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A total of 1.1 million bitcoins were stolen in the 2013–2017 period. Noting that the average price for
a Bitcoin in 2018 was $7572 the corresponding monetary equivalent of losses is $8.9 billion high-
lighting the societal impact of this criminal activity. Investigating the response of the uncertainty
of Bitcoin returns when hacking incidents occur, the results of this study point toward two differ-
ent responses. After experiencing a contemporaneous effect at day t = 0, the volatility increases
significantly again at day t + 5. Hacking incidents that occur in the Bitcoin market also affect the
uncertainty in the Ethereum market with a time delay of five days. Notably, neither Bitcoin nor
Ethereum appear to exhibit asymmetric responses to negative innovations.
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1. Introduction

In a recent paper, Foley et al. (2019, p. 1798) highlight that
‘cryptocurrencies have grown rapidly in price, popularity, and
mainstream adoption’. As of December 2019, there are more
than 4900 cryptocurrencies in the market with a market cap-
italization of more than $197 billion.† The largest, Bitcoin,
dominates the new digital financial market with a market cap-
italization of more than $131 billion corresponding to 67% of
the overall market capitalization. In this regard, Easily et al.
(2019) emphasize about 35 million wallets are held worldwide
and 100 000 companies accept payment in bitcoin. Moreover,
Hileman and Rausch (2017) find that more than 10 million
users now hold a material amount of bitcoin as a (speculative)
financial asset.

In his Forbes article from October 2019, Ilker Koksal
argues that ‘blockchain technology has evolved greatly since
the introduction of Bitcoin in 2008, the first decentralized
peer-to-peer electronic cash system’. Koksal summarizes four
advantages that blockchain technology offers; greater trans-
parency, increased efficiency, better security, and improved
traceability.‡ Unfortunately, these advantages come at a cost,

*Corresponding author. Email: klaus.grobys@uwasa.fi,
kgrobys@uva.fi
† Source: coinmarketcap.com (accessed on December 13, 2019).
‡ See https://www.forbes.com/sites/ilkerkoksal/2019/10/23/the-ben-
efits-of-applying-blockchain-technology-in-any-industry/#62a64cd
249a5.

as there are also some new risks that users may face: Specif-
ically, Kethineni and Cao (2020) document that cryptocur-
rencies became the currency of choice for many drug dealers
and extortionists because of the opportunities to hide behind
the presumed privacy and anonymity. Foley et al.’s (2019)
study supports Kethineni and Cao (2020) in finding that about
one-quarter of all users and close to one-half of Bitcoin trans-
actions are associated with illegal activity. Maume (2020)
examines Initial Coin Offerings (ICO) and concludes that the
potential lack of regulation and enforcement is particularly
tempting for scammers and other miscreants.

Referring to a recent study of Grobys and Sapkota (2020),
Simon Moore’s Forbes article of May 2019 discusses credit
risk in cryptocurrency markets, as the above-mentioned
study’s findings indicate that the vast majority of cryptocur-
rencies eventually end up in default.§ Finally, on both the
blockchain and exchange levels, cryptocurrencies are vulnera-
ble to cyberattacks. In this regard, Hileman and Rausch (2017,
p. 39) document that ‘73% of exchanges control customers’
private keys, making them a potentially attractive “honeypot”
for hackers as these exchanges have possession of user funds
denominated in cryptocurrency’. In an attempt to avoid hack-
ing incidents (referred to here as hackings), about 90% of the

§ See https://www.forbes.com/sites/simonmoore/2019/05/28/how-
to-tell-if-your-cryptocurrency-will-go-bust/?fbclid = IwAR162IF
lZdEfNaj0YGCJTFzSZjsnf0h_Ntci6zzXoRJ4e_-kFjvuoLy2VYQ#7
cec6f833364.
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exchanges use some type of cold storage system where they
keep their keys offline. Notably, the number of Bitcoin wallets
has increased more than four times from 8.2 million in 2013
to 35 million in 2016.

The purpose of this study is to explore the effects of cyber-
attacks in the form of preceding hackings on the subsequent
uncertainty in the Bitcoin market. In the 2013–2017 period,
29 hackings occurred in the Bitcoin market, as documented
in Biais et al. (2019, Table 3). Given an average price for
Bitcoin of $7572 in the calendar year 2018, and given that
1.1 million coins were stolen in the 2013–2017 period, the
corresponding monetary equivalent of the losses is $8.9 bil-
lion which suggests that the societal impact of these thefts is
considerable.†

For comparison, the ‘Annual Fraud Statistics’ released by
The Nilson Report documents that credit card fraud losses
worldwide reached $27.85 billion in 2018.‡ Notably, the
United States—taken alone—accounted for $9.47 billion in
credit card fraud losses in 2018. However, these numbers
are difficult to compare with fraud in cryptocurreny markets
because first (i) the user base for credit cards is considerably
larger (e.g. taking VISA card as an example for one out of
many different credit cards, more than 1.1 billion people used
VISA cards worldwide at the end of 2018, whereas about
35 million people had Bitcoin wallets at the same point in
time),§ second (ii) the frequency of fraud is likely to be much
higher but the average amount of stolen monetary equivalent
per fraud is likely to be considerably lower (e.g. the average
amount of monetary equivalent per hacking in the Bitcoin
market is $21 million in the 2013–2017 period), third (iii)
it is much more likely that users are insured by the credit
card company (while Bitcoin users typically do not have such
an insurance), and fourth (iv), it is much more likely that
the police have some chances to successfully tracing back
the criminal activity (which seems to be virtually impossible
in cyberspace). Overall, the frequency of fraud in cryptocur-
rency markets is considerably lower compared to credit card
markets but it appears to be that each incident is consider-
ably larger, and hence, more consequential in terms of lost
monetary equivalent. As a result, fraud in new virtual cur-
rency markets is difficult—if not impossible—to compare
with fraud in a traditional payment industry such as the credit
card industry.

To investigate the effects of cyberattacks in the form of
earlier hackings on the subsequent uncertainty in the Bit-
coin market, this study employs modified EGARCH models
that account for dummy variables up to five days after hack-
ing incidents occurred. Since volatility clustering appears to
be a stylized fact of financial markets, the chosen model
is also able to capture potential asymmetries in the volatil-
ity process of Bitcoin returns. Moreover, this study extends

† From Table 1 it becomes evident that if one took the price of Bit-
coin as a basis for the calculation at the point in time when the virtual
currency was stolen, 1.1 million coins would correspond to $608.4
million.
‡ See https://www.prnewswire.com/news-releases/payment-card-
fraud-losses-reach-27-85-billion-300963232.html.
§ See https://www.statista.com/statistics/618115/number-of-visa-
credit-cards-worldwide-by-region/ and https://news.bitcoin.com/
the-number-of-cryptocurrency-wallets-is-growing-exponentially/.

the analysis of volatility effects to another important cryp-
tocurrency market, that of Ethereum. Even if the purpose
of Ethererum is very different from Bitcoin, cryptocurren-
cies typically exhibit a high level of co-movement (Borri
2019).¶ The question arises whether hackings spillover to
other cryptocurrencies such as Ethereum. Ethereum has a mar-
ket capitalization of about $16 billion as of December 2019,
making it the second largest cryptocurrency traded.‖ Finally,
to check the robustness of the findings, this study performs a
scientific replication as called for by Hou et al. (2020).

