation, 

potential 

unaided SA Large 

Manipulated 

(IV) and 

measured   

Situation 

awareness (SA)    

Measured 

(DV)   

Level of 

automation 

SA 

Interactive 

effects with 

potential 

unaided SA, 

robot reliability Large 

Manipulated 

(IV)   

Potential unaided 

situation 

awareness 

SA 

Interactive 

effects with 

level of 

automation, 

robot reliability Large 

Manipulated 

(IV) and 

measured   

Situation 

assessment 
SA 

Positive main 

effects 

Full 

mediation 
None   

Sensation, 

Perception, 

Attention 

SA Level 1 
Positive main 

effects 
Medium   

Wickens & 

Horrey, 2001 

Cognition, 

Integration, 

Working 

Memory 

SA Level 2 
Positive main 

effects 
Medium   

Wickens & 

Horrey, 2001 

Reaction time 

Potential 

unaided SA, 

SA 

Negative main 

effects Low 

Exclude: 

measure and 

covary 

Reaction 

time  

Visual acuity SA Level 1 
Positive main 

effects 
Large 

Exclude 

outliers from 

sample 

Self-

report 
 

Spatial ability SA Level 2 
Positive main 

effects 
Large 

Exclude: 

measure and 

covary 

Guilford-

Zimmer

man 

spatial 

orientatio

n 

Barnes, 

Jentsch, 

Chen, Haas, 

& Cosenzo, 

2008 

Decision making SA 

Interactive 

effects with 

level of 

automation 

Small 

Ignore: 

minimize 

decision 

making in 

task  
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Confounding 

Construct 

Study 

Constructs 

Affected 

Directionality 

& Type 

Effect 

size 

Method of 

control 
Measure References 

Reading 

comprehension 

Potential 

unaided SA, 

SA 

Positive main 

effects 
Very low Ignore  

Motivation SA 
Positive main 

effects 
Small Ignore  

Riley et al., 

2010 

Attitudes towards 

robots 

Potential 

unaided SA, 

SA 

Positive main 

effects 
Low Ignore  

Riley et al., 

2010 

Attitudes towards 

computers 

Potential 

unaided SA, 

SA 

Positive main 

effects 
Low Ignore  

Riley et al., 

2010 

Attitudes towards 

military 

Potential 

unaided SA, 

SA 

Positive main 

effects 
Low 

Ignore but 

include in 

study 

recruitment 

materials 

  

Military 

experience 

Potential 

unaided SA, 

SA 

Positive main 

effects Low 

Exclude: 

measure and 

covary   

Robot speed SA 
Nonlinear 

relationship 
Low 

Control: fix at 

level 
 

Riley et al., 

2010 

Robot mobility 

(vs. stationary) 
SA 

Negative main 

effects (mobility 

increases 

complexity) 

Low 
Control: fix at 

level 
 

Riley et al., 

2010 

Risk to operator 

Potential 

unaided SA, 

SA 

Nonlinear 

relationship 
High 

Control: fix at 

level 
 

Riley et al., 

2010 

Operator mobility 

Potential 

unaided SA, 

SA 

Negative main 

effects (mobility 

increases 

complexity) 

Medium 
Control: fix at 

level 
 

Riley et al., 

2010 

Robot dynamics SA 
Nonlinear 

relationship 
Low Ignore  

Riley et al., 

2010 

Distractors 

Potential 

unaided SA, 

SA 

Negative main 

effects 
High 

Control: fix at 

level 
 

Riley et al., 

2010 

Task familiarity 

Potential 

unaided SA, 

SA 

Positive main 

effects 
High 

Control: fix at 

level 
 

Riley et al., 

2010 

Terrain 

Robot 

mobility, 

operator 

mobility, 

Potential 

unaided SA, 

SA 

Negative main 

effects (rougher 

terrain increases 

complexity) 

Low 
Control: fix at 

level 
 

Riley et al., 

2010 

Display size 

Potential 

unaided SA, 

SA 

Interactive 

effects with 

visual acuity 

Low 
Control: fix at 

level 
 

Riley et al., 

2010 



 

