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ABSTRACT

This dissertation presents two studies examining the interaction between workload
history and driver mental workload. The first experiment focuses on testing for the presence of a
hysteresis effect in the driving task. The second experiment examines the proposition that cueing
impending periods of higher task demand can reduce the impact of any such potential hysteresis
effects. Thirty-two licensed drivers served as participants and all served in both studies. Using
the directions provided by a Heads-Up-Display navigation system, participants followed a pre-
set route in the simulated environment. At specified points within the drive, the navigation
system would purposefully fail which required drivers to relay a ten digit alphanumeric error
code to a remote operator in order to reset the system. Results indicated that this increase in task
demand from the navigation system’s failure leads to a significant increase in perceived mental
workload as compared to pre-failure periods. This increase in driver mental workload was not
significantly reduced by the time the drive ended, indicating the presence of a hysteresis effect.
In the second experiment, the navigation system provided a completely reliable visual warning
before failure. Results indicate that cueing had neither an effect on perceived mental workload,
nor any ameliorating effect on the hysteretic type effect seen in mental workload recovery. The
conclusion of these findings being that the overall safety and efficiency of the surface
transportation system would likely improve by designs which accommodate the periods
immediately following a reduction in stress. Whether from leaving high demand areas such as
work zones or in the period immediately after using a in-car information device such as a GPS or
a cell phone, these post-high workload periods are associated with increased variability in driver

inputs and levels of mental workload.
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CHAPTER ONE: INTRODUCTION

Mental workload is a concept that has been studied in many operational domains, in the
context of both applied and theoretical investigations (Moray, 1979; Gopher & Donchin, 1986;
Kantowitz, 1987; Hancock & Meshkati, 1988). Although the examination of mental workload
within the driving domain has been predicted upon both the continuous nature of driving and the
extreme degree of variability encountered in seemingly “normal” driving (Fuller & Santos,
2002), one area in which driver mental workload research is comparably sparse is in workload
transitions (Huey & Wickens, 1993). This relative lack of attention to these frequent transitions
involved in driver mental workload has immediate practical implications for the motoring public
in terms of the number of accidents, financial savings, and highway efficiency (Evans, 2004).

The concept of mental workload itself began to gain importance in the middle part of the
previous century with early theories of attention and human capacity limitations such as that
proposed by Broadbent (1958). Broadbent himself offered a model of attention with filtered
information being manipulated and used by channels with limited capacity. Early understanding
of mental workload may be viewed as the inverse of the capacity within such a system
(Kantowitz, 1987). Mental workload represents the amount of loading on the human as an
operator. Also key to this relationship between the concept of mental workload and spare
capacity within the operator is the idea of task demand (Kahneman, 1973). Task demand may be
viewed as the requirements which the operator’s task is placing upon the operator at any singular
moment in time (Kantowitz, 1987). Demand may also be defined as the goal which must be
attained through performance on the task (DeWaard, 1996). Therefore, the major aspects which
we must examine in order to determine workload are at what level the operator’s capacity is

being tapped; and by what level of demand from the task.
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One extension of the research being performed in mental workload evaluation is the
hysteresis effect. Defined as performance deteriorations during the transition from high demand
levels to lower demand levels (Farrell, 1999), the hysteresis effect may be demonstrated in a
variety of tasks. Early researchers focused on simple shadowing and memory-based tasks
(Cumming & Croft, 1968), while later the effect was demonstrated in the more complex tracking
environments which typified the work of Pilots and the Air Traffic Controllers (Hancock,
Williams, Manning, & Miyake, 1995; Smolensky, 1990). Although the hysteresis effect has been
demonstrated in these experimental tasks and settings, the effect has yet to be demonstrated or
explained within the driving domain.

Perhaps the only instance of the effect being described in driving research is the study
reported by Chamberlain (1968), who noted the difference in accident rates for vehicles leaving
versus entering an intersection. Although the high demand of entering an intersection (with the
accompanying estimations required, such as gap acceptance, see Morgan & Hancock, 2008) was
reduced, accident rates were greater upon exiting the intersection. This real-world
epidemiological evidence gives credence to the idea of hysteresis in on-road driving, but as yet
no such effect has been demonstrated within realms of experimental control. It is therefore the
purpose of this dissertation to examine whether or not a hysteresis performance/task demand
interaction effect may be observed in the driving simulation, and if so, by which hypothesized
mechanism such effect is driven.

The impact of such an effect has the potential to positively affect the
driver/vehicle/roadway system in terms of safety by helping us better understand how the
driver’s own attentional capacities are moderated by workload history (see also Shinar, 1978).

Although the driver’s individual characteristics and perceptual abilities are constantly monitoring



the environment and the automobile’s own display systems, increases in driver workload may
eventually manifest as a failure (in some form of collision or accident). Besides the more
proximal impact of workload history and hysteresis on safety, there exists the possibility to
enhance driver education and training. Although driving is a skill in which most of the adult
population of any developed country has already established abilities in (Hancock & Scallen,
1999), the situations and scenarios encountered by drivers are constantly changing and requiring
exposure to maintain the driver’s abilities and knowledge (Groeger, 2000). However, workload
history may present interference in the learning or maintenance of such skills. The possibility of
training to help ameliorate any hysteresis effects present has the distinct possibility of increasing
the effectiveness and efficiency of all driver training.

The exploration of the hysteresis effect, in the form of workload history, has the potential
to be an informative area within the driving domain. The proposed experiments present a course
which will demonstrate if such an effect is present in a common driving task, and if so to what
degree it may be offset through cueing. Additionally, the impacts of hysteresis on driver
performance are examined. These experiments seek to provide an overall view of the hysteresis
effect within driving, and suggest courses of future research in driver mental workload and driver

safety.



CHAPTER TWO: REVIEW OF LITERATURE

Information Processing

From the birth of cognitive psychology, attempts were made to generate a both useful and
theoretically valid analogy for the workings of the mind. One of the more commonly used
metaphors to emerge from this period was that of the human as a computer, or information
processor (Shannon, 1948). This, and the Information Processing domain that arose, proved to be
a robust metaphor for the explanation of human behavior and reactions for years to come.
Information Processing refers to the processes within the person which allow for the intake,
manipulation, and output of information relevant to a task within their environment, much as a
computer takes input from the user, manipulates it, and produces some output. These theories
also attempt to account for the limits of the human in terms of task performance which was noted
by researchers of the time (Miller, 1956).

Over time, multiple theories have been proposed to describe or to quantify in practice the
operations of human information processing system. One of the earliest was presented by
Broadbent (1958) whose filter theory attempted to explain the phenomena of how some
information seems to pass through to consciousness and other discrete pieces of information are
filtered out. This is accomplished in Broadbent’s model by having information filtering occur
before information processing. Attention serves as a selective channel which allows only one
discrete stream of information to enter short term memory and be processed.

Another theory of derived from Broadbent’s early work was that of Treisman (1960,
1964), who pointed out many pragmatic issues and concerns with Broadbent’s (single) filter

theory such as evidence suggesting that the meaning of information could affect processing.



Using tasks similar to those used by Broadbent and his predecessors, Treisman found that people
were able to attend to certain aspects of multiple channels of information. Broadbent’s early
selection single filter theory could not adequately explain these findings. Treisman’s resulting
model suggested that filtering occurs after the information had been attended to. Recent
neuropsychological research has provided stronger support for attenuation type theories of
attention (summarized in Driver, 2001).

Triesman’s theory was expanded by Deutsch and Deutsch (1963) and Norman (1968),
resulting in models of attention wherein almost all ambient information is processed, and
filtering occurs by attending only to pertinent stimuli. Such pertinent information can include
such things as personally or professionally relevant information. Hence, a more robust
explanation for the “cocktail party effect” first noted by Cherry (1953). Even though such
models of attention and information processing did describe the limited nature of human
abilities, they only approached the matter in an implicit nature. One of the first models to
explicitly describe limited capacities in the human information processor was Knowles (1963),
who describe attention as a pool of attentional resource reserves. Knowles’s model is unique for
being one of the first such models able to veridically describe dual-task processing; this
conceptualization allowed for distributed resources and the ideas of multiple, and separate,

capacities which evolved from it.

Multiple Capacities and Resources
Kahneman (1973) extended the idea of attentional resources by stating that a single
resource pool existed which allows for multiple tasks to share the same resources. This was later
refined by researchers such as Navon and Gopher (1979) and Wickens (1980) to include task-

specific pools of attention. Navon and Gopher’s conceptualization of resource pools assumed



that dual tasks were processed in a parallel fashion. This allowed for two tasks not requiring the
same cognitive capacities to be completed in a parallel, simultaneous, fashion. Wickens’s
implementation of the theory better allowed for explanations of dual task performance when
varying sensory modalities are in use, such as performance two auditory tasks versus an auditory

task with a visual task (See Figure 1).
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Figure 1. Wickens’s Multiple Resource Theory. (Wickens, 1980)
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Later refinements of the Multiple Resource Theory of attentional processes (Wickens,
2002), viewed attention as part of an overall finite Multiple Resource Theory. This MRT system
differentiates between types of input information (auditory, visual) and response modality
(verbal, manual). Thus, the demand on a system, i.e. the interference, is in part modulated by the
relationship between the task and response modality. However, the modalities and task difficulty
are not the only moderating factors. For instance, such systems may be regulated by one’s own

emotional states and expectations regarding the scenario (Hancock, Szalma, & Oron-Gilad,



2005). These moderating factors within the model lead to limits in the human’s capacities,

especially in response to such continuous control, variable demand, tasks like driving.

Limited Mental Resources and Driving

This produces the conclusion that although information processing abilities are limited
and often divided, the functional limits of human capacities are rarely encountered and even
more rarely exceeded. Thus, the question changes from being how driver performance is affected
at the limits to how the driving performance of the human is affected by the dynamic nature of
the individual task loadings which are present. The driver is not just engaged in control of an
automobile, but frequently in navigation, signal detection, communication, and several other
tasks also which impart some degree of stress on the driver (Ward, Hancock, Ganey, Mouloua, &
Szalma, 2003). As these stressors are modulated, either by conscious choice on the part of the
driver or by the environment, the driver’s performance on the primary task of safely routing the
automobile is likely to be affected (Verway, 1993). This, along with the theories expressing the
discrete and sparing nature of attentional resources in relation to the dynamic and variable tasks
associated with driving accords directly with the idea of satisficing proposed by Simon (1969).

Simon’s hypothesis advances the notion that individuals perform at a level well enough
to avoid collision but not at their maximal level of performance which may well exhaust the
driver’s cognitive capacities and present subsequent risk of vigilance decrement type failures of
detection (Hancock & Scallen, 1999). In fact, other studies have demonstrated that the
information which humans seek to better inform their decision making process may not always
be necessary (that is, that small samples of information may produce above threshold
contingencies in which the benefits to satisficing outweighs the disadvantage of increased false

alarms (and see Fiedler & Kareev, 2006). This has also been demonstrated by Fu and Gray



(2006), who modeled a satisficing process within the ACT-R (Adaptive Control of Thought —
Rational; Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004) programming language
and found that the tradeoff between the cost and utility of increased information tends to produce
a consistently “good” level of performance.

Satisficing provides an interesting concept which complements hysteresis theory. One of
the major theories proposed to explain the mechanism by which hysteresis occurs is the
perseverance of expectations regarding workload (Cumming & Croft, 1973). The operator,
according to Cumming and Croft’s hypothesis, continues to operate under the assumption of
continuing the immediately preceding level of task loading. This results in a reduced level of
performance as the operator persists with a non-optimal strategy for the task. Viewing this
hypothesis though the concept of satisficing leads to the conclusion that the operator is
attempting to perform at a satisficed level in order to continue their level of performance on
multiple tasks. In this manner, satisficing may be viewed as a special state case of workload

history and transitioning.

Stress and Driving

A multitude of variables exert an influence over task demand, and thus the perceived
workload of the driver. One of the most predominant is the condition of the driver, in terms of
level of arousal, driver training, and prior experience (Fuller & Santos, 2002). The driver
operates a vehicle which provides its own sources of demand such as control difficulty and
instrumentation features. The driving environment also provides sources of demand (Senders,
Kristofferson, Levison, Dietrich, & Ward, 1967). Among these are factors which drivers
encounter during daily commutes such as speed, visibility, road markings and signals, and road

features such as curves and turns. The presence of other drivers traveling on the road also



interacts with these variables. Of these factors, the driver has the ability to exert some control
over their own status and that of their vehicle. To a lesser extent, the driver can select which
times of day to drive and on what category of road. However, other drivers and the unknowns
encountered on a roadway, which may present perhaps the greatest sources of task demand, are

not under the driver’s control.

Ecological Psychology and Driving

Gibson and Crooks (1938) introduced the concept of a field of safe travel to surface
transportation research. In the Gibson and Crooks paradigm drivers operate a vehicle in spatial
field and react to objects which intrude upon the immediately perceived safe area. This area
which may be directly and safely traversed is the field of safe travel. Objects intruding or
otherwise affecting the field have a negative valence, or subtract from the field. This idea has
allowed for the assessment of driver behavior in terms of the relationship between the driver, the
vehicle, and the environment. This paradigm also provides a useful way in which to examine
driver reactions using driving simulators which primarily rely upon the visual sensory channel
(and see Denton, 1966). The Gibson and Crooks theory allows for a driver to adjust an envelope
of space and time through which he or she will be immediately traveling for any potential hazard
identified. Thus, the paradigm of a field of safe travel provides a robust framework from which
to examine obstacle avoidance, driver estimation, and emergency responses.

The idea of a field of safe travel is unique in that it allows for the selective attention to
stimuli within the environment. When drivers are processing information in active (dynamic)
situations, there is no such thing as a discrete stimulus. Gibson (1950) eloquently summarized
this idea as a flowing array of stimulus energy. This flowing array is not any one individual

stimulus, but stimuli in relation to other stimuli and distracters, all in relation to the driver's own



motion through the environment. Just as a common criticism of laboratory studies is that a static
observer in front of stimuli is of questionable ecological validity, one must view what the driver
perceives and processes as an active, continuous, stream of information instead of discrete
packets presented to a passive observer.

Models such as Sheridan’s Control Theory Framework of driving (Sheridan, 2004)
implies that the driver experiences a zone of situation awareness surrounding his or her vehicle.
This idea may be viewed as an evolution of Gibson and Crook’s (1938) field of safe travel in that
both provide for some area of immediate perception on the driver’s part which delimits the
spatial areas where the driver may safety travel. However, Sheridan expands on the field of safe
travel concept by providing a model of the factors (see Figure 2) which contribute to the field, or

in this case, the zone.

