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Many large databases of personal information currently exist in the hands

of corporations, nonprofits, and governments. The data in these databases could

be used to answer any number of important questions, aiding in everything from

basic research to day-to-day corporate decision-making. These questions must be

answered while respecting the privacy of the individuals whose data are being used.

However, even defining privacy in this setting can be difficult. The standard defini-

tion in the field is differential privacy [25]. During the years since its introduction,

a wide variety of query algorithms have been found that can achieve meaningful

utility while at the same time protecting the privacy of individuals. However, dif-

ferential privacy is a very strong definition, and in some settings it can seem too

strong. Given the difficulties involved in getting differentially private output to all

desirable queries, many have looked for ways to weaken differential privacy without

losing its meaningful privacy guarantees.

Here we discuss two such weakenings. The first is computational differential

privacy, originally defined by Mironov et al. [56]. We find the promise of this



weakening to be limited. We show two results that severely curtail the potential

for computationally private mechanisms to add any utility over those that achieve

standard differential privacy when working in the standard setting with all data held

by a single entity.

We then propose our own weakening, coupled-worlds privacy. This definition is

meant to capture the cases where reasonable bounds can be placed on the adversary’s

certainty about the data (or, equivalently, the adversary’s auxiliary information).

We discuss the motivation for the definition, its relationship to other definitions

in the literature, and its useful properties. Coupled-worlds privacy is actually a

framework with which specific definitions can be instantiated, and we discuss a

particular instantiation, distributional differential privacy, which we believe is of

particular interest.

Having introduced this definition, we then seek new distributionally differen-

tially private query algorithms that can release useful information without the need

to add noise, as is necessary when satisfying differential privacy. We show that

one can release a variety of query output with distributional differential privacy,

including histograms, sums, and least-squares regression lines.
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Chapter 1: Introduction

Consider a hospital with a database of patient records. A medical researcher

has a hypothesis regarding the cause of some disease. He suspects, say, that smoking

causes lung cancer. A natural first step would be to check a database of existing

patients for a correlation between lung cancer and a history of smoking. Of course,

such investigations are only possible if they can be done while respecting the privacy

of the patients. Currently, this privacy is usually protected through legal safeguards.

The researcher must sign legal agreements promising to keep the data confidential. If

the researcher makes a mistake and publishes information that violates privacy, the

researcher and hospital face potential liability. The whole process involves significant

bureaucratic overhead.

Not only is the red tape expensive and inconvenient, but it also prevents

beneficial research from taking place. Often, the access to this sort of data is being

provided largely as a favor to the researcher, and any need for costly and time-

consuming oversight makes it likely that the data owner will simply avoid the project

altogether. Even a benevolent data owner willing to take the time and effort to get

to know researchers and draw up contracts faces practical restrictions. Data can be

made accessible to a small number of people, but not to the huge research community
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that is engaged when data is made freely available electronically.

Furthermore, once a researcher has access to the data, the problem of privacy

inevitably reemerges later on. In most situations of this sort (certainly all academic

research) the eventual goal is public dissemination of the learned information. The

researcher must eventually publish something. Of course, a competent researcher

will not publish raw private data, but even “summary” statistics and study results

have the potential to violate the privacy of the people from whose data they are

learned. The researcher must make a decision about what information is safe to

publish, and in order to do this they need some sort of standard to identify privacy-

violating information.

The field of statistical database privacy attempts to solve both the problem

of data access and the problem of eventual publication through mathematical guar-

antees. Instead of allowing the researcher access to the data directly, the hospital

could ask the researcher to submit the queries he would like to have run on the data.

The hospital could then run those queries for him and return the results. Crucially,

mathematical properties of those queries could guarantee that the results cannot be

used to infer any private information about any particular patient. As a result, all

information learned through these queries would be safe to publish, and the data

owner would not need to rely on the decisions of the researcher to protect privacy.

In order to find queries with the relevant mathematical properties to guaran-

tee the protection of privacy, we must first decide what mathematical properties

are desired. This is a difficult question, as it requires both technical skill and an

understanding of the inchoate and inconsistent idea of “privacy” that exists in the
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minds of lawyers, researchers, and the general public. In fact, many early attempts

at defining mathematical formulations of privacy failed to protect against all pri-

vacy violations, while others were so strong as to (unnecessarily) prevent almost any

useful queries from being done.

As time progressed, researchers learned from earlier attempts, and also from

the infusion of ideas from cryptography into the field. Of particular interest is

differential privacy [25], proposed by Dwork, McSherry, Nissim, and Smith in 2006.

This definition does an excellent job of capturing a reasonable understanding of

privacy and converting that understanding into a workable mathematical criterion.

While not without criticism (for example, [59]), it has been studied extensively,

and researchers have created a large set of private queries that are known to be

differentially private. We have also seen the early stages of its practical use in the

real world [13,50].

Differential privacy is a very simple definition. It is easy to work with, and

it has a number of desirable properties. For example, privacy holds even if the

adversary trying to make inferences about protected individuals already has partial

information about them or the database in general. It is also composable, meaning

that queries can be done in sequence or simultaneously by multiple users without

concern.

However, in its simplicity differential privacy ignores some nuances and makes

some worst-case assumptions. These provide ease of use and safety, but they also

make the definition stronger than the underlying idea of “privacy” arguably requires.

In order to satisfy differential privacy, a query’s output must always be randomized,

3



generally consisting of the “true” output of some query plus a bit of random noise,

generally smaller for larger databases. Many queries can be answered with low,

often acceptable noise on reasonably-sized databases, but others continually resist

efforts to increase accuracy. In fact, a variety of lower bounds have been shown on

the amount of noise needed for specific types of queries.

For this reason, there has been interest in discarding some of the simplicity of

differential privacy in favor of a weaker, more narrowly-tailored definition. It is this

effort that we focus on in this thesis.

1.1 Organization and Contributions

We begin in Chapter 2 with a thorough review of the definitional work that

led up to the current situation. We first discuss attacks against information releases

that were thought to be private, but without any formal definitions on which to rest

the claim. We then discuss early privacy definitions, including k-anonymity [70]

and its intellectual descendants and the earlier work of Dalenius [16]. Understand-

ing the motivation behind these definitions and their shortcomings is crucial to an

appreciation of the questions underlying privacy definitions.

In Chapter 3 we introduce differential privacy itself. We define it, and discuss

what makes it such a good definition, as well as its drawbacks and criticism it has

faced. We discuss also what queries are known to be answerable under differential

privacy, and lower bounds on how accurate these answers can be.

We then move on to discuss proposed relaxations of differential privacy. Chap-
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ter 4 discusses computational differential privacy, a term for two similar (but not

equivalent) definitions proposed by Mironov et al. [56] in 2009. These definitions

impose minimal restrictions on the computational power of an adversary. The hope

in doing so was to allow new more accurate query mechanisms. Unfortunately, we

present here two impossibility results that drastically limit the potential usefulness

of these definitions. While there are new mechanisms that are private only under

the computational relaxation, we show that those mechanisms generally cannot pro-

duce results that are any more accurate than what can be achieved under differential

privacy.

Next, we discuss another direction of relaxation, namely that of limiting the

auxiliary information that an adversary might have. As discussed earlier, differen-

tial privacy protects individuals even when the adversary trying to make inferences

about them already has an arbitrary amount background information. While ad-

versaries certainly have access to some amount of this auxiliary information, it is

not limitless. By not requiring privacy to hold against adversaries with unlimited

auxiliary information, we can give a definition that is weaker than differential pri-

vacy, but still guarantees privacy in realistic settings. In Chapter 5 we present one

such definition, coupled-worlds (CW) privacy.

Coupled-worlds privacy is a framework, rather than a specific definition. One

can easily instantiate a particular definition with guarantees that match the under-

standing of privacy that is relevant to a given situation. We discuss the motivation

for the framework, and contrast it with prior similarly-motivated definitions. We

prove a variety of properties of the definitions instantiated using this framework,
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increasing its ease of use and providing evidence that we have correctly captured

the meaning of privacy.

In Chapter 6 we focus on distributional differential privacy (DDP), an instan-

tiation of CW privacy with a meaning similar to that of differential privacy. We

present several DDP query mechanisms that allow for exact (deterministic) output,

which is impossible under differential privacy. In particular, we show that a class

of functions we call stable whose output can be released privately, as can truncated

histograms and sums. Sums in particular are discussed at great length. For data

drawn from most continuous distributions, we show that sums of d-dimensional vec-

tors can be released privately. This is of direct interest, but also allows corollaries

showing that other queries can be answered privately as well. In particular, we

discuss linear regression, which we hope will be first step in the quest to show that

many machine learning algorithms can be computed privately.
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Chapter 2: Background

In this chapter, we begin our discussion of privacy definitions prior to our work.

The next chapter will focus on differential privacy, which is central both to the field

as a whole and to this thesis. However, we begin first with work that was done

(mostly) before the introduction of differential privacy. This work is necessary to

understand because experience with these definitions (or lack thereof) provides part

of the case for many of the decisions inherent in the design of differential privacy.

For example, we will attempt later to reduce the worst-case assumption differential

privacy makes about available side information, but to do this safely one needs to

understand why such a conservative assumption was made in the first place.

2.1 The Data Release Setting

We begin with the setting most encountered in current practice (as opposed

to current academic research on the topic). This is the setting of data release. Here

some data owner (an academic, business, or government agency, for example) has

data that consists of information about a number of individuals. The owner wants

to release some of this database but wants to protect the privacy of the individuals

while doing so. Sometimes, of course, this could be handled by having those who see
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the data sign confidentiality agreements prohibiting further distribution, but this is

cumbersome and hard to enforce. It would be preferable to modify the database

in some way so as to guarantee private information was protected. The central

question, then, is what sort of data releases we should consider private, and how we

can modify a database so that it can be released in accordance with that requirement

while at the same time continuing to provide, to the greatest extent possible, the

same utility as the un-modified database.

Databases here are generally thought of as tables in which a row represents the

information associated with a given individual and contains a number of fields, each

of which has one piece of data about that individual. The principles in question can

sometimes be generalized to databases with other forms (say, graph data), but for

simplicity we limit ourselves to the simpler table-like setting here.

2.2 Informal Anonymization

The most common method for protecting the privacy of individuals when

databases are disclosed is anonymization. This is a term for the modification of a

database in a way that is meant to prevent the linking of specific data with particular

individuals. Historically, anonymization was the first and most widespread method

of protecting private data while allowing public access. It is still used widely in

practice.

Anonymization is more an art than a science, with instructions generally rep-

resenting guidelines rather than complete specifications. Even when followed in
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good faith, we believe these guidelines do not lead to well-protected data. As an

example, consider the guidelines of the Inter-university Consortium for Political and

Social Research (ICPSR), a leading public data repository run at the University of

Minnesota. ICPSR offers suggested language for researchers to use when asking for

private data from study participants, including the promise that “Any personal in-

formation that could identify you will be removed or changed before files are shared

in any way, including with other researchers, or results are made public” [42]. ICPSR

also gives suggested practices to ensure the promised privacy is maintained.

According to ICPSR, there are two kinds of potentially concerning information:

direct and indirect identifiers. Direct identifiers are described [41] as follows:

Direct identifiers. These are variables that point explicitly to partic-
ular individuals or units. Examples include:

• Names

• Addresses, including ZIP and other postal codes

• Telephone numbers, including area codes

• Social Security numbers

• Other linkable numbers such as driver’s license numbers, certifica-
tion numbers, etc.

All variables directly identifying research subjects must be removed or
masked prior to deposit.

It does seem wise to remove all direct identifiers, but there are some obvious

questions raised by this list. Why are ZIP codes or area codes on their own con-

sidered direct identifiers? They do not point directly to a single individual in the

way that a social security number does. The real difficulty, however, comes in the

discussion of indirect identifiers.

Indirect identifiers. These are variables that can be problematic as
they may be used together or in conjunction with other information to
identify individual respondents. Examples include:
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• Detailed geographic information (e.g., state, county, province, or
census tract of residence)

• Organizations to which the respondent belongs

• Educational institutions (from which the respondent graduated and
year of graduation)

• Detailed occupational titles

• Place where respondent grew up

• Exact dates of events (birth, death, marriage, divorce)

• Detailed income

• Offices or posts held by respondent

The first thing to note here is that the definition of “indirect identifier” is

extremely broad. In principle, any known information about an individual could be

used to help identify which row of the database is associated with that individual.

Even the examples rely on a lot of ambiguous terminology. How “detailed” does

an occupational title have to be in order to count as an indirect identifier? Why

are non-detailed occupational titles not included? Any stipulation of occupation at

all could be used to substantially narrow the number of candidate rows that could

be associated with a given individual, and a number of such variables could easily

suffice to identify an individual. ICPSR also gives guidance as to what should be

done with indirect identifiers [40]:

Treating indirect identifiers. If, in the judgment of the principal in-
vestigator, a variable might act as an indirect identifier (and thus could
be used to compromise the confidentiality of a research subject), the in-
vestigator should treat that variable in a special manner when preparing
a public-use dataset. Commonly used types of treatment are as follows:

• Removal – eliminating the variable from the dataset entirely.

• Top-coding – restricting the upper range of a variable.

• Collapsing and/or combining variables – combining values of a sin-
gle variable or merging data recorded in two or more variables into
a new summary variable.
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• Sampling – rather than providing all of the original data, releasing
a random sample of sufficient size to yield reasonable inferences.

• Swapping – matching unique cases on the indirect identifier, then
exchanging the values of key variables between the cases...

• Disturbing – adding random variation or stochastic error to the
variable.

These all seem like reasonable things to do, but again there are no objective

rules on when each of these things should be done or to what extent. Collapsing

variables, sometimes called “binning,” is the practice of combining many possible

values of a variable into a single category (e.g., replacing an exact address with

simply the state of residence). The document goes on, however, to give the example

of changing a state of residence in a database to simply a region like “south.” While

a region does seem less useful to an attacker than a state, a state is already a

reasonably generic variable, not at all personally identifiable, and a region certainly

still adds some ability to narrow down who might be associated with each row.

In general, there is no guidance given for how much needs to be done to a

given data set before it is considered anonymized. It is suggested that researchers

looking to publish data consult with ICPSR staff or other experts who presumably

have more experience and better judgment in making these decisions. But at the

end of the day, a judgment call must be made, and those decisions are made in an

informal way based on past experience and a reasonable guess at what sort of data

a potential adversary might have to work with and what sort of time or expertise

they are willing to commit to identifying individuals.

This is not to say that this type of anonymization is useless – clearly it makes

it substantially harder to identify individuals in the database and at least dissuades
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the casually curious from bothering to do so, but this is not all that is promised

when this anonymization is used. As mentioned earlier, the ICPSR guidelines sug-

gest strong promises be made to participants that potentially identifying information

will be removed. In fact, this sort of anonymization has also been adopted as the

legal standard in federal regulation. For example, federal regulations on the use of

medical information states that privacy protections do not apply to the release of

“de-identified” data [72]. To qualify as de-identified, it is sufficient that 18 specified

elements (mostly things that would be classified above as direct identifiers) have

been removed and that the data owner “not have any actual knowledge that the

information could be used ... to identify an individual.” It is clear that anonymiza-

tion is being used with the expectation that it protects against a dedicated attacker,

but no such claim is justified.

2.3 Attacks

It seems clear to us that these anonymization methods are not sufficient to

guarantee privacy. Knowing that a friend participated in a study, a curious indi-

vidual could look at the released database and use information that is included and

that the curious individual knows (say, occupation, number of children, approxi-

mate age, etc.) find a row that must be associated with their friend. Unfortunately,

this is not mere speculation. Supposedly anonymized databases have been attacked

many times, both by academics looking to make a point and by journalists and other

members of the public. Here we review some of the most famous attacks.
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AOL: In July of 2006, AOL released a database of 20 million search queries from

more than 650,000 members in an attempt to aid in academic research [55]. The

records were stripped of names, IP addresses, and other account information, but

the searches themselves were released. Those searches frequently included locations

around where users lived, their family members, and other information that could

easily be used to identify them. The New York Times quickly identified the searches

of Thelma Arnold of Lilburn, Georgia [2]. Various blogs claimed to have identified

other users. Websites were set up mocking the search terms of some users, and at

least one play was written based on the implied life of an individual [63]. Following

the release, the CTO of AOL resigned and two other employees were fired [43]. A

class action lawsuit was also filed against AOL on behalf of those whose privacy was

violated.

Massachusetts GIC: In this case, medical records from a database held by the

Massachusetts Group Insurance Commission (GIC) were released for academic re-

search purposes. The released data retained the ZIP code, birth date, and gender

of each patient. (This was thought to be acceptable for anonymization.) Latanya

Sweeney cross-referenced these records with voting registration files (which are pub-

licly available) for Cambridge, Massachusetts and was able to identify the medical

records of a large number of people, including the current governor of Massachusetts,

who had insisted that the data release was not a privacy concern.

Netflix Prize: In 2006 Netflix began what it called the Netflix Prize. The idea was

to improve the recommendation system on the Netflix website. Netflix offered $1

million to the first team that, based on past movie ratings, could predict the rating
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a customer would give a future movie with at least 10% greater accuracy than

Netflix’s existing algorithm. The prize was successful, eventually being awarded

to the team “BellKor’s Pragmatic Chaos.” Netflix was able to get a an improved

prediction algorithm at a very small cost. At the same time, substantial general-

interest academic research was done. It seemed in general like an excellent outcome

for all involved.

However, there were privacy concerns raised by the prize. To facilitate the

competition, Netflix released a database of 100 million movie ratings assigned by

480,000 subscribers. The database did not include names and other obviously-

identifying information. Narayanan and Shmatikov studied connections between the

Netflix data and data publicly available in the Internet Movie Database (IMDb) [57].

They found that with high certainty, they could identify users with a very small

amount of outside information. (99% could be identified with only 8 known movie

ratings, 2 of which could be wrong, and with dates of movie ratings having 2 weeks

of possible error.) This is a concern, because while IMDb ratings are public, they

could now be connected to Netflix ratings, which are private (and which might imply,

for example, information about a user’s politics, religion, or sexual orientation). In

fact, movie rental information is well-protected by US law due to an incident where

Supreme Court nominee Robert Bork’s rental history was obtained by a reporter. A

class action lawsuit was filed and settled out of court [69]. A planned second prize

for further improvements was canceled due to privacy concerns [38].

GWA Studies: In the field of genetics research, genome-wide association (GWA)

studies are a common tool meant to help identify single nucleotide polymorphisms
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(SNPs) that are associated with particular diseases. Genotyping thousands of in-

dividuals as needed for these studies is expensive, but data can be transfered and

combined with data from other studies, so efforts were made to make data available

publicly. In order to mask individuals’ genetic information often only tables of allele

frequencies were shared. However, Homer et al. [37] show statistical methods for

using only this summary data to tell whether or not a particular individual was

included in the study (which can, by implication, reveal whether or not they have

a particular disease). As a result of this attack NIH removed aggregate statistics

and results of GWA studies from open-access databases, instead requiring individ-

ual approval of each researcher before access was granted. This substantially slows

research and makes it cumbersome or impossible for researchers, particularly those

new to the field, to get access to needed data.

2.3.1 Lessons Learned

Having seen these attacks, several things should be clear. The first is that

the lack of obvious ways to link data to individuals is not a sufficient condition to

guarantee privacy. While in retrospect the AOL data release, and arguably the GIC

data release as well, was clearly flawed, at the time it was seen as lacking foreseeable

attacks. More recent guidelines like those of ICPSR would now find those data

releases unacceptable. (Attacks like this are probably why ZIP code is listed as a

direct identifier that needs to be removed, even though it is not individually specific

in the way other direct identifiers are.) But by relying on judgment and experience to
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determine what identifiers are unacceptable and how much manipulation is needed

to render them safe, these guidelines will always have trouble anticipating new,

innovative attacks. Certainly the Netflix Prize and GWA study data releases would

have been declared acceptable by ICPSR’s standards. The cryptography community

has learned from decades of experience that ruling out known attacks is not sufficient

to guarantee safety. Instead, guarantees must be made so that they rule out all

possible attacks, even those not anticipated at the time.

In order to do this, it is necessary to use more formal requirements. What

must be done to data in order to protect privacy must be rigorously defined, and

that requirement must then be defended as accomplishing the desired goal. The

bulk of the present work is dedicated to this endeavor.

2.4 k-Anonymity and its Enhancements

Seeing the attacks discussed above, researchers responded by seeking formal

requirements that could guarantee privacy was protected. Sweeney, who had been

responsible for the GIC attack, and Samarati proposed k-anonymity [67, 70]. It is

easiest to understand k-anonymity when remembering that it was proposed as a re-

sponse to the type of attack used against the GIC data, specifically the use of public

databases with some of the same information to link data to specific individuals.

We let x represent a particular database, with rows xi representing the set

of information associated with the ith individual. Furthermore, k-anonymity uses

the concept of a quasi-identifier. Quasi-identifiers include straightforward identifiers
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like name and social security number, but also things like birth date, gender, ZIP

code, and other information that could in combination be used to isolate the record

of a given individual. Let quasi be a function that takes as input a row xi of the

database and outputs the part of the row (say, a subset of attributes) that consists

of quasi-identifiers. We then formally define k-anonymity.

Definition 2.1 A released database x is k-anonymous if for each row xi there exists

a subset of database rows s ⊂ x with |s| ≥ k such that for all xj ∈ s we have

quasi(xi) = quasi(xj).

It should be clear right away that k-anonymity does indeed rule out reidenti-

fication attacks based on the quasi-identifiers. If k rows all have exactly the same

quasi-identifiers, then quasi-identifiers cannot be used to distinguish which of those

rows is associated with a given individual. The definition also provides a quanti-

tative standard for how much the specificity of various fields needs to be degraded

before information can be released, parameterized by a value k that in a reasonably

understandable way quantifies the amount of privacy being provided.

There are, however, several important criticisms of k-anonymity. The first

is that it assumes the data owner knows which fields are quasi-identifiers that the

adversary could use. This assumption was clearly stated in the original defining

work [70], but it is a fundamental weakness of the definition. It assumes the owner

knows what outside information, which we call auxiliary information, is available

to an attacker, but such information is very hard to predict. For example, k-

anonymization on the quasi-identifiers of ZIP code, birth date, and gender would
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have prevented the linkage attack carried out by Sweeney. In particular, the linkage

could only at best link each individual to a set of k rows, one of which must be

the true row with that individual’s data. However, Governor Weld, whose data was

identified, probably had released some limited information about his health as part

of his campaign. This data could have been used to figure out which of the k rows

was truly associated with the governor. Similarly, friends and family of private citi-

zens often know some basic information about each other’s health. A life insurance

company considering taking on a new customer usually has the results of a physical

examination and could use these to identify a record in the database, giving them

access to more (private) medical information.

The failure to anticipate available auxiliary information was also part of what

led to the Netflix attack. Netflix probably did not anticipate attackers having access

to a database like that of IMDb where many Netflix users had listed many of their

movie preferences. In fact, such databases of auxiliary information might be made

available after the release of the initial privatized database. The lesson here is that

every variable is a quasi-identifier.

Of course, one could simply use k-anonymity with all variables considered

quasi-identifiers. It would limit the usefulness of the data (though some usefulness

would usually remain), but it would certainly be a plausible definition. This does

not, however, deal with the second criticism, which is that reidentification is not

the only concern. It is possible, for example, that the row representing the governor

was limited only to a set of size k, but that all of those rows represented individuals

with a particular serious medical condition. This is called a homogeneity attack and

18



constitutes leakage of sensitive information, even though the attacker who learned

the information still does not know which row represented the governor.

In order to prevent homogeneity attacks, Machanavajjhala et al. [51] propose

`-diversity, a restriction of k-anonymity that requires that the set Si of rows with

identical quasi-identifiers contain a diverse (parameterized by `) variety of values in

sensitive atributes. (Diversity can be measured in a variety of ways.) This reduces

the problem, but does not eliminate it. With reasonable levels of diversity, the

distribution of sensitive values will still differ from the distribution that occurs in

the larger population, and as a result an adversary can learn that certain sensitive

values are more or less likely.

Perhaps more problematically, `-diversity can only be applied when sensitive

values and quasi-identifiers are distinct sets. If, as discussed previously, the attacker

knows some (unknown) partial information about the governor’s medical history,

the definition cannot be satisfied, since it would require both that the medical in-

formation within each block be identical between rows, and also that it be diverse.

This line of work continues, with k-anonymity enhanced in various ways (e.g.,

[48]). The same fundamental weaknesses run through the entire line of work, how-

ever. It is continually assumed that only certain variables are useful for identifica-

tion. More importantly, there is never a definition with an associated theorem that

proves, under general assumptions, that the information an adversary could learn

about an individual is limited. Instead, analysis generally assumes that the attacker

is using a linkage attack similar to that used against the GIC data. The GWA

study attack, for example, shows that privacy can be violated even when nothing
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remotely resembling reidentification has occurred. (For a more detailed critique of

these definitions, see Domingo-Ferrer and Torra [20].)