 105 

Confounding 

Construct 

Study 

Constructs 

Affected 

Directionality 

& Type 

Effect 

size 

Method of 

control 
Measure References 

Display 

resolution 

Potential 

unaided SA, 

SA 

Interactive 

effects with 

visual acuity 

Low 
Control: fix at 

level 
 

Riley et al., 

2010 

HRI modality SA 

Interactive 

effects with 

level of 

automation, 

motor skills 

Medium 
Control: fix at 

level 
 

Riley et al., 

2010 

Robot control 

devices 
SA 

Interactive 

effects with 

individual 

differences, task 

factors 

Low 
Control: fix at 

level 
 

Riley et al., 

2010 

Latency of robot 

communication 
SA 

Negative main 

effects 
High 

Control: fix at 

level 
 

Riley et al., 

2010 

Base rate of each 

possible decision 

Potential 

unaided SA, 

SA 

Nonlinear 

relationship High 

Control: fix at 

level   

Number of 

potential 

decisions 

Potential 

unaided SA, 

SA 

Negative main 

effects High 

Control: fix at 

level   

Task complexity 

Potential 

unaided SA, 

SA 

Negative main 

effects High 

Control: fix at 

level   

Robot authority 

to act 

Level of 

automation, 

SA Unknown High 

Control: fix at 

level   

Robot capability 

to perform work 

Level of 

automation, 

reliability, SA 

Positive main 

effects  

Control: fix at 

level   

Trust 

Perceived 

complexity 

(workload) 

Interactive 

effects with 

reliability 

Medium 

Exclude: 

measure and 

covary 

  

Mental model 

quality 
SA 

Interactive 

effects with 

training 

effectiveness 

Medium 
Control: fix at 

level 
  

Communication 

with robot - 

frequency 

SA 
Nonlinear 

relationship 
Low Control: fix at 

level 

  

Communication 

with robot - 

accuracy 

Robot 

reliability, SA 

Positive main 

effects 
Low Control: fix at 

level 

  

Automation 

adaptiveness 
SA 

Positive main 

effects 
Medium 

Control: fix at 

level 
 

Riley et al., 

2010 

General 

intelligence 

Potential 

unaided SA, 

SA 

Positive main 

effects Low Ignore   
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Confounding 

Construct 

Study 

Constructs 

Affected 

Directionality 

& Type 

Effect 

size 

Method of 

control 
Measure References 

Training 

effectiveness 

Potential 

unaided SA, 

SA 

Positive 

relationship Medium 

Control: fix at 

level   

Closure speed 

Potential 

unaided SA, 

SA 

Positive main 

effects Medium 

Exclude: 

measure and 

covary   

Motor skills 

Potential 

unaided SA, 

SA 

Positive main 

effects Low Ignore   

Reliance 

SA 

Nonlinear 

relationship Medium 

Ignore but 

measure  

Parasuraman, 

Mouloua, & 

Molloy, 1996 

Compliance 
SA 

Nonlinear 

relationship Medium 

Ignore but 

measure   

Confidence 

Potential 

unaided SA, 

SA 

Nonlinear 

relationship Medium 

Ignore but 

measure   

Fatigue 

Potential 

unaided SA, 

SA 

Negative main 

effects High 

Control: fix at 

level   

Skill degradation 

Potential 

unaided SA, 

SA 

Negative main 

effects Medium 

Control: fix at 

level   

Strategy 

effectiveness 

Potential 

unaided SA, 

SA 

Positive main 

effects High 

Control: fix at 

level   

Stress 

Potential 

unaided SA, 

SA 

Nonlinear 

relationship Medium 

Control: fix at 

level   

Perceived robot 

reliability SA 

Nonlinear 

relationship High Measure   

Environmental 

complexity 

Potential 

unaided SA, 

SA 

Negative 

relationship High 

Control: fix at 

level   
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APPENDIX D: 

GRAPHS OF HYPOTHESIZED INTERACTIONS 
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Figure 35. Graph of the hypothesized interaction between stage of diagnostic aiding and 

potential unaided SA at 100% robot reliability. 

