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We revisit the Hybrid scheme proposed by Bennedsen et al. (2017) for numerical simulations of
Brownian semistationary processes, and propose a Refinement by Reducing and Reusing random
numbers of the Hybrid scheme (3R Hybrid scheme). The key idea is to reuse random variables
through orthogonal projections. An application to the analysis of the rough Bergomi model is also
given.
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methods

1. Introduction

The Brownian semistationary (BSS) process introduced by
Barndorff-Nielsen and Schmiegel (2009) forms a flexible
class of stochastic processes that can reproduce some common
features of empirical time series in various fields, includ-
ing stochastic volatility, roughness, stationarity, and strong
dependence. A BSS process is defined as

Xt :=
∫ t

−∞
g(t − s)σs dWs, t ∈ R, (1)

where σ is a stochastic process adapted to a filtration {Ft}t∈R

and W is an {Ft} Brownian motion, that is, W is a two-sided
Brownian motion with Wt − Ws being Ft measurable for all
(s, t) with s ≤ t. The deterministic function g is called a ker-
nel function. A fractional Ornstein-Uhlenbeck (fOU) process
is an example of BSS processes (see Appendix 1). A BSS pro-
cess X is not a semimartingale when the kernel function g has
a power-law behavior near zero; more specifically, when

g(x) ∼ xα , as x → 0

for some α ∈ (− 1
2 , 1

2 )\{0}. The trajectories of X then behave
locally like those of a fractional Brownian motion with the
Hurst index H = α + 1

2 .

*Corresponding author. Email: fukasawa@sigmath.es.osaka-u.ac.jp,
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If σ is a constant as in the case of the fOU process, then X
is stationary Gaussian and a sample path of X can be simu-
lated by exact schemes based on the Cholesky decomposition
or circulant embedding methods. However, it is difficult, if
not impossible, to develop an exact method that is applicable
with a stochastic σ , as the process X is then neither Marko-
vian nor Gaussian. Even for the cases where an exact method
is available, its computational cost is often too expensive for
practical simulations. Therefore in the general case, we must
resort to an approximation method. A Fourier-based method is
proposed by Benth et al. (2014). A state-of-art method which
is effective for singular kernel functions is the Hybrid scheme
proposed by Bennedsen et al. (2007). The idea of this scheme
is to approximate the kernel function by a power function near
its singularity point and by a step function elsewhere. This
method is more effective than an Itô-Riemann type approx-
imation of the stochastic integral which approximates the
kernel function by a step function everywhere. A drawback
of this scheme is that the approximation accuracy becomes
worse as α approaches − 1

2 ; see Figure 1 for the mean squared
error of the Hybrid scheme.

Recently BSS processes with α ≈ − 1
2 has been applied

to financial modeling. Gatheral et al. (2018) argued that
the log-volatility of an asset price process is well mod-
elled by a fractional Brownian motion with the Hurst index
H = α + 1

2 ≈ 0.1, at any reasonable time scale. A fractional
Brownian motion with H < 1/2 has a rougher path than a
standard Brownian motion does; therefore such a stochastic
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Figure 1. Log mean squared error (MSE) of the Hybrid scheme. g is
a fOU kernel (17), σ ≡ 1, n is the number of discretization steps, and
κ + 1 = 3 is the dimension of i.i.d. Gaussian vectors to generate.

volatility model is now called a ‘rough volatility model’.
Fukasawa et al. (2019) developed a consistent estimator
of H under a fractional volatility model and applied it to
stock indices to estimate H ≈ 0.05. Alòs et al. (2007), Fuka-
sawa (2011, 2017, 2021), Bayer et al. (2016), Forde and
Zhang (2017), Garnier and Solna (2017), El Euch et al. (2019)
showed that such a model with very small H reproduces an
empirically observed power law of the option implied volatil-
ity surface. To be consistent further with the VIX option
surface, Horvath et al. (2020) introduced modulated Volterra
stochastic volatility processes, of which the volatility process
is a BSS process with σ being independent of W. Since an
analytic formula for the option prices under such a model
is not available, the option pricing and calibration require
intensive Monte Carlo simulations, for which the Hybrid
scheme mentioned above, with some variance reduction tech-
niques (McCrickerd and Pakkanen 2018), has been the most
popular. See e.g. Jacquier et al. (2018).

In this paper, after revisiting the Hybrid scheme, we pro-
pose a Refinement by Reducing and Reusing random numbers
of the Hybrid scheme (3R Hybrid scheme hereafter). The key
idea is to reuse random variables through orthogonal pro-
jections. The new simulation method improves the Hybrid
scheme, especially when α ≈ − 1

2 , or equivalently, H ≈ 0;
the refinement of the approximation accuracy is illustrated
in Figure 2. All of the schemes corresponding to the three
curves in Figure 2 have almost the same computational cost as
that corresponding to the black curve in Figure 1 (the Hybrid
scheme with κ = 2 and n = 103). The parameter κ ′ controls
the number of reuse of random numbers. Although the rate
of convergence with the number of discretization steps is the
same as for the Hybrid scheme, that is, O(n−(2α+1)), the coeffi-
cient of the leading term of MSE is much reduced by choosing
κ ′ enough large.

In Section 2, we describe the framework and assumptions.
In Section 3, we review the Hybrid scheme. In Section 4,
we propose the 3R Hybrid scheme. In Section 5, we apply
the proposed scheme to the numerical analysis of the rough
Bergomi model (Bayer et al. 2016).

2. Framework

Let (�,F , P, {Ft}t∈R) be a filtered probability space satis-
fying the usual conditions and W = (Wt)t∈R be a two-sided

Figure 2. Log MSE of the 3R Hybrid scheme for the same g and
κ = 2 as in Figure 1. n = 103. κ ′ − κ is the number of reuse.

Brownian motion adapted to {Ft}. This means that W is a
centered Gaussian process with independent increments and
Wt − Ws ∈ Ft for all s ≤ t.

2.1. Definitions

Definition 2.1 (Brownian semistationary process) A stochas-
tic process X = (Xt)t∈R which admits the representation

Xt =
∫ t

−∞
g(t − s)σs dWs, t ∈ R, (2)

is called a Brownian semistationary process (BSS process),
where σ = (σt)t∈R is an {Ft}−adapted process with

sup
t∈R

E
[
σ 2

t

]
< ∞,

and g : (0, ∞) → [0, ∞) is a Borel-measurable function with∫ ∞

0
g(x)2 dx < ∞.

Remark 2.2 If σ is covariance-stationary, namely,

E[σs] = E[σt],

Cov(σs, σt) = Cov
(
σ0, σ|s−t|

)
, s, t ∈ R,

then X is also covariance-stationary, namely,

E[Xt] = 0,

Cov(Xs, Xt) = E
[
σ 2

0

] ∫ ∞

0
g(x)g(x + |s − t|) dx, s, t ∈ R.

Definition 2.3 (slowly varying function) A measurable func-
tion L : (0, 1] → [0, ∞) is said to be slowly varying at 0 if for
any t ∈ R,

lim
x→0

L(tx)

L(x)
= 1.

Definition 2.4 (regular varying function) A function f (x) =
xβL(x), x ∈ (0, 1], where β ∈ R and L is slowly varying at 0,
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is said to be regularly varying at 0, with β being the index of
regular variation.

Remark 2.5 (Potter’s theorem) Let L : (0, 1] → (0, ∞) be
slowly varying at 0 and bounded away from 0 and ∞ on every
interval (u, 1], u ∈ (0, 1) (i.e. there exist 0 < m1, m2 < ∞
such that m1 < L(x) < m2 for all x ∈ (u, 1]). Then for any
δ > 0, there exists a constant Cδ > 0 such that

L(x)

L(y)
≤ Cδ max

{(
x

y

)δ

,

(
x

y

)−δ
}

, x, y ∈ (0, 1]. (3)

In particular, we have

Cδxδ ≤ L(x) ≤ Cδx−δ , x ∈ (0, 1]. (4)

See (Bingham et al. 1989, Theorem 1.5.6) for (3). To get (4),
let x = 1 and y = 1 in (3).