Sensing ( \
- v :
"<

A~

Intending ( . Deading 4’(5)_' Vehicle

Activation

Figure 2. Sheridan's Control Theory Framework of Driver Behavior. For clarity of the model, the
disturbances for each factor and the sensory/deciding secondary motor loop have been excluded
from this representation. Adapted from Sheridan (2004).

The Sheridan model includes five factors which drive the model: Sensing, Intending,
Activation, Deciding, and the Vehicle. Sensing includes the actual state of both the vehicle and
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environment, Intending is the goal of the driver, Activation is the motivational forces within the
person, Deciding is a response to the aforementioned factors (Sensing, Intending, and
Activation), and finally Vehicle, which describes the vehicle’s state in relation to the operating
environment. These factors are assumed to be both mutually exclusive and comprehensive for
the purpose of explaining driver behavior from a control standpoint. From an ecological
psychology perspective, this theory helps enumerate the factors which influence both the driver’s
own decisions regarding the spatial envelope surrounding the vehicle as well as the future

direction (field of safe travel, or zone of situation awareness) in which the vehicle will be sent.

Driver Limited Capacities and Attentional Control

To successfully operate an automobile drivers must engage in a sampling of the
environment for critical control cues (Senders, Kristofferson, Levison, Dietrich, & Ward, 1967).
Most often, these are logical and predictable inferences drawn from known and well-learned
circumstances. Occasionally such demands are sudden, urgent, and unpredictable, as well as
source of very strong threat. Each of these event sequences, both ordinary and exceptional,
require the driver to engage in a spectrum of estimations as to what is currently happening in
their driving environment and what is liable to happen in the immediate future. The model of
driving proposed by Senders et al. (1967) is one of sampling information from the roadway over
time, with the driver’s level of uncertainty regarding the road and potential sources of threat on
the road increasing until a new sample of information is collected.

Their conceptualization of driving treats the driver as an information processor and the
roadway as an information source, with components such as curvature of the roadway and other
traffic increasing the amount (bits) of information contained. One could view the function

generated by this model as time plotted against driver uncertainty, with the level of uncertainty
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reaching an asymptotic peak at which point the driver would resample the roadway. Bounding
the time between samples is the roadway bandwidth and the driver’s own capacities, which may
be limited or intruded upon by other competing sources of information. Thus, driving becomes a
task dictated by human information processing and the limited capacities which come along with
it. This, and the limits of the driver’s own focused attention, is what Senders and colleagues

conceptualized as leading to accidents and other driving infractions.

Driver Distraction

Another source of cognitive loading in the driving task is distraction. Driver distraction is
possible due to a multitude of sources, however many of these sources are under the direct
control of the driver (Summala, 2002). Among these sources are in-vehicle entertainment from
audio and video players, navigation, and communications devices. These sources have been
found to be a contributor in a number of traffic accidents (Goodman, Bents, Tijerina, Wierwille,
Lerner, & Benel, 1997). Empirical investigations of the impact of such devices have found that
they present a consistently high load on the driver and in turn raise the likelihood of accidents
due to driver distraction (McKnight & McKnight, 1993; Jerome, Ganey, Mouloua, & Hancock,
2002; Liu & Lee, 2006; Hancock, Mouloua, & Senders, 2007).

These devices may seem innocuous alone, but seem to interact with the demands posed
by the driving task to produce a source of risk (Hornberry, Anderson, Regan, Triggs, & Brown,
2006). Hornberry and colleagues demonstrated this by manipulating distraction in a simulated
driving task. They had participants use either an in-vehicle entertainment system or hands-free
phone while varying the roadway complexity (measured in terms of visual clutter). They found

that regardless of roadway complexity (the driving environment), driver performance was
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degraded by the use of both distracters. This leads to questions regarding how drivers handle
such sources of stress while driving.

Fuller (2005) argued that in contrast to earlier theories of driving safety which proposed
that individual drivers are striving to maintain a constant level of anxiety (Taylor, 1964) or
likelihood of collision (Wilde, 1982), drivers attempt to maintain a set level of task difficulty.
Fuller’s conceptualization of task difficulty homeostasis proposes that task difficulty is a
relationship between task demand and driver capabilities, and that this balance is most
prominently manifested in terms of speed choice. Under normal everyday driving conditions
driver capabilities exceed the task demand, resulting in safe control of the vehicle. In situations
where task demand exceeds capabilities, safe control is lost and the result is either collision,
compensation by other drivers, or what Fuller terms a lucky escape, which may be better
understood as a near-miss high collision likelihood scenario (see Figure 3). However, testing of
such a model would prove difficult in the large numbers of variables required to be under control
at any point in time, leaving this a helpful lens for understanding driving safety rather than an

explanatory tool.
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(Fuller, 2005).

Heads Up Displays

One aspect of modern vehicles which may lead to an increase in driver distraction are
Heads Up Displays, or HUDs, which are successfully deployed in a number of applications.
These have included military and civilian displays. Much of the military and civilian oriented
research into HUD applications have focused on flight for obvious reasons: pilots are often
presented with a multitude of information which must be processed in an extremely time
sensitive manner. This aviation research has demonstrated that pilots tend to cognitively tunnel
attention on HUDs,providing a figure:ground relationship between the display and the flight
environment (Jarmasz, Herdman, & Johnnsdottir, 2005). Beyond this clear relationship between
display and background, certain implementations of HUDs may lead to more increased and more
accurate performance on tasks dependant on HUD-presented information, such as landing

approaches in flight (Goteman, Smith, & Dekker, 2007).
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Although drivers’ subjective reports often describe HUDs as ineffective, measurable
differences in performance may be obtained when comparing HUDs to either traditional gauges
or Heads Down Displays (Sojourner & Antin, 1990). In-vehicle displays such as HUDs may be
used to facilitate compliance with regulatory devices such as traffic control devices, particularly
in high demand situations such as intersections (Caird, Chisholm, & Lockhart, 2008). These
performance benefits also extend to the use of automotive HUDs as demand mitigating devices
when measured in terms of driver performance; with drivers using HUDs demonstrating less
steering wheel actuation, less lane deviation, and faster reaction time to roadway objects (Liu,
2003).

Many commercial and consumer vehicle manufacturers are integrating HUDs into
production vehicles although the benefits, and associated demands, produced by such automotive
HUDs are not fully understood. However, the average driver is becoming increasingly aware of
this display application in vehicles. It is likely that the number of HUD equipped vehicles on the
road will continue to rise in the coming years, making the HUD even more salient in the mind of

the driver.

Driver Control
A commonly used description of aviation hierarch of control tasks is “Aviate, Navigate,
Communicate,” (Schvaneveldt, Beringer, Lamonica, Tucker, & Nance, 2000) which indicates the
importance of the three major factors in aircraft control. Aviate indicates the most basic level of
control of the plane such as safely maintaining the current course heading and speed. Navigation
is the process of comparing current and intended positions in order to effect a change in course.
Communicate is the connection and sharing of information between airplanes or between pilot

and tower.
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The Aviate-Navigate-Communicate taxonomy is powerful because it so clearly delineates
between both the types of tasks performed in cockpit and the importance of each (Schvaneveldt,
Beringer, Lamonica, Tucker, & Nance, 2000). As a taxonomy, each factor is clearly placed in
importance and may be sacrificed in order to provide for increasing demands from higher taxa.
For example, a failure in a primary plane system (aviate) or a course correction (navigate) would
almost always take priority over communication between pilot and tower. As demand as a
product of the task at a more basic level increases, higher levels will be forsaken to ensure
accurate performance of the more basic level.

A metaphor for this process may be seen in human cognitive capacities. Under rapidly
increasing task demand, the human’s abilities to perform higher critical cognitive tasks may
become a limiting factor (resource limited) as opposed to scenarios where a lack of capacity in
the task itself poses the limiting factor (data limited). This process was captured in Michon’s
(1985) model of driver control. This model has three levels, the Strategic Level which allows for
processes such as route selection and requires controlled processing, the Maneuvering Level
which contains processes such as gap acceptance and requires controlled processing, and the
Control Level which encompasses the basic control of the car such as steering and operates as an
automatic process. Under rapidly increasing levels of task demand the higher levels of Michon’s
model (the Strategic and Maneuvering levels) are the first to suffer degraded performance. This
may also be viewed as an explanation for the detrimental effects of task interactions such as
using a mobile phone while driving: the conversation is occupying task resources which the

Maneuver Level requires, leading to an increased possibility of error.
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Mental Workload

With the question of task demand and workload, the question of measurement naturally
arises. O'Donnell and Eggemeier (1986) provided a convenient taxonomy of mental workload
measurement methods. These were broadly grouped as subjective techniques relying on the
individual’s own self-report, measurement of performance on a primary or secondary task, and
measurement of the individual’s level of physiological arousal. Primary task measures fall
generally under the measurement of speed of completion and accuracy of completion on the
current task. By the addition of a second task (dual-task assessment), the spare capacity of

individual resources may be measured (Navon & Gopher, 1979).

Driver Mental Workload

Young and Stanton (2007) compared single- and dual-task assessment methods of spare
attentional capacity using a driving simulator. The pragmatic limitations in the dual-task
assessment method are important, as the secondary task should not draw from a separate pool of
resources (Wickens, 2002) and simultaneously must not interfere with the primary process of
safely controlling the vehicle (Recartes & Nunes, 2003). To determine whether or not the
measurement was mediating the outcome, they administered the NASA Task Load Index (NASA
TLX; Hart & Staveland, 1988) to participants as they drove a driving simulator and performed
either a verbal (verbal response to a probe question) or spatial (rotated figures) secondary task.
Their findings indicated that although very little detriment to driver performance was caused by
the secondary task, the measures of subjective mental workload produced by the dual-task
method were inflated. However, the inflation caused by the secondary task was consistent across

subscales of the TLX.
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Subjective measures of workload have proven popular over the years due to the ease of
administration. However, in the case of multidimensional scales, the individual facets often may
become undifferentiated (Muckler & Seven, 1992). Of the multidimensional self report
measures, the NASA Task Load Index (NASA TLX; Hart & Staveland, 1988) and Subjective
Workload Assessment Technique (SWAT; Reid & Nygren, 1988) are the most commonly used.
However, the unidimensional scales, such as the Rating Scale Mental Effort (RSME; Zijlstra,
1993) have in some cases proven to be more sensitive to variations in individual workload than
the multidimensional scales. This was demonstrated in the domain of driving by DeWaard

(1996).

Hysteresis

Hysteresis, a term borrowed from the material and physical sciences, has been applied to
the study of humans for many years (see Barendregt, Van Bergen, & Van Nooten, 1965). Both
the behavioral and physical sciences utilize definitions of hysteresis which roughly equate to the
subject’s history affecting the present experience (Verhave & Herman, 1967). In physics,
hysteresis definitions speak of current properties being affected by forces no longer active on the
object. For example, a magnetically reactive material (such as recording tapes) which continues
to display a response to the magnetic field, even when the field is removed, is said to
demonstrate hysteresis. Other items can demonstrate hysteresis, such as springs which lose their
ability to return to original form after repeated compressions. Interestingly, the term hysteresis
may have derived from the older, psychological, term hysteria because of Barkhausen noises
emitted by certain metals during transformation (Durin & Zapperi, 2006). The metals literally

screamed as they were transformed.
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In the behavioral sciences, and specifically within the domain of human performance,
hysteresis is an oft-interesting yet infrequently studied topic. One of the earliest studies
indicating the possible presence of a hysteresis effect is Chamberlain (1968), who examined
accident rates for traffic entering versus exiting an intersection. The findings indicated that
drivers’ low performance (in terms of an increased number of accidents) persisted on the
opposite side of the intersection (when task demand was presumably decreasing rather than
increasing).

Monitoring tasks have traditionally been used to examine the effects of workload history
on task performance. Early researchers such as Colquhoun and Baddeley (1964, 1967) noted
such an effect of shifting event rates within the context of a vigilance decrement. This effect was
also noted by Krulewitz, Warm, and Wohl (1975) who examined event rate shifts in monitoring
tasks. They noted a decrease in signal detection performance when the event rate was shifted
(low to high) versus maintained at a steady high level. This decrement in performance on such
vigilance tasks has also been noted by researchers examining event rate shifts between
monitoring sessions instead of only within session (Wiener, 1977).

Cumming and Croft (1973) used a shadowing memory task to examine information
processing and demand levels. In their shadowing task, the presentation rate varied from a
minimum of 0.25 to a maximum of 2.5 items per second. By increasing and decreasing the
presentation rate of the auditory information in the shadowing task, they were able to
demonstrate that performance at high demand rates (that is, instances with a faster presentation
rate in the shadowing task) was higher than at lower demand rates until the presentation rate had
been drastically lowered. When plotted as presentation rate against performance on the

shadowing task, this produces two separate functions (see Figure 4). One function representing
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performance under increasing levels of demand, and one lower function which represented
performance under decreasing levels of demand. This seemed to indicate that individual
performance on the task was becoming asymptotic under task demand and indicates a hysteresis
type effect was present. The people in the study were not recovering as expected, instead of a
rebound of performance with the decrease in task demand, performance remained low.

In a visual shadowing task, Goldberg and Stewart (1980) asked participants to shadow
characters presented on a monitor which corresponded with the eight characters of the home-row
on a standard QWERTY keyboard. Their presentation rate varied from 0.5 to 4.0 characters per
second. As with Cumming and Croft’s (1973) findings, these researchers found that performance
under increasing task demand was substantially higher than under decreasing task demand

conditions, indicating the presence of a hysteresis type effect.
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Figure 4. The variation of task performance with task demands.
This graph illustrates the non-symmetry of operator performance in response to both rising and
falling levels of demand, as well as their relation to the theoretical limits expressed by
information theory. From Farrell (1999), as adapted from Goldberg and Stewart (1980).
These effects concord with the findings by Matthews (1986) who, in examining the
workload transitions in another visual task, concluded that people were retaining their current
strategy well after task demand levels had changed. Matthews found evidence supporting the
mechanism of workload transitions in hysteresis. However, Matthews failed to examine the
possibilities of transitions occurring in both the positive and negative loading directions. In
addition, his work failed to account for the possibility that not all workload transitions are above
the operator’s own criterion for detecting such a change; perhaps the operator never consciously
noticed a change. In effect, if the task demand change is small enough the expectancies of the
operator may be preserved. Under larger magnitude changes in task demand the mechanism
through which hysteresis occurs is likely to be both operator expectancies lagging as well as the
change in task demand. Thus, both hypotheses have some degree of support depending on the

nature of the task demand changes.
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The Yerkes-Dodson inverted-U function of stress and performance (Yerkes & Dodson,
1908) has long been used to explain transitions in human performance due to task demand
characteristics. In fact, similar work within the domain of physiology developed the idea of the
inverted-U function some years later. This is what Hebb (1955) described as a relationship
between arousal and performance. However, the predictive power of the Yerkes-Dodson
inverted-U function has been criticized (Hockey, 1983; Hancock, 1987). This criticism led to the
creation of newer models of stress and human performance, such as the Extended-U model
(Hancock & Warm, 1989) or the Compensatory Control Model (Hockey, 1997). Both models
attempt to account for the intimate relationship between task demand and human performance,
albeit in differing ways. Within these two frameworks, hysteresis effects seem to be indicative of
special cases of fatigue after-effects.

