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ABSTRACT 
 
 

This dissertation presents two studies examining the interaction between workload 

history and driver mental workload. The first experiment focuses on testing for the presence of a 

hysteresis effect in the driving task. The second experiment examines the proposition that cueing 

impending periods of higher task demand can reduce the impact of any such potential hysteresis 

effects. Thirty-two licensed drivers served as participants and all served in both studies. Using 

the directions provided by a Heads-Up-Display navigation system, participants followed a pre-

set route in the simulated environment. At specified points within the drive, the navigation 

system would purposefully fail which required drivers to relay a ten digit alphanumeric error 

code to a remote operator in order to reset the system. Results indicated that this increase in task 

demand from the navigation system’s failure leads to a significant increase in perceived mental 

workload as compared to pre-failure periods. This increase in driver mental workload was not 

significantly reduced by the time the drive ended, indicating the presence of a hysteresis effect. 

In the second experiment, the navigation system provided a completely reliable visual warning 

before failure. Results indicate that cueing had neither an effect on perceived mental workload, 

nor any ameliorating effect on the hysteretic type effect seen in mental workload recovery. The 

conclusion of these findings being that the overall safety and efficiency of the surface 

transportation system would likely improve by designs which accommodate the periods 

immediately following a reduction in stress. Whether from leaving high demand areas such as 

work zones or in the period immediately after using a in-car information device such as a GPS or 

a cell phone, these post-high workload periods are associated with increased variability in driver 

inputs and levels of mental workload.   
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CHAPTER ONE: INTRODUCTION 
 

Mental workload is a concept that has been studied in many operational domains, in the 

context of both applied and theoretical investigations (Moray, 1979; Gopher & Donchin, 1986; 

Kantowitz, 1987; Hancock & Meshkati, 1988). Although the examination of mental workload 

within the driving domain has been predicted upon both the continuous nature of driving and the 

extreme degree of variability encountered in seemingly “normal” driving (Fuller & Santos, 

2002), one area in which driver mental workload research is comparably sparse is in workload 

transitions (Huey & Wickens, 1993). This relative lack of attention to these frequent transitions 

involved in driver mental workload has immediate practical implications for the motoring public 

in terms of the number of accidents, financial savings, and highway efficiency (Evans, 2004).  

The concept of mental workload itself began to gain importance in the middle part of the 

previous century with early theories of attention and human capacity limitations such as that 

proposed by Broadbent (1958). Broadbent himself offered a model of attention with filtered 

information being manipulated and used by channels with limited capacity. Early understanding 

of mental workload may be viewed as the inverse of the capacity within such a system 

(Kantowitz, 1987). Mental workload represents the amount of loading on the human as an 

operator. Also key to this relationship between the concept of mental workload and spare 

capacity within the operator is the idea of task demand (Kahneman, 1973). Task demand may be 

viewed as the requirements which the operator’s task is placing upon the operator at any singular 

moment in time (Kantowitz, 1987). Demand may also be defined as the goal which must be 

attained through performance on the task (DeWaard, 1996). Therefore, the major aspects which 

we must examine in order to determine workload are at what level the operator’s capacity is 

being tapped; and by what level of demand from the task. 
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One extension of the research being performed in mental workload evaluation is the 

hysteresis effect. Defined as performance deteriorations during the transition from high demand 

levels to lower demand levels (Farrell, 1999), the hysteresis effect may be demonstrated in a 

variety of tasks. Early researchers focused on simple shadowing and memory-based tasks 

(Cumming & Croft, 1968), while later the effect was demonstrated in the more complex tracking 

environments which typified the work of Pilots and the Air Traffic Controllers (Hancock, 

Williams, Manning, & Miyake, 1995; Smolensky, 1990). Although the hysteresis effect has been 

demonstrated in these experimental tasks and settings, the effect has yet to be demonstrated or 

explained within the driving domain.  

Perhaps the only instance of the effect being described in driving research is the study 

reported by Chamberlain (1968), who noted the difference in accident rates for vehicles leaving 

versus entering an intersection. Although the high demand of entering an intersection (with the 

accompanying estimations required, such as gap acceptance, see Morgan & Hancock, 2008) was 

reduced, accident rates were greater upon exiting the intersection. This real-world 

epidemiological evidence gives credence to the idea of hysteresis in on-road driving, but as yet 

no such effect has been demonstrated within realms of experimental control. It is therefore the 

purpose of this dissertation to examine whether or not a hysteresis performance/task demand 

interaction effect may be observed in the driving simulation, and if so, by which hypothesized 

mechanism such effect is driven. 

The impact of such an effect has the potential to positively affect the 

driver/vehicle/roadway system in terms of safety by helping us better understand how the 

driver’s own attentional capacities are moderated by workload history (see also Shinar, 1978). 

Although the driver’s individual characteristics and perceptual abilities are constantly monitoring 
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the environment and the automobile’s own display systems, increases in driver workload may 

eventually manifest as a failure (in some form of collision or accident).  Besides the more 

proximal impact of workload history and hysteresis on safety, there exists the possibility to 

enhance driver education and training. Although driving is a skill in which most of the adult 

population of any developed country has already established abilities in (Hancock & Scallen, 

1999), the situations and scenarios encountered by drivers are constantly changing and requiring 

exposure to maintain the driver’s abilities and knowledge  (Groeger, 2000). However, workload 

history may present interference in the learning or maintenance of such skills. The possibility of 

training to help ameliorate any hysteresis effects present has the distinct possibility of increasing 

the effectiveness and efficiency of all driver training.  

The exploration of the hysteresis effect, in the form of workload history, has the potential 

to be an informative area within the driving domain. The proposed experiments present a course 

which will demonstrate if such an effect is present in a common driving task, and if so to what 

degree it may be offset through cueing. Additionally, the impacts of hysteresis on driver 

performance are examined. These experiments seek to provide an overall view of the hysteresis 

effect within driving, and suggest courses of future research in driver mental workload and driver 

safety.  
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CHAPTER TWO: REVIEW OF LITERATURE 
 

Information Processing 

 From the birth of cognitive psychology, attempts were made to generate a both useful and 

theoretically valid analogy for the workings of the mind. One of the more commonly used 

metaphors to emerge from this period was that of the human as a computer, or information 

processor (Shannon, 1948). This, and the Information Processing domain that arose, proved to be 

a robust metaphor for the explanation of human behavior and reactions for years to come.  

Information Processing refers to the processes within the person which allow for the intake, 

manipulation, and output of information relevant to a task within their environment, much as a 

computer takes input from the user, manipulates it, and produces some output. These theories 

also attempt to account for the limits of the human in terms of task performance which was noted 

by researchers of the time (Miller, 1956).  

 Over time, multiple theories have been proposed to describe or to quantify in practice the 

operations of human information processing system. One of the earliest was presented by 

Broadbent (1958) whose filter theory attempted to explain the phenomena of how some 

information seems to pass through to consciousness and other discrete pieces of information are 

filtered out. This is accomplished in Broadbent’s model by having information filtering occur 

before information processing. Attention serves as a selective channel which allows only one 

discrete stream of information to enter short term memory and be processed.  

 Another theory of derived from Broadbent’s early work was that of Treisman (1960, 

1964), who pointed out many pragmatic issues and concerns with Broadbent’s (single) filter 

theory such as evidence suggesting that the meaning of information could affect processing. 
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Using tasks similar to those used by Broadbent and his predecessors, Treisman found that people 

were able to attend to certain aspects of multiple channels of information. Broadbent’s early 

selection single filter theory could not adequately explain these findings. Treisman’s resulting 

model suggested that filtering occurs after the information had been attended to. Recent 

neuropsychological research has provided stronger support for attenuation type theories of 

attention (summarized in Driver, 2001). 

 Triesman’s theory was expanded by Deutsch and Deutsch (1963) and Norman (1968), 

resulting in models of attention wherein almost all ambient information is processed, and 

filtering occurs by attending only to pertinent stimuli. Such pertinent information can include 

such things as personally or professionally relevant information. Hence, a more robust 

explanation for the “cocktail party effect” first noted by Cherry (1953). Even though such 

models of attention and information processing did describe the limited nature of human 

abilities, they only approached the matter in an implicit nature. One of the first models to 

explicitly describe limited capacities in the human information processor was Knowles (1963), 

who describe attention as a pool of attentional resource reserves. Knowles’s model is unique for 

being one of the first such models able to veridically describe dual-task processing; this 

conceptualization allowed for distributed resources and the ideas of multiple, and separate, 

capacities which evolved from it.  

Multiple Capacities and Resources 

Kahneman (1973) extended the idea of attentional resources by stating that a single 

resource pool existed which allows for multiple tasks to share the same resources. This was later 

refined by researchers such as Navon and Gopher (1979) and  Wickens (1980) to include task-

specific pools of attention. Navon and Gopher’s conceptualization of resource pools assumed 
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that dual tasks were processed in a parallel fashion. This allowed for two tasks not requiring the 

same cognitive capacities to be completed in a parallel, simultaneous, fashion. Wickens’s 

implementation of the theory better allowed for explanations of dual task performance when 

varying sensory modalities are in use, such as performance two auditory tasks versus an auditory 

task with a visual task (See Figure 1). 

 

Figure 1. Wickens’s Multiple Resource Theory. (Wickens, 1980) 

Later refinements of the Multiple Resource Theory of attentional processes (Wickens, 

2002), viewed attention as part of an overall finite Multiple Resource Theory. This MRT system 

differentiates between types of input information (auditory, visual) and response modality 

(verbal, manual). Thus, the demand on a system, i.e. the interference, is in part modulated by the 

relationship between the task and response modality. However, the modalities and task difficulty 

are not the only moderating factors. For instance, such systems may be regulated by one’s own 

emotional states and expectations regarding the scenario (Hancock, Szalma, & Oron-Gilad, 



 7 

2005). These moderating factors within the model lead to limits in the human’s capacities, 

especially in response to such continuous control, variable demand, tasks like driving. 