2.2. Assumptions

For their Hybrid scheme for BSS processes, Bennedsen
et al. (2007) introduced the following conditions (A1) ∼ (A3).

(A1) For some α ∈ (− 1
2 , 1

2 )\{0},
g(x) = xαLg(x), x ∈ (0, 1]

where Lg : (0, 1] → [0, ∞) is continuously differentiable,
slowly varying at 0 and bounded away from 0 (i.e. ∃m >

0, Lg(x) > m for all x ∈ (0, 1]). Moreover, there exists a
constant C > 0 such that derivative L′

g of Lg satisfies∣∣∣L′
g(x)

∣∣∣ ≤ C(1 + x−1), x ∈ (0, 1].

(A2) The function g is continuously differentiable on
(0, ∞), with derivative g′ that is ultimately monotonic
(i.e.∃R ∈ (0, ∞), R < s < t ⇒ g′(s) ≶ g′(t)) and also satis-
fies

∫∞
1 g′(x)2 dx < ∞.

(A3) For some β ∈ (−∞, − 1
2 ),

g(x) = O (xβ
)

, x → ∞, i.e. lim sup
x→∞

∣∣∣∣g(x)

xβ

∣∣∣∣ < ∞.

Remark 2.6 These assumptions ensure that g is square-
integrable; ∫ ∞

0
g(x)2 dx < ∞.

In fact, in view of (A3), there exists M ∈ R+ satisfying∫ ∞

1
g(x)2 dx < M 2

∫ ∞

1
x2β dx < ∞.

Further, by (A1) and (4),∫ 1

0
g(x)2 dx =

∫ 1

0
x2αLg(x)

2 dx, α ∈
(

−1

2
,

1

2

)

≤ Cδ

2
∫ 1

0
x2α−2δ dx.

We can take δ > 0 with 2α − 2δ > −1.

In this paper, we propose our 3R Hybrid scheme under the
same conditions.

3. Hybrid scheme

Here we recall the Hybrid scheme proposed by Bennedsen
et al. (2007).

3.1. The Hybrid scheme for BSS processes

Let X be a BSS process. Then, by definition, we have

Xt =
∞∑

k=1

∫ t− k
n + 1

n

t− k
n

g(t − s)σs dWs

If k is small, then due to (A1), we approximate

g(t − s) ≈ (t − s)αLg

(
k

n

)
, t − s ∈

[
k − 1

n
,

k

n

]
\{0}.

If k is large, or at least k ≥ 2, then choosing ck ∈ [k − 1, k]
provides an approximation

g(t − s) ≈ g
(ck

n

)
, t − s ∈

[
k − 1

n
,

k

n

]

by the continuity of g from (A2). Then we get an approxima-
tion

Xt ≈
∞∑

k=1

σt−k/n

∫ t− k
n + 1

n

t− k
n

g(t − s) dWs (5)

≈
κ∑

k=1

Lg

(
k

n

)
σt−k/n

∫ t− k
n + 1

n

t− k
n

(t − s)α dWs

+
∞∑

k=κ+1

g
(ck

n

)
σt−k/n

∫ t− k
n + 1

n

t− k
n

dWs

where κ = 0, 1, 2, . . . (6)

When κ = 0, we require that c1 ∈ (0, 1]. To make numeri-
cal implementation feasible, we truncate the second sum on
the right-hand side of (5) so that both sums have Nn ≥ κ + 1
terms in total. Thus, we arrive at a discretization scheme for
Xt;

X n
t = Ẋ n

t + Ẍ n
t

where

Ẋ n
t :=

κ∑
k=1

Lg

(
k

n

)
σt−k/n

∫ t− k
n + 1

n

t− k
n

(t − s)α dWs,

Ẍ n
t :=

Nn∑
k=κ+1

g
(ck

n

)
σt−k/n

(
Wt− k

n + 1
n
− Wt− k

n

)
.

This is called the Hybrid scheme. A sequence of real numbers
c := (ck)

Nn
k=κ+1 must satisfy ck ∈ [k − 1, k]\{0} for each k ≥

κ + 1, but otherwise can be chosen freely.
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For Nn, we need a condition:
(A4) For some γ > 0,

Nn ∼ nγ+1, n → ∞.

3.2. Asymptotic behavior of MSE

Theorem 3.1 (Theorem 2.5 of Bennedsen et al. (2007))
Suppose that (A1) ∼ (A4) hold with

γ > −2α + 1

2β + 1

and σ is covariance-stationary with

E[|σs − σ0|2] = O(s2α+1+δ), s → 0

for some δ > 0. Then for all t ∈ R,

E
[|Xt − X n

t |2]
∼ J(α, κ , c)E[σ 2

0 ]n−(2α+1)Lg

(
1

n

)2

, n → ∞ (7)

where

J(α, κ , c) :=
∞∑

k=κ+1

∫ k

k−1
(yα − cα

k )2 dy < ∞.

Proposition 3.2 (Proposition 2.8 of Bennedsen et al. (2007))

The coefficient of MSE J(α, κ , c) in Theorem 3.1 is mini-
mized by the sequence c given by

c = c∗ = {c∗
κ+1, c∗

κ+2, . . . , c∗
Nn

},

where

c∗
k =

(
kα+1 − (k − 1)α+1

α + 1

) 1
α

, κ + 1 ≤ k ≤ Nn.

We set c = c∗ in the sequel.

3.3. Implementation

Simulating the BSS process Xt on the equidistant grid
{0, 1

n , 2
n , . . . , �nT�

n } for some T > 0 using the Hybrid scheme
entails generating

X n
i
n

i = 0, 1, . . . , �nT�.

Provided that we can simulate the Gaussian random variables

W n
i,j :=

∫ i+1
n

i
n

(
i + j

n
− s

)α

dWs,

i = −Nn, −Nn + 1, . . . , �nT� − 1
j = 1, . . . , κ ,

W n
i :=

∫ i+1
n

i
n

dWs, i = −Nn, −Nn + 1, . . . , �nT� − 1,

and a discretized process σi/n, i = −Nn, −Nn + 1, . . . , we can
compute

X n
i
n

=
κ∑

k=1

Lg

(
k

n

)
σ(i−k)/nW n

i−k,k︸ ︷︷ ︸
=Ẋ n

i
n

+
Nn∑

k=κ+1

g
(ck

n

)
σ(i−k)/nW n

i−k︸ ︷︷ ︸
=Ẍ n

i
n

, i = 0, 1, . . . , �nT�.

(8)

Note that the FFT can be effectively used in the above
convolution. The κ + 1 dimensional random vectors

Wn
i := (W n

i , W n
i,1, . . . , W n

i,κ),

i = −Nn, −Nn + 1, . . . , �nT� − 1

are independent and follow the multivariate Gaussian dis-
tribution with mean 0 = (0, . . . , 0) and variance-covariance
matrix 	 given by

	1,1 = 1

n
, (9)

	1,j = 	j,1 = (j − 1)α+1 − (j − 2)α+1

(α + 1)nα+1
, (10)

	j,j = (j − 1)2α+1 − (j − 2)2α+1

(2α + 1)n2α+1
, (11)

for j = 2, . . . , κ + 1, and

	j,k = 1

(α + 1)n2α+1

×
(

(j − 1)α+1(k − 1)α2F1

(
−α, 1, α + 2,

j − 1

k − 1

)

−(j − 2)α+1(k − 2)α2F1

(
−α, 1, α + 2,

j − 2

k − 2

))
,

(12)

for j, k = 2, . . . , κ + 1 with j < k. When j > k, set 	j,k = 	k,j.
Here, 2F1 is Gauss hyper geometric function, that is

2F1(a, b, c, z) :=
∞∑

n=0

(a)n(b)nzn

(c)nn!
,

where

(a)n = 
(a + n)


(a)
= a(a + 1) · · · (a + n − 1).