2.5 The Query Setting

Our discussion so far has dealt with the data release setting. That is, the

output being released takes the form of a database. The rows might be modified,

with some values deleted or altered, but one can still talk about rows in the output

and those rows still have some connection to the individuals whose data was used

to generate them. We now move to a more general setting.

While we generally talk about the database, denoted x, as having rows, all

that really matters is that which information is associated with which individual is

well-defined. (We use xi to mean the data associated with individual i, and we will

sometimes refer to xi as the “ith row.” n is the size of the database, and U is the

universe of possible values for a row, so xi ∈ U and x ∈ Un.) Instead of releasing

a modified database, we release the answer to some query. This represents an

interactive relationship between the user and the database owner. The user submits

a query function F , frequently referred to as a mechanism, and the database owner

runs the function locally, sending F (x) back to the user.

This setting is more general, as it allows for the discussion of summary statis-

tics and other more concise information. Such information is more limited and

therefore much easier to release in a private way. We stress that this setting is not

actually narrower — the query in question could ask for an anonymized version of
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x. There has in fact been work on creating synthetic data that shares the impor-

tant properties of the original database [9]. Nevertheless, in practice releasing such

output turns out to be prohibitively hard in most settings and research has focused

on queries that are meant to do meaningful analysis and output useful summary

statistics, rather than queries meant to output anonymized data that can be put to

a variety of uses.

2.6 Mechanisms in the Query Setting

Many mechanisms have been proposed that attempt to allow various queries to

be answered while protecting privacy. Below we discuss some of the most important

early1 methods in this area. For more detail, we refer the reader to the survey by

Adam and Wortman [1].

Grouping. Some potential attacks on privacy are quite simple. In particular,

queries often ask for some statistic (say, a count or a mean) on a subset of the

database that satisfies a certain criterion. If this satisfying subset has only a single

row, private information is released. Similarly, if two queries apply to subsets that

differ by only one row, that row can generally be inferred by comparing the two

outputs. Using more queries allows similar attacks to be carried out while obscuring

the fact that such an attack was occurring.

Chin and Özsoyoǧlu [14,61] propose the conceptual model as a way of creating

a private database system. Within this framework, privacy is said to be guaranteed

1By “early” we mean prior to differential privacy, which is discussed in Chapter 3.
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by the division of the database into (disjoint) atomic populations. All atomic pop-

ulations are either empty or of size at least two, and the subset of the database to

which a query applies is required to contain all or none of each atomic population.

This means that no two query answers, either directly asked or inferred through

a combination of other responses, can apply to subsets of the database that differ

in only one row. Unfortunately, this does not truly guarantee privacy in all cir-

cumstances. Consider, for example, a sum query that says an atomic population

of size two has a sum on one attribute of twice the maximum value allowed for

that attribute. This clearly implies that both rows have the maximum value of that

variable, violating privacy.

Query restriction. This is a general approach that refuses to answer queries of

particular types. In general, it is hard to distinguish this approach from a definition,

since it establishes a criterion for what an acceptable query is. A series of query

restrictions have been studied, focusing on preventing the type of attack described

above. This is done by refusing to answer queries that release information about

small subsets of the database [27,28,36,68] or about subsets that have high overlap

[19]. Chin and Özsoyoǧlu [15] give a method of query restriction that can be used

to deal with sum queries.

Data perturbation. Several methods were proposed that added random noise of

one form or another to each quantitative value in a database. Traub et al. [71] add a

straightforward random variable to the value, while Liew et al. [49] achieve a similar

goal by replacing true private values with new values generated from a probability
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distribution meant to represent that of the original database. While this does add

some uncertainty and prevent exact disclosure of the value, the analysis provided

is incomplete. For example, in summarizing this work Adam and Wortman [1] say

that “perturbing a salary of $150,000 by 3000 would be considered a compromise

while at the same time perturbing a salary of $15,000 by 3000 would preserve the

confidentiality of the data.” It is not clear to us what the basis is for such a

statement.

Randomized response. Warner [74] develops randomized response as a technique

for getting survey respondents to answer questions more honestly. The idea is to give

instructions to respondents to let them randomize their answers before providing

them to the researcher. For example, when asking for a yes-or-no answer, the

interviewer could provide the respondent with a spinner that lands on “true” with

some probability and “false” otherwise. The respondent could be asked to privately

spin the spinner, and then give the true or false answer to the question according

to what the spinner does. Crucially, the overall fraction of the population for which

each answer is correct can be estimated accurately based on these responses. Even

correlations and other useful properties are maintained to at least some extent.

While this method was originally proposed in order to get more useful answers

to questions respondents often find embarrassing, it can also be used to protect

privacy. In fact, this method is often completely defensible even under differential

privacy [44], though when originally proposed for use in this way the arguments made

for it were much less rigorous. Importantly, this sort of randomization can be added
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retroactively by the database owner, rather than in the original data collection.

Random sampling. Denning [18] proposes a system where queries are answered

not on the entire database but on a random subset of the database. Like randomized

response, variations on this idea are indeed rigorously defensible [29] but arguments

of this sort were not given at the time.

2.7 Definitions in the Query Setting

The attempts at private output discussed in the previous section tend to share

some common weaknesses. First, they are all presented without a formal definition

of privacy. Instead of proving compliance with a general definition meant to capture

privacy as a whole, the arguments for these mechanisms are more ad hoc in nature.

Many focus on particular types of attacks, preventing for example queries that only

disclose information about a single row. While preventing such an attack is necessary

to guarantee privacy, it is not sufficient. These arguments also tend to focus on a

very particular idea of what constitutes a privacy violation. It is assumed that

the goal of the adversary is the exact determination of an attribute’s value, or at

least a close approximation. Other disclosures, such as the relationship between two

attributes, or between the attributes of two different individuals, are not considered.

The lessons taken from the attacks discussed earlier apply here as well. In order to

be sure privacy is maintained, formal definitions must be given that protect against

all attacks, not just those of a particular type. Analysis of these mechanisms also

often assumes that the database owner has complete knowledge of the adversary’s
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auxiliary information, which is clearly an unreasonable assumption in most cases.

2.7.1 Zero-Information

While the mechanisms discussed above were not shown to be private under any

formal definition, there were indeed some definitions proposed in the query setting.

Of particular importance is that of Dalenius [16]. While we argue that k-anonymity

and related definitions are too weak, we believe Dalenius’ definition to be too strong.

Dalenius proposed that any release of information was a privacy violation if it was

“possible to determine the value [of sensitive information about an individual] more

accurately than is possible without access to [the released information].” This is an

extremely strong requirement, and certainly sufficient for privacy, but it has since

received criticism [26] for considering as privacy violations the release of information

that most would not intuitively find to be privacy-violating. The difficultly arises

from the fact that some auxiliary information about an individual might already

be known to an adversary. For example, consider the researcher investigating a

potential link between smoking and cancer. If Bob is publicly known to smoke,

then the release of information linking smoking to cancer would alter an adversary’s

belief about the likelihood that Bob has cancer. This does indeed reveal information

about Bob, but most would not consider this a privacy violation. In fact, Dalenius’

definition would prevent all meaningful information release of any kind. For any

potential fact about a general population, there is theoretically possible auxiliary

information that an adversary could have—something like “If that fact is true, Bob
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has cancer”—that would make disclosure of that fact a privacy violation.

Because of this, we see the Dalenius definition as being too strong, and we

prefer a weaker definition. It is important to stress that we are not seeking a

weaker definition simply because Dalenius’ definition rules out something we would

like to do—impossibility results sometimes represent true impossibility, rather than

a flaw in the definition. Rather, we prefer a weaker definition because we think

the impossibility results show that the Dalenius definition fundamentally does not

capture the intuitive idea of privacy we are attempting to formalize. The definition

implies that the privacy of individuals can be violated even when their data is not

present. By its reasoning, the discovery that smoking caused lung cancer violated the

privacy of everyone on earth, because anyone whose smoking status was known by

their friends now had their risk of lung cancer substantially disclosed. Nevertheless,

we maintain that the general public does not consider that sort of knowledge gain

to be a privacy violation. In fact, the whole enterprise of private data analysis is

built on the goal of releasing general information that increases our understanding

of the world as a whole. What is needed is a definition that distinguishes specific

information about individuals from general information about the population (even

if that information does imply something about many or all individuals).
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Chapter 3: Differential Privacy

We now move to a discussion of differential privacy, the current state-of-the-art

definition in private data analysis. Differential privacy has gained such widespread

acceptance because it is a simple definition with useful properties, and (more im-

portantly) because it avoids the two biggest problems discussed in Chapter 2. It

provides strong, provable guarantees about the protection of private information

and at the same time is not so broad as to rule out the learning of general non-

individualized information.

In Sections 3.1 and 3.2, we introduce the formal definition of differential privacy

and discuss the reasons it has been so successful. In Sections 3.3 and 3.4 we discuss

what can and cannot be done under the constraints of differential privacy. Finally,

we note some of the most prominent criticisms the definition has faced.

3.1 Definition and Meaning

Differential privacy, informally, requires that the output of the private mecha-

nism be “roughly the same” even if an individual’s data was to completely change.

Intuitively, if the output looks the same regardless of what value an individual’s data

might have had, that output cannot be used to infer anything about the individual.
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In order to formalize this, we need to define when two outputs, each potentially

randomized, count as “roughly the same.” The correct notion turns out to be that

of (ε, δ)-indistinguishability.

Definition 3.1 Two random variables A and B taking values in the same set are

(ε, δ)-indistinguishable (denoted A ≈ε,δ B) if, for all sets S, we have

Pr[A ∈ S] ≤ eε Pr[B ∈ S] + δ and Pr[B ∈ S] ≤ eε Pr[A ∈ S] + δ.

When δ = 0 we often omit it and write A ≈ε B.

The differential privacy definition compares the real database x to a database

x′ where individual i had entered arbitrary other data. We call such a pair of

databases “neighboring.”

Definition 3.2 Databases x and x′ are neighboring if they differ only in one row.

We are now ready to define differential privacy.

Definition 3.3 A (randomized) mechanism F is (ε, δ)-differentially private if for

all x and x′ differing in only one row, we have

F (x) ≈ε,δ F (x′).

When δ = 0 we refer to this as simply ε-differential privacy.1

1Differential privacy can be also be defined with x′ representing a database with a row removed,
rather than changed. These definitions are, barring some minor technical details about whether
the size of the database itself is hidden, equivalent.
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Differential privacy was first defined under the name ε-indistinguishability by

Dwork, McSherry, Nissim, and Smith [25]. That definition lacked the δ term in-

cluded above, which was added soon after [23].

Differential privacy is what we will refer to as an “output-based” definition,

meaning that it gives a condition on what the output of the mechanism should look

like. Output-based definitions tend to be easier to work with, but their interpretation

is not always so clear. The alternative is what we will call an “inference-based”

definition, meaning a definition that speaks directly to what an adversary could

infer about an individual based on the output of the mechanism.

Crucially, differential privacy provably implies a meaningful inference-based

definition. The definition is weaker than that of Dalenius: instead of requiring that

the adversary can learn nothing as a result of the query output, it requires that

the adversary learn nothing more than would be learned if the individual in question

was not included in the database. That is, information that is inferred about an

individual because of facts learned about the general population are not protected.

Only information that is specific to the individual cannot be learned.

This distinction aligns reasonably well with the interpretation of “privacy”

that most people have. In our hypothetical scenario in which Bob is a smoker and

a medical study is released that implies he is at higher risk for cancer, most would

not think Bob’s privacy was violated. If instead the query in question disclosed that

Bob’s insurance company is spending a large amount of money on his medical care,

an adversary might make a similar inference about Bob’s chance of having cancer.

However, despite the inferences an adversary could make being very similar, the
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second scenario would be seen as a greater privacy violation by most people. We

argue that the reason for this is that the inference in the second scenario is specific

to Bob and depends on data that he contributed, whereas in the first situation it is a

consequence of a general fact about the population and can be determined without

access to any information of Bob’s.

To formally define the inference-based analogue of differential privacy, (ε, δ)-

semantic privacy, we first use B to represent a distribution over the space of possible

databases Un corresponding to the adversary’s prior belief about the database. To

the adversary, the real database x is drawn randomly from the distribution B, and

then the output of some mechanism F (x) is released. We use B|F (x)=t to denote

the distribution B conditioned on a particular output of the mechanism, and we

use x−i to represent the database x with the ith row removed and replaced with a

fixed default value. Semantic privacy requires that the belief distribution given the

mechanism’s output is similar whether or not a given individual’s data was included

in the database, with similarity measured by standard statistical distance.

Definition 3.4 F is an (ε, δ)-semantically private mechanism if for all prior dis-

tributions B and all values of i, with probability 1 − δ over pairs (x, t) where x is

drawn from B and t is drawn from F (x)

SD(B|F (x)=t, B|F (x−i)=t) ≤ ε,

where SD is statistical distance and is defined for two random variables A and A′
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as

SD(A,A′) = max
S

(|Pr[A ∈ S]− Pr[A′ ∈ S]|). (3.1)

The strength of differential privacy comes from the following theorem, proven

by Kasiviswanathan and Smith [45], which shows formally that a mechanism satis-

fying differential privacy also (with a loss in parameters) satisfies semantic privacy.2

This means that an adversary cannot, regardless of his prior beliefs, learn any more

from the mechanism’s output than he could have learned without the data of the

individual in question being included.

Theorem 3.1 If a mechanism is (ε, δ)-differentially private then it is also (ε′, δ′)-

semantically private, where ε′ = e3ε − 1 + 2
√
δ and δ′ = O(n

√
δ).

This theorem shows why differential privacy rests on fundamentally firmer

ground than k-anonymity and other definitions. Instead of focusing on reidenti-

fication or some other particular step on the way to learning about an individual,

differential privacy makes direct guarantees about what an adversary can learn about

the individuals represented in the database. We emphasize that privacy is guaran-

teed against all choices of distribution B. In particular, this means that whatever

auxiliary information the adversary possesses, they will still learn no more than they

would have learned if the a given individual’s data was not included.

2The reverse is also shown, that any semantically private algorithm is differentially private, but
that is not crucial to our current discussion.
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3.2 Properties

There are several important properties proven to apply to differential privacy.

Some of these are of interest mainly because they support the definition’s claim to

capture the true meaning of “privacy.” Others are important because they are useful

technical tools when proving certain mechanisms are private, or because they allow

such tools to be used with less restriction in the real world. The most important of

these properties are discussed below.

Resistance to post-processing. If a mechanism F (·) is (ε, δ)-differentially pri-

vate, then for any (randomized) function G, G(F (·)) is also (ε, δ)-differentially pri-

vate. This means that no amount of computational work can make secrets appear

from an output that previously met the privacy criterion. The lack of such a prop-

erty would be an extremely strong argument against a privacy definition.

Composition over multiple queries. If a series of (adaptively chosen) differen-

tially private queries is considered to constitute one larger query, that larger query

is also differentially private. It has ε and δ values equal to the sum of the corre-

sponding values of the individual queries. This means first of all that large, complex

investigations can be easily analyzed, as long as their smaller, simpler components

are private. It also means that database owners need not keep track of any infor-

mation other than the total ε and δ values of all the queries they have allowed to be

run on a database. In particular, a researcher can be allotted a “privacy budget”

based on how much of the database’s ability to be queried they are allowed to use
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up, and that researcher can freely make any set of queries that fit within the budget.

Composition over groups of individuals. Differential privacy elegantly distin-

guishes between information about a population as a whole and information unique

to an individual, as discussed previously. Of course, there is information that is in

between the two extremes of that continuum. A particular disease might run in a

family, for example. Information that is tied to small numbers of individuals intu-

itively strikes most as more private, similar to information tied to a single person.

Information tied to large groups of individuals (a disease being very common in a

particular city, for example) doesn’t seem as private. However, there is no clear line.

Differential privacy deals well with this issue. One can create a “group privacy” def-

inition in which the differential privacy criterion is required to hold when the data

of n people (instead of just one) is changed. If a query is (ε, δ)-differentially private

for individuals, then it has (nε, nδ)-group privacy for groups of size n. This means

that how much information is protected gradually degrades as the size of the group

that information is tied to increases.

3.3 Differentially Private Mechanisms

A wide variety of differentially private mechanisms have been invented in order

to approximate any number of non-private queries. However, many of these mech-

anisms have at their root the application of a couple simple ideas/mechanisms that

apply very broadly. Because of their importance, we present these mechanisms in

full. Following this, we discuss a variety of other mechanisms that have been found,
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including private versions of machine learning algorithms.

3.3.1 Sensitivity-Based Noise

If the non-private query q being approximated has output in Rd, we can create

a private version by adding random noise. We measure closeness in Rd using an Lp

norm.

Definition 3.5 (Lp-norm) The Lp-norm of a vector v ∈ Rn, denoted ||v||p, is

defined as

||v||p
def
= (|v1|p + |v2|p + . . .+ |vn|p)1/p

for p ∈ N+, where vi is the ith coordinate of v. (We do not deal with the L0 norm

in this work.) We also allow p =∞, where

||v||∞
def
= max(|v1|, |v2|, . . . , |vn|).

The sensitivity of a function is a measure of how much its output can change

as the database it takes as input changes.

Definition 3.6 (Sensitivity) Say that q is a deterministic function on databases

with output in Rd. The Lp sensitivity of q, senp(q), is defined as

senp(q) = max
x,x′
‖q(x)− q(x′)‖p

where x and x′ are databases differing in only one row.
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Dwork et al. [25] showed that a private mechanism approximating q can be con-

structed by adding Laplacian random noise that is proportionate to sen1(q).

Theorem 3.2 Take q, a deterministic function on databases with output in Rd. Let

Lap(b) be a random variable from a Laplace distribution centered on 0 with parameter

b. Let F (x) = q(x) + (Lap(sen1(q)/ε))d. Then F (·) is ε-differentially private.

While this method works for any query, it is useful primarily for low-sensitivity

functions, a reasonably large category. For any predicate, for example, a count

of how many rows satisfy that predicate has sensitivity 1. Many other queries,

including correlations between boolean variables, can be reduced to a couple such

predicate counts. A wide range of mechanisms have been designed with this general

method as the primary tool.

It is also possible to achieve similar results using Gaussian rather than Lapla-

cian noise. The following result was proven by Dwork et al. [23].

Theorem 3.3 Take q, a deterministic function on databases with output in Rd. Let

Norm(µ, σ) be a random variable from a Gaussian distribution centered on µ with

standard deviation σ. Let F (x) = q(x) + (Norm(0, sen2(q)
√

2 ln(2/δ)/ε))d. Then

F (·) is ε, δ-differentially private.

Note that while the constant multiple needed on the Gaussian noise is greater

than that needed for Laplacian noise, the sensitivity used is the L2 sensitivity, which

will in general be lower. Gaussian noise is a good example of why allowing δ > 0 is

beneficial. No amount of Gaussian noise would achieve privacy with δ = 0. (This
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is because the logarithm of the derivative of the density function for the Gaussian

distribution becomes large at the tails, rather than remaining constant as it does

for the Laplacian distribution.) However, a very, very small δ is sufficient to allow

privacy [23].

3.3.2 Exponential Mechanism

The exponential mechanism is a general mechanism that, unlike sensitivity-

based noise, can be applied to functions with an output not made up of real numbers

or where small amounts of noise might cause substantial harm to utility. Instead, we

assume a real-valued utility measure u. u(x, y) is a measure of the utility the user

gains when database has value x and the mechanism outputs y. The sensitivity of

a given utility measure u is maxx,x′,y ‖u(x, y)− u(x′, y)‖. McSherry and Talwar [53]

prove the following theorem.

Theorem 3.4 Let F (·) be a mechanism where the probability of outputting y on

input x is proportional to e−εu(x,y)/2. Then F is ε · sen(u)-differentially private.

This mechanism would be extremely useful if not for the fact that its running time

is in general exponential. It is a very interesting feasibility result, but it is only

practical for a specific goal if calculating the relevant probability distribution can

be done in a much more efficient manner than is known in general.
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3.3.3 Other Mechanisms

While not used in this thesis in a way that requires technical detail, several

other private mechanisms are worth mentioning.

Smooth sensitivity. Sensitivity is a worst-case measure. A query calculating the

median of a list of numbers between 0 and 100, for example, has sensitivity of 100,

because there is a possible case where altering one number changes the median from

0 to 100. It is therefore natural to look for a way to add noise proportional to the

“local” sensitivity — that is, the maximum change an alteration in a single row

could produce in the current database. This is, however, not generally acceptable,

because the amount of noise added could itself disclose information. (In particular,

it could leak the local sensitivity, which is not a private output.) Nissim et al. [58]

found a way around this problem through the introduction of smooth sensitivity.

The idea here is to produce an upper bound on the local sensitivity that has low

sensitivity (and can therefore be approximated privately), and use that upper bound

to add noise. The result is a substantially more accurate for most of the databases

that would occur in realistic settings.

Propose-test-release. Dwork and Lei [24] give another method of dealing with

local sensitivity. Here the algorithm uses a proposed bound on the local sensitivity.

A (differentially private) test is performed to check whether the particular input

database does indeed have local sensitivity below the bound. If it does, an an-

swer is returned. Otherwise, the algorithm simply outputs ⊥. On arbitrary input

databases, an answer of ⊥ is very common, but given some statistical assumptions
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about the distribution of likely databases average utility can be quite good. They

use this approach to convert several measurements from the field of robust statistics

(i.e., statistics designed to be minimally influenced by a few arbitrary outliers) into

differentially private algorithms. This includes algorithms for inter-quartile range,

median, and linear regression.

Machine learning. There has been substantial interest in developing private ver-

sions of learning algorithms. The work in this area falls into two broad categories.

The first is a series of general results and broad statements about what can and

cannot be learned privately. Kasiviswanathan et al. [44] begin this line of work by

showing an algorithm that can learn any PAC-learnable concept class. Unfortu-

nately, this algorithm runs in exponential time and is limited to data drawn from

finite, discrete domains. Chaudhuri and Hsu [11] show that when the data is drawn

from a continuous domain, there can be very simple hypothesis classes for which

private learning is impossible. The generic learner also requires a greater sample

size than the non-private learning algorithm. Beimel et al. [4,5] further characterize

the sample complexity of private learning and show a distinction between proper

and improper learners.

Apart from these general results, a variety of work has focused on particular

learning algorithms. For example, private algorithms have been found for learning

parity [44], single points [4,5], support vector machines [66], decision trees [8], logistic

regression [12,75], and linear regression [24,75]. These algorithms vary in the amount

of noise that must be added to ensure privacy.
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3.4 Lower Bounds on Differentially Private Mechanisms

It is natural to ask whether lower bounds can be shown to limit the accuracy

that can be achieved with differential privacy, and there has been a great deal of

work in this direction. The most important result is also the most obvious: the need

to randomize responses to a query is unavoidable. Because of the importance of this

statement, we formalize it.

Theorem 3.5 Let F be a deterministic function on a database x of size n. If F is

(ε, δ)-differentially private for any (finite) values of ε and δ, then F is a constant

function. That is, there exists c such that F (x) = c for all x ∈ U .

More detailed results exist for particular types of queries. For example, count-

ing queries, which output the number of rows that satisfy a given condition, have

been studied at great length. (For example, see [10, 17, 34].) We forgo a more

detailed discussion here because the relevance to this thesis is limited, except to

the extent that the existence of such results is part of the motivation for seeking a

weakened version of differential privacy.

3.5 Criticisms of Differential Privacy

Several critiques have been made of differential privacy. Here we mention

several of the most common and most relevant to our current work.

Parameter choice is arbitrary. Critics sometimes complain that the differential

privacy definition says nothing about what is a “good” choice of ε (and to a lesser
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extent δ). To the supporters of the definition, this is a feature, as the choice is fun-

damentally a question of policy. Nevertheless, it is sometimes difficult to evaluate

research results without knowing what values of ε are realistic. Differential privacy

has seen limited use in practice, so there are not many instances of policymakers

choosing a parameter. One useful data point is an investigation by Chin and Kline-

felter [13] into the practices of Facebook. While not publicly confirmed, the number

of users reported to potential advertisers as matching a set of selecting criteria seems

to include some amount of random noise. Chin and Klinefelter argue that this noise

is consistent with the use of differential privacy and estimate that ε ≈ 0.181.

Differential privacy assumes independence of rows. It is often claimed that

the guarantees of differential privacy rest on the assumption that all rows are inde-

pendent of each other (e.g., [73]). In fact, Kifer and Machanavajjhala [47] even give a

“proof” of this claim. Whether the claim is true or not depends on what underlying

idea of privacy one is assuming. Differential privacy’s supporters make a distinction

between individual-level data, which should be protected, and general information

about the population, which need not be. This means something like a correlation

between smoking and cancer can be freely released. Those saying differential privacy

assumes independence of records are implicitly assuming a Dalenius-style definition

where any inference about an individual is a privacy violation. As a result, releas-

ing a correlation is a privacy violation. The only way differential privacy protects

privacy in this Dalenius-like sense is if no such correlations exist and rows are all

independent. We reject the Dalenius understanding of privacy and so reject this
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criticism, though we note that it is not wrong in an objective sense, but rather true

only if one is working from an understanding that already is fundamentally at odds

with the motivation for differential privacy.