Limited Mental Resources and Driving 

This produces the conclusion that although information processing abilities are limited 

and often divided, the functional limits of human capacities are rarely encountered and even 

more rarely exceeded. Thus, the question changes from being how driver performance is affected 

at the limits to how the driving performance of the human is affected by the dynamic nature of 

the individual task loadings which are present. The driver is not just engaged in control of an 

automobile, but frequently in navigation, signal detection, communication, and several other 

tasks also which impart some degree of stress on the driver (Ward, Hancock, Ganey, Mouloua, & 

Szalma, 2003). As these stressors are modulated, either by conscious choice on the part of the 

driver or by the environment, the driver’s performance on the primary task of safely routing the 

automobile is likely to be affected (Verway, 1993). This, along with the theories expressing the 

discrete and sparing nature of attentional resources in relation to the dynamic and variable tasks 

associated with driving accords directly with the idea of satisficing proposed by Simon (1969).  

Simon’s hypothesis advances the notion that individuals perform at a level well enough 

to avoid collision but not at their maximal level of performance which may well exhaust the 

driver’s cognitive capacities and present subsequent risk of vigilance decrement type failures of 

detection (Hancock & Scallen, 1999). In fact, other studies have demonstrated that the 

information which humans seek to better inform their decision making process may not always 

be necessary (that is, that small samples of information  may produce above threshold 

contingencies in which the benefits to satisficing outweighs the disadvantage of increased false 

alarms (and see Fiedler & Kareev, 2006). This has also been demonstrated by Fu and Gray 
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(2006), who modeled a satisficing process within the ACT-R (Adaptive Control of Thought – 

Rational; Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004)  programming language 

and found that the tradeoff between the cost and utility of increased information tends to produce 

a consistently “good” level of performance. 

Satisficing provides an interesting concept which complements hysteresis theory. One of 

the major theories proposed to explain the mechanism by which hysteresis occurs is the 

perseverance of expectations regarding workload (Cumming & Croft, 1973). The operator, 

according to Cumming and Croft’s hypothesis, continues to operate under the assumption of 

continuing the immediately preceding level of task loading. This results in a reduced level of 

performance as the operator persists with a non-optimal strategy for the task. Viewing this 

hypothesis though the concept of satisficing leads to the conclusion that the operator is 

attempting to perform at a satisficed level in order to continue their level of performance on 

multiple tasks. In this manner, satisficing may be viewed as a special state case of workload 

history and transitioning. 

Stress and Driving 

A multitude of variables exert an influence over task demand, and thus the perceived 

workload of the driver. One of the most predominant is the condition of the driver, in terms of 

level of arousal, driver training, and prior experience (Fuller & Santos, 2002). The driver 

operates a vehicle which provides its own sources of demand such as control difficulty and 

instrumentation features. The driving environment also provides sources of demand (Senders, 

Kristofferson, Levison, Dietrich, & Ward, 1967). Among these are factors which drivers 

encounter during daily commutes such as speed, visibility, road markings and signals, and road 

features such as curves and turns. The presence of other drivers traveling on the road also 
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interacts with these variables.  Of these factors, the driver has the ability to exert some control 

over their own status and that of their vehicle. To a lesser extent, the driver can select which 

times of day to drive and on what category of road. However, other drivers and the unknowns 

encountered on a roadway, which may present perhaps the greatest sources of task demand, are 

not under the driver’s control. 

Ecological Psychology and Driving 

Gibson and Crooks (1938) introduced the concept of a field of safe travel to surface 

transportation research. In the Gibson and Crooks paradigm drivers operate a vehicle in spatial 

field and react to objects which intrude upon the immediately perceived safe area. This area 

which may be directly and safely traversed is the field of safe travel. Objects intruding or 

otherwise affecting the field have a negative valence, or subtract from the field. This idea has 

allowed for the assessment of driver behavior in terms of the relationship between the driver, the 

vehicle, and the environment. This paradigm also provides a useful way in which to examine 

driver reactions using driving simulators which primarily rely upon the visual sensory channel 

(and see Denton, 1966). The Gibson and Crooks theory allows for a driver to adjust an envelope 

of space and time through which he or she will be immediately traveling for any potential hazard 

identified. Thus, the paradigm of a field of safe travel provides a robust framework from which 

to examine obstacle avoidance, driver estimation, and emergency responses.  

The idea of a field of safe travel is unique in that it allows for the selective attention to 

stimuli within the environment. When drivers are processing information in active (dynamic) 

situations, there is no such thing as a discrete stimulus. Gibson (1950) eloquently summarized 

this idea as a flowing array of stimulus energy.  This flowing array is not any one individual 

stimulus, but stimuli in relation to other stimuli and distracters, all in relation to the driver's own 
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motion through the environment. Just as a common criticism of laboratory studies is that a static 

observer in front of stimuli is of questionable ecological validity, one must view what the driver 

perceives and processes as an active, continuous, stream of information instead of discrete 

packets presented to a passive observer.  

Models such as Sheridan’s Control Theory Framework of driving (Sheridan, 2004) 

implies that the driver experiences a zone of situation awareness surrounding his or her vehicle. 

This idea may be viewed as an evolution of Gibson and Crook’s (1938) field of safe travel in that 

both provide for some area of immediate perception on the driver’s part which delimits the 

spatial areas where the driver may safety travel. However, Sheridan expands on the field of safe 

travel concept by providing a model of the factors (see Figure 2) which contribute to the field, or 

in this case, the zone.  

 
 

Figure 2. Sheridan's Control Theory Framework of Driver Behavior. For clarity of the model, the 
disturbances for each factor and the sensory/deciding secondary motor loop have been excluded 
from this representation. Adapted from Sheridan (2004). 

 

The Sheridan model includes five factors which drive the model: Sensing, Intending, 

Activation, Deciding, and the Vehicle. Sensing includes the actual state of both the vehicle and 
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environment, Intending is the goal of the driver, Activation is the motivational forces within the 

person, Deciding is a response to the aforementioned factors (Sensing, Intending, and 

Activation), and finally Vehicle, which describes the vehicle’s state in relation to the operating 

environment. These factors are assumed to be both mutually exclusive and comprehensive for 

the purpose of explaining driver behavior from a control standpoint. From an ecological 

psychology perspective, this theory helps enumerate the factors which influence both the driver’s 

own decisions regarding the spatial envelope surrounding the vehicle as well as the future 

direction (field of safe travel, or zone of situation awareness) in which the vehicle will be sent.  

Driver Limited Capacities and Attentional Control 

To successfully operate an automobile drivers must engage in a sampling of the 

environment for critical control cues (Senders, Kristofferson, Levison, Dietrich, & Ward, 1967). 

Most often, these are logical and predictable inferences drawn from known and well-learned 

circumstances. Occasionally such demands are sudden, urgent, and unpredictable, as well as 

source of very strong threat. Each of these event sequences, both ordinary and exceptional, 

require the driver to engage in a spectrum of estimations as to what is currently happening in 

their driving environment and what is liable to happen in the immediate future. The model of 

driving proposed by Senders et al. (1967) is one of sampling information from the roadway over 

time, with the driver’s level of uncertainty regarding the road and potential sources of threat on 

the road increasing until a new sample of information is collected.  

Their conceptualization of driving treats the driver as an information processor and the 

roadway as an information source, with components such as curvature of the roadway and other 

traffic increasing the amount (bits) of information contained. One could view the function 

generated by this model as time plotted against driver uncertainty, with the level of uncertainty 
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reaching an asymptotic peak at which point the driver would resample the roadway. Bounding 

the time between samples is the roadway bandwidth and the driver’s own capacities, which may 

be limited or intruded upon by other competing sources of information. Thus, driving becomes a 

task dictated by human information processing and the limited capacities which come along with 

it. This, and the limits of the driver’s own focused attention, is what Senders and colleagues 

conceptualized as leading to accidents and other driving infractions. 

Driver Distraction 

Another source of cognitive loading in the driving task is distraction. Driver distraction is 

possible due to a multitude of sources, however many of these sources are under the direct 

control of the driver (Summala, 2002). Among these sources are in-vehicle entertainment from 

audio and video players, navigation, and communications devices. These sources have been 

found to be a contributor in a number of traffic accidents (Goodman, Bents, Tijerina, Wierwille, 

Lerner, & Benel, 1997). Empirical investigations of the impact of such devices have found that 

they present a consistently high load on the driver and in turn raise the likelihood of accidents 

due to driver distraction (McKnight & McKnight, 1993; Jerome, Ganey, Mouloua, & Hancock, 

2002; Liu & Lee, 2006; Hancock, Mouloua, & Senders, 2007).  

These devices may seem innocuous alone, but seem to interact with the demands posed 

by the driving task to produce a source of risk (Hornberry, Anderson, Regan, Triggs, & Brown, 

2006). Hornberry and colleagues demonstrated this by manipulating distraction in a simulated 

driving task. They had participants use either an in-vehicle entertainment system or hands-free 

phone while varying the roadway complexity (measured in terms of visual clutter). They found 

that regardless of roadway complexity (the driving environment), driver performance was 
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degraded by the use of both distracters. This leads to questions regarding how drivers handle 

such sources of stress while driving. 

Fuller (2005) argued that in contrast to earlier theories of driving safety which proposed 

that individual drivers are striving to maintain a constant level of anxiety (Taylor, 1964) or 

likelihood of collision (Wilde, 1982), drivers attempt to maintain a set level of task difficulty. 

Fuller’s conceptualization of task difficulty homeostasis proposes that task difficulty is a 

relationship between task demand and driver capabilities, and that this balance is most 

prominently manifested in terms of speed choice. Under normal everyday driving conditions 

driver capabilities exceed the task demand, resulting in safe control of the vehicle. In situations 

where task demand exceeds capabilities, safe control is lost and the result is either collision, 

compensation by other drivers, or what Fuller terms a lucky escape, which may be better 

understood as a near-miss high collision likelihood scenario (see Figure 3). However, testing of 

such a model would prove difficult in the large numbers of variables required to be under control 

at any point in time, leaving this a helpful lens for understanding driving safety rather than an 

explanatory tool. 
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Figure 3. Outcomes of the dynamic interface between task demand and capability  
(Fuller, 2005). 
 

Heads Up Displays 

One aspect of modern vehicles which may lead to an increase in driver distraction are 

Heads Up Displays, or HUDs, which are successfully deployed in a number of applications. 