3.4. Discussion

From Theorem 3.1, we know that the mean squared error of
the Hybrid scheme converges to 0 with rate n−(2α+1). This
means when α is close to − 1

2 , increasing n does not help
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Figure 3. MSE coefficient J(α, κ , c).

much to decrease the error. Nevertheless, the number n has
to be large for simulations of rough volatility models (see
Section 5). When n is large and α ≈ − 1

2 , Theorem 3.1 implies
also that the error magnitude is determined by J(α, κ , c). See
Figure 3 for the graph of (α, log J(α, κ , c)) for κ = 1, 2, 3, 4, 5.
From this figure we can observe that increasing κ makes a sig-
nificant reduction of the mean squared error when α ≈ − 1

2 .
On the other hand, as seen in the previous subsection, an
implementation of the Hybrid scheme requires Nn + [nT] − 1
i.i.d. generations of κ + 1 dimensional Gaussian random vari-
ables. This fact hampers the use of large κ in practice. This
is because of not only increased computational time but also
numerical difficulty to generate the random variable. In fact,
as seen in Table 1, the determinant of the covariance matrix
	 is quite small for κ ≥ 3 and it is numerically computed
even as a negative value, while of course the determinant of
a covariance matrix has to be nonnegative. As a result, the
R function chol for computing the Cholesky decomposition
fails for 	 with κ ≥ 6 due to the numerical degeneracy. In the
next section, we propose an improved scheme which does not
increase the dimension of the Gaussian random variables but
reduces significantly the mean squared error. The efficiency
of our scheme indeed results from the almost degeneracy
of 	.

4. 3R Hybrid scheme

Here we propose a new scheme, the 3R Hybrid scheme, which
improves the Hybrid scheme.

4.1. An improved approximation to the kernel function

The key idea of the Hybrid scheme is to use a power func-
tion to approximate a singular part of the kernel function.
The remained regular part is approximated by a step func-
tion. Our idea is to reuse the power function part to improve
the approximation to the regular part. This is done by orthog-
onal projections. Let us consider how to approximate a power
function f

f (x) := xα , α ∈
(

−1

2
,

1

2

)
, x ∈

(
0,

�nT�
n

]

for an arbitrary T > 0. Denote

f n
k (x) :=

⎧⎨
⎩f (x) x ∈

(
k − 1

n
,

k

n

]
0 otherwise,

to decompose f as

f (x) =
�nT�∑
k=1

f n
k (x).

Our idea is to approximate f n
k (x) with k ≥ κ + 1 by a linear

combination of a constant function and f n
κ (x − (k − κ)/n):

f (x) ≈ f n
1 (x) + · · · + f n

κ (x)

+
(

aκ+1 + bκ+1f n
κ

(
x − 1

n

))

+ · · · +
(

a�nT� + b�nT�f n
κ

(
x − �nT� − κ

n

))

=
κ∑

k=1

f n
k (x) +

�nT�∑
k=κ+1

(
ak + bkf n

κ

(
x − k − κ

n

))
,

Table 1. det(	) for κ ∈ {1, . . . , 6} computed by the R function det. The hypergeometric functions in (11) are by the R function hyperg_2F1
in the package gsl.

α 1 2 3 4 5 6

− 0.49 4.4e + 00 2.7e − 02 1.0e − 07 1.8e − 16 9.1e − 29 − 9.6e − 43
− 0.4 1.4e − 01 3.0e − 04 4.5e − 10 3.2e − 19 6.8e − 32 − 2.1e − 47
− 0.3 1.8e − 02 1.1e − 05 5.0e − 12 1.1e − 21 7.9e − 35 1.9e − 49
− 0.2 2.6e − 03 3.4e − 07 3.8e − 14 2.1e − 24 3.7e − 38 − 1.7e − 52
− 0.1 2.4e − 04 3.8e − 09 5.7e − 17 4.4e − 28 9.3e − 43 2.9e − 57
0.1 4.3e − 05 1.6e − 10 6.3e − 19 1.4e − 30 1.6e − 45 7.7e − 61
0.2 7.9e − 05 5.4e − 10 4.3e − 18 1.9e − 29 2.1e − 44 − 2.3e − 59
0.3 8.4e − 05 5.9e − 10 5.0e − 18 2.4e − 29 3.7e − 44 5.9e − 60
0.4 7.2e − 05 4.0e − 10 2.8e − 18 1.1e − 29 1.9e − 44 1.5e − 59
0.49 5.7e − 05 2.2e − 10 1.1e − 18 3.0e − 30 3.3e − 45 − 1.4e − 59
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where ak , bk are determined so that the mean squared error
(MSE)

MSEk :=
∫ k

n

k−1
n

(
f (x) −

(
ak + bkf n

κ

(
x − k − κ

n

)))2

dx

=
∫ k

n

k−1
n

(
xα −

(
ak + bk

(
x − k − κ

n

)α))2

dx

=
∫ k

n

k−1
n

x2α + a2
k + b2

k

(
x − k − κ

n

)2α

− 2bkxα

(
x − k − κ

n

)α

− 2akxα

+ 2akbk

(
x − k − κ

n

)α

dx (13)

is minimized. It is easy to obtain the minimizer

a∗
k = AE − BC

AD − B2
, b∗

k = CD − BE

AD − B2
, (14)

where

A =
∫ k

n

k−1
n

(
x − k − κ

n

)2α

dx

= 1

2α + 1

((κ

n

)2α+1
−
(

κ − 1

n

)2α+1
)

,

B =
∫ k

n

k−1
n

(
x − k − κ

n

)α

dx

= 1

α + 1

((κ

n

)α+1
−
(

κ − 1

n

)α+1
)

,

C =
∫ k

n

k−1
n

xα

(
x − k − κ

n

)α

dx

= 1

(α + 1)n2α+1

(
κα+1kα

2F1

(
−α, 1, α + 2,

κ

k

)
−(κ − 1)α+1(k − 1)α2F1

(
−α, 1, α + 2,

κ − 1

k − 1

))
,

D =
∫ k

n

k−1
n

dx = 1

n
,

E =
∫ k

n

k−1
n

xα dx = 1

α + 1

((
k

n

)α+1

−
(

k − 1

n

)α+1
)

.

Figures 4 and 5 show that our approximation with κ = 2 is
already very precise in spite of the coarse division n = 10.
To examine the reduction of the MSE with κ = 2, some
numerical examples also can be given; denote

MSE∗(α, T , n) :=
�nT�∑
k=3

∫ k
n

k−1
n

(f (x) − (ak

+ bkf n
2

(
x − k − 2

n

)))2

dx

MSE∗∗(α, T , n) :=
�nT�∑
k=3

∫ k
n

k−1
n

(f (x) − ck)
2 dx,

where (ak , bk) and ck are the optimized values. When α =
−0.49, we have

MSE∗(−0.49, 1, 10) = 1.16317 × 10−5,

MSE∗∗(−0.49, 1, 10) = 2.27096 × 10−3,

and when α = 0.49,

MSE∗(0.49, 1, 10) = 2.87234 × 10−7,

MSE∗∗(0.49, 1, 10) = 3.26240 × 10−4.

See Figure 6 for plots with different n.