Differential privacy limits utility. The biggest criticism of differential privacy,

largely coming from outside of computer science, is that it does not allow sufficient

utility to be gained from the data. Ohm [59] decries the need for an interactive

setting, where analysts face delays before queries are answered and cannot look

over the data for patterns without specifying a particular query. The delay can be

reduced or eliminated with automatic systems like PINQ [54] that answer classes

of private queries without the need for human validation. The inability to look at

anonymized data, however, is not an a priori limitation being imposed. As stated

previously, the query setting allows the data release setting as a special case. The

reason data release is not allowed in practice is that releasing data that is reasonably

accurate without violating the definition is extremely difficult.

That critique then merges with a more general argument, which is simply that

the utility achievable with differential privacy is too low. There are many things

that can be done with great accuracy, but of course many queries require prohibitive

amounts of noise when run on reasonably-sized databases. In some cases, this is just

a matter of more research being needed, but sometimes there are lower bounds or

other causes for pessimism. However, this is not on its own a valid criticism of

the definition. It is entirely possible that many queries just cannot be answered

accurately while protecting privacy. That would be unfortunate, but it would not
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be cause to reject the definition. In order for this criticism to be complete, it must

be argued that the definition is unnecessarily strong. That is, one must show that it

can be weakened in a way that avoids undermining the convincing argument that the

definition truly protects privacy. It is this search for an acceptable weaker definition

that motivates the rest of this thesis.
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Chapter 4: Computational Differential Privacy

Differential privacy protects against any attack. Some of these attacks are

extremely simple, consisting largely of a single join over two databases. Others

are more complex, using careful statistical analysis and techniques from machine

learning. It is entirely possible that some of the attacks being prevented are already

infeasible as a practical matter. In particular, attacks against some mechanisms are

clearly computationally infeasible. Consider, for example, the following examples.

• F releases the encryption of the database. This has minimal utility, but clearly

seems to protect privacy.

• F computes a standard differentially private output but uses pseudorandom

noise. Since such noise is computationally impossible to distinguish from

truly random noise, this output would be effectively identical to that of the

private mechanism for anyone who saw it.

• F implements a differentially private mechanism using secure multi-party com-

putation (MPC). Because MPC is proven to disclose nothing but the output of

the computation, this seems equivalent to a simple release of the same output.
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These mechanisms all seem acceptable. Some also have potential practical benefits.

Using MPC, for example, could allow the databases of several hospitals to be queried

as if they were a single, large database, without the hospitals having to trust each

other and combine the data into a single centralized database. However, differential

privacy is a purely information-theoretic notion, and would find all of these mecha-

nisms unacceptable. It therefore seems natural to formalize a computational variant

of differential privacy.

Mironov et al. [56] formalize just such a definition. In fact they provide several

definitions and explore the relationships between them. One would hope that by

considering a relaxed definition we can circumvent limitations or impossibility results

that arise in the information-theoretic setting in the same way that computational

security notions for encryption allow bypassing known bounds for perfectly secure

encryption. Initial results [52, 56] showed that this is indeed the case in the two-

party setting where the database is partitioned between two parties who wish to

evaluate some query over their joint data. Specifically, McGregor et al. [52] show a

strong separation between the accuracy that can be obtained when using differential

privacy as opposed to using computational differential privacy.

McGregor et al. [52], however, leave open the analogous question in the more

standard client/server setting where a server holds the entire database on which a

client may pose queries. Indeed, they explicitly remark [52, Section 1]:

[Our] strong separation between (information-theoretic) differential pri-

vacy and computational differential privacy . . . stands in sharp contrast
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with the client-server setting where. . . there are not even candidates for

a separation.

It is this question we address in this chapter. The results presented here first ap-

peared in TCC 2011 [32].

4.1 Summary of Our Results

There are (at least) two notions of computational privacy that can be con-

sidered: IND-CDP and SIM-CDP. These notions are introduced in [56], where it is

shown that any SIM-CDP mechanism is also IND-CDP (the other direction is not

known); thus, SIM-CDP is a possibly stronger definition. (Mironov et al. also define

the notion of SIM∀∃-CDP but this notion is equivalent to IND-CDP.) We review

these definitions in Section 4.2.

There are two measures one could hope to improve upon when moving from

the setting of (statistical) differential privacy to the setting of computational differ-

ential privacy: the best possible utility (or accuracy) that can be achieved, and the

efficiency of implementing a mechanism that achieves some level of utility. With

respect to the definitions given by Mironov et al., it is not hard to see that the

best achievable utility cannot be improved as long as the utility is an efficiently

computable function of the database and the output of the mechanism. (This is an

immediate consequence of the SIM-CDP and SIM∀∃-CDP definitions, since other-

wise the utility function itself serves as a distinguisher.) The interesting question

is therefore to look for improvements in the efficiency, e.g., to show that the best
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possible utility for polynomial-time mechanisms is better in the computational case,

or even to show a polynomial factor improvement in the efficiency in moving from

one case to the other. Unfortunately, we show two negative results indicating that

such improvements are unlikely in certain natural settings:

1. Our first result concerns black-box constructions of computationally secure

mechanisms from a wide range of cryptographic primitives including trap-

door permutations, collision-resistant hash functions, and/or random oracles.

Roughly, we show that for any black-box construction of a computationally

private mechanism there exists a corresponding statistically private mecha-

nism that performs just as well in terms of both efficiency and utility (with

respect to any utility measure).

2. Our main results rules out improvements by arbitrary mechanisms, for a spe-

cific (but large) class of queries and utility measures. That is, for queries with

output in Rd (for constant d) and a natural class of utilities, we show that any

computationally private mechanism can be converted to a statistically private

mechanism that is roughly as efficient and achieves almost the same utility.

Each result applies to both the IND-CDP and SIM-CDP definitions.

We believe our results represent an important step in understanding the bene-

fits and limitations of computational notions of privacy. Although we show negative

results, they may point toward specific situations where computational differential

privacy gives some advantage. We leave it as an open question to find utility mea-

sures or query classes with respect to which computational differential privacy can
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help in the client/server setting, or to extend our impossibility results to show that

no such improvements can be hoped for.

Limitations of our results. There are several types of queries to which our results

do not apply. The most important are queries with outputs that cannot naturally

be thought of as tuples of real numbers. This includes, e.g., queries that return

classifiers (as in [44]), graphs, or synthetic databases.

Our results also do not apply, in general, to queries that return output in Rd

for “large” d (i.e., d that grows with the security parameter k). In particular, this

means that our results are somewhat limited when it comes to analyzing differential

privacy of multiple queries. (Note that d queries with outputs in R can be viewed as

a single query with output in Rd.) Our results do apply to any constant number of

queries. In addition, using composition properties of differential privacy, our results

apply to the case where arbitrarily many queries are answered, and all queries are

answered independently (i.e., the server maintains no state). However, in some cases

it is known that answering many queries at the same time can be done with better

privacy than would be achieved by answering each query independently; in such

cases our results do not apply.

Our results also hold only for restricted classes of utility functions. We be-

lieve our proof could easily be adjusted for most utilities that measure the expected

“closeness” in the reals in some natural way. Less standard ideas of utility, however,

might not be covered. For example, a database curator could first output a com-

mitment to the database, then answer queries with differential privacy, then give
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a zero-knowledge proof that the queries were answered on the original database to

which the commitment applied. There might be settings where this commitment

and zero-knowledge proof are beneficial, and this use is not ruled out by our results.

(In fact, it is certainly possible.)

4.2 Definitions

Where we have previously talked about a single mechanism F , we now talk

about a family of mechanisms {Fk}, where k is a security parameter. We say

a family of mechanisms {Fk} is efficient if the running time of Fk(x) is at most

poly(|x|, k). A family {Fk} is uniform if there is a Turing machine F such that

F (k, x) = Fk(x). The switch to a parameterized family of mechanisms is necessary to

consider computational definitions. It is also reasonable in an information-theoretic

setting. In particular, we can require (ε, δ)-differential privacy where δ is negligible

in k.

Definition 4.1 Let ε be an arbitrary function. A family of randomized functions

{Fk}k∈N is (ε, negl)-DP if there exists a negligible function δ such that each Fk is

(ε(k), δ(k))-DP.

Mironov et al. [56] propose two definitions of computational differential pri-

vacy, SIM-CDP and IND-CDP. Roughly, one can view IND-CDP as an “indistin-

guishability-based” relaxation whereas SIM-CDP is a “simulation-based” notion.

SIM-CDP is at least as strong as IND-CDP [56], but the converse is not known. All

the definitions can be presented for either uniform or non-uniform adversaries; for
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consistency with [56], we give non-uniform definitions here. While we state our re-

sults for the case of non-uniform adversaries, our results all carry over to the uniform

setting as well.

IND-CDP provides perhaps the most natural relaxation of differential privacy.

Definition 4.2 (IND-CDP) Let ε be an arbitrary function. A family of functions

{Fk}k∈N is ε-IND-CDP if for every non-uniform polynomial-time A and every se-

quence {(xk, x′k)}k∈N of (ordered pairs of) polynomial-size, neighboring databases1,

there is a negligible function negl such that

Pr[A(Fk(xk)) = 1] ≤ eε(k) × Pr[A(Fk(x
′
k)) = 1] + negl(k).

The notion of SIM-CDP requires that there be a statistically private mecha-

nism that is indistinguishable from the mechanism under consideration.

Definition 4.3 (SIM-CDP) Let ε be an arbitrary function. A family of functions

{Fk}k∈N is ε-SIM-CDP if there exists a family of functions {Gk}k∈N that is (ε, negl)-

DP and is computationally indistinguishable from {Fk}. The latter means there is a

negligible function negl such that for any non-uniform polynomial-time A and any

database x: ∣∣Pr[A(Fk(x)) = 1]− Pr[A(Gk(x)) = 1]
∣∣ ≤ negl(k).

In [56] it is required that {Gk}k∈N be ε-DP (rather than (ε, negl)-DP). Thus

our definition is slightly weaker, which makes our impossibility results stronger.

1We abuse notation slightly. Elsewhere subscripts refer to a given row of the database, but in
this chapter we do not need such notation and instead use subscripts to refer to databases in a
given sequence.
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We also recall the notion of SIM∀∃-CDP, which weakens SIM-CDP by reversing

the order of quantifiers in the definition: here, the statistically private mechanism

G is allowed to be different for each pair of databases (x, x′). Crucially for our

purposes, this definition is known to be equivalent to IND-CDP [56].

Definition 4.4 (SIM∀∃-CDP) Let ε be an arbitrary function. A family of func-

tions {Fk}k∈N is ε-SIM∀∃-CDP if for all sequences of (unordered pairs of) adjacent

databases {{xk, x′k}}k∈N there is a family of functions {Gk}k∈N such that:

1. {Gk} is ε-DP on {{xk, x′k}}k∈N; i.e., for all subsets S ⊂ R we have

Pr[Gk(xk) ∈ S] ≤ eε(k) × Pr[Gk(x
′
k) ∈ S].

2. Fk(xk) and Fk(x
′
k) are indistinguishable from Gk(xk) and Gk(x

′
k) respectively.

Formally, for any non-uniform, polynomial-time adversary A

∣∣Pr[A(Fk(xk)) = 1]− Pr[A(Gk(xk)) = 1]
∣∣ ≤ negl(k),

and similarly for x′k.

Thus far we have only discussed privacy but have not mentioned utility. In

general, we assume a utility measure U that takes as input a database x and the

output of some mechanism F (x) and returns a real number. In Section 4.4 we

consider a specific class of utilities.
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4.3 Limitations on Black-Box Constructions

Here we show that black-box constructions (of a very general sort) cannot

help in the setting of computational differential privacy. (We refer the reader to [65]

for further discussion and definitional treatment of black-box constructions.) For

concreteness, in the technical discussion we focus on black-box constructions from

one-way functions, but at the end of the section we discuss generalizations of the

result.

Roughly, a fully black-box construction of an ε-IND-CDP mechanism from

a one-way function is a family of polynomial-time oracle machines {F (·)
k }k∈N such

that for every A and every O that is one-way against A it holds that {FOk }k∈N

is ε-IND-CDP against A. It would make sense also to impose a utility condition

on the construction (which could be viewed as a correctness requirement on the

constructions), but we do not do so here.

Theorem 4.1 If there exists a fully black-box construction {Fk}k∈N of an ε-IND-

CDP mechanism from one-way functions, then there exists an (ε, negl)-DP family

{F ′k}k∈N that is roughly as efficient and such that, for all databases x and utility

measures U , ∣∣∣E [U(x, FOk (x))
]
− E

[
U(x, F ′k(x))

]∣∣∣ ≤ negl(k),

where the expectations are both taken over the randomness of the mechanism, and

the expectation on the left is additionally taken over random choice of a function O.

Proof: The key idea behind the proof is as follows: a random function is one-way
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with overwhelming probability [31, 39]; thus, the mechanism FOk with O chosen at

random is also ε-IND-CDP. Since the construction is fully black-box (and hence

relativizing), one-wayness of O (and hence indistinguishability of the mechanism)

holds even for an unbounded adversary as long as the adversary makes only poly-

nomially many queries to O. We construct F ′k by having it simply run Fk as a

subroutine, simulating a random function O on behalf of Fk. This idea is motivated

by analogous techniques used in [31].

Let Func denote the set of length-preserving functions from {0, 1}∗ to {0, 1}∗,

and let F ′k be as just described. Then for any adjacent databases x, x′ and any

(unbounded) A:

Pr[A(F ′k(x)) = 1] = PrO←Func[A(FOk (x)) = 1]

and

Pr[A(F ′k(x
′)) = 1] = PrO←Func[A(FOk (x′)) = 1].

Letting OWF denote the event that O is one-way, we have

Pr[A(F ′k(x)) = 1] ≤ Pr
[
A(FOk (x)) = 1 | OWF

]
+ negl(k)

≤ eε(k) × Pr
[
A(FOk (x′)) = 1 | OWF

]
+ negl′(k)

≤ eε(k) × Pr[A(F ′k(x
′)) = 1] + negl′′(k).

The second inequality holds since {Fk} is a fully black-box construction of an ε-

IND-CDP mechanism from one-way functions. (Note that, above, A is not given
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access to O at all.) But the condition that

Pr[A(F ′k(x)) = 1] ≤ eε(k) × Pr[A(F ′k(x
′)) = 1] + negl′′(k)

for an unbounded A is equivalent to (ε, negl)-differential privacy.

The claim regarding the utility of {F ′k} follows by a similar argument. (Note

that we do not require that U be efficiently computable.) 2

Note that the above proof holds not just for constructions based on one-way

functions, but for any black-box construction from a primitive P that can be in-

stantiated with a random object. This includes, e.g., ideal ciphers, collision-resistant

hash functions, and trapdoor permutations [31].

4.4 Limitations for Arbitrary Mechanisms

In the previous section we ruled out black-box constructions from general

assumptions, but with regard to arbitrary measures of utility and arbitrary mecha-

nisms. Here, we focus on arbitrary mechanisms with output in Rn (for constant n),

and a large, but specific, class of efficiently computable utilities. Specifically, we

look at utilities based on the Lp norm (see Definition 3.5), but broadened to include

things like mean-squared error that are commonly used in statistics. We assume

an ideal (presumably non-private) query q represents the ideal answer, and measure

utility as closeness to the output q would give.

Definition 4.5 (Average (p, v)-error) Let Fk : U∗ → Rd be a mechanism for
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answering a query q : U∗ → Rd. The average (p, v)-error (also called the vth moment

of the Lp error) of this mechanism (p > 0, v ≥ 1) on database x is

σp,v(q, x, Fk)
def
= E

[
||Fk(x)− q(x)||vp

]
.

We often refer to the above as “error” rather than “utility”; lower error values

are good, whereas lower utility values are bad. We remark that we can handle

utility measures beyond the above, as long as they satisfy a technical requirement

that follows from our proof. Since we do not currently have any clean way to state

this requirement, we do not discuss it further

Given a mechanism {Fk : U∗ → Rd}k∈N for answering a query q : U∗ →

Rn, we say the average (p, v)-error of {Fk} is polynomially bounded if there is a

polynomial err such that, for all x and k, we have

σp,v(q, x, Fk) ≤ err(k).

Theorem 4.2, below, shows that nothing can be gained by using computational

differential privacy rather than statistical differential privacy, as long as we consider

mechanisms whose error is polynomially bounded. Before giving the formal theorem

statement and proof in the following section, we give an intuitive explanation here.

Let Fk be a polynomial-time ε-SIM-CDP mechanism for answering some query

q : U∗ → Rd, where we assume that Fk also has output in Rd (and d is indepen-

dent of k). Let p > 0, v ≥ 1 be arbitrary, and assume the average (p, v)-error of
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Fk is polynomially bounded with error bound err. We claim there is an (ε, negl)-

DP mechanism F̂k with essentially the same running time2 as Fk, and such that

σp,v(q, x, F̂k) < err(k) + negl(k).

Let {Gk} be a mechanism that is (ε, negl)-differentially private and indistin-

guishable from {Fk}. Such a mechanism is guaranteed to exist by the definition of

SIM-CDP. Note that {Gk} may be much less efficient than {Fk}, and may not even

be implementable in polynomial time. On the other hand, Gk and Fk must induce

distributions over Rd that are, in some sense, very close. Intuitively, in any “box”

in Rd of noticeable size, the probabilities with which the outputs of Gk or Fk lie in

that cell must be roughly equal; if not, the difference in probabilities could be used

to distinguish Gk and Fk (since membership in the box can be efficiently tested).

We derive F̂k by adding a small amount of uniform noise to the output of

Fk. Carefully setting the amount of noise to be sufficiently small, we can bound

the error introduced in moving from Fk to F̂k. To analyze privacy of the resulting

mechanism, we look at the mechanism Ĝk where a small amount of uniform noise

is added to Gk. For any particular value a, the probability with which F̂k (resp.,

Ĝk) outputs a is proportional to the probability that Fk (resp., Gk) outputs a value

within a box centered at a. This box is sufficiently big so that Ĝk and F̂k have

similar probabilities of outputting any particular value.

While Ĝk and F̂k have similar probabilities of outputting any particular value,

the small differences could, in principle, compound and become unacceptably large

when summed over all values in some set S ⊂ Rd. To show that such differences do

2Specifically, F̂k runs Fk and adds a random number to its output.
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not grow too large, we use the fact that Fk has polynomially bounded error. This

allows us to break our analysis into two parts: one focusing on a region Sc “close”

to the correct answer q(x), and the other focusing on Sf = S \ Sc. We show that

∣∣∣Pr[F̂k(D) ∈ Sc]− Pr[Ĝk(D) ∈ Sc]
∣∣∣

is small, using the argument discussed above; we also show that

max{Pr[F̂k(D) ∈ Sf ],Pr[Ĝk(D) ∈ Sf ]}

is small by the polynomial bound on the error. Combined, this shows that for every

S, the difference ∣∣∣Pr[F̂k(D) ∈ S]− Pr[Ĝk(D) ∈ S]
∣∣∣

is small, as required. Since Gk, and hence Ĝk, is statistically differentially private,

this means that F̂k is also.

Formal details are given in the following section.

4.4.1 Statement and Proof of the Main Result

We first present a proof that applies to the (stronger) SIM-CDP definition.

We then outline the changes needed to prove the result for the case of IND-CDP.

Theorem 4.2 Fix p > 0, v ≥ 1. Let {Fk : U∗ → Rd} be an efficient ε-SIM-CDP

mechanism whose average (p, v)-error is polynomially bounded by err. Then there is

an efficient (ε, negl)-DP mechanism {F̂k} with σp,v(q, x, F̂k) < err(k) + negl(k).
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Moreover, F̂k has essentially the same running time as Fk; specifically, F̂k only

adds uniform noise to Fk.

Proof: Let {Gk} be an (ε, negl)-DP family of mechanisms that is indistinguish-

able from {Fk}. Let negl1 be a negligible function such that for any non-uniform

polynomial-time A and any database x,

∣∣Pr[A(Fk(x)) = 1]− Pr[A(Gk(x)) = 1]
∣∣ ≤ negl1(k).

(Such a function exists by definition of SIM-CDP.)

Since {Fk} is efficient, its output must have some polynomial length. We

assume that Fk (and hence Gk) give output in fixed-point notation with k bits of

precision. Formally, let Rk be the set

Rk = {a ∈ R | ∃j ∈ Z : a = j · 2−k};

then we assume that Fk gives output in Rd
k. (More generally, the proof given here

works when the precision is any polynomial in k. Moreover, fixed-point notation

is not essential; in particular, the proof can be modified for the case when the

output of Fk is given in floating-point notation.3) For a ∈ R and k ∈ N, define

daek
def
= da · 2ke · 2−k to be the value a “rounded up” so that it lies in Rk.

3The proof can also be modified to handle continuous output, though such output is not natural
in a computational setting. The output can be modeled as including whichever (polynomial number
of) digits the adversary requests, or even as an oracle that allows arbitrary access to digits of the
output.
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A set B ⊂ Rd is a box if it a Cartesian product of closed intervals in R. Abusing

notation, we call a sequence {Bk} of boxes Bk ⊂ Rn
k a box as well. The following is

an immediate consequence of the SIM-CDP definition (recall the definition requires

indistinguishability against non-uniform adversaries):

Lemma 4.1 For any box {Bk} and any database x:

|Pr[Fk(x) ∈ Bk]− Pr[Gk(x) ∈ Bk]| ≤ negl1(k).

We next define two mechanisms {Ĝk} and {F̂k} that are “noisy” versions of

{Gk} and {Fk}, respectively. Because we are dealing with discrete rather than

continuous values, the definition is more complicated than simply adding uniform

noise in some range.

Set c(k) =
⌈

4d
√

negl1(k)
⌉
k

For a ∈ Rd
k, let Bc,k(a) denote the box with radius

c(k) (in the L∞ norm) centered at a; that is,

Bc,k(a) =
{
b ∈ Rd

k : ||b− a||∞ ≤ c(k)
}
.

Mechanism {F̂k} is defined as follows: F̂k(x) computes Fk(x), and then outputs a

uniform value in Bc,k(F (x)). (This is equivalent to adding uniform, independent,

discretized noise from [−c(k), c(k)] to each coordinate of F (x).) Mechanism {Ĝk}

is defined to be the analogous mechanism that adds noise to G instead of F .
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Bc,k(a) contains
(
c(k) · 2k+1 + 1

)d
points and thus, for any x and a ∈ Rd

k:

Pr[Ĝk(x) = a] =
(
c(k) · 2k+1 + 1

)−d · Pr[Gk(x) ∈ Bc,k(a)]

and

Pr[F̂k(x) = a] =
(
c(k) · 2k+1 + 1

)−d · Pr[Fk(x) ∈ Bc,k(a)].

Taking Bk = Bc,k(ak) (for an arbitrary sequence {ak} with ak ∈ Rd
k) in Lemma 4.1,

we obtain:

∣∣∣Pr[Ĝk(x) = ak]− Pr[F̂k(x) = ak]
∣∣∣

=
(
c(k) · 2k+1 + 1

)−d · ∣∣Pr[Gk(x) ∈ Bc,k(ak)]− Pr[Fk(x) ∈ Bc,k(ak)]
∣∣

≤
(
c(k) · 2k+1 + 1

)−d · negl1(k). (4.1)

The above holds for an arbitrary database x, and so it also holds for any adjacent

database x′.

Ĝk applies post-processing to the output of Gk, so {Ĝk} is also (ε, negl)-DP.

Let negl2 be a negligible function such that for all sets S and adjacent databases x

and x′ it holds that

Pr[Ĝk(x) ∈ S] ≤ eε(k) × Pr[Ĝk(x
′) ∈ S] + negl2(k). (4.2)
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Our goal is to prove that F̂k(x) is statistically close to Ĝk(x), for any x, which

will then imply the theorem. We have already shown (cf. Equation (4.1)) that the

distributions of F̂k(x) and Ĝk(x) are pointwise negligibly close. We need to show

that this is true also for arbitrary subsets. To do this, we first use the polynomial

error bound on Fk to argue that Fk (and hence F̂k) must put relatively low weight

on outputs that are far from the correct output. Formally:

Lemma 4.2 There is a polynomial w such that, for any x, we have

σp,v(q, x, F̂k) ≤ err(k) + c(k) · w(k).

The lemma follows from the observation that, for any fixed output b = Fk(x), the

output b̂ = F̂k(x) satisfies

∣∣∣∣∣∣b̂− q(x)
∣∣∣∣∣∣
p
≤ ||b− q(x)||p + d · c(k).

The proof of the lemma is tedious, and so we defer it to after the main body of the

proof is complete.