This study adds to a growing literature exploring Bitcoin
and digital currencies. A recent stream of literature investi-
gates aspects of the Bitcoin ecosystem particularly as they
relate to finance and the financial markets (see Böhme et al.
2015, Harvey 2016, Malinova and Park 2016, Aune et al.
2017, Raskin and Yermack 2017, Howell et al. 2020, Makarov
and Schoar 2020). Another recent stream of literature ana-
lyzes microstructure issues related to Bitcoin. In this regard,
Huberman et al. (2017) investigate a congestion queuing
game that includes miners and fees, whereas Easily et al.
(2019) develop a game-theory model to explain the factors
leading to the emergence of transaction fees. While these two
papers share similarities, Huberman et al.’s (2017) concern is
that equilibrium fees could be too low for the blockchain to be
viable, whereas Easily et al. (2019) have the opposite concern,
that is, the waiting times and equilibrium fees could be so high
as to discourage user participation. Moreover, their model
examines the evolution of these mining rewards and trans-
action fees in equilibrium, while Huberman et al.’s (2017)
study focuses only on the long-term steady state where min-
ing rewards have disappeared and the price effects of Bitcoin
are assumed to be irrelevant. Another recent study addressing
microstructure issues in the Bitcoin market is that of Foley
et al. (2019), who propose a model to identify illegal activi-
ties in Bitcoin. Their findings indicate that about one-quarter
of all users (26%) and close to one-half of Bitcoin transactions
(46%) are associated with illegal activity. Moreover, approxi-
mately one-fifth (23%) of the total dollar value of transactions
and approximately one-half of Bitcoin holdings (49%) over
time are associated with illegal activity. The current research
was inspired by this stream of recent research and seeks to
shed light on another dark side of activities in cryptocurrency
markets—the impact of illegal hackings.

A surprising result of this study obtained using fat-tailed
t-distributed innovation processes to model the EGARCH
models is that Bitcoin return volatility does not respond to
hackings with an subsequent increase in uncertainty between
time t + 1 and t + 4. However, there is evidence for a delayed
response in volatility. Specifically, Bitcoin return volatil-
ity increases substantially at time t + 5. This result remains
robust even after controlling for the immediate volatility
response at time t = 0. The delayed response of Bitcoin return
volatility points towards inefficiency in the Bitcoin market as
shocks need time to be fully priced-in (Beneki et al. 2019).
While earlier literature documented co-movements of cryp-
tocurrency returns (Borri 2019), a novel finding of the current

¶ While Bitcoin is created for the sole purpose of payment transfers,
the Ethereum platform allows for embedding smart contracts.
‖ Source: coinmarketcap.com (accessed on December 13, 2019).
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research is that hackings in the Bitcoin market also affect
other cryptocurrency markets. Our evidence suggests that
there is a contagion effect in volatility associated with hacking
incidents. In this study, the focus was kept on the two largest
cryptocurrency markets in terms of market capitalizations;
Bitcoin and Ethereum. As evidenced in the Bitcoin market,
the volatility in the Ethereum market increases dramatically
with a time delay at time t + 5. Surprisingly, there is no evi-
dence for a contemporaneous response in Ethereum’s volatil-
ity. However, the delayed volatility increase for Ethereum
returns is virtually the same as for Bitcoin returns in terms
of its economic magnitude. A scientific replication, as asked
for in Hou et al. (2020), strongly supports the key find-
ings. Another interesting result is that neither Bitcoin returns
nor Ethereum returns appear to exhibit asymmetries in their
volatility processes even though it is a stylized fact of tradi-
tional financial markets that the volatility responds stronger to
negative innovations.

2. Literature review

The literature on cryptocurrencies has lately sparked consid-
erable attention. In a recent study, Ammous (2018) analyzes
the monetary characteristics of five cryptocurrencies to assess
whether they can perform the functions of money. While the
author draws the conclusion that most cryptocurrencies are
unlikely to fulfill monetary functions, Bitcoin appears to have
the potential to serve as a store of value, due to its predeter-
mined and limited supply growth (which is credibly backed
by the network’s distributed protocol) and Bitcoin’s credi-
ble demonstration of authorities’ incapability of altering the
supply schedule.†

Even if the original idea for inventing virtual currencies
has been to disrupt existing payment systems—and perhaps
even the overall monetary system—there is a wide strand
of literature emerging that considers cryptocurrencies as new
digital asset class. In this regard, Fang et al. (2020) con-
duct a survey covering 118 research papers on various aspects
of cryptocurrency trading. The authors argue that cryptocur-
rencies are the first pure digital assets that are included in
managed investment portfolios. In this regard, a recent rap-
port from Price Waterhouse Cooper documents that the total
Assets under Management (AuM) of crypto hedge funds glob-
ally increased to over $2 billion in 2019 from $1 billion
the previous year, whereas the average AuM increased from
$21.9 million to $44 million.‡ Moreover, Fang et al.’s (2020)
findings indicate that cryptocurrencies have a separate nature
of its own and their behavior as an asset is not yet fully under-
stood. In another survey on the predictability of the pricing
behavior of cryptocurrencies, Kyriazis (2019a) concludes that
the majority of academic studies provides evidence for ineffi-
ciency of cryptocurrencies, and hence, argues that speculation
is feasible via trading.§

† A more detailed review of Bitcoin’s design principles and proper-
ties is provided in Böhme et al. (2015).
‡ See https://www.pwc.com/gx/en/financial-services/pdf/pwc-el
wood-annual-crypto-hedge-fund-report-may-2020.pdf.
§ Other recent cryptocurrency-related surveys are provided Kyriazis
(2019b) and Corbet et al. (2019).

Another strand of emerging literature explores the volatil-
ity in cryptocurrency markets. For instance, Katsiampa (2017)
compares various GARCH-type models and assesses the
optimal conditional heteroskedasticity model with regards to
goodness-of-fit to Bitcoin price data. Even if Katsiampa’s
(2017) findings indicate that the Auto-Regressive-Component
GARCH (ARCGARCH) is optimal in the sample from July
18, 2010 to October 1, 2016, various other studies favor
the Exponential GARCH (EGARCH) model due to its sta-
tistical properties (Bouoiyour and Selmi 2015, 2016). Other
recent studies focus on volatility transmissions. In this regard,
Beneki et al. (2019) employ a multivariate BEKK-GARCH
methodology in association with impulse response analysis
to explore whether volatility spillovers and hedging abili-
ties exist between Bitcoin and Ethereum. Surprisingly, their
findings indicate a volatility transmission from Ethereum to
Bitcoin, which peaks in less than 10 days and fades out after
more than two weeks, whereas the reverse impact appears to
be significantly weaker. The authors argue that the delayed
response of Bitcoin return volatility to a volatility shock of
Ethereum returns points towards inefficiency in the Bitcoin
market because shocks need time to be fully priced-in. Tak-
ing a more practical point of view, the authors highlight
that their finding leaves space for profit-making and provides
opportunities for speculation in the Bitcoin market as it may
help traders to construct profitable strategies on derivative
markets.

Moreover, Katsiampa (2019) uses a bivariate Diagonal
BEKK model to explore the volatility dynamics of Bitcoin
and Ether. While the two cryptocurrencies’ volatilities appear
to be responsive to major news, the author finds strong
statistical evidence for interconnectedness of the two cryp-
tocurrencies. Notably, Katsiampa’s (2019) empirical find-
ings also indicate that Ether can be an effective hedge
against Bitcoin which could be of importance for investment
management.

Furthermore, Katsiampa et al. (2019) employ three pair-
wise bivariate BEKK models to explore the conditional
volatility dynamics along with interlinkages and conditional
correlations between three pairs of cryptocurrencies—which
are (i) Bitcoin-Ether, (ii) Bitcoin-Litecoin, and (iii) Ether-
Litecoin. Confirming earlier studies, Katsiampa et al.’s (2019)
findings indicate that a cryptocurrency’s own current condi-
tional variance is mostly affected by its own past shocks and
volatility. Interestingly, the bi-directional shock transmission
effects between Bitcoin and Ether as well as between Bit-
coin and Litecoin, and uni-directional shock spillover from
Ether to Litecoin. They also identified bi-directional volatility
spillover effects between all the three pairs of cryptocurren-
cies. The authors conclude that their results provide strong
evidence supporting the progress of cryptocurrency market
integration and further support earlier studies’ findings on
interdependencies within the cryptocurrency market (Beneki
et al. 2019, Katsiampa 2019).

While the current study follows Bouoiyour and Selmi
(2016) by adopting EGARCH-type model specifications, it is
also related to the literature on volatility transmission (Beneki
et al. 2019, Katsiampa 2019, Katsiampa et al. 2019). While
earlier studies focus mainly on revealing volatility interde-
pendencies, the current research steps on new grounds as it
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is the first study that (i) explores potential effects of hack-
ing incidents on the Bitcoin market, and (ii) investigates
whether these attacks would also affect Ethereum—which is
the second largest cryptocurrency market in terms of market
capitalization.

