
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2016 

Transient CFD analysis of autorotation using hybrid LES and Transient CFD analysis of autorotation using hybrid LES and 

adaptive mesh morphing techniques adaptive mesh morphing techniques 

Patricia Coronado Domenge 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Coronado Domenge, Patricia, "Transient CFD analysis of autorotation using hybrid LES and adaptive mesh 

morphing techniques" (2016). Electronic Theses and Dissertations, 2004-2019. 4919. 

https://stars.library.ucf.edu/etd/4919 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4919?utm_source=stars.library.ucf.edu%2Fetd%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


TRANSIENT CFD ANALYSIS OF AUTOROTATION

USING HYBRID LES AND ADAPTIVE MESH MORPHING TECHNIQUES

by

PATRICIA XIMENA CORONADO DOMENGE

B.S. Aerospace Engineering, University of Miami, 2007

B.S. Mechanical Engineering, University of Miami, 2007

M.S. Mechanical Engineering, University of Miami, 2009

A dissertation submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the Department of Mechanical and Aerospace Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2016

Major Professor: Tuhin Das



c© 2016 Patricia Ximena Coronado Domenge

ii



ABSTRACT

Large-Eddy Simulation (LES) based turbulence modeling is a developing area of research in

Fluid-Structure Interaction (FSI). There is considerable scope for further scientific research in this

field and this dissertation aims to extend it to the study of flow-induced motion. The emphasis of

this work is on autorotation, an important category of flow-induced motion that is commonly seen

in energy applications such as wind turbines and in aviation applications such as the autogyro. In

contrast to existing works on FSI that typically assume prescribed motion of structures in a flow

field, this research develops LES based FSI studies for large-scale flow-induced motions as seen

in autorotation. The uniqueness of the formulation and modeling approach lies in the development

of a numerically stable computational scheme that incorporates a moving and morphing mesh

structure. The method is first demonstrated for the autorotation of a square flat plate and then

extended to a rotor structure similar to that of a helicopter.

In order to simulate an autorotating square flat plate, a coupled Computational Fluid Dynam-

ics (CFD) - Rigid Body Dynamics (RBD) model is proposed, employing the delayed-detached-

eddy simulation (DDES) and the Smagorinsky turbulence models to resolve subgrid-scale stresses

(SGS). The plate is allowed to spin freely about its center of mass. Computational results are com-

pared to experimental measurements and Reynolds Average Navier-Stokes (RANS) simulations

found in the literature. When compared to RANS, the results from the LES models provide better

predictions of the pressure coefficient. Moreover, LES accurately captures the transient behavior of

the plate, and close correspondence is found between the predicted and measured moment coeffi-

cients. The qualitative prediction of vortex structures and the quantitative computation of pressure

coefficients are in good agreement with experimental results. Hybrid models, such as improved

Delayed-Detached-Eddy Simulation (iDDES), are shown to provide very similar results to those

of pure LES. Therefore hybrid models are found to be a good alternative to use for the simulation

of FSI in autorotation, saving valuable computational time . The iDDES method combines both
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RANS and LES, dividing the flow domain into LES far away from a solid wall and RANS near a

solid wall, overcoming the computational costs of pure LES.

Encouraging results from this effort prompted the extension to a realistic scenario, namely the

autorotation of a flapping-blade rotor in a prevailing wind field. A coupled CFD - Multi Body

Dynamics (MBD) model is developed to study the complex FSI of an autorotating 3-blade rotor,

similar to that of a helicopter, employing the iDDES turbulence model. In addition to the rotor

being allowed to spin freely about its axis, each of the individual blades is free to rotate about

hinges at the root. This adds degrees of freedom to the kinematics of the rotor and necessitates lo-

calized mesh morphing around the blades to capture the FSI with accuracy. The model is validated

against experimental data and shows excellent agreement. The experimental apparatus consists of

a flapping blade rotor and a fixture used to mount it at different angles of incidence with respect

to the wind field. The rotor is instrumented with a DC motor that is operated in generator mode.

The setup is dual-purpose, providing speed measurement using the motor’s back-emf and regener-

ative braking by varying the current draw. Overall, the presented research can help obtain accurate

values of aerodynamic parameters at a high spatial resolution that would be otherwise difficult to

acquire in experiments. Ultimately this approach can be a cost effective means of aerodynamic

modeling in applications involving large scale FSI.
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CHAPTER 1: INTRODUCTION

The term autorotation was first introduced by Riabouchinsky in 1935, [54], and was later

defined, [61], as the continued rotation of an object lacking an external power source due to a

stream of air. Accurate prediction of the fluid and rigid body dynamics of autorotation is known

to be very challenging because of the complex unsteady flow dynamics, often involving fluid-

structure interaction (FSI), turbulent flow and flow separation, and most importantly the strong

coupling of the two-way interaction between the fluid and solid. As a result, accurate unsteady and

non-dissipative turbulence modelling is critical when resolving the aerodynamic non-linearity of

autorotation. Many industrial applications, such as wing flutter and bridge oscillations, experience

strong FSI effects, which can cause catastrophic failure, especially when materials susceptible

to fatigue are involved, [3]. Further research is required to develop current state of the art FSI

methods, in specific the turbulent and rigid body motion interaction, before optimization, coupled

with Computational Fluid Dynamics (CFD), can be used in the design of successive industrial

applications. Most specifically, in applications that require large scale FSI such as wind turbines

and rotorcraft.

1.1 Background

The uninterrupted rotation of a solid body without the use of external power is defined as

autorotation, [61]. Autorotation of a rotor at high inclination angles with respect to the free stream

flow is generated by the complex FSI between the free stream velocity and the solid blades, often

involving turbulent flow and flow separation. Therefore accurate prediction of the fluid and rigid

body dynamics of autorotation is very challenging given the difficulty in modelling the strong

coupling of the two-way interaction between the fluid and solid. The angular rate of autorotation is

then dependent on the polar moment of inertia of the rotor blade system, the Reynolds number of
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the free stream air, the drag of the blade sections, and the inclination of the rotor disk with respect

to the air flow direction. In contrast to the way a helicopter generates vertical thrust by accelerating

air in a downward direction, in autorotation the blades autorotate due to the resulting torque from

the aerodynamic forces resulting from placing the rotor inclined to a wind field, [71], as seen in

Fig. 1.1(a). In addition, the aerodynamic forces create a thrust force which can be significant based

on the incidence angle and the wind speed.

T

mg

θ
∞V

D

L

(a) Side view

Hinge 1

Hinge 2
Hinge 3

(b) Disk of rotation plane view

Figure 1.1: Schematic diagram of autogyro as seen from the (a) side view and (b) the disk of

rotation plane view

The theory of autorotation can be traced back to 1926 to a study on the autogyro by Glauert,

[23]. An autogyro is a multi-blade rotor type aircraft, in addition to the blades being free to

spin about their common axis, each individual blade is free to rotate about a hinge at its root

independently from the others, as seen in Fig. 1.1(b). The first static analytical autorotation models

[22, 23, 45, 79] use a blade element momentum approach to model the aerodynamic forces. The

limitation of these models is that they are static models and, therefore, lack predictive accuracy

in transient simulations. To resolve this, and improve the predictive accuracy, the development of

high fidelity computational models is needed. Previous work on autorotation has been done in the

study of free falling objects [35, 50], wings [61], and most recently in tree seeds [38, 40, 71], and
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flat plates [1, 11, 27, 34]. Figure 1.2 provides a schematic diagram of a blade under autorotation,

[39]. The figure shows two regions of the blade where accelerating and decelerating torques are

generated due to its interaction with the wind field. The accelerating torque is generated in the

region where the driving force is larger than the effect of drag. Similarly, the decelerating torque

is generated in the region where the opposite is true. The former is generated in the inner portions

of the blade, while the latter is generated in the outer portion of the blade. This is shown through

the force diagrams given in Fig. 1.2.

At section y
1

Net positive in-plane force

(delivers power to rotor)

At section y
2

Net negative in-plane force

(consumes power)

Driving force Driving force

Thrust force Thrust force

Upflow Upflow
Relative Wind Relative Wind

Ωy
1

Ωy
2

dD
dD

y
1

y
2

Accelerating torque

Decelerating torqueSection in

autorotational

equilibrium

Ω

dL dL

NOTE: Angles exaggerated for clarity

Figure 1.2: Forces acting on the blades, conditions for autorotation, [39]
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The goal of this dissertation is to build a high resolution computational model of autorotation

to capture the FSI interaction and aerodynamic forces with good accuracy. At present, Reynolds

average Navier-Stokes (RANS) equations based models are widely used for low run times when

simulating turbulence, although they lack precision in accurately predicting flow separation given

its time averaging of fluctuations and modeling of the Reynolds stress tensor. As a result, RANS

models make it hard to preserve the vortex characteristics involved leaving a flow field void of

incoherent structures. In contrast, large-eddy simulation (LES) models have proven to be a good

alternative to RANS models as they preserve the characteristics of the vortex as shown by Eisen-

back and Friedrich, [16], and most recently the Smagorinsky model with Van Driest damping has

been implemented by Im et al., [30], achieving good agreement with experimental observations.

Given their success and advantages over RANS, LES and hybrid LES are implemented as the

turbulence models for the computational models introduced in this dissertation.

Recently, LES has been successfully implemented in the study of turbo-machinery as published

by Li et al., [42], Tyacke et al. [70], and Watson et al,. [77]. LES has also been successful

when used in particle tracking [14], compressible flow [46], combustion [32, 43, 72] and now

in autorotation [11]. However, as shown by Breuer et al., [8], and Feymark, [20], there is still the

need for further LES investigation in the area of FSI, especially in autorotation without a prescribed

set rotation. A great deal of the work in FSI is conducted using hybrid models, combining both

RANS and LES methods, as presented by Wang [76], Wang et al. [75], and Shinde et al. [58].

The work on this dissertation aims to provide new contributions to LES in the developing field of

autorotation, a subfield of FSI.

LES models are not only promising, but also they perform better than RANS models, and

overcome several of the RANS model disadvantages. In LES, the governing equations are spa-

tially filtered on the scale of the numerical grid. The large energy containing scales are resolved

numerically, and the small scale eddies, which are generally more homogeneous and univer-

sal, are modeled. The large eddies are strongly affected by the flow field geometry boundaries,
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therefore the direct computation of the large eddies by LES is more accurate than modeling the

large eddies by RANS. This in turn helps to better simulate flow separation, an important fac-

tor in autorotation. Separated vortices create large pressure gradients on the surface of origin,

which is the driving force of this autorotation, i.e., in laminar flow the autorotation is not sus-

tained. The effect of the unresolved small scales of motion in LES is typically modeled by a

subgrid-scale (SGS) model[13, 21, 44, 52, 60] or by the inherent dissipation in the numerical

schemes[4, 5, 6, 25, 37, 57]. Because the statistics of the small scale turbulence are more isotropic

and universal, a general physical model for small scale eddies is more plausible.

For certain applications and complex flows that require solving for the wall boundary layer,

the CPU resource needed by LES is close to that of the Direct Numerical Simulation (DNS). As

a result, pure LES might not be rigorously implemented for another 3 decades in engineering

applications, [65], and several hybrid RANS and LES models have been developed to overcome

the intensive CPU requirements for LES, with runtimes between those of RANS and LES. One

of these models was introduced by Spalart et al. in 1997 called detached-eddy simulation (DES),

[65], which divides a flow domain into a LES region far away from a solid wall and a RANS region

near a solid wall. Previous work for turbulence simulations for airfoils, cylinders and forbodies

using DES have shown encouraging results as seen in work done by Travin et al. [69], Spalart [62],

Hansen and Forsythe [26], Viswanathan et al. [73], and Subbareddy and Candler [66].

The original DES model suffers from the downside that the transition from RANS to LES may

not be grid independent and as a result Spalart suggested a modification to his original model

in 2006, [64], called delayed-detached-eddy simulation (DDES). In order for the transition to be

independent from grid spacing, Spalart used a blending function to limit the DES length scale

similar to the one used by Menter and Kuntz, [49], for the Shear Stress Transport (SST) model.