Fix an arbitrary x. We now show that with high probability the output of

F̂k(x) is close to the true answer q(x). Set z(k) =

⌈
1

4d
√

negl1(k)

⌉
k

, and define

Closek
def
= {a ∈ Rd

k : ||a− q(x)||vp ≤ z(k)};
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i.e., these are the points close to q(x). Let Fark
def
= Rd

k \ Closek. Because the average

error of F̂k is at most err(k) + w(k) · c(k), we have

Pr[F̂k(x) ∈ Fark] ≤ (err(k) + w(k) · c(k)) /z(k). (4.3)

Indistinguishability of {Fk} and {Gk}, and the manner in which {F̂k} and {Ĝk} are

constructed, implies that {F̂k} and {Ĝk} are indistinguishable as well. As in the

proof of Lemma 4.1, this means that

∣∣∣Pr[F̂k(x) ∈ Fark]− Pr[Ĝk(x) ∈ Fark]
∣∣∣ ≤ negl1(k).

Combining this with Equation (4.3) yields

Pr[Ĝk(x) ∈ Fark] ≤ (err(k) + w(k) · c(k)) /z(k) + negl1(k).

We now use the above results to relate the probabilities that Ĝk(x) or F̂k(x)

lie within some arbitrary set. The number of points in Closek is bounded from above

by (z(k) · 2k+1 + 1)d, since its size is largest (for fixed z(k)) when p =∞ and v = 1.

For any Sk ⊂ Rd
k, we can thus lower-bound Pr[Ĝk(D) ∈ Sk] via

Pr[Ĝk(x) ∈ Sk] =
∑
a∈Sk

Pr[Ĝk(x) = a]

≥
∑

a∈Sk∩Closek

Pr[Ĝk(x) = a]

≥
∑

a∈Sk∩Closek

(
Pr[F̂k(x) = a]−

(
c(k) · 2k+1 + 1

)−d · negl1(k)
)
,
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using Equation (4.1), which bounds the difference in probabilities between F̂k and

Ĝk pointwise. Continuing, we have

Pr[Ĝk(x) ∈ Sk]

≥ Pr[F̂k(x) ∈ Sk ∩ Closek]−
(
z(k) · 2k+1 + 1

)d · (c(k) · 2k+1 + 1
)−d · negl1(k)

≥ Pr[F̂k(x) ∈ Sk ∩ Closek]−
(
z(k) + 1

c(k)

)d
· negl1(k)

+
(

Pr[F̂k(x) ∈ Sk ∩ Fark]− (err(k) + w(k) · c(k)) /z(k)
)

≥ Pr[F̂k(x) ∈ Sk]−
(
z(k) + 1

c(k)

)d
· negl1(k)− (err(k) + w(k) · c(k)) /z(k). (4.4)

Similarly, we can upper-bound Pr[Ĝk(x) ∈ Sk] via

Pr[Ĝk(x) ∈ Sk]

≤
∑

a∈Sk∩Closek

Pr[Ĝk(x) = a] + Pr[Ĝk(x
′) ∈ Fark]

≤
∑

a∈Sk∩Closek

(
Pr[F̂k(x) = a] +

(
c(k) · 2k+1 + 1

)−d · negl1(k)
)

+ Pr[Ĝk(x) ∈ Fark]

≤ Pr[F̂k(x) ∈ Sk] +

(
z(k) + 1

c(k)

)d
· negl1(k)

+ (err(k) + w(k) · c(k)) /z(k) + negl1(k). (4.5)

Equations (4.4) and (4.5) hold for an arbitrary database x, and thus also hold

for any adjacent database x′. Substituting into Equation (4.2) and simplifying, we
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obtain

Pr[F̂k(x) ∈ Sk]

≤ eε(k) × Pr[F̂k(x
′) ∈ Sk]

+
(
eε(k) + 1

)
×

((
z(k) + 1

c(k)

)d
negl1(k) + (err(k) + w(k) · c(k)) /z(k)

)
+ eε(k) · negl1(k) + negl2(k) .

We show that the additive terms are all negligible. Note first that

(
z(k) + 1

c(k)

)d
· negl1(k) ≤

 1
4d
√

negl1(k)
+ 2

4d
√

negl1(k)

d

· negl1(k)

≤

(
3

2d
√

negl1(k)

)d

negl1(k)

≤ 3d ·
√

negl1(k),

which is negligible in k (recall d is constant). To bound (err(k) + w(k) · c(k)) /z(k),

take k large enough so that w(k) · c(k) ≤ err(k) (this is always possible, since c is

negligible while err and w are polynomial). We then have

err(k) + w(k) · c(k)

z(k)
≤ 2 · err(k) · 4d

√
negl1(k),

which is negligible. We conclude that {F̂k} is (ε, negl)-DP. 2

We now return to the deferred proof of Lemma 4.2.
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Proof: Let Yk be the set of possible distances between two points in Rd
k; i.e.,

Yk
def
= {y ∈ R | y = ||a1 − a2||p for some a1, a2 ∈ Rd

k}.

Let py,k
def
= Pr

[
y − 2−k < ||Fk(x)− q(x)||p ≤ y

]
. Then, by the assumption of our

theorem,

σp,v(q, x, Fk) ≤
∑

y∈Yk py,k · y
v ≤ err(k).

We can upper-bound σp,v(q, x, F̂k) by assuming that the noise added by F̂k moves the

output further away from the correct answer q(x). In the worst case (when p = 1),

this increases the distance between the output and q(x) by at most c′(k)
def
= d · c(k).

Therefore,

σp,v(q, x, F̂k) ≤
∑

y∈Yk py,k · (y + c′(k))v.

Using Taylor’s theorem, (y + c′(k))v ≤ yv + v · (y + c′(k))v−1 · c′(k). Thus, for k

sufficiently large it holds that

σp,v(q, x, F̂k) ≤
∑

y∈Yk py,k · (y
v + v · (y + c′(k))v−1 · c′(k))

≤ err(k) +
∑

y∈Yk py,k ·
(
v · (y + c′(k))v−1 · c′(k)

)
≤ err(k) + v · c′(k) ·

∑
y∈Yk py,k · (y + d)v−1,

using for the last inequality the fact that c′(k) ≤ d for k large enough.
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If y ≤ d then (y + d)v−1 ≤ (2d)v−1, while if y ≥ d then (y + d)v−1 ≤ (2y)v−1.

As a result, we can bound the expression above as

σp,v(q, x, F̂k)

≤ err(k) + v · c′(k) ·
∑
y∈Yk

py,k · 2v−1 · (dv−1 + yv−1)

≤ err(k) + v · c′(k) ·

(∑
y∈Yk

py,k · 2v−1dv−1 +
∑
y∈Yk

py,k · 2v−1yv−1

)

≤ err(k) + v · c′(k) ·

(
2v−1dv−1 + 2v−1

∑
y∈Yk

py,k · yv−1

)
.

Since y > 0, we have yv−1 ≤ yv + 1. Then:

σp,v(q, x, F̂k) ≤ err(k) + v · c′(k) ·

(
2v−1dv−1 + 2v−1

∑
y∈Yk

py,k · (yv + 1)

)
≤ err(k) + v · c′(k) ·

(
2v−1dv−1 + 2v−1 · (err(k) + 1)

)
≤ err(k) + c(k) ·

(
2v−1v · dv + 2v−1v · n · (err(k) + 1)

)
.

Since err is polynomial and d, v are constants, this completes the proof. 2

The case of IND-CDP. A result analogous to the above holds also for the case of

IND-CDP. This follows fairly easily using the equivalent formulation of IND-CDP

in terms of SIM∀∃-CDP. The difference between SIM-CDP and SIM∀∃-CDP is with

respect to the order of quantifiers, but this has no real effect on our proof. Note,

in particular, that our construction of {F̂k} does not depend, either explicitly or

implicitly, on {Gk}.
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Chapter 5: Coupled-Worlds Privacy

We now move to another potential weakening of differential privacy. Suppose

Facebook were to release the average income of its users—not a noisy version of the

average, but its exact value. Or, suppose an Internet dating service were to release

exact aggregate statistics about its users’ romantic preferences and sexual habits, as

does OkCupid [60]. Such disclosures violate differential privacy (for any ε) because

they are deterministic, but they do not appear to constitute an actual privacy viola-

tion. An adversary cannot use the released information to learn anything sensitive

about an individual user (or even a small set of users) without unrealistically precise

knowledge about the millions of users of those sites. Differential privacy appears to

be overkill in these settings: it provides strong privacy guarantees for an individual

user even if an adversary knows everything about the dataset besides that user’s

data, but in the scenarios just considered such omniscience is implausible.

The goal of this chapter is to develop rigorous definitions of privacy for sta-

tistical databases that allow us to reason about and exploit existing adversarial

uncertainty about the underlying data. We are driven by several motivations:

• Better mechanisms: As discussed previously, relaxing definitions of privacy po-

tentially allows for mechanisms achieving greater accuracy while still meeting
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satisfactory notions of privacy.

• Analyzing existing mechanisms: A broader goal is to understand what privacy

guarantees are achieved by methods in use today (e.g., disclosure-control meth-

ods currently used by statistical agencies, or releases that are mandated by

law) that were not designed with specific privacy definitions in mind. In some

cases, our definitions provide a starting point for making rigorous statements

about such methods.

• Better understanding of the “semantics” of privacy: Any definitional effort

involves translating from natural-language descriptions of privacy to mathe-

matical formulations of the same. We seek to understand the implications

of different definitional approaches for the possible inferences about sensitive

data that an adversary can make based on statistical releases.

The framework we introduce here, coupled-worlds privacy, is flexible and ad-

mits several instantiations—including one that is equivalent to differential privacy—

and we thus view it as a starting point for future work. We also explore a specific

instantiation of the framework that we call distributional differential privacy, and

illustrate its applicability by studying several appealing “noiseless” mechanisms sat-

isfying the resulting definition.

Some previous works have also looked at modeling and exploiting adversarial

uncertainty in private data analysis [6, 21, 33, 47], with the most relevant being the

work on noiseless privacy [6] and the Pufferfish framework [47]. (Noiseless privacy

can be viewed as one instantiation of the Pufferfish framework.) Both can be viewed
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as attempts to formalize Dalenius’s definition [16]. As we argued in Section 2.7.1,

Dalenius’s definition is unreasonably strong [22, 26, 46] since it rules out learning

global information about a dataset.

In contrast, we start with the premise that learning global information about

some population (e.g., a link between smoking and cancer) is not a privacy viola-

tion. This is, in part, because learning such global information is the main goal of

many statistical studies, and in part because it seems counter-intuitive to speak of

a violation of a user’s privacy that occurs whether or not that user participates in a

study (as in the smoking example). This perspective motivates us to define privacy,

as in the case of differential privacy, by comparing the effects of a real-world disclo-

sure to a disclosure computed on a “scrubbed” dataset with, e.g., a user’s individual

data removed. As we discuss further in Section 5.5, this results in definitions very

different from those of noiseless privacy or the Pufferfish framework.

Results in this chapter first appeared in FOCS 2013 [3].

5.1 Our Contributions

We now describe our contributions in more detail.

Definitional framework. We give a framework, coupled-worlds privacy, for spec-

ifying privacy definitions. As an important example instantiation, we consider dis-

tributional differential privacy, which generalizes differential privacy. Differential

privacy can be thought of as requiring that F (x) reveals nothing more about xi

beyond what would be revealed by F (x−i) (where x−i denotes the dataset with xi
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removed). Roughly speaking, distributional differential privacy relaxes differential

privacy by treating x as a random variable from some distribution in a pre-specified

class of distributions ∆, rather than as a fixed value. This means that xi can be

masked by the randomness of the other rows of the database, rather than just by

the randomness introduced by the mechanism. (If ∆ is taken to be the class of all

distributions, this definition is equivalent to differential privacy.)

A bit more formally, our definition requires indistinguishability of the real

world in which F (x) is released, and an ideal world in which a simulator releases

some function of the “scrubbed” dataset x−i. In each case, the dataset x is drawn

from the same distribution in some class ∆ specified as part of the definition. Indis-

tinguishability implies, in particular, that the real-world mechanism “leaks” little

more than could be inferred from the “scrubbed” dataset in the ideal world, at least

under the assumption that one of the distributions in ∆ adequately models the true

distribution of x and the attacker’s auxiliary knowledge (if any).

We prove various properties of definitions within our framework. Although

composition does not automatically hold, we show a condition under which it does.

We also show that the class of distributions for which a given mechanism satisfies

our framework is convex. This is a desirable feature (not shared by some previous

definitions) since it implies that if a mechanism is private under distributions (i.e.,

beliefs) D and D′, then it is also private under a belief that assigns non-zero prob-

ability to each of those distributions. Our framework can be instantiated in several

ways to yield different definitions. In particular, as in Pufferfish [47], one can tai-

lor the information considered sensitive by appropriate choice of the “scrubbing”
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operation applied to the dataset given to the simulator.

In addition to the Pufferfish framework, we are aware of at least two con-

current efforts to generalize differential privacy that share some broad ideas, one by

Bhowmick and Dwork [7] and one by Dwork, Reingold, Rothblum, and Vadhan [64].

Inference-based semantics. As a way of justifying our definitional framework,

we formalize an intuitive, inference-based notion of privacy in terms of a Bayesian

attacker who updates her belief about the dataset X given the output of some

mechanism. We show that if a mechanism is private within our framework then,

with high probability, an adversary’s posterior beliefs in the real world and the ideal

world are close. This is analogous to the result of Theorem 3.1 that differential

privacy implies semantic privacy.

The inference-based version of our definition provides a more transparent view

of the key difference between our approach and that of previous work taking adver-

sarial uncertainty into account [6,47]. Previous approaches can be seen as requiring

an attacker’s posterior belief (in the real world) to be close to its prior belief. Here, in

contrast, we compare an attacker’s posterior belief in the real world to its posterior

belief in a hypothetical ideal world involving a “scrubbed” version of the dataset.

This results in a more relaxed definition that is arguably more natural; see further

discussion in Section 5.5.

Analyses of specific mechanisms. On an intuitive level, there are two different

ways to exploit the fact that our definition considers datasets drawn from some

distribution rather than a “worst-case” dataset as in differential privacy. The first

70



is to leverage the uncertainty of the database to avoid adding noise to the output.

The second is to argue that the database sampled will, with high probability, satisfy

some condition under which privacy holds. We use these ideas to design several

natural, “noiseless” mechanisms. These mechanisms will be presented in detail in

Chapter 6.

5.2 Background

We begin by presenting an equivalent formulation of differential privacy pro-

posed by Gehrke et al. [30] that utilizes the simulation-based method of defining

security that is popular in cryptography. This definition requires that the true out-

put can be (approximately) simulated without access to a given individual’s data.

Definition 5.1 A mechanism F is (ε, δ)-differentially private if there exists a sim-

ulator Sim such that for all x and i

F (x) ≈ε,δ Sim(x−i).

This is easily seen to be equivalent to Definition 3.3: If F (x) ≈ε,δ F (x′) for all

neighboring x, x′, then a valid simulator is given by the algorithm that inserts an

arbitrary entry into x−i and then applies F to the result. Conversely, if a suitable

Sim exists then for any two datasets x, x′ that differ in the i-th element we have

x−i = x′−i and hence F (x) ≈ε,δ Sim(x−i) = Sim(x′−i) ≈ε,δ F (x′).
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We expect the fact that the same output can be simulated without access

to xi to mean that F (x) reveals no information that could not be learned from

x−i. We can verify this by formulating an inference-based version in the simulation

paradigm. Specifically, we require the existence of a simulator Sim such that for all

distributions on the database (now a random variable X) and indices i, and with

probability 1− δ over the choice of t = F (X), we have1

Xi

∣∣
F (X)=t

≈ε,δ Xi

∣∣
Sim(X−i)=t

. (5.1)

This formalizes the common interpretation of differential privacy, due to Dwork and

McSherry (see [22]), that “no matter what an attacker knows ahead of time, the

attacker learns the same information about any individual i from the mechanism

whether or not that individual’s data were used.” It accomplishes the same primary

goal as semantic privacy (Definition 3.4), and analogously to Theorem 3.1 it is

equivalent to Definitions 3.3 and 5.1

5.3 A Distributional Version of Differential Privacy

As a warm-up to our general framework, we first describe a particular instan-

tiation that we dub distributional differential privacy (DDP). The main idea is that,

rather than require indistinguishability to hold for all distributions over the dataset,

we require it to hold only for some specified set of “candidate” distributions ∆. (One

1We note that this informally stated theorem uses ε, δ-indistinguishability as a measure of close-
ness between distributions, whereas we defined semantic privacy (Definition 3.4) using statistical
distance. Either can be used with analogous results (with different parameters) depending on
preference.
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can view the set of candidate distributions for X as representing the possibilities

for the “true” distribution of the data, or as representing the adversary’s possible

uncertainty about the data.) We present two variants of the definition. The first,

which we view as more intuitively appealing, is obtained by relaxing the inference-

based definition discussed in the previous section. The second, which can be viewed

as a relaxation of the simulation-based definition of Gehrke et al. [30], is somewhat

easier to work with and, importantly, is strictly stronger than our inference-based

formulation.

We obtain a distributional variant of the inference-based definition from the

previous section by requiring Equation (5.1) to hold only for some set of candidate

distributions ∆ over X, rather than for all possible distributions. Fix some class ∆

of probability distributions over random variables (X,Z) ∈ U∗ × {0, 1}∗, where X

represents the dataset and Z denotes auxiliary information known to the adversary.

We then have:

Definition 5.2 A mechanism F satisfies (ε, δ,∆)-inference-based distributional dif-

ferential privacy if there is a simulator Sim such that for all distributions D ∈ ∆ on

(X,Z), with probability at least 1− δ over choice of (t, z) = (F (X), Z) the following

holds for all i:

Xi

∣∣
F (X)=t, Z=z

≈ε,δ Xi

∣∣
Sim(X−i)=t, Z=z

. (5.2)

A variant is obtained by generalizing the simulation-based definition of Gehrke

et al. [30].

Definition 5.3 A mechanism F satisfies (ε, δ,∆)-distributional differential privacy if
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there is a simulator Sim such that for all distributions D ∈ ∆ on (X,Z), all i, and

all (xi, z) ∈ Supp(Xi, Z):

F (X)
∣∣
Xi=xi, Z=z

≈ε,δ Sim(X−i)
∣∣
Xi=xi, Z=z

. (5.3)

In Chapter 6 we will show several example DDP mechanisms. In both Def-

inition 5.2 and 5.3 taking ∆ to be the set of all distributions (or simply all point

distributions) gives differential privacy. However, in general DDP is stronger than

inference-based DDP.

Theorem 5.1 Say F satisfies (ε, δ,∆)-DDP where distributions in ∆ have support

only on datasets of size at most n, and 2
√
δn ≤ εeε. Then F satisfies (3ε, 2

√
δn,∆)-

inference-based DDP.

Theorem 5.1 is a special case of Theorem 5.2, which we prove in the next

section. Theorems 5.1 and 5.2 are both generalizations of a result of [45], who

proved the same statement for the usual notion of differential privacy.

The converse of Theorem 5.1 does not hold in general, as the following example

shows.

Example 5.1 (Inference-based vs. indistinguishability-based DDP) Let ∆

contain a single distribution on (X,Z), where X = (X1, . . . , Xn) is a tuple of n

uniformly distributed bits and Z = ⊕ni=1Xi. Say F (X) outputs the parity of its

input. Note that for any xi, z ∈ {0, 1}, the distribution F (X)
∣∣
Xi=xi,Z=z

is just a point

distribution on the value z. However, X−i (and hence Sim(X−i)) is independent of
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F (X) = Z, and so the distribution of Sim(X−i) cannot equal Z with probability better

than 1/2. Thus, conditioned on Z, the distributions of F (X) and Sim(X−i) are very

different in general, and so F cannot satisfy DDP for any reasonable parameters.

On the other hand, for any t, z the distribution Xi

∣∣
F (X)=t,Z=z

is uniform. If

Sim outputs a uniform bit, then Xi

∣∣
F (X)=t,Z=z

= Xi

∣∣
Sim(X−i)=t,Z=z

and so F does

satisfy inference-based DDP.

5.3.1 General Framework

Distributional differential privacy is just one possible instantiation of a general

framework we call coupled-worlds (CW) privacy. At a high level, definitions within

our framework are specified by two functions2 alt and priv; if a mechanism F satisfies

the definition then, intuitively, “F (X) reveals no more information about priv(X)

than is revealed by alt(X).” That is, priv allows one to specify what information

should be kept private, while alt defines a “scrubbed” version of the dataset that

is available in some ideal world. For the specific case of DDP, we are interested in

the privacy of an individual record Xi (so priv(X) = Xi), and want to ensure that

F (X) reveals no more information about Xi than would be revealed if user i had

not participated in the study at all (so alt(X) = X−i).

We start with an inference-based version of our framework that we find intu-

itively compelling.

Definition 5.4 A mechanism F satisfies (ε, δ,∆,Γ)-inference-based coupled-worlds

privacy if there is a simulator Sim such that for all distributions D ∈ ∆ on (X,Z),

2Formally, they are specified by a set Γ = {(alti, privi)} of function pairs.
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with probability at least 1 − δ over choice of (t, z) = (F (X), Z) the following holds

for all (alt, priv) ∈ Γ:

priv(X)
∣∣
F (X)=t, Z=z

≈ε,δ priv(X)
∣∣
Sim(alt(X))=t, Z=z

. (5.4)

As with DDP, it is convenient to use an alternate, indistinguishability-based

definition which implies the inference-based version.

Definition 5.5 A mechanism F satisfies (ε, δ,∆,Γ)-coupled worlds privacy if there

is a simulator Sim such that for all distributions D ∈ ∆ on (X,Z), all (alt, priv) ∈ Γ,

and all (v, z) ∈ Supp(priv(X), Z):

F (X)
∣∣
priv(X)=v, Z=z

≈ε,δ Sim(alt(X))
∣∣
priv(X)=v, Z=z

.

Theorem 5.2 Say F satisfies (ε, δ,∆,Γ)-CW privacy, where 2
√
δ|Γ| ≤ εeε. Then

F satisfies (3ε, 2
√
δ|Γ|,∆,Γ)-inference-based CW privacy.

The proof of Theorem 5.2 relies on a generalization of [45, Lemma 4.1], as

follows:

Lemma 5.1 Suppose (A,B) ≈ε,δ (A′, B′). Then, for every δ2 > 0 and δ1 = 2δ
δ2

+ 2δ
εeε

,

the following holds: with probability at least 1− δ1 over t chosen according to B, the

random variables A|B=t and A′|B′=t are (3ε, δ2)-indistinguishable.

Proof of Theorem 5.2: Fix a mechanism F with simulator Sim, a distribution D
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in ∆, and a pair (alt, priv) ∈ Γ. CW privacy implies that:

(F (X), priv(X), Z) ≈ε,δ (Sim(alt(X)), priv(X), Z) .

Take δ2 = 2
√
δ|Γ| and δ1 = 2δ

δ2
+ 2δ

εeε
. We can apply Lemma 5.1 with A = A′ =

priv(X), B = (F (X), Z), and B′ = (Sim(alt(X)), Z) to get that with probability

1− δ1 over (t, z), we have

priv(X)
∣∣
F (X)=t,Z=z

≈3ε,δ2 priv(X)
∣∣
Sim(alt(X))=t,Z=z

.

Taking a union bound over all function pairs in Γ, we see that the above holds for

all (alt, priv) ∈ Γ with probability at least

1− |Γ| · δ1 = 1− |Γ| ·
(

2δ

2
√
δ|Γ|

+ 2δ
εeε

)
= 1−

√
δ|Γ| − 2δ|Γ|

εeε
≥ 1− 2

√
δ|Γ| ,

where the final inequality follows because εeε ≥ 2
√
δ|Γ|. 2

As noted earlier for the specific case of DDP, the implication in Theorem 5.2

is strict.

Other instantiations. We have already discussed one instantiation of CW pri-

vacy (namely, distributional differential privacy) in the previous section. We briefly

mention some other interesting instantiations.

• Consider a database representing a social network. Here, the database is a

graph and private data is associated with each node or edge. We can define a
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version of node-level privacy by taking pairs (alt, priv) in which priv outputs in-

formation associated with a given node and its incident edges, and alt removes

that node and its incident edges.

• Frequently some data (say, demographic information like sex and age) is public

and need not be protected. To model this we can consider pairs (alti, privi) in

which privi outputs only the private data in record Xi and alti removes only

the private information.

In all the examples we have discussed so far, alt and priv are complementary. This

need not always be the case:

• Imagine a database in which several schools contribute data of their students.

In this situation each school might want to make sure that no more can be

learned about each of its students than if the entire school had chosen not

to participate in the study. To model this we can consider pairs (alt, priv)

in which priv still outputs an individual student’s record, but alt removes all

records associated with that student’s school.