One of the earliest researchers to extend the concept of hysteresis past simple control
scenarios into complex task performance was Smolensky (1990). In a series of experiments,
Smolensky examined whether a hysteresis effect could be demonstrated in the Air Traffic
Control (ATC) domain, and if so whether the effect was due to either short term memory
overload or a perseverance of expectancies regarding the task. Although a hysteresis effect was
demonstrated, neither mechanistic hypothesis received clear support. Data from operational
errors indicated that perseverance of expectancies was likely, however data from the controller’s
memory tasks indicated short term memory overload. Smolensky concluded that both memory
and cueing aids would likely ameliorate any hysteresis effect present.

Hancock, Williams, Manning, and Miyake (1995) also examined the workload transition
and history process in Air Traffic Control scenarios. In two experiments they examined the effect

of prior workload history on current task performance and workload, and the effect of
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incremental changes in task demand on task performance and workload. Their findings
demonstrated a strong effect for workload history in respect to current perceived workload. This
indicates the presence of lag within the operator’s perception of the level of task demand and
interpretation of workload. Results of the examination of incremental influences over workload
were inconclusive. These findings lead to the authors recommending that workload history be

accounted for in the assessment of current workload.
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CHAPTER THREE: EXPERIMENTAL METHODOLOGY

Hypotheses
Hypothesis 1. A history-dependant hysteresis effect will be observed in driving. The interaction
will be manifested itself in the form of reports of higher perceived mental workload persisting
after an epoch of high task demand has returned to its former baseline level.
Hypothesis 2. Cueing an impending higher demand phase of the driving task will eliminate the

presence of the hysteresis effect predicted by Hypothesis 1.

Participants

To test these propositions, thirty-eight adults (20 females and 18 males) agreed to serve
as participants in the following experiments. All participants held a valid U.S. driver’s license
and self-reported either normal or corrected-to-normal color vision and visual acuity. Due to
problems with the simulation facility, data from two participants was unable to be recorded
accurately and therefore is not included in the analysis. Additionally, four participants (one male
and 3 females) were either withdrawn or self-withdrew from the experiment due to symptoms of
simulator sickness (Kennedey, Lane, Berbaum, & Lilienthal, 1993). The final analysis thus
included data from a balanced sample of 16 females and 16 males. This equal number of
participants from both sexes were recruited in order to test for possible sex effects. Participant

information is detailed in Tables 1 and 2.
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Table 1. Participant demographic information.

Reckless
Years Minor Major Speeding Driving  Other

Sex Age Licensed Accidents Accidents Tickets Tickets  Tickets
Female Mean 20.38 4.31 0.63 0.50 0.38 0.06 0

SD 2,66 2.50 0.62 0.73 0.50 0.25 0
Male Mean 21.25 5.31 0.31 0.19 0.31 0.06 0

SD 3.38 3.6l 0.79 0.54 0.48 0.25 0
Total  Mean 20.81 4.81 0.47 0.34 0.34 0.06 0

SD 3.02  3.09 0.72 0.65 0.48 0.25 0

Age and years licensed represented in years. All other figures represent the average for the
category.

Prior to beginning any of the experimental trials, all participants completed
questionnaires which assessed information including years of driving experience, average
driving conditions, miles driven per year, any driving infractions (whether convicted or not)
since licensure, and current state of health and well-being. These questions were collected via the
Driver Stress Inventory, Driving Coping Questionnaire, Motion History Questionnaire, and
Simulator Sickness Questionnaire (see Questionnaires and Self Report Measures, below, for
more information; see Appendices A, B, C, and D for example questionnaires). There were no
statistical differences in self-reported driver characteristics before participation as the data
reported in Table 2 indicates. All participants and data collected from them was treated in full
accordance with the ethical standards of the American Psychological Association (2001) and the

Human Factors and Ergonomics Society Professional Standards (2006).
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Table 2. Participant information by sex.

Sum of
Squares df Mean Square F Sig.
Age Between  6.13 1 6.13 0.66 42
Within 276.75 30 9.23
Total 282.88 31
Years Licensed Between 8 1 8 0.83 37
Within 288.88 30 9.63
Total 296.88 31
Driving Frequency Between 1.53 1 1.53 2.60 A2
Within 17.69 30 0.59
Total 19.22 31
Miles Driven Per Year Between 3.78 1 3.78 3.11 .09
Within 36.44 30 1.21
Total 40.22 31
Minor Accidents Between 0.78 1 0.78 1.54 22
Within 15.19 30 0.51
Total 15.97 31
Major Accidents Between 0.78 1 0.78 1.88 18
Within 12.44 30 041
Total 13.22 31
Speeding Tickets Between  0.03 1 0.03 0.13 72
Within 7.19 30 024
Total 7.22 31
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Experimental Apparatus

The Driving Simulator

A fixed-base, medium fidelity, I-SIM driving simulator (GE, Version 4.0.86) was
interfaced with a custom software control application written in LabVIEW (8.2, National
Instruments). This simulator provides an approximately 150° field of view from three screens

mounted approximately 1.0m from the driver (Figure 5).

Figure 5. The ISim driving simulator.

The simulator buck is a partial dash from a Ford Crown Victoria sedan and contains all
controls present in the typical automobile such as steering, braking, throttle, gear selection,
ignition, lighting, signaling, and ventilation controls (Figure 6). Adjustments are present for
steering wheel position and seat position. Data generated by the simulation network was sampled

at 60 Hz (i.e., 16.67 ms time slice). This data was logged for offline analyses and was
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subsequently parsed for vehicle and environmental information as well as time period paralleling

the status of the simulated navigation system (pre-failure, immediate post failure, end of drive).

Figure 6. The ISim driving simulator dashboard and controls.

Experimental Stimuli

A simulated in-vehicle electronics route navigation/GPS system was constructed using
Microsoft Powerpoint 2007. This system allows for the display of turn by turn driving directions
as well as the simulation of electronic device failure and resetting procedures, all while retaining
a high degree of ecological validity. The navigation system information is presented as a Heads-
Up-Display (HUD) projected in the lower center portion of the center simulator image channel.
This corresponds to the positioning of most current in-vehicle HUDs.

Advancement of the route guidance indicators to the next turn was performed at set
points within the driving environment to ensure consistent performance between participants.
Screen images of normal navigation, cueing to impending failure, and failure are displayed in

Figures 7, 8, and 9, respectively.

28



‘f ‘) ") ﬂ-llll ]

Turn RIGHT on A Street

Figure 7. Nominal navigation view.

Continue Straight

Figure 8. Cue to impending navigation system failure.
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Figure 9. Navigation system failure.

Questionnaires and Self-Report Measures

The Driver Stress Inventory and Driver Coping Questionnaire (DSI and DCQ,
respectively; Matthews, Desmond, Joyner, Carcary, & Gilliland, 1997) are two questionnaires
which measure driver personality traits and have proven to accurately reflect driver decision
making and behavior. The DSI consists of 48 questions marked on a 10 point Likert-type scale
(See Appendix B), and produces five factors when scored: Aggression, Dislike of Driving,
Hazard Monitoring, Thrill Seeking, and Fatigue Proneness. The Driver Coping Questionnaire
consists of 35 questions marked on a 5 point Likert-type scale (See Appendix A), and produces
six factors: Confrontive, Coping, Task-Focus, Emotion-Focus, Reappraisal, and Avoidance
coping dimensions. A driver demographics section asking the participant to recall date of license,
annual miles driven, typical driving environment, and any driving infractions precedes the two
questionnaires. Both questionnaires were administered to participants prior to participation in the

driving scenarios.
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The Motion History Questionnaire (MHQ; Kennedy, Fowlkes, Berbaum, & Lilienthal,
1992) was used as a device to better inform participants on their risk of experiencing symptoms
of simulator sickness during the experiments. The MHQ consists of a 14-item background
questionnaire coupled with a preference and symptom checklist for 14 experiences with the
potential of inducing motion sickness. The MHQ was administered to participants prior to
participation in the driving scenarios. This data would serve to illustrate any individual
differences in performance due to issues with motion sickness and past exposure to devices
likely to induce motion sickness, should the need arise.

Simulators have the potential to induce physical symptoms of nausea and dizziness. The
Simulator Sickness Questionnaire (SSQ; Kennedy, Lane, Berbaum, & Lilienthal, 1992) is a
multifaceted scale of simulator sickness frequently used in simulator-based studies to measure
the presence of such symptoms. The scale uses a 26-symptom checklist with a 4-point scale (See
Appendix C) for all items to calculate scores in three factors: nausea, oculomotor, and
disorientation. From these three factors, a total score may be calculated. The SSQ was
administered before participation for a baseline measure and following the last trial for a post-
exposure comparison if any individual participant-driver reported symptoms which were
consistent with those included in the SSQ’s conceptualization of simulator sickness. If needed,
these scores could be used as a screening tool against any abnormal values observed in the
driving tasks.

Simplified Subjective Workload Assessment Technique (S-SWAT, Luximon &
Goonetilleke, 2001). The SWAT (Reid & Nygren, 1988) is a multidimensional, self report,
workload scale consisting of three facets: time load, mental effort load, and psychological stress

load. Each facet contains three discrete levels, resulting in a total of twenty seven possible
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combinations. The SWAT has traditionally been administered with a card-sorting task in order to
establish an individual’s baseline. However, this introduces an increased possibility of error and
creates additional demand on the participant. In order to reduce the both the burden on the
participant and the possibilities for introducing error into the analysis, the Simplified SWAT (S-
SWAT) was used. The S-SWAT scale ranges from 0 to 100, which increases the sensitivity of
the scale and reduces the burden on the participant. The S-SWAT procedure also eliminates the
card sorting task. To allow for participants to become familiar with the scale and procedure for
reporting their perceived mental workload using the S-SWAT, participants were asked to give S-

SWAT ratings after completing paperwork and a practice drive in the simulator.

General Experimental Procedure

Prior to participation participants were given as much time as they required to read, ask
questions about, and sign the statement of informed consent. Following notification and
acknowledgment of informed consent, participants were asked to fill out the package of
questionnaires consisting of the Driver Stress Inventory, Driver Coping Questionnaire, Motion
History Questionnaire, and Simulator Sickness Questionnaire. Participant’s progress throughout
this time was monitored and participants were allowed to ask any questions regarding these
measures.

After completing the last questionnaire, participants were given a description of the
Simplified Subjective Workload Analysis Technique, including descriptions of the scales and
(positive/negative) anchors for each scale. Participants were asked to give a rating of their
perceived mental workload along these scales at this point in time. After recording this

information, the experimenter asked the participant to be seated in the driving simulator.
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The location and operation of all major controls and adjustments in the driving simulator
were explained to the participant. The layout and information on the HUD navigation system
was pointed out, as well as how to interpret the initial instructions this system provided. After an
opportunity to ask further questions, the participant drove a brief route while following directions
provided by the navigation system. The system operated 100% reliably during this time and gave
no indications of failure or unexpected operations. When the participant had completed the route
they were again informed of the meaning of the S-SWAT scales and given descriptions of the
anchors. Participants provided a second report of their perceived mental workload at this time,
providing another opportunity for them to become familiar with the scale prior to the experiment
beginning. After providing their mental workload metrics participants were asked to take a brief
break from the simulator consisting of a short walk. This served to reduce any symptoms of
simulator sickness which manifested during their drive and allowed the experimenter to ready
the simulator for the following experimental trials. On returning to the laboratory, participants
began the experimental trials.

As the same participants served in both experiments, each participant completed the two
experiments in a counterbalanced order to allow for the assessment of order effects. Following
completion of both experiments the participant was given a post-exposure Simulator Sickness
Questionnaire form and received a debriefing explaining the purpose of the experiment. Any

remaining questions the participant had were answered at this time.
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CHAPTER FOUR: EXPERIMENT ONE

Experimental Design

This experiment used a within-subjects repeated measures design to assess the effects of
task demand on driver mental workload and driver performance. The primary task was a
simulated driving task within an urban environment. The dependent measures used in this
experiment were (a) workload measurement via a secondary task (accuracy in navigation)
performance capacity as well as the scores on the Simplified SWAT, and also (b) primary driver
performance measures including average speed, accelerator actuation, and braking actuation.

Task demand was manipulated by failures of the navigation system requiring the driver to
relay the error code to the experimenter. Failures occurred once per trial and a total of four trials
were recorded. No prior findings available in the literature suggested the possibility of order
effects from the experimental presentation; therefore all participants experienced the same

scenario sequence.

Experimental Procedure
Following the procedure described in the General Experimental Procedure, participants
were given the following instructions:

“Now we will start (continue) the experimental trials. Like your earlier drive, you
are going to be driving a patrol route and following the directions of the navigation
system. This system will tell you what street and direction you will need to turn before
you reach the turn. Each time the screen updates with your next turn, you will hear a beep
which lets you know that your next turn is now displayed.

The system may have problems during your patrol. If this happens the system

will display an error code at the top of the screen. When this happens continue to drive
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and read the error code to me so we can reset the system. Please try not to stop or slow
while reading this code, and try to read the code as quickly as possible.

The system will guide you through your entire patrol route and return you to the
headquarters building. Please try to drive normally and obey all traffic signs and signals.
At certain points during the drive we will be asking you to report using the three factor

rating scale you’ve already used. Do you have any questions?”