These have included military and civilian displays. Much of the military and civilian oriented 

research into HUD applications have focused on flight for obvious reasons: pilots are often 

presented with a multitude of information which must be processed in an extremely time 

sensitive manner. This aviation research has demonstrated that pilots tend to cognitively tunnel 

attention on HUDs,providing a figure:ground relationship between the display and the flight 

environment (Jarmasz, Herdman, & Johnnsdottir, 2005). Beyond this clear relationship between 

display and background, certain implementations of HUDs may lead to more increased and more 

accurate performance on tasks dependant on HUD-presented information, such as landing 

approaches in flight (Goteman, Smith, & Dekker, 2007).  
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Although drivers’ subjective reports often describe HUDs as ineffective, measurable 

differences in performance may be obtained when comparing HUDs to either traditional gauges 

or Heads Down Displays (Sojourner & Antin, 1990). In-vehicle displays such as HUDs may be 

used to facilitate compliance with regulatory devices such as traffic control devices, particularly 

in high demand situations such as intersections (Caird, Chisholm, & Lockhart, 2008). These 

performance benefits also extend to the use of automotive HUDs as demand mitigating devices 

when measured in terms of driver performance; with drivers using HUDs demonstrating less 

steering wheel actuation, less lane deviation, and faster reaction time to roadway objects (Liu, 

2003). 

Many commercial and consumer vehicle manufacturers are integrating HUDs into 

production vehicles although the benefits, and associated demands, produced by such automotive 

HUDs are not fully understood. However, the average driver is becoming increasingly aware of 

this display application in vehicles. It is likely that the number of HUD equipped vehicles on the 

road will continue to rise in the coming years, making the HUD even more salient in the mind of 

the driver. 

Driver Control 

 A commonly used description of aviation hierarch of control tasks is “Aviate, Navigate, 

Communicate,” (Schvaneveldt, Beringer, Lamonica, Tucker, & Nance, 2000) which indicates the 

importance of the three major factors in aircraft control.  Aviate indicates the most basic level of 

control of the plane such as safely maintaining the current course heading and speed. Navigation 

is the process of comparing current and intended positions in order to effect a change in course. 

Communicate is the connection and sharing of information between airplanes or between pilot 

and tower.  
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The Aviate-Navigate-Communicate taxonomy is powerful because it so clearly delineates 

between both the types of tasks performed in cockpit and the importance of each (Schvaneveldt, 

Beringer, Lamonica, Tucker, & Nance, 2000). As a taxonomy, each factor is clearly placed in 

importance and may be sacrificed in order to provide for increasing demands from higher taxa. 

For example, a failure in a primary plane system (aviate) or a course correction (navigate) would 

almost always take priority over communication between pilot and tower. As demand as a 

product of the task at a more basic level increases, higher levels will be forsaken to ensure 

accurate performance of the more basic level.  

A metaphor for this process may be seen in human cognitive capacities. Under rapidly 

increasing task demand, the human’s abilities to perform higher critical cognitive tasks may 

become a limiting factor (resource limited) as opposed to scenarios where a lack of capacity in 

the task itself poses the limiting factor (data limited).  This process was captured in Michon’s 

(1985) model of driver control. This model has three levels, the Strategic Level which allows for 

processes such as route selection and requires controlled processing, the Maneuvering Level 

which contains processes such as gap acceptance and requires controlled processing, and the 

Control Level which encompasses the basic control of the car such as steering and operates as an 

automatic process. Under rapidly increasing levels of task demand the higher levels of Michon’s 

model (the Strategic and Maneuvering levels) are the first to suffer degraded performance. This 

may also be viewed as an explanation for the detrimental effects of task interactions such as 

using a mobile phone while driving: the conversation is occupying task resources which the 

Maneuver Level requires, leading to an increased possibility of error. 
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Mental Workload 

With the question of task demand and workload, the question of measurement naturally 

arises. O'Donnell and Eggemeier (1986) provided a convenient taxonomy of mental workload 

measurement methods. These were broadly grouped as subjective techniques relying on the 

individual’s own self-report, measurement of performance on a primary or secondary task, and 

measurement of the individual’s level of physiological arousal. Primary task measures fall 

generally under the measurement of speed of completion and accuracy of completion on the 

current task. By the addition of a second task (dual-task assessment), the spare capacity of 

individual resources may be measured (Navon & Gopher, 1979).  

Driver Mental Workload 

Young and Stanton (2007) compared single- and dual-task assessment methods of spare 

attentional capacity using a driving simulator. The pragmatic limitations in the dual-task 

assessment method are important, as the secondary task should not draw from a separate pool of 

resources (Wickens, 2002) and simultaneously must not interfere with the primary process of 

safely controlling the vehicle (Recartes & Nunes, 2003). To determine whether or not the 

measurement was mediating the outcome, they administered the NASA Task Load Index (NASA 

TLX; Hart & Staveland, 1988) to participants as they drove a driving simulator and performed 

either a verbal (verbal response to a probe question) or spatial (rotated figures) secondary task. 

Their findings indicated that although very little detriment to driver performance was caused by 

the secondary task, the measures of subjective mental workload produced by the dual-task 

method were inflated. However, the inflation caused by the secondary task was consistent across 

subscales of the TLX. 
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Subjective measures of workload have proven popular over the years due to the ease of 

administration. However, in the case of multidimensional scales, the individual facets often may 

become undifferentiated (Muckler & Seven, 1992). Of the multidimensional self report 

measures, the NASA Task Load Index (NASA TLX; Hart & Staveland, 1988) and Subjective 

Workload Assessment Technique (SWAT; Reid & Nygren, 1988) are the most commonly used. 

However, the unidimensional scales, such as the Rating Scale Mental Effort (RSME; Zijlstra, 

1993) have in some cases proven to be more sensitive to variations in individual workload than 

the multidimensional scales. This was demonstrated in the domain of driving by DeWaard 

(1996).  

Hysteresis 

 Hysteresis, a term borrowed from the material and physical sciences, has been applied to 

the study of humans for many years (see Barendregt, Van Bergen, & Van Nooten, 1965). Both 

the behavioral and physical sciences utilize definitions of hysteresis which roughly equate to the 

subject’s history affecting the present experience (Verhave & Herman, 1967). In physics, 

hysteresis definitions speak of current properties being affected by forces no longer active on the 

object. For example, a magnetically reactive material (such as recording tapes) which continues 

to display a response to the magnetic field, even when the field is removed, is said to 

demonstrate hysteresis. Other items can demonstrate hysteresis, such as springs which lose their 

ability to return to original form after repeated compressions. Interestingly, the term hysteresis 

may have derived from the older, psychological, term hysteria because of Barkhausen noises 

emitted by certain metals during transformation (Durin & Zapperi, 2006). The metals literally 

screamed as they were transformed. 
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 In the behavioral sciences, and specifically within the domain of human performance, 

hysteresis is an oft-interesting yet infrequently studied topic. One of the earliest studies 

indicating the possible presence of a hysteresis effect is Chamberlain (1968), who examined 

accident rates for traffic entering versus exiting an intersection. The findings indicated that 

drivers’ low performance (in terms of an increased number of accidents) persisted on the 

opposite side of the intersection (when task demand was presumably decreasing rather than 

increasing).  

 Monitoring tasks have traditionally been used to examine the effects of workload history 

on task performance. Early researchers such as Colquhoun and Baddeley (1964, 1967) noted 

such an effect of shifting event rates within the context of a vigilance decrement. This effect was 

also noted by Krulewitz, Warm, and Wohl (1975) who examined event rate shifts in monitoring 

tasks. They noted a decrease in signal detection performance when the event rate was shifted 

(low to high) versus maintained at a steady high level. This decrement in performance on such 

vigilance tasks has also been noted by researchers examining event rate shifts between 

monitoring sessions instead of only within session (Wiener, 1977). 

Cumming and Croft (1973) used a shadowing memory task to examine information 

processing and demand levels. In their shadowing task, the presentation rate varied from a 

minimum of 0.25 to a maximum of 2.5 items per second. By increasing and decreasing the 

presentation rate of the auditory information in the shadowing task, they were able to 

demonstrate that performance at high demand rates (that is, instances with a faster presentation 

rate in the shadowing task) was higher than at lower demand rates until the presentation rate had 

been drastically lowered. When plotted as presentation rate against performance on the 

shadowing task, this produces two separate functions (see Figure 4). One function representing 
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performance under increasing levels of demand, and one lower function which represented 

performance under decreasing levels of demand. This seemed to indicate that individual 

performance on the task was becoming asymptotic under task demand and indicates a hysteresis 

type effect was present. The people in the study were not recovering as expected, instead of a 

rebound of performance with the decrease in task demand, performance remained low. 

 In a visual shadowing task, Goldberg and Stewart (1980) asked participants to shadow 

characters presented on a monitor which corresponded with the eight characters of the home-row 

on a standard QWERTY keyboard. Their presentation rate varied from 0.5 to 4.0 characters per 

second. As with Cumming and Croft’s (1973) findings, these researchers found that performance 

under increasing task demand was substantially higher than under decreasing task demand 

conditions, indicating the presence of a hysteresis type effect.  
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Figure 4. The variation of task performance with task demands. 
This graph illustrates the non-symmetry of operator performance in response to both rising and 

falling levels of demand, as well as their relation to the theoretical limits expressed by 
information theory. From Farrell (1999), as adapted from Goldberg and Stewart (1980). 

 

These effects concord with the findings by Matthews (1986) who, in examining the 

workload transitions in another visual task, concluded that people were retaining their current 

strategy well after task demand levels had changed. Matthews found evidence supporting the 

mechanism of workload transitions in hysteresis. However, Matthews failed to examine the 

possibilities of transitions occurring in both the positive and negative loading directions. In 

addition, his work failed to account for the possibility that not all workload transitions are above 

the operator’s own criterion for detecting such a change; perhaps the operator never consciously 

noticed a change. In effect, if the task demand change is small enough the expectancies of the 

operator may be preserved. Under larger magnitude changes in task demand the mechanism 

through which hysteresis occurs is likely to be both operator expectancies lagging as well as the 

change in task demand. Thus, both hypotheses have some degree of support depending on the 

nature of the task demand changes. 
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 The Yerkes-Dodson inverted-U function of stress and performance (Yerkes & Dodson, 

1908) has long been used to explain transitions in human performance due to task demand 

characteristics. In fact, similar work within the domain of physiology developed the idea of the 

inverted-U function some years later. This is what Hebb (1955) described as a relationship 

between arousal and performance. However, the predictive power of the Yerkes-Dodson 

inverted-U function has been criticized (Hockey, 1983; Hancock, 1987). This criticism led to the 

creation of newer models of stress and human performance, such as the Extended-U model 

(Hancock & Warm, 1989) or the Compensatory Control Model (Hockey, 1997). Both models 

attempt to account for the intimate relationship between task demand and human performance, 

albeit in differing ways. Within these two frameworks, hysteresis effects seem to be indicative of 

special cases of fatigue after-effects.  