3. Data

Data for Bitcoin and Ethereum were downloaded from coin-
marketcap.com. For the main analysis of this study, data for
Bitcoin covers a sample from April 28, 2013 to December
31, 2017, whereas data for Ethereum covers the period from
April 7, 2015 to December 31, 2017. Data on hacking inci-
dents were retrieved from Table 3 in Biais et al. (2019),
who report hackings from June 13, 2011 until December 6,
2017. For a scientific replication, additional data for Bit-
coin covering the period January 1, 2011 until April 27,
2013 and January 1, 2017 until December 31, 2018 were
downloaded from investing.com. Additional data on hackings
for the 2018 period were borrowed from Table 3 in Grobys
and Sapkota (2019). Table 1 reports the hackings that occurred
in April 28, 2013 to December 31, 2017 period which
are of primary interest in this study. Descriptive statistics
for the log-returns of Bitcoin and Ethereum are reported
in Table 2.

4. Methodology

4.1. Exploring the one-day lagged volatility response to
hackings in the Bitcoin market

I start the analysis by estimating a modified version of Nel-
son’s (1991) EGARCH model, where the mean equation is

Table 2. Descriptive statistics of Bitcoin
and Ethereum.

BTC ETH

Mean 0.27 0.64
Median 0.20 − 0.05
Maximum 35.75 41.23
Minimum − 26.62 − 130.21
Std.Dev. 4.40 8.52
Skewness − 0.14 − 3.72
Kurtosis 11.90 67.55
Jarque-Bera 5640.10 154 281.40
Probability 0.00 0.00
Observations 1708 877

Notes: This table reports the descriptive
statistics of log-returns for Bitcoin (BTC)
and Ethereum (ETH). The sample period is
from April 28, 2013 to December 31, 2017
for BTC and April 7, 2015 to December 31,
2017 for Ethereum.

Table 1. Hacking incidents in the Bitcoin market.

Date BTC Price Loss in USD Incident

2013-05-10 1454 117.20 170 408.8 Vircurex hack
2013-06-10 1300 106.35 138 255 PicoStocks hack
2013-10-02 29 655 114.13 3 384 525.15 FBI seizes Silk Road funds
2013-10-25 144 336 186.69 26 946 087.84 FBI seizes Silk Road funds
2013-10-26 22 000 177.32 3 901 040 GBL scam
2013-11-07 4100 296.41 1 215 281 Inputs.io hack
2013-11-12 484 360.33 174 399.72 Bitcash.cz hack
2013-11-29 5896 1131.97 6 674 095.12 PicoStocks hack
2013-11-29 5400 1131.97 6 112 638 Sheep Marketplace closes
2014-02-13 4400 605.24 2 663 056 Silk Road 2 hacked
2014-02-25 744 408 538.71 401 020 033.7 MtGox collapse
2014-03-04 896 666.78 597 434.88 Flexcoin hack
2014-03-04 97 666.78 64 677.66 Poloniex hack
2014-03-25 950 583.92 554 724 CryptoRush hacked
2014-10-14 3894 400.87 1 560 987.78 Mintpal hack
2015-01-05 18 886 274.47 5 183 640.42 Bitstamp hack
2015-01-28 1000 233.91 233 910 796 Exchange hack
2015-02-15 7170 234.82 1 683 659.4 BTER hack
2015-02-17 3000 243.61 730 830 KipCoin hack
2015-05-22 1581 240.35 379 993.35 Bit?niex hack
2015-09-15 5000 230.30 1 151 500 Bitpay?shing scam
2016-01-15 11 325 364.33 4 126 037.25 Cryptsy hack
2016-04-07 315 422.74 133 163.1 ShapeShift hack
2016-04-13 154 423.73 65 254.42 ShapeShift hack
2016-05-14 250 455.67 113 917.5 Gatecoin hack
2016-08-02 119 756 547.47 65 562 817.32 Bit?nex hack
2016-10-13 2300 636.79 1 464 617 Bitcurex hack
2017-04-22 3816 1231.71 4 700 205.36 Yapizon hack
2017-12-06 4736 14 291.50 67 684 544 NiceHash hacked

Notes: This table reports hacking incidents in the Bitcoin market during the 2013–2017 period. The data for hackings were
retrieved from Table 3 in Biais et al. (2019) and matched with price data retrieved from coinmarketap.com.



When the blockchain does not block 5

given by,

rBTC,t = μBTC + ρBTCrBTC,t−1 + εBTC,t, with (1)

εBTC,t = ζBTC,tσBTC,t (2)

where rBTC,t = ln
(

BTCt
BTCt−1

)
and BTCt denotes the price of Bit-

coin at time t, μBTC denotes the intercept term of the mean
equation, ρBTC is the parameter measuring first-order autocor-
relation and εBTC,t is the residual term at time t and ζBTC,t with
ζBTC,t|�t−1 ∼ N(0, 1) is assumed to be the innovation process.
For this EGARCH model, the equation for the conditional
variance is given by,

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1)

+ γBTC
εBTC,t−1

σBTC,t−1
+ δBTCdBTC,t (3)

where σ 2
BTC,t is the conditional variance at time t, and the

parameter vector θBTC = (ωBTC , αBTC , βBTC , γBTC , δBTC) is
to be estimated using maximum-likelihood estimation. The
variable dBTC,t is binary and defined as dBTC,t = 1 if a hack-
ing occurred at time t − 1 and dBTC,t = 0 otherwise. The
EGARCH model has the advantage that the variance will
be positive even if some parameters in the parameter vec-
tor θBTC were negative. At the same time, this model allows

for modeling asymmetries. Specifically, if γBTC < 0, posi-
tive shocks generate less volatility than negative shocks (bad
news). Furthermore, if δBTC > 0 a hacking in the Bitcoin mar-
ket generates on average a higher level of volatility on day
t + 1 (the immediate day after the hacking occurred).

Using a sample period from April 28, 2013 until Decem-
ber 31, 2017, we observe from Panel A of Table 3 three main
results. First, Bitcoin returns do not exhibit first-order autocor-
relation as the estimated parameter for ρBTC is statistically not
different from zero. Second, negative news do not appear to
have a higher impact on the volatility than good news because
the estimated parameter for γBTC is statistically not different
from zero. This is indeed a surprising result as it appears to be
a stylized fact for traditional financial markets that bad news
have a greater impact on volatility than good news.

In this regard, Baur and Dimpfl (2018), who employ
Glosten et al.’s (1993) Threshold GARCH (TGARCH) model
for exploring asymmetric volatility responses for a set of 20
cryptocurrencies, find that for virtually all coefficients mea-
suring asymmetries in volatility responses the coefficient is
negative. Their result implies that negative shocks increase
the volatility by less than positive shocks which is in stark
contrast to the positive coefficient generally reported in stock
markets. However, using an EGARCH model specification,
the current research does not find any evidence for asym-
metries in Bitcoin’s volatility process in the presence of bad

Table 3. EGARCH model estimates for Bitcoin returns using different innovation processes.