The DDES model has shown excellent agreement with experimental data as well as a significant

improvement from DES in work done by Wang and Zha [74], Coronado Domenge et al. [12] and

Im et al. [30].
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For turbulence modeling, additional adjustments for the DDES model, improved DDES (iD-

DES), are then outlined by Travin et al., [68], concerning the definition of the LES length scale

and the Wall-Modelled Large-Eddy Simulation (WMLES) helping to resolve the turbulence defini-

tion near solid walls. For a more comprehensive review of the LES and hybrid models mentioned

in this dissertation the reader is directed to the review paper by Argyropoulos and Markatos, [2].

For FSI simulations, a good turbulence model is not enough, as the governing equations of the

fluid flow and the structure have to be solved simultaneously, given that in nature this interaction

occurs at the same time. Therefore, a good coupled CFD - rigid body dynamics (RBD) model is

needed to capture the interaction between the fluid and the body without any time lag. Previous

work has been done using loosely coupled models where there is a time difference between the

information exchanged from the flow to the structural solver and vice versa [9, 24, 36]. This lag

is due to the need for a convergence on the individual solvers before the exchange of informa-

tion. More recently, fully coupled models, in which the governing equations for the flow and the

structure are solved together, have been developed to study engine fans and compressors [29] and

autorotating plates [11, 27].

A fully coupled FSI simulation requires the solver to calculate the forces in the fluid and then

applying them to the solid structure, computing the movement and deformation of the body. In

other words, the fluid forces affect the solid body which in turn deforms and affect the fluid flow

in the next time step. Therefore, an important requirement for the simulation of FSI is mesh

deformation, as the computational mesh is regenerated every time step to match the motion of the

structure. As a result, it is crucial that the coupled CFD model involves an adaptive mesh morphing

technique that does not cause any numerical problems due to poor mesh quality deformations.

Autorotation involves large rotations and therefore introduces large displacements which can bring

about significant convergence and stability problems. In order to overcome large deformations of

the grid cells of the mesh, an advance mesh deforming technique that allows the mesh cells to

break up and slide, instead of morphing, is used in this research.
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In this dissertation, the flow around an autorotating flat plate is simulated, using several LES

models, which was analyzed experimentally by Martinez-Vazquez et al., [47], and previously sim-

ulated using RANS models by Hargreaves et al., [27]. A coupled CFD - multi body dynamics

(MBD) model is then introduced to study the flow around an autorotating 3-blade rotor and vali-

dated against experimental data.

1.2 Objectives

The objective of this research is to develop a high fidelity fully coupled CFD-MBD model for

the study of large scale FSI and to investigate the flow of the autorotation of a 3-blade rotor. In

order to achieve this objective, the following tasks are accomplished in this work:

1. Development of a fully coupled single body CFD model using LES and LES/RANS hybrid

turbulence to study the autorotation of a square flat plate

2. Validation of the CFD - RBD model against experimental results and RANS simulations

found in literature of an autorotating plate

3. Development of a fully coupled multi-body CFD model using LES/RANS hybrid turbulence

to study the autorotation of a 3-blade rotor

4. Implementation of an experimental setup for an autogyro experiment to produce results to

use for the validation of the CFD - MBD model

5. Validation of the CFD - MBD model against experimental results generated by the autogyro

experiment
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1.3 Outline of the Dissertation

This Chapter provided an introduction, literature review and the objectives of the work dis-

cussed in this dissertation. Chapter 2 presents the fluid flow governing equations that are solved

with the use of CFD and turbulence model applications. The equations describing the rigid body

motion responsible for the motion of the mesh are then described in Chapter 3 for both a single and

multi-body model. Chapter 4 describes the simulations performed and presents a comparison of

results with experimental data to validate the high fidelity FSI models introduced. Further results

are then discussed in Chapter 5 for the autorotating square flat plate and the autorotating 3-blade

rotor studied in this work. Finally, Chapter 6 presents a summary of the findings as well as the

completed objectives, future research work and a list of publications.
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CHAPTER 2: FLUID FLOW GOVERNING EQUATIONS

The fluid flow governing equations are the basic conservation equations of mass, momentum,

and energy from which the 3D general Navier-Stokes equations are derived. These equations are

derived using a Eulerian type control volume approach.

2.1 Conservation of Mass

The conservation of mass equations in differential form is given by:

∂ρ

∂t
+∇ · (ρV) = 0 (2.1)

where ρ is the fluid density, t is the time, and V is the flow velocity vector:

V = ui+ vj+ wk (2.2)

For incompressible or steady flow, Equation 2.1 is reduced to ∇ · ρV = 0.

2.2 Momentum Equation

The momentum equation is derived from Newton’s second law and is defined in differential

form as:

ρ
DV

Dt
= ρf +∇ · σ (2.3)
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where f is the body force and σ is the stress tensor defined by:

σ = −pδij + τij = −pδij + µ

[
∂ui

∂xj

+
∂uj

∂xi

−
2

3

∂uk

∂xk

δij

]
(2.4)

here p is the static pressure, δij is the Kronecker’s delta function:

δij =





1 when i = j

0 when i 6= j

and µ is the molecular viscosity modeled by Sutherland’s law:

µ

µ∞

=

(
T

T∞

)1.5
T + 110K

T + T∞

(2.5)

where T is the static temperature and µ∞ and T∞ are conditions at a reference point.

2.3 Energy Equation

The energy equation is derived from the 1st law of thermodynamics and is defined in differential

form by:

Dρe

Dt
= −∇ · q+ ρf ·V +∇ · (σ ·V) (2.6)

where e is the total energy per unit mass:

e = cvT +
1

2

(
u2 + v2 + w2

)
(2.7)
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where cv is the constant volume specific heat coefficient and q is the conductive hear flux vector:

q = qxi+ qyj+ qzk (2.8)

and by Fourier’s law:

q = −k∇T (2.9)

where k is the thermal conductivity.

Substituting the definition of a substantial derivative,

D

Dt
=

∂

∂t
+ µk

∂

∂xk

(2.10)

into Equations 2.3 and 2.6, the fluid flow governing equations, following the Einstein convention,

can be rewritten as follows:

∂ρ

∂t
+

∂ρuk

∂xk

= 0 (2.11)

∂ρui

∂t
+

∂ρuiuk

∂xk

= −
∂p

∂xi

+
∂τik
∂xk

(2.12)

∂ρe

∂t
+

∂ (ρe+ p) uk

∂xk

=
∂ (τikui + qk)

∂xk

(2.13)
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where ρe is defined as:

ρe =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
(2.14)

In order to solve Equations 2.11, 2.12 and 2.13, they need to be supplemented with the equation

of state for an ideal gas:

p = ρRT (2.15)

where R is the gas constant and γ is the specific heat ratio of the fluid.

2.4 Spatially Filtered 3D Navier-Stokes Equations

Equations 2.11 - 2.14 are the Navier-Stokes (NS) equations and for turbulent flows can be

solved using direct numerical simulation (DNS). However, such solution is limited to very simple

geometries and low Reynolds numbers as DNS requires the grid size to be on the same order of

magnitude as the spatial and temporal length scales. In order to resolve all the scales of turbulence

the time steps size needs to be close to Re3/4 and the number of grid points equal to Re9/4 [51].

Calculations of this magnitude become unfeasible and computationally too expensive, therefore

the Navie-Stokes equations are reformulated using a spatial averaging approach, and the turbulent

effects are resolved using turbulence models. By using spatial filtering, the small scale high fre-

quency components of the motion of the fluid are eliminated perserving the large scale tubulent

motion[17].

The governing equations for the flow field computation in a rotating frame are the second order

nonlinear partial differential spatially filtered 3D general Navier-Stokes equations in generalized
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coordinates and can be written as follows:

∂Q′

∂t
+

∂E′

∂ξ
+

∂F′

∂η
+

∂G′

∂ζ
=

1

Re

(
∂E′

v

∂ξ
+

∂F′

v

∂η
+

∂G′

v

∂ζ

)
+ S′

R (2.16)

where Re is the Reynolds number defined as:

Re =
ρ∞u∞L

µ∞

(2.17)

where ρ∞ is the reference density, u∞ is the reference velocity, L is the reference length, and µ∞

is the reference viscosity.

From Equation 2.16, the generalized variable vector Q′, the generalized inviscid flux vectors E′,

F′, and G′, the generalized viscous fluxes E′

v, F′

v, and G′

v, and the generalized rotation source

term S′

R are given by:

Q′ =
Q

J
(2.18)

E′ =
1

J
(ξtQ+ ξxE+ ξyF+ ξzG) (2.19)

F′ =
1

J
(ηtQ+ ηxE+ ηyF+ ηzG) (2.20)

G′ =
1

J
(ζtQ+ ζxE+ ζyF+ ζzG) (2.21)

13



E′

v =
1

J
(ξxEv + ξyFv + ξzGv) (2.22)

F′

v =
1

J
(ηxEv + ηyFv + ηzGv) (2.23)

G′

v =
1

J
(ζxEv + ζyFv + ζzGv) (2.24)

S′

R =
SR

J
(2.25)

where J is the transformation Jacobian. This transforms the governing equations from the physical

space (x, y, z) to the computational domain (ξ, η, ζ), generating an equally spaced rectangular grid

system for numerical accuracy and simpler implementation.

The Navier-Stokes equations noted in Equation 2.16 are normalized by a characteristic length

and reference parameters given that for CFD this is useful to bring the numerical round-off error

to its minimum, the normalization procedure is found in detail in[28].

The variable vector Q, and inviscid flux vectors E, F, and G from the above equations are

defined as:

Q =




ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄ẽ




, E =




ρ̄ũ

ρ̄ũ2 + p̄

ρ̄ũṽ

ρ̄ũw̃

(ρ̄ẽ+ p̄)ũ




, F =




ρ̄ṽ

ρ̄ṽũ

ρ̄ṽ2 + p̄

ρ̄ṽw̃

(ρ̄ẽ+ p̄)ṽ




, G =




ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + p̄

(ρ̄ẽ+ p̄)w̃
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where ρ is the density, u, v, w are the Cartesian velocity components in x, y, z directions, p is the

static pressure, and e is the total energy per unit mass. The overbar denotes a regular filtered

variable, and the tilde is used to denote the Favre filtered variable [18]. For an arbitrary function

u (xi, t), the filtered variable ū (xi, t) is given by:

ū (xi, t) =

∫

D

G (xi − ξi,∆) u (ξi, t) dξi (2.26)

where G is the filter function and ∆ is the filter width associated with the size of the mesh. The

Favre filtered variable ũ (xi, t) is then defined as:

ũ (xi, t) =
ρu

ρ̄
(2.27)

where ρ̄ is the filtered density.

The viscous flux vectors Ev, Fv, and Gv are defined by:

Ev =




0

τ̄xx + σxx

τ̄xy + σxy

τ̄xz + σxz

Qx




, Fv =




0

τ̄yx + σyx

τ̄yy + σyy

τ̄yz + σyz

Qy




, Gv =




0

τ̄zx + σzx

τ̄zy + σzy

τ̄zz + σzz

Qz




where τ̄ij is the molecular stress tensor, σij is the sub-grid scale stress tensor, and Qi is the energy

flux.

The molecular viscous stress tensor τ̄ is calculated using the following equation:

τ̄ij =
2

3
µ̃
∂ũk

∂x k
δij + µ(

∂ũi

∂xj

+
∂ũj

∂xi

), i, j = 1, 2, 3 (2.28)
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where the molecular viscosity µ̃ = µ̃(T̃ ) is determined by Sutherland law as described by Equa-

tion 2.5. Equation 2.28 is in tensor notation and the subscript 1, 2, 3 represent the coordinates,

x, y, z using the Einstein summation convention.