 One of the earliest researchers to extend the concept of hysteresis past simple control 

scenarios into complex task performance was Smolensky (1990). In a series of experiments, 

Smolensky examined whether a hysteresis effect could be demonstrated in the Air Traffic 

Control (ATC) domain, and if so whether the effect was due to either short term memory 

overload or a perseverance of expectancies regarding the task. Although a hysteresis effect was 

demonstrated, neither mechanistic hypothesis received clear support. Data from operational 

errors indicated that perseverance of expectancies was likely, however data from the controller’s 

memory tasks indicated short term memory overload. Smolensky concluded that both memory 

and cueing aids would likely ameliorate any hysteresis effect present. 

 Hancock, Williams, Manning, and Miyake (1995) also examined the workload transition 

and history process in Air Traffic Control scenarios. In two experiments they examined the effect 

of prior workload history on current task performance and workload, and the effect of 
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incremental changes in task demand on task performance and workload. Their findings 

demonstrated a strong effect for workload history in respect to current perceived workload. This 

indicates the presence of lag within the operator’s perception of the level of task demand and 

interpretation of workload. Results of the examination of incremental influences over workload 

were inconclusive. These findings lead to the authors recommending that workload history be 

accounted for in the assessment of current workload.  
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CHAPTER THREE: EXPERIMENTAL METHODOLOGY 

Hypotheses 

Hypothesis 1. A history-dependant hysteresis effect will be observed in driving. The interaction 

will be manifested itself in the form of reports of higher perceived mental workload persisting 

after an epoch of high task demand has returned to its former baseline level. 

Hypothesis 2.  Cueing an impending higher demand phase of the driving task will eliminate the 

presence of the hysteresis effect predicted by Hypothesis 1. 

 

Participants 

To test these propositions, thirty-eight adults (20 females and 18 males) agreed to serve 

as participants in the following experiments. All participants held a valid U.S. driver’s license 

and self-reported either normal or corrected-to-normal color vision and visual acuity. Due to 

problems with the simulation facility, data from two participants was unable to be recorded 

accurately and therefore is not included in the analysis. Additionally, four participants (one male 

and 3 females) were either withdrawn or self-withdrew from the experiment due to symptoms of 

simulator sickness (Kennedey, Lane, Berbaum, & Lilienthal, 1993). The final analysis thus 

included data from a balanced sample of 16 females and 16 males. This equal number of 

participants from both sexes were recruited in order to test for possible sex effects. Participant 

information is detailed in Tables 1 and 2.  
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Table 1. Participant demographic information. 

Sex  Age 
Years 
Licensed 

Minor 
Accidents 

Major 
Accidents 

Speeding 
Tickets 

Reckless 
Driving 
Tickets 

Other 
Tickets 

Female Mean 20.38 4.31 0.63 0.50 0.38 0.06 0 
 SD 2.66 2.50 0.62 0.73 0.50 0.25 0 

Male Mean 21.25 5.31 0.31 0.19 0.31 0.06 
 
0 

 SD 3.38 3.61 0.79 0.54 0.48 0.25 0 

Total Mean 20.81 4.81 0.47 0.34 0.34 0.06 
 
0 

 SD 3.02 3.09 0.72 0.65 0.48 0.25 0 
Age and years licensed represented in years. All other figures represent the average for the 
category. 
 

Prior to beginning any of the experimental trials, all participants completed 

questionnaires which assessed information including years of driving experience, average 

driving conditions, miles driven per year, any driving infractions (whether convicted or not) 

since licensure, and current state of health and well-being. These questions were collected via the 

Driver Stress Inventory, Driving Coping Questionnaire, Motion History Questionnaire, and 

Simulator Sickness Questionnaire (see Questionnaires and Self Report Measures, below, for 

more information; see Appendices A, B, C, and D for example questionnaires). There were no 

statistical differences in self-reported driver characteristics before participation as the data 

reported in Table 2 indicates. All participants and data collected from them was treated in full 

accordance with the ethical standards of the American Psychological Association (2001) and the 

Human Factors and Ergonomics Society Professional Standards (2006).  
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Table 2. Participant information by sex. 

   
Sum of 
Squares df Mean Square F Sig. 

Age Between 6.13 1 6.13 0.66 .42 
 Within 276.75 30 9.23   
 Total 282.88 31    
 
Years Licensed Between 8 1 8 0.83 .37 
 Within 288.88 30 9.63   
 Total 296.88 31    
 
Driving Frequency Between 1.53 1 1.53 2.60 .12 
 Within 17.69 30 0.59   
 Total 19.22 31    
 
Miles Driven Per Year Between 3.78 1 3.78 3.11 .09 
 Within 36.44 30 1.21   
 Total 40.22 31    
 
Minor Accidents Between 0.78 1 0.78 1.54 .22 
 Within 15.19 30 0.51   
 Total 15.97 31    
 
Major Accidents Between 0.78 1 0.78 1.88 .18 
 Within 12.44 30 0.41   
 Total 13.22 31    
 
Speeding Tickets Between 0.03 1 0.03 0.13 .72 
 Within 7.19 30 0.24   
 Total 7.22 31    
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Experimental Apparatus  

The Driving Simulator 

A fixed-base, medium fidelity, I-SIM driving simulator (GE, Version 4.0.86) was 

interfaced with a custom software control application written in LabVIEW (8.2, National 

Instruments). This simulator provides an approximately 150° field of view from three screens 

mounted approximately 1.0m from the driver (Figure 5).  

 

Figure 5. The ISim driving simulator. 

 

The simulator buck is a partial dash from a Ford Crown Victoria sedan and contains all 

controls present in the typical automobile such as steering, braking, throttle, gear selection, 

ignition, lighting, signaling, and ventilation controls (Figure 6). Adjustments are present for 

steering wheel position and seat position. Data generated by the simulation network was sampled 

at 60 Hz (i.e., 16.67 ms time slice). This data was logged for offline analyses and was 
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subsequently parsed for vehicle and environmental information as well as time period paralleling 

the status of the simulated navigation system (pre-failure, immediate post failure, end of drive).  

 
Figure 6. The ISim driving simulator dashboard and controls. 

Experimental Stimuli 

A simulated in-vehicle electronics route navigation/GPS system was constructed using 

Microsoft Powerpoint 2007. This system allows for the display of turn by turn driving directions 

as well as the simulation of electronic device failure and resetting procedures, all while retaining 

a high degree of ecological validity. The navigation system information is presented as a Heads-

Up-Display (HUD) projected in the lower center portion of the center simulator image channel. 

This corresponds to the positioning of most current in-vehicle HUDs. 

Advancement of the route guidance indicators to the next turn was performed at set 

points within the driving environment to ensure consistent performance between participants. 

Screen images of normal navigation, cueing to impending failure, and failure are displayed in 

Figures 7, 8, and 9, respectively. 
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Figure 7. Nominal navigation view. 

 

 
Figure 8. Cue to impending navigation system failure. 
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Figure 9. Navigation system failure. 

 

Questionnaires and Self-Report Measures 

The Driver Stress Inventory and Driver Coping Questionnaire (DSI and DCQ, 

respectively; Matthews, Desmond, Joyner, Carcary, & Gilliland, 1997) are two questionnaires 

which measure driver personality traits and have proven to accurately reflect driver decision 

making and behavior. The DSI consists of 48 questions marked on a 10 point Likert-type scale 

(See Appendix B), and produces five factors when scored: Aggression, Dislike of Driving, 

Hazard Monitoring, Thrill Seeking, and Fatigue Proneness. The Driver Coping Questionnaire 

consists of 35 questions marked on a 5 point Likert-type scale (See Appendix A), and produces 

six factors: Confrontive, Coping, Task-Focus, Emotion-Focus, Reappraisal, and Avoidance 

coping dimensions. A driver demographics section asking the participant to recall date of license, 

annual miles driven, typical driving environment, and any driving infractions precedes the two 

questionnaires. Both questionnaires were administered to participants prior to participation in the 

driving scenarios.  
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The Motion History Questionnaire (MHQ; Kennedy, Fowlkes, Berbaum, & Lilienthal, 

1992) was used as a device to better inform participants on their risk of experiencing symptoms 

of simulator sickness during the experiments. The MHQ consists of a 14-item background 

questionnaire coupled with a preference and symptom checklist for 14 experiences with the 

potential of inducing motion sickness. The MHQ was administered to participants prior to 

participation in the driving scenarios. This data would serve to illustrate any individual 

differences in performance due to issues with motion sickness and past exposure to devices 

likely to induce motion sickness, should the need arise. 

Simulators have the potential to induce physical symptoms of nausea and dizziness. The 

Simulator Sickness Questionnaire (SSQ; Kennedy, Lane, Berbaum, & Lilienthal, 1992) is a 

multifaceted scale of simulator sickness frequently used in simulator-based studies to measure 

the presence of such symptoms. The scale uses a 26-symptom checklist with a 4-point scale (See 

Appendix C) for all items to calculate scores in three factors: nausea, oculomotor, and 

disorientation. From these three factors, a total score may be calculated. The SSQ was 

administered before participation for a baseline measure and following the last trial for a post-

exposure comparison if any individual participant-driver reported symptoms which were 

consistent with those included in the SSQ’s conceptualization of simulator sickness. If needed, 

these scores could be used as a screening tool against any abnormal values observed in the 

driving tasks. 

Simplified Subjective Workload Assessment Technique (S-SWAT, Luximon & 

Goonetilleke, 2001). The SWAT (Reid & Nygren, 1988) is a multidimensional, self report, 

workload scale consisting of three facets: time load, mental effort load, and psychological stress 

load. Each facet contains three discrete levels, resulting in a total of twenty seven possible 
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combinations. The SWAT has traditionally been administered with a card-sorting task in order to 

establish an individual’s baseline. However, this introduces an increased possibility of error and 

creates additional demand on the participant. In order to reduce the both the burden on the 

participant and the possibilities for introducing error into the analysis, the Simplified SWAT (S-

SWAT) was used. The S-SWAT scale ranges from 0 to 100, which increases the sensitivity of 

the scale and reduces the burden on the participant. The S-SWAT procedure also eliminates the 

card sorting task. To allow for participants to become familiar with the scale and procedure for 

reporting their perceived mental workload using the S-SWAT, participants were asked to give S-

SWAT ratings after completing paperwork and a practice drive in the simulator.  