After any questions were answered participants began the driving task. Drivers followed
the instructions of the route guidance system through a series of approximately 3.5mile long
routes within the urban driving environment. At prescribed points within the route the navigation
system registered a failure instructing the driver to contact the dispatcher at Police HQ (the
experimenter served this function).

Upon contacting the dispatcher, participants provided the error codes from the navigation
system’s display. This error codes consisted of a 10 digit randomly generated alphanumeric code
positioned at the centered top of the display. After the driver successfully provided the error code
the navigation system resumed normal operation.

Measures of mental workload via the S-SWAT were obtained in the initial stage of the
drive, immediately post-navigation system failure (after the error code was relayed to the
experimenter), and at the conclusion of the route. Measures of driver performance obtained from
the simulator network were averaged based on time periods in concordance with the
measurement of driver mental workload. Therefore, the initial stages (beginning of the drive)
included data from when speed initially increased from a standstill to the time of the first S-

SWAT score’s recording, the second measurement period extended from this point until the
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second S-SWAT score was recorded, and the third period extended from this point until the end
of the drive when the final S-SWAT score was recorded (see Figure 10).At the end of each trial,
participants received a brief break in which they were allowed to stand up, stretch, and walk
around if they desired to do so. This time period also allowed the experimenter to ready the

simulator for the next trial. A total of 4 trials were recorded for each participant.

S-SWAT S-SWAT S-SWAT
N . N . N
Period 1 Period 2 / Period 3
Nav System
Failure

Figure 10. Depiction of the timeline for events within each trial for Experiment 1.

Results of Experiment One

General Analytic Strategy
Prior to analysis for the two experiments, all data underwent examination for accuracy of
data entry, missing values, and violations of planned statistical tests’ assumptions. No missing

values or outliers were present in the collected mental workload data. Due to failures in the
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simulator data collection network, some of the driving data contained single instances of missing
data points. Rather than replace these values with a mean score for the variable, they were
excluded from the analysis. All analyses were conducted using SPSS for Windows, version
14.0.1, at o = .05 unless otherwise specified. Effect sizes are given in the form of Cohen’s f
(Cohen, 1992), which has proven to be a reliable measure of effect size across most forms and

generalizations of the ANOVA technique.

Order Effects

As the same participants served in both experiments, the possibility of order effects were
examined. No main effects for order were observed in the mental workload data, F(1, 28) = 1.66,
p=.21, f=.24 (see Figure 11). Likewise, no main effects were present for order in the driver
performance data, F(1,24) =2.63, p = .12, f =.33. However, presentation order was present in

some significant interactions. These will be presented and discussed in the appropriate point in

the results.

100 -+
90 A
80 -
70 -
60 -
50 -
40 -
30 -
20 -
10 +

Collapsed S-SWAT

Cued First Non Cued First
Presentation Order

Figure 11. Collapsed S-SWAT score by presentation order. Error bars represent Standard Error.
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A repeated measures multivariate analysis of variance was performed on subjective
mental workload. The independent variables were sex (male versus female), trial (1 versus 2
versus 3 versus 4), and the measurement sequence within each trial (mental workload was
assessed three times within each trial: at the beginning of the drive, immediately after navigation
system failure, and at the end of the drive). Fisher’s Least Significant Difference was used for all

post-hoc tests, unless otherwise specified.

Results of Sex

A significant main effect was present for the effect of participant sex on perceived mental
workload, F(1,28)=5.71, p =.02, f=.45. Post-hoc analysis demonstrated that, across all trials
and measurement times, females (M = 33.29, SD = 20.55) reported significantly higher collapsed
mental workload scores than males (M =19.42, SD = 12.15, p = .03). Within the individual
subscales of the S-SWAT, females provided higher workload measures for most facets. There
was no significant sex difference between ratings of Time Demand (female M = 30.37, SD =
25.35; male M = 22.69, SD = 17.19; p > .05). However, Mental Effort was rated higher by
females (M =41.16, SD = 26.29) than males M = 23.15, SD = 14.18; p = .02), and a similar
pattern was observed with Psychological Stress (female M = 28.34, SD = 19.40; male M = 12.42,

SD =9.58; p = .01). See Figure 12.
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Figure 12. S-SWAT scores by sex. Asterisk indicate a statistical difference at p = .05. Error bars

represent Standard Error.

No significant sex differences were present in the three measured aspects of driving data,

F(1,24)=.021, p = .886, f = .33. Female and male driving was approximately equal, with

roughly the same speed (Figure 13), braking inputs (Figure 14), and accelerator (Figure 15)

inputs across all trials.
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Figure 13. Speed by sex. Error bars represent Standard Error.
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Figure 14. Braking actuation by sex. Error bars represent Standard Error.
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Figure 15. Accelerator actuation by sex. Error bars represent Standard Error.

Results of Repeated Trials

A significant main effect was present for mental workload across trials, F(3, 84) = 35.64,
p <.0005, f=1.13. Post-hoc analysis revealed a significant reduction in collapsed mental
workload scores across sequential trials. This manifested itself as a gradual drop in score means
as the experiment progressed. Trial 1 (M = 33.26, SD = 20.88) demonstrated the highest rating,
which a gradual reduction was seen at trial 2 (M =28.42, SD =17.82),3 (M =23.90, SD =
15.96), and 4 (M = 19.83, SD = 16.32). This reduction across trials is illustrated in Figure 16.
There was no interaction present between sex and the sequence of trials for mental workload,

F(3,26)=1.121, p = .36, f = .36.
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Figure 16. S-SWAT by individual trial. Note: Asterisks indicate a statistical difference of p = .05
or greater. Error bars represent Standard Deviation.

There were also significant sex differences across trials. Females consistently rated
mental workload higher than males on each trial. Both females and males rated trial one as the
highest, with no significant differences between females (M = 38.40, SD = 23.01) and males (M
=28.13, SD = 18.51). Trial two was rated lower for both groups, although females rated the trial

significantly higher than males (females M = 36.33, SD = 21.34, males M =20.51, SD = 13.40, p

.02). Trial three continued this (female M = 31.78, SD = 20.54, males M = 16.02, SD =9.37, p
=.01). Trial four was the lowest for both sexes, although they demonstrated significant
differences in the magnitude assigned to each (female M = 26.64, SD =20.47, male M = 13.01,

SD =10.66, p = .02). See Figure 17.
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Figure 17. Sex differences in mental workload across trials. Error bars represent standard error.

The effect of trial on speed was also significant, F(3, 81) = 1810.20, p <.0005, f= 15.80.
The average speed observed in trials 1 (M =34.09, SD =2.93), 2 (M =36.85, SD =3.03),3 (M =
22.67,SD =2.92), and 4 (M = 20.96, SD = 2.69) all differed significantly from one another at p <
.02 or greater (see Figure 18). Likewise, the effect of trial on braking was significant, F(3, 81) =
11.47, p <.0005, f=1.17. Braking differed significantly between most trials, with trials 1 (M =
1.54, SD = 0.48) and 2 (M = 1.74, SD = 0.52) demonstrating the highest amount of braking
actuation required. Trial 3 (M = 1.30, SD =0.39) and 4 (M = 1.33, SD = 0.40) required less
braking. The differences between all trials except for 1 and 2, and trials 3 and 4 were significant
at p = .05 or less (see Figure 19). There was not a significant effect for trial on accelerator

actuation, F(3, 81)=2.14,p=.12, f= .51.
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Figure 19. Braking by trial. Error bars represent standard deviation.
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Results of Measurement Time

A significant main effect was present for measurement time within the trials on the
subjective mental workload scores, F(2, 56) =45.28, p <.0005, f=1.27. Post-hoc analysis
demonstrated a significant difference between all measurement periods 1 (measured at the
beginning of the drive, M = 21.12, SD = 11.41), 2 (measured immediately post navigation system
failure, M = 30.53, SD = 13.20), and 3 (measured at the end of the drive, M = 27.41, SD = 12.07).
Except for the difference between periods 2 and 3 (p = .33), all differences were significant, as
illustrated in Figure 20.
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Figure 20. S-SWAT by measurement time. Error bars represent Standard Error.

The results of the individual facets of the S-SWAT were examined and demonstrated a
significant main effect, F(2, 56) = 9.38, p <.0005, f=.58. Overall, the individual facets of the S-

SWAT did not display differences from time demand (M = 26.53, SD = 21.66) and mental effort
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(M =32.15, SD = 21.13). However, the difference between mental effort and stress (M = 20.38,

SD = 15.30) was significant (p = .01). See Figure 21.
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Figure 21. Individual facets of the S-SWAT. Error bars represent Standard Error.

When driver performance data was analyzed using measurement times within the
individual trials, a significant main effect was present for speed, F(2, 54) = 9262.24, p <.0005, f
=5.5. The speed as measured before the failure of the navigation system (M = 18.65, SD = 1.63)
was significantly lower than the measurement immediately post failure (M = 33.52, SD =3.85, p
<.0005) and at the end of the drive (M = 33.75, SD = 3.02, p <.0005). The difference between
the measures of speed immediately post-failure and at the end of the drive were not statistically
different (p = .57). Braking effects also proved significant when analyzed across measurement
times, F(2, 54) = 130.47, p <.0005, f = 3.05. Significantly more braking was required after the
navigation system failure (M = 2.64, SD = 0.70) than either at the beginning of the drive (M =

0.68, SD = 0.20) or immediately post-failure (M = 1.12, SD = 0.38). All differences between
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measurement times for brake actuation were significant at p <.0005. A similar trend was not
observed with accelerator actuation, F(2, 54) = 24.00, p = .052, £=0.33. Drivers mean
accelerator actuation was approximately equal for the time before (M = 10.45, SD = 2.55) and
immediately post-failure (M = 10.30, SD = 1.19). Less accelerator actuation was observed from
the time immediately post-failure to the end of the drive (M =9.62, SD = 1.26). The only
statistically significant differences between measurements of accelerator actuation occurred
between the time immediately post-failure and the end of the drive (p =.03). See Table 3 and

Figures 22, 23, and 24.

47



Table 3. Driver performance within trials.

Measurement Time Mean SD

Speed Beginning 18.65 1.63
Post-Failure 33.52 3.85

End of Drive 33.75 3.02

Braking Beginning 0.68 0.20
Post-Failure 1.12 0.38

End of Drive 2.64 0.70

Acceleration Beginning 10.45 2.55
Post-Failure 10.30 1.19

End of Drive 9.62 1.26

Note: Speed in mph, braking and acceleration actuation
given in arbitrary simulator units.
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Figure 22. Speed by measurement time. Error bars represent Standard Error. Asterisks indicate a
difference at p = .05 or greater.
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Figure 23. Braking actuation by measurement time. Error bars represent Standard Error.
Asterisks indicate a difference at p = .05 or greater.
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Figure 24. Accelerator actuation by measurement time. Error bars represent Standard Error.
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Table 4. S-SSWAT scores by trial, measurement time, scale facet, and sex.

Trial Measurement Time Scale Facet Sex Mean SD
1 Pre-Failure Time Female 30.88 30.63
Male 29.69 27.38
Mental Effort Female 42.56 30.95

Male 31.31 26.41
Stress Female 29.81 18.99
Male 14.69 17.27
Immediate Post-Failure Time Female 35.38 31.79
Male 38.69 28.30
Mental Effort Female 54.50 31.29

Male 40.69 25.03
Stress Female 34.56 22.50
Male 26.25 22.55

End of Drive Time Female 34.81 25.03
Male 29.25 21.23

Mental Effort Female 46.69 28.53
Male 27.88 17.29
Stress Female 36.44 22.68

Male 14.69 11.61

2 Pre-Failure Time Female 30.06 26.13
Male 22.25 19.42
Mental Effort Female 4438 28.86
Male 23.00 16.46

Stress Female 30.38 21.31

Male 10.00 8.94
Immediate Post-Failure Time Female 36.94 28.78
Male 29.69 20.63

Mental Effort Female 46.69 30.23
Male 30.25 19.37
Stress Female 32.56 22.26
Male 15.13 12.39
End of Drive Time Female 29.50 26.94
Male 23.38 18.99
Mental Effort Female 4475 26.19

Male 21.69 14.61
Stress Female 31.75 22.69

Male 9.19 9.61
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Trial Measurement Time Scale Facet Sex Mean SD
3 Pre-Failure Time Female 16.25 24.93
Male 9.38 9.77

Mental Effort Female 26.31 31.33

Male 10.00 7.82
Stress Female 18.13 25.16

Male 7.50 12.48

Immediate Post-Failure Time Female 35.94 26.72
Male 22.00 19.80

Mental Effort Female 48.19 30.38

Male 24.13 15.06

Stress Female 30.06 24.48

Male 13.69 13.12

End of Drive Time Female 35.88 25.67
Male 21.69 14.21

Mental Effort Female 43.50 29.94

Male 22.69 15.88

Stress Female 31.75 24.73

Male 13.13 14.82

4 Pre-Failure Time Female 18.13 25.29
Male 7.25 10.12

Mental Effort Female 25.63 31.56

Male 7.38 8.54

Stress Female 17.19 19.41

Male 481 7.11

Immediate Post-Failure Time Female 29.06 24.03
Male 20.00 17.58

Mental Effort Female 33.75 24.39

Male 21.75 15.29

Stress Female 22.69 20.95

Male 10.13 12.37

End of Drive Time Female 31.63 27.96
Male 19.00 18.19

Mental Effort Female 36.94 27.89

Male 17.00 16.28

Stress Female 24.75 23.63

Male 9.81 12.02
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Table 5. Driver measurement by trial, measurement time, variable, and sex.