The sub-grid scale stress tensor σ due to the filtering process is defined as:

σij = −ρ̄(ũiuj − ũiũj) (2.29)

The energy flux Q is expressed as:

Qi = ũj(τ̄ij + σij)− q̄i + Φi (2.30)

where Φ is the sub-scale heat flux and q̄i is the molecular heat flux and are defined as follows:

Φi = −Cpρ̄(ũiT − ũiT̃ ) (2.31)

q̄i = −
cpµ̃

P r

∂T̃

∂xi

(2.32)

where cp is the constant pressure specific heat coefficient and Pr is the Prandtl number.

And the inviscid fluxes E′, F′, and G′ in generalized coordinate system are expressed as:

E′ =




ρ̄U

ρ̄ũU + lxp̄

ρ̄ṽU + lyp̄

ρ̄w̃U + lzp̄

(ρ̄ẽ+ p̄)U − ltp̄




, F′ =




ρ̄V

ρ̄ũV +mxp̄

ρ̄ṽV +myp̄

ρ̄w̃V +mzp̄

(ρ̄ẽ+ p̄)V −mtp̄




, G′ =




ρ̄W

ρ̄ũW + nxp̄

ρ̄ṽW + nyp̄

ρ̄w̃W + nzp̄

(ρ̄ẽ+ p̄)W − ntp̄
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where U , V and W are the contravariant velocities in ξ, η and ζ directions and are defined by:

U = lt + l ·V = lt + lxũ+ lyṽ + lzw̃

V = mt +m ·V = mt +mxũ+myṽ +mzw̃

W = nt + n ·V = nt + nxũ+ nyṽ + nzw̃

(2.33)

where lt, mt, and nt are the grid moving velocities and are defined as follows:

lt =
ξt
J
, mt =

ηt
J
, nt =

ζt
J

(2.34)

and where l, m, n are the normal vectors on the ξ, η, ζ surfaces with their magnitudes equal to the

elemental surface area and pointing in the directions of increasing ξ, η, ζ , defined in generalized

parameters as:

l =
∇ξ

J
, m =

∇η

J
, n =

∇ζ

J
(2.35)

lt, mt, and nt are equal to zero when the grid is stationary.

The Favre averaged Navier-Stokes equations can then be written as follows:

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj

= 0 (2.36)

∂ρ̄ũi

∂t
+

∂ρ̄ũiũk

∂xk

= −
∂p̄

∂xi

+
∂τ̂ik
∂xk

(2.37)

17



∂ρ̄ẽ

∂t
+

∂ (ρ̄ẽ+ p̄) ũk

∂xk

=
∂ (ũj τ̂ik + q̂k)

∂xk

(2.38)

where τ̂ik is the total shear stress and q̂k is the total heat flux in turbulent flows and are given by:

τ̂ik = (µ+ µt)

[(
∂ui

∂xk

+
∂uk

∂xi

)
−

2

3
δik

∂uj

∂xj

]
(2.39)

q̂k = −cp

(
µ

Pr
+

µt

Prt

)
∂T

∂xk

(2.40)

where µt is the turbulence viscosity and it is determined by the turbulence model being employed

and Prt is the Prandtl turbulent number equal to 0.9.

The first term in Equation 2.38 can be further expanded as follows:

ρ̄ẽ =
p̄

(γ − 1)
+

1

2
ρ̄(ũ2 + ṽ2 + w̃2) + ρk (2.41)

where γ is the ratio of specific heats and ρk is the sub-scale kinetic energy per unit volume given

by:

ρk =
1

2
ρ̄(ũiui − ũiũi) = −

1

2
σii (2.42)

For simplicity, all of the tilde and overbar in the equations above will be dropped for the rest of

this dissertation.
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2.5 Detached-Eddy-Simulation

DES is a hybrid turbulence model which involves both the RANS model and the LES model.

This is done by applying the RANS model near a solid wall, and the LES model everywhere else

away from a solid wall. The Navier-Stokes equations on the preceding section are the general-

ized equations and in order to be solved need the closure of the sub-grid scale stresses and heat

flux terms. This closure can then be based on the DES model suggested by Spalart et al.[65] as

described next.

First the sub-grid scale (SGS) stresses σij is redefined from Equation 2.29 for the DES turbulence

model as follows:

σij = µDES(
∂ũi

∂xj

+
∂ũj

∂xi

−
2

3

∂ũk

∂xk

δij)−
2

3
ρkδij i, j = 1, 2, 3 (2.43)

The turbulence heat flux Φi, from Equation 2.31, is computed as:

Φi = Cp
µDES

Prt

∂T̃

∂xi

(2.44)

where µDES is the turbulence viscosity defined by the DES turbulence model as presented below:

µDES = ρνt = ρν̃fv1 (2.45)

The νt from Equation 2.45 is the turbulence eddy viscosity and ν̃ is a working variable which is
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determined by the Spalart-Allmaras (SA) model [26, 63, 65, 73] from the following equation:

Dν̃

Dt
= cb1S̃ν̃ (1− ft2)− [cw1fw−

cb1
k2

ft2][
ν̃

d
]2+

1

σ
[∇·((ν+ ν̃)∇ν̃)+cb2(∇ν̃)2]+ft1 (∆q)2 (2.46)

Equation 2.46 is the eddy viscosity equation and can be rewritten in a generalized coordinate

system as presented below:

∂ 1

J
ρν̃

∂t
+

∂ρν̃U

∂ξ
+

∂ρν̃V

∂η
+

∂ρν̃W

∂ζ
=

1

Re

(
∂ ρ

σ
(ν + ν̃) (l · ∇ν̃)

∂ξ

. +
∂ ρ

σ
(ν + ν̃) (m · ∇ν̃)

∂η
+

∂ ρ
σ
(ν + ν̃) (n · ∇ν̃)

∂ζ
+

1

J
Sν

)
(2.47)

where

Sν = ρCb1 (1− ft2) S̃ν̃ + 1

Re

[
−ρ

(
Cw1fw − Cb1

κ2 ft2
) (

ν̃
d

)2

+ ρ
σ
Cb2 (∇ν̃)2 − 1

σ
(ν + ν̃)∇ν̃ · ∇ρ

]
+Re

[
ρft1 (∆q)2

] (2.48)

According to the SA one equation model, the closure coefficients for the eddy viscosity equation

above are set as follows:

Cb1 = 0.1355, Cb2 = 0.622, σ = 2

3
,

Cw1 =
cb1
k2

+ (1 + cb2)/σ, Cw2 = 0.3, Cw3 = 2.0,

κ = 0.41, Cv1 = 7.1, Ct1 = 1.0, Ct2 = 2.0, Ct3 = 1.1, Ct4 = 2.0

For turbulent flow, the NS Equations 2.16 are solved together with Equation 2.47 when using

the SA one-equation turbulence model.
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The eddy viscosity νt and the scalar term S̃ in Equation 2.46 are computed from:

νt = ν̃fv1 fv1 =
χ3

χ3 + c3v1
χ =

ν̃

ν
(2.49)

S̃ = S +
ν̃

k2d2
fv2, fv2 = 1−

χ

1 + χfv1
(2.50)

where ν is the molecular viscosity and S is the magnitude of the vorticity defined as:

S =
√

2ωijωij (2.51)

where ωij is the fluid particle angular velocity given by:

ωij =
1

2

(
∂ui

∂xj

−
∂uj

∂xi

)
(2.52)

The functions fw, ft2, and the trip function ft1 are defined as follows:

fw = g(
1 + c6w3

g6 + c6w3

)1/6, g = r + cw2(r
6 − r), r =

ν̃

S̃k2d2
(2.53)

ft2 = Ct3exp
(
−Ct4χ

2
)

(2.54)

ft1 = Ct1gtexp

[
−Ct2

ω2
t

∆U2

(
d2 + g2t d

2

t

)]
, gt = min

(
0.1,

∆q

ωt∆xt

)
(2.55)

21



where k is the Karmann constant, ωt is the vorticity of the wall at the wall boundary layer trip

location, d is the distance to the closest wall, dt is the distance of the trip location to the field

point, ∆q is the difference of the velocities between the trip location and the field point, and ∆xt

is the grid spacing along the wall at the trip location. The subscript t indicates that the variable is

referring to the trip location. The trip location is where the flow transition smoothly from laminar

flow to turbulent and should not be located outside the boundary layer.

In order to apply the DES model, the SA model coefficients ct1 and ct3 are set to zero to assume

a fully turbulent boundary layer, as in most problems the exact location of the trip point is not

known. The distance to the nearest wall d is redefined and replaced by d̃ as follows:

d̃ = min(d, CDES∆) (2.56)

where CDES is a constant and ∆ is the grid cell’s largest spacing in all directions.

When the boundary later is close to the walls, then d̃ = d and the turbulence is simulated using

the SA model [63], a RANS model. When away from the boundary layer, then the distance to the

nearest wall is defined by d̃ = CDES∆. Eventually, when the production and destruction terms of

the model are balanced, the length scale d̃ will have a Smagorinsky[60]-like eddy viscosity and the

turbulence will then be simulated by the LES model. The coefficient CDES = 0.65 is used as set

in the homogeneous turbulence[59]. The Prt number takes the value of 0.9 within the boundary

layer for RANS mode and 0.5 away from the wall for LES mode.

The generalized eddy viscosity Equation 2.47 coupled with the filtered Navier-Stokes Equa-

tions 2.16 with the DES turbulence closure can be written in a conservative form in the generalized
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coordinate system (ξ, η, ζ) as follows:

∂Q

∂t
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
=

1

Re

(
∂R

∂ξ
+

∂S

∂η
+

∂T

∂ζ
+D

)
(2.57)

where,

Q =
1

J




ρ

ρu

ρv

ρw

ρe

ρν̃




(2.58)

E =




ρU

ρuU + lxp

ρvU + lyp

ρwU + lzp

(ρe+ p)U − ltp

ρν̃U




, F =




ρV

ρuV +mxp

ρvV +myp

ρwV +mzp

(ρe+ p)V −mtp

ρν̃V




, G =




ρW

ρuW + nxp

ρvW + nyp

ρwW + nzp

(ρe+ p)W − ntp

ρν̃W




(2.59)
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R =




0

lkτxk

lkτyk

lkτzk

lkβk

ρ
σ
(ν + ν̃) (l · ∇ν̃)




, S =




0

mkτxk

mkτyk

mkτzk

mkβk

ρ
σ
(ν + ν̃) (m · ∇ν̃)




, T =




0

nkτxk

nkτyk

nkτzk

nkβk

ρ
σ
(ν + ν̃) (n · ∇ν̃)




(2.60)

D =
1

J




0

0

0

0

0

Sν




(2.61)

where U , V , W are defined the same way is as in Equation 2.33 and βk is computed as:

βk = uiτki − qk (2.62)

Finally, the shear-stress τik and total heat flux qk in generalized coordinates for the DES turbu-

lence models are defined as:

τik = (µ+ µDESRe)

[(
∂ui

∂xk

+
∂uk

∂xi

)
−

2

3
δik

∂uj

∂xj

]
(2.63)
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qk = −
1

(γ − 1)M2
∞

(
µ

Pr
+

µDESRe

Prt

)
∂T

∂xk

(2.64)

2.6 Delayed-Detached-Eddy Simulation

The DDES formulation introduced by Spalart et al.[64], based on the SA one equation tur-

bulence model [63], suggests some modifications to his previous DES model [65], presented in

section 2.5, given that in wide boundary layers and shallow separation regions the DES simula-

tion can present erroneous behavior. This may occur when the thickness of the boundary layer is

greater than the grid spacing parallel to the wall, making the transition from RANS to LES ear-

lier. With the new modified DDES, the RANS model is retained longer for thick boundary layers

independent of the grid spacing. The DES model is adjusted as follows.

The SGS stresses formulation from the SA definition is modified by redefining the non-dimensional

parameter r from Equation 2.53 to:

rd =
νt + ν

(Ui,jUi,j)0.5k2d2
(2.65)

where Ui,j are the velocity gradients, and the subscript d refers to delayed for DDES. This param-

eter is modified in this form so it can be applied to any eddy-viscous model.