Panel A. Estimates based on standard normal distributed innovations
Mean equation parameters μBTC ρBTC
Estimates 0.21*** 0.02

(2.86) (0.93)
Variance equation parameters ωBTC αBTC βBTC γBTC δBTC
Estimates − 0.09*** 0.31*** 0.95*** − 0.01 0.18***

( − 7.26) (17.31) (210.08) ( − 0.89) (3.63)

Panel B. Estimates based on t-distributed innovations
Mean equation parameters μBTC ρBTC
Estimates 0.18*** − 0.02

(3.10) ( − 0.65)
Variance equation parameters ωBTC αBTC βBTC γBTC δBTC
Estimates − 0.48*** 0.33*** 0.97*** 0.03* − 0.07

( − 8.64) (12.61) (147.67) (1.68) ( − 0.47)

This table reports the estimates for the EGARCH model where the mean equation is given by,

rBTC,t = μBTC + ρBTCrBTC,t−1 + εBTC,t, with

εBTC,t = ζBTC,tσBTC,t,

where rBTC,t = ln
(

BTCt
BTCt−1

)
and BTCt denotes the price of Bitcoin at time t, μBTC denotes the intercept term of the mean equation, ρBTC is

the parameter measuring first-order autocorrelation and εBTC,t is the residual term at time t. The equation for the variance is given by,

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1) + γBTC

εBTC,t−1

σBTC,t−1
+ δBTCdBTC,t,

where σ 2
BTC,t is the conditional variance at time t, and the parameter vector θBTC = (ωBTC , αBTC , βBTC , γBTC , δBTC) is estimated using

maximum-likelihood estimation. In this model, the variable dBTC,t is binary and defined as dBTC,t = 1 if a hacking occurred at time t − 1 and
dBTC,t = 0 otherwise. In Panel A, the assumption is made that the innovation process ζBTC,t is normally distributed, that is, ζBTC,t|�t−1 ∼
N(0, 1), whereas in Panel B it is assumed that the innovation process follows a fat-tailed t-distribution, that is, ζBTC,t|�t−1 ∼ t(v) where v
denotes the degrees of freedom. The sample period is from April 28, 2013 to December 31, 2017. The corresponding t-statistics are given in
parentheses.
***Statistically significant on a 1% level.
*Statistically significant on a 10% level.
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news. A potential explanation for this discrepancy could be
the application of different model types. Future research is
encouraged to elaborate more on this issue.

Next, the estimated parameter for δBTC is positive, which
prima facie indicates that hackings result in higher levels
of return volatility on the day after the hacking occurred.
The t-statistic of 3.63 suggests statistical significance on any
level. It should be noted, however, that the assumption of this
model is that ζBTC,t|�t−1 ∼ N(0, 1) which does not account
for excess kurtosis, which is observed in cryptocurrency mar-
kets too (see Table 2). In this regard, Taleb (2020) points out
that the consequences of using wrong model assumptions in
statistical inferences are severe—especially in the presence
of fat-tailed distributions. While the current research follows
Bouoiyour and Selmi (2016) in employing EGARCH-type
models, it next addresses Taleb’s (2020) critique concerning
unjustified usage of the normal distribution by employing a
fat-tailed t-distribution for modeling the innovation process
of the (modified) EGARCH models.

Therefore, I re-estimated the model of equations (1)–(3)
using a t-distribution for modeling the excess kurtosis of the
innovation process, ζBTC,t|�t−1 ∼ t(v) where v denotes the
degrees of freedom. Unlike the normal distribution, employ-
ing t-distributions for EGARCH model specifications allows
to model fat-tails in the innovation process.† Since the excess
kurtosis of a t-distribution is dependent on the degrees of
freedom and given by 6/(v − 4), I use v = 12 as a default
value for the degrees of freedom and successively estimate
the corresponding values of the log-likelihood functions for
the model given by equations (1)–(3) provided v ∈ {N|v > 4}.
The values of the log-likelihood functions are reported in
Table A1 (see Appendix). From Table A1, we observe that
the values for the log-likelihood functions linearly increase
as the degrees of freedom decrease. Hence, v = 5 is used for
modeling a heavily fat-tailed innovation process. The results
reported in Panel B of Table 3 suggest that hackings do not
affect the uncertainty in the Bitcoin market at time t + 1 as the
parameter estimate for δBTC is statistically not different from
zero.‡ As a consequence, accounting for fat-tails in the inno-
vation process, the analyses that follows uses only heavily
fat-tailed t-distributed innovation processes with v = 5.

† Note that the innovation process ζBTC,t of the econometric model
defined by equations (1)–(3) exhibits a kurtosis of 11.80.
‡ Note that the convergence of the maximum likelihood function is
achieved after 39 iterations. Moreover, to investigate whether Bitcoin
return volatility is stationary, the conditional variance of the esti-
mated EGARCH model specification as given by equations (1)–(3) is
retrieved and the Augmented Dickey Fuller (ADF) test implemented.
Under the null hypothesis, Bitcoin return volatility is an integrated
stochastic process, whereas under the alternative hypothesis, Bit-
coin return volatility is stationary. Using a maximum lag-order of 24
and the Schwarz Criterion for selecting the optimal lag-length and
using an intercept term in the test statistic, the corresponding ADF
test statistic (accounting for 6 lags) is estimated at -6.82 suggest-
ing stationarity at a 1% significance level (the critical value for the
1% significance level is –3.43). Using the Akaike Info Criterion as a
robustness check and using again a maximum lag-order of 24 and an
intercept term in the test statistic, the corresponding ADF test statis-
tic (accounting for 19 lags) is estimated at –4.77 suggesting again
stationarity at a 1% significance level. Since the null hypothesis is
clearly rejected, Bitcoin return volatility is assumed to be stationary.

4.2. Delayed volatility response to hackings in the Bitcoin
market

Next, to explore whether Bitcoin returns exhibit any delayed
response due to potential market frictions, I account for five
binary variables measuring the volatility responses up to five
days after the hacking in the Bitcoin market occurred. The
variance equation in (3) is replaced by

log(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC log(σ 2
BTC,t−1)

+ γBTC
εBTC,t−1

σBTC,t−1
+

K∑
i=1

δBTC,idBTC,i,t (4)

In this model, the variable dBTC,i,t is binary and defined as
dBTC,i,t = 1 if a hacking occurred at time t − i and dBTC,i,t =
0 otherwise. Assuming that ζBTC,t|�t−1 ∼ t(v) where v =
5 denotes the degrees of freedom, and given that K =
5, the parameter vector θBTC = (ωBTC , αBTC , βBTC , γBTC ,
δBTC,1, . . . , δBTC,5) is estimated using maximum-likelihood
estimation. The results are reported in Table 4 and illustrate
that the volatility does not appear to be affected until the fifth
day after the hacking occurred because the parameter esti-
mates for δBTC,1, δBTC,2, δBTC,3, and δBTC,4 are statistically not
different from zero, whereas δ̂BTC,5 = 0.99 with a t-statistic
of 2.54, suggesting that Bitcoin return volatility substantially
increases at time t + 5. An increase in volatility due to hack-
ings is not a surprising finding; the surprising finding here is
that the response appears to be considerably delayed. Further-
more, to substantiate the apparent absence of second moment
effects until time t + 5, I implemented a joint test of the
hypothesis

H0 : δBTC,1 = δBTC,2 = δBTC,3 = δBTC,4 = 0

versus

H1 : at least one δBTC,i �= 0 for i = {1, 2, 3, 4}

where the corresponding test statistic is under the null hypoth-
esis asymptotically distributed as χ2(4). The estimated test
statistic corresponding to λ̂ = 6.80 (p-value 0.15) indicates
that H0 cannot be rejected on a 5% significance level, imply-
ing that the uncertainty is unaffected within the time win-
dow t + 1 and t + 4. The empirical fact that the volatility
of Bitcoin returns increases on the fifth day after the hack-
ing occurred suggests a delayed response to hacking inci-
dents. The delayed response of Bitcoin return volatility points
towards inefficiency in the Bitcoin market because shocks
need time to be fully priced-in (Beneki et al. 2019). A ques-
tion that may arise is first whether other cryptocurrencies
respond to hackings in the Bitcoin market, and second if the
potential response is similar (i.e. delayed) as we observed
here.

4.3. Volatility response of Ethereum to hackings in the
Bitcoin market

Due to the appropriate features of the EGARCH model—
as discussed earlier—I modeled the mean equation for the
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Table 4. Modified EGARCH model estimates for Bitcoin.