• Suppose a study involves a database of assets of several financial firms. Having

alt remove all the data of any single firm might be too limiting. Instead

we might only require that a certain amount of ambiguity about each firm’s

data remains. This could be achieved by letting alt add noise to the asset

distribution of a firm.
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5.4 Properties of the Framework

We now explore several properties of the CW privacy framework. These prop-

erties serve two distinct purposes. The first is to further confirm that the definition

is consistent with our intuitive understanding of privacy. If the abstract idea of

privacy obeys certain properties, then a definition attempting to formalize that idea

should obey those properties as well. The second purpose is to provide tools that

are useful for the development and analysis of private mechanisms.

We first show that CW privacy is preserved under post-processing. This is

basically a proof that the definition is not a superficial property of the output’s

formatting, but rather a true limitation on its actual information content. Any

reasonable privacy definition must satisfy this property.

Theorem 5.3 Coupled-worlds privacy is preserved under post-processing. Formal-

ly, if mechanism F satisfies (ε, δ,∆,Γ)-CW privacy, then so does G ◦ F for any

(randomized) function G.

Proof: Suppose that F is (ε, δ,∆,Γ)-CW private. Let Sim be the required simula-

tor for F , and fix any distribution D ∈ ∆ on (X,Z), any (alt, priv) ∈ Γ, and any v, z

in the support of (priv(X), Z). We also say that the randomness of G is achieved

through the use of random coins, and fix a series γ of such coins. Now that γ is

fixed, G is a deterministic function and we let G−1(S) denote the pre-image of S
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under this function. For any set S, observe that

Pr [G(F (X)) ∈ S | priv(X) = v, Z = z]

= Pr
[
F (X) ∈ G−1(S) | priv(X) = v, Z = z

]
≤ eε · Pr

[
Sim(alt(X)) ∈ G−1(S) | priv(X) = v, Z = z

]
+ δ

= eε · Pr [G (Sim(alt(X))) ∈ S | priv(X) = v, Z = z] + δ

Since this inequality holds for each choice of randomness γ, it also holds when the

two probabilities are each averaged over all possible choices of γ. The other direction

is the same as above, proving that

G(F (X))
∣∣
priv(X)=v, Z=z

≈ε,δ G(Sim(alt(X)))
∣∣
priv(X)=v, Z=z

.

Hence, G(F (·)) is (ε, δ,∆,Γ)-CW private. Note that the simulator for G(F (·)) is

G(Sim(·)). 2

The next two results show that if a mechanism F satisfies CW privacy with

respect to some class of distributions ∆, then it also satisfies CW privacy with

respect to a (potentially) larger class ∆′. In the first case, we show that one can take

∆′ to include all distributions that are convex combinations of distributions in ∆.

Besides being a desirable property in its own right, it also serves as a technically

convenient tool and is used heavily in our analysis of particular mechanisms. First

we formally define convex combinations.

Definition 5.6 A convex combination D′ of distributions in ∆ is a distribution
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achieved by attaching a weight λD to each distribution D ∈ ∆ with
∑
D∈∆ λD = 1

and setting

Pr[D = c | D ← D′] =
∑
D∈∆

λD Pr[D = c | D ← D]

for each possible output c. If the distributions are continuous, replace the probability

of outputting c with the probability density function’s value at c. The convex hull of

∆ is the set of all possible convex combinations of the elements of ∆.

We now present the theorem.

Theorem 5.4 If F satisfies (ε, δ,∆,Γ)-CW privacy, it also satisfies (ε, δ,∆′,Γ)-CW

privacy for ∆′ the convex hull of ∆. That is, ∆′ is the set of all convex combinations

of distributions in ∆.

Proof: Let Sim be the required simulator for F . Let D3 ∈ ∆′, be a convex

combination of two distributions D1, D2 ∈ ∆ where D1 and D2 are sampled with

probabilities λ and 1−λ respectively. (We deal with two distributions for simplicity,

but the proof for combinations of more follows along the same lines.) We use Pr1

(resp. Pr2,Pr3) to denote a probability over (X,Z) drawn from D1 (resp. D2,D3).

Fix any (alt, priv) ∈ Γ, and (v, z) in the support of (priv(X), Z) (when (X,Z) is
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drawn from D3). Then for any S:

Pr3[F (X) ∈ S, priv(X) = v, Z = z]

= λ · Pr1[F (X) ∈ S, priv(X) = v, Z = z]

+(1− λ) · Pr2[F (X) ∈ S, priv(X) = v, Z = z]

≤ eε ·
(
λ · Pr1[Sim(alt(X)) ∈ S, priv(X) = v, Z = z]

+ (1− λ) · Pr2[Sim(alt(X)) ∈ S, priv(X) = v, Z = z]
)

+ δ · λ · Pr1[priv(X) = v, Z = z] + δ · (1− λ) · Pr2[priv(X) = v, Z = z]

≤ eε · Pr3[Sim(alt(X)) ∈ S, priv(X) = v, Z = z]

+ δ · λ · Pr1[priv(X) = v, Z = z] + δ · (1− λ) · Pr2[priv(X) = v, Z = z]

≤ eε · Pr3[Sim(alt(X)) ∈ S, priv(X) = v, Z = z] + δ · Pr3[priv(X) = v, Z = z]

where the subscript indicates the distribution under consideration. Hence,

Pr3[F (X) ∈ S | priv(X) = v, Z = z]

=
Pr3[F (X) ∈ S, priv(X) = v, Z = z]

Pr3[priv(X) = v, Z = z]

≤ eε · Pr3[Sim(alt(X)) ∈ S, priv(X) = v, Z = z] + δ · Pr3[priv(X) = v, Z = z]

Pr3[priv(X) = v, Z = z]

≤ eε · Pr3[Sim(alt(X)) ∈ S | priv(X) = v, Z = z] + δ.

The other direction of the inequality is proved in the same way. 2

Next, we show that CW privacy continues to hold if the attacker’s auxiliary

information is reduced. Again, besides being a desirable property in its own right,
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it is also technically useful since it then suffices to prove CW privacy of some mech-

anism only with respect to some realistic upper bound on the auxiliary information

available to an adversary.

Theorem 5.5 If F satisfies (ε, δ,∆,Γ)-CW privacy, then it satisfies (ε, δ,∆′,Γ)-

CW privacy for ∆′, where D′ ∈ ∆′ first samples (X,Z) from some D ∈ ∆, then

outputs (X,Z ′) with Z ′ = f(Z) for some (randomized) function f .

Proof: Suppose that F is (ε, δ,∆,Γ)-CW private. Let Sim be the simulator for

F . Fix a distribution D ∈ ∆ on (X,Z) and let Z ′ be as described in the theorem

statement. Clearly, X → Z → Z ′ is a Markov chain, i.e., Z can be viewed as

a randomized function of X, and Z ′ as a randomized function of Z. Note that

this also implies that (X,F (X), Sim (alt(X)) , priv(X)) → Z → Z ′ is a Markov

chain. Fix (priv, alt) ∈ Γ, S ⊆ Range(F (X)), and (v, z′) ∈ Supp(priv(X), Z ′). Let

TZ(v, z′) = Supp(Z|priv(X)=v,Z′=z′). Observe that

Pr [F (X) ∈ S | priv(X) = v, Z ′ = z′]

=
∑

z∈TZ(v,z′)

Pr [F (X) ∈ S | priv(X) = v, Z = z, Z ′ = z′]

× Pr[Z = z | priv(X) = v, Z ′ = z′]

=
∑

z∈TZ(v,z′)

Pr [F (X) ∈ S | priv(X) = v, Z = z]

× Pr[Z = z | priv(X) = v, Z ′ = z′] (5.5)

≤
∑

z∈TZ(v,z′)

(eε Pr [Sim (alt(X)) ∈ S | priv(X) = v, Z = z] + δ)

× Pr[Z = z | priv(X) = v, Z ′ = z′]
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= eε
∑

z∈TZ(v,z′)

Pr [Sim (alt(X)) ∈ S | priv(X) = v, Z = z, Z ′ = z′]

× Pr[Z = z | priv(X) = v, Z ′ = z′] + δ (5.6)

= eε Pr [Sim (alt(X)) ∈ S | priv(X) = v, Z ′ = z′] + δ

where (5.5) and (5.6) follow from the fact that (X,F (X), Sim (alt(X)) , priv(X))→

Z → Z ′ is a Markov chain. (In particular, in a Markov chain A → B → C, A and

C are independent conditioned on B. In this case that means that conditioning on

Z ′ = z does not affect the probability in question.) 2

Finally, we turn to the question of the composition of two private mecha-

nisms F and G. Here, both F (X) and G(X) are released. Although we are not

able to prove as general a composition theorem as we would like, we can show that

the composition satisfies CW privacy as long as G is private even when given F (X)

as auxiliary information, and F is private when given SimG(alt(X)) as auxiliary

information.

Theorem 5.6 Let F and G be two mechanisms, ∆ a class of distributions, and

Γ a family of (priv, alt) pairs. Say G is (εG, δG,∆G,Γ)-CW private with simulator

SimG, where ∆G includes all distributions that output (X, (Z, F (X))) where (X,Z)

is drawn from some D ∈ ∆. Say F is (εF , δF ,∆F ,Γ)-CW private with simulator

SimF , where ∆F includes all distributions that output
(
X,
(
Z, SimG (alt(X))

))
where

(X,Z) is drawn from some D ∈ ∆ and alt is the first element of a pair in Γ. Then
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the mechanism H = (F,G) is (εH , δH ,∆,Γ)-CW private where

εH = εF + εG

δH = max (δF e
εG + δG, δF + δGe

εF ) = O(δF + δG).

Proof: We will show that the mechanism H is (εH , δH ,∆,Γ)-CW private with

respect to a simulator SimH defined as (SimF , SimG). Let S be any subset of

Supp (F (X)) × Supp (G(X)). Let S1 be the set of all first-elements of the pairs

in S and S2(s1) be the set of all values s2 such that (s1, s2) ∈ S. Let priv be any

private information function given by the family Γ. Let v be any element in the

support of priv(X) and z be any element in the support of the auxiliary information

Z. Note that we can write

Pr [H(X) ∈ S|priv(X) = v, Z = z]

=
∑
s1∈§1

Pr [G(X) ∈ S2(s1)|F (X) = s1, priv(X) = v, Z = z]

×Pr [F (X) = s1|priv(X) = v, Z = z]

Since conditioning on priv(X) = v, Z = z will be in every probability term in this

proof, we will drop such conditioning just to keep the notation manageable, but

such conditioning should be implicitly understood.
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Now, observe that

Pr [H(X) ∈ S]

=
∑
s1∈S1

Pr [G(X) ∈ S2(s1)|F (X) = s1] Pr [F (X) = s1]

=
∑
s1∈S1

(
eεG Pr [SimG(alt(X)) ∈ S2(s1)|F (X) = s1]

+ Pr [G(X) ∈ S2(s1)|F (X) = s1]

−eεG Pr [SimG(alt(X)) ∈ S2(s1)|F (X) = s1]

)
Pr [F (X) = s1]

≤ eεG Pr [(SimG(alt(X)), F (X)) ∈ S] + δG (5.7)

= eεG
∑
s1∈S1

∑
s2∈S2(s1)

Pr [F (X) = s1|SimG(alt(X)) = s2] Pr [SimG(alt(X)) = s2] + δG

≤ eεG
∑
s1∈S1

∑
s2∈S2(s1)

(eεF Pr [SimF (alt(X)) = s1|SimG(alt(X)) = s2] + δF )

×Pr [SimG(alt(X)) = s2] + δG (5.8)

≤ eεF+εG Pr [(SimF (alt(X)), SimG(alt(X))) ∈ S] + eεGδF + δG

= eεF+εG Pr [SimH(alt(X)) ∈ S] + eεGδF + δG

where (5.7) follows from the fact that G is (εG, δG,∆G,Γ)-CW private with respect

to SimG and (5.8) follows from the fact that F is (εF , δF ,∆F ,Γ)-CW private with

respect to SimF .

Similarly, one can show that

Pr [SimH(alt(X)) ∈ S] ≤ eεF+εG Pr [H(X) ∈ S] + eεF δG + δF

Hence, the proof is complete. 2
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5.5 Relation to Other Definitions

We conclude our definitional treatment by comparing our definition to two

other recent proposals: noiseless privacy [6] and Pufferfish [47].

Noiseless privacy was introduced with a similar motivation as our own; the

idea was to use adversarial uncertainty about the dataset to eliminate the need for

noise in the mechanism itself. The high-level idea is to require that F (X) “looks

similar” for any two values of a given record:

Definition 5.7 F satisfies (ε, δ,D)-noiseless privacy if for all i, z, and neighboring

xi and x′i:

F (X)
∣∣
Xi=xi,Z=z

≈ε,δ F (X)
∣∣
Xi=x′i,Z=z

,

where (X,Z) is chosen according to distribution D.

When δ > 0 this definition is slightly different from the version in [6]. In

particular, we require (ε, δ)-indistinguishability to hold for all choices of xi and x′i,

whereas the definition in [6] requires ε-indistinguishability to hold except for xi, x
′
i

that occur with probability at most δ.

Pufferfish provides a framework for defining privacy. Noiseless privacy can be

viewed as one specific instantiation,3 but others are possible. Pufferfish allows for

customization of what information will be kept private by appropriate choice of a

3This is true for the definitions as given here, which differ slightly from the definitions given in
the original works.
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function sec, which takes as input a dataset X and outputs an element of {0, 1,⊥}.

Thus, sec defines two disjoint classes of datasets, the preimages of 0 and 1, with

the ⊥ output allowing the function to be indecisive. Roughly, Pufferfish defines a

mechanism F to be private if the distribution of F (X) is similar regardless of which

value of sec(X) we condition on.

Definition 5.8 A mechanism F satisfies (ε, δ,∆,S)-Pufferfish privacy if for all sec ∈

S, all z, and all distributions (X,Z) in ∆ it holds that:

F (X)
∣∣
sec(X)=0, Z=z

≈ε,δ F (X)
∣∣
sec(X)=1, Z=z

(5.9)

(This definition differs in some non-essential ways from the definition in [47].

We highlight that we allow δ > 0, something not done in [47].)

In both noiseless privacy (and, by extension, Pufferfish) and our notion of

distributional definition privacy, the requirement is that F (X) should be “roughly

the same” in each of two possible worlds. The difference between the definitions is in

which two worlds are compared. In noiseless privacy and Pufferfish the comparison

is between a world in which Xi (resp., sec(X)) takes on one value and a world

in which it takes on some other value. In DDP, in contrast, the comparison is

between a world in which Xi is included in the dataset and a world in which it is

not. This has significant implications. Consider an example in which there is a

global parameter µ which is either +1 or −1 (with half probability each), and every

record is normally distributed with mean µ and standard deviation much smaller

than 1. Note that the records are dependent because they all depend on the value
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of µ. (They are, however, independent conditioned on µ.) The mechanism F that

computes the sample mean X̄ of the dataset and then outputs ±1 depending on

which is closer to X̄ does not satisfy noiseless privacy: the distribution of F (X)

conditioned on Xi ≈ −1 is very different from the distribution of F (X) conditioned

on Xi ≈ +1. On the other hand, F does satisfy DDP (with the obvious simulator

that simply runs F ) since the distributions of F (X) and F (X−i) are close for X

sampled according to the stated distribution.

To see the difference between our definitions and prior ones, it may help to

consider an inference-based version of Pufferfish.

Definition 5.9 A mechanism F satisfies (ε, δ, ∆, S)-inference-based Pufferfish pri-

vacy if for all sec ∈ S, all z, and all distributions (X,Z) in ∆, with probability 1− δ

over choice of t← F (X)|Z=z we have

sec(X)|F (X)=t,Z=z ≈ε,δ sec(X)|Z=z.

We have the following theorem, which shows that the inference-based version of

Pufferfish privacy is implied by the standard version, as long as sec never outputs ⊥.

A similar version was proved in [47] (for the δ = 0 case).

Theorem 5.7 Say F satisfies (ε, δ,∆,S)-Pufferfish privacy, where all sec ∈ S have

output in {0, 1} and 2
√
δ < εeε. Then it also satisfies (3ε, 2

√
δ,∆,S)-inference-based

Pufferfish privacy.
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Proof: Because F is Pufferfish private, we know that for all sets S

Pr[F (X) ∈ S | sec(X) = 0, Z = z] ≤ eε Pr[F (X) ∈ S | sec(X) = 1, Z = z] + δ(5.10)

Pr[F (X) ∈ S | sec(X) = 1, Z = z] ≤ eε Pr[F (X) ∈ S | sec(X) = 0, Z = z] + δ

Now, we can write Pr[F (X) ∈ S] as the sum of such a probability conditioned

on the two possible values of sec(X).

Pr[F (X) ∈ S | Z = z]

= Pr[F (X) ∈ S | sec(X) = 0, Z = z] Pr[sec(X) = 0]

+ Pr[F (X) ∈ S | sec(X) = 1, Z = z] Pr[sec(X) = 1]

≤ (eε Pr[F (X) ∈ S | sec(X) = 1, Z = z] + δ) Pr[sec(X) = 0]

+ Pr[F (X) ∈ S | sec(X) = 1, Z = z] Pr[sec(X) = 1]

Because Pr[sec(X) = 1] + Pr[sec(X) = 0] = 1 this last line is a weighted average of

two values, and we can upper bound it by the greater of the two values to get

Pr[F (X) ∈ S | Z = z] ≤ eε Pr[F (X) ∈ S | sec(X) = 1, Z = z] + δ (5.11)

We now need a similar bound in the opposite direction. We use equation 5.11

to obtain

Pr[F (X) ∈ S | sec(X) = 0, Z = z] ≥ e−ε(Pr[F (X) ∈ S | sec(X) = 1, Z = z]− δ)
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We then follow similar computations to those above.

Pr[F (X) ∈ S | Z = z] = Pr[F (X) ∈ S | sec(X) = 0, Z = z] Pr[sec(X) = 0]

+ Pr[F (X) ∈ S | sec(X) = 1, Z = z] Pr[sec(X) = 1]

≥e−ε(Pr[F (X) ∈ S | sec(X) = 1, Z = z]− δ) Pr[sec(X) = 0]

+ Pr[F (X) ∈ S | sec(X) = 1, Z = z] Pr[sec(X) = 1]

Again, this last line is a weighted average of two values, and we can lower bound it

by the lesser of the two values to get

Pr[F (X) ∈ S | Z = z] ≥ e−ε(Pr[F (X) ∈ S | sec(X) = 1, Z = z]− δ)

Pr[F (X) ∈ S | sec(X) = 1, Z = z] ≤ eε Pr[F (X) ∈ S | Z = z] + δ (5.12)

Using equations 5.11 and 5.12 (and the fact that the sec(X) = 0 and sec(X) =

1 cases are completely symmetric) we get that for any secret value s we have

F (X)|sec(X)=s,Z=z ≈ε,δ F (X)|Z=z

We now look at two joint distributions. The first is of (F (X), sec(X)). We

remove the explicit conditioning on Z = z, but this is only a change in notation.

We assume that X is drawn from the conditional distribution given that Z = z.

The second distribution is (F (X), sec(Y )). Here Y is a separate random variable

drawn from the same distribution as X (again assuming its associated auxilliary
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information has value z). Our goal is to show that these two distributions are close

to each other. Both have the same range. We can represent any set S in the range

as two sets S0 and S1 such that Si = {s | (s, i) ∈ S}.

Pr[(F (X), sec(X)) ∈ S]

= Pr[F (X) ∈ S0 | sec(X) = 0] Pr[sec(X) = 0]

+ Pr[F (X) ∈ S1 | sec(X) = 1] Pr[sec(X) = 1]

≤ (eε Pr[F (X) ∈ S0] + δ) Pr[sec(X) = 0]

+ (eε Pr[F (X) ∈ S1] + δ) Pr[sec(X) = 1]

≤ eε(Pr[F (X) ∈ S0] Pr[sec(X) = 0] + Pr[F (X) ∈ S1] Pr[sec(X) = 1]) + δ

≤ eε(Pr[F (X) ∈ S0] Pr[sec(Y ) = 0] + Pr[F (X) ∈ S1] Pr[sec(Y ) = 1]) + δ

≤ eε Pr[(F (X), sec(Y )) ∈ S] + δ

Very similar logic gives the other bound, meaning that we have (for all z)

(F (X), sec(X)) ≈ε,δ (F (X), sec(Y ))

Lemma 5.1 then tells us that for any δ1 > 0 the following holds: with prob-

ability 1 − δ1 over t ← F (X) the variables sec(X)|F (X)=t and sec(Y )|F (X)=t are

(3ε, δ2)-indistinguishable, where δ1 = 2δ
δ2

+ 2δ
εeε

.

We reintroduce the explicit conditioning of all variables on Z = z. We also

remove the conditioning on F (X) = t from the second distribution, since it is
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independent from the variable in question. Having done so, we can also return to

using X instead of Y as the random variable in that case. As a result, we have

sec(X)|F (X)=t,Z=z ≈3ε,δ2 sec(X)|Z=z

with probability δ1 = 2δ
δ2

+ 2δ
εeε

> 0.

All that remains is to choose convenient parameters. We can choose δ2 = 2
√
δ

and use the assumption that 2
√
δ < εeε to bound δ1 by

δ1 =
2δ

δ2

+
2δ

εeε
≥ 2δ

2
√
δ

+
2δ

2
√
δ

= 2
√
δ.

This gives us the complete theorem.

2

Returning to Definition 5.9, one may interpret Pufferfish as requiring that the

distribution of any sensitive information be roughly identical both before and after

the release of F (X).4 This means that releasing estimates of general population

parameters (for instance, whether smoking and cancer are correlated) is a privacy

violation because it implies something about the information of any individual. In

fact, Pufferfish considers the privacy of every individual to be violated in such a

setting, even if their data is not used at all. In contrast, inference-based coupled-

4This might be surprising because, as we emphasize, this is a different type of interpretation
from that of differential privacy, but differential privacy can be obtained as an instantiation of
Pufferfish. This is because to instantiate differential privacy, one sets participation in the database
as the secret information, rather than properties of the individual’s information. The Pufferfish-
style interpretation of whether participation is disclosed implies the differential privacy-style inter-
pretation of whether information about an individual’s information is disclosed. This is a subtle
distinction, but it is crucial that this implication is particular to this particular instantiation, and
similar implications do not follow from other instantiations.
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worlds privacy (cf. Definition 5.4) only requires that the distribution of any private

information be roughly identical whether F is computed over the entire dataset or

over a “scrubbed” version of the dataset.

We note also that Pufferfish and noiseless privacy do not satisfy analogues of

Theorem 5.5, which requires that privacy can only increase as auxiliary informa-

tion is reduced. In particular, consider the motivating example from earlier, where

outputting which of two possible values was closest to the sample mean was DDP,

but did not satisfy noiseless privacy. If the auxiliary information discloses the true

population mean (i.e., Z = µ) the mechanism is private, but that privacy vanishes

if the auxiliary information is reduced to nothing.
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Chapter 6: DDP Mechanisms

In this chapter we present a variety of distributionally differentially private

mechanisms. Our first result shows that a broad class of queries we call stable

can be released exactly. In particular, this class includes computation of maximum

a posterior probability (MAP) estimators, which are valuable statistical tools. Next,

we look at histograms, which we show can be released exactly as long as low-count

bins are suppressed. This result is proved under the assumption of a sampling

distribution, which is an interesting distribution to consider because it is so realistic

— many real world databases are indeed formed by sampling at random from a

larger population.

Finally, we look at releasing exact sums of database values. We show a very

general result, allowing sums to be computed under a wide variety of continuous

distributions (though the precise nature of the distribution can greatly affect the

values of ε and δ). We then show how this can be used to compute other, more

complex functions. As an important example, we consider linear regression, which

can be reduced to computing a series of sums.

The work in sections 6.1 and 6.2 originally appeared in FOCS 2013 [3], while

the work in sections 6.3 and 6.4 is new here.
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6.1 Stable Functions

We now consider deterministic functions that are “stable” under a particular

(class of) distributions, by which we mean that the removal of one record has a low

probability of changing the output (i.e., with high probability F (X) = F (X−i)).

This property is sufficient to guarantee (0, δ,∆)-DDP. Furthermore, if we require

the existence of a non-zero lower bound on all conditional probabilities of the output

of F (X) given Xi = xi and Z = z then the mechanism is (ε, 0,∆)-DDP. Formally,

this gives us two sufficient conditions to prove that a mechanism is DDP. We first

consider the conditions guaranteeing (0, δ,∆)-DDP.

Theorem 6.1 Consider a deterministic database mechanism F : Un → R and a

class of distributions ∆ for the pair (X,Z). Suppose ∃ δ > 0 such that ∀D ∈ ∆, ∀i ∈

[n], ∀(xi, z) ∈ Supp(Xi, Z),

Pr [F (X) 6= F (X−i) | Xi = xi, Z = z] < δ

Then, F is (0, δ, ∆)-DDP.
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Proof: Without loss of generality fix a given D ∈ ∆. We use Sim(X−i = F (X−i).