General Experimental Procedure 

Prior to participation participants were given as much time as they required to read, ask 

questions about, and sign the statement of informed consent. Following notification and 

acknowledgment of informed consent, participants were asked to fill out the package of 

questionnaires consisting of the Driver Stress Inventory, Driver Coping Questionnaire, Motion 

History Questionnaire, and Simulator Sickness Questionnaire. Participant’s progress throughout 

this time was monitored and participants were allowed to ask any questions regarding these 

measures.  

After completing the last questionnaire, participants were given a description of the 

Simplified Subjective Workload Analysis Technique, including descriptions of the scales and 

(positive/negative) anchors for each scale. Participants were asked to give a rating of their 

perceived mental workload along these scales at this point in time. After recording this 

information, the experimenter asked the participant to be seated in the driving simulator.  
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The location and operation of all major controls and adjustments in the driving simulator 

were explained to the participant. The layout and information on the HUD navigation system 

was pointed out, as well as how to interpret the initial instructions this system provided. After an 

opportunity to ask further questions, the participant drove a brief route while following directions 

provided by the navigation system. The system operated 100% reliably during this time and gave 

no indications of failure or unexpected operations. When the participant had completed the route 

they were again informed of the meaning of the S-SWAT scales and given descriptions of the 

anchors. Participants provided a second report of their perceived mental workload at this time, 

providing another opportunity for them to become familiar with the scale prior to the experiment 

beginning. After providing their mental workload metrics participants were asked to take a brief 

break from the simulator consisting of a short walk. This served to reduce any symptoms of 

simulator sickness which manifested during their drive and allowed the experimenter to ready 

the simulator for the following experimental trials. On returning to the laboratory, participants 

began the experimental trials.  

As the same participants served in both experiments, each participant completed the two 

experiments in a counterbalanced order to allow for the assessment of order effects. Following 

completion of both experiments the participant was given a post-exposure Simulator Sickness 

Questionnaire form and received a debriefing explaining the purpose of the experiment. Any 

remaining questions the participant had were answered at this time. 
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CHAPTER FOUR: EXPERIMENT ONE 

Experimental Design 

This experiment used a within-subjects repeated measures design to assess the effects of 

task demand on driver mental workload and driver performance. The primary task was a 

simulated driving task within an urban environment. The dependent measures used in this 

experiment were (a) workload measurement via a secondary task (accuracy in navigation) 

performance capacity as well as the scores on the Simplified SWAT, and also (b) primary driver 

performance measures including average speed, accelerator actuation, and braking actuation.  

Task demand was manipulated by failures of the navigation system requiring the driver to 

relay the error code to the experimenter. Failures occurred once per trial and a total of four trials 

were recorded. No prior findings available in the literature suggested the possibility of order 

effects from the experimental presentation; therefore all participants experienced the same 

scenario sequence.  

Experimental Procedure 

Following the procedure described in the General Experimental Procedure, participants 

were given the following instructions:  

“Now we will start (continue) the experimental trials. Like your earlier drive, you 

are going to be driving a patrol route and following the directions of the navigation 

system. This system will tell you what street and direction you will need to turn before 

you reach the turn. Each time the screen updates with your next turn, you will hear a beep 

which lets you know that your next turn is now displayed. 

The system may have problems during your patrol. If this happens the system  

will display an error code at the top of the screen. When this happens continue to drive 
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and read the error code to me so we can reset the system. Please try not to stop or slow 

while reading this code, and try to read the code as quickly as possible.  

The system will guide you through your entire patrol route and return you to the 

headquarters building. Please try to drive normally and obey all traffic signs and signals. 

At certain points during the drive we will be asking you to report using the three factor 

rating scale you’ve already used. Do you have any questions?” 

 

After any questions were answered participants began the driving task. Drivers followed 

the instructions of the route guidance system through a series of approximately 3.5mile long 

routes within the urban driving environment. At prescribed points within the route the navigation 

system registered a failure instructing the driver to contact the dispatcher at Police HQ (the 

experimenter served this function).  

Upon contacting the dispatcher, participants provided the error codes from the navigation 

system’s display. This error codes consisted of a 10 digit randomly generated alphanumeric code 

positioned at the centered top of the display. After the driver successfully provided the error code 

the navigation system resumed normal operation. 

Measures of mental workload via the S-SWAT were obtained in the initial stage of the 

drive, immediately post-navigation system failure (after the error code was relayed to the 

experimenter), and at the conclusion of the route. Measures of driver performance obtained from 

the simulator network were averaged based on time periods in concordance with the 

measurement of driver mental workload. Therefore, the initial stages (beginning of the drive) 

included data from when speed initially increased from a standstill to the time of the first S-

SWAT score’s recording, the second measurement period extended from this point until the 



 36 

second S-SWAT score was recorded, and the third period extended from this point until the end 

of the drive when the final S-SWAT score was recorded (see Figure 10).At the end of each trial, 

participants received a brief break in which they were allowed to stand up, stretch, and walk 

around if they desired to do so. This time period also allowed the experimenter to ready the 

simulator for the next trial. A total of 4 trials were recorded for each participant.  

 

Figure 10. Depiction of the timeline for events within each trial for Experiment 1. 

 

Results of Experiment One 

General Analytic Strategy 

Prior to analysis for the two experiments, all data underwent examination for accuracy of 

data entry, missing values, and violations of planned statistical tests’ assumptions. No missing 

values or outliers were present in the collected mental workload data. Due to failures in the 
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simulator data collection network, some of the driving data contained single instances of missing 

data points. Rather than replace these values with a mean score for the variable, they were 

excluded from the analysis. All analyses were conducted using SPSS for Windows, version 

14.0.1, at α = .05 unless otherwise specified. Effect sizes are given in the form of Cohen’s f 

(Cohen, 1992), which has proven to be a reliable measure of effect size across most forms and 

generalizations of the ANOVA technique. 

Order Effects 

 As the same participants served in both experiments, the possibility of order effects were 

examined. No main effects for order were observed in the mental workload data, F(1, 28) = 1.66, 

p = .21, f = .24 (see Figure 11). Likewise, no main effects were present for order in the driver 

performance data, F(1,24) = 2.63, p = .12, f = .33. However, presentation order was present in 

some significant interactions. These will be presented and discussed in the appropriate point in 

the results. 

 
Figure 11. Collapsed S-SWAT score by presentation order. Error bars represent Standard Error. 
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A repeated measures multivariate analysis of variance was performed on subjective 

mental workload. The independent variables were sex (male versus female), trial (1 versus 2 

versus 3 versus 4), and the measurement sequence within each trial (mental workload was 

assessed three times within each trial: at the beginning of the drive, immediately after navigation 

system failure, and at the end of the drive). Fisher’s Least Significant Difference was used for all 

post-hoc tests, unless otherwise specified. 

Results of Sex 

 A significant main effect was present for the effect of participant sex on perceived mental 

workload, F(1, 28) = 5.71, p = .02, f = .45. Post-hoc analysis demonstrated that, across all trials 

and measurement times, females (M = 33.29, SD = 20.55) reported significantly higher collapsed 

mental workload scores than males (M = 19.42, SD = 12.15, p = .03). Within the individual 

subscales of the S-SWAT, females provided higher workload measures for most facets. There 

was no significant sex difference between ratings of Time Demand (female M = 30.37, SD = 

25.35; male M = 22.69, SD = 17.19; p > .05). However, Mental Effort was rated higher by 

females (M = 41.16, SD = 26.29) than males M = 23.15, SD = 14.18; p = .02), and a similar 

pattern was observed with Psychological Stress (female M = 28.34, SD = 19.40; male M = 12.42, 

SD = 9.58; p = .01). See Figure 12. 
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Figure 12. S-SWAT scores by sex. Asterisk indicate a statistical difference at p = .05. Error bars 

represent Standard Error. 

  

No significant sex differences were present in the three measured aspects of driving data, 

F(1, 24) = .021, p = .886, f = .33. Female and male driving was approximately equal, with 

roughly the same speed (Figure 13), braking inputs (Figure 14), and accelerator (Figure 15) 

inputs across all trials.  
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Figure 13. Speed by sex. Error bars represent Standard Error. 

 

Figure 14. Braking actuation by sex. Error bars represent Standard Error. 
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Figure 15. Accelerator actuation by sex. Error bars represent Standard Error. 
 

Results of Repeated Trials 

 A significant main effect was present for mental workload across trials, F(3, 84) = 35.64, 

p < .0005, f = 1.13. Post-hoc analysis revealed a significant reduction in collapsed mental 

workload scores across sequential trials. This manifested itself as a gradual drop in score means 

as the experiment progressed. Trial 1 (M = 33.26, SD = 20.88) demonstrated the highest rating, 

which a gradual reduction was seen at trial 2 (M = 28.42, SD = 17.82), 3  (M = 23.90, SD = 

15.96), and 4 (M = 19.83, SD = 16.32). This reduction across trials is illustrated in Figure 16. 

There was no interaction present between sex and the sequence of trials for mental workload, 

F(3, 26) = 1.121, p = .36, f = .36. 
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Figure 16. S-SWAT by individual trial. Note: Asterisks indicate a statistical difference of p = .05 
or greater. Error bars represent Standard Deviation. 

 

There were also significant sex differences across trials. Females consistently rated 

mental workload higher than males on each trial. Both females and males rated trial one as the 

highest, with no significant differences between females (M = 38.40, SD = 23.01) and males (M 

= 28.13, SD = 18.51). Trial two was rated lower for both groups, although females rated the trial 

significantly higher than males (females M = 36.33, SD = 21.34, males M = 20.51, SD = 13.40, p 

= .02). Trial three continued this (female M = 31.78, SD = 20.54, males M = 16.02, SD = 9.37, p 

= .01). Trial four was the lowest for both sexes, although they demonstrated significant 

differences in the magnitude assigned to each (female M = 26.64, SD = 20.47, male M = 13.01, 

SD = 10.66, p = .02). See Figure 17. 
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Figure 17. Sex differences in mental workload across trials. Error bars represent standard error. 
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22.67, SD = 2.92), and 4 (M = 20.96, SD = 2.69) all differed significantly from one another at p < 

.02 or greater (see Figure 18). Likewise, the effect of trial on braking was significant, F(3, 81) = 

11.47, p < .0005, f = 1.17. Braking differed significantly between most trials, with trials 1 (M = 

1.54, SD = 0.48) and 2 (M = 1.74, SD = 0.52) demonstrating the highest amount of braking 

actuation required. Trial 3 (M = 1.30, SD = 0.39)  and 4 (M = 1.33, SD = 0.40) required less 

braking. The differences between all trials except for 1 and 2, and trials 3 and 4 were significant 

at p = .05 or less (see Figure 19). There was not a significant effect for trial on accelerator 
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Figure 18. Speed by trial. Error bars represent standard deviations. 