Trial Measurement Time Variable Sex Mean SD
1 Pre-Failure Speed Female 30.40 1.37
Male 32.22 1.37

Braking Female 1.42 0.20

Male 1.40 0.20

Acceleration Female 11.09 0.72

Male 11.73 0.72

Immediate Post-Failure Speed Female 35.37 1.64
Male 34.36 1.64

Braking Female 1.28 0.22

Male 1.03 0.22

Acceleration Female 10.43 0.52

Male 9.87 0.52

End of Drive Speed Female 34.47 1.31
Male 33.80 1.31

Braking Female 2.03 0.28

Male 2.19 0.28

Acceleration Female 9.60 0.58

Male 9.67 0.58

2 Pre-Failure Speed Female 33.91 1.44
Male 34.46 1.44

Braking Female 0.65 0.15

Male 0.76 0.15

Acceleration Female 11.63 0.59

Male 12.02 0.59

Immediate Post-Failure Speed Female 38.27 1.57
Male 37.55 1.57

Braking Female 1.54 0.22

Male 1.38 0.22

Acceleration Female 10.52 0.48

Male 10.27 0.48

End of Drive Speed Female 37.76 1.51
Male 36.48 1.51

Braking Female 2.19 0.33

Male 2.17 0.33

Acceleration Female 8.52 0.54

Male 8.86 0.54
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Trial Measurement Time Variable Sex Mean SD
3 Pre-Failure Speed Female 2.95 0.36
Male 3.18 0.36

Braking Female 0.00 0.00

Male 0.00 0.00

Acceleration Female 7.42 1.93

Male 9.02 1.93

Immediate Post-Failure Speed Female 31.21 2.05
Male 31.01 2.05

Braking Female 0.91 0.16

Male 0.74 0.16

Acceleration Female 10.36 0.63

Male 10.05 0.63

End of Drive Speed Female 36.36 1.74
Male 34.71 1.74

Braking Female 2.38 0.34

Male 1.96 0.34

Acceleration Female 10.34 0.62

Male 9.93 0.62

4 Pre-Failure Speed Female 17.54 0.87
Male 18.83 0.87

Braking Female 0.18 0.08

Male 0.13 0.08

Acceleration Female 9.93 1.11

Male 11.97 1.11

Immediate Post-Failure Speed Female 34.81 1.35
Male 33.61 1.35

Braking Female 1.07 0.24

Male 0.82 0.24

Acceleration Female 10.54 0.58

Male 9.75 0.58

End of Drive Speed Female 32.55 1.13
Male 31.79 1.13

Braking Female 2.68 0.34

Male 2.40 0.34

Acceleration Female 9.88 0.57

Male 9.60 0.57
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Summary of Experiment One

Experiment one sought to examine whether or not a hysteresis effect was present in the
driving task. This effect would be manifested as reports of higher mental workload after the
driving and navigating task demand returned to a lower level. Evidence for the presence of this
history dependent effect was observed in the reported mental workload data. The driver-
participants in the first experiment reported a significantly higher level of mental workload under
high demand conditions (the navigation system failure), and after the demand imposed by this
failure was removed continued to report significantly higher levels of mental workload as
compared to their earlier baseline measurements. This result, and the results of the three

measures of driver performance, provides a strong degree of support for Hypothesis 1.
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CHAPTER FIVE: EXPERIMENT TWO

Experimental Design

This experiment used a within-subjects repeated measures design to assess the effects of
cueing and task demand on driver mental workload and driver performance. The primary task
was the simulated driving task within an urban environment. The dependent measures used in the
second experiment were (a) workload measurement via secondary task (accuracy in navigation)
performance as well as the scores on the Simplified SWAT, as well as (b) primary driver
performance measures including average speed, accelerator actuation, and braking actuation and
followed those used in the first experiment.

Task demand was manipulated by failures of the navigation system requiring the driver to
relay the error code to the experimenter. Participants were cued to the upcoming failure through
notification bars which appeared on the HUD display. The cue to system failure was 100%
reliable and always occurred the same amount of time before system failure. Failures occurred
once per trial and a total of four trials were recorded. Measures of mental workload via the S-
SWAT were obtained at the beginning of the drive, immediately post-navigation system failure
(after the error code was relayed to the experimenter), and at the conclusion of the route. No
prior findings available in the literature suggested the possibility of order effects from the

experimental presentation; therefore all participants experienced the same scenario sequence.

Experimental Procedure
Following the procedure described in the General Experimental Procedure, participants
were given the following instructions:
“Now we will start (continue) the experimental trials. Like your earlier drive, you

are going to be driving a patrol route and following the directions of the navigation
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system. This system will tell you what street and direction you will need to turn before
you reach the turn. Each time the screen updates with your next turn, you will hear a beep
which lets you know that your next turn is now displayed.

The system may have problems during your patrol. If this happens, it will always
be preceded by a red warning bar before the failure occurs. When the system encounters a
problem, it will display an error code at the top of the screen. When this happens continue
to drive and read the error code to me so we can reset the system. Please try not to stop or
slow while reading this code, and try to read the code as quickly as possible.

The system will guide you through your entire patrol route and return you to the
headquarters building. Please try to drive normally and obey all traffic signs and signals.
At certain points during the drive we will be asking you to report using the three factor

rating scale you’ve already used. Do you have any questions?”

After any questions were answered participants began the driving task. Drivers followed
the instructions of the route guidance system through a series of approximately 3.5mile long
routes within the urban driving environment. At prescribed points within the route the navigation
system registered a failure instructing the driver to contact the dispatcher at Police HQ (the
experimenter served this function).

Upon contacting the dispatcher, participants provided the error codes from the navigation
system’s display. This error codes consisted of a 10 digit randomly generated alphanumeric code
positioned at the centered top of the display. After the driver successfully provided the error code

the navigation system resumed normal operation.
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Self-report measures of driver mental workload were collected at the beginning of each
trial, immediately post-failure of the navigation system, and at the end of the route. This
collection timing attempted to keep the mental workload reporting from serving as a cue to the
navigational system failure. . Measures of driver performance obtained from the simulator
network were averaged based on time periods in concordance with the measurement of driver
mental workload. Therefore, the initial stages (beginning of the drive) included data from when
speed initially increased from a standstill to the time of the first S-SWAT score’s recording, the
second measurement period extended from this point until the second S-SWAT score was
recorded, and the third period extended from this point until the end of the drive when the final
S-SWAT score was recorded (see Figure 25). At the end of each trial, participants received a
brief break in which they were allowed to get up, stretch, and walk around if they desired to do
so. This time period also allowed the experimenter to ready the simulator for the next trial. A

total of 4 trials were recorded for each participant.

58



S-SWAT S-SWAT S-SWAT

Period 1 3 / Period 2 / B Period 3 N
Cueto Nav System
Failure Failure

Figure 25. Depiction of the timeline for events within each trial for Experiment 2.
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Results of Experiment Two

A repeated measures multivariate analysis of variance was performed on subjective
mental workload. The independent variables were cueing (cued trials compared against the same
participant’s non-cued trials from Experiment 1) sex (male or female), trial (four trials were
collected), and the measurement time within each trial (mental workload was assessed three
times within each trial: at the beginning of the drive, immediately after navigation system failure,
and at the end of the drive). Fisher’s Least Significant Difference was used for all post-hoc tests,

unless otherwise specified.

Results of Cueing

Cueing did not have a significant main effect for mental workload, F(1, 28) = 0.65, p =
43, £=.15. The collapsed S-SWAT mean for cueing across all trials did not significantly differ
between cued (M = 25.25 SD = 18.22) and non-cued (M = 26.35, SD = 16.88). The individual
facets of the S-SWAT did not differ significantly between cueing conditions, see Figures 26 and

27.
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Figure 26. S-SWAT scores by cueing type. Error bars represent Standard Error.
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Figure 27. S-SWAT score by cueing and sex. Note that no significant differences within the
sexes are present. Error bars represent Standard Error.

A significant main effect was present for cueing’s effect on driver performance, F(1, 24)
=29.03, p <.0005, f=1.10. Participants drove faster in the cued conditions (M = 31.76mph, SD
= 2.84) than non-cued (M = 28.87mph, SD = 2.74, p <.0001). More braking actuation was
required in the non-cued condition (M = 1.49, SD = .10) than the cued-condition (M = 1.12, SD =
.08, p <.0001). Small, non-significant, differences were present in accelerator actuation between

non-cued (M = 10.15, SD = .34) and cued (M =10.11, SD = .31, p = .73) conditions.
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Figure 29. Speed by measurement time and cueing type.
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Figure 30. Braking actuation by cueing type. * p <.0001. Error bars represent Standard Error.
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Figure 31. Accelerator actuation by cueing type. Error bars represent Standard Error.

63



Interaction between Cueing and Presentation Order

An interaction between order of presentation and cueing was present, F(1, 28) =19.64, p
<.0001, f=.84. Regardless of presentation order, all participants reported approximately equal
levels of perceived mental workload under non-cued conditions (Experiment 1 first M = 25.48,
SD =20.27, Experiment 2 first M =27.23, SD =27.00, p = .77). Participants receiving the non-
cued Experiment 1 first then reported lower levels of perceived mental workload when
experiencing cueing (M = 18.32, SD = 16.76) to impending higher task demand scenarios.
Participants who experienced Experiment 2 first (and thus were familiar with cueing) did not

display a sharp drop when switching to the non-cued Experiment 1 (M =32.18, SD =32.37,p =

.04). This interaction manifests as shown in Figure 32.

Collapsed S-SWAT

Cued First Non Cued First Cued First Non Cued First

NonCued Cued

Cueing/Presentation Order

Figure 32. Interaction between S-SWAT and presentation order. Error bars represent Standard
Error.
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The further interaction between Presentation Order, Cueing, and the individual facets of
the S-SWAT was not significant, F(2, 56) = .47, p = .63, f=.13. Means and standard deviations
for the individual facets of the S-SWAT by Presentation Order and Cueing Status are given in

Table 6.

Table 6. S-SSWAT score by presentation order and cueing status.

Presentation Order Cue Facet Mean SD
Non Cued First Non-Cued Time 2499 24.16
Mental Effort 32.09 25.30
Stress 19.35 18.52
Cued Time 19.11 18.29
Mental Effort 22.60 19.54
Stress 13.26 18.10
Cued First Non-Cued Time 28.07 35.96
Mental Effort 32.21 33.84
Stress 21.41 24.36
Cued Time 32.17 36.05
Mental Effort 36.13 36.34
Stress 28.25 28.32

An interaction between the measures of driver performance and presentation order was
present as well. For speed, F(1, 24) = 11.305, p = .003, f = .69, this interaction appeared as a
trend with no significant speed differences between cued performance, regardless of whether the
participant experienced cued driving first (M = 32.00mph, SD = 3.72) or second (M = 31.52mph,
SD = 4.30). However, speed for driving under non-cued conditions was dependent on whether
they experienced cueing (M = 30.28mph, SD = 4.56) or non-cued driving (M = 27.47mph, SD =
3.06) first (see Figure 33). This interaction also was present in accelerator actuation, F(1, 24) =

10.021, p =.004, f = .65. Drivers experiencing the non-cued Experiment 1 first demonstrated less
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use of the throttle whether under cued (M = 9.99, SD = 1.90) or non-cued (M = 9.60, SD = 1.83)
conditions. Those experiencing the cued Experiment 2 first used the accelerator more under both
cued (M =10.22, SD = 1.62) and non-cued (M = 10.69, SD = 2.00) conditions. No similar trend

in this interaction was present in braking, F(1, 24) =2.595, p = .120, f=.33.
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Figure 33. Speed by presentation order. Asterisks indicate a difference at p = .05.
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Figure 34. Brake actuation by presentation order.
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Figure 35. Accelerator actuation by presentation order.
Table 7. Driver measures by presentation order and cueing status
Presentation Order Cueing Variable Mean SD
Cued First Non-Cued Speed  30.28 4.56
Braking 1.45 0.47
Acceleration 10.69 2.00
Cued Speed  32.00 3.72
Braking 1.15 0.25
Acceleration 10.22 1.62
Non Cued First Non-Cued Speed  27.47 3.06
Braking 1.53 0.66
Acceleration 9.60 1.83
Cued Speed  31.52 4.30
Braking 1.09 0.61
Acceleration 9.99 1.90

Note: Speed is given in mph, braking and acceleration figures are actuation measures and arbitrary to
the simulator.

Summary of Experiment Two
Partial support for the second hypothesis was obtained. This was evident in the objective

data recorded from drivers. Although no clear trends emerged from the mental workload data, a
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direct increase in the amounts of and variability in objective measures of driver behavior

provides partial supports Hypothesis 2.
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CHAPTER SIX: GENERAL DISCUSSION
The results from the first experiment provide a degree of support for the hypothesis that

hysteresis effects occur in driving. Of the possibilities present in transitions of mental workload
(illustrated in Figure 36), the obtained data portrays a scenario between a moderate and strong
hysteresis effect. Although there was a significant drop in perceived mental workload between
the interval immediately following the in-vehicle navigation system failure and at the end of the
trial, this latter difference was still significantly higher than that observed at the beginning of the
trial. Although this effect was observed in every trial, the magnitude of the individual effect did
decrease to some degree over the course of the four sequential trials. This could be viewed as

participants either habituating to the nature and demands of the task, or that a learning effect

occurring.
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Figure 36. Variations of mental workload across time.

69



The sex differences present in the mental workload data indicate that females experience
a higher degree of perceived mental workload in relation to the task than their male counterparts.
Females reported significantly higher scores on every facet of the S-SWAT. However, this may
be due to implicit gender differences (such as those observed by Hancock, 1989), or through
some other factor such as boredom in the task (Hancock & Warm, 1989; Hancock, Vercruyssen,
& Rodenburg, 1992). However, it is also a possibility that females were either more forthcoming
in reporting their actual levels of psychological stress, time demand, and mental effort, or that
males were performing some form of self-censoring (Williams, Satterwhite, & Best, 1999).

Interestingly, no significant differences between the sexes were present in the objective
measures of driving (i.e., speed, brake and accelerator actuation). Although it could be argued
that males drive differently than females (Storie, 1977, Mannering, 1993), this difference is
likely due to factors such as an increased likelihood of males driving at times and conditions
involving a higher degree of risk (Deffenbacher, 2008), or in more aggressively in general
(Hennessy, Wiesenthal, Wickens, & Lustman, 2004). As described by Evans (1991), there is a
known difference between the sexes in terms of accident involvement. However, this relationship
1s not straightforward, as questions about what the exact cause of these differences are remain
(Hancock & Manser, 1997). However, in the present study, no significant differences were
present between the sexes in the objective driving metrics, an observation which parallels the
findings of earlier work performed by Hancock, Kane, Scallen, & Albinson (2002).

The general decrease in mean mental workload across trials is not entirely unexpected.
Although there was a rapid decrease in global scores from trial one (M = 32.54, SD = 7.12) to
trial three (M =22.10, SD = 5.70), the change between trial three and four (M =21.53, SD =

5.72) was not significant. This general form of transition is indicative of a learning effect, or
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habituation to the task. As the participants completed each trial they became more familiar with
the routine which was required of them, more familiar with the driving simulator and navigation
system, and more familiar with reporting data for the S-SWAT. These results seemingly
demonstrate an effect such as learning or habituation to the task rather than a floor effect, per se,
partially due to the regular temporal characteristics of the trials (see Scerbo, Warm, & Fisk,
1987). 1t is likely that any hypothetical subsequent trials would thus show very little variation
from trials three and four.