For every t ∈ R, every i ∈ [n], and every (xi, z) ∈ Supp(Xi, Z), we have

Pr [F (X) = t | Xi = xi, Z = z]

= Pr [F (X) = t, F (X) = F (X−i) | Xi = xi, Z = z]

+ Pr [F (X) = t | Xi = xi, Z = z, F (X) 6= F (X−i)]

× Pr [F (X) 6= F (X−i) | Xi = xi, Z = z]

< Pr [F (X−i) = t | Xi = xi, Z = z] + δ

Similarly, we can show

Pr [F (X−i) = t | Xi = xi, Z = z] < Pr [F (X) = t | Xi = xi, Z = z] + δ

which completes the proof. 2

We now move to the (ε, 0,∆)-DDP case, which requires a slightly more complex

assumption.

Theorem 6.2 Consider a deterministic function F : Un → R where R is a finite

set that does not depend on n and a distribution class ∆n for the pair (X,Z) that

outputs databases X of size n. If there exist c > 0 and µn ∈ (0, c) such that, for all

D ∈ ∆n, all i ∈ [n], all t ∈ R, and all (xi, z) ∈ Supp(Xi, Z), the following conditions
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hold simultaneously

Pr [F (X) = t | Xi = xi, Z = z] ≥ c (6.1)

Pr [F (X) 6= F (X−i) | Xi = xi, Z = z] ≤ µn (6.2)

then, F is (εn, 0, ∆n)-DDP where εn = ln
(
c+µn
c−µn

)
. Moreover, if the above holds for

all n, c does not depend on n, and µn → 0, then εn → 0.

Proof: Suppose that conditions (6.1) and (6.2) hold. Let i ∈ [n], (xi, z) ∈

Supp(Xi, Z), t ∈ S. Let

Numn(i, xi, z, t) = Pr[F (X) = t | Xi = xi, Z = z]

Denn(i, xi, z, t) = Pr[F (X−i) = t | Xi = xi, Z = z]

= Numn(i, xi, z, t)An(i, xi, z, t)

+ (1− Numn(i, xi, z, t))Bn(i, xi, z, t)

R(i, xi, z, t) =
Numn(i, xi, z, t)

Denn(i, xi, z, t)

where

An(i, xi, z, t) = Pr [F (X−i) = t | Xi = xi, Z = z, F (X) = t]

Bn(i, xi, z, t) = Pr [F (X−i) = t | Xi = xi, Z = z, F (X) 6= t]
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First, we set a lower bound on An(i, xi, z, t) as follows:

Pr [F (X−i) 6= F (X) | Xi = xi, Z = z] < µn

⇔
∑

t∈S Numn(i, xi, z, t) Pr [F (X−i) 6= t | F (X) = t, Xi = xi, Z = z] < µn

⇒ Pr [F (X−i) 6= t | F (X) = t, Xi = xi, Z = z] < µn

Numn(i,xi,z,t)

⇒ An(i, xi, z, t) > 1− µn

Numn(i,xi,z,t)
(6.3)

Next, we set an upper bound on Bn(i, xi, z, t):

Pr [F (X−i) 6= F (X) | Xi = xi, Z = z] < µn

⇒ Pr [F (X−i) = t, F (X) 6= t | Xi = xi, Z = z] < µn

⇒ Bn(i, xi, z, t) <
µn

1−Numn(i,xi,z,t)
(6.4)

Thus, from (6.3) and (6.4), it is easy to see that R(i, xi, z, t) is bounded from

below and above as follows:

Numn(i, xi, z, t)

Numn(i, xi, z, t) + µn
≤ R(i, xi, z, t) ≤ Numn(i,xi,z,t)

Numn(i,xi,z,t)−µn
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Hence,

| lnR(i, xi, z, t)|

≤ max

(
ln

(
Numn(i, xi, z, t)

Numn(i, xi, z, t)− µn

)
, ln

(
Numn(i, xi, z, t) + µn

Numn(i, xi, z, t)

))
(6.5)

≤ ln

(
Numn(i, xi, z, t) + µn
Numn(i, xi, z, t)− µn

)
(6.6)

≤ ln

(
c+ µn
c− µn

)
(6.7)

where (6.6) follows by adding the two positive terms inside the max in (6.5), and

(6.7) follows from (6.1) and the fact that β+µn
β−µn is a decreasing function in β for

β > µn. This completes the proof. 2

These two theorems collectively show that it is safe for an individual to con-

tribute data to a database when it is very unlikely to have any effect on the public

releases of information. This may seem like a simple result, but this is the sort

of mechanism that intuitively seems private but which is ruled out by differential

privacy.

MAP estimators. The sufficient conditions shown above are simple and they cover

some very practical and important functions. As an example, we consider a wide

class of estimators known in the literature as “maximum a posteriori probability”

(MAP) estimators [62]. At a high level, the scenario we are interested in is one where

the database rows are sampled i.i.d. from one of several distributions, but where

which distribution is used is not known. The MAP estimator calculates, based on

provided prior probabilities of each distribution being used, the distribution from
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which the database entries are most likely sampled. The MAP estimator appears a

lot in applications involving parameter estimation and multiple hypothesis testing.

We show that releasing the MAP estimator achieves the notions of (0, δ, ∆)- and

(ε, 0, ∆′)-DDP for two (slightly different) large classes of priors ∆ and ∆′. As the

MAP estimator is deterministic, this is not possible with differential privacy.

Formally, we consider database entries to come from a set U , and we have

a finite family of probability density functions (f1, . . . , fk) that each represents a

distribution over U . A distribution D ∈ ∆ generates the database X as follows.

First, D picks one of the distributions in the family (f1, . . . , fk), with each fi chosen

with probability pi (for some probability mass function (p1, . . . , pk)). Once that

choice has been made, the entries of X are chosen i.i.d. according to the chosen

fi. A given D is defined by the choice of (p1, . . . , pk), and we take ∆ to be the

union of all distributions D defined in this manner, where the union is taken over

all legitimate probability mass functions (p1, . . . , pk).

A MAP estimator F with respect to (f1, . . . , fk) takes as input a set of prior

probabilities (π1, . . . , πk) (summing to 1) that the user assigns to the distributions

(f1, . . . , fk) and outputs the index of the distribution which is most likely to have

generated the given database x. Formally, the output is the value of i that maximizes

πi
∏n

j=1 fi(xj) (with ties broken arbitrarily). We emphasize that while intuitively

the user is trying to match (π1, . . . , πk) to the actual priors (p1, . . . , pk), we assume

no relationship between them when proving privacy. That is, our results cover the

case where the actual priors are unknown to the user.
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In the following theorem we show that the MAP estimator F , as defined above,

is (0, δ, ∆)-DDP, where δ decays exponentially to zero in n, if the family (f1, . . . , fk)

satisfies some additional regularity conditions.

Theorem 6.3 Consider a MAP estimator F : Un+1 → [k] for a given family of

distributions (f1, . . . , fk) each with common support and a set of strictly positive

user-defined weights (π1, . . . , πk). Suppose that the distribution family satisfies the

following condition:

∃ M > 1 s.t. ∀i, i′ ∈ [k],∀a ∈ Supp(fi),

fi(a) ≤Mfi′(a) (6.8)

Then the MAP estimator F is (0, δ, ∆)-DDP where ∆ is defined as above (with the

same choice of distribution family (f1, . . . , fk)) and

δ = (k − 1) τ (M + 1) e−nu (6.9)

where

τ = max
i 6=i′

πi
πi′

(6.10)

u = min
i 6=i′

(
− ln

(
E

[(
fi(X1)

fi′(X1)

)s]))
(6.11)

for any fixed s ∈ (0, 1).

To prove this theorem, we first give the following two lemmas.
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Lemma 6.1 Suppose that the family (f1, . . . , fk) satisfies condition 6.8 above and

that it contains no two members which are essentially the same. That is, we have

Pr [fi(Y ) 6= fi′(Y ) | i] > 0 ∀i 6= i′ (6.12)

where Pr[· | i] is the probability computed with Y drawn according to fi. (Below we

use similar notation with expected value.) Let s ∈ (0, 1). Then, we must have

0 < E
[(

fi′ (Y )

fi(Y )

)s
| i
]
< 1 ∀i 6= i′

Proof: Suppose that E
[(

fi′ (Y )

fi(Y )

)s
| i
]

= 0. This requires that fi′(a) = 0 for all a

that occur with positive probability under fi, but this is impossible because it would

violate condition 6.8. Next, by Jensen’s inequality, we have

E

[(
fi′(Y )

fi(Y )

)s
| i
]

<
(
E
[
fi′ (Y )

fi(Y )
| i
])s
≤ 1

where the first inequality is strict due to the fact that condition (6.12) holds and

the fact that s ∈ (0, 1). 2

Lemma 6.2 Fix some j ∈ [k]. Let ∆ contain the single distribution where the

entries of the database X are drawn i.i.d. according to fj. Then, the MAP estimator

F defined above is (0, δ, ∆)-DDP where δ is as given by (6.9).
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Proof: Let i ∈ [n], xi ∈ Supp(fj), and s ∈ (0, 1). For all j′ 6= j, define

uj′,j(s) = − ln

(
E

[(
fj′(X1)

fj(X1)

)s])

where the expectation is with respect to X1 drawn according to fj. Note that, using

Lemma 6.1, it follows that uj′,j(s) > 0 ∀ s ∈ (0, 1), ∀ j′ 6= j. We give upper bounds

on Pr [F (X) 6= j | Xi = xi] and Pr [F (X−i) 6= j | Xi = xi] as follows. First, observe

that

Pr [F (X) 6= j | Xi = xi]

≤
∑
j′ 6=j

Pr

[
πj′
∏
`6=i

fj′(X`)fj′(xi) > πj
∏
`6=i

fj(X`)fj(xi)

]
(6.13)

=
∑
j′ 6=j

Pr

[∏
` 6=i

(
fj′(X`)

fj(X`)

)s
> e−sβxi,j′,j

]

≤
∑
j′ 6=j

esβxi,j′,je−nuj′,j(s) (6.14)

≤ (|K| − 1) τMe−nu (6.15)

where βxi,j′,j = ln
(
πjfj(xi)

πj′fj′ (xi)

)
and τ, M, and u are as defined in Theorem 6.3 above.

Note that (6.13) follows from the union bound and the definition of the MAP esti-

mator F , (6.14) follows from Markov’s inequality, and (6.15) follows from the fact

that esβxi,j′,j ≤ τM and u ≤ uj′,j(s) for all j′ 6= j, , xi ∈ Supp(fj), s ∈ (0, 1).
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Similarly,

Pr [F (X−i) 6= j | Xi = xi] ≤
∑
j′ 6=j

Pr

[
πj′
∏
`6=i

fjr′(X`) > πj
∏
`6=i

fj(X`)

]

=
∑
j′ 6=j

Pr

[∏
` 6=i

(
fj′(X`)

fj(X`)

)s
> e−sβ̃j′,j

]

≤
∑
j′ 6=j

esβ̃j′,je−nuj′,j(s)

≤ (|K| − 1) τe−nu (6.16)

where β̃j′,j = ln
(
πj
πj′

)
, and (6.16) follows from the fact esβ̃j′,j ≤ τ and u ≤ uj′,j(s)

for all j′ 6= j, s ∈ (0, 1).

Now, observe that

Pr [F (X) = F (X−i) | Xi = xi] ≥Pr [F (X) = F (X−i) = j | Xi = xi]

⇒ Pr [F (X) 6= F (X−i) | Xi = xi] ≤Pr [F (X) 6= j | Xi = xi]

+ Pr [F (X−i) 6= j | Xi = xi] (6.17)

The result follows directly from (6.15), (6.16), and (6.17) together with Theorem 6.1.

2

The proof of Theorem 6.3 is straightforward at this point. Theorem 5.4 of

Section 5.4, together with Lemma 6.2 above, extends the distributional differential

privacy of the MAP estimator F from any distribution fj in the family (f1, . . . , fk)

to the convex hull of {f1, . . . , fk} which is indeed the required ∆.
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Next, we consider another class of priors ∆λ indexed by some λ > 0. This

class is defined equivalently to ∆, with the added condition that pi ≥ λ for all i. For

this class of priors, we give the following result that asserts that the MAP estimator

F , as defined above, is (ε, 0, ∆λ)-DDP, where ε decays to zero in n, if the family

(f1, . . . , fk) satisfies the same regularity conditions as in the previous theorem.

Theorem 6.4 Consider a MAP estimator F : Un+1 → [k] for a given family of

distributions (f1, . . . , fk) each with common support and a set of strictly positive

user-defined weights (π1, . . . , πk). Suppose that the distribution family satisfies the

following condition:

∃ M > 1 s.t. ∀i, i′ ∈ [k],∀a ∈ Supp(fi),

fi(a) ≤Mfi′(a) (6.18)

Then the MAP estimator F is (ε, 0, ∆λ)-DDP where

ε = ln

(
1 + (M/λ− 1) τMe−nu

1− (k − 1) τMe−nu

)
(6.19)

where τ is given by (6.10) and u is given by (6.11) for any fixed s ∈ (0, 1).

Proof: Let D ∈ ∆λ be the distribution of the database X. Hence, D can be

written as a convex mixture of the members of {f1, . . . , fk} where the coefficients

of such mixture is given by some probability mass function pj, j ∈ [k] that satisfies

pj ≥ λ ∀j ∈ [k]. Let i ∈ [n], j ∈ [k], and xi ∈ Supp(Xi). Note that, due to condition
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(6.8), xi lies in the common support of {fj, j ∈ [k]}. Define

Num(i, j, xi) = Pr[F (X) = j | Xi = xi]

Den(i, j, xi) = Pr[F (X−i) = j | Xi = xi]

We need to show that e−ε ≤ Num(i,j,xi)

Den(i,j,xi)
≤ eε where ε is given by (6.19). We will use

the notation Pr[· | j̄] to denote the probability of an event conditioned on the fact

that fj is not selected as the database-generating distribution. First, observe that

we can write

Num(i, j, xi) = Pr[F (X) = j | j, Xi = xi]p̂j|xi

+ Pr[F (X) = j | j̄, Xi = xi](1− p̂j|xi)

Den(i, j, xi) = Pr[F (X−i) = j | j]p̂j|xi

+ Pr[F (X−i) = j | j̄, Xi = xi](1− p̂j|xi) (6.20)

where

p̂j|xi =
pjfj(xi)∑

j′∈[k] pj′fj′(xi)

Note that, using the lower bound on pj and condition (6.8), p̂j|xi can be lower

bounded as

p̂j|xi ≥
λ

M
(6.21)
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Note also that we dropped the conditioning on Xi = xi in the first term on the

right-hand side of (6.20) since, conditioned on fj being the database-generating

distribution, X−i and Xi are independent.

Let s ∈ (0, 1). Define

uj′,j(s) = − ln

(
E

[(
fj′(X1)

fj(X1)

)s
| j
])

Using Lemma 6.1, it follows that uj′,j(s) > 0 ∀ s ∈ (0, 1), ∀ j, j′ ∈ [k] such that

j 6= j′. Following similar steps to those that lead to the derivation of (6.15), we have

1 ≥ Pr[F (X) = j | j,Xi = xi] ≥ 1−
∑
j′ 6=j

esβxi,j′,je−nuj,j′ (s)

≥ 1− (K − 1) τMe−nu (6.22)

where βxi,j′,j = ln
(
πjfj(xi)

πj′fj′ (xi)

)
. Using similar analysis, we get

1 ≥ Pr [F (X−i) = j | j,Xi = xi] ≥ 1− (K − 1) τe−nu (6.23)
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On the other hand, we have 0 ≤ Pr [F (X) = j | j̄, Xi = xi] and

Pr [F (X) = j | j̄, Xi = xi]

= Pr

[
πj

n∏
`=1

fj(X`) ≥ max
ĵ:ĵ 6=j

πĵ

n∏
`=1

fĵ(X`) | j̄, Xi = xi

]

=
∑
j′ 6=j

Pr

[
πj

n∏
`=1

fj(X`) ≥ max
ĵ:ĵ 6=j

πĵ

n∏
`=1

fĵ(X`) | j′, Xi = xi

]
p̂j′|xi

1− p̂j|xi

≤
∑
j′ 6=j

Pr

[
πj

n∏
`=1

fj(X`) ≥ πj′
n∏
`=1

fj′(X`) | j′, Xi = xi

]
p̂j′|xi

1− p̂j|xi

≤ τMe−nu (6.24)

where (6.24) follows from Markov’s inequality, (6.8), (6.10), and (6.11). Using sim-

ilar analysis, we get

0 ≤ Pr [F (X−i) = j | j̄, Xi = xi] ≤ τe−nu (6.25)

From (6.21), (6.22), (6.23), (6.24), and (6.25), we have

(
1− (K − 1) τMe−nu

) λ
M
≤ Num(i, j, xi) ≤ 1 + τMe−nu

(
1− λ

M

)

and

(
1− (K − 1) τe−nu

) λ
M
≤ Den(i, j, xi) ≤ 1 + τe−nu

(
1− λ

M

)
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Hence, it is easy to see that e−ε ≤ Num(i,j,xi)

Den(i,j,xi)
≤ eε for all i ∈ [n], j ∈ [k], and

xi ∈ Supp(Xi). 2

The above results hold for a distribution class with no auxiliary information,

but they can be extended to the case where the auxiliary information Z is given

by a proper subset of the database entries XL = {Xj, j ∈ L ⊂ [n]}. Theorem 5.5

lets us treat this as an upper bound, meaning the result applies for any Z = g(XL)

(where g is a randomized function). The proof follows exactly the same lines of the

proofs of Theorems 6.3 and 6.4 after removing the compromised entries from the

database.

Corollary 6.1 Let the auxiliary information be given by Z = g(XL) for any subset

L ⊂ [n] and any (randomized) function g. The results of Theorems 6.3 and 6.4 still

hold with n in (6.9) and (6.19) being replaced with n− L where L = |L|.

We believe that both the sufficient conditions and the MAP estimator mech-

anism itself are of interest independent of our privacy definition. Because the

databases’ inherent randomness here is only used to avoid problematic situations,

rather than as a substitute for added noise, we believe a similar (though possibly

slightly less utile) mechanism could be shown to be private under other privacy

definitions as well. Mainly, one can show that with a little added noise, the MAP

mechanism can be made ε-differentially private.
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6.2 Histograms

Sampling distributions, in which the data are drawn randomly from a fixed

underlying population, form a natural class of distributions on data sets. We argue

that a truncated histogram, which releases a histogram (or contingency table) from

which small cell counts have been redacted, is DDP for a large subclass of sampling

distributions (and their convex combinations).

The model here is that the random sample is the input to the mechanism.

In this context, distributional differential privacy ensures that an adversary cannot

learn about an individual, even if the attacker knows that the individual was in the

sample. Consequently, the adversary cannot determine if a given individual was

in the sample to begin with. Our results strengthen results of Gehrke et al. [29]

on truncated histograms; we explain the relationships between the results further

below.

The only condition we require on the sampling distribution is that the size of

the sample (denoted N because it is now a random variable) has some uncertainty

(to the adversary).

Definition 6.1 (Sampling Priors) Given a finite multiset P (the “population”),

and a distribution pN on nonnegative integers, the sampling distribution DP,pN picks

N according to pN and obtains X by selecting (without replacement) N individuals

uniformly at random from the population P .

The class ∆(ε,δ)-Samp is the convex closure of the set of sampling distributions
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for which the random variable N satisfies

Pr
n∼pN

(
e−ε ≤ Pr(N = n)

Pr(N = n− 1)
≤ eε

)
≥ 1− δ . (6.26)

The condition on the randomness of the sample size holds in a variety of

settings. It is slightly stronger than requiring N ≈ε,δ N + 1—it corresponds to

requiring that N and N+1 be “pointwise” (ε, δ)-indistinguishable in the terminology

of [45]. Nevertheless, N satisfies the condition when N is either binomial or Poisson1

(as long as the expectation is sufficiently large, see below) or when N = const +

Lap(1/ε) where Lap is the Laplace distribution. The following lemma is useful in

both the discussions of priors and the proof of our main result.

Lemma 6.3 For every ε, λ, p, n > 0, we have (1) The Poisson distribution Po(λ)

satisfies Eq. (6.26) when δ = exp(−λε2), and (2) Bin(n, p) satisfies Eq. (6.26) where

δ = exp(−Ω(npε2)).

Some examples of sampling priors that fall in the class ∆(ε,δ)-Samp:

• Suppose the input is obtained by sampling each element in P independently

with probability p ∈ (0, 1). The size N of the sample is binomial Bin(|P |, p),

and satisfies our condition when |P | · p is Ω( log(1/δ
ε2

) (see Lemma 6.3).

• Suppose the input to the mechanism is a sample of some known, fixed size

n0. One can enforce the randomness condition by discarding only a few data

points at random: set N = n0− [Lap(1/ε)+ log(1/δ)
ε

]+ points and discard all but

1Recall that for any nonnegative real number λ, Po(λ) is the distribution over nonnegative
integers such that P (N = n) = e−λλn/n!.
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N data points. Here Lap denotes the Laplace distribution and [x]+ denotes

max {x, 0}. Note that N ≤ n0.

This results in a randomized mechanism that alters at most 2 log(1/δ)
ε

bin counts

in the histogram, far less than the number required to ensure differential pri-

vacy (which requires altering the counts of all bins with some probability).

• Poisson priors: In Poisson sampling, the sample size N follows a Poisson

distribution. It satisfies our condition when λ is Ω( log(1/δ)
ε2

).

• The definition is phrased in terms of a fixed population P , but i.i.d. sampling

also falls into this class (one obtains i.i.d. sampling in the limit as |P | goes to

infinity).

Given a partition of the data domain U into “bins”, a histogram reports the

number of data points in each bin. The k-truncated histogram reports the set of

counts with value at least k (and reports “0” for counts less than k).

Theorem 6.5 (Privacy via Sampling Priors) There is a constant C > 0 such

that, for k > C log(1/δ)
ε2

, the k-truncated histogram is (3ε, 3δ)-DDP for the class

∆(ε,δ)-Samp.

The main difficulty of the proof is that the histogram counts – that is, the

entries of the vector F (Xi) – are not independent. For example, when N = const+

Lap(1/ε), then the sum of the counts is much more concentrated than it would be

if the entries were truly independent (or even if every single count were close to

independent from the remaining ones). Nonetheless, we can use the randomness in
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N to limit the information about the jth entry of F (Xi) that is contained in the

remaining entries.

Proof of Theorem 6.5: Recall that our goal is to compare F (X) and F (X−i),

conditioned on element Xi taking a fixed value.

Suppose we condition on Xi lying in bin j. Observe that

F (X) = F (X−i) + ej

(where ej is a vector equal to 1 in position j and 0 elsewhere), so we really need

to compare F (Xi) with F (X−i) + ej. For a particular value of N = n, there are

two cases: First, if the expectation of F (X)j is very small (less than k/2), then the

count for bin j will be less than k− 2 with high probability and so the count for bin

j will be suppressed (whether or not ej is added). We omit the calculation.

In the second case, the expected count for bin j is large. Let M denote this

count, which is binomially distributed for a particular value of N . Since E(M) is

large, we have M ≈ε,δ M + 1 (by Lemma 6.3). Unfortunately, this is not quite

enough, since the bin counts are not independent (nor even close to independent),

and we cannot analyze M on its own.

We’ll say a value n of N is “good” if Pr(N=n)
Pr(N=n−1)

∈ e±ε. For now, we condition

on a particular good value n. Because X consists of a uniform sample of size N ,

we have that the distributions of F (X−i)
∣∣
N=n

and F (X)
∣∣
N=n−1

are identical. Since

n is “good”, it suffices to compare the distributions of F (X) with F (X) + ej. The

entries of F are not independent in general, so we need to analyze the vectors as a
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whole.

Our strategy is to “couple” these two random variables to make the compar-

ison easier. We therefore compare F (X)|N=n with (F (X) + ej)|N=n−1. Because

n is “good”, we can later account for the discrepancy between the two events we

condition on.

Next, we wish to isolate the information in the j-th entry. Let M denote

the j-th entry of F (X) (the count of bin j). Conditioned on the value of N −M

(i.e., the sum of the remaining counts), then the vector of remaining counts is

independent of M , so it suffices to consider the distribution on the pair (M,N −

M). Comparing F (X)|N=n with (F (X) + ej)|N=n−1 amounts to comparing the

distributions on (M,n−M)|N=n and (M + 1, (n− 1)−M)|N=n−1.

The probability under these two distributions of a pair (m,n−m) can now be

computed explicitly. Suppose that p|P | elements of P lie in bin j. Then

Pr(M = m | N = n) =

(
p|P |
m

)(
(1−p)|P |
n−m

)(|P |
n

) and Pr(M+1 = m | N = n−1) =

(
p|P |
m−1

)(
(1−p)|P |
n−m

)( |P |
n−1

)
The ratio of these two probabilities is thus n

m
·p · |P |−m/p|P |−n . This ratio is e±2ε when m

n
is

e±ε. By a multiplicative Chenroff bound, this latter event happens with probability

at least 1− δ because E(M) ≥ k/2 (where k = Ω(log(1/δ)/ε2)). This completes the

analysis for “good” values of n. By assumption, N is good with probability at least

1− δ. 2

We now prove the remaining necessary lemmas.