 

 

Figure 19. Braking by trial. Error bars represent standard deviation. 
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Results of Measurement Time 

A significant main effect was present for measurement time within the trials on the 

subjective mental workload scores, F(2, 56) = 45.28, p < .0005, f = 1.27. Post-hoc analysis 

demonstrated a significant difference between all measurement periods 1 (measured at the 

beginning of the drive, M = 21.12, SD = 11.41), 2 (measured immediately post navigation system 

failure, M = 30.53, SD = 13.20), and 3 (measured at the end of the drive, M = 27.41, SD = 12.07). 

Except for the difference between periods 2 and 3 (p = .33), all differences were significant, as 

illustrated in Figure 20.  

 

Figure 20. S-SWAT by measurement time. Error bars represent Standard Error. 

 

The results of the individual facets of the S-SWAT were examined and demonstrated a 

significant main effect, F(2, 56) = 9.38, p < .0005, f = .58. Overall, the individual facets of the S-

SWAT did not display differences from time demand (M = 26.53, SD = 21.66) and mental effort 
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(M = 32.15, SD = 21.13). However, the difference between mental effort and stress (M = 20.38, 

SD = 15.30) was significant (p = .01). See Figure 21. 

  

Figure 21. Individual facets of the S-SWAT. Error bars represent Standard Error. 
  

When driver performance data was analyzed using measurement times within the 

individual trials, a significant main effect was present for speed, F(2, 54) = 9262.24, p < .0005, f 

= 5.5. The speed as measured before the failure of the navigation system (M = 18.65, SD = 1.63) 

was significantly lower than the measurement immediately post failure (M = 33.52, SD = 3.85, p 

< .0005) and at the end of the drive (M = 33.75, SD = 3.02, p < .0005). The difference between 

the measures of speed immediately post-failure and at the end of the drive were not statistically 

different (p = .57).  Braking effects also proved significant when analyzed across measurement 

times, F(2, 54) = 130.47, p < .0005, f = 3.05. Significantly more braking was required after the 

navigation system failure (M = 2.64, SD = 0.70) than either at the beginning of the drive (M = 

0.68, SD = 0.20) or immediately post-failure (M = 1.12, SD = 0.38). All differences between 
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measurement times for brake actuation were significant at p < .0005. A similar trend was not 

observed with accelerator actuation, F(2, 54) = 24.00, p = .052, f = 0.33. Drivers mean 

accelerator actuation was approximately equal for the time before (M = 10.45, SD = 2.55) and 

immediately post-failure (M = 10.30, SD = 1.19). Less accelerator actuation was observed from 

the time immediately post-failure to the end of the drive (M = 9.62, SD = 1.26). The only 

statistically significant differences between measurements of accelerator actuation occurred 

between the time immediately post-failure and the end of the drive (p = .03).  See Table 3 and 

Figures 22, 23, and 24.  
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Table 3. Driver performance within trials. 

 Measurement Time Mean SD 

Speed Beginning 18.65 1.63 

 Post-Failure 33.52 3.85 

 End of Drive 33.75 3.02 
 

Braking Beginning 0.68 0.20 

 Post-Failure 1.12 0.38 

 End of Drive 2.64 0.70 
 

Acceleration Beginning 10.45 2.55 

 Post-Failure 10.30 1.19 

 End of Drive 9.62 1.26 
 Note: Speed in mph, braking and acceleration actuation  

given in arbitrary simulator units. 
 

 

Figure 22. Speed by measurement time. Error bars represent Standard Error. Asterisks indicate a 
difference at p = .05 or greater. 
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Figure 23. Braking actuation by measurement time. Error bars represent Standard Error. 
Asterisks indicate a difference at p = .05 or greater. 



 50 

 

Figure 24. Accelerator actuation by measurement time. Error bars represent Standard Error. 
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Table 4. S-SWAT scores by trial, measurement time, scale facet, and sex. 

Trial Measurement Time Scale Facet Sex Mean SD 
1 Pre-Failure Time Female 30.88 30.63 
   Male 29.69 27.38 
  Mental Effort Female 42.56 30.95 
   Male 31.31 26.41 
  Stress Female 29.81 18.99 

   Male 14.69 17.27 
  

Immediate Post-Failure 
 

Time Female 35.38 31.79 
   Male 38.69 28.30 
  Mental Effort Female 54.50 31.29 
   Male 40.69 25.03 
  Stress Female 34.56 22.50 
   Male 26.25 22.55 
  

End of Drive 
 

Time Female 34.81 25.03 
   Male 29.25 21.23 
  Mental Effort Female 46.69 28.53 
   Male 27.88 17.29 
  Stress Female 36.44 22.68 
   Male 14.69 11.61 
 

2 
 

Pre-Failure 
 

Time Female 30.06 26.13 
   Male 22.25 19.42 
  Mental Effort Female 44.38 28.86 
   Male 23.00 16.46 
  Stress Female 30.38 21.31 
   Male 10.00 8.94 
  

Immediate Post-Failure 
 

Time Female 36.94 28.78 
   Male 29.69 20.63 
  Mental Effort Female 46.69 30.23 
   Male 30.25 19.37 
  Stress Female 32.56 22.26 
   Male 15.13 12.39 
  

End of Drive 
 

Time Female 29.50 26.94 
   Male 23.38 18.99 
  Mental Effort Female 44.75 26.19 
   Male 21.69 14.61 
  Stress Female 31.75 22.69 
   Male 9.19 9.61 
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Trial Measurement Time Scale Facet Sex Mean SD 
3 Pre-Failure Time Female 16.25 24.93 
   Male 9.38 9.77 
  Mental Effort Female 26.31 31.33 
   Male 10.00 7.82 
  Stress Female 18.13 25.16 
   Male 7.50 12.48 
  

Immediate Post-Failure 
 

Time Female 35.94 26.72 
   Male 22.00 19.80 
  Mental Effort Female 48.19 30.38 
   Male 24.13 15.06 
  Stress Female 30.06 24.48 
   Male 13.69 13.12 
  

End of Drive 
 

Time Female 35.88 25.67 
   Male 21.69 14.21 
  Mental Effort Female 43.50 29.94 
   Male 22.69 15.88 
  Stress Female 31.75 24.73 
   Male 13.13 14.82 
 

4 
 

Pre-Failure 
 

Time Female 18.13 25.29 
   Male 7.25 10.12 
  Mental Effort Female 25.63 31.56 
   Male 7.38 8.54 
  Stress Female 17.19 19.41 
   Male 4.81 7.11 
  

Immediate Post-Failure 
 

Time Female 29.06 24.03 
   Male 20.00 17.58 
  Mental Effort Female 33.75 24.39 
   Male 21.75 15.29 
  Stress Female 22.69 20.95 
   Male 10.13 12.37 
  

End of Drive 
 

Time Female 31.63 27.96 
   Male 19.00 18.19 
  Mental Effort Female 36.94 27.89 
   Male 17.00 16.28 
  Stress Female 24.75 23.63 
   Male 9.81 12.02 
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Table 5. Driver measurement by trial, measurement time, variable, and sex. 

Trial Measurement Time Variable Sex Mean SD 

1 Pre-Failure Speed Female 30.40 1.37 

   
Male 32.22 1.37 

  
Braking Female 1.42 0.20 

   
Male 1.40 0.20 

  
Acceleration Female 11.09 0.72 

   
Male 11.73 0.72 

 
Immediate Post-Failure Speed Female 35.37 1.64 

   
Male 34.36 1.64 

  
Braking Female 1.28 0.22 

   
Male 1.03 0.22 

  
Acceleration Female 10.43 0.52 

   
Male 9.87 0.52 

 
End of Drive Speed Female 34.47 1.31 

   
Male 33.80 1.31 

  
Braking Female 2.03 0.28 

   
Male 2.19 0.28 

  
Acceleration Female 9.60 0.58 

   
Male 9.67 0.58 

2 Pre-Failure Speed Female 33.91 1.44 

   
Male 34.46 1.44 

  
Braking Female 0.65 0.15 

   
Male 0.76 0.15 

  
Acceleration Female 11.63 0.59 

   
Male 12.02 0.59 

 
Immediate Post-Failure Speed Female 38.27 1.57 

   
Male 37.55 1.57 

  
Braking Female 1.54 0.22 

   
Male 1.38 0.22 

  
Acceleration Female 10.52 0.48 

   
Male 10.27 0.48 

 
End of Drive Speed Female 37.76 1.51 

   
Male 36.48 1.51 

  
Braking Female 2.19 0.33 

   
Male 2.17 0.33 

  
Acceleration Female 8.52 0.54 

   
Male 8.86 0.54 
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Trial Measurement Time Variable Sex Mean SD 

3 Pre-Failure Speed Female 2.95 0.36 

   
Male 3.18 0.36 

  
Braking Female 0.00 0.00 

   
Male 0.00 0.00 

  
Acceleration Female 7.42 1.93 

   
Male 9.02 1.93 

 
Immediate Post-Failure Speed Female 31.21 2.05 

   
Male 31.01 2.05 

  
Braking Female 0.91 0.16 

   
Male 0.74 0.16 

  
Acceleration Female 10.36 0.63 

   
Male 10.05 0.63 

 
End of Drive Speed Female 36.36 1.74 

   
Male 34.71 1.74 

  
Braking Female 2.38 0.34 

   
Male 1.96 0.34 

  
Acceleration Female 10.34 0.62 

   
Male 9.93 0.62 

4 Pre-Failure Speed Female 17.54 0.87 

   
Male 18.83 0.87 

  
Braking Female 0.18 0.08 

   
Male 0.13 0.08 

  
Acceleration Female 9.93 1.11 

   
Male 11.97 1.11 

 
Immediate Post-Failure Speed Female 34.81 1.35 

   
Male 33.61 1.35 

  
Braking Female 1.07 0.24 

   
Male 0.82 0.24 

  
Acceleration Female 10.54 0.58 

   
Male 9.75 0.58 

 
End of Drive Speed Female 32.55 1.13 

   
Male 31.79 1.13 

  
Braking Female 2.68 0.34 

   
Male 2.40 0.34 

  
Acceleration Female 9.88 0.57 

   
Male 9.60 0.57 
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Summary of Experiment One 