The redefined dimensionless parameter rd is applied in the following function:

fd = 1− tanh([8rd]
3) (2.66)

The coefficients 8 and 3 from Equation 2.66 are acquired from DDES flat plate boundary layer

tests[64] by matching the solution to the RANS results. Using the new function fd, the DES
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distance to the nearest wall d̃ from Equation 2.56 can be modified and be redefined for DDES as

follows:

d̃ = d− fdmax(0, d− CDES∆) (2.67)

where d̃ is filtered and ∆ is the largest spacing of the grid cell in all the directions. DDES then

behaves as a RANS model when near a wall such that within the boundary layer, d̃ = d, and as an

LES model away from the walls such that away from the boundary layer d̃ = d−fd (d− CDES∆).

The modification in how the distance to the nearest wall d̃ is defined reduces the grey transition

area between RANS and LES. The qualitative change of the new d̃ is very significant, depending

now on the eddy-viscosity field. The DDES model can now refuse the transition to LES if not

ready, when the function fd, using the value of rd, indicates that the point still lies within the

boundary layer. The opposite also occurs; when there is massive separation indicated by fd, the

change from RANS to LES takes place in the simulation.

Further improvement to the definition of the transition from RANS to LES is made in the im-

proved Delayed Detached Eddy Simulation (iDDES) turbulence model. The main adjustments

made to the iDDES model from its predecesor DDES are outlined by Travin et al. [68] including

the definition of the LES scale and the Wall-Modelled Large-Eddy Simulation (WMLES) which

resolve the turbulence definition near the solid walls. The fd function introduced for DDES is

redefined as follows:

fhyb = max {(1− fd) , fstep} (2.68)
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where fd is the delay function of DDES as given by Equation 2.66 and fstep is given by:

fstep = min
(
2 exp

(
−9α2

)
, 1.0

)
(2.69)

where

α =
0.25− dw

hmax

(2.70)

The new function fstep introduced by iDDES is only active when the model operates in WMLES,

making a quick transition from RANS to LES inside the boundary layer. This transition is allowed

to happen as long as the wall distance is within the range of 0.5hmax < dw < hmax where hmax is

the maximum local grid spacing.

2.7 Large Eddy Simulation

The LES Smagorinsky model performs spatial filtering of the velocity fluctuations to decom-

pose them into large scales, which are numerically resolved, and small scales, which are modeled.

The Smagorinsky-Lilly model with Van Driest damping [60] models the SGS by employing an

eddy viscosity approach. In this approach it is hypothesized that a turbulent eddy viscosity exists

at the small scales and that the stresses are in equilibrium at the interface between the large and

small scales. The eddy viscosity µ̃t is defined as:

µ̃t = ρ̄C2

s l
2
√
2SijSij (2.71)
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where Cs is the Smagorinsky constant, Sij is the rate-of strain tensor given by:

Sij =

(
∂ui

∂xj
+

∂uj

∂xi

)

2
(2.72)

and l is the model length scale given by:

l = (∆)1/3
√
(1− exp(−y+/26))3 (2.73)

where ∆ is the volume of the cell.

Typical variations of the Smagorinsky model involve modifications to the SGS length scale

expression (l) and the filter method used. Although in this approach the cube root of the cell volume

is used to filter the scales, Gaussian filtering can be performed based on the strain rate or velocity

fluctuations in flow. Additionally, other LES models seek to improve upon the definition of the

model constant Cs. In the Smagorinsky-Lilly model this value is held constant and typically equal

to 0.1. In the dynamic Smagorinsky method [21], later studied by [56] for complex geometries, the

model constant is computed dynamically and allowed to change in time and space. In this work, a

dynamic choric Smagorinsky model is employed with the following definition for the Smagorinsky

model constant:

Cs =
< K ∗m >

< m ∗m >
(2.74)

where the angled brackets represent averaging over the whole domain, valid in homogeneous tur-

bulence, K is defined as:

K =
1

2
(ũiuj − ũiũj), (2.75)
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and m as:

m = ∆2(4||D̃||2 − ˜||D||2). (2.76)

D̃ is modeled as the deviatoric component of the symmetric gradient of the velocity field, i.e.,

D̃ = dev(symm(∇U)). The dynamic Smagorinsky constant ranges from 0 to 1. The constant

grows near the boundary region towards unity and is zero in regions where velocity gradients

are small [67]. This model assumes homogeneous turbulence at the SGS scales, although non-

homogeneous models do exist in the literature [41].

2.8 Implementation of Governing Equations in OpenFOAM

The computational models introduced in this dissertation for the study of autorotation are im-

plemented and examined using OpenFOAM [33], an open source object-oriented CFD code written

in C++, with LES and hybrid LES turbulence modeling. This code is chosen given its ability to run

in Message Parsing Interface (MPI) for parallel computing, facilitation of model implementation

due to its object-oriented nature, and its large library of turbulence models. OpenFOAM stands for

Open source Field Operation And Manipulation.

For unsteady flows, the Navier-Stokes governing equations described in this Chapter are solved

in OpenFOAM with the use of the Pressure Implicit Split Operator (PISO) algorithm introduced

by Issa [31]. The PISO algorithm is a pressure-velocity coupled iterative method.
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CHAPTER 3: INCORPORATING RIGID BODY DYNAMICS

THROUGH MESH MORPHING

3.1 Incorporating Rigid Body Dynamics - Application to Autorotating Square Flat Plate

In this section, a method to incorporate the rigid body dynamics (RBD) of a single rigid body

into the CFD computations is summarized. The specific rigid body of interest is a square flat plate,

rotating in the presence of a flow field. A schematic diagram of the setup will be given later in

this section. The reason to pursue modeling this system is because it presents a simple form of

autorotation for which experimental and simulation data are available in the literature to validate

against. More details on the experiment and model validation will be discussed in Section 4.1.

First, the approach for incorporating the RBD is described. The RBD model implemented into

OpenFOAM is adopted from the symplectic splitting method described by Dullweber et al.[15].

This method can be viewed as constructing the numerical solution of the dynamics by stringing

together a sequence of exact solutions of partial Hamiltonians. The parts of the Hamiltonian H

are the kinetic and potential parts. The method is suitable for reducing computational errors,

especially for simulations run over longer time-periods. Once implemented, this simplectic model

calculates the solid body’s angular velocity in response to the instantaneous fluid forces, which in

turn defines the mesh motion. This generates the two-way coupling between the solid body and

fluid flow around it.

Given the large possible degrees of freedom of a rigid body that is free to rotate and translate,

the best approach to solve complex problems of this nature, such as autorotation, is to use the

aforementioned Hamiltonian-based symplectic structure. The Hamiltonian of a system is its total
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energy and is given by the following equation:

H (p,π,q,Q) = T (p,π) + V (q,Q) (3.1)

where p is the linear momentum vector, π is the angular momentum vector, q is the position of

the center of mass vector, Q is the 3 × 3 orientation matrix, and T and V are the kinetic and

potential energies of the rigid body. The orientation matrix Q is constrained such that it is always

a rotation matrix, this is done by setting QTQ = 1. The kinetic energy can further be divided into

translational kinetic energy and rotational energy such that:

T (p,π) = T rot (π) + T trans (p) (3.2)

where T trans is defined as:

T trans (p) =
p2

2m
(3.3)

where m is the total mass of the rigid body.

The calculation of the T rot term is more complicated to compute and therefore is approximated

using a time-reversible splitting symplectic method as described by McLachlan[48] and Reich[53],

preserving the total linear and angular momentum. Here, in every time-step, the orientation dy-

namics of the rigid body is integrated by a sequence of planar rotations. The differential equations

of motion for the kinetic energy term in the Hamiltonian equation are given by:

d

dt
q =

p

m
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d

dt
p = 0

d

dt
Q = Q skew

(
I−1

π

)

d

dt
π = π ×

(
I−1

π

)
(3.4)

where I is the moment of inertia tensor and the skew of a vector a is given by:

skew (a) =




0 −a3 a2

a3 0 −a1

−a2 a1 0




(3.5)

In this work, the coupled CFD-RBD model is implemented for an autorotating square flat plate.

Assuming the rigid body rotates about its principal axes, the moment of inertia tensor I becomes a

diagonal matrix. The principal moments of inertia for a plate are given by:

Ixx =
1

12
M

(
b2 + c2

)
Iyy =

1

12
M

(
a2 + c2

)
Izz =

1

12
M

(
b2 + a2

)
(3.6)

where M is the total mass and a, b, and c are the dimensions of the plate in x, y and z directions

respectively. The simplicity of a diagonal inertia tensor helps to calculate the rotational motion of
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the rigid body with a series of elementary functions described by:

R (∆t) = Rx

(
1

2
∆t

)
Ry

(
1

2
∆t

)
Rz (∆t)Ry

(
1

2
∆t

)
Rx

(
1

2
∆t

)
(3.7)

where the elementary functions, Rx, Rx, and Rx, are responsible for updating the angular mo-

mentum and the orientation matrix at each time step while preserving the total angular momentum

of the rigid body. They are defined as:

Rx =





Q (t) = Q0Rx (θ)
T

π (t) = Rx (θ)π0

, Ry =





Q (t) = Q0Ry (θ)
T

π (t) = Ry (θ)π0

Rz =





Q (t) = Q0Rz (θ)
T

π (t) = Rz (θ)π0

(3.8)

where the subscript 0 indicates that the property is the same throughout the rotation sequence

and Rx (θ), Ry (θ), and Rz (θ) are the rotation matrices about an angle θ in the x, y, and z-axis,

respectively. The angle θ is defined as:

θ =
tπi

Ii
(3.9)

The differential equations of motion for the potential energy term in the Hamiltonian equation

are:

d

dt
q = 0
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d

dt
p = −

∂V

∂q

d

dt
Q = 0

d

dt
π = −curl

(
QT ∂V

∂Q

)
(3.10)

where the curl is the mapping of the 3 × 3 matrix into a vector in a R3 space. These equations

for the potential energy term, in contrast to the kinetic energy, are easier to solve given that the

position vector and rotation matrices are constant for potential energy. The equations presented

above are implemented into OpenFOAM, [78], with the use of septernions and quaternions. In this

CFD code, the motion of a rigid body in a 3D space is described by a septernion. The septernion

consists of 7 elements describing a body’s translation by the use of a vector and a body’s rotation

by the use of a quaternion.

The implementation of the rigid body motion coupled with the CFD code is presented next. The

CFD code with an adequate turbulence model calculates the forces and torques on the rigid body

which then are used to calculate the angular momentum π and the linear momentum p from one

time step to the next by using the following equations:

π
n+1/2 = π

n +
1

2
∆tτ n (3.11)

pn+1/2 = pn +
1

2
∆tfn (3.12)
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where τ n is the torque vector and fn is the force vector at time tn. Then using the newly calculated

linear momentum pn+1/2 from Equation 3.12, the center of mass location is updated for the next

time step simulation as follows:

qn+1 = qn +∆tpn+1/2m (3.13)

The vector in the septernion is responsible for this calculation and only the translation of the

rigid body is taken into consideration and communicated to the mesh. The next step is to update

the orientation matrix which is responsible for the rotation of the rigid body, this occurs in the

quaternion part of the septernion. The orientation matrices Q as well as the angular momentum π

get updated by the use of function R from Equation 3.7. The series of consecutive rotations for

the calculation of R are presented below:

R1 = Rx

(
1

2
∆t

π1

I1

)
, R2 = Ry

(
1

2
∆t

π2

I2

)

R3 = Rz

(
∆t

π3

I3

)
, R4 = Ry

(
1

2
∆t

π2

I2

)

R5 = Rx

(
1

2
∆t

π1

I1

)
(3.14)

where the subscripts 1, 2, 3 are the (x, y, z) components of each vector quantity, πi is the angular

momentum, Ii are the elements of the diagonal of the inertia tensor of the rigid body, and the
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rotations by an angle φ around the x, y, and x axes are given by the following equations:

Rx(φ) =




1 0 0

0 cosφ − sinφ

0 sinφ cosφ




(3.15)

Ry(φ) =




cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ




(3.16)

Rz(φ) =




cosφ − sinφ 0

sinφ cosφ 0

0 0 1




(3.17)

These 5 rotations according to the function R are applied at every time step to update the angular

momentum π and orientation matrix Q of the rigid body, and subsequently the mesh updates to its

new position.