4.2. Implementation

Here we describe how to simulate Xt on the equidistant
grid {0, 1

n , 2
n , . . . , �nT�

n } for some T > 0 using the 3R Hybrid
scheme. We introduce a new parameter κ ′ ∈ N, κ ′ > κ and
approximate

g

(
i

n
− s

)
≈
(

i

n
− s

)α

Lg

(
k

n

)
,

s ∈
[

i − k

n
,

i − k + 1

n

]
, k = 1, . . . , κ ′

g

(
i

n
− s

)
≈ g

(ck

n

)
,

s ∈
[

i − k

n
,

i − k + 1

n

]
, k = κ ′ + 1, . . . , Nn.

As in the Hybrid scheme, we approximate the stochastic inte-
gral on the interval (−∞, i/n] for Xi/n by that on the finite
interval ((i − Nn)/n, i/n]. Then,

X i
n

≈
κ ′∑

k=1

∫ i−k+1
n

i−k
n

g

(
i

n
− s

)
σs dWs

+
Nn∑

k=κ ′+1

∫ i−k+1
n

i−k
n

g

(
i

n
− s

)
σs dWs

≈
κ ′∑

k=1

Lg

(
k

n

)
σ(i−k)/n

∫ i−k+1
n

i−k
n

(
i

n
− s

)α

dWs

+
Nn∑

k=κ ′+1

g
(ck

n

)
σ(i−k)/n

∫ i−k+1
n

i−k
n

dWs.

In the new scheme, the 3R Hybrid scheme, the kernel function
for k ∈ [κ + 1, κ ′] is approximated using that for k = κ . We
then define

X̂ n
i
n

=
κ∑

k=1

Lg

(
k

n

)
σ(i−k)/n

∫ i−k+1
n

i−k
n

(
i

n
− s

)α

dWs︸ ︷︷ ︸
W n

i−k,k
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Figure 4. The quality of approximation with the optimal (ak , bk) (red) in comparison with a step function approximation with the optimal
ck of the Hybrid scheme (green) (α = −0.49, T = 1, n = 10, κ = 2). The right figure is a zoom-in of the left one.

Figure 5. The quality of approximation with the optimal (ak , bk) (red) in comparison with a step function approximation with the optimal
ck of the Hybrid scheme (green) (α = 0.49, T = 1, n = 10, κ = 2). The right figure is a zoom-in of the left one.

Figure 6. Comparison of MSE∗(α, 1, n) and MSE∗∗(α, 1, n). (Left) α = −0.49. (Right) α = 0.49.
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+
κ ′∑

k=κ+1

Lg

(
k

n

)
σ(i−k)/n

×

⎛
⎜⎜⎜⎜⎝ak

∫ i−k+1
n

i−k
n

dWs︸ ︷︷ ︸
W n

i−k

+ bk

∫ i−k+1
n

i−k
n

(
i + κ − k

n
− s

)α

dWs︸ ︷︷ ︸
W n

i−k,κ

⎞
⎟⎟⎟⎟⎠

+
Nn∑

k=κ ′+1

g
(ck

n

)
σ(i−k)/n

∫ i−k+1
n

i−k
n

dWs︸ ︷︷ ︸
W n

i−k

, (15)

where ak and bk are determined so that

MSEk = E

[{∫ i−k+1
n

i−k
n

(
i

n
− s

)α

dWs

−
(

ak

∫ i−k+1
n

i−k
n

dWs

+ bk

∫ i−k+1
n

i−k
n

(
i + κ − k

n
− s

)α

dWs

)}2
⎤
⎦

= E

[{
W n

i−k,k − (akW n
i−k + bkW n

i−k,κ

)}2
]

,

k ∈ [κ + 1, κ ′]

is minimized. It is easy to check this MSE coincides with (13).
The minimizer is therefore given by (14). The κ ′ + 1 dimen-
sional random vectors

Wn
i−k := (W n

i−k , W n
i−k,1, . . . , W n

i−k,κ ′)

has the expected value 0 = (0, . . . , 0) and the variance-
covariance matrix 	 given by (9) ∼ (11) for j = 2, . . . , κ ′ + 1
and (12) for j, k = 2, . . . , κ ′ + 1 with j < k. We can rewrite
MSEk using 	;

MSEk = 	1,1

{
ak + 	1,κ+1

	1,1
bk − 	1,k+1

	1,1

}2

+
(

	κ+1,κ+1 − 	2
1,κ+1

	1,1

)

×
{

bk − 	1,1	κ+1,k+1 − 	1,κ+1	1,k+1

	1,1	κ+1,κ+1 − 	2
1,κ+1

}2

+ Dk ,

where

Dk = −
(

	κ+1,κ+1 − 	2
1,κ+1

	1,1

)

×
(

	1,1	κ+1,k+1 − 	1,κ+1	1,k+1

	1,1	κ+1,κ+1 − 	2
1,κ+1

)2

+ 	k+1,k+1 − 	2
1,k+1

	1,1
. (16)

The minimizer (a∗
k , b∗

k) is then expressed as

a∗
k = 	1,k+1	κ+1,κ+1 − 	1,κ+1	κ+1,k+1

	1,1	κ+1,κ+1 − 	2
1,κ+1

,

b∗
k = 	1,1	κ+1,k+1 − 	1,κ+1	1,k+1

	1,1	κ+1,κ+1 − 	2
1,κ+1

.

Hereafter, we assume a = a∗ = {a∗
k}k=κ+1··· ,κ ′ , b = b∗ =

{bk}k=κ+1··· ,κ ′ , c = c∗.
The 3R Hybrid scheme and the Hybrid scheme require the

same size of random number generation for the same value of
κ: Nn + [nT] − 1 i.i.d samples of a κ + 1 dimensional multi-
variate normal random variable. An additional computation is
required for

	1,k+1, 	κ+1,k+1, k ∈ [κ + 1, κ ′]

to determine a∗
k , b∗

k in the 3R Hybrid scheme; the matrix 	 is
however not random and so, can be computed within negligi-
ble time at the beginning of simulations. Therefore the com-
putational cost for the 3R Hybrid scheme is almost the same
as the Hybrid scheme with the same value of κ . A numerical
experiment to confirm this is reported in Appendix 2.

4.3. Asymptotic behavior of MSE

Here, we state a theorem describing the approximate accuracy
of the 3R Hybrid scheme. We omit the proof because it is
essentially a repetition of the proof of Theorem 3.1 given in
Bennedsen et al. (2007).

Theorem 4.1 Under the same assumptions as in Theorem 3.1,
for any t on a grid {1/n, 2/n, . . . },

E

[
|Xt − X̂ n

t |2
]

∼
(

κ ′∑
k=κ+1

Ek + J(α, κ ′, c)

)
E[σ 2

0 ]n−(2α+1)Lg

×
(

1

n

)2

, n → ∞, (17)

where Ek = Dkn2α+1 and Dk is given by (16).

Remark 4.2 Ek does not depend on n.

4.4. The choice of κ

Here we argue about the choice of κ for the 3R Hybrid
scheme. We propose to choose κ = 2 by the following two
reasons : (1) it enables a fast computation due to its mild
requirement of only κ + 1 = 3 dimensional i.i.d. Gaussian
random number generations, and (2) it achieves a relatively
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Figure 7. The variation of IR1(α, κ , c).

significant reduction of the mean squared error. To make the
second point precise, based on Theorem 4.1, we look at the
improvement ratio (IR) of the 3R Hybrid scheme with κ ′ =
κ + 1 compared with the Hybrid scheme with the same κ;

IR1(α, κ , c) :=
(

1 − Eκ+1 + J(α, κ + 1, c)
J(α, κ , c)

)
× 100 (%).

Figure 7 shows the IR for κ = 1, 2, 3 for various values of α.
We see that the IR for κ = 2 is higher than κ = 3 for any α.
The improvement ratio of the 3R Hybrid scheme with general
κ ′ > κ is defined as

IR3R(α, κ , κ ′, c) :=

⎛
⎜⎜⎜⎜⎜⎝1 −

κ ′∑
k=κ+1

Ek + J(α, κ ′, c)

J(α, κ , c)

⎞
⎟⎟⎟⎟⎟⎠×100 (%).