Mean equation parameters μBTC ρBTC
Estimates 0.17*** − 0.02

(3.09) ( − 0.75)
Variance equation parameters ωBTC αBTC βBTC γBTC δBTC,1 δBTC,2 δBTC,3 δBTC,4 δBTC,5
Estimates − 0.47*** 0.32*** 0.97*** 0.03* 0.29 − 0.30 − 0.47 − 0.46 0.99**

( − 8.57) (12.34) (153.01) (1.79) (0.83) ( − 0.70) ( − 0.94) ( − 0.82) (2.54)

This table reports the estimates for the EGARCH model where the mean equation is given by,

rBTC,t = μBTC + ρBTCrBTC,t−1 + εBTC,t, with

εBTC,t = ζBTC,tσBTC,t,

where rBTC,t = ln
(

BTCt
BTCt−1

)
and BTCt denotes the price of Bitcoin at time t, μBTC denotes the intercept term of the mean equation, ρBTC is

the parameter measuring first-order autocorrelation and εBTC,t is the residual term at time t. The equation for the variance is given by,

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1) + γBTC

εBTC,t−1

σBTC,t−1
+

K∑
i=1

δBTC,idBTC,i,t,

where σ 2
BTC,t is the conditional variance at time t, and the parameter vector θBTC = (ωBTC , αBTC , βBTC , γBTC , δBTC,1, . . . , δBTC,5) is estimated

using maximum-likelihood estimation. In this model, the variable dBTC,i,t is binary and defined as dBTC,i,t = 1 if a hacking occurred at time
t − i and dBTC,i,t = 0 otherwise. In this model, the assumption is made that the innovation process ζBTC,t follows a fat-tailed t-distribution,
that is, ζBTC,t|�t−1 ∼ t(v) where v denotes the degrees of freedom. The sample period is from April 28, 2013 to December 31, 2017. The
corresponding t-statistics are given in parentheses.
***Statistically significant on a 1% level.
**Statistically significant on a 5% level.
*Statistically significant on a 1% level.

logarithmic returns of Ethereum as

rETH ,t = μETH + ρETHrETH ,t−1 + εETH ,t, with (4)

εETH ,t = ζETH ,tσETH ,t (5)

where rETH ,t = ln
(

ETHt
ETHt−1

)
and ETHt denotes the price of

Ethereum at time t, μETH denotes the intercept term of the
mean equation, ρETH is the parameter measuring first-order
autocorrelation, εETH ,t is the residual term at time t and
ζETH ,t is the innovation process. Then, the equation for the
conditional variance is given by

ln(σ 2
ETH ,t) = ωETH + αETH

∣∣∣∣ εETH ,t−1

σETH ,t−1

∣∣∣∣+ βETH ln(σ 2
ETH ,t−1)

+ γETH
εETH ,t−1

σETH ,t−1
+

K∑
i=1

δETH ,idBTC,i,t (6)

where σ 2
ETH ,t is the conditional variance of Ethereum returns

at time t. Again, I use fat-tailed innovations and assume
ζETH ,t|�t−1 ∼ t(v) where v denotes the degrees of freedom.
To determine the optimal degrees of freedom, I again use the
log-likelihood functions for the model given by equations (4)–
(6), provided v ∈ {N|v > 4}. The values of the log-likelihood
functions are reported in Table A2 (see Appendix). From
Table A2, we observe that the values for the log-likelihood
functions linearly increase as the degrees of freedom decrease
which is the same pattern that we observed for Bitcoin. Hence,
v = 5 is also used for modeling Ethereum’s heavily fat-tailed
innovation process. Using v = 5 and K = 5, the parameter
vector θETH = (ωETH , αETH , βETH , γETH , δETH ,1, . . . , δETH ,5)

is estimated using maximum-likelihood estimation. In this
model, the variable dBTC,t is binary and defined as in section
4.2. It is important to note that this binary variable is asso-
ciated with hackings in the Bitcoin market, whereas the
point estimates for δETH ,1, . . . , δETH ,5 measure the (delayed)
volatility response in the Ethereum market.

Table 5 reports the corresponding parameter estimates.
Unlike Bitcoin, the parameter estimates suggest that the
intercept of the mean equation of Ethereum log-returns is
statistically not different from zero. Moreover, neither cryp-
tocurrency exhibits first-order autocorrelation (the estimated
parameter for ρETH is statististically not different from zero,
which also holds for the estimated parameter for ρBTC). Inter-
estingly, the null hypothesis γETH = 0 cannot be rejected
(p-value 0.72) indicating that the volatility of the Ethereum
market does not exhibit an asymmetric response to negative
innovations either. Another commonality between the volatil-
ity processes of Bitcoin returns and Ethereum returns is that
both do not respond to hackings in the Bitcoin market on day
t + 1. Interestingly, the t-statistics for the point estimates for
δETH ,1, δETH ,2, δETH ,3, δETH ,4, and δETH ,5 do not reach statistical
significance when considering single variable tests. However,
the point estimate δ̂ETH ,5 = 0.97 exhibits a t-statistic of 1.59
which is considerably higher than for δ̂ETH ,1, δ̂ETH ,2, δ̂ETH ,3, or
δ̂ETH ,4.

Next, I test the joint hypothesis

H0 : δETH ,1 = δETH ,2 = δETH ,3 = δETH ,4 = δETH ,5 = 0

versus

H1 : at least one δETH ,i �= 0 for i = {1, 2, 3, 4, 5}.
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Table 5. Modified EGARCH model estimates for Ethereum.

Mean equation parameters μETH ρETH
Estimates 0.12 0.01

(0.73) (0.23)
Variance equation parameters ωETH αETH βETH γETH δETH ,1 δETH ,2 δETH ,3 δETH ,4 δETH ,5
Estimates − 0.86 0.48*** 0.91*** − 0.01 − 0.77 0.85 − 0.80 0.60 0.97

( − 6.78) (7.94) (47.90) ( − 0.36) ( − 1.11) (1.17) ( − 1.21) (0.71) (1.59)

This table reports the estimates for the EGARCH model where the mean equation is given by,

rETH ,t = μETH + ρETH rETH ,t + εETH ,t, with

εETH ,t = ζETH ,tσETH ,t,

where rETH ,t = ln
(

ETHt
ETHt−1

)
and ETHt denotes the price of Ethereum at time t, μETH denotes the intercept term of the mean equation, ρETH

is the parameter measuring first-order autocorrelation and εETH ,t is the residual term at time t. The variance equation is given by

ln(σ 2
ETH ,t) = ωETH + αETH

∣∣∣∣ εETH ,t−1

σETH ,t−1

∣∣∣∣+ βETH ln(σ 2
ETH ,t−1) + γETH

εETH ,t−1

σETH ,t−1
+

K∑
i=1

δETH ,idBTC,i,t,

where σ 2
ETH ,t is the conditional variance at time t, and the parameter vector θETH = (ωETH , αETH , βETH , γETH , δETH ,1, . . . , δETH ,5) is

estimated using maximum-likelihood estimation. In this model, the variable dETH ,i,t is binary and defined as dETH ,i,t = 1 if a hacking occurred
in the Bitcoin market at time t − i and dETH ,i,t = 0 otherwise. In this model, the assumption is made that the innovation process ζETH ,t follows
a fat-tailed t-distribution, that is, ζETH ,t|�t−1 ∼ t(v) where v denotes the degrees of freedom. The sample period is from April 7, 2015 to
December 31, 2017. The corresponding t-statistics are given in parentheses.
***Statistically significant on a 1% level.
**Statistically significant on a 5% level.

The test statistic is under the null hypothesis asymptotically
distributed as χ2(5). The estimated test statistic correspond-
ing to λ̂ = 11.02 (p-value of 0.05) indicates that H0 can be
marginally rejected on a 5% significance level. This result
suggests that the volatility process of Ethereum responds
to hackings in the Bitcoin market between t + 1 and t + 5,
provided a hacking occurred at t = 0. The question arises
whether the uncertainty is unaffected within the time window
t + 1 and t + 4 as we observed for the Bitcoin market. To test
this issue, I implement a joint test of the following hypothesis,

H0 : δETH ,1 = δETH ,2 = δETH ,3 = δETH ,4 = 0

versus

H1 : at least one δETH ,i �= 0 for i = {1, 2, 3, 4},

where the corresponding test statistic is under the null hypoth-
esis asymptotically distributed as χ2(4). The estimated test
statistic corresponding to λ̂ = 2.79 (p-value of 0.59) indi-
cates that H0 cannot be rejected at a common 5% significance
level. This result strongly supports the empirical finding that
it is on day t + 5 (after a hacking in the Bitcoin market
occurred) when the volatility process of Ethereum signifi-
cantly increases. Next, to assess the impact on the uncertainty
in the Ethereum market in more detail, I estimate the restricted
model given by equations (4)–(5) in association with the
conditional variance equation given by

ln(σ 2
ETH ,t) = ωETH + αETH

∣∣∣∣ εETH ,t−1

σETH ,t−1

∣∣∣∣+ βETH ln(σ 2
ETH ,t−1)

+ γETH
εETH ,t−1

σETH ,t−1
+ δETH ,5dBTC,5,t (7)

Using again v = 5, the parameter vector θETH = (ωETH ,
αETH , βETH , γETH , δETH ,5) is estimated using maximum-
likelihood estimation. In this model, the variable dBTC,5,t is
binary and defined as in section 4.2. The results are reported
in Table 6. From Table 6, we observe that the restricted
model’s point estimate corresponding to δ̂ETH ,5 = 1.03 with a
t-statistic of 2.79 is statistical significant on any level. This
result implies that Ethereum’s volatility exhibits the same
delayed response to Bitcoin hackings as we observed for the
Bitcoin market.