Experiment one sought to examine whether or not a hysteresis effect was present in the 

driving task. This effect would be manifested as reports of higher mental workload after the 

driving and navigating task demand returned to a lower level. Evidence for the presence of this 

history dependent effect was observed in the reported mental workload data. The driver-

participants in the first experiment reported a significantly higher level of mental workload under 

high demand conditions (the navigation system failure), and after the demand imposed by this 

failure was removed continued to report significantly higher levels of mental workload as 

compared to their earlier baseline measurements. This result, and the results of the three 

measures of driver performance, provides a strong degree of support for Hypothesis 1.  
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CHAPTER FIVE: EXPERIMENT TWO 

Experimental Design 

This experiment used a within-subjects repeated measures design to assess the effects of 

cueing and task demand on driver mental workload and driver performance. The primary task 

was the simulated driving task within an urban environment. The dependent measures used in the 

second experiment were (a) workload measurement via secondary task (accuracy in navigation) 

performance as well as the scores on the Simplified SWAT, as well as (b) primary driver 

performance measures including average speed, accelerator actuation, and braking actuation and 

followed those used in the first experiment.  

Task demand was manipulated by failures of the navigation system requiring the driver to 

relay the error code to the experimenter. Participants were cued to the upcoming failure through 

notification bars which appeared on the HUD display. The cue to system failure was 100% 

reliable and always occurred the same amount of time before system failure. Failures occurred 

once per trial and a total of four trials were recorded. Measures of mental workload via the S-

SWAT were obtained at the beginning of the drive, immediately post-navigation system failure 

(after the error code was relayed to the experimenter), and at the conclusion of the route. No 

prior findings available in the literature suggested the possibility of order effects from the 

experimental presentation; therefore all participants experienced the same scenario sequence.  

Experimental Procedure 

Following the procedure described in the General Experimental Procedure, participants 

were given the following instructions:  

“Now we will start (continue) the experimental trials. Like your earlier drive, you 

are going to be driving a patrol route and following the directions of the navigation 
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system. This system will tell you what street and direction you will need to turn before 

you reach the turn. Each time the screen updates with your next turn, you will hear a beep 

which lets you know that your next turn is now displayed. 

The system may have problems during your patrol. If this happens, it will always 

be preceded by a red warning bar before the failure occurs. When the system encounters a 

problem, it will display an error code at the top of the screen. When this happens continue 

to drive and read the error code to me so we can reset the system. Please try not to stop or 

slow while reading this code, and try to read the code as quickly as possible.  

The system will guide you through your entire patrol route and return you to the 

headquarters building. Please try to drive normally and obey all traffic signs and signals. 

At certain points during the drive we will be asking you to report using the three factor 

rating scale you’ve already used. Do you have any questions?” 

 

After any questions were answered participants began the driving task. Drivers followed 

the instructions of the route guidance system through a series of approximately 3.5mile long 

routes within the urban driving environment. At prescribed points within the route the navigation 

system registered a failure instructing the driver to contact the dispatcher at Police HQ (the 

experimenter served this function).  

Upon contacting the dispatcher, participants provided the error codes from the navigation 

system’s display. This error codes consisted of a 10 digit randomly generated alphanumeric code 

positioned at the centered top of the display. After the driver successfully provided the error code 

the navigation system resumed normal operation. 
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Self-report measures of driver mental workload were collected at the beginning of each 

trial, immediately post-failure of the navigation system, and at the end of the route. This 

collection timing attempted to keep the mental workload reporting from serving as a cue to the 

navigational system failure. . Measures of driver performance obtained from the simulator 

network were averaged based on time periods in concordance with the measurement of driver 

mental workload. Therefore, the initial stages (beginning of the drive) included data from when 

speed initially increased from a standstill to the time of the first S-SWAT score’s recording, the 

second measurement period extended from this point until the second S-SWAT score was 

recorded, and the third period extended from this point until the end of the drive when the final 

S-SWAT score was recorded (see Figure 25). At the end of each trial, participants received a 

brief break in which they were allowed to get up, stretch, and walk around if they desired to do 

so. This time period also allowed the experimenter to ready the simulator for the next trial. A 

total of 4 trials were recorded for each participant.  
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Figure 25. Depiction of the timeline for events within each trial for Experiment 2. 
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Results of Experiment Two 

A repeated measures multivariate analysis of variance was performed on subjective 

mental workload. The independent variables were cueing (cued trials compared against the same 

participant’s non-cued trials from Experiment 1) sex (male or female), trial (four trials were 

collected), and the measurement time within each trial (mental workload was assessed three 

times within each trial: at the beginning of the drive, immediately after navigation system failure, 

and at the end of the drive). Fisher’s Least Significant Difference was used for all post-hoc tests, 

unless otherwise specified. 

Results of Cueing 

 Cueing did not have a significant main effect for mental workload, F(1, 28) = 0.65, p = 

.43, f = .15. The collapsed S-SWAT mean for cueing across all trials did not significantly differ 

between cued (M = 25.25 SD = 18.22) and non-cued (M = 26.35, SD = 16.88). The individual 

facets of the S-SWAT did not differ significantly between cueing conditions, see Figures 26 and 

27.  

 

Figure 26. S-SWAT scores by cueing type. Error bars represent Standard Error. 

0

10

20

30

40

50

60

70

80

90

100

Time Mental Effort Stress

S
-S

W
A

T
 S

co
re

S-SWAT Facet

Non-Cued

Cued



 61 

 

Figure 27. S-SWAT score by cueing and sex. Note that no significant differences within the 
sexes are present. Error bars represent Standard Error. 

 

A significant main effect was present for cueing’s effect on driver performance, F(1, 24) 

= 29.03, p < .0005, f = 1.10. Participants drove faster in the cued conditions (M = 31.76mph, SD 

= 2.84) than non-cued (M = 28.87mph, SD = 2.74, p < .0001). More braking actuation was 

required in the non-cued condition (M = 1.49, SD = .10) than the cued-condition (M = 1.12, SD = 

.08, p < .0001). Small, non-significant, differences were present in accelerator actuation between 

non-cued (M = 10.15, SD = .34) and cued (M = 10.11, SD = .31, p = .73) conditions. 
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Figure 28. Speed by cueing type. * p < .0001. Error bars represent Standard Error. 

 

 

Figure 29. Speed by measurement time and cueing type. 
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Figure 30. Braking actuation by cueing type.  * p < .0001. Error bars represent Standard Error. 

 

 

Figure 31. Accelerator actuation by cueing type. Error bars represent Standard Error. 
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Interaction between Cueing and Presentation Order 

An interaction between order of presentation and cueing was present, F(1, 28) = 19.64, p 

< .0001, f = .84. Regardless of presentation order, all participants reported approximately equal 

levels of perceived mental workload under non-cued conditions (Experiment 1 first M = 25.48, 

SD = 20.27, Experiment 2 first M = 27.23, SD = 27.00, p = .77). Participants receiving the non-

cued Experiment 1 first then reported lower levels of perceived mental workload when 

experiencing cueing (M = 18.32, SD = 16.76) to impending higher task demand scenarios. 

Participants who experienced Experiment 2 first (and thus were familiar with cueing) did not 

display a sharp drop when switching to the non-cued Experiment 1 (M = 32.18, SD = 32.37, p = 

.04). This interaction manifests as shown in Figure 32. 

 

Figure 32. Interaction between S-SWAT and presentation order. Error bars represent Standard 
Error. 
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The further interaction between Presentation Order, Cueing, and the individual facets of 

the S-SWAT was not significant, F(2, 56) = .47, p = .63, f = .13. Means and standard deviations 

for the individual facets of the S-SWAT by Presentation Order and Cueing Status are given in 

Table 6. 

 

Table 6. S-SWAT score by presentation order and cueing status. 

Presentation Order Cue Facet Mean SD 
Non Cued First Non-Cued Time 24.99 24.16 
  Mental Effort 32.09 25.30 
  Stress 19.35 18.52 

 
 

Cued Time 19.11 18.29 
  Mental Effort 22.60 19.54 
  Stress 13.26 18.10 
 
Cued First Non-Cued Time 28.07 35.96 
  Mental Effort 32.21 33.84 
  Stress 21.41 24.36 

 
 

Cued Time 32.17 36.05 
  Mental Effort 36.13 36.34 
  Stress 28.25 28.32 

 

An interaction between the measures of driver performance and presentation order was 

present as well. For speed, F(1, 24) = 11.305, p = .003, f = .69, this interaction appeared as a 

trend with no significant speed differences between cued performance, regardless of whether the 

participant experienced cued driving first (M = 32.00mph, SD = 3.72) or second (M = 31.52mph, 

SD = 4.30). However, speed for driving under non-cued conditions was dependent on whether 

they experienced cueing (M = 30.28mph, SD = 4.56) or non-cued driving (M = 27.47mph, SD = 

3.06) first (see Figure 33). This interaction also was present in accelerator actuation, F(1, 24) = 

10.021, p = .004, f = .65. Drivers experiencing the non-cued Experiment 1 first demonstrated less 
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use of the throttle whether under cued (M = 9.99, SD = 1.90) or non-cued (M = 9.60, SD = 1.83) 

conditions. Those experiencing the cued Experiment 2 first used the accelerator more under both 

cued (M = 10.22, SD = 1.62)  and non-cued (M = 10.69, SD = 2.00)  conditions. No similar trend 

in this interaction was present in braking, F(1, 24) = 2.595, p = .120, f = .33.  

 

 
Figure 33. Speed by presentation order. Asterisks indicate a difference at p = .05. 

 
   

 
Figure 34. Brake actuation by presentation order. 
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Figure 35. Accelerator actuation by presentation order. 