Figures 8 and 9 show the values for κ = 1 and κ = 2 respec-
tively. We see that the approximate precision is not much
improved when κ = 1 for α ≈ − 1

2 . On the other hand, when
κ = 2, the approximate precision is significantly improved by
increasing κ ′ for α ∈ (− 1

2 , 0).

4.5. Relative error

Here we argue that when choosing κ = 2, the 3R Hybrid
scheme achieves almost the same accuracy as the Hybrid
scheme with κ = κ ′ > 2, while its computational cost remains
the same as the latter with κ = 2. Figure 10 shows the mag-
nitude of Ek , k = 3, 4, . . . with κ = 2. We see that Ek is much
smaller than J shown in Figure 3.

The relative errors RX and RX̂ of the Hybrid and the 3R
Hybrid schemes respectively are defined as

RX = E[|Xt − X n
t |2]

E[X 2
t ]

, RX̂ = E[|Xt − X̂ n
t |2]

E[X 2
t ]

.

Here, we take σ ≡ 1 and a fOU kernel as g:

g(x) = xα − e−x
∫ x

0
sαes ds. (18)

Figure 8. The improvement ratio IR3R(α, 1, κ ′, c).

Figure 9. The improvement ratio IR3R(α, 2, κ ′, c).

Figure 10. The variation of the error coefficient Ek with κ = 2.

See Appendix 1 for details of fOU processes. The denomina-
tor is then computed as

E[X 2
t ] = E

[(∫ t

−∞
g(t − s) dWs

)2
]

=
∫ ∞

0
g(x)2 dx
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Figure 11. rX̂ (2, κ ′) as a function of α.

by the Itô isometry. The numerators are represented

E
[|Xt − X n

t |2] ∼ J(α, κ , c)n−(2α+1)Lg

(
1

n

)2

, n → ∞,

E

[
|Xt − X̂ n

t |2
]

∼
(

κ ′∑
k=κ+1

Ek + J(α, κ ′, c)

)
n−(2α+1)Lg

(
1

n

)2

, n → ∞

by (7) and (17). Since the convergence rates are the same, it is
reasonable to compare

rX (κ) := J(α, κ , c)∫ ∞

0
g(x)2 dx

, rX̂ (κ , κ ′) :=

κ ′∑
k=κ+1

Ek + J(α, κ ′, c)

∫ ∞

0
g(x)2 dx

.

In Figure 11, the black line is for rX (κ) = rX̂ (κ , κ) with κ =
2, and the red line is for

r∗ =

N∑
k=κ+1

Ek∫ ∞

0
g(x)2 dx

.

with κ = 2 and N = 104, which is essentially limκ ′→∞ rX̂
(2, κ ′). We see that r∗ is quite small especially for α < 0,
which means that rX̂ (2, κ ′) ≈ rX (κ ′), that is, the 3R Hybrid
scheme achieves almost the same accuracy as the Hybrid
scheme with κ = κ ′ > 2, while its computational cost (the
size of random number generations) remains the same as the
latter with κ = 2.

5. The 3R Hybrid scheme for rough volatility models

Here we apply the 3R Hybrid scheme to the analysis of the
rough Bergomi model (Bayer et al. 2016).

5.1. Practical implementation

Definition 5.1 (tBSS) Let Y be of the form

Yt =
∫ t

0
g(t − s)σs dWs, t ≥ 0

where the volatility process σ and the driving Brownian
motion W are as in Definition 2.1. The kernel function k is
assumed to be locally square integrable. Following Benned-
sen et al. (2007), we call Yt a truncated Brownian semistation-
ary(tBSS) process.

A tBSS process is a BSS process with σs = 0 for s < 0. But
as a result of the truncation, it can be defined without the
square integrability of the kernel function g. Similarly to BSS
processes, tBSS process Yt can be approximated as

Ŷ n
i
n

≈
min{i,κ}∑

k=1

Lg

(
k

n

)
σ(i−k)/nW n

i−k,k

+
min{i,κ ′}∑
k=κ+1

Lg

(
k

n

)
σ(i−k)/n

(
akW n

i−k + bkW n
i−k,κ

)

+
i∑

k=κ ′+1

g
(ck

n

)
σ(i−k)/nW n

i−k

for i = 0, 1, . . . , �nT�. In the rough Bergomi model, an asset
price process S is defined by

St = S0 exp

{∫ t

0

√
Vs[ρ dWs+

√
1 − ρ2 dW⊥

s ]−1

2

∫ t

0
Vs ds

}
,

Vt = ξ(t) exp

{∫ t

0
g(t − s) dWs − 1

2

∫ t

0
g(t − s)2 ds

}

with g(x) = ηxα , η > 0, α ∈ (− 1
2 , 0), where W⊥ is a Brown-

ian motion independent of W, ρ ∈ [−1, 1], and ξ is a deter-
ministic continuous function, called the forward variance
curve due to E[Vt] = ξ(t). The process V i

n
can be simulated

by using the above 3R Hybrid scheme for tBBS processes.
The log asset process U i

n
= log S i

n
is computed as

U i+1
n

= U i
n
− 1

2n
V i

n
+
√

V i
n

(
Z i+1

n
− Z i

n

)
,

i = 0, 1, . . . , �nT� − 1,

where

Z i+1
n

− Z i
n

= ρW n
i +

√
1 − ρ2W⊥n

i

and W⊥n
i ∼ N(0, 1

n ) independent of (W n
i , W n

i,1, · · · W n
i,κ). If the

purpose of the simulation is the Monte-Carlo pricing of an
option, one should apply the conditional pricing formula by
Romano and Touzi (1997) that allows to avoid W⊥n

i and to
reduce the variance of the Monte Carlo significantly. See also
McCrickerd and Pakkanen (2018) for other variance reduction
techniques.
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Figure 12. A slow convergence of weak approximation.

5.2. The 3R Hybrid scheme v.s. the Cholesky
decomposition

For the Monte-Carlo pricing under the rough Bergomi model,
we have to take care of three sources of error; (1) the
Monte-Carlo error, (2) the discretization error and (3) the
approximation error to a BSS process, where (2) is due to
the Euler-Maruyama type approximation to the SDE out-
lined above, and (3) is due to the use of the Hybrid or 3R
Hybrid scheme to approximate the tBSS process. Although
the last one can be avoided by an exact simulation method
using the Cholesky decomposition, here we argue that it
is unfortunately not practical. Figure 12 shows the implied
volatility smiles under the discretized rough Bergomi model
with α = −0.45, ρ = −0.9, η = 2.3

√
2α + 1, ξ ≡ 0.04 and

maturity T = 1 (a set of calibrated parameters in Bayer et
al. (2016)), with various choices of n. For each n, there
are two curves that correspond to the Monte Carlo mean ±
three standard deviations (99.7 % confidence bounds). Both
call-option-implied and put-option implied volatilities were
computed and we took one with smaller standard deviation for
each log moneyness. The tBSS process, that is, the log volatil-
ity process was simulated using the Cholesky decomposition
of the covariance matrix of (log V1/n, . . . , log V1, W n

1 , . . . , W n
n )

that is of size 2n. From the figure, one would hesitate to
declare a convergence even with n = 4, 096. The figure indi-
cates a very slow convergence rate of weak approximation
when α ≈ −1/2. As is well-known, when α = 0, the weak
approximation error is of O(n−1), and we actually observed
fast convergences when α ≈ 0 in our experiments. Although
the weak approximation rate under rough volatility models is
an open question and it is beyond our scope here, our numer-
ical experiments suggest it depends on α, and we should
warn here that n has to be far larger for α ≈ −1/2 than for
α = 0 (the classical situation). Then, the problem is that the

Figure 13. 99.7% confidence bound 3R Hybrid.