4.4. Additional robustness checks

Hou et al. (2020), who investigate 452 asset pricing anoma-
lies, find that most anomalies do not meet currently acceptable
standards for empirical finance research. The authors empha-
size that ‘the crux is that unlike natural sciences, economics,
finance and accounting are mostly observational in nature. As
such, it is critical to evaluate the reliability of published results
against “similar, but not identical”, specifications’ (Hou et al.
2020, p. 2022). According to Hamermesh (2007), a scientific
replication first requires a different or at least expanded sam-
ple and second a similar but not identical model. To perform a
scientific replication of this study, I download additional data
covering the sample period January 1, 2011 to April 27, 2013
from investing.com and retrieve data covering the period Jan-
uary 1, 2018 to December 31, 2018 from coinmarketcap.com.
These data are added to the previous sample covering the
period April 28, 2013 to December 31, 2017. In Table A3 in
Appendix, it can be seen that in this expanded time period,
21 more hackings occurred. Using this expanded sample, I
implement the following EGARCH model,

rBTC,t = μBTC + εBTC,t, with (8)
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Table 6. Restricted EGARCH model estimates for Ethereum.

Mean equation parameters μETH ρETH
Estimates 0.12 0.01

(0.80) (0.20)
Variance equation parameters ωETH αETH βETH γETH δETH ,5
Estimates − 0.83*** 0.46*** 0.92*** − 0.01 1.03***

( − 6.74) (7.85) (49.88) ( − 0.18) (2.79)

This table reports the estimates for the EGARCH model where the mean equation is given by,

rETH ,t = μETH + ρETH rETH ,t + εETH ,t, with

εETH ,t = ζETH ,tσETH ,t

where rETH ,t = ln
(

ETHt
ETHt−1

)
and ETHt denotes the price of Ethereum at time t, μETH denotes the intercept term of the mean equation, ρETH

is the parameter measuring first-order autocorrelation and εETH ,t is the residual term at time t. The variance equation is given by

ln(σ 2
ETH ,t) = ωETH + αETH

∣∣∣∣ εETH ,t−1

σETH ,t−1

∣∣∣∣+ βETH ln(σ 2
ETH ,t−1) + γETH

εETH ,t−1

σETH ,t−1
+ δETH ,5dBTC,5,t

where σ 2
ETH ,t is the conditional variance at time t, and the parameter vector θETH = (ωETH , αETH , βETH , γETH , δETH ) is estimated using

maximum-likelihood estimation. In this model, the variable dETH ,5,t is binary and defined as dETH ,5,t = 1 if a hacking occurred in the Bitcoin
market at time t − 5 and dETH ,i,t = 0 otherwise. In this model, the assumption is made that the innovation process ζETH ,t follows a fat-tailed
t-distribution, that is, ζETH ,t|�t−1 ∼ t(v) where v denotes the degrees of freedom. The sample period is from April 7, 2015 to December 31,
2017. The corresponding t-statistics are given in parentheses.
*** Statistically significant on a 1% level.

Table 7. Modified EGARCH model estimates for Bitcoin using an extended period.

Mean equation parameters μBTC
Estimates 0.00***

(4.34)
Variance equation parameters ωBTC αBTC βBTC δBTC,1 δBTC,2 δBTC,3 δBTC,4 δBTC,5
Estimates − 0.39 0.29*** 0.97*** 0.24 − 0.38 − 0.11 − 0.65* 0.76***

( − 12.98) (21.02) (269.26) (0.97) ( − 1.21) ( − 0.33) ( − 1.87) (3.02)

This table reports the estimates for the EGARCH model where the mean equation is given by,

rBTC,t = μBTC + εBTC,t, with

εBTC,t = ζBTC,tσBTC,t

where rBTC,t = ln
(

BTCt
BTCt−1

)
and BTCt denotes the price of Bitcoin at time t, μBTC denotes the intercept term of the mean equation and εBTC,t

is the residual term at time t. The equation for the variance is given by,

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTCln(σ 2
BTC,t−1) +

K∑
i=1

δBTC,idBTC,i,t

where σ 2
BTC,t is the conditional variance at time t, and the parameter vector θBTC = (ωBTC , αBTC , βBTC , δBTC,1, . . . , δBTC,5) is estimated

using maximum-likelihood estimation. In this model, the variable dBTC,i,t is binary and defined as dBTC,i,t = 1 if a hacking occurred at time
t − i and dBTC,i,t = 0 otherwise. In this model, the assumption is made that the innovation process ζBTC,t follows a fat-tailed t-distribution,
that is, ζBTC,t|�t−1 ∼ t(v) where v denotes the degrees of freedom. The sample period is from January 1, 2011 to December 31, 2018. The
corresponding t-statistics are given in parentheses.
***Statistically significant on a 1% level.
*Statistically significant on a 10% level.

εBTC,t = ζBTC,tσBTC,t (9)

log(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1)

+
K∑

i=1

δBTC,idBTC,i,t (10)

Since the result in the previous section revealed that Bit-
coin log-returns do not exhibit first-order autocorrelation

and because it is found that the volatility process does not
exhibit asymmetries, the model in equations (8)–(10) does
not account for parametrization of those variables. Since
the model given by equations (8)–(10) is similar but not
identical to the model given by equations (1)–(3), or equa-
tions (1), (2) and (4), respectively, and because the sam-
ple period is different, this replication meets the require-
ments of a scientific replication as called for in Hou et al.
(2020).
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Table 8. Modified EGARCH model estimates for Bitcoin accounting for contemporaneous volatility responses.

Mean equation parameters μBTC ρBTC
Estimates 0.17*** − 0.02

(3.10) ( − 0.75)
Variance equation

parameters
ωBTC αBTC βBTC γBTC δBTC,0 δBTC,1 δBTC,2 δBTC,3 δBTC,4 δBTC,5

Estimates − 0.47*** 0.32*** 0.97*** 0.02 1.30*** − 0.69* − 0.42 − 0.43 − 0.43 0.97**
( − 8.57) (12.24) (154.03) (1.47) (5.14) ( − 1.88) ( − 1.03) ( − 0.85) ( − 0.77) (2.46)

This table reports the estimates for the EGARCH model where the mean equation is given by,

rBTC,t = μBTC + ρBTCrBTC,t−1 + εBTC,t, with

εBTC,t = ζBTC,tσBTC,t

where rBTC,t = ln
(

BTCt
BTCt−1

)
and BTCt denotes the price of Bitcoin at time t, μBTC denotes the intercept term of the mean equation, ρBTC is

the parameter measuring first-order autocorrelation and εBTC,t is the residual term at time t. The equation for the variance is given by,

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1) + γBTC

εBTC,t−1

σBTC,t−1
+ δBTC,0dBTC,0,t +

K∑
i=1

δBTC,idBTC,i,t

where σ 2
BTC,t is the conditional variance at time t, and the parameter vector θBTC = (ωBTC , αBTC , βBTC , γBTC , δBTC,0, . . . , δBTC,5) is estimated

using maximum-likelihood estimation. In this model, the variable dBTC,i,t is binary and defined as dBTC,i,t = 1 if a hacking occurred at
time t − i and dBTC,i,t = 0 otherwise. Moreover, the variable dBTC,0,t measure the contemporaneous respond and is binary and defined as
dBTC,i,t = 1 if a hacking occurred at time t and dBTC,0,t = 0 otherwise. Furthermore, the assumption is made that the innovation process
ζBTC,t follows a fat-tailed t-distribution, that is, ζBTC,t|�t−1 ∼ t(v) where v denotes the degrees of freedom. The sample period is from April
28, 2013 to December 31, 2017. The corresponding t-statistics are given in parentheses.
*** Statistically significant on a 1% level.
** Statistically significant on a 5% level.
* Statistically significant on a 1% level.

Using this model, I again make the more conserva-
tive assumption that ζBTC,t|�t−1 ∼ t(v) where v denotes the
degrees of freedom. Using v = 5 and the expanded sample
period from January 1, 2011 to December 31, 2018, Table 7
reports the corresponding estimates. The results reported in
Table 7 strongly support two earlier findings; that is, first,
the volatility of Bitcoin returns does not respond during the
first couple of days after a hacking occurred. Second, on
day t + 5 the volatility significantly increases. However, it is
noteworthy that the results of this robustness check should
be interpreted with caution: In the earlier period (January 1,
2011 to April 27, 2013), 28.30% of the days had zero log-
return entries, which might have an impact on the accuracy of
the estimation procedure. Nevertheless, the key finding of a
delayed volatility response to hackings is strongly supported
by this scientific replication.

While this study explores the effects of hacking incidents
on the uncertainty in the Bitcoin market in a Granger-sense,
and hence, explores responses in Bitcoin’s volatility to pre-
ceding hacking incidents, the question arises if the effects
are robust after controlling for the contemporaneous volatil-
ity response to hacking incidents. To address this issue, I
re-estimate the model given by equations (1), (2), and (4), by
employing the model of equations (1) and (2) in association
with variance equation (11), given by

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1)

+ γBTC
εBTC,t−1

σBTC,t−1

+ δBTC,0dBTC,0,t +
K∑

i=1

δBTC,idBTC,i,t (11)

where σ 2
BTC,t is the conditional variance at time t, dBTC,0,t

measures the contemporaneous response and is binary and
defined as dBTC,i,t = 1 if a hacking occurred at time t and
dBTC,0,t = 0 otherwise. All other variables are defined as
in section 4.2. The parameter vector θBTC = (ωBTC , αBTC ,
βBTC , γBTC , δBTC,0, . . . , δBTC,5) is estimated using maximum-
likelihood estimation. Again, the assumption is made that the
innovation process ζBTC,t follows a fat-tailed t-distribution,
that is, ζBTC,t|�t−1 ∼ t(v) where v denotes the degrees of
freedom. Choosing v = 5 to account for a heavily fat-tailed
innovation process and using the sample from April 28, 2013
to December 31, 2017, the point estimates and corresponding
t-statistics of this model are reported in Table 8. The results
reported in Table 8 strongly support two earlier findings: First,
the volatility of Bitcoin returns does not respond during the
first couple of days after a hacking occurred. Second, on day
t + 5 the volatility significantly increases. Moreover, Table 8
reveals a strong contemporaneous respond because the point
estimator for δBTC,0 which measures the volatility response
at time t = 0 is δ̂BTC,0 = 1.30 and with a t-statistic of 5.14
statistically significant on any level.†

† Unreported results show that Ethereum does not exhibit any
contemporaneous response when the Bitcoin market is subject to
hacking incidents. The results are available upon request from the
author.
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Next, to substantiate the results documented in this study, in
Table 9 the descriptive statistics are reported for the realized
volatility of Bitcoin on the day of the attack, immediately after
the incident occurred, and during the rest of the sample period.
To estimate realized Bitcoin volatility, I calculate the realized
annualized daily volatilities in line with Rogers and Satchell
(1991) as

σBTC,t =
√

T

√√√√√√√√
(

ln

(
HIGHBTC

t

CLOSEBTC
t

)
· ln

(
HIGHBTC

t

OPENBTC
t

)

+ ln

(
LOWBTC

t

CLOSEBTC
t

)
· ln

(
LOWBTC

t

OPENBTC
t

))
(12)

where HIGHBTC
t , LOWBTC

t , OPENBTC
t , and CLOSEBTC

t denote
the highest, lowest, opening, and closing price for Bitcoin on
day t, σBTC,t denotes Bitcoin’s corresponding realized volatil-
ity and T = 365 because Bitcoin is traded 24/7. In Table 9,
σ t=0

BTC measures the realized annualized daily volatility of
Bitcoin on the day of the hacking incident, whereas σ t=1

BTC mea-
sures the realized annualized daily volatility of Bitcoin on
the day after the hacking incident occurred (e.g. day t + 1),
whereas σ ALL

BTC measures the realized annualized daily volatil-
ity of Bitcoin on all other days over the sample excluding
the days t = 0 and t + 1. The sample period is from April
28, 2013 to December 31, 2017. From Table 9, we observe
that the average of σ t=0

BTC is more than twice as the average
of σ ALL

BTC , whereas the median of σ t=0
BTC is 1.84 times higher

than the median of σ ALL
BTC . This result supports the finding of

a strong contemporaneous volatility effect to hacking inci-
dents, whereas there is no such evidence for the subsequent
day σ t=1

BTC .
Finally, one could wonder whether the autoregressive struc-

ture for the volatility process given by the model in equa-
tions (1), (2), and (4), is correctly specified. Higher order
autoregressive structures for the volatility process are useful if
there is any evidence for remaining ARCH-effects. To inves-
tigate this issue, I regress the squared estimated innovation
process denoted as ζ̂ 2

BTC,t on five lags given by,

ζ̂ 2
BTC,t = ϑ0 + ϑ1ζ̂

2
BTC,t−1 + ϑ2ζ̂

2
BTC,t−2 + ϑ3ζ̂

2
BTC,t−3

+ ϑ4ζ̂
2
BTC,t−4 + ϑ5ζ̂

2
BTC,t−5 + et

where ϑ1, ϑ2, . . . , ϑ5 denote the parameters associated with
the estimated lagged squared innovations, ϑ0 denotes the
regression intercept, and et is assumed to be a stationary
stochastic process, distributed as et ∼ (0, σ 2

e ). The ARCH-
LM test statistic λ is given by λ = TR2, where R2 denotes the
R-squared of the auxiliary regression as defined above and T
defines the number of sample observations. Accounting for
a lag-order of five, the test statistic is under the null hypoth-
esis asymptotically distributed as χ2(5). Furthermore, under
the null hypothesis, it is assumed that there are no remain-
ing ARCH-effects, whereas under the alternative hypothesis
it is assumed that there are remaining ARCH-effects point-
ing towards a higher autoregressive structure for the volatility
process. Since the estimated test statistic is λ̂ = 2.50, the null
hypothesis cannot be rejected (p-value is 0.78) implying that

Table 9. Realized Bitcoin volatility.

Metric σ t=0
BTC σ t=1

BTC σALL
BTC

Mean 1.12 0.67 0.53
Std.Dev 1.11 0.62 0.55
Maximum 4.76 3.16 7.40
Median 0.70 0.58 0.38
Minimum 0.06 0.06 0.02
Skewness 1.76 2.67 3.91
Kurtosis 3.61 9.95 26.99

This table reports the realized annualized daily volatilities of
Bitcoin using the Rogers and Satchell (1991) estimator,

σBTC,t =
√

T

√√√√√√√√√√

(
ln

(
HIGHBTC

t

CLOSEBTC
t

)
· ln

(
HIGHBTC

t

OPENBTC
t

)

+ ln

(
LOWBTC

t

CLOSEBTC
t

)
· ln

(
LOWBTC

t

OPENBTC
t

))

where HIGHBTC
t , LOWBTC

t , OPENBTC
t , and CLOSEBTC

t denote the
highest, lowest, opening, and closing price for Bitcoin on day t,
σBTC,t denotes Bitcoin’s corresponding realized annualized daily
volatility and T = 365. The realized volatility denoted as σ t=0

BTC
measures the realized annualized daily volatility of Bitcoin on the
day of the hacking incident, whereas σ t=1

BTC measures the realized
annualized daily volatility of Bitcoin on the day after the hacking
incident occurred, that is, t + 1, and σALL

BTC measures the realized
annualized daily volatility of Bitcoin on all other days over the
sample excluding both the days when hacking incidents occurred
and the subsequent days after hacking incidents occurred. The
sample period is from April 28, 2013 to December 31, 2017.

there are no remaining ARCH-effects in the volatility process
and the econometric model is correctly specified.†

5. Conclusion

In contrast to stock exchanges, which facilitate trading but
do not actually hold securities on behalf of clients, cryp-
tocurrency exchanges typically charge fees for trading and
store virtual currencies for their clients, which makes cryp-
tocurrency exchanges vulnerable. This study investigated how
hacking incidents in the Bitcoin market affect the uncer-
tainty in this market. The findings indicate that the volatil-
ity increases significantly. More specifically, this study finds
two effects—a contemporaneous effect and a delayed effect.
While the contemporaneous effect could be driven by a sub-
stantial increase in uncertainty generated at the exchange
that was subject to the hacking incident, a possible explana-
tion for the delayed effect could be that hackings are more
likely to occur at small exchanges that perhaps have lower
security standards than larger exchanges. Information diffu-
sion then occurs more slowly. Furthermore, exchanges trade
multiple cryptocurrencies and if an exchange was hacked,
thieves could steal both Bitcoin and Ethereum, which could
be a possible explanation for volatility spillovers found in

† As an additional robustness check, I implement the test for remain-
ing ARCH-effects using a lag-order of 10. The results remain
unchanged. (The results are available from the author upon request.)
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the current study. Another possible explanation for this phe-
nomenon could be that thieves are using one cryptocurrency
to cash out on their theft of the other, thus shifting the demand
for cryptocurrencies from the one that was hacked to the other.
The empirical finding might also have some practical implica-
tions. For instance, option strategies such as straddles benefit
from increased volatility. A delayed volatility response offers
an opportunity for making profits using the derivative mar-
kets, which could be a potential area for future research. This
study also found a type of contagion in volatility effects.
While earlier research suggested that cryptocurrencies co-
move in their first moments, this study finds second moment
spillover effects in the presence of hacking incidents. Future
studies could explore whether hacking incidents that occur
in smaller cryptocurrency markets exhibit similar spillover
effects. Finally, the aim of this study was to draw market-
wide conclusions. However, Bitcoin is traded on multiple
exchanges but the attacks are always limited to one exchange.
It could be interesting to investigate how Bitcoin volatility
behaves at the respective exchange after hacking incidents
occurred. Since this issue is outside of the current study’s
scope, it is left for future research.
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Appendix

Table A1 reports the values of the log-likelihood function for the
EGARCH model where the mean equation is given by,

rBTC,t = μBTC + ρBTCrBTC,t−1 + εBTC,t,with

εBTC,t = ζBTC,tσBTC,t

where rBTC,t = ln
(

BTCt
BTCt−1

)
and BTCt denotes the price of Bitcoin at

time t, μBTC denotes the intercept term of the mean equation, ρBTC
is the parameter measuring first-order autocorrelation and εBTC,t
is the residual term at time t. The equation for the variance is
given by,

ln(σ 2
BTC,t) = ωBTC + αBTC

∣∣∣∣ εBTC,t−1

σBTC,t−1

∣∣∣∣+ βBTC ln(σ 2
BTC,t−1)

+ γBTC
εBTC,t−1

σBTC,t−1
+ δBTCdBTC,t

where σ 2
BTC,t is the conditional variance at time t, and the parameter

vector θBTC = (ωBTC , αBTC , βBTC , γBTC , δBTC) is estimated using
maximum-likelihood estimation. In this model, the variable dBTC,i,t
is binary and defined as dBTC,i,t = 1 if a hacking occurred at time t −
i and dBTC,i,t = 0 otherwise. In this model, the assumption is made
that the innovation process ζBTC,t follows a fat-tailed t-distribution,
that is, ζBTC,t|�t−1 ∼ t(v) where v ∈ {N|v > 4} denotes the degrees
of freedom. The sample period is from April 28, 2013 to December
31, 2017.

Table A1. Values for Bitcoin’s log-like-
lihood functions.

Degrees of freedom v Log-likelihood

5 3459.74
6 3445.12
7 3432.04
8 3420.48
9 3410.25
10 3401.17
11 3393.06
12 3385.79

Table A2 reports the values of the log-likelihood function for the
EGARCH model where the mean equation is given by,

rETH ,t = μETH + ρETH rETH ,t−1 + εETH ,t, with

εETH ,t = ζETH ,tσETH ,t

where rETH ,t = ln
(

ETHt
ETHt−1

)
and ETHt denotes the price of Ethereum

at time t, μETH denotes the intercept term of the mean equation,
ρETH is the parameter measuring first-order autocorrelation and
εETH ,t is the residual term at time t. The variance equation is
given by

ln(σ 2
ETH ,t) = ωETH + αETH

∣∣∣∣ εETH ,t−1

σETH ,t−1

∣∣∣∣+ βETH ln(σ 2
ETH ,t−1)

+ γETH
εETH ,t−1

σETH ,t−1
+

K∑
i=1

δETH ,idBTC,i,t

where σ 2
ETH ,t is the conditional variance at time t, and the param-

eter vector θETH = (ωETH , αETH , βETH , γETH , δETH ) is estimated
using maximum-likelihood estimation. In this model, the variable
dETH ,i,t is binary and defined as dETH ,i,t = 1 if a hacking occurred
in the Bitcoin market at time t − i and dETH ,i,t = 0 otherwise. In this
model, the assumption is made that the innovation process ζETH ,t
follows a fat-tailed t-distribution, that is, ζBTC,t|�t−1 ∼ t(v) where
v ∈ {N|v > 4} denotes the degrees of freedom. The sample period is
from April 7, 2015 to December 31, 2017.

Table A2. Values for Ethereum’s log–
likelihood functions.

Degrees of freedom v Log-likelihood

5 1251.88
6 1248.73
7 1245.68
8 1242.88
9 1240.35
10 1238.08
11 1236.03
12 1234.18

Table A3 reports hacking incidents in the Bitcoin market in 2011,
2012 and 2018. The data for hackings were retrieved from Table
3 in Biais et al. (2019) and Table 3 in Grobys and Sapkota (2019)
and matched with price data retrieved from coinmarketap.com and
investing.com.

Table A3. Additional hacking incidents in the Bitcoin market in the extended sample.

Date BTC BTC Price Loss in USD given time t Incident

2011-06-13 25 000 19.8 495 000 User Allinvain hacked
2011-06-19 2000 17.5 35 000 MtGox theft
2011-06-25 4019 17.5 70 332.5 MyBitcoin theft
2011-07-26 17 000 17.5 297 500 Bitomat loss
2011-07-29 78 739 13.5 1 062 976.5 MyBitcoin theft
2011-10-06 5000 4.7 23 500 Bitcoin7 hack
2011-10-28 2609 3.2 8348.8 MtGox loss
2012-03-01 46 653 4.9 228 599.7 Linode hacks
2012-04-13 3171 4.9 15 537.9 Betcoin hack
2012-04-27 20 000 5.1 102 000 Tony76 Silk Road scam
2012-05-11 18 547 5 92 735 Bitcoinica hack
2012-07-04 1853 5.3 9820.9 MtGox hack
2012-07-13 40 000 5.9 236 000 Bitcoinica theft
2012-07-17 180 819 6.2 1 121 077.8 BST Ponzi scheme
2012-07-31 4500 6.7 30 150 BTC-e hack
2012-09-04 24 086 10.4 250 494.4 Bit?oor theft
2012-09-28 9222 12.4 114 352.8 User Cdecker hacked
2012-10-17 3500 11.8 41 300 Trojan horse
2012-12-21 18 787 13.5 253 624.5 Bitmarket.eu hack
2018-04-09 438 6770.73 2 965 579.74 Coin Secure hack
2018-09-14 5966 6512.71 38 854 827.86 Zaif hack
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