 

 
Figure 36. Graph of the hypothesized interaction between stage of diagnostic aiding and 

potential unaided SA at 80% robot reliability. 
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Figure 37. Graph of the hypothesized interaction between stage of diagnostic aiding and 

potential unaided SA at 60% robot reliability. 

 

 
Figure 38. Graph of the hypothesized interaction between stage of diagnostic aiding and 

reliability at good (90%) potential unaided SA. 
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Figure 39. Graph of the hypothesized interaction between stage of diagnostic aiding and 

reliability at moderate (50%) potential unaided SA. 

 

 
Figure 40. Graph of the hypothesized interaction between stage of diagnostic aiding and 

reliability at poor (10%) potential unaided SA. 
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Figure 41. Graph of the hypothesized interaction between potential unaided SA and reliability at 

acquisition with analysis (stage 2) diagnostic aiding. 

 

 
Figure 42. Graph of the hypothesized interaction between potential unaided SA and reliability at 

acquisition (stage 1) only diagnostic aiding.  



 

 112 

APPENDIX E:  

EXAMPLE OF ROBOT ERRORS 
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Scenario: Information acquisition (stage 1), 80% reliable robot, Poor (10%) 
potential unaided SA 
All images show the same point in time during the mission. 
 

1. Ground truth: 
Arrows point to future positions of individuals. 

 
Characteristics of the 10 individuals inside building:  
 

ID 
Status 

Uniform 
Color Armed Direction Firing 

1 Friendly Blue  Armed  Retreating  Not firing 

2 Hostile Green  Armed  Approaching  Not firing 

3 Friendly Blue  not armed  Approaching  Not firing 

4 Hostile Green  Armed  Stationary Not firing 

5 Friendly Green  Not armed Approaching  Not firing 

6 Hostile Green  Armed  Approaching  Not firing 

7 Friendly Blue  Not armed Approaching  Not firing 

8 Hostile Red  Not armed Approaching  Not firing 

9 Hostile Red  Armed  Approaching  Not firing 

10 Friendly Green  Not armed Approaching  Not firing 

 
1. What the human can see: 

 
Characteristics of the 2 individuals the human can see:  
 

Uniform Color Armed Direction Firing 

Blue  Not armed   Approaching  Not firing 

Green  Armed  Stationary Not firing 
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1. What the robot can see (in this scenario the robot has 80% reliability; red X indicates error in 
robot perception): 

 
Characteristics as perceived by the robot:  
 

ID 
Status 

Uniform 
Color Armed Direction Firing 

1 Friendly Blue  Armed  Retreating  Not firing 

2 Friendly 
(wrong) Blue (wrong)  Armed  Approaching  Not firing 

3 Hostile (wrong) Red (wrong) not armed  Approaching  Not firing 

4 Hostile Green  Armed  Stationary Not firing 

5 Friendly Green  Not armed Approaching  Not firing 

6 Hostile Green  Armed  Approaching  Not firing 

7 Friendly Blue  Not armed Approaching  Not firing 

8 Hostile Red  Not armed Approaching  Not firing 

9 Hostile Red  Armed  Approaching  Not firing 

10 Friendly Green  Not armed Approaching  Not firing 

 
 

2. What the robot reports to the human (red X indicates errors, which will not be shown to the 
participant): 
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APPENDIX F:  

EXAMPLES OF EXPERIMENTAL SCENARIOS 
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Scenario Example 1 
Information acquisition with analysis (stage 2), 100% reliable 
robot, Poor (10%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 

 
 

3. What the robot reports to the human: 

    
 



 

 117 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 2 
Information acquisition with analysis (stage 2), 80% reliable 
robot, Poor (10%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 
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3. What the robot reports to the human: 

    
 
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 3 
Information acquisition with analysis (stage 2), 60% reliable 
robot, Poor (10%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 
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2. What the human sees: 

 
 

3. What the robot reports to the human: 

    
 