Figure 14. The convergence of the volatility smile.

Cholesky decomposition method is quite time-consuming for
large n. For 100,000 Monte Carlo samples to get curves in
Figure 12, with R programming, our Mac mini (2018) com-
puter with 3.2 GHz 6 Cores Intel Core i7 took 345 minutes for
n = 2, 048 (the red curves) and 1,574 minutes for n = 4, 096
(the black curves). The bottleneck of the computation is the
time-consuming multiplication of the Cholesky-decomposed
matrix and the standard normal random variable of size 2n
in every path generations. Roughly, as n increases, with the
size of the Monte-Carlo fixed, the computational cost for the
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Figure 15. Errors in approximating the autocovariance.

Cholesky method grows with order n2 (set aside a prelimi-
nary computation of the Cholesky decomposition of order n3),
while those for the Hybrid and the 3R Hybrid schemes do with
order n log n thanks to the FFT convolution.

For a fixed number n, say, n = 4, 096, the 3R Hybrid
scheme achieves much faster the same error tolerance level as
the Cholesky method does. The red curves in Figure 13 repre-
sent a 99.7% confidence band based on 600,000 Monte Carlo
samples by the 3R Hybrid scheme with (κ , κ ′) = (2, 10),
computed in only 19 minutes by the same R programming
and the same computer. As seen in the figure, it is within

the 99.7% confidence band by the Cholesky method (the
black curves, the same as the ones in Figure 12). Although
the R programming is not the best choice for the Monte-
Carlo pricing in terms of computation time, the superior-
ity of the 3R Hybrid scheme to the Cholesky method is
clear.

To discuss how n has to be large for the discretization error
to be negligible, Figure 14 shows how the volatility smile con-
verges as n → ∞ for the same parameters as in Figures 12 and
13. The 3R Hybrid scheme with (κ , κ ′) = (2, 10) was used
because the Cholesky method is too slow. For this level of
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Figure 16. IV surfaces with various η: η =0.5 (green), 1, 1.5, and 2
(blue). α = −0.4, S0 = 1, ρ = −0.9, ξ ≡ 0.32.

Figure 17. IV surfaces with various α: α = −0.45 (red), and −0.1
(blue). η = 0.8, S0 = 1, ρ = −0.9, ξ ≡ 0.32.

α ≈ −0.45, taking the confidence bounds also into account,
we can give a rough criterion that n = 213 = 8, 192 gives an
accuracy of order 10−3.

5.3. The 3R Hybrid scheme v.s. the Hybrid scheme

For the Monte Carlo pricing, pathwise errors are not
directly relevant and it is enough that the law of
(log V1/n, . . . , log V1, W n

1 , . . . , W n
n ) is well approximated.

Therefore in this context, a more relevant approximation error
to the tBSS process than the mean squared error studied in
Theorems 3.1 and 4.1 is the difference between the auto-
covariance functions of the exact and approximating Gaus-
sian sequences. Here we examine it for the Hybrid and 3R

Figure 18. 1. rough Bergomi.

Figure 19. 2. fOU (λ = 3).

Hybrid schemes by some numerical examples. The left col-
umn of Figure 15 presents log-log plots of E[Y 2

1 ] − E[|Y n
1 |2],

where

Y1 =
∫ 1

0
g(1 − s) dWs, g(t) = 2

√
2α + 1tα , α = −0.45

and Y n
1 is its approximation by the Hybrid scheme with κ = 2

for the first row, the one by the Hybrid scheme with κ = 7
for the second row, and the one by the 3R Hybrid scheme
with (κ , κ ′) = (2, 7) for the third row. The logarithmic scale
of x-axis is of base 2. First we notice its slow convergence
with rate being approximately n−0.07 that is not too far from
n−(2α+1). The values of intercept in the linear fitting of the log-
log plots are approximately −8.4 for both the Hybrid scheme
with κ = 7 and the 3R Hybrid scheme with (κ , κ ′) = (2, 7).
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Figure 20. 3. gamma (λ = 3).

Figure 21. 4. power-low (β = −3).

This is consistent to our discussion in the previous sections
that the accuracy of the 3R Hybrid scheme with (κ , κ ′) is
essentially the same as that of the Hybrid scheme with κ = κ ′,
and better than that of the Hybrid scheme with the same value
of κ . The middle and right columns of Figure 15 give log-
log plots of En − En/2, where En = E[Y1Y�] − E[Y n

1 Y n
� ], for

� = 3/4 and � = 1/2 respectively. Again the first, the sec-
ond and the third rows are respectively for the Hybrid scheme
with κ = 2, that with κ = 7 and the 3R Hybrid scheme with
(κ , κ ′) = (2, 7). Interestingly, each row gives indistinguish-
able results, and indicates that En = O(n−1), a rate much
faster than O(n−(2α+1)). Recall that the Hybrid scheme with
κ ≥ 6 is actually not feasible due to the almost degeneracy
of the matrix 	 (see Section 3.4), and that the Hybrid and the

Figure 22. The fOU kernel (λ = 1).

Figure 23. The fOU kernel (λ = 2).

3R Hybrid schemes have almost the same computational com-
plexity for the same value of κ . Consequently, the 3R Hybrid
scheme has a certain advantage to the Hybrid scheme also in
this context of the Monte Carlo pricing.

5.4. On the choice of (κ , κ ′) for the 3R Hybrid scheme

It is not possible to specify (κ , κ ′) that is optimal uniformly in
g, n or other parameters. First, we note that the larger κ ′ results
in the smaller mean squared error as shown in Theorem 4.1.
There are however three points to be cared for the use of large
κ ′: the first is the computational time of the matrix 	 defined
in Section 4.2 that is of size κ ′ + 1 and requires evaluations of
the hypergeometric function. This would be usually negligible
for κ ′ ≤ 100. The second is that the asymptotic theory relies
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Figure 24. The fOU kernel (λ = 3).

Figure 25. The gamma kernel (λ = 1).

on that Lg(x) ≈ 1 for x ∈ (0, κ ′/n) and so, we need κ ′ << n.
The rough Bergomi kernel is however an exception because
we have Lg ≡ 1. The third is the computation time for the sec-
ond term of (14). For large κ ′, although the FFT convolution
is applicable, this term results in a nonnegligible difference
from the Hybrid scheme in terms of computation time. Note
that for small κ ′ such as κ ′ = 10, the FFT convolution would
be better avoided for this term.

As seen in Section 4.4, Ek are rather small, so the cheapest
choice of κ = 2 would be enough for the Monte Carlo pricing.
Indeed we have already seen in Figure 13 that the choice κ =
2 was enough to achieve the same error tolerance level as the
exact method.

Figure 26. The gamma kernel (λ = 2).

Figure 27. The gamma kernel (λ = 3).

5.5. The volatility surface

Not only the rough Bergomi kernel g(x) = ηxα , we can deal
with a more general parametric family as the kernel function g
which potentially improves fit to the option market prices. Our
aim here is to figure out the sensitivity of the implied volatility
(IV) surface with respect to the parameters. We consider the
following four type kernel functions.

(1) rough Bergomi kernel

g(x) = ηxα ,

(2) fOU kernel

g(x) = ηxα − ηλe−λx
∫ x

0
sαeλs ds, λ > 0,
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Figure 28. The power-law kernel (β = −1).

Figure 29. The power-law kernel (β = −5).

(3) gamma kernel

g(x) = ηxα exp{−λx}, λ > 0,

(4) power-law kernel

g(x) = ηxα(1 + x)β−α , β < −1

2
.