 

Table 7. Driver measures by presentation order and cueing status 

Presentation Order Cueing Variable Mean SD 
Cued First Non-Cued Speed 30.28 4.56 

  
Braking 1.45 0.47 

  
Acceleration 10.69 2.00 

 

 
Cued Speed 32.00 3.72 

  
Braking 1.15 0.25 

  
Acceleration 10.22 1.62 

 
Non Cued First Non-Cued Speed 27.47 3.06 

  
Braking 1.53 0.66 

  
Acceleration 9.60 1.83 

 

 
Cued Speed 31.52 4.30 

  
Braking 1.09 0.61 

  
Acceleration 9.99 1.90 

Note: Speed is given in mph, braking and acceleration figures are actuation measures and arbitrary to 
the simulator. 

 

Summary of Experiment Two 

 Partial support for the second hypothesis was obtained. This was evident in the objective 

data recorded from drivers. Although no clear trends emerged from the mental workload data, a 
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direct increase in the amounts of and variability in objective measures of driver behavior 

provides partial supports Hypothesis 2.  
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CHAPTER SIX: GENERAL DISCUSSION 
 

The results from the first experiment provide a degree of support for the hypothesis that 

hysteresis effects occur in driving. Of the possibilities present in transitions of mental workload 

(illustrated in Figure 36), the obtained data portrays a scenario between a moderate and strong 

hysteresis effect. Although there was a significant drop in perceived mental workload between 

the interval immediately following the in-vehicle navigation system failure and at the end of the 

trial, this latter difference was still significantly higher than that observed at the beginning of the 

trial. Although this effect was observed in every trial, the magnitude of the individual effect did 

decrease to some degree over the course of the four sequential trials. This could be viewed as 

participants either habituating to the nature and demands of the task, or that a learning effect 

occurring.  

 

Figure 36. Variations of mental workload across time. 
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The sex differences present in the mental workload data indicate that females experience 

a higher degree of perceived mental workload in relation to the task than their male counterparts. 

Females reported significantly higher scores on every facet of the S-SWAT. However, this may 

be due to implicit gender differences (such as those observed by Hancock, 1989), or through 

some other factor such as boredom in the task (Hancock & Warm, 1989; Hancock, Vercruyssen, 

& Rodenburg, 1992). However, it is also a possibility that females were either more forthcoming 

in reporting their actual levels of psychological stress, time demand, and mental effort, or that 

males were performing some form of self-censoring (Williams, Satterwhite, & Best, 1999).  

Interestingly, no significant differences between the sexes were present in the objective 

measures of driving (i.e., speed, brake and accelerator actuation). Although it could be argued 

that males drive differently than females (Storie, 1977, Mannering, 1993), this difference is 

likely due to factors such as an increased likelihood of males driving at times and conditions 

involving a higher degree of risk (Deffenbacher, 2008), or in more aggressively in general 

(Hennessy, Wiesenthal, Wickens, & Lustman, 2004). As described by Evans (1991), there is a 

known difference between the sexes in terms of accident involvement. However, this relationship 

is not straightforward, as questions about what the exact cause of these differences are remain 

(Hancock & Manser, 1997). However, in the present study, no significant differences were 

present between the sexes in the objective driving metrics, an observation which parallels the 

findings of earlier work performed by Hancock, Kane, Scallen, & Albinson (2002).  

The general decrease in mean mental workload across trials is not entirely unexpected. 

Although there was a rapid decrease in global scores from trial one (M = 32.54, SD = 7.12) to 

trial three (M = 22.10, SD = 5.70), the change between trial three and four (M = 21.53, SD = 

5.72) was not significant. This general form of transition is indicative of a learning effect, or 
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habituation to the task. As the participants completed each trial they became more familiar with 

the routine which was required of them, more familiar with the driving simulator and navigation 

system, and more familiar with reporting data for the S-SWAT. These results seemingly 

demonstrate an effect such as learning or habituation to the task rather than a floor effect, per se, 

partially due to the regular temporal characteristics of the trials (see Scerbo, Warm, & Fisk, 

1987). It is likely that any hypothetical subsequent trials would thus show very little variation 

from trials three and four. 

The changes present within the mental workload data within the trials are supportive of 

the hypothesis that a hysteresis effect is present within the driving task. The sharp increase in 

perceived mental workload observed from the first measurement period to the second, followed 

by only a slight (non-significant) decrease from the second measurement period to the end of the 

drive, supports hysteresis as described by Farrell (1999). The form of this inverted-U shaped 

mental workload function is not entirely unlike those observed by previous researchers 

examining hysteresis effects (Chamberlain, 1968; Cumming & Croft, 1973; Golberg & Stewart, 

1980) and workload transitions in more elaborate tasks such as ATC scenarios (Smolensky, 

1990; Hancock, Williams, Manning, & Miyake, 1995).  

The variations in the individual facets of the S-SWAT indicated that perceived levels of 

time demand and mental effort were statistically equivalent within the trials. These two facets of 

the scale were both observed to be higher than the reported levels of stress within trials, however 

only the difference between mental effort and stress was significant. This does not seem to 

indicate any sharp differentiation between the S-SWAT and SWAT’s conceptualization of 

workload for this particular driving task. Although the individual subscales of the 

multidimensional S-SWAT was of particular interest in this study, it appears that any subsequent 
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investigations could likely use a unidimensional scale of workload which should prove more 

sensitive to finer variations within the task (Hendy, Hamilton, & Landry, 1993; De Waard, 

1996). 

Driver measures also demonstrated a hysteretic effect within trials. Although speed 

increased significantly from pre-failure to the second measurement period (immediately post-

failure), this difference is explained by the nature and demands of the driving task. Lower speeds 

were required in the beginning of the drive than in the middle due to the initial turns out of the 

parking lot from which the drivers began their journey. This makes speed a problematic measure 

for hysteresis here, although it still provides a good overall measure of compliance with the 

instructions of the driving task as participants were instructed to drive normally and at the posted 

speed. The fact that participants did not show an even speed across trials indicates they were 

compliant with the task instructions. Brake actuation, as a measure of longitudinal control, 

provides a more comprehensive view of this effect (Stanton, Young, Walker, Turner, & Randle, 

2001; Verwey, 2001).  The mean level of brake actuation increased after the navigation system 

failure and remained high throughout the drive. This hysteretic effect is also demonstrated by the 

increases in the variance observed in braking. Brake actuation standard deviation increased from 

the point of failure and remained high through the end of the drive.  

In the second experiment the hypothesis was examined that cueing to an impending 

period of higher task demand could reduce the magnitude of hysteretic effects. In order to most 

efficiently and effectively accomplish this, and due to pragmatic concerns, a combination of 

within subjects designs was chosen. The order of presentation between these two experiments 

was counterbalanced, allowing for the assessment of order effects. Although the omnibus 

ANOVAs for order effects in the mental workload and driving data was not significant, a 
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significant order of experiment by cueing interaction was present within the driving data and the 

obtained measures of driver performance. Thus the starting point for drivers’ experience with 

cueing in this study was a major determinant of how cueing impacted their performance and 

subjective ratings of the workload involved with the task.  

No significant differences were present in mental workload data in response to cued 

versus non-cued conditions. No significant variations in the individual scales of the S-SWAT 

were observed in cued versus non-cued conditions. Only slight and non-significant reductions in 

time demand and mental effort were observed due to cueing. This is not entirely unexpected, as 

cueing has a rather complex relationship to task performance (Hawkins, Hillard, Luck, Mouloua, 

Downing, & Woodward, 1990; Luck, Hillyard, Mouloua, & Hawkins, 1996). In fact, this 

relationship between cueing and performance seems to suggest that the process operates on a 

perceptual levels instead of a memory/cognitive level (Luck, Hillyard, Mouloua, Woldorff, 

Clark, & Hawkins, 1994). However, the lack of support for the cueing-hysteresis hypothesis does 

provide additional support for Smolensky’s (1990) idea of a Short Term Memory overload as the 

hysteretic mechanism.  

Of the two theorized mechanisms of the hysteresis effect (continuity of expectations and 

Short Term Memory overload), the presence of a cueing factor in hysteresis would provide 

clearer evidence for the expectancies mechanism. Drivers able to follow a cue would be able to 

shift their operating strategies in response to shifts in task demand, remaining in an optimal 

strategy and eliminating hysteretic effects. This effect was not observed in the present study; the 

expectancies hypothesis is thus not supported by the present results. One possible source of 

evidence supporting this mechanism is explanation for this phenomena is that an effect of 

insensitivity to subsequent task performance was observed after the driver switched from the 
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primary task of vehicle operations to the secondary task of operating the navigational system. 

Perhaps the drivers in the present study were simply unable to perform the resource allocation 

shift required to maintain task performance (Navon & Gopher, 1979) and the shift in perceived 

mental workload is in reaction to this.  

The differences in driver measures due to cueing is illustrative. Drivers in this study 

traveled significantly faster in cued versus non-cued conditions. It is likely that drivers were able 

to travel faster due to the reduction in uncertainty associated with cueing to possible failures in 

their navigation device. This idea gains further support when the braking actuation results are 

examined in detail. Drivers in the non-cued conditions required significantly higher brake 

actuation magnitude than when they were driving under cued conditions. Furthermore, the brake 

actuation variance observed in non-cued conditions was significantly greater than that under 

cued driving. In these driving scenarios, cueing was able to reduce the demands on the drivers 

and allow them to control their automobile in a more constant and consistent manner.  

The interaction between administration order and cueing present in this data presents an 

interesting scenario. Under non-cued conditions, drivers reported statistically equivalent mental 

workload regardless of whether they began the two experiments with cued or non-cued driving. 

However, under cued driving those who had experienced non-cued driving first benefitted more 

from the cueing. The benefit (in terms of reduced mental workload) that drivers obtained from 

cueing was strongest if it was introduced after they had experienced driving without the cue.  

This interaction held for the measures of driver performance as well. The measures of 

speed obtained demonstrated that drivers traveled at equal speed under cued conditions, 

regardless of which experiment they began driving in. However, driving under non-cued 

conditions produced higher speeds for those who had experienced cueing first. The measures of 
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accelerator actuation indicated that drivers who experienced cueing first provided more throttle 

inputs to the vehicle in both cued and non-cued conditions. Drivers who had experienced the 

non-cued driving first applied the throttle less. Thus benefits from cueing were obtained in terms 

of more consistent performance, even after the cueing ceased.  

Although there was no significant effect for cueing on perceived mental workload