With the mesh translated and rotated to its new position, and with the position and orienta-

tion matrix updated, the CFD code can calculate again the forces and torques and propagate the

momentum the rest of the half step as:

π
n+1 = π

n+1/2 +
1

2
∆tτ n+1 (3.18)

pn+1 = pn+1/2 +
1

2
∆tfn+1 (3.19)
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In every time step, the Equations 3.11-3.19 presented above get calculated by using the forces

gathered from the turbulence model simulation, making of this a coupled CFD-RBD model.

The method presented above lets a body move freely in all 6 degrees of freedom (DOF), there-

fore constraints and restraints are introduced into the coupled CFD-RBD model to control the

DOF and motion range of the rigid body motion. Equation 3.20 below shows the translational and

rotational constraint tensors for the full 6 DOF.

Translational constraint tensor =

(
1 0 0 0 1 0 0 0 1

)

Rotational constraint tensor =

(
1 0 0 0 1 0 0 0 1

)
(3.20)

A schematic diagram of the autorotating square flat plate is shown is Fig. 3.1.

Fixed axis 

of rotation

x

y

z

V∞

Rotating 

square flat plate

axis of symmetry

Control Volume

Figure 3.1: Schematic diagram of an autorotating square flat plate
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For this system, a restraint is implemented in the form of a bearing damper to take into account

the friction present by adding a bearing friction torque to the already present aerodynamic torques.

This is later described in more detail in Section 4.1.2. Additionally, two constraints are introduced

to limit the motion of the plate. The first one is a fixed point constraint, not allowing for any

translational motion, and the second one is an axis constraint, only allowing for rotation about the

z-axis. These two constraints simplify the the model into a 1-DOF case, only allowing the flat

plate to rotate, without any form of translation, about its principal z-axis. Equation 3.21 presents

the new translational and rotational constraints for the 1-DOF case, only allowing it to rotate about

the z-axis.

Translational constraint tensor =

(
0 0 0 0 0 0 0 0 0

)

Rotational constraint tensor =

(
0 0 0 0 0 0 0 0 1

)
(3.21)

Once a geometrically valid mesh is carefully constructed, the first step in the implementation of

the CFD-RBD model into OpenFOAM is to divide the mesh into the sections that are allowed to

morph and those that are not. This is done by assigning a value between 1 and 0, where 0 means

the mesh is completely stationary and 1 means the mesh is allows to morph the most. By doing

this, the model knows which cells to apply the equations of motion described above.

For the autorotating square flat plate case, described in more detail in Section 4.1.2 of this

dissertation, Fig. 3.2 shows the moving mesh motion regions for a single rigid body, where the

dark blue area represents the stationary mesh and the inside light blue area represents the section

of the mesh that is allowed to rotate. By setting the whole moving area of the mesh to the same

value, the mesh section rotates all together without any deformation, therefore it is important that

the interface between the moving and the stationary mesh sections is allowed to slide and does
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not remain attached to each other. This way the mesh cells remain stable without introducing any

numerical errors into the calculation. OpenFOAM uses Arbitrary Mesh Interface (AMI), [19],

between the sliding boundaries of the mesh to communicate the information at the interfaces. The

sliding interface between the stationary outer region and the rotating inner region of the flat plate

case is seen in Fig. 3.3.

Figure 3.2: Moving mesh motion regions for the autorotating flat plate

(a) t = 0 sec (b) t = 2 sec

Figure 3.3: Sliding interface between stationary and rotating mesh regions for autorotating plate
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3.2 Incorporating Multi-body Dynamics into Mesh Motion: Application to 3-Blade Rotor

The symplectic splitting method described in Section 3.1 was applied to capture the dynamics

of one rigid body, namely the autorotating flat plate. In this section, its application is extended to

multi-body dynamics (MBD). Specific application is to a 3-blade rotor where each blade is allowed

to flap about a hinge that connects it to the hub of the rotor. The setup is shown in Fig. 1.1. This

3-blade rotor system has more complicated fluid structure interactions. However, the system it is

more closely representative of a typical rotor than the autorotating flat plate. Furthermore, as part

of this work, experimental data could be acquire from lab experiments with a similar rotor. The

details of this experimental set-up will be given in Section 4.2.1.

The same method of Section 3.1 is utilized for the MBD model, but instead of being applied

to just one rigid body it is applied for several bodies at the same time. As a result, the set of

Equations 3.11-3.19 gets employed more than once in every time step. For the particular case of

the autorotating 3-blade rotor, this set of equations gets executed four times, once for each of the

individual blades and once for the whole rotor structure containing the hub. The importance of this

multi-body model is that the forces calculated by the CFD code for each of the individual blades

contribute to the total forces that in turn are responsible for the motion of the complete structure.

In other words, in every time step the coupled CFD and rigid body model calculates the forces

on each of the solid bodies, calculates the motions, and the mesh transforms under the prescribed

constraints and limits.

In this model, for each solid body new linear momentum vectors pi, angular momentum vectors

πi, center of mass position vectors qi, and 3 × 3 orientation matrices Qi, where i = 1, 2, 3, 4, are

introduced. Each body is then able to move independently from each other, and at the same time

contribute to the motion of the complete structure such that the linear and angular momentum for
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the whole system are calculated by:

p =
i∑

n=1

pi, π =
i∑

n=1

πi (3.22)

where i is the number of solid bodies present in the simulation.

In this work, the coupled CFD-MBD model of Section 3.1 is implemented for an autorotating

3-blade rotor. For the individual blades, the dynamical equations for flapping are implemented in

a similar manner as for the rotating flat plate discussed in Section 3.1. Each blade is assumed to be

a thin rectangular flat plate. For incorporating the spinning motion, the rotor is approximated as a

thin disk, with the following moment of inertias:

Ixx = Izz =
1

2
MR2 Iyy =

1

4
MR2 (3.23)

where R is the radius of gyration and M is the effective mass. Similar to the CFD-RBD model, re-

straints and constraints are implemented into the model to dictate the motion of the rotor structure.

To keep the blades and hub rotating about their principal y-axis without any translational motion, a

fixed point constraint is implemented. Equation 3.24 below shows the translational and rotational

constraint tensors for the multi-body 3-DOF case, allowing the rotor structure to rotate about the

x, y and z axes.

Translational constraint tensor =

(
0 0 0 0 0 0 0 0 0

)

Rotational constraint tensor =

(
1 0 0 0 1 0 0 0 1

)
(3.24)
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Given that the rotational constraint tensor for the rotor allows for rotation about the 3 axes,

further limitations have to be implemented for the multi-body mesh motion. For the rotor, the

whole structure is allowed to rotate at the same angular velocity about its principal y-axis, while

each blade is allowed to rotate about its local x-axis at the hinge joint that connects it to the hub.

Therefore the motion has to be constraint such that each blade does not rotate independently about

its local y-axis, otherwise the blades will rotate at a different pace than the hub, creating large mesh

deformations, incorrect dynamical behavior and an unstable numerical simulation.

The x and z components of the angular momentum vector, π, for the whole 3-blade rotor system

is set to zero, forcing motion only about the global y-axis. Simultaneously, the y component of the

angular momentum vectors, π1, π2, and π3, for each blade is set to zero, forcing them to just flap

independently from each but not rotate about their y-axes. Equation 3.25 shows the constraints

applied to each of the four angular momentum vectors present in the rotor simulation.

For π : π1 = 0 π3 = 0

For π1, π2, and π3 : π2 = 0 (3.25)

Furthermore, in order to limit the range of flapping angles of the blades, a constraint is intro-

duced such that each blade is not allowed to rotate past a prescribed angle. This not only avoids

large morphing of the mesh cells that can lead to numerical instability, but also keeps the rotation

within the range of motion that the hinges permit.

Once the MBD model is implemented in OpenFOAM, the first step before simulating the model

is to designate the regions of the mesh that will undergo any kind of transformation, the same way

that it was done for the CFD-RBD model. The main difference from the single-body model is

that now several moving-mesh regions are introduced, each with their own constraints. Given that
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depending on the motion of the multi-body system the moving-mesh regions might overlap each

other, it is important that the motion is employed in a way that will not sacrifice the quality of the

cells of the mesh as this might in turn make the CFD code numerically unstable and the solution

will not converge.

The 3-blade autorotating rotor freely rotates about its principal axis, and each individual blade is

allowed to flap independently from each other, making of this model a multi-body coupled CFD-

RBD simulation. Figure 3.4(a) shows the internal region of the mesh (light blue) that is allowed to

rotate and the outer domain (dark blue) of the mesh that is stationary. Figures 3.4(b)-(d) show the

regions that the mesh is allowed to morph for capturing the flapping dyamics of each blade.

(a) (b) Blade 1

(c) Blade 2 (d) Blade 3

Figure 3.4: Moving mesh motion regions for a problem with multiple bodies

The sliding interface between the stationary outer region and the rotating inner region, where
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each blade is allowed to flap independently from each other, is seen in Fig. 3.5. Figure 3.6 shows a

single blade as it rotates and translates, demonstrating the morphing ability of the individual cells

within the moving regions of the mesh.

(a) t = 0 sec (b) t = 0.8 sec

Figure 3.5: Sliding interface between stationary and rotating mesh regions for autorotating

3-blade rotor

Figure 3.6: Single blade mesh deformation as it rotates and translates inside the moving mesh

inner cylinder region
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CHAPTER 4: VALIDATION STUDY OF COUPLED CFD

AND RIGID BODY DYNAMICS MODELS

4.1 Coupled CFD and Rigid Body Dynamics (RBD) - Autorotating Square Flat Plate

The CFD-RBD model of the autorotating square flat plate, presented in Section 3.1, is val-

idated by comparing its simulation results with results from several LES models, the Auckland

experiment data [47], and the RANS simulations performed by Hargreaves et al.[27]. In these

existing works, the system of Fig. 3.1 is considered.

4.1.1 Details of Experimental Setup in [47]

The computational model presented in this work uses for validations purposes the experiments

conducted by Martinez et al., [47], in the wind tunnel at the University of Auckland. The plate was

mounted on a turntable in an open test section with a range of wind speeds of Uw = 5, 7.5 and 10

m/s for the autorotation experiments. The 2.7 kg square plate was made of polystyrene with 1 m

length and 0.0254 m thickness, equipped with twenty-four pressure transducers arranged as seen

in Fig. 4.1. The reader is referred to [47] for further details on the experimental setup. The data

collected by the pressure transducers was used to compute the force coefficients given by CN =

FN/(0.5ρU
2
wA), where A = 1m2. From this data set, drag, lift and moment coefficients were

inferred as defined by CD = FNx
/(0.5ρU2

wA), CL = FNy
/(0.5ρU2

wA) and CM = T/(0.5ρU2
wl

3),

respectively, where D is the drag force, L is the lift force, T is the torque and l is the characteristic

length which in this case is 1 m. In this dissertation, the results for a wind speed of 5 m/s are used

for the model validation, as the experimental results of the pressure coefficients for the 7.5 and 10

m/s cases are not readily available in [47].
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Figure 4.1: Sensor distribution on plate surface for Auckland experimental setup [47]

It is important to note that the experimental results show an increase in the dynamic pressure in

the vicinity of the plate compared to the entrance of the tunnel and this is taken into consideration

when calculating the aerodynamic force coefficients. The measured increase and employed in the

CFD simulation is of 22% for a Uw = 5 m/s. The 22% increased in dynamic pressure measured by

[47] has been employed in the CFD simulations, changing the free stream velocity in the vicinity

of the plate from 5 m/s to 6.1 m/s.