First, Figures 16 and 17 illustrate how η and α affect the
surface. These surfaces are by the Monte Carlo simulations
with the 3R Hybrid scheme under the rough Bergomi kernel.
The smaller α, the stronger skew and curvature are observed,
and this tendency remains for longer maturities with larger η.
The other kernel functions exhibit the same dependence with
respect to η and α.

Figure 30. The power-law kernel (β = −10).

The parameter λ of the fOU kernel controls the strength
of mean-reversion (see Appendix 1 for the detail). We there-
fore expect an averaging effect of volatility with large λ,
which will result in a flat IV smile for sufficiently large matu-
rities. Comparing Figures 18 and 19, we indeed observe a
flattening effect of λ for IV surfaces. The parameters λ and
β in the gamma and power-law kernels respectively are not
directly related to mean reversion, but control the decay of
g(x) as x → ∞, and so, are related to long range dependence
of tBSS processes. As we see in Figures 18 ∼ 21, the flat-
tening effects are similar for the fOU, gamma and power-law
kernels. Here, the parameters for these figures are α = −0.4,
η = 0.8, ξ ≡ 0.32, S0 = 1, ρ = −0.9. See Figures 22 ∼ 30 for
the IV surfaces with longer maturities. From these figures we
conclude that, at least for maturities less than 3 years, the fOU,
gamma and power-law kernels produce similar IV surfaces.

Disclosure statement

No potential conflict of interest was reported by the author(s).
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Appendices

Appendix 1. Fractional Ornstein-Uhlenbeck process

Here we review the fOU process and show it is a BSS process
satisfying the assumptions (A1) ∼ (A3) in Section 2.2.

A.1. A construction of fOU processes

Proposition A.2 Let (BH
t )t∈R be a fractional Brownian motion with

the Hurst parameter H ∈ (0, 1) and ξ ∈ L0(�). Let −∞ ≤ a < ∞
and λ, σ > 0. Then for almost all ω ∈ �, we have the following:

(1) For all t > a, ∫ t

a
eλu dBH

u (ω)

exists as a Riemann-Stieltjes integral and is equal to∫ t

a
eλu dBH

u (ω) = eλtBH
t (ω) − eλaBH

a (ω)

− λ

∫ t

a
BH

u (ω)eλu du.

(2) The function ∫ t

a
eλu dBH

u (ω), t > a

is continuous in t.

Figure A1. ĝ (λ = 1).

Figure A2. L̂g (λ = 1).

(3) The unique continuous function y(t) that solves the equation,

y(t) = ξ(ω) − λ

∫ t

0
y(s) ds + σBH

t (ω), t ≥ 0 (A1)

is given by

y(t) = e−λt
{
ξ(ω) + σ

∫ t

0
eλu dBH

u (ω)

}
, t ≥ 0.

In particular, when ξ(ω) = σ
∫ 0
−∞ eλudBH

u (ω), the unique
continuous solution of the equation (A1) is given by

y(t) = σ

∫ t

−∞
e−λ(t−u) dBH

u (ω), t ≥ 0.

See Cheridito et al. (2003) for the proof.
Let λ, σ > 0 and initial condition ξ ∈ L0(�). Since the Langevin

equation,

Xt = ξ − λ

∫ t

0
Xs ds + Nt, t ≥ 0 (A2)

only involves an integral with respect to t, it can be solved path-wise
for much more general noise process (Nt)t≤0 than Brownian motion.

Now, we consider that Nt = σBH
t (ω). It follows from Proposi-

tion A.1 that

X H ,ξ
t := e−λt

(
ξ + σ

∫ t

0
eλu dBH

u

)
, t ≥ 0 (A3)
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is the unique almost surely continuous process that solves the
equation (A2). In particular, the almost surely continuous process

X H
t := σ

∫ t

−∞
e−λ(t−u) dBH

u , t ∈ R (A4)

solves the equation (A2) with initial condition ξ=σ
∫ 0
−∞ eλu dBH

u (ω).
(X H

t )t∈R is Gaussian process and it follows from the stationarity
of the increments of fBm that it is stationary. Furthermore, as in the
Brownian motion case, for every ξ ∈ L0(�),

X H
t − X H ,ξ

t = e−λt(Y H
0 − ξ) → 0, t → ∞ a.s.

which implies that every stationary solution of (A2) has the same
distribution as (X H

t )t≥0 Cheridito et al. (2003).

Definition A.3 (fOU process) We call (X H ,ξ
t )t≥0 a fractional

Ornstein-Uhlenbeck process with initial condition ξ and (X H
t )t∈R

a stationary fractional Ornstein-Uhlenbeck process.

It follows from Proposition A.1 that

X H
t = σ lim

a→−∞

∫ t

a
e−λ(t−u) dBH

u , t ∈ R

= σe−λt lim
a→−∞

{
eλtBH

t (ω) − eλaBH
a (ω) − λ

∫ t

a
BH

u (ω)eλu du

}
and

lim
a→−∞ |eλaBH

a (ω)| ≤ lim
a→−∞

|BH
a (ω)|
|a|γ = 0, for all γ > H .

A.2. Wiener integral representation

A representation of the fOU process as a BSS process has been
given in Barndorff-Nielsen and Basse-O’Connor (2011), Garnier
and Solna (2017). Here we derive it in a self-contained manner
and show that the kernel function satisfies all the assumptions
for the Hybrid and 3R Hybrid schemes to be applicable. Using
the Mandelbrot-van Ness representation of the fractional Brown-
ian motion (Mishura 2008, Theorem 1.3.1), the stochastic Fubini
theorem implies that

X H
t = σBH

t (ω) − σλ

∫ t

−∞
e−λ(t−u)BH

u (ω) du

= σCH

{∫
R

(t − x)α+ − (−x)α+dWx − λ

∫ t

−∞
e−λ(t−u)

×
(∫

R

(u−x)α+ − (−x)α+dWx

)
du

}

= σCH

∫
R

{
(t − x)α+ − (−x)α+

− λ

∫ t

−∞
e−λ(t−u)

(
(u−x)α+ − (−x)α+

)
du

}
dWx

= σCH

∫ t

−∞

{
(t − x)α − λ

∫ t

x
e−λ(t−u)(u−x)α du

}
dWx

= σCH

∫ t

−∞

{
(t − x)α − λe−λ(t−x)

∫ t−x

0
eλyyα dy

}
dWx

∵ replace (u−x) for y,

where

CH =
(∫

R+
((1 + s)α − sα)2 ds + 1

2H

)− 1
2

= (2H sin(πH)
(2H))1/2


(H + 1/2)
.

Consequently, the stationary fOU process X H
t be expressed as (A5):

X H
t = σCH

∫ t

−∞
ĝ(t − s) dWs where

ĝ(x) = xα − λe−λx
∫ x

0
sαeλs ds. (A5)

Proposition A.4 The fOU kernel g = ĝ satisfies the assumptions
(A1) ∼ (A3).

Proof Let α = H − 1
2 ∈ (− 1

2 , 1
2 ). First, we check that ĝ satisfies

(A1).