4. Ground truth: 
Arrows point to future positions of individuals. 
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Scenario Example 4 
Information acquisition with analysis (stage 2), 100% reliable 
robot, Moderate (50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 

 
 

3. What the robot reports to the human: 
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4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 5 
Information acquisition with analysis (stage 2), 80% reliable 
robot, Moderate (50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 
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3. What the robot reports to the human: 

    
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 6 
Information acquisition with analysis (stage 2), 60% reliable 
robot, Moderate (50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 
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2. What the human sees: 

 
 

3. What the robot reports to the human: 

   
 

4. Ground truth: 
Arrows point to future positions of individuals. 
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Scenario Example 7 
Information acquisition with analysis (stage 2), 100% reliable 
robot, Good (90%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 

 
 

3. What the robot reports to the human: 
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4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 8 
Information acquisition with analysis (stage 2), 80% reliable 
robot, Moderate (50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 
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3. What the robot reports to the human: 

   
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 9 
Information acquisition with analysis (stage 2), 60% reliable 
robot, Moderate (50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 
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2. What the human sees: 

 
 

3. What the robot reports to the human: 

    
 

4. Ground truth: 
Arrows point to future positions of individuals. 
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Scenario Example 10 
Information acquisition (stage 1), 100% reliable robot, Poor 
(10%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 

 
 

3. What the robot reports to the human: 
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4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 11 
Information acquisition (stage 1), 80% reliable robot, Poor 
(10%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 
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3. What the robot reports to the human: 

  
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 12 
Information acquisition (stage 1), 60% reliable robot, Poor 
(10%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 
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2. What the human sees: 

 
 

3. What the robot reports to the human: 

  
 

4. Ground truth: 
Arrows point to future positions of individuals. 
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Scenario Example 13 
Information acquisition (stage 1), 100% reliable robot, 
Moderate (50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 

 
 

3. What the robot reports to the human: 
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4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 14 
Information acquisition (stage 1), 80% reliable robot, Moderate 
(50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 
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3. What the robot reports to the human: 

  
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 15 
Information acquisition (stage 1), 60% reliable robot, Moderate 
(50%) potential unaided SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 
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2. What the human sees: 

 
 

3. What the robot reports to the human: 

  
 
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 16 
Information acquisition (stage 1), 100% reliable robot, Good (90%) potential unaided SA 
All images show the same point in time during the mission. 
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1. What the robot can see: 

 
 

2. What the human sees: 

 
 

3. What the robot reports to the human: 
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4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 17 
Information acquisition (stage 1), 80% reliable robot, Moderate (50%) potential unaided 
SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 

 
 

2. What the human sees: 
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3. What the robot reports to the human: 

  
 

4. Ground truth: 
Arrows point to future positions of individuals. 

 
 
Scenario Example 18 
Information acquisition (stage 1), 60% reliable robot, Moderate (50%) potential unaided 
SA 
All images show the same point in time during the mission. 
 

1. What the robot can see: 
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2. What the human can see: 

 
 

3. What the robot reports to the human: 

  
 

4. Ground truth: 
Arrows point to future positions of individuals. 
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APPENDIX G: INFORMED CONSENT 
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APPENDIX H: POST-PARTICIPATION INFORMATION 
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APPENDIX I: PARTICIPANT INSTRUCTION VIDEO SLIDES  
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100% Reliability Only 
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80% Reliability Only 

 

60% Reliability Only 
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APPENDIX J:  

PARTICIPANT INSTRUCTION VIDEO SCRIPT 

 

  



 

 162 

START SLIDESHOW: 

ALL CONDITIONS 

NARRATOR 

Soldiers and first responders use robots to 

gather information in dangerous environments. 

In these missions, a robot may help maintain 

better awareness. Pay close attention to this 

mission training video, because it will help 

you do well in the challenging task you will be 

performing in a few minutes. But first, let me 

introduce you to your mission goals. 