4.1.2 CFD Model Description

Several LES models are used to study the autorotation of a square flat plate. The mesh is

completely structured and consists of 4.6 million hexahedral cells, with y+ values between 10 and

100. Based on the ranges of y+, wall functions are employed for the turbulence viscosity (νt) to

model the shear and sub-layer profiles of the boundary layer. The computational domain is made

up of two zones, a cylinder containing the plate and the rectangular outer domain, connected by an
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Arbitrary Mesh Interface or AMI, [19], as seen in Fig. 4.2 and Fig. 4.3. The outer rectangular test

section has dimensions of 15c× 7c× 3.5c where c = 1m. The plate’s center is located 1.2c from

the bottom wall and 5c from the inlet.

The moments of inertia from Equation 3.6 can be further simplified for a thin flat plate. The

plate, weighting 2.7 kg, has dimensions of 1 m in the x direction, 1 m in the z direction, and

0.0254 m in the y direction. The y dimension is considerably smaller than the x and z dimensions,

therefore the plate can be considered thin and this quantity be neglected. The moment of inertia

vector is then calculated to be (0.225 0.45 0.225) kg ·m2. At the beginning of the simulation,

the initial orientation matrix for the plate, given that the global axes coordinate system is the same

as the local fixed frame coordinate system, is:

plate : Q =




1 0 0

0 1 0

0 0 1




(4.1)

As indicated by Spalart et al., [64], DDES is mesh independent (grid density) and therefore y+

values between 10 and 100 is not of concern. However, LES simulations such as the Smagorinsky-

Lilly model need a better defined boundary layer. Therefore y+ < 1 is preferred without the use of

a wall function to model the boundary layer. Figs. 4.3(a) and 4.3(b) show the cross-section of the

mesh around the flat plate for the two different y+ values. The mesh with the lower y+ consists of

around 100,000 more cells.

Figure 4.4 shows the comparison of the lift and drag coefficients for the Smagorinsky simula-

tions with the low and high y+ values. The plots show there is very little difference in the results

and grid independence. Therefore, to reduce computational time, the mesh with the larger y+ will

be used for the rest of the simulations and results presented in this dissertation.
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Figure 4.2: Computational domain and boundary conditions setup for autorotating plate CFD

simulation
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(a) y+ > 10 (b) y+ < 1

(c) Plate inside rotating cylinder

Figure 4.3: Fully structured computational domain cross-section of mesh around flat plate for (a)

y+ > 10 and (b) y+ < 1 for inner rotating mesh (c) rotating cylinder domain
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Figure 4.4: Comparison of lift and drag coefficients for a full rotation for different y+ values for

LES
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For the computation, the inlet boundary condition was set uniform in the x-direction with an

imposed turbulence of 5%. This value was chosen as it is typical for low turbulence wind tun-

nels. The turbulence is modeled as random fluctuations about a mean velocity (freestream) and it

showed little effect on the end results given that the distance between the inlet and the plate was

considerable (d = 5m). A Reynolds number of Re = 3.34 × 105 for Uw = 5m/s is used. As

previously mentioned, note that the inlet velocity used in the experiment and simulation is differ-

ent than the velocity used to calculate the dynamic pressure directly in front of the plate. In order

to replicate the experiment as close as possible, the boundary conditions at the front, back and a

single top section were set as fixed static pressure outlets under atmospheric conditions. All the

walls have a no-slip boundary condition, except for the plate surfaces which are set as moving wall

velocity. This is done to take into account the motion computed by the fluid structure interaction

(FSI) of the rotating mesh so that there is no flux across the plate.

To provide a better match between the simulation and experimental conditions, a bearing friction

sub-model was implemented as suggested by Hargreaves et al.[27]. This model adds a bearing

friction torque, Tfric, to the aerodynamic torques already acting on the plate during the simulation.

Tfric is defined as:

Tfric = (0.5µrd)
√
(mg − L)2 +D2 (4.2)

where µr is the rolling friction coefficient of the bearings, and d is the bore diameter of the bearing

block. These were assumed from typical roller bearing parameters to be 0.003 and 0.0254 m

respectively, as these values where not given for the Auckland experiment. It was observed that

the contribution to the total torque, Ttotal, from Tfric was less than 1%.

The coupled CFD-RBD model is carried out in OpenFOAM, [78], using incompressible DDES,

iDDES, Smagorinsky with VanDriest damping and dynamic Smagorsinsky models to simulate the

small scale turbulence. Given that the plate is only free to rotate on the z-axis, the RBD model is
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reduced to a single degree of freedom. The Pressure Implicit with Splitting of Operators (PISO),

[33], algorithm is used to solve the Navier-Stokes equation in time with the finite volume method.

The 3-D incompressible version of OpenFOAM, [5], is employed to solve the coupled pressure-

velocity equations from the discretized momentum equation. A second order time marching Euler

scheme is used for the temporal derivatives, while a third order cubic scheme is used for the

gradient, divergence and laplacian operations used in the finite volume calculations. No relaxation

of the field variables or plate acceleration is used; instead, the Courant number is limited to 0.5, as

suggested for LES with FSI problems to avoid any numerical instabilities, [7].

All plate simulations were run in parallel on 102 Intel Xeon 64-bit processors with a time step of

0.0005 s. When running for a total of 120 hours, DDES ran for 5.9 computational seconds, while

Smagorinsky ran for 3.8 computational seconds. This shows the limitations of pure LES models

compared to hybrid models as it takes approximately 50% more clock time to simulate the same

computational time.

4.1.3 Comparison of Experimental Data with CFD Results

Figure 4.5 shows the pressure coefficients for half a rotation at various sensor locations. The

specific locations chosen in this work correspond to the locations where experimental and RANS

data are given in [27]. Hence, this allows for direct comparison between the simulations in this

work and the literature. The plate rotates about its z-axis in a clockwise motion. The experimental

data presented is the average over a large number of cycles for a 120 sec time frame, while all

the simulation data is the instantaneous data from a single cycle. Instantaneous data is reported

because of the large clock time needed to run CFD simulations. Running the full time-frame in

CFD would require approximately 2880 hours of clock time.

Qualitatively, the computed results agree well with the experimental data. At sensors 6 and

11, located near the edge of the plate, the LES results are significantly better compared to the
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RANS results. The maximum deviation from simulation to experiment is reduced by about 50%

at sensor 6 and sensor 11, and about 10% at sensors 7 and 8. The RANS results predict a much

larger pressure peak which is resolved by LES. This can be be attributed to the LES being able to

correctly represent the vortex core pressures as it has the ability to resolve a large portion of the

small flow structures that RANS is unable to compute.

Numerical results for the moment coefficient show close resemblance to experimental values as

seen in Fig. 4.6. From Fig. 4.6 it can be seen, from the peaks at each rotation, that every other Cm is

over-predicted compared to the experimental values. These plots show that Cm consists of several

harmonics as seen in Fig. 4.7. The frequency-amplitude signal shown in Fig 4.7 was generated

using a discrete Fourier Transform as outlined in [27]. LES results show adequate prediction of

the frequencies response, but over-predicts the dominant frequency by approximately 0.1 Hz. This

dominant frequency is the same as the vortex shedding frequency which occurs twice in every

rotational cycle.

The discrepancy of the frequencies is attributed to the computational burden that prevents pro-

longed simulations where steady rotational conditions are achieved. The results presented in this

work are given for the first 10 seconds of the simulation while the experimental results are collected

for the last 10 seconds after the system already running for about 110 seconds.
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(c) Sensor 7
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(e) Sensor 11
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Figure 4.5: CFD and experimental pressure coefficients at various sensor locations
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Figure 4.6: Moment coefficients against time for DDES, iDDES and experimental results
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Figure 4.7: Frequency domain representation of computed moment coefficient

Comparisons for the lift and drag coefficients between the simulations and the experimental re-

sults can be seen in Fig. 4.8. The CFD results present an over-estimation for both aerodynamic

coefficients. However, the same issue was reported in [35] where RANS simulations were per-

formed. There are a number of possible reasons to explain this discrepancy. Mass eccentricity, a

possible inadequate bearing friction model, and inaccuracies in the CFD-RBD simulation due to

numerical limitation may all affect the prediction of the lift and drag forces. Also, it is important

to note that this over-prediction can be attributed to the time averaging done for the experimental

results, as it can be seen in Fig. 4.6 that every other peak obtained through experiments have lower

values compared to the ones obtained from numerical simulations.
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Figure 4.8: Lift and drag coefficients for a full rotation for DDES, iDDES and experimental data

Figure 4.8 shows that variations in the LES model predictions are greater for the lift coefficient,

where as all three models predict almost identical behavior for the drag coefficient. This is expected

as pressure forces are less dominant in the lift direction, when compared to drag. Consequently,

the lift force is influenced more by the viscous forces and turbulent surface interactions which are

highly dependent on the LES model in use.

In general, the results of the CFD-RBD model presented in this dissertation closely resemble

those from the Auckland experiment. It is also seen that the four different turbulence models

used in this work give relatively similar results. Therefore, it is concluded that hybrid methods

such as DDES and iDDES can be used in FSI autorotation instead of pure LES methods, saving

computational time. Overall, the model validation effort reveals the scope for further research

where the discrepancies with experimental data can be further resolved and the model further

improved.

4.2 Coupled CFD and Multi Body Dynamics (MBD) - Autorotating 3-Blade Rotor

This section discusses validation of the CFD-MBD model of the autorotating 3-blade rotor,

presented in Section 3.2, with experimental results that will be discussed next. Specifically, a
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comparison is shown between the results of the iDDES model and the angular velocity and torque

data generated in the autorotation experiment.

4.2.1 Details of Experimental Setup

An experimental setup was developed and experiments were designed to measure the rotational

speed and aerodynamic torque of a 3-blade rotor that is allowed to freely autorotate in an air flow

field. The rotor assembly consists of 3 flapping blades attached to a hub through hinges as seen

in Fig. 4.9. The rotor is 3-D printed out of thermoplastics, with a 0.2 m diameter and 23.2 g

weight. Figure 4.10 shows the experimental setup of the flapping blade rotor and the fixture used

to control the angle of incidence of the rotor with respect to the wind field. Wind is generated using

a wind tunnel or through commercially available fans. Experiments are conducted at wind speeds

of 5m/s.

(a) x-z plane (top) (b) one blade

Figure 4.9: 3-D printed rotor
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Figure 4.10: Experimental framework of flapping blade rotor to fixture

In order to measure the angular velocity and the aerodynamic torque, a DC motor is used. The

motor, attached to the rotor via a rod fixed to the shaft, operates in generator mode. An electrical

circuit, as shown in Fig. 4.10, is used to conduct these experiments. The speed, ω, is obtained by

using the motor’s back electromotive force, Vemf , which is induced by the turning of the shaft. The

back-emf and the armature current are determined by applying a load resistance, RL, across the

terminals of the generator. From circuit analysis, the armature current, ia, is determined by:

ia =
Vmeas

RL

(4.3)
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where Vmeas is the measured voltage. And the back-emf is computed from:

Vemf = ia (Ra +RL) = Vmeas + iaRa (4.4)

where Vemf is the back-emf and Ra is the armature resistance (Ra ≈ 16Ω). From the back-emf,

the angular velocity, ω, is calculated using the following equation:

ω =
Vemf

Ke

(4.5)

where Ke is the speed constant of the motor (Ke = 1.5 mV/rpm). Finally, from the armature

current, the aerodynamic torque, T , is calculated using the following equation:

T = Ktia (4.6)

where Kt is the torque constant of the motor (Kt = 14.3mN ·m/A). These measurements and cal-

culations are done when the rotor reaches a steady rotating speed, for each experimental run. The

experimental framework utilized to gather the data necessary for validation is described in greater

detail in [55]. The above outlined experimental setup is useful not only for measuring measuring

rotor speeds but also for calculating aerodynamic torques under different loading conditions, ia.

To validate the CFD model, however, the no-load condition is applied, i.e. ia = 0. This implies

that the Vemf = Vmeas and at steady state T = 0.