Proof of Lemma 6.3: For Part 1, fix an integer m > 0. If N ∼ Po(λ), the ratio
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Pr(N=m)
Pr(N=m−1)

= λ
m
. Thus, to compare Po(λ) and 1 + Po(λ), it suffices to compute the

probability that N lies outside of [λe−ε, λeε]. By standard tail bounds (Lemma 6.4),

this probability is exp(−Ω(λε2)). Part 2 follows a similar calculation, replacing the

Poisson tail bound with the multiplicative Chernoff bound. 2

We use the following tail bound, which follows from the definition of the Pois-

son distribution and Stirling’s approximation for the factorial.

Lemma 6.4 (Poisson Tail Bounds) If N ∼ Po(λ), then max{Pr(N > λeε),

Pr(N < λe−ε)} ≤ 1
ε
√

2π
exp(−λε2

2
(1 + o(ε))).

Relation to the work of Gehrke et al. Gehrke et al. [29] prove a result which

appears, at first glance, very similar: namely, that a mechanism which samples each

input record with probability p and computes a histogram on the resulting sample

is differentially private.

There are two principal differences between the results. First, we assume the

sample is the database, and so we ask that the adversary not be able to learn about

a particular individual compared to a world where they were not in the sample. This

corresponds very closely, for example, to preventing the type of attack carried out

by Homer et al. [37] on genome-wide association study data. In contrast, Gehrke et

al. treat the population as the database. This means that the adversary will not be

able to learn about a particular individual compared to a world where they were not

in the population, where some of the privacy comes from the fact that the individual

was probably not sampled in the first place.

Second, the parameters of the two results are incomparable: Gehrke et al. as-
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sume the sample itself is very small—approximately an ε fraction of the population—

whereas our results apply to populations that are very close in size to N (subject

to the population always being larger than N). On the other hand, Gehrke et al.

require only that k be approximately log(1/δ)/ε, instead of log(1/δ)/ε2. The bound

on k is tight for our definition, unfortunately.

Finally, we mention that Gehrke et al. introduce a new definition, called crowd-

blending privacy. This definition requires that the data of an individual could be

replaced with the data of some number of other individuals in the database without

much change in the output distribution. There is no inference-based version of

the definition given, and whether there are situations where crowd-blending privacy

gives sufficient privacy guarantees is left unclear. The primary motivation, however,

is that when a crowd-blending private query is run on a database sampled from a

larger population, the sample-then-query combination as a whole is differentially

private when considering the population as a whole to be the database. (This is

how the result mentioned above is achieved.)

It seems likely to us that the result discussed above for histograms could be

generalized to give a way of converting crowd-blending private mechanisms to DDP

mechanisms, though we have not verified this. Doing so, or comparing to other

instantiations of coupled-worlds privacy, could add to the understanding of what

exactly crowd-blending privacy protects about an individual and in what situations.
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6.3 Sums

In this section, we consider a mechanism that releases the sum (or equivalently,

average) of the entries in a real-valued database without any form of randomization

or added noise. We begin with a simple warm-up case, a distribution consisting

of rows each chosen i.i.d. from a uniform distribution on [0, 1] with no auxiliary

information. We show that a given row Xi is effectively hidden by the noise of

the other added rows, the sum of which is distributed according to the Irwin-Hall

distribution, which is a close approximation of a Gaussian.

Having shown this initial result, we then generalize substantially. We first

allow for more general distributions on rows. In particular we consider distributions

that contain a rectangle, by which we mean the probability density function p is

lower-bounded by h on some interval [s, t]. (This is generalized to include databases

with rows in Rd rather than just R.) The size and shape of the rectangle has a large

impact on the values of ε and δ, with the best case occurring when the rectangle

has volume close to 1 and has a width close to the full support of the underlying

distribution. This generalization requires repeating the proof, with the new proof

becoming substantially more complex (but using the same underlying methods).

We then use convenient properties of distributional differential privacy to gen-

eralize further. We consider a case where auxiliary information discloses some of the

rows of the database. We show that the previous theorem holds, with the number

of undisclosed rows taking the place of n. Theorem 5.5 then shows that privacy is

maintained when instead of full disclosure, the auxiliary information is simply some
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function of the previously disclosed rows. This means that what we really assume is

that the adversary’s auxiliary information is independent of some number of rows,

an upper bound that is certainly reasonable in many situations.

We then use Theorem 5.4 to remove the assumption that rows are independent

of each other. We assume instead that the rows are drawn i.i.d. from some distri-

bution, but the adversary’s prior (or the real world) might put positive probability

on each of many possible distributions. This means that it is acceptable to release

an average even when that average really does constitute new information for the

adversary or the public.

This result is being presented in place of an earlier result that also showed

sums could be released privately [3]. This result achieved better parameters and

applies to a wider class of distributions. The application to linear regression in the

following section would also be difficult at best using the earlier result.

6.3.1 Background

Here we introduce some background and notation. In particular, we need to

use the Irwin-Hall distribution, given below.

Definition 6.2 The Irwin-Hall distribution is the distribution obtained by adding

n i.i.d. random variables, each drawn from the uniform distribution on [0, 1]. The

probability density function can be written as

pdfn(y) =
1

2 (n− 1)!

n∑
k=0

(−1)k
(
n

k

)
(y − k)n−1 sgn(y − k)
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or as

pdfn(y) =
1

(n− 1)!

byc∑
k=0

(−1)k
(
n

k

)
(y − k)n−1.

The cumulative density function can be written as

cdfn(y) =
1

n!

byc∑
k=0

(−1)k
(
n

k

)
(y − k)n.

The Irwin-Hall distribution converges very quickly and becomes an extremely

good approximation of the Gaussian distribution. As a result, we can show privacy

using calculations similar to those used to show that Gaussian noise is an acceptable

way to achieve differential privacy.

In our proofs we discuss the quantity pdfn(y)
pdfn(y−c) and assume that its largest values

occur at the tails of the Irwin-Hall distribution. This is computationally verified and

is true for the Gaussian distribution, which is a very close approximation, but the

lack of a simple expression for pdf makes it difficult to verify formally.

Assumption 6.1 Consider the quantity pdfn(y)
pdfn(y−c) for 0 < y < n/2 and 0 < c < y.

For a fixed c, we assume this quantity is decreasing in y. That is, the highest values

occur at the tail of the distribution.

We will also use the following standard technical lemma.

Lemma 6.5 For any two events A and B,

|Pr[A]− Pr[A | B]| ≤ Pr[¬B].

120



Proof: First condition:

Pr[A] = Pr[A | B] Pr[B] + Pr[A | ¬B] Pr[¬B]

≤ Pr[A | B] + Pr[¬B]

Second condition:

Pr[A] = Pr[A | B] Pr[B] + Pr[A | ¬B] Pr[¬B]

≥ Pr[A | B] Pr[B]

≥ Pr[A | B](1− Pr[¬B])

≥ Pr[A | B]− Pr[A | B] Pr[¬B])

≥ Pr[A | B]− Pr[¬B])

2

6.3.2 The Simple Case

We begin with a warm-up result, showing privacy when all variables are uni-

formly distributed.

Theorem 6.6 Let D be the generating distribution that outputs a database X of n

rows each chosen i.i.d. from the uniform distribution on [0, 1] and ∆ = {D} (with

empty auxiliary information). Let F be the mechanism that outputs the exact sum
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of all rows of the database. For all a ∈ [0, n], F is (ε, δ,∆)-DDP with

ε = ln

(
pdfn−1(a− .5)

pdfn−1(a− 1)

)
δ = cdfn−1(a− .5) + cdfn−1(a).

Proof: Step 1: Without loss of generality, assume that i (from the DDP definition)

takes value n. Let T = F (X) be the sum of all rows, and T ′ = Sim(X) be the sum

of all rows, but with .5 used in place of the unknown xn. Note that fixing Xn = c

the probability density function for T is pdfn−1(y − c) (where pdfn−1 refers to the

analogous function for the Irwin-Hall distribution with parameter n−1 and y is the

potential value of T ). The probability density function of T ′ is pdfn−1(y − .5). We

want to show that for any set S and any fixed c ∈ [0, 1],

Pr[T ′ ∈ S] ≤ eε Pr[T ∈ S] + δ. (6.27)

We pick a constant a in [0, n]. This is a parameter that will allow us to

make trade-offs between our resulting ε and δ values. We divide S into two sets,

Far = S ∩ ((−∞, a] ∪ [n− a,∞)) and Close = S ∩ [a, n − a]. Far represents the

tails, where privacy will fail (and which will be covered by the δ term) and Close

represents the bulk of the distribution. We now modify our equation.

Pr[T ′ ∈ Far] + Pr[T ′ ∈ Close] ≤ eε(Pr[T ∈ Far] + Pr[T ∈ Close]) + δ.
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We now decrease the right side and increase the left side and maintain a sufficient

condition for privacy.

Pr[T ′ ∈ Far] + Pr[T ′ ∈ Close] ≤ eε Pr[T ∈ Close] + δ

Pr[T ′ ≤ a ∨ T ′ ≥ n− a] + Pr[T ′ ∈ Close] ≤ eε Pr[T ∈ Close] + δ

We then require that

δ ≥ Pr[T ′ ≤ a] + Pr[T ′ ≥ n− a]

≥ cdfn−1(a− .5) + [1− cdfn−1(n− a− .5)]

≥ cdfn−1(a− .5) + cdfn−1((n− 1)− (n− a− .5))

≥ cdfn−1(a− .5) + cdfn−1(a− .5)

≥ 2cdfn−1(a− .5).

With this condition in place, we can reduce our condition to

Pr[T ′ ∈ Close] ≤ eε Pr[T ∈ Close]

Pr[T ′ = y] ≤ eε Pr[T = y] for all y ∈ Close

Pr[T ′ = y]

Pr[T = y]
≤ eε for all y ∈ Close

pdfn−1(y − .5)

pdfn−1(y − c)
≤ eε for all y ∈ Close

The quantity pdfn−1(y−.5)
pdfn−1(y−c) is decreasing in y when c > .5 and increasing in y when

c < .5. It also increases as c becomes closer to 0 or 1. This means that the worst
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case (for y ∈ Close) occurs when y = a and c = 1 or when y = n − a and c = 0.

That means we must take ε such that

pdfn−1(a− .5)

pdfn−1(a− 1)
≤ eε and

pdfn−1(n− a− .5)

pdfn−1(n− a)
≤ eε

These two conditions are equivalent. The points in question are symmetric around

the middle (y = n−1
2

) of the Irwin-Hall distribution with parameter n − 1. As a

result, equation 6.27, the first privacy condition, is satisfied with

ε = ln

(
pdfn−1(a− .5)

pdfn−1(a− 1)

)
, δ = 2cdfn−1(a− .5).

Step 2:We now repeat the same process using the other necessary inequality.

Pr[T ∈ S] ≤ eε Pr[T ′ ∈ S] + δ. (6.28)

We divide S as before into Far and Close, giving us the new equation

Pr[T ∈ Far] + Pr[T ∈ Close] ≤ eε(Pr[T ′ ∈ Far] + Pr[T ′ ∈ Close]) + δ.

We now decrease the right side and increase the left side and maintain a sufficient

condition for privacy.

Pr[T ∈ Far] + Pr[T ∈ Close] ≤ eε Pr[T ′ ∈ Close] + δ

Pr[T ≤ a ∨ T ≥ n− a] + Pr[T ∈ Close] ≤ eε Pr[T ′ ∈ Close] + δ
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We then require that

δ ≥ Pr[T ≤ a] + Pr[T ≥ n− a]

≥ cdfn−1(a− c) + [1− cdfn−1(n− a− c)]

≥ cdfn−1(a− c) + cdfn−1((n− 1)− (n− a− c))

≥ cdfn−1(a− c) + cdfn−1(a− 1 + c)

≥ cdfn−1(a− .5) + cdfn−1(a).

The last line above comes from the fact that of a−c and a−1+c, one will be less than

a− .5 and the other greater (but less than a). Since cdfn−1(·) is a strictly increasing

function, this final condition gives an upper bound. In reality, the function in this

small interval will be nearly linear and approximated very well by 2cdfn−1(a − .5).

With this condition in place, we can reduce our condition to

Pr[T ∈ Close] ≤ eε Pr[T ′ ∈ Close]

Pr[T = y] ≤ eε Pr[T ′ = y] for all y ∈ Close

Pr[T = y]

Pr[T ′ = y]
≤ eε for all y ∈ Close

pdfn−1(y − c)
pdfn−1(y − .5)

≤ eε for all y ∈ Close

For roughly the same reasons as those discussed before, the quantity pdfn−1(y−c)
pdfn−1(y−.5)

is

maximized when y = a and c = 0 or when y = n − a and c = 1, meaning that we
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must take ε such that

pdfn−1(a)

pdfn−1(a− .5)
≤ eε and

pdfn−1(n− a− 1)

pdfn−1(n− a− .5)
≤ eε

These two conditions are equivalent. The points in question are symmetric around

the middle (y = n−1
2

) of the Irwin-Hall distribution with parameter n − 1. As a

result, equation 6.28, the first privacy condition, is satisfied with

ε = ln

(
pdfn−1(a)

pdfn−1(a− .5)

)
, δ = cdfn−1(a− .5) + cdfn−1(a).

Having now found ε and δ variables separately in order to satisfy equations

6.27 and 6.28, we now take the maximum of two values for each in order to find

privacy parameters to satisfy both equations simultaneously. For ε, it is Equation

6.27 that requires the higher value, whereas for δ the requirement of Equation 6.28

is greater. That gives the following final required parameters.

ε = ln

(
pdfn−1(a− .5)

pdfn−1(a− 1)

)
, δ = cdfn−1(a− .5) + cdfn−1(a).

2

6.3.3 Main result

We now move to the more general result. The proof largely proceeds as be-

fore. We now allow output in Rd, which complicates calculations but requires no

fundamentally new ideas. We also allow non-uniform distributions, which does add
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a new layer of complexity to the proof. The way we deal with non-uniform distribu-

tions is to use a technique similar to rejection sampling. With some probability, a

given row is disclosed to the adversary as part of the auxiliary information. This is

done in such a way that conditioned on having not been disclosed the row is chosen

uniformly (over [0, 1] initially, though this is generalized). The methods of the prior,

simpler case can then be applied.

While the goal here is a more general proof, we begin with something still not

maximally general, and derive the stronger theorem as a corollary at the end by

combining that with several other results.

Theorem 6.7 Let D be the generating distribution that outputs a database X of n

rows each chosen i.i.d. from a distribution over d-tuples of real numbers, with Xi,j

representing the jth coordinate of the ith row. Let the probability density function p(y)

be such that p(y) ≥ h for all y ∈ [0, 1]d for some h > 0. Let w1,j = inf(Supp(Xi,j))

and w2,j = sup(Supp(Xi,j)) be the lower and upper bounds of jth component of this

distribution, with wj = w2,j − w1,j the width. Let ∆ = {D} (with empty/constant

auxiliary information). Let F be the mechanism that outputs the (d-dimensional)

exact sum of all rows of the database. F is (ε, δ,∆)-DDP with

ε =
∑
j

ln

(
pdfdrhne−1(aj)

pdfdrhne−1(aj − .5wj)

)

δ = 2
∑
j

(cdfdrhne−1(aj + .5wj)) + (1 + eε)e−2nh2(1−r)2

for any choices of values aj ∈ [0, n/2] and r ∈ [0, 1].
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Proof: Step 1: We use the fact that it is sufficient to prove security when Z

contains more information than is stated in the theorem. In particular, we take Z

to be a random variable, correlated with X, computed according to the algorithm

below. What Z does is disclose rows outside the [0, 1]d region to the adversary, and

discloses rows inside that interval with a probability such that conditioned on not

having been disclosed each row has uniform distribution on [0, 1]d. Our proof will

require that a certain number of rows not be disclosed, and privacy will fail if that

condition is not met. (This probability will be included in the δ value.) However,

because DDP must be satisfied conditioned on any possible value of Z, we cannot

have Z simply disclose too many rows with some small probability. Instead, we

require that if the algorithm for Z finds itself in a situation where it would disclose

too many rows, it instead computes a new value, unrelated to the current value

of X, that has the same distribution Z would have (for random X) if it was not

releasing too many rows. This means that, for any value of Z, the probability that

this value was output as a result of the Z algorithm failing is equal. The algorithm

for computing Z is given formally below:

Most of our proof will assume drhne rows remain random to the adversary, and

that there was no failure. A higher value of r allows more random rows, resulting

in a better ε. On the other hand, a higher r value results in a great probability that

this assumption will fail, resulting in a greater δ.

The likelihood of any particular value of Z is equal regardless of whether

a failure case occurred. As a result, when showing that the privacy condition is
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Auxiliary Information

For a given X that was drawn from distribution D and for constants h, d and
r, the associated Z will have n rows Z1, . . . , Zn, chosen according to the
following process:

Step 1:

• If Xi /∈ [0, 1]d, Zi = Xi.

• If Xi ∈ [0, 1]d, then with probability h/p(xi) choose Zi = ⊥, otherwise
Zi = Xi.

• If the number of rows equal to ⊥ is at least rhn, change a random subset
to the respective Xi values so that there are exactly drhne rows with value
⊥ and then terminate successfully. Otherwise, we consider this to be a
“failure case” and continue to step 2.

Step 2:

• Draw a new database X from D. Repeat the process from Step 1 using
this new database.

• If the number of rows equal to ⊥ is again less than rhn, repeat the above
until it is not.

Figure 6.1: Formal specification of the variable Z.

satisfied (which must be done for an arbitrary, fixed Z = z) we can use a single,

consistent Pr[failure], without the need to condition on Z = z.

Note also that, conditioned on Z = z, the coordinates of a particular (undis-

closed) row are independent of each other. This means that the values of the output

F (X) in each coordinate, once the sum of the disclosed rows has been subtracted,

will be independent of each other.

Our proof is similar to the earlier proof, and we begin the same way. Without

loss of generality, we will again assume that i (from the DDP definition) takes value

n. We will also assume this is a ⊥ row, but also that it could take any value in

Supp(Xn). By doing this, we are treating the problem as if two mutually exclusive

worst cases are occurring simultaneously. If xi was not a ⊥ row, we would have one
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more row of randomness, improving privacy parameters slightly. If xi was limited

to [0, 1] its range, and hence the amount of noise needed to hide its value, would be

reduced. In reality, one of these two improvements in parameters must always be

possible, but for simplicity we ignore this.

The number of undisclosed rows, drhne, will function as the number of total

rows n did in the earlier proof. For convenience, we use m = drhne.

Step 2: We must show that the privacy condition is satisfied under any fixed value

of Z = z and any fixed row Xn = c. F (X) is the simple sum of all rows (when

thought of as vectors in d-dimensional space). For Sim(X) we proceed similarly to

the previous proof, using a function that takes the sum as usual but replaces the

missing row with a value w̃ representing the “middle” possible value. Formally, the

jth coordinate w̃j of w̃ has value (w2,j − w1,j)/2.

We want to show that for any set S, any fixed c ∈ Supp(Xn), and any choice

of z,

Pr[Sim(X) ∈ S] ≤ eε Pr[F (X) ∈ S] + δ. (6.29)

All probabilities are conditioned on Z = z, so we drop this notation for convenience.

We cannot make guarantees about the situation where a failure occurred during the

generation of z, so we use Lemma 6.5 to switch the probabilities above so that they

are now conditioned on success. In doing so, these probabilities are altered by at

most Pr[fail]. We assume the worst case about this change so that we still have a
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sufficient condition.

Pr[Sim(X) ∈ S | success] + Pr[fail] ≤ eε(Pr[F (X) ∈ S | success]− Pr[fail]) + δ

Pr[Sim(X) ∈ S | success] ≤ eεPr[F (X) ∈ S | success]− (1 + eε) Pr[fail] + δ

We take δ′ = δ−(1+eε) Pr[fail], and we assume all probabilities shown are implicitly

conditioned on success. We then have the following condition.

Pr[Sim(X) ∈ S] ≤ eε Pr[F (X) ∈ S] + δ′

Furthermore, conditioned on success and on Z = z, the value of the sum of all

disclosed rows is now fixed. We call this value t. We use T and T ′ as random

values defined analogously to how they were defined in the previous proof. Here T

represents the sum of only the rows that have value ⊥ in z. T ′ represents the sum

of these rows, but with w̃ used in place of xn. This means that F (X) = T + t and

Sim(X) = T ′ + t. Our sufficient condition can now be written as

Pr[T ′ + t ∈ S] ≤ eε Pr[T + t ∈ S] + δ′.

Since t is fixed, we can use S ′ to represent the set where all elements of S have been

reduced by t and now must show that

Pr[T ′ ∈ S ′] ≤ eε Pr[T ∈ S ′] + δ′.
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As before, we will divide S ′ into two sets, Far and Close, with Far represent-

ing points far from the middle (w̃) of the distribution, and Close representing the

remaining points near the middle. Previously, we used a parameter a to represent

the divide between these sets. This time we allow this value to be different in each

dimension, with aj being used to differentiate near from far in the jth dimension.

We first define a box B =
∏

j[aj + w̃j,m− 1− aj + w̃j] and then set Close = B ∩S ′.

We define Far to be the remaining points, Far = S ′ − Close. We now modify our

equation.

Pr[T ′ ∈ Far] + Pr[T ′ ∈ Close] ≤ eε(Pr[T ∈ Far] + Pr[T ∈ Close]) + δ′.

We now decrease the right side and increase the left side and maintain a sufficient

condition for privacy.

Pr[T ′ ∈ Far] + Pr[T ′ ∈ Close] ≤ eε Pr[T ∈ Close] + δ′

We want to require that δ > Pr[T ′ ∈ Far]. In order to quantify this, we evalu-

ate Pr[T ′ ∈ Far] by taking a union bound, adding up the probabilities that each
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coordinate of T ′ is outside the interval [aj + w̃j,m− 1− aj + w̃j].

δ′ ≥ Pr[T ′ ∈ Far] ≥
∑
j

Pr[T ′j /∈ [aj + w̃j,m− 1− aj + w̃j]]

≥
∑
j

(Pr[T ′j ≤ aj + w̃j] + Pr[T ′j ≥ m− 1− aj + w̃j])

≥
∑
j

(cdfm−1(aj) + [1− cdfm−1(m− 1− aj)])

≥
∑
j

(cdfm−1(aj) + cdfm−1((m− 1)− (m− 1− aj)))

≥
∑
j

(cdfm−1(aj) + cdfm−1(aj))

≥ 2
∑
j

cdfm−1(aj)

With this condition on δ′ in place, we can reduce our condition to

Pr[T ′ ∈ Close] ≤ eε Pr[T ∈ Close]

Pr[T ′ = y] ≤ eε Pr[T = y] for all y ∈ Close

Pr[T ′ = y]

Pr[T = y]
≤ eε for all y ∈ Close∏

j Pr[T ′j = yj]∏
j Pr[Tj = yj]

≤ eε for all y ∈ Close

∏
j

Pr[T ′j = yj]

Pr[Tj = yj]
≤ eε for all y ∈ Close

∏
j

pdfm−1(yj − w̃j)
pdfm−1(yj − cj)

≤ eε for all y ∈ Close

The quantity
pdfm−1(yj−w̃j)
pdfm−1(yj−cj) is decreasing in yj when cj > w̃j and increasing in yj when

133



cj < w̃j. The quantity also increases in each case as cj becomes more extreme (i.e.,

as cj becomes higher when cj > w̃j, as cj becomes lower otherwise). This means

that the worst case (for y ∈ Close) occurs when yj = aj + w̃j and cj = w2,j or when

yj = m− 1− aj + w̃j and cj = w1,j. As seen before, these two cases are symmetric

- they simply represent the equivalent situation at the two tales of the Irwin-Hall

distribution. Picking one arbitrarily, we must take ε such that

∏
j

pdfm−1(aj + w̃j − w̃j)
pdfm−1(aj + w̃j − w2,j)

≤ eε

∏
j

pdfm−1(aj)

pdfm−1(aj − .5wj)
≤ eε

We now know that the first privacy condition, Equation 6.29, is satisfied with

ε =
∑
j

ln

(
pdfm−1(aj)

pdfm−1(aj − .5wj)

)

δ′ = 2
∑
j

cdfm−1(aj).

Step 3: We must now show that we also satisfy the other inequality needed for

privacy. Specifically, we want to show that for any set S, any fixed c ∈ Supp(Xn),

and any choice of z,

Pr[F (X) ∈ S] ≤ eε Pr[Sim(X) ∈ S] + δ. (6.30)

Again, we want to limit ourselves to success cases in the generation of z. We can do

this exactly the sme way as before. Keeping δ′ = δ−(1+eε) Pr[fail], we now have the
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following (again, we now assume all probabilities shown are implicitly conditioned

on success).