In this study, you will be working with a robot 

to identify people within a building. You will 

complete 12 missions, and each mission is about 

5 minutes long. During the missions, you will 

be prompted to answer questions measuring your 

awareness. After each mission, you will be 

asked to rate how well you and the robot did at 

identifying people in the building. 

In each mission, your objective is the same: 

identification. All the people within the 

building are either FRIENDLY or HOSTILE. You 

can determine if someone is friendly or hostile 

based 4 characteristics. Every person has these 

four characteristics: 

First, a uniform color. Uniforms are red, 

green, or blue. 

Narrator pauses so participant can examine uniform colors. 

Second, people are either armed or not armed. 

When armed, they are holding a rifle.  

Narrator pauses so participant can examine the examples. 

Third, people will be wearing a helmet or not 

wearing a helmet.  

Narrator pauses so participant can examine the examples. 
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Finally, people will either be walking or 

running. People will always run or they will 

always walk. So even if a runner stops for a 

few seconds, they are still a runner. This is 

an example of running. This is an example of 

walking.  

Narrator clicks on each video example to play it and pauses 

while each plays. 

These characteristics are used to determine if 

someone is friendly or hostile. There are 

three, and only three, conditions under which a 

person should be considered HOSTILE. 

People are HOSTILE if they have a green uniform 

and are armed. On the left is an example of a 

hostile individual because he has green uniform 

and is armed. 

Or, they are armed and wearing a helmet. In the 

middle is an example of a hostile individual 

because she is armed and wearing a helmet. 

Or, they are wearing a red uniform and are 

running. The individual on the right has a red 

uniform and is running, so he is hostile. 

If one of those three conditions is not met, 

then people are FRIENDLY. For example, someone 

who walks and is unarmed would be friendly, 

because they don’t meet any of the three 

conditions. 

Try these two practice examples. Is this 

individual FRIENDLY or HOSTILE? 

This individual is hostile. They were running, 

and they wore a red uniform. 

Is this individual FRIENDLY or HOSTILE? 

Narrator clicks on video and waits for it to play. 

This individual is friendly. He doesn’t meet 
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any of the three conditions for being hostile. 

He is armed, but wearing blue. He is armed, but 

not wearing a helmet. And he was running, but 

his uniform is blue. 

To review: Your mission is to know the friendly 

or hostile status of every individual in the 

building. You will determine friendly or 

hostile status based on the four 

characteristics. Each mission will pause at 

random times. When the mission pauses, you will 

be asked about how many friendly or hostile 

people are in the building. You will also be 

asked about the friendly or hostile status of 

the last person who entered the building, and 

the uniform color of the last person who 

entered the building. Always answer with the 

last person who entered the building at either 

entrance, no matter if they have left or not. 

There is one catch. When answering these 

questions, you need to answer about the entire 

building. The buildings in every mission have 

multiple rooms, but your camera feed only shows 

one room. There might be people in the other 

rooms. In order to answer the mission 

questions, you will need information about 

people in other rooms. To help you, you will 

have the aid of a robot. 

Your robot is a small vehicle with a camera 

mounted on its front. It is able to detect 

people, and it can see through walls. During 

the missions, you won’t see the robot, but it 

will provide you with information about people 

in the building.  

This is what your mission screen will look 

like. On top is your camera feed. Below are two 

lists. On the left, the robot will give you 

information about people in the current room. 

Narrator clicks to advance to the next annotation. 
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These are the same people you can see in the 

camera feed. On the right, the robot will give 

you information about people in other rooms. 

Narrator clicks to advance to the next annotation. 

These people you cannot see yourself. 

People sometimes move from one room to another. 

When this happens, they will disappear off of 

one list and reappear in the other.  

Remember, when you are asked questions about 

the number of friendly and hostile people and 

the last person who entered, these questions 

are always about the entire building, not just 

the room shown in the camera feed. So, you will 

need information from the robot about the other 

rooms. 

There are a few more things you should know 

about your robot. 

Depending on the mission, your robot may be 

able to provide one of two kinds of 

information. Either the robot will provide you 

with the characteristics of each person- their 

uniform color, armed status, helmet status, and 

walking speed. Or, the robot will summarize 

this information and provide you with a 

conclusion about whether the person is FRIENDLY 

or HOSTILE. 