4.2.2 CFD Model Description

A hybrid LES model is used to study the autorotation of a 3-blade rotor. The mesh consists of

4 million points, with y+ values between 3 and 15. The rotor structure weights 0.0232 kg and has
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a radius of 0.1 m, the same specifications as the rotor used in the experimental setup described in

Section 4.2.1. The 3-D surface mesh of the 3-blade rotor used in the model can be seen in Fig. 4.11.

(a) x-z plane (top)

(b) y-x plane (side)

(c) one blade

Figure 4.11: 3-D surface mesh of 3-blade rotor
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The computational domain is made up of two zones, a free to rotate cylinder containing the

rotor blades and an outside stationary rectangular outer domain, connected by an AMI, as seen

in Fig. 4.12. The outer stationary rectangular domain has dimensions of 16c × 16c × 16c where

c = 0.1m and the rotating cylinder has a height of 10c and a radius of 5c. The blade-structure

is located in the center of the rotating cylinder domain. Given that iDDES is mesh independent

regarding the boundary layer near the surface of the wall, y+ values between 3 and 15 is acceptable.

Figure 4.12: Computational domain for 3-blade rotor CFD analysis
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At the beginning of the simulation, the initial orientation matrix for the whole blade structure is

set as the same as the global axes coordinate system. Updating this orientation matrix will in turn

rotate the mesh and calculate the angular velocity of the whole system. For the individual flapping

of each blade, the model needs the input of three further orientation matrices, one for each of the

blades. The blade are 120o apart from each other, therefore blade1 is rotated 0o, blade2 is rotated

120o, and blade3 is rotated 240o with respect to the global axes reference frame and their initial

orientation matrices Q are given by:

blade1 : Q =




1 0 0

0 1 0

0 0 1




, blade2 : Q =




−0.5 0 −0.866

0 1 0

0.866 0 −0.5




blade3 : Q =




−0.5 0 0.866

0 1 0

−0.866 0 −0.5




(4.7)

The inlet boundary condition is set to uniform velocity with an imposed turbulence of 5%. The

inlet velocity is set at 5m/s for a flow direction of 40o, 45o and 50o, and 10m/s for a flow direction

of 30o, 40o, 45o and 50o. The rest of the faces of the stationary outer domain are set as fixed static

pressure outlets under atmospheric conditions. In order to take into consideration the resultant

motion of the mesh computed by the FSI, the surface of the blades and hub are set equal to the

moving wall velocity. For the multi body model, the bearing friction sub-model introduced in the

CFD-RBD model in Section 4.1 is not implemented as the simulated speed correlated well with

experimental data obtained from the setup described in Section 4.2.1.

The 3-D incompressible version of OpenFOAM, [5], with the iDDES turbulence model is used

to solve the Navier-Stokes equations using the PISO, [33], algorithm. For the finite volume calcu-

lations, a third order cubic scheme is used for the gradient, divergence and laplacian operations,
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while a second order time marching Euler scheme is used for the temporal derivatives. All rotor

simulations were run in parallel on 80 Intel Xeon 64-bit processors with a variable time step of 1e-6

s. For iDDES simulations with a free stream velocity of 5 m/s ran an average of 0.8 computational

seconds when running for a total of 200 real time hours. When running for a total of 300 hours,

iDDES simulations with a free stream velocity of 10 m/s ran an average of 1.1 computational

seconds.

4.2.3 Comparison of Experimental Data with CFD Results

For the 3-blade rotor, the two variables compared between experiments and simulations are the

rotor angular speed and the aerodynamic torque. Figure 4.13 shows the angular velocity plotted

against time at different angles of incidence for a free stream velocity of 5 m/s. For both simu-

lations and experiments, the rotor autorotates in a clockwise direction about its main y-axis. The

three plots on the left column present angular velocities when the system is closed to steady state

rotation in both simulations and experiments. The three plots on the right column, on the other

hand, depict a gradual acceleration of the rotor before it reaches steady rotation. Numerical results

of the angular velocity show close resemblance to the experimental data as evident from Fig. 4.13.

The raw experimental data in the figures is the data collected directly from the source without any

data processing. When averaged, the data matches very closely with the CFD simulations.
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Figure 4.13: Angular velocity at different angles of incidence for a free stream velocity of 5m/s

Comparison for the torque versus time at different angles of incidence between the simulations

and experimental results can be seen in Fig. 4.14. Torque is used to determine when the rotor has
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reached steady state rotation, as when torque reaches zero the angular velocity stops increasing

or decreasing. From Fig. 4.14 it can be seen that both experimental data and CFD results show a

constant torque very close to zero, demonstrating that the simulations and experiments reached a

steady state rotation. However, even though the torque is very close to zero, the constant torque for

the experimental data is larger than the CFD data, this could be attributed to the friction present in

the rod fixed to the shaft, which is not being modelled in the CFD-MBD simulation.
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Figure 4.14: Torque at different angles of incidence for a free stream velocity of 5m/s

The coupled CFD-MBD using the iDDES turbulence model presented in this dissertation presents

results that show agreement with the experimental data generated from the autorotating rotor ex-

periment.
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CHAPTER 5: RESULTS AND DISCUSSION

This chapter provides additional simulation data and flow visualizations to demonstrate the

efficacy of the two CFD models, namely that of the autorotating square plate and the autorotating 3-

blade rotor. Overall, the results provide further insight into the extensive fluid structure interactions

that are present in both cases.

5.1 Autorotating Square Flat Plate

Continuing from Section 4.1, this section provides further simulation data of the aurotorating

square flat plate. Figure 5.1 shows the instantaneous static pressure contours at the back surface of

the plate at different angles of rotation. Figures 5.1(a), (b) and (c) correspond to Smagorinsky tur-

bulence model, Figs. 5.1(d), (e), and (f) correspond to iDDES turbulence model, and Figs. 5.1(g),

(h), and (i) correspond to RANS solutions from Hargreaves et al., [27]. The contour levels for the

Smagorinsky (top three plots) and the iDDES (middle three plots) present the same contour levels

as the RANS solutions (bottom three plots) presented by Hagreaves et al.,[27]. Qualitatively the

contours for all three results presented are similar. However, both Smagorinsky and iDDES results

seem to show a slightly better resolution of the vortices near the corners and side edges of the plate

than the RANS solution, especially at an angle of incidence of 120o.
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(a) α = 6o (b) α = 20o (c) α = 120o

(d) α = 10o (e) α = 20o (f) α = 120o

(g) α = 0o (h) α = 30o (i) α = 120o

Figure 5.1: Instantaneous pressure contours on the rear face of the plate at (a) α = 6o, (b)

α = 20o, and (c) α = 120o for Smagorinsky; at (d) α = 10o, (e) α = 20o, and (f) α = 120o for

iDDES; and at (g) α = 0o, (h) α = 30o, and (i) α = 120o from Hargreaves et al. RANS solutions

[27]

In Fig. 5.2 and Fig. 5.3 the formation of the leading and trailing edge vortices in the wake of

the autorotating plate can be seen. At the initial time (T = 0.5sec) the plate is near vertical,

Fig. 5.2(a), which creates strong tip vortices at both the leading and trailing edges, causing the

plate to rotate. After 1 second the plate rotates an additional 90◦ allowing for vortex shedding
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to occur and recirculate downstream, Fig. 5.2(b). At the same instant note that the tip vortex,

that has shed from the bottom of the plate, collides with the bottom surface of the plate. As the

vortex collides with the plate large pressure gradients are rapidly formed and then dissipated. These

vortex-structure interactions are undoubtedly chaotic and are the root of instability and inconsistent

behavior in autorotation. Notice that even at the last instance (T = 3.5sec), Fig. 5.2(g), the shed

vortices have not travelled far downstream and still interact directly with the plates downstream

pressure field. These vortex-blade interactions, [10], strongly couple turbulence closure models

to the dynamic motion of the rigid body. This two-way interaction is the largest source of error

in FSI, since the interacting turbulent eddies are never fully resolved. While Fig. 5.2 shows the

results with the Smagorinsky turbulence model, Fig. 5.3 shows parallel flow visualization results

using the iDDES turbulence model. Note that the faster run time of iDDES allows for greater

simulation time compared to the Smagorinsky LES model.

(a) T=0.5 sec, α = 110o (b) T=1.0 sec, α = 186o (c) T=1.5 sec, α = 294o

(d) T=2.0 sec, α = 372o (e) T=2.5 sec, α = 484o (f) T=3.0 sec, α = 558o

(g) T=3.5 sec, α = 667o

Figure 5.2: Instantaneous velocity contours on xy plane at different times and different angles of

rotation for Smagorinsky
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(a) T=0.5 sec, α = 113o (b) T=1.0 sec, α = 191o (c) T=1.5 sec, α = 300o

(d) T=2.0 sec, α = 388o (e) T=2.5 sec, α = 502o (f) T=3.0 sec, α = 554o

(g) T=3.5 sec, α = 664o (h) T=4.0 sec, α = 742o (i) T=4.5 sec, α = 858o

(j) T=5.0 sec, α = 919o (k) T=5.5 sec, α = 1035o

Figure 5.3: Instantaneous velocity contours on xy plane at different times and different angles of

rotation for iDDES

5.2 Autorotating 3-Blade Rotor

Continuing from Section 4.2, this section presents further simulation results for the autorotat-

ing 3-blade rotor. Figure 5.4 shows the angular velocity versus time of the 3-blade rotor blade for

angles of incidence of 40o, 45o and 50o with a free stream velocity of 5m/s. These operating points

correspond to conditions under which experimental data was collected. In all these simulations,

the initial rotor speed was set to 198rad/sec and all initial flapping angles where set to 0o. The

initial rotor speed was chosen close to the steady rotational speed based on experimental data to
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reduce the simulation time. Figure 5.4(a) shows the decelerating rotor as it approaches the steady

rotational speeds of 150rad/sec for 40o, 171.4rad/sec for 45o, and 185.79rad/sec for 50o. This

is also evident in Fig. 5.4(b) which shows how the aerodynamic torque converges towards zero as

the angular velocity tends to steady rotational conditions at each angle of incidence.
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Figure 5.4: Angular velocity and torque at different angles of incidence for a free stream velocity

of 5m/s

Figure 5.5 shows the angular velocity versus time of the 3-blade rotor for angles of incidence of

30o, 40o, 45o and 50o under a free stream velocity of 10m/s. The initial angular velocity was set to

301.7rad/sec based on the approximation of the expected steady rotational speed in a free stream

of 10m/s. Figure 5.5(a) shows the acceleration of the rotor for incidence angles of 40o, 45o, and

50o, and deceleration of the rotor for 30o. Extensive simulations with different initial conditions

give the following steady state rotational speeds for different angles of incidence: 238.3rad/sec

for 30o, 319.24rad/sec for 40o, 357.76rad/sec for 45o, and 388.06rad/sec for 50o. Similar to

Fig. 5.4(b), Fig. 5.5(b) demonstrates the rotor decelerating or accelerating as its torque converges

towards zero signifying transition to steady state rotation.
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Figure 5.5: Angular velocity and torque at different angles of incidence for a free stream velocity

of 10m/s

Figure 5.6 and Fig. 5.7 present the instantaneous velocity contours in the xy plane for a rotor

inclination of 40o with respect to the flow for a free stream of 5m/s and 10m/s, respectively.

The blades and hub are rotating clockwise about their common z-axis while being allowed to flap

independently from each other about their local x-axis. Comparing the two figures it can be seen

that speeding up the free stream incoming velocity in turn increases the disturbances in the flow

past the rotor. In each of the visualization the phases of rotation are shown corresponding to each

instant of time.
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(a) T=0.1 sec, 139.3o (b) T=0.2 sec, 278.6o

(c) T=0.3 sec, 57.96o (d) T=0.4 sec, 197.3o

(e) T=0.5 sec, 336.6o

Figure 5.6: Instantaneous velocity contours at different times at a free stream velocity of 5m/s
and at an angle of incidence of 40o
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(a) T=0.1 sec, 29.12o (b) T=0.2 sec, 58.25o

(c) T=0.3 sec, 97.0o (d) T=0.4 sec, 88.01o

(e) T=0.5 sec, 190.0o

Figure 5.7: Instantaneous velocity contours at different times at a free stream velocity of 10m/s
and at an angle of incidence of 40o
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In a similar fashion, Fig. 5.8 and Fig. 5.9 present the instantaneous velocity contours in the xy

plane for a rotor inclination of 45o with respect to the flow for a free stream of 5m/s and 10m/s,

respectively. The increase in inclination of the rotor in turn increases the steady rotation velocity.