The changes present within the mental workload data within the trials are supportive of
the hypothesis that a hysteresis effect is present within the driving task. The sharp increase in
perceived mental workload observed from the first measurement period to the second, followed
by only a slight (non-significant) decrease from the second measurement period to the end of the
drive, supports hysteresis as described by Farrell (1999). The form of this inverted-U shaped
mental workload function is not entirely unlike those observed by previous researchers
examining hysteresis effects (Chamberlain, 1968; Cumming & Croft, 1973; Golberg & Stewart,
1980) and workload transitions in more elaborate tasks such as ATC scenarios (Smolensky,
1990; Hancock, Williams, Manning, & Miyake, 1995).

The variations in the individual facets of the S-SWAT indicated that perceived levels of
time demand and mental effort were statistically equivalent within the trials. These two facets of
the scale were both observed to be higher than the reported levels of stress within trials, however
only the difference between mental effort and stress was significant. This does not seem to
indicate any sharp differentiation between the S-SWAT and SWAT’s conceptualization of
workload for this particular driving task. Although the individual subscales of the

multidimensional S-SWAT was of particular interest in this study, it appears that any subsequent

71



investigations could likely use a unidimensional scale of workload which should prove more
sensitive to finer variations within the task (Hendy, Hamilton, & Landry, 1993; De Waard,
1996).

Driver measures also demonstrated a hysteretic effect within trials. Although speed
increased significantly from pre-failure to the second measurement period (immediately post-
failure), this difference is explained by the nature and demands of the driving task. Lower speeds
were required in the beginning of the drive than in the middle due to the initial turns out of the
parking lot from which the drivers began their journey. This makes speed a problematic measure
for hysteresis here, although it still provides a good overall measure of compliance with the
instructions of the driving task as participants were instructed to drive normally and at the posted
speed. The fact that participants did not show an even speed across trials indicates they were
compliant with the task instructions. Brake actuation, as a measure of longitudinal control,
provides a more comprehensive view of this effect (Stanton, Young, Walker, Turner, & Randle,
2001; Verwey, 2001). The mean level of brake actuation increased after the navigation system
failure and remained high throughout the drive. This hysteretic effect is also demonstrated by the
increases in the variance observed in braking. Brake actuation standard deviation increased from
the point of failure and remained high through the end of the drive.

In the second experiment the hypothesis was examined that cueing to an impending
period of higher task demand could reduce the magnitude of hysteretic effects. In order to most
efficiently and effectively accomplish this, and due to pragmatic concerns, a combination of
within subjects designs was chosen. The order of presentation between these two experiments
was counterbalanced, allowing for the assessment of order effects. Although the omnibus

ANOVAs for order effects in the mental workload and driving data was not significant, a
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significant order of experiment by cueing interaction was present within the driving data and the
obtained measures of driver performance. Thus the starting point for drivers’ experience with
cueing in this study was a major determinant of how cueing impacted their performance and
subjective ratings of the workload involved with the task.

No significant differences were present in mental workload data in response to cued
versus non-cued conditions. No significant variations in the individual scales of the S-SWAT
were observed in cued versus non-cued conditions. Only slight and non-significant reductions in
time demand and mental effort were observed due to cueing. This is not entirely unexpected, as
cueing has a rather complex relationship to task performance (Hawkins, Hillard, Luck, Mouloua,
Downing, & Woodward, 1990; Luck, Hillyard, Mouloua, & Hawkins, 1996). In fact, this
relationship between cueing and performance seems to suggest that the process operates on a
perceptual levels instead of a memory/cognitive level (Luck, Hillyard, Mouloua, Woldorff,
Clark, & Hawkins, 1994). However, the lack of support for the cueing-hysteresis hypothesis does
provide additional support for Smolensky’s (1990) idea of a Short Term Memory overload as the
hysteretic mechanism.

Of the two theorized mechanisms of the hysteresis effect (continuity of expectations and
Short Term Memory overload), the presence of a cueing factor in hysteresis would provide
clearer evidence for the expectancies mechanism. Drivers able to follow a cue would be able to
shift their operating strategies in response to shifts in task demand, remaining in an optimal
strategy and eliminating hysteretic effects. This effect was not observed in the present study; the
expectancies hypothesis is thus not supported by the present results. One possible source of
evidence supporting this mechanism is explanation for this phenomena is that an effect of

insensitivity to subsequent task performance was observed after the driver switched from the
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primary task of vehicle operations to the secondary task of operating the navigational system.
Perhaps the drivers in the present study were simply unable to perform the resource allocation
shift required to maintain task performance (Navon & Gopher, 1979) and the shift in perceived
mental workload is in reaction to this.

The differences in driver measures due to cueing is illustrative. Drivers in this study
traveled significantly faster in cued versus non-cued conditions. It is likely that drivers were able
to travel faster due to the reduction in uncertainty associated with cueing to possible failures in
their navigation device. This idea gains further support when the braking actuation results are
examined in detail. Drivers in the non-cued conditions required significantly higher brake
actuation magnitude than when they were driving under cued conditions. Furthermore, the brake
actuation variance observed in non-cued conditions was significantly greater than that under
cued driving. In these driving scenarios, cueing was able to reduce the demands on the drivers
and allow them to control their automobile in a more constant and consistent manner.

The interaction between administration order and cueing present in this data presents an
interesting scenario. Under non-cued conditions, drivers reported statistically equivalent mental
workload regardless of whether they began the two experiments with cued or non-cued driving.
However, under cued driving those who had experienced non-cued driving first benefitted more
from the cueing. The benefit (in terms of reduced mental workload) that drivers obtained from
cueing was strongest if it was introduced after they had experienced driving without the cue.

This interaction held for the measures of driver performance as well. The measures of
speed obtained demonstrated that drivers traveled at equal speed under cued conditions,
regardless of which experiment they began driving in. However, driving under non-cued

conditions produced higher speeds for those who had experienced cueing first. The measures of
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accelerator actuation indicated that drivers who experienced cueing first provided more throttle
inputs to the vehicle in both cued and non-cued conditions. Drivers who had experienced the
non-cued driving first applied the throttle less. Thus benefits from cueing were obtained in terms
of more consistent performance, even after the cueing ceased.

Although there was no significant effect for cueing on perceived mental workload, the
measured aspects of driver performance were significant. Additionally, the data within the
interaction between the order which the participants experienced cueing and mental workload
and driver performance indicates that cueing may provide some benefit to drivers. Perhaps this
observed effect is a operating as a process of expectancy (Vroom, 1964). Drivers expectations of
events following the cue, and the associated change in self-reported measures of workload
associated with these, would act as the primary explanatory factor of performance after each
driver received the cue’s information. Although the hypothesis that cueing will eliminate (or at
least lessen the magnitude of) the hysteresis effect in driving was not supported, the results
provides evidence that cueing may have some relationship to workload history effects.

This may be viewed as partial support for the hypothesis that hysteresis operates through
a process of overloading short term memory. The overall reduction in both objective and
subjective measures observed in the first experiment support this, and the lag in subjective
workload scores returning to nominal (pre-failure) levels is the reaction to the overloading of the
participant’s available capacity (as described by Kahneman, 1973). Likewise, the increase in
magnitude of braking actuations is an objective manifestation of this process of demand
exceeding capacity. Although others (Smolensky, 1990) did not find clear support for the idea

that hysteresis is a process of exceeding the capacity of an individual’s short term memory (see

75



Goldberg & Stewart, 1980), the findings of the present experiment do lend some support to the
hypothesis.

One clear parallel to the idea of hysteresis as a process of short term memory overload,
and one that perhaps influenced Goldberg and Stewart’s hypothesis, is Norman and Bobrow’s
(1975) resource allocation theory. The idea of various programs competing for finite cognitive
resources allows for either data- or resource-limited processes. Most tasks shift from resource-
limited at an early stage to data-limited in later stages (Norman & Bobrow, 1975; and see
Kantowitz & Knight, 1976). The short term memory hypothesis of hysteresis appears to illustrate
the transitional period as a task moves from resource- to data-limited, and returns to resource-
limited operation. Although Norman and Bobrow illustrate the unidirectional shift in terms of the
performance-resource function, the reverse direction of this function is likely hysteretic. This
transition may also be viewed as a shift between a prospective and retrospective processing of
time (Michon & Jackson, 1985). As the drivers in this task were transitioning from the
attentionally driven prospective judgments to memory-driven retrospective processing (Block &

Zakay, 1997), the conversion from one resource to another is a lagged transition.
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CHAPTER SEVEN: PRACTICAL IMPLICATIONS, SUMMARY, AND
CONCLUSIONS

The question of what effects technology in the vehicle has on mental workload is a
common one (Michon, 1993, Verwey, 1993). This may well be anticipated since technology
almost always brings along questions of the impact on the human (Hancock, 1997). One salient
example that has been incorporated into modern thinking is that of the Luddites in 19™ century
Britain seeking to avoid employment losses from technologies (Binfield, 2004). Although the
advent of more modern in-vehicle technologies such as GPS, cellular telephones, and other
entertainment and information systems have raised many questions about their safe usage during
driving, specific questioning regarding the effect of new technologies on driver performance are
nothing new. Windshield wipers and radios faced similar questioning regarding their distraction
potential with their introduction to automobiles.

What has changed, however, is the nature by which people interact with these systems.
Whereas windshield wipers require infrequent input from the driver and radios are a
unidirectional form of communication, a navigation system constantly demands eye fixation time
from the driver. The cellular telephone not only asks for eye fixations, but also fine motor control
(See Fitts, 1954) and cognitive processing. In terms of Michon’s Model (1985), the strategy and
maneuvering levels are receiving interference from technology. This presents a potentially
dangerous situation, as is demonstrated by the increasing number of roadway accidents attributed
to driver distraction (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006).

Therefore, it becomes ever more important to understand the nature of perceived mental
workload which is associated with these tasks. Any reduction in overall capacity as a result

increases in driver mental workload due to technology-related factors may have serious
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consequences for the driver (DeWaard, 1996; Kantowitz, 1992, Wierwille & Eggemeier, 1993).
If increased task demands (presented by the introduction of new in-vehicle technologies) coupled
with an overall decrease in driver cognitive capacities (again, presented by the introduction of
new in-vehicle technologies) negatively impacts roadway safety, then it follows logically that a
better understanding workload transitions in these situations would prove beneficial. In fact,
many automakers have attempted to define levels of workload associated with the use of these
systems within vehicles. These systems are being examined for the immediate impact on levels
of driver workload (see Angell et al., 2006). However, an understanding of the impact in terms of
the immediate past history of the individual driver’s mental workload has not been accounted
for.

The presence of a hysteretic-type workload transition in the studies described show that
the history of task demand most likely has a strong effect on driver spare capacity well after the
reduction in demand. Although these studies were conducted in a simulation environment, it is
reasonably most likely safe to assume that the results extrapolate to the actual roadway
environment. Cueing findings indicate that workload management systems (Green, 2004) which
control the timing of non-essential messages presented to the driver may serve a beneficial role
in reducing hysteresis and any accompanying reduction in capacity. These results also point to
the necessity of future research in this domain, including further examinations of the impact of
more varied levels of task demand and scenarios.

The presence of hysteresis effects in driving also raises interesting questions in regards to
resource theories (Kahneman, 1973; Navon & Gopher, 1979; Wickens, 1980). These theories
(especially Wickens’s Multiple Resource Theory) posit a mechanism of inputs, processing, and

outputs where demand is modulated by the relationship of task to response modality. Although
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some research has pointed out that emotional states may also serve as a modulating factor in this
relationship (Hancock, Szalma, & Oron-Gilad, 2005), hyteresis implies that context and history
also serve as a controlling variable. The constraints hysteresis places on Multiple Resource
Theory would likely restrict encoding and central processing, explaining the increased variability
and negative impacts seen in driver performance during the present study.

A way to examine the impacts of hysteresis on safety is by viewing hysteresis in the
larger framework of Gibson and Crooks’s field of safe travel (1938). As Gibson and Crooks
discussed, when the driver travels along the roadway a spatial-temporal area in which (relative)
levels of safe vehicular travel is assumed is present (and see Hancock & Diaz, 2002). The driver
adjusts this spatiotemporal field as he or she travels, with factors such as traffic, speed, and
uncertainty serving to either expand or constrict the field. Hysteresis may provide further
definition of how drivers are dynamically defining their field of safe travel. The current context
of driving (through uncertainty) serves to constrain the field. However, the history of the driver’s
field of safe travel should also moderate the current state of the field. If a driver travels through a
series of intersections and then onto a clear and wide roadway, hysteresis should continue to
constrain their field of safe travel for some time. Likewise, a driver traveling from a clear and
open roadway into a series of intersections may be consciously aware of the shift in environment,
however a lagging shift may be present in their operation strategy. Thus, their field of safe travel
would remain inappropriately large. This leads to a scenario

One salient example of where a better understanding of hysteresis effects in driving
safety is the need to better understand how drivers process information from displays which are
becoming increasingly prevalent in modern vehicles (commercial and otherwise). These displays

are taking the form of GPS-linked navigation systems, messaging and phone system, and
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secondary control systems (such as the BMW iDrive system). To some extent these systems have
been explored in terms of impact on the driver (Verwey, 1993). Additionally, systems such as
Generic Intelligent Driver Support (GIDS; Michon, 1993) attempt to mitigate the task demand
placed upon the driver by controlling the sequencing and presentation of information to drivers
based on the context of the driving task. Understanding context is of great importance in
presenting information to drivers in a less taxing manner. These systems must carry context
forward with the understanding that the human has a memory for not only bits of information,
but also for the workload associated with their use combined with the task of safely controlling
the vehicle.

Therefore it is imperative that future systems include some manner of accommodating the
immediate past as well as the immediate present demands from the driver. Such systems can
provide cognitive load-leveling for the driver and allow for the accommodated by scaling
information presentation to not only the immediate temporal demands (a driver traveling through
New York City while talking on a mobile phone), but also the history of the drive (a driver
traveling through New York City while talking on a mobile phone who had just made an
emergency avoidance maneuver to avoid a pedestrian).