Pr[F (X) ∈ S] ≤ eε Pr[Sim(X) ∈ S] + δ′

Furthermore, conditioned on z and on success, we again can shift S by t, the sum

of all disclosed rows, so that the sufficient condition is now

Pr[T ∈ S ′] ≤ eε Pr[T ′ ∈ S ′] + δ′.

Taking the same definitions of Far and Close, this condition becomes

Pr[T ∈ Far] + Pr[T ∈ Close] ≤ eε(Pr[T ′ ∈ Far] + Pr[S ′ ∈ Close]) + δ′.

We now decrease the right side and increase the left side and maintain a sufficient

condition for privacy.

Pr[T ∈ Far] + Pr[T ∈ Close] ≤ eε Pr[T ′ ∈ Close] + δ′

We want to require that δ > Pr[T ∈ Far]. We again separate Pr[T ∈ Far] by
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considering each coordinate separately and taking a union bound.

δ′ ≥ Pr[T ∈ Far]

≥
∑
j

Pr[Tj /∈ [aj + w̃j,m− 1− aj + w̃j]]

≥
∑
j

(Pr[Tj ≤ aj + w̃j] + Pr[Tj ≥ m− 1− aj + w̃j])

≥
∑
j

(cdfm−1(aj + w̃j − cj) + [1− cdfm−1(m− 1− aj + w̃j − cj)])

≥
∑
j

(cdfm−1(aj + w̃j − cj) + cdfm−1((m− 1)− (m− 1− aj + w̃j − cj)))

≥
∑
j

(cdfm−1(aj + w̃j − cj) + cdfm−1(aj − w̃j + cj))

≥
∑
j

(cdfm−1(aj + w̃j − w1,j) + cdfm−1(aj − w̃j + w2,j))

≥ 2
∑
j

cdfm−1(aj + .5wj)

With this condition on δ′ in place, we can reduce our condition to

Pr[T ∈ Close] ≤ eε Pr[T ′ ∈ Close]

Pr[T = y] ≤ eε Pr[T ′ = y] for all y ∈ Close

Pr[T = y]

Pr[T ′ = y]
≤ eε for all y ∈ Close∏

j Pr[Tj = yj]∏
j Pr[T ′j = yj]

≤ eε for all y ∈ Close

∏
j

Pr[Tj = yj]

Pr[T ′j = yj]
≤ eε for all y ∈ Close

∏
j

pdfm−1(yj − c)
pdfm−1(yj − w̃j)

≤ eε for all y ∈ Close
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The worst case (for y ∈ Close) occurs when yj = aj + w̃j and cj = w1,j or when

yj = m − 1 − aj + w̃j and cj = w2,j. Again, these are equivalent worst cases at

opposite tails of the distribution. That means we must take ε such that

∏
j

pdfm−1(aj + w̃j − w1,j)

pdfm−1(aj + w̃j − w̃j)
≤ eε

∏
j

pdfm−1(aj + .5wj)

pdfm−1(aj)
≤ eε

We now know that the second privacy condition, Equation 6.30, is satisfied with

ε =
∑
j

ln

(
pdfm−1(aj + .5wj)

pdfm−1(aj)

)

δ′ = 2
∑
j

(cdfm−1(aj + .5wj)).

Step 4: Comparing these two sets of values for ε and δ′, we find the first ε and the

second δ′ values to be the limiting cases. Taking these gives us

ε =
∑
j

ln

(
pdfm−1(aj)

pdfm−1(aj − .5wj)

)

δ′ = 2
∑
j

(cdfm−1(aj + .5wj).

We then need to get a final δ value by adding (a bound on) (1 + eε) Pr[fail] to

δ′. Pr[fail] is the probability that fewer than m rows will remain random in the first

run of the algorithm for Z. In other words, we’re looking to bound the tail of the
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binomial distribution. We use Hoeffding’s inequality which gives

Pr[fail] ≤ e−2(nh−nhr)2/n

≤ e−2(nh)2(1−r)2/n

≤ e−2nh2(1−r)2 .

We do not have a formal optimization of r, but in general believe the best choice

is the highest possible value that keeps the bound on Pr[fail], given above, small

enough that it does not contribute significantly to δ when compared to the other

term.

Combining the above facts gives us the following final values.

ε =
∑
j

ln

(
pdfdrhne−1(aj)

pdfdrhne−1(aj − .5wj)

)

δ = 2
∑
j

(cdfdrhne−1(aj + .5wj)) + (1 + eε)e−2nh2(1−r)2

2

Corollary 6.2 Let D be the generating distribution that outputs a database X of n

rows each chosen i.i.d. from a distribution over d-tuples of real numbers, with Xi,j

representing the jth coordinate of the ith row. Let the probability density function p(y)

contain a d+1-dimensional prism of volume v. That is, let prism P = [s1, t1]× . . .×

[sd, td] such that p(y) ≥ h for all y ∈ P and some h > 0, and let v = h
∏

i(ti − si).

Let w1,j = inf(Supp(Xi,j)) and w2,j = sup(Supp(Xi,j)) be the lower and upper bounds
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of jth component of this distribution, with wj = w2,j −w1,j the width. Let ∆ = {D}

(with empty/constant auxiliary information). Let F be the mechanism that outputs

the (d-dimensional) exact sum of all rows of the database. F is (ε, δ,∆)-DDP with

ε =
∑
j

ln

 pdfdrvne−1(aj)

pdfdrvne−1

(
aj − .5wj

tj−sj

)


δ = 2
∑
j

(
cdfdrvne−1

(
aj +

.5wj
tj − sj

))
+ (1 + eε)e−2nv2(1−r)2

for any choice of values aj ∈ [0, n/2] and any r ∈ [0, 1].

Proof: We first take the original data and apply linear transforms to to each

coordinate so that each interval [sj, tj] is mapped to [0, 1]. This makes the distri-

bution satisfy the conditions of Theorem 6.7, with v in place of Theorem 6.7’s h

and wj/(tj − sj) in place of Theorem 6.7’s wj. As a result, we know that releasing

the sum of this modified database is private. Theorem 5.3 then tells us that we

can apply post-processing to this output, in particular inverting the aforementioned

linear transforms, and output the result. This allows the true some of the original

data to be output with privacy. 2

Corollary 6.3 Corollary 6.2 continues to hold when ∆ consists of many distri-

butions of the type discussed, with ε and δ values equal to the maximum value of

those required by each distribution individually, and when ∆ is further expanded to

include convex combinations of such distributions (and therefore no longer indepen-

dent rows). Furthermore, if Z is changed so that Z = f(X ′) for some f , where

X ′ ⊂ X and |X ′| = ν, then the result still holds, but with n replaced by n− ν.
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Proof: The ability to add distributions to ∆ while taking the maximum of the

ε and δ values that hold for each is a simple consequence of the transitivity of

inequalities. Including convex combinations follows from Theorem 5.4. To include

the auxiliary information, consider first the case where Z = X ′, with the full subset

of the database released. The proof would proceed as before, with the sum of X ′

added to the known sum t that is disregarded and the remaining number of rows

being n− ν (before being reduced further by the added auxiliary information used

in the proof). Once this is clear, the reduction of auxiliary information from the full

subset X ′ to some function of it f(X ′) is automatic from Theorem 5.5. 2

It is worth emphasizing several things about the resulting general version of

the theorem. First, it allows the release of truly new information. Some other defi-

nitions (e.g., noiseless privacy) generally require that rows be chosen independently

from a known distribution in order for information like a sum/average to be released.

This means that the query can never accomplish the most common goal, which is

to estimate the average of the underlying population from which the database is

sampled, or to give some indication of what type of sample the database represents,

because such an answer is only useful in a situation where the average of the distri-

bution is not already known. The end result applies for data that are, for example,

known to be from an approximately normal distribution of unknown mean.

Second, the model of data distribution and auxiliary information here is quite

reasonable. In the prior result on histograms, we used a very particular distribution.

The goal there was to model exactly a common, realistic scenario. Here the goal is

different. We assume only the existence of a prism of the sort described, a minimal
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requirement on a continuous distribution. Furthermore, one can safely bound ε

and δ if one is comfortable assuming lower bounds on the size of this prism. No

additional information about the distribution is needed.

Furthermore, the model of auxiliary information here is quite strong. All that

is required is the assurance that a given number of rows are entirely unknown to the

adversary. Of course, in practice this number might be quite large in some situations,

but the nature of the assumption is quite reasonable. For example, let us return to

the example of Facebook releasing an average age of its users. An adversary might

have a huge amount of auxiliary information about the ages of many Facebook users,

but some users will be missing from this information, or they might be bot-generated

accounts unrelated to real people. For a variety of reasons Facebook can comfortably

assume that for any adversary there are at least many thousands of accounts for

which no information is known. This is the sort of conservative upper bound that we

advocate using. It is not attempting to precisely model the adversary’s information,

but even without such an attempt, the uncertainty assumed is sufficient in some

cases for privacy without any need to add noise.

6.3.4 Example Parameters

The expressions for ε and δ in the above theorems are messy and maybe

hard to understand. It is tempting to replace the pdf and cdf of the Irwin-Hall

distribution with that of the approximating Gaussian, which is an extremely good

approximation. Unfortunately, this is not very effective. The expression for ε is
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extremely messy and adds little in the way of clarity. The expression for δ is even

less useful, since the cumulative density function cannot be expressed in closed form.

Instead we try to give a better of what parameters can be obtained by calculating

numerical values for several distributions on the original data.

We begin by considering data from a uniform distribution on [0, 1], using

Theorem 6.6. The table below shows some ε and δ values that can be achieved. We

consider three database sizes, and for each size we list several choices of a to give a

general idea of what the tradeoff between ε and δ looks like.2

n a ε δ

100 40 .634 6.83× 10−4

100 37 .835 8.18× 10−6

1000 460 .243 1.31× 10−5

1000 450 .303 4.82× 10−8

10000 4870 .0782 6.95× 10−6

10000 4850 .0902 2.12× 10−7

10000 4830 .102 4.07× 10−9

Table 6.1: Concrete parameter value options for several database sizes when data is
drawn from a uniform distribution (over any range).

Whether these values are acceptable is highly dependent on the context be-

ing considered. In small, early-stage clinical trials with very few subjects, these

results allow privacy only with horribly high parameters. For huge datasets based

on website traffic, extremely good privacy can be achieved. (The Netflix dataset,

for example, had millions of records from hundreds of thousands of individuals.)

2The calculations can become computationally non-trivial. We note that in general one can
obtain several significant figures of accuracy by approximating the Irwin-Hall distribution by the
Gaussian distribution.
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We also want to show an example with non-uniform rows, so we consider rows

generated according to a Gaussian distribution. No privacy is possible when row

values are potentially infinite, so we use a Gaussian that is truncated at 2.5 standard

deviations, meaning that values above or below 2.5 standard deviations from the

mean are recorded as having a value of exactly 2.5 standard deviations above/below.

This “top-coding” is a commonly used technique in data collection/analysis. (We

also assume a standard Gaussian with mean of 0 and variance of 1, though this does

not affect the resulting ε and δ values.)

When analyzing the privacy of sums in a Gaussian-distributed database, we

have a choice of what interval to use for [s, t]. Remember that [s, t] (and implicitly

h) as well as r and a are all parameters of the analysis, not the underlying algorithm.

They collectively represent a tradeoff between ε and δ, but for any value of ε or δ

is desired, there is a “correct” choice of these parameters that minimizes the other

value. Unfortunately, we do not have a closed-form solution for the optimal values

given a desired ε or δ. Nevertheless, some basic rules can be found. It is, for example,

always optimal to pick the largest h possible for the given [s, t]. In general, we want

the area of the contained rectangle (t − s)h to be large, and also want the width

t− s to be large. These goals can be contradictory, but in the case of the Gaussian

distribution, we clearly want to be considering [s, t] symmetric around zero and h

equal to the probability density function at the ends. For that reason, we always

pick s = −t and list only t in the table below. h and w are determined automatically

by the choice of t, but we list them to give an indication of the sort of values that

can be achieved for a realistic distribution.
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n t h w a r ε δ

1000 1 .484 2.5 175 .83 .986 2.77× 10−5

1000 1.5 .389 1.67 125 .78 .904 7.43× 10−7

1000 1.5 .389 1.67 130 .79 .775 1.24× 10−5

1000 2 .216 1.25 56 .66 .829 4.73× 10−5

10000 1.5 .389 1.67 1725 .93 .227 3.69× 10−6

10000 1.5 .389 1.67 1690 .92 .273 2.89× 10−8

Table 6.2: Concrete parameter value options for several database sizes. In all cases
the underlying distribution on database rows is a standard Gaussian distribution
truncated at -2.5 and 2.5.

We note also that similar analysis to what we present above can be done with

a variety of alterations to achieve better results for particular values. In particular,

instead of using a uniform distribution (i.e., a rectangle-shaped probability density

function) for the randomness-providing non-disclosed rows, one can pick another

distribution. A symmetric triangle, for example, is the sum of two uniform dis-

tributions and can therefore be used with almost identical analysis. For peaked

distributions, this could have greater area than the rectangle we use here. One

could also use truncated Gaussian or Laplacian distributions to make better use of

the full randomness available. One could also include multiple disjoint rectangles in

the analysis, with Z either disclosing a row’s value or saying which of the two (or

more) uniform distributions the point came from. These options all require more

complex analysis, but no fundamentally new ideas, and the results could provide

substantial (constant-factor) improvements in ε and δ.
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6.4 Linear Regression

Linear regression, also called ordinary least squares regression, is a commonly

used method in statistics and machine learning. Here the data consists of data

points, with a row xi consisting of two values, gi and hi. gi is a vector of dimension

d consisting of real numbers measuring variables thought to offer possible predictive

value. hi is a scalar measurement of the variable that is being predicted. It is

assumed that there is a vector β such that hi = gi · β + erri where erri is random

(hopefully small) error term.

To find the best-fitting value of β, there must be an accepted measurement

of closeness between the predicted and actual values of hi. In this case, that mea-

surement is the square of the distance, so β̂, our estimate for β, is the value that

minimizes
∑

i(hi − gi · β̂)2. This quantity is uniquely minimized with [35]

β̂ =

(
1

n

∑
i

||gi||2
)−1

× 1

n

∑
i

gihi.

The expression above is important for our purposes because it shows that β̂ can

be computed using only a series of averages. In particular, one need only know

the average value over all rows of ||gi||2 and of each of d values of gi,jhi (where

gi,j is the jth element of gi). This is a set of d + 1 averages. Crucially, there are

also d + 1 variables per line in the input (hi and the d coordinates of gi). The

database rows can be thought of as containing, instead of the d + 1 values they

actually contain, the d + 1 implied values whose averages are needed. In general,
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because the number of values does not change, the resulting distribution on the

implied values will satisfy the conditions of Corollary 6.2. The values of ε and δ,

however, are highly dependent on the exact distribution. Nevertheless, this means

that for a wide variety of distributions (that choose rows independently or are convex

combinations of such distributions) we can give an exact linear regression output

while maintaining privacy (and with ε and δ that approach zero as n grows).

There are, however, some caveats that should be emphasized. The result does

not hold if the database rows do not each contain d + 1 degrees of freedom. If,

for example, the dependent variable hi is perfectly predicted (meaning erri = 0) by

gi, then the support of Xi is a d-dimensional surface in Rd, meaning that there is

no contained prism with positive volume. This also applies if two of the values in

gi are perfectly correlated. (This can be the case if, for example, a user wants to

include the square of one of the variables as a way of modeling a potential quadratic

relationship to hi.) Perhaps most importantly, this excludes regressions using the

practice of setting the first coordinate of gi to a constant value of 1 to allow a

predicting plane that does not pass through the origin. (Unfortunately, making one

variable in the actual data constant or a function of the others does not in general

make one of the d+ 1 needed means constant or a function of the others.)

6.4.1 Simple Linear Regression

To show how one might deal with the limitations on releasing exact linear

regression outputs, we consider the case of simple linear regression. This is linear
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regression as discussed before, with two important changes. The first is that there

is only one independent value gi (no longer a vector). The second is that a constant

term is included. As a result, we are assuming that the data is generated by hi =

α + giβ + erri, and we are trying to approximate α and β. The estimates α̂ and β̂

that achieve the least squared error for a given sample are given by

β̂ =
gh− gh
g2 − g2

α̂ = h− βg

where, for example, g is the mean of all gi values [35].

As expected, the inclusion of the constant term means that we need to compute

more means than we have degrees of freedom in a row of the original data. Ideally we

would want means of the vector (gi, hi, gihi, g
2
i ), but any distribution on (gi, hi) would

induce a distribution whose support is a 2-dimensional surface in 4-dimensional space

and therefore has zero volume. To solve this problem, we split the database in two,

and calculate two means each based on each of the two parts. To show that this is

possible, we need the following theorem.

Theorem 6.8 Say that database X is divided into two parts, so X = (X ′, X ′′), and

say that a mechanism F consists of separate mechanisms being run on X ′ and X ′′,

so F (X) = (F ′(X ′), F ′′(X ′′)). Let the distribution D be one that generates each

row independently from a given distribution. Then, if F ′ is (ε′, δ′)-DDP, and F ′′ is

(ε′′, δ′′)-DDP, then F is (max(ε′, ε′′),max(δ′, δ′′))-DDP.
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Proof: Let p(·), p′(·) and p′′(·) be the probability density functions of F (X), F ′(X ′)

and F ′′(X ′′) respectively. Because X and X ′ are independent, we have p((s1, s2)) =

p′(s1)p′′(s2). We define Sim to behave like F on the half of the database that is not

missing a row, and on the other half behave like the simulator of F ′ or F ′′.

There are two probability inequalities that must be satisfied. Both proceed

nearly identically, so we show the following requirement (for all sets S and all row

indices i):

Pr[F (X) ∈ S] ≤ eε Pr[Sim(X−i ∈ S] + δ

We begin with Pr[F (X) ∈ S] and manipulate it to get the needed upper

bound. We use the notation Ss2 = {s1 | (s1, s2) ∈ S} and S2 = {s2 | (s1, s2) ∈

S for some s1}. We assume that the missing row Xi is in X ′.

Pr[F (X) ∈ S] =

∫∫
S

p((s1, s2)) ds1 ds2

=

∫∫
S

p′(s1)p′′(s2) ds1 ds2

=

∫
S2

∫
Ss2

p′(s1)p′′(s2) ds1 ds2

=

∫
S2

p′′(s2)

[∫
Ss2

p′(s1) ds1

]
ds2

=

∫
S2

p′′(s2) Pr[F ′(X ′) ∈ Ss2 ] ds2

≤
∫
S2

p′′(s2)(eε
′
Pr[Sim′(X ′−i) ∈ Ss2 ] + δ′) ds2

≤ δ′ + eε
′
∫
S2

p′′(s2) Pr[Sim′(X ′−i) ∈ Ss2 ] ds2

≤ δ′ + eε
′
Pr[Sim(X) ∈ S]
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A mirrored analysis reversing the roles of each half of X shows the same result when

the missing row is in X ′′ (except that the parameters are ε′′ and δ′′). Similar analysis

also shows the other needed inequality. 2

We now find numerical estimates of what ε and δ values can be achieved. This

will depend on the distribution from which the rows are drawn. Here we pick a

simple example and use gi and hi both drawn from [−1, 1] (so the true values of α

and β are both zero). We first show privacy parameters for releasing the means of

gi and hi.

n a1, a2 r ε δ

1000 400 .9 .669 2.05× 10−8

5000 2270 .955 .295 1.14× 10−8

20000 9500 .976 .160 4.42× 10−10

Table 6.3: Concrete parameter value options for calculation of (g, h) when gi and hi
both come from uniform distributions.

The rest of the database is used in computing (g2, gh). To do this, we first

introduce a change of variables, with (ji, ki) = (g2
i , gihi) and Ji and Ki the random

variables that take on ji and ki as specific values. We must determine the proba-

bility density function p(j, k) for (Ji, Ki). We first calculate the probability density

function pJ(j) for Ji (for 0 ≤ j ≤ 1). Note that the cumulative density function is

√
j. That means the probability density function of j is the derivative, pJ(j) = 1

2
√
j
.

For any fixed value c of Ji, the integral of p(j, k) along the line it defines (j = c)

must be proportional to 1
2
√
j
. Furthermore, p will be constant along that line for k

in the range [−
√
j,
√
j] and 0 elsewhere. To get a value of 1

2
√
j

when integrating a
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constant function along an interval of length 2
√
j, the value must be 1

2
√
j∗2
√
j

= 1
4j

This means we have

p(j, k) ∝


1
4j

: k ∈ [−
√
j,
√
j]

0 : k /∈ [−
√
j,
√
j]

Using the above probability density function, we now evaluate the ε and δ

values achieved for a calculation of (g2, gh) on a database of various sizes. We apply

Corollary 6.2 using t1 = 1 and t2 = .6, which naturally leads to s1 = .36 and

s2 = −.6. The height is limited by the height at (1, .6), which is .25. As a result,

the volume is .192. w1 = 1 and w2 = 2.

n a1, a2 r ε δ

7500 535 .82 .914 9.30× 10−8

10000 740 .84 .801 3.64× 10−8

14000 1082 .865 .676 3.02× 10−8

70000 6113 .938 .293 1.35× 10−8

Table 6.4: Concrete parameter value options for calculation of (x, y) when x and y
both come from uniform distributions.

Combining the values in these two tables, we can arrive at values of the privacy

parameters achievable at various database sizes. For example, we can have ε = .295

and δ = 1.35 × 10−8 with 75,000 total data points (5,000 of which are used for

calculating the first pair of values). We can therefore get private values without the

addition of any noise. However, the components of the regression coefficients are

now being calculated over only part of the database, meaning that the answer is

in some sense still inexact (though because it is deterministic, it might be easier to

analyze and work with in some ways).
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Chapter 7: Conclusion

In this dissertation we have explored two potential ways to weaken the dif-

ferential privacy framework. In Chapter 4 we discussed computational differential

privacy, introduced by Mironov et al. [56]. We believe the weakening is compelling

— that is, it is indeed a weakening that does not lose the fundamental guarantee

of privacy protection. However, we find it unlikely that this definition will lead to

more accurate query output in the standard client-server setting, and we show two

results to this effect.

In Chapter 5 we move to our own proposed weakening, coupled-worlds pri-

vacy, that takes into account the uncertainty inherent in the database, providing an

alternative source of randomness. It assumes the database owner can place some

reasonable upper bounds on what an adversary might already know about the data.

This introduces a new source of potential error — the owner could be wrong about

those upper bounds — but assuming no such error is made, we show that this defi-

nition still protects privacy. We also show a variety of useful properties and discuss

several instantiations that capture a variety of particular privacy notions.

In Chapter 6 we then discuss distributional differential privacy, a particular

instantiation of coupled-worlds privacy in more detail. We show that it can indeed
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be used to output more accurate (often perfectly accurate) query output than dif-

ferential privacy. In particular we discuss MAP estimators, histograms, sums and

linear regression. We use both distributions meant to be precise models of realis-

tic data generation (e.g., sampling distributions for histograms) and more general

distribution families meant to provide conservative assumptions that would cover a

wide variety of possible “true” distributions (e.g., in analyzing sums).

Open questions. A wide variety of questions remain open in this area. Many

queries have not been studied. In particular, we believe that a variety of machine

learning algorithms and statistical tools (e.g., hypothesis testing) provide promise.

Even queries analyzed here could see improved results. While the mechanism itself

generally cannot be improved (because most provide perfect accuracy), the analysis

could provide better parameters or a wider class of acceptable distributions. In

particular, under more specific assumptions about data generation (e.g., data drawn

from normal distributions in each variable) linear regression output could probably

be released with better privacy parameters. We also only conduct analysis under one

of many possible instantiations, and all possible queries under other instantiations

remain as open problems.

There is also substantial work to be done in analyzing the definition itself.

We prove a variety of useful properties, but we suspect many more exist. Most

importantly, our composition theorem is awkward and hard to use. This is probably

the most important issue standing in the way of practical use of the definition. We do

not have a counterexample that shows the assumptions in our composition theorem
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are all necessary. A more widely applicable composition theorem, even if limited

to certain instantiations or certain classes of data distributions, would be extremely

useful.

Of course there are also a huge number of open questions in the wider field,

with active research in differential privacy turning up new private mechanisms all

the time. In addition to finding such mechanisms, there is a need to increase the ease

of use of such mechanisms so that they become more frequently used by researchers.

Only then can they replace the less reliable methods that are still too common

outside the computer science community.
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security of a statistical database. ACM Transactions on Database Systems,
9:672–679, 1984.

[72] US Code of Federal Regulations. Other requirements relating to uses and dis-
closures of protected health information. 45 CFR Subtitle A §164.514, 2002.

[73] Bimal Viswanath, Emre Kiciman, and Stefan Saroiu. Keeping information safe
from social networking apps. In Workshop on Online Social Networks (WOSN),
pages 49–54. ACM, 2012.

[74] Stanley L. Warner. Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association, 60:63–69,
1965.

159



[75] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett.
Functional mechanism: regression analysis under differential privacy. Proceed-
ings of the VLDB Endowment (VLDB), 5(11):1364–1375, 2012.

160