Therefore, the rotor in Fig. 5.9 is rotating clockwise at a faster angular velocity than that in Fig. 5.7.

(a) T=0.1 sec, 262.0o (b) T=0.2 sec, 164.1o

(c) T=0.3 sec, 66.13o (d) T=0.4 sec, 328.2o

(e) T=0.5 sec, 230.2o

Figure 5.8: Instantaneous velocity contours at different times at a free stream velocity of 5m/s
and at an angle of incidence of 45o
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(a) T=0.1 sec, 249.8o (b) T=0.2 sec, 139.7o

(c) T=0.3 sec, 45.02o (d) T=0.4 sec, 289.4o

(e) T=0.5 sec, 169.2o

Figure 5.9: Instantaneous velocity contours at different times at a free stream velocity of 10m/s
and at an angle of incidence of 45o

Similarly, Fig. 5.10 and Fig. 5.11 present the instantaneous velocity contours in the xy plane for

a rotor inclination of 50o with respect to the flow for a free stream of 5m/s and 10m/s, respectively.

Once again the increase in inclination of the rotor increases the steady rotational speed.
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(a) T=0.1 sec, 344.5o (b) T=0.2 sec, 329.0o

(c) T=0.3 sec, 313.6o (d) T=0.4 sec, 298.1o

(e) T=0.5 sec, 282.6o

Figure 5.10: Instantaneous velocity contours at different times at a free stream velocity of 5m/s
and at an angle of incidence of 50o
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(a) T=0.1 sec, 23.36o (b) T=0.2 sec, 126.7o

(c) T=0.3 sec, 190.1o (d) T=0.4 sec, 253.4o

(e) T=0.5 sec, 30.02o

Figure 5.11: Instantaneous velocity contours at different times at a free stream velocity of 10m/s
and at an angle of incidence of 50o
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In Fig 5.12, gives flow visualizations for direct comparison between different angles of inci-

dence. Specifically, Fig 5.12(a) and (c), depict the downstream flow velocities for a 40o angle of

incidence, while Fig 5.12(b) and (d), show the same for a 50o angle of incidence. As expected, the

general observation is that for lower angles of incidence the flow deceleration is lesser in magnitude

and area.

(a) θ = 40o, T=0.3 sec, 57.96o (b) θ = 50o, T=0.3 sec, 313.6o

(c) θ = 40o, T=0.5 sec, 336.6o (d) θ = 50o, T=0.5 sec, 282.6o

Figure 5.12: Instantaneous velocity contours at different times at a free stream velocity of 5m/s
and at angle of incidence of 40o and 50o

Next simulation results showing the flapping of the individual blades are provided. Each blade

is free to rotate about its local x-axis along a hinge attached to the hub of the rotor. Figure 5.13

shows the comparison of the flapping angles of the three blades at a free stream velocity of 5m/s

at different angles of incidence with respect to the air flow. At the beginning of the simulation,

the amplitude of flapping is the largest and with time, as the simulation reaches a steady rotational
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state, the amplitude of flapping diminishes. Figures 5.13(a), (b), and (c) show the flapping angles

at three different angels of incidence, 40o, 45o, and 50o . With the increase of the angle of incidence

of the rotor, the magnitude of flapping also increases. This is clearer when comparing the maxima

between Fig. 5.13(a) and (c). Between these two figures the rotor’s inclination has a 10o difference

and therefore the increase in flapping is more noticeable.

While in Fig. 5.13 the free stream velocity is kept constant to see the effect that the angle of

incidence has on the blade flapping, in Fig. 5.14 the angle of incidence is kept constant at 40o

while the velocity of the air flow is varied. From this figure, it is clear that the flapping frequency

is directly influenced by the rotor’s angular speed. This is a result of the increase of steady angular

velocity from 150rad/s to 319rad/sec when increasing the free stream velocity increases from

5m/s to 10m/s at the inclination of 40o.
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Figure 5.13: Comparison of blade flapping angle for a free stream velocity of 5m/s at different

flow inclinations
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Figure 5.14: Comparison of blade flapping angle for the rotor subject to a free stream velocity of

5m/s and 10m/s at an angle of 40o

To compare the characteristics of flapping of each blade, the simulated flapping angles at differ-

ent free stream velocities are superimposed in Fig. 5.15. Figures 5.15(a), (b), and (c) superimpose

the transient flapping angles of blades 1, 2 and 3, respectively. The comparison of of flapping

angles are done at air stream velocities of 5m/s and 10m/s with a fixed angle of incidence of 40o.

From this it can be seen that doubling the velocity of the air flow, while keeping the inclination

of the rotor with respect to the flow unchanged, causes both the frequency and the average angles
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of inclination to increase. However, even though the overall magnitude of the flapping angle is

larger for larger flow speeds, the amplitude of oscillation reduces and the blade’s flapping becomes

smaller. Therefore it can be concluded that an increase in angular velocity results in an increase in

flapping frequency and a decrease in amplitude. This reduction in amplitude at high air speeds is

expected since higher rotational speeds cause the centrifugal force on each blade to become more

dominant than the flapping torque.

Finally, Fig. 5.16 shows a zoomed in view of the flapping of the three blades at incidence angle

of 40o and free stream velocity of 10m/s. From the plot, the approximated rotational speed is

obtained as 4 cycles per 0.08 seconds. This approximates to 50Hz = 314rad/sec which matches

closely with the steady state rotational speed of 319.24rad/sec obtained from simulations in Sec-

tion 4.2.3. For the 5m/s free stream velocity, similar approximation from Fig. 5.15(c) yields 9

cycles per 0.4 seconds. This approximates to 22.5Hz = 141rad/sec which matches closely with

the steady state rotational speed of 150rad/sec, as shown in Fig. 4.13(a).

Figure 5.17 and Fig. 5.18 show the instantaneous velocity contours at the xz plane at the surface

of the rotor disk inclined at 40o with respect to the flow for a free stream velocity of 5m/s and

10m/s, respectively. The visualization plots show the magnitude of the resultant flow field velocity

over the are around the rotor. For the time interval of T = 0.1sec between each of the figures, the

rotor subject to the 5m/s free stream velocity completes about 2.4 revolutions in a clockwise

direction, while when subject to a velocity of 10m/s, with the same inclination angle, rotates

clockwise about 5.1 times. In Fig. 5.18 the flapping of the blades is more clearly evident as not all

the blade surfaces are fully visible seen in the current plane, signifying that the blades are flapping

at different rates and independently from each other. Note that between Fig. 5.17 and Fig. 5.18

there is a significant difference in the scale of the flow velocities. This is due to the different free

stream velocities, 5m/s in Fig. 5.17 and 10m/s in Fig. 5.18.
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Figure 5.15: Comparison of blade flapping angle for each rotor blade subject to a free stream

velocity of 5m/s and 10m/s at an angle of 40o
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Figure 5.16: Comparison of blade flapping angle for each rotor blade subject to a free stream

velocity of 10m/s at an angle of 40o
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(a) T=0.4 sec (b) T=0.5 sec

(c) T=0.6 sec (d) T=0.7 sec

(e) T=0.8 sec

Figure 5.17: Instantaneous velocity contours at xz plane at different times at a free stream

velocity of 5m/s and at an angle of 40o
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(a) T=0.7 sec (b) T=0.8 sec

(c) T=0.9 sec (d) T=1.0 sec

(e) T=1.1 sec

Figure 5.18: Instantaneous velocity contours at xz plane at different times at a free stream

velocity of 10m/s and at an angle of 40o

Figures 5.19, 5.20, and 5.21, provide further visualization of the flow due to the interaction with

the 3-blade rotor. In these figures, the emphasis is on visualizing the flow vorticity generated by the

fluid structure interaction. Figure 5.19 shows the instantaneous streamlines at an angle of incidence

of 40o. The streamlines show the turbulence generated by the interaction of the fluid with the solid

blades. While Fig. 5.19 shows a collection of streamlines, Fig. 5.20 isolates one of the streamlines
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to show the vortex shedding from the trailing edge of a blade as it rotates in a free stream velocity

of 10m/s at 40o inclination. Figure 5.21 presents the instantaneous vorticity isosurfaces for the

same case. In Fig. 5.21, the volume around the rotor shows higher vorticity strengths near the

surface of the rotor, which diminishes further downstream. Similar observation can be made from

the color code of the streamline in Fig. 5.20. In regions closer to the blade, the color code indicates

higher vorticity.

Figure 5.19: Instantaneous streamlines at a free stream velocity of 10m/s and at an angle of 40o
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Figure 5.20: Vortex shedding from trailing edge at a free stream velocity of 10m/s and at an

angle of 40o

Figure 5.21: Instantaneous vorticity isosurfaces at a free stream velocity of 10m/s and at an angle

of 40o
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CHAPTER 6: CONCLUSION

The goal of this work is to develop a computational platform for simulating large-scale fluid

structure interactions (FSI) by combining rigid body dynamics with CFD. The simulation envi-

ronment was implemented in OpenFOAM, which is an open-source object-oriented CFD toolbox

which allows customized augmentations and modifications. The models introduced in this work

incorporate mesh morphing techniques to account for the large-scale fluid-induced motion while

using a numerically stable computational scheme.

First a combined CFD and rigid body dynamics (RBD) model is developed to simulate an au-

torotating square flat plate, subject to a free-stream air velocity. Two Smagorinsky LES models

are compared to two Hybrid LES models to predict the resulting autorotating motion. The compu-

tational results agree well with experimental data obtained from [47]. Specifically, the qualitative

prediction of vortex structures, as well as the quantitative computation of pressure coefficients at

the plate’s surface agree well with experiments. The work also shows better agreement with ex-

periments compared to RANS results previously found in literature [27]. The reason is attributed

to LES being able to resolve the small flow structures that RANS is unable to compute. Hybrid

models, such as DDES and iDDES, were shown to save computational time compared to pure LES

and have been found to be an effective alternative in such CFD-RBD simulations. Despite the

close correlation of simulation results with the experiments, there were over-estimation in the co-

efficients of lift and drag. While certain reasons for this discrepancy are apparent, further research

is needed to resolve this issue.

Subsequently, a high resolution fully coupled CFD and multi-body dynamics (MBD) model is

developed to study the complex FSI interactions of an autorotating 3-blade rotor subject to a flow

field at various inclination angles. The hybrid LES turbulence model, iDDES, is employed since

it demonstrated a reduction in computation time in the preliminary study with the rotating square

flat plate. The computational results show agreement with experimental data gathered as part of
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this research. The experimental setup consisted of a mechatronics system with appropriate data

acquisition to generate motion data under various operating conditions. Computational results for

the angular velocity and aerodynamic torque of the rotor subject at different wind speeds and vary-

ing angles of incidences agree well with the values gathered from the experiments. Additionally,

the model is capable of capturing and visualizing the vortex shedding from the trailing edge of the

rotating blades, as well as predict the flapping motion of each blade with reasonable accuracy. One

challenge with the simulations is the rather long clock-time needed for small simulation times.

This puts restrictions in simulating transients in their entirety.

The results of this work show promise in the ability of LES and hybrid LES models to predict

the complex FSI found in autorotation or similar other applications involving large-scale FSI. The

platform introduced in this dissertation can be used for the study of FSI problems involving various

large fluid-flow induced motion. Some applications could be falling objects, oceanographic flow

fields and rotating machines, amongst others.
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