Thus my recommendations for advanced designs for modern driving cognitive load-
leveling technologies are as follows:

¢ Account for the immediate past history when adjusting for driving context
¢ Reduce message transmission rate after a high demand situation
¢ Provide highly reliable cues to upcoming high demand situations

It appears that hysteresis effects are present in the driving task, very similar in form to
those described by Cumming and Croft (1973), Goldberg and Stewart (1980), Farrell (1999), and

others in tasks restricted to more direct forms of human information processing. This has interest
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to a wide range of topics within surface transportation, from those dealing directly with the
driver as an information processor to broader questions about safety. Future research and
applications seeking to better understand the impact that contextual history has on driver mental
workload and performance should have an immediate and direct impact on the overall safety and

efficiency of surface transportation.
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APPENDIX A: DRIVER COPING QUESTIONNAIRE
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DCQ

These gquestons are concermed with bow you usually deal with driving when it is diffioalt, stressful or upsetting. Think of those occasions
donng the last vear when dnving was parcoularly smessful. Perhsps you nearly bad an accdent, or vou were stock nos maffic jam, or vou
hzd o dizve for 8 long time m poaor visibility and beavy maffic. Use your expenences of drving durmg the last vear to ndicate bow mach
you usually ensage in the following actrvities when drving is difficult, swessfal or npsemng, by CIRCLING ooe of the numbers fom 0
5 to the nght of esch questdon.
Kot arall Very nmch
Eelievad my feelings by rakmg msks of drivimg fast i
{Cheerad mysalf up by thinking shout things unrelated w the drive
Smyed detached or distanced from the simaton
Tried to make other drivers more sware of me by dovinz close behing them
Wisked that I was a more confident and forcefitl drver
Iznored my feelings about the drive
Wade sure I avoided reckless or impulsive sctions L1
. Showed other drivers what I thoughs of them )
Dirove asserdvely or aggrassivaly g
13, Trzed to gain something worthwhile fom the drive (]
11. Showed other drvers I was in confrol of the simation ]
12. Made an exma effort o dove safely (4]
13. Felr that I'was becoming a more expensnced dover L4
14. hizde an effort to stay calm and relazed a
15, Swore ar other ddvers {alond or sulanthy) o
1&: Thought shour zood times Tve had 4]
17. Wished that I found dnving more enjoyable o
18. Made sue Tkepr x safe distence foomn the car mn front L]
(]
4]
(]
0
]

L)

N
L= - R
Uy L W Lh L Lh

i oea
Lh LA LN LM LR LY

15, Went on 25 if nothing had happened

20 Befused 1o believe thar spything unpleasant had happenad

21, Told nuysalf there wasa't really any problem

22 Let other drvers know they were at fmili

23 Crincized myself for nor doving bettar

24, Thought about the consaguences of hawing an accident LH

25 Flashed the car lights or used the horp in muzer 1]

28, Felt I'was leaming how to cope with strass ]

27. Delibezately slowed down when I mer a diffioult maffic sinaton or (4]
bad weathar

28 Made a special effort to look out for hazards

23 Blamed mysalf for gemng toe emoitonal or upset

30, Concenmated bard on what Thad to do next

31. Worriad sbour what I was goins to do naxr

32.Locked oo the drnve as 3 usefil expedence

33, Worriad showr toy shortesmings a5 2 driver

34, Thought about the benefies T would get Tom making the joumey

33, Leamt from ooy mistakes
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APPENDIX B: DRIVER STRESS INVENTORY
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DsI
Office use oely
Pleaze check one box oely unless otherwize indicated (do not wmite in bones sf 2ghtmarging.

Secnon &
1. Pleaze sfa1a wour 2ge In VEars:

2. Plessa stata your zendar: Mals D Femala D

3. Whar 15 your ighest educsnonal qualificatdon?

4. Blease state vOouo OCCUpALon:

3. Please state the vear when you abtained vour full doving Hrense: 19

&, About bow often do vou drive nowsdaysT
Evaryday |:| 2-3 davs 2 weak D Abour: once a week |:| Lass ofisn |:|

7. Estimnate roughly how mary miles vou personally have dnver in the past vear;
Lass than 5000 mulas I:l S000-10.000 milas |:| 10.000-15.000 mules |:|

15,0010-20,000 miles |:| Over 20,000 miles

£. Do yon drive 1o and from your place of work?
Eweryday D Most davs D Occasionally D Never D

2. Please state which of these types of road you use Sequently (check owe or more boxes 23 appropriae).
Freaways D Crther main roads D Urban roads D Country roads D

EDD DHHDDHE

1. Dhring the last three vears, how many miner road sccidents kave vou been involved m?
(A minor accedent 13 one in which no-one required mediczl mesnnent, AND costs of damage 1o vehicles and property
wera less than 38000

Fummber of minar accidents (if none, wrrea T

i

11. Dhng the [ast three years, how many major road accidents have you been involved in?

(A major accident ts one m which EITHER someone required madical meatment, OF costs of damage to vehucies and propery
were greater than 5800, or both).

Munber of major accident: (if mone. write 0}

12, Dumnmng the last three years, kave vou ever been convictad for

{a) Speedinz Tes : I:'
Mo L

(b} Careless or dangzerons driving Tes : |:|
Mo L

(ch Driving under influence of Yes : |:|
alcohiol or drugs o ]

(d) Otker moving vielstion Tes : |:|
- please specify; o L |
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Secoon B

Flezse answer the following questdons on the basis of vour wsnal or nepical feelings about dhving. Each quesnon asks vou ro answer
acoording to how soongly vou agres with one or other of toro abtemative snswears. Please read each of the nwo abfernatves carefully before
snswenng To answer, mark the horizontal line ar the pott which expresses your answer most acourately. Be sure 1o answer all the
quastions, even if somne of tham doa't seam to apply to vou very well: guess as best vou can if nead be.

Exsruple: Are vou 3 confidens driverT

The more confident you are. the closer to the ‘wery mach’ alsemative yon skould mark vour cross. If vou are quite a confidens deiver you
wonthd meark in like this:

i 2 3 4 5 68 T B
12 Do yona thunk it is wortlowhile mking nzks on the road?

-

—
e
i
o=

not at all | | i [ { i i [ | | vary much
0 I 2 3 + 5 g 7 8 z 1%
1. Dioes it worry vou to drive io bad weather?
very nmck | | | | | | not ar all
’ 2 3 + 3 | é ] 1|.J;'
2. T am disturbed by thoughts of having an accident or the car brezking down
vary ramely | | | | | | | vary offen
1 2 3 + i o] 7 B 2 1(!-
3. Dio yom lose your remmper when anothes driver does something silv?
not at all | I [ | I [ i | vary mnch
0 1 2 3 4 § ol T i B a
4. Do vou think vou have epongh expenence and maining to deal with rsky simanons on the mad safaly?
not azabl | 1 ] ] 1 1 ] very much 11
a 1 2 3. 4 5 1] T B 2 10
5.1 find myself wemanz about my mistakes and the things T do badly whea drivins
very rarely ] | ] ] ] ] I very ofien
I 2 3 4 5 g 7 8 2 1!‘
6. T'would like to sk my life a5 & racing drver
naoit At all | I I I I I ] | vary mch l:l:'
_ o4 I 2 3 4 3 b 7 8 2 10
7. My doving wonld be worsa than usual in an unfamilisr rental car
not ac all [ | | ] ] ] ] ] ] ] ] vary much
Q I 2 i 4 & & T B 2 1%
E. I sometmes ke 1o frighren noyself a linle while drving
varymmch | 1 I ] / ] ] ] I ] | notarall T
0 | O 3 4 5 1] T B g 10
2. T get 2 real thnill our of drving fast
very nuch | | | | | nod 8t 3
L 1 2 3 < 5 & 7 8 2 1".!{
1. I make a powt of carefully checking every sida road I pass for emerging vehiclas
vary mack | | { [ i | i [ | | notar sl
0 1 2 3 + 5 1] 7 g 2 10
11. Dreving brings ous the worst m peaple
wot at il | ] | veyomck [ ]|
vary nmch | I ] | I ] | not ar all
!J 1 1 3 + 5 § 7 8 2 141
13. At times, I fael like I really dislike other drivers who canse problems for me
very omchk | I | I I | | I | nof ar el
0 1 2 3 4 3 ] 7 8 a 10
14. Advice on doving frown 2 passenger i3 generally:
usefil | | 1 | ] TUNACELEATY
. a 1 2 3 < 5 & 7 3 2 10
15. T hike to raise nyy sdrensiina levals while driving
notatall | ] T ] I T i veymuch [
] I 2 3 + 5 1] 7 g 2 10

86

(=]



18, I's imperrant to show other drvers that they can't take advantazs of you

not arall I | | | | |
1 2 3 < 5 o] 7 B
17. Do you feel confident in vour sbility to avoid an accidens?

14 vary much

A

not ac afl [ [ [ [ [ | | very nuch
a 1 2 3 + 5 g 7 8 2 10
1E. Do vou usu.-.IJ\'uuke an affor o look for ]:II:I‘I:EEIJ:Ial liazards when dm.l:g“

notarall | i 1 ] ] ] ] | | vary mach
) 1 X 3 < 5 g 7 5 2 10
12, Dther drivers are geperally to blame for apy difficuloes T bave on the read
notarall [ I | ] | 1 ] 1 1 1 | VALV mch
] 1. 2 i 4 3 1] TR o 10
20, T would enjov driving a sports car oo & road with no speed-linyr
vary nrach | | | | (!. nof a5l
1 2 3 4 3 -] 7 B 2 1
21. Do vou find ir difficult to control wour temper when dnving?
vary orch | | I I | ] | I | not ar sl
L] 1 5 1] 7 B 3 10
12, When dr“:mg on an '.l.'.l.'EiIIl.ﬂJBJ 'J:ad {R.'. wou become more tense i nsual?
varyomch | 1 ] ] 1 not as sl
] 3 4 5 1] 7 8 g 10
23. Imake a special effart to ba sl aven on reads I know well
vary mach | | | I ] | I !. ot arall
I 2 3 4 3 1] 7 ] g 1
24, T enjoy the sepsanon of ac,.eleratmgz apidhy
ot at all L | | I I | (!' very mmich
I 2 3 4 & B g 1
25, If I make & minor mistake w“_'u!a drivmg, I feet 1t's mﬁmz I chould be concerned sbout
varymack | | I 1 | : | [ | | notat sl

a 1 8 2 ]
& I always keep an eye -:lnparxed CALE I £33 ﬂm&bﬁd{. =4 ot of them, or there ars radesmans belind

not atall | | | | | | | i | vty mnch
= Q I 2 3 4 5 ] 1 B g 10
27.1 feel more aoccionzs than wsnal when Thave = passenger m the car
not 8t all L | | | | | A vary much
0 1 2 3 B i T 8 g 1

28. I become annoyed i £ smother car fu:ﬂJm*c VELY c]u:lse-heh..mimm:— for some distance

vary mack | ] | [ i ] i ] I | ot arall
0 I 2 i 4 5 1] 7 i 2 10
28 I maka an effort to see what's happening oa the road 2 long way abesd of me

mavt ae all [ ] } ] ] ] ] ] ] ] | vary much
] I 2 3 4 5 .8 TR 2 10
30. T fry very hard fo look out for hazards ever when It's not stmcily necessary

mot ar all !J i | ] i ] é i J. vary mach
. 2 3 & 5 & 7 ¢ 1
31. Are vou usnally patisnt during the rush bour?

P2 3 4 5 6
32 When vou pass another vehicle Iil:l you feel in coumnnand a-f.hE simaation?

veary nmch L 14 nof ar all

o —|
-_m.. -

HHHHHHHHFHHHHHHHHHH

not at all | | | | | | | vary nuch
Q 1 2.3 - 5 g 7 3 2 12
33. Whea you pass amotbher velicls do vou feel tetse or nervouns?
not az all [ ] ] ] | i | ] 1 i | vary much
= @ 1 2 3 4 5 & 7 8 2 10
34. Dioes it ameoy you to droove behind 2 slow moving velacke?
vary omich !j | | | | | {!. not ag sl
1 3 3 4 5 1] 7 8 2 1
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35, When youw're in a kuory, other drivers usually get i youar way

not azall L| T I | [ ] [ I J] very much
0 1 2 3 - ] 1] 7 B 2 1

36 When I come 10 negotste a difficuls strerch of road, I am on the alem

varyomch | | | | | I ] not 8t 51
] 1 32 3 - 5 § 7 8 2 10

37, Do vom feel meore aoxiows than usual when driving in beavy maffic?

not gz all [ ] ] i | ] | | | | very mch
] 1 2 3 < 5 g 7 8 2 12

38. I enjoy comeering at high speed

notarall | ] | ] ] ] ] 1 1 | varv much
1] 1 2 3. oA 5 & 7 B 2 12

38, Age vou sumoved when the maffic lighee change to red when you spproach them”

vary nrach | | | (!. not a1 50

2 3 4 & § 7 8 2 1

40 Dioes driving wsaslhy make von fesl azoressive?

varymrack | | | [ I ] | | | not ar all
L] 1 2 3 - 5 1] 7 B g 10

41. Think about how vou fzel when vou have o drive for several howrs, wack faw or oo breaks fom dovieg. How do your Seelings change

dunng the course of the drove’
2} More nncomfortabls

i

f}ﬁ’ﬂ‘éﬁﬁfﬁ dacke S
by More drowsy or sleepy
T
) Mzintmin speed of reaction :
R
) Diamnrain amendon
o mad-sizus b o1 0+ 3 F 5 B % B b w0

g} ‘Wormal vision

f)  Increasinely difficult

HHGHHHE

Mo change

o change

Feactions to other
waffic increasingly
slory

Become moreasingly
inamentve to

road-sizns

Your vision becomas
Less clear

INormal jidgemant

to judze Vo speed I T of spee
T R |J 2 }-. 4 5 ] ¥ B o [E- s
g} Ioterestin drving does Increasingly bored
ot change |J [ L 1 I E I 1 and fed-up
£ ] - 3 8 B o 10
k}y  Passieg ?’f':'m?j“ ¥o change
increasingly sky 1 I I I I
awd dazzerons |ZI i 2 |5 3 3 6 ¥ & & '.I!l
Oiffice nse obky ) 1] cl dy &} f) 4] L)
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APPENDIX C: SIMULATOR SICKNESS QUESTIONNAIRE
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Simulator Sickness Questionnaire (55Q)

Diawveloped by Foben 5. Feanedy & colleagues nnder vadons projects. For sddinons] information contecr
Fobert 5. Eennedy, RSE Assessments, Inc., 1040 Woodceck Road, Suire 227, Orlando, FL 32803 (407 8045000

Subject Number: Date:

PEE-EXPOSURE BACKGROUND INFORMATION

1. How long has it been since your last exposure in 3 stmulator? days
How long has it been since your last flight in an amcrafi? days
How long has it been since your last voyage at sea? days
How long has it been since vour last exposure in 2 virtual enviromment? davs
2 What other expenience have vou had recently m a device with vnusual metion?
i How old are you? years
4. What is vour pender? (circle one) MATE FEMATE
PRE-EXPOSURE PHYSIOLOGICAL STATUS INFORMATION
£l Are vou m your ususl state of fitness? (Cizele one) YES  NO

If not, please indicate the reason

<, Have vou been il in the past week? (Circle ong) YES NO
If"Yes" please mdicate:
i) The nature of the illness (flu, cold. etc.):

) Severity of the liness: Very Very
Iitd Severe
c} Length ofillness: Hours / Days

) Major symptoms:
) Are you fully recovered? TYES NO

3 How nnch sleohel kave vou consumed during the past 24 hours?
__ 1Yoz canybotilesofbeer _ oumeeswine _ ocunces bard ligoor

6. Please mdicate all medicaton you have used m the past 24 hours. If none, check the
first line
a) NONE

b} Sedatives or ranguilizers

¢} Aspirin, Tylenol other analgesics
d)  Ann-histanumes

2} Decongestants

£} Other (specify):

T a) How many hours of sleep did vou get last night? hours
b} Was this amount sufficient? (Corele ome) YES NO
5. Please list any other conmments regarding vour present physical state which

mnght affect vour performance on our test battery.
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Insmuctions:

Please fill this out BEFORE vou go into the wvirmal enviromment.