At random times in the middle of each mission, 

you will be asked about two things: One, The 

number of friendly and hostile people in the 

building right now. Do not report how many 

friendly or hostile people have been in the 

building total. Instead, report how many 

friendly and hostile people are in the building 

right now. If two friendly people are in the 

building and one leaves, you would report 1. 

Second, whether the last individual who entered 

the building is FRIENDLY or HOSTILE, and, the 

color of their uniform. When you report about 
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the last individual in the building, it does 

not matter if that individual is still present. 

Always report on the last person who entered, 

no matter if they have already left or not. 

Again, always answer these questions about the 

state of the building at the current time. 

100% RELABILITY CONDITION 

NARRATOR 

Your robot is perfectly reliable. That means 

that it never makes a mistake detecting 

friendly versus hostile individuals, and it 

never confuses the characteristics of any 

person. Furthermore, your robot never misses 

people who are in the building, and it never 

sees people in the building who are never 

there. For these reasons, you should rely upon 

the robot’s information as much as possible. 

80% RELABILITY CONDITION 

NARRATOR 

Your robot has an 80% reliability rate. That 

means that for each person who comes into the 

building, there is a 20% chance that the robot 

will make a mistake in seeing the person’s 

uniform color. The robot makes these mistakes 

independently; every time a new person comes 

into the building, the odds are exactly the 

same – 80% chance of the robot being correct. 

It doesn’t matter if the robot hasn’t made a 

mistake in a while or just made 2 mistakes in a 

row. Each new person is 80% likely to be seen 

correctly. When the robot does make a mistake, 

it confuses the uniform color. This means that 

the robot will give you the wrong uniform color 

and the wrong friendly/hostile label. The only 

way you can know if the information is wrong is 

if you can see the individual at the same time. 

Then you can compare the robot’s information to 

your own information. When you cannot see the 

person, you should rely on the robot. Note that 
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confusing uniform color and giving the wrong 

friendly/hostile label is the only kind of 

mistake the robot can make. Your robot never 

misses people who are in the building, and it 

never sees people in the building who are never 

there. 

60% RELABILITY CONDITION 

NARRATOR 

Your robot has a 60% reliability rate. That 

means that for each person who comes into the 

building, there is a 40% chance that the robot 

will make a mistake in seeing the person’s 

uniform color. The robot makes these mistakes 

independently; every time a new person comes 

into the building, the odds are exactly the 

same – 60% chance of the robot being correct. 

It doesn’t matter if the robot hasn’t made a 

mistake in a while or just made 2 mistakes in a 

row. Each new person is 60% likely to be seen 

correctly. When the robot does make a mistake, 

it confuses the uniform color. This means that 

the robot will give you the wrong uniform color 

and the wrong friendly/hostile label. The only 

way you can know if the information is wrong is 

if you can see the individual at the same time. 

Then you can compare the robot’s information to 

your own information. When you cannot see the 

person, you should rely on the robot. Note that 

confusing uniform color and giving the wrong 

friendly/hostile label is the only kind of 

mistake the robot can make. Your robot never 

misses people who are in the building, and it 

never sees people in the building who are never 

there. 

ALL CONDITIONS 

NARRATOR 

To recap, you will be doing 12 missions, 

starting with 2 practice missions. At random 

times during the mission, the mission will 

pause, and you will be asked how many friendly 
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and hostile people are in the building. You 

will also be asked about the last person who 

entered the building.  

Your robot can provide you with information 

about people in the building. On some missions, 

it will give you a friendly/hostile labels. On 

other missions, it will give you the 

characteristics of individuals and you will 

have to decide if they are friendly or hostile. 

Remember the conditions under which someone is 

hostile, and refer to the card next to you if 

you forget. 

You can go back in this video by moving your 

mouse to the bottom of the screen and dragging 

the slider back. Ask the researcher if you need 

help.  

END SLIDE SHOW: 

THE END 
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