ĝ(tx)

ĝ(x)
=

(tx)α − λe−λtx
∫ tx

0
sαeλs ds

xα − λe−λx

∫ x

0
sαeλs ds

=
tα − λe−λtx

∫ tx

0

( s

x

)α
eλs ds

1 − λe−λx

∫ x

0

( s

x

)α
eλs ds

, x ∈ (0, 1], t ∈ R

Changing variables, we have∫ tx

0

( s

x

)α
eλs ds =

∫ t

0
uαeλxux du → 0

as x → 0, which means

lim
x→0

ĝ(tx)

ĝ(x)
= tα

Figure A3. The auto-correlation coefficient of fOU (σCH = 1, λ = 1).
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so ĝ(x) is a regular varying function and

L̂g(x) := 1 − λe−λx
∫ x

0

( s

x

)α
eλs ds

is a slowly varying function satisfying limx→0 L̂g(x) = 1. In addi-
tion,

L̂′
g(x) =

(
1 − λe−λxx−α

∫ x

0
sαeλs ds

)′

= −
(
−λ2e−λxx−α − αλe−λxx−α−1

) ∫ x

0
sαeλs ds

− λe−λxx−α
(

xαeλx
)

so the derivative L̂′
g satisfies∣∣∣L̂′

g(x)
∣∣∣ ≤ λe−λxx−α |λ + αx−1|

∫ x

0
sαeλs ds + λ

≤ λx−α |λ + αx−1| 1

α + 1
xα+1 + λ

≤ 2λx

∣∣∣∣λ + 1

2
x−1
∣∣∣∣+ λ ∵ α ∈

(
−1

2
,

1

2

)
= 2λ(1 + λx).

Second, for (A2), it is clear that ĝ is continuously differentiable on
(0, ∞) and its derivative is

ĝ′(x) = αxα−1 + λ2e−λx
∫ x

0
sαeλs ds − λxα

= αxα−1 − λĝ(x). (A6)

By changing variable
s

x
= 1 − u;

ĝ(x) = xα

{
1 − λ

∫ x

0

( s

x

)α
eλ(s−x) ds

}

= xα

{
1 − λ

∫ 1

0
(1 − u)αe−λxux du

}

= xα

{
λx
∫ ∞

0
e−λxu du − λx

∫ 1

0
(1 − u)αe−λxu du

}

= λxα+1
∫ 1

0
(1 − (1 − u)α)e−λxu du︸ ︷︷ ︸

(∗)

+ λxα+1
∫ ∞

1
e−λxu du︸ ︷︷ ︸

(∗∗)

.

For (∗∗), we have

λxα+1
∫ ∞

1
e−λxu du = xαe−λx = o(xα−n)

as x → ∞ for any n ∈ N. For (∗), for any n ∈ N,∣∣∣∣λxα+1
∫ 1

1/2
(1 − (1 − u)α)e−λxu du

∣∣∣∣
≤ λxα+1e−λx/2

∫ 1

1/2
|1 − (1 − u)α |du = o(xα−n)

and

x
∫ 1/2

0
(1 − (1 − u)α)e−λxu du

=
∫ x/2

0

(
1 −

(
1 − y

x

)α)
e−λy dy

= −
n−1∑
k=1

(−1)k
(

α
k

)∫ x/2

0

( y

x

)k
e−λy dy

− (−1)n
(

α
n

)
n
( y

x

)n
∫ x/2

0

×
∫ 1

0

(
1 − y

x
s
)α−n

(1 − s)n−1 dse−λy dy

=
n∑

k=1

(−1)k+1
(

α
k

)
k!

λk+1xk
+ o(x−n).

as x → ∞ by the dominated convergence theorem:

1[0,x/2](y)
∣∣∣1 − y

x
s
∣∣∣α−n ≤

∣∣∣1 − s

2

∣∣∣α−n
.

Here, we have used the Taylor formula

(1 + v)α =
n−1∑
k=0

(
α
k

)
vk +

(
α
n

)
nvn
∫ 1

0
(1 + vs)α−n(1 − s)n−1 ds.

Consequently, as x → ∞,

ĝ(x) = α

λ
xα−1 − α(α − 1)

λ2 xα−2

+ α(α − 1)(α − 2)

λ3 xα−3 + o(xα−3)

and so, by (A6),

ĝ′(x) = αxα−1 − λĝ(x) = α(α − 1)

λ
xα−2

− α(α − 1)(α − 2)

λ2 xα−3 + o(xα−3).

This implies that ĝ′ is square-integrable on (1, ∞) :∫ ∞

1
ĝ′(x)2 dx < ∞.

Also,

ĝ′′(x) = α(α − 1)xα−2 − λĝ′(x)

= α(α − 1)(α − 2)

λ
xα−3 + o(xα−3),

which implies that ĝ′′(x) �= 0 and continuous for enough large x.
Therefore ĝ′(x) is ultimately monotonic.

Finally, for (A3), we have already seen

ĝ(x) = O(xα−1), x → ∞.

�

A.3. Dependence structure

First we give some graphs of the fOU kernel that will help the readers
to understand the nature of our approximation.

Second we give the graph of the auto-correlation coefficient
defined by

ρ(h) = E[XtXt+h]√
V[Xt]V [Xt+h]

for h > 0 in order to illustrate the dependence structure of the fOU
process. A fOU process Xt has the property of short-range depen-
dence for α ∈ (− 1

2 , 0), and the property of long-range dependence
for α ∈ (0, 1

2 ); see Cheridito et al. (2003) for the detail.Appendix 2.
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Table A1. Computational costs.

Hybrid scheme 3R Hybrid scheme

Number of steps Algorithm Time(sec) Algorithm Time(sec)

1st step Calculating

{
Lg

(
k

n

)}
k=1,...,κ

and
{

g
(ck

n

)}
k=κ+1,...,Nn

3.74 Calculating

{
Lg

(
k

n

)}
k=1,...,κ ′

and
{

g
( ck

n

)}
k=κ ′+1,...,Nn

3.74

2nd step Calculating 	 0.03 Calculating 	 0.03
3rd step Calculating

{ak}k=κ+1,...,κ ′ , {bk}k=κ+1,...,κ ′
0.04

4th step Generating (Nn + �nT�) pieces
of random numbers following
N(0, 	)∗1

134.99∗ Generating (Nn + �nT�) pieces
of random numbers following
N(0, 	)∗1

134.99∗

5th step Convolution and addition∗2 87.86∗ Convolution and addition∗3 95.78∗
Total time 226.62(sec) 234.58(sec)
PC spec Processor : Intel(R)Core(TM)i5-8250U CPU @ 1.60GHz 1.80GHz

RAM : 8.00GB

Note: (∗) The underlined parts depend on m.
(∗1) The number of random numbers is (κ + 1) × (Nn + �nT�) because the generated random number vectors are κ + 1 dimension.
(∗2) Refer to (8).
(∗3) Refer to (14).

Appendix 2. Computational costs: an experiment

Here we report a numerical experiment to examine computational
costs of the Hybrid and the 3R Hybrid schemes. The grid is set to be
{0, 1

n , 2
n , . . . , �nT�

n } and, the parameters are set as

n = 8, 192, α = −0.4, κ = 2,

T = 1, γ = 0.2, σ = 1, κ ′ = 10,

and g is a fOU kernel. We simulated m = 10, 000 sample paths by
each of the schemes, for which the computation time is reported in
Table A1. The programming language was R and and the computa-
tion times (‘user time’) for modules were measured by the R function
system.time.

The first sum of (8) and that of (15), the second sum of (8) and
the third sum of (15) are respectively equal in computation time.

Therefore, the difference in computation time between the Hybrid
and the 3R Hybrid schemes is only due to the second sum of (15). In
this experiment with κ ′ of modest size, this second sum, as well as the
first one, was computed without the FFT. Only the third term of (15),
as well as the second term of (8), was by the FFT. In the FFT convo-
lution, for a faster computation, we embeded vectors into larger ones
whose length was of the form 2p by the zero padding. According to
Table A1, the additional computation cost for the 3R Hybrid scheme
is marginal and consequently, the Hybrid scheme with κ = 2 and
the 3R Hybrid scheme with κ = 2, κ ′ = 10 require almost the same
computational costs. Recall that the 3R Hybrid scheme with κ ′ = 10
enjoys almost the same accuracy as the Hybrid scheme with κ = 10
that requires not only more computation time due to the increased
random number generations, but also a special care for the Cholesky
decomposition of 	 that is almost degenerage.
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