Baseline (Pre) Exposure Symptom Checklist

symptom below 13 affecting you nght now.

Circle how mmch esach

# Svmptom Severity
1. (Gensral discomifor Mome | Slight | Moderate | Severe
% Fatiue Mone | Slight | Moderate | Severe
1 Boredom Wone [ Slight | Moderate | Severe
4 Drowsiness MNone | 3light | Moderate | Severe
I Headachs MNome | Slight | Moderate | Severe
g, Eye stram WNone | Slight | Moderste [ Severs
7. Difficulty focusing Mome | Sheht | Moderste | Severs
Za Salivation increased None | Shight | Moderate [ Severe
2h. Salivation decreazed Wone | Slight | Moderate | Severe
9. Sweating Mope | Slight | MModerste | Severs
10: MNausea Mome | Slight | Moderare | Severs
11. Difficulty concentrating Wome | Slight | Moderste | Severs
12 Mental depression Wome [ Slight | Moderate | Severe
i3, “Fullness of the head” Nome | Slight | Moderate | Severs
14. Blurred Vision Mone | Slight | Moderste | Severse
Ja. | Dizziness with eves-open Wome [ Slight | Moderate | Severs
153b. | Dizziness with eves closed | None | Slight | Moderae | Severe
16. *Vertizo Nome | Slight | Moderae [ Severe
7. **Wizual flashbacks Nome | Slight | Moderate | Severe
18. | Fammess None | Slight | Moderste [ Severs
18, | Aware of breathing Nome |Shght | Moderate [ Severs
20. **=Ctomach swareness Wone | Sheght | Moderate | Severe
21. | Loss of appetite Nome | Slight | Moderate | Severe
22, | Inereased appente Nope | Shight | Moderate [ Severs
25, Desirs to move bowels Mome | Slight | Moderare | Severs
24 Confuzion Wome | Slight | Modersie | Severe
23 Burping Wome | Slight | Moderate | Severe
J6. Vonuting Nome | Slight | Moderate | Severs
X7 Oither

# Verogo iz experienced as loss of orienranon with respact to vertical upright
¥ Vimaal illusion of movement of false sensations of movement, when pot In the somulztor, car, or Amwrcraft.
b Sromach awarenass is nsnally used 1o indicate 8 feslmg of discomfort which is st shom of nanzea.

STOF HERE! The test divector will tell you when to continue,
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POST 00 Minutes Exposure Svmptom Checklist

Instructions: Circle how nech each symiptom below 13 affeching you nizht now.

# Syvinptom Severity

B General discomfort Wome [ Slight | Moderate | Severe
2. Fatigue MNone | 3light | Moderate | Severe
3. Boredom Mope | Slight | Moderate | Severse
4. Drowsmess Wone | Slight | Moderate | Severe
k7 Headache Wope | Slight | Moderare [ Severe
f. Evye stramn Wone | Slight | Moderare | Severe
T. Difficulty focusing Nome | Slight | Moderase | Severe
23 Salivation mcreased Mome | Sheht | Modersie | Severs
8k, Salivation decreased Mome | Sheht | Moderare | Severe
g Sweating None | Slight | Moderate | Severe
10. Nauzez None | 3light | Moderare | Severe
11. | Difficulty concentrating Nope | Slight | Moderate [ Severs
12. Iviental depression Mome | Slhight | Moderste | Severs
13. “Fullness of the head” Wome | Slhight | Moderste | Severe
14. Blurred Vision Wome [ Shight | Moderate | Severe

133 | Dizziness with eves open MNome | 5lieht | Moderae | Severe
13b. | Dizzinesa with eves closed | Nome | Shght | Moderste | Severs

16: *WVertizo Wome [ Slight | Moderate | Severs
17. =*Wisual flashbacks Nome | Slight | Moderate | Severe
12. | Faintness None | Slight | Moderate [ Severe
18. | Aware of breatlung Nome | Slight | Moderase [ Severe
20, ***Stomach awarensss Nome [ Slight | Moderste | Severe
21. | Loss of appetite None | Slight | Moderate | Severe
22, | Increased appente Wone | Shight | Moderare [ Severe
23 Desire to move bowels Nome | Slight | Moderate [ Severe
M. Confusion Nope | Slight | Moderate | Severe
23. | Burping WNone | Slight | Moderste | Severs
26. Vomiting WNome |[Slght | Moderate | Severs
27 | Other

* Vertoge is experienced as los: of orieamton with respect to vertical npright
¥ Vsl ithuzion of movement or flse sencsanons of movement, when no: in the sinmiaior, car or sircref.
#+¢ Sromach swareness s usmally nved to indicate a feeling of discomfor: which is just shert of nausea

POST-EXPOSURE INFORMATION

While i the virtual enviromment, did you get the feeling of motion (1.e., did you expenence a compelling
zensation of self motion as though yon were actually moving)? (Civels ongl

TES NO SOMEWHAT
2. Onasecale of 1 (POOR) te 10 (EXCELLENT) rate your performance in the virnual emironment:

3. a Did any wnusnal events occur during your exposure” (Circle ongs YES NO
b. IfYES, please descnibe
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l. 3
{%&‘ University of Central Florida Institational Review Board
S Unbeersiy ol Office of Research & Commercialization
Ccnitral 12201 Research Parkway, Suite 501
Florida Orlando, Flarida 32826-3246

Telephone: 207-823-2001, 407-882-2001 or 407-882-2276

Notice of Expedited Initial Review and Approval

From : UCF Institutional Review Board
FWAMNDO0ISL, Exp. 50710, IREMO1138

To Justin F Maorgan

Dare - July 24, 2007

IRB ¥unher; SBE-B7-05101
Smudy Title: Dwiver responses to ambignons scenarios
Diear Pesearcher

Your research protocol noted above was approved by expedited reviewr by the UCF IRB Chair on 77242007, The expirafion date is
Tr23/2008. Your sdy was determined to be mmimal nsk for buman subjects and expeditable per federal regnlations, 45 CFR 446.110.
The catepory for which this smdy gualifies as expeditable research iz as folkows:

7. Besearch on individual or proup characteristics or behavior (incheding; but not limited to, research on perception,
cognition, momvation, identty, langueage communication, cultural belisfs or practices, and social behavior) or
research employing survey, inferview, oral history, focus gronp, program evalustion, bumsn fsctors evaluation, or
quality assuranre methodologies.

The IRE has approved a consent procedure which requires participants fo sign consent forms. Lse of the approved,
staraped consent documrent(s) is requited. Only epproved mwvestigatars (or other approved key study personnel) may
solicit consent for research participation. Subjects or their representatives st recedve a copry of the consent form{s).

Al data, which may include signed consent form documents, mmst be retamed in 8 locked file cabinet for 3 mminyom of
three years (soxif HIPA A spplies) past the completon of this resesrch. Any links o the identification of pardcpants
should be mamtsned on a password-protected computer if elecromic information is wsed. Additional requirenrents may
be imposed by your finding spency, your department, or other enfifies. Access to data is limibed to santorized
individuals listed as key smdy personnel

To continue this research beyond the expiraton date, 3 Continuing Review Form must be submimted 2 —4 wesks prior to

the expiration date Advize the IRB if vou receive a subpoens for the release of this mformation, or if 2 breach of confidentiality
occmrs, Also report any unanficipated problems or serions adverse events (within 5 working days). Do not make changes to the
prococol methodology of consent form before obtaining IRB approval. Changes can be submitted for IRE review nsing the
Addendum/Modification Request Form. An Addendum/Modification Fequest Form cannot be nsed to extend the spproval
period of 3 smdy. All forms may be completed and submitted coline st hetp:/firis research ncfedu .

Failure to provide a continming review report conld lead fo study smpension, a loss of fonding and/or publication
possibilities, or reporfing of noncompliance to sponsors or funding agencies. The [RB maintmins the suthority tnder
45 CFER.46.110{g) 10 observe or have a third party observe the consent process and the research,

On behalf of Tracy Dietz, Ph D, UCF IRE Chair, this lettes is sizned by:

Sipnanare apphed by Tanice Turchin on 07242007 11:33:05 AM EDT

MmM
D

IRE Coordinaror
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Intercorrelations between DSI Scores and Driver History

1. 2. 3. 4. 5. 6. 7. 8 9 10.

1. Driving

Frequency -- -41%* -.01 14 .10 .02 42% -25 .29 .19
2. Miles Driven

Per Year -- .01 .03 .34 25 -21 .04 -32 35
3. Minor

Accidents -- 13 17 37* 27 -.18 18 .08
4. Major

Accidents -- A43* 13 27 .05 -.04 -.14
5. Speeding

Tickets -- 18 .08 -22 -.14 27
6. Aggression -- O1%* -31 40%* 31
7. Dislike of

Driving -- -.34 JITE* -.07
8. Hazard

Monitoring -- -34 -.08
9. Fatigue

Proneness -- -.04

10. Thrill Seeking

*p <.05 (2-tailed), ** p < .01 (2-tailed)
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APPENDIX F: DCQ-DRIVER HISTORY CORRELATIONS
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Intercorrelations between DCQ and Driver History

1. 3. 4. 5. 6. 7. 8. 9. 10.
1. Driving Frequency - -41% -.01 .14 .10 -.08 -.02 25 .01 -.05
2. Miles Driven Per Year -- .01 .03 .34 .09 -.33 -17 .00 31
3. Minor Accidents -- 13 17 A45%* -.13 ATE* .30 .14
4. Major Accidents -- 43%* .06 .09 25 13 17
5. Speeding Tickets -- 24 -45%* .10 -.04 15
6. Confrontive Coping -- -.44%* OT** 22 49%*
7. Task Focus -- -.11 A44% -.24
8.  Emotion Focus -- 27 50%*
9. Reappraisal -- .03

10. Avoidance

*p <.05 (2-tailed), ** p < .01 (2-tailed)
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APPENDIX G: DRIVER MENTAL WORKLOAD ACROSS BASELINE
TRIALS
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Introduction

Some researchers have noted an increase in subjective mental workload across periods of
time in vigilance type tasks. For instance, Dember, Warm, Nelson, Simons, Hancock, &
Gluckman (1993) found a 3.2 unit increase in subjective rating of mental workload (using the
NASA TLX) over every 10 minutes on watch. Other researchers have noted similar positive-
leading trends in subscales of the NASA TLX (Szalma, Warm, Matthews, Dember, Weiler,
Meier, & Eggemeier, 2004). The presence of such effects in certain tasks necesate the
examination of driver’s mental workload across basal tasks, especially since driving across
extended periods may lead to the drop in task performance characteristic of vigilance decrements
(Davies & Parasuraman, 1982).

In order to test for such an effect, 10 drivers from the University of Central Florida’s
undergraduate student population served as participants in this study. The 5 males had an
average age of 19.0 years (SD = 0.7) and had held their driver’s license 3.8 years on average (SD
= 0.84). The 5 females in the study had an average age of 20.2 years (SD = 1.3) and had held
their driver’s license 4.2 years on average (SD = 1.1). The experimental apparatus described in
Experiments 1 and 2 was used, with the modification that no failure or cue to possible failure
was given via the heads-up display (HUD). Participants completed a series of four trials
corresponding to those used in Experiment 2. Subjective measures of mental workload (using the

S-SWAT) were recorded at the same points within the drive as used in Experiment 2.

Results
A repeated measures Analysis of Variance (ANOVA) was performed on the collected
scores. The effect of trial (4), measurement time (3), and scale facet (3) on participants’

subjective mental workload was assessed. A significant change in driver’s mental workload was
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observed across trials, F(3,24) =3.92, p = .02. This effect was present as a significant decrease in
S-SWAT scores across the individual trials (see Table X). No significant effects were present

within trials.

Table 8. Repeated Measures ANOVA.

Source df (Hypothesis)  df (Error) F P
Sex 1 8 6.57 <.0005
Workload Across Trials 3 24 3.92 .021
Workload Within Trials 2 16 916 420
S-SWAT Subscales 2 16 3.90 .042
Note: N = 10.

Table 9. Cell means and standard deviations for base trials.

Sex Measure Mean SD
Female Across Trials
1 20.42 11.54
2 14.51 4.11
3 14.09 5.97
4 7.11 7.65
Within Trials
1 16.23 12.27
2 17.62 7.76
3 8.25 7.83
Male Across Trials
1 28.33 21.36
2 25.11 17.27
3 29.73 14.59
4 25.07 14.07
Within Trials
1 22.30 19.99
2 29.55 14.59
3 29.33 22.32
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Figure 37. The individual facets of the S-SWAT displayed a similar trend across trials. Error bars
represent Standard Error.
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Figure 38. S-SWAT scores across trials.
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Figure 39. S-SWAT scores within the trials. Error bars represent Standard Error.
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Figure 40. S-SWAT facets within the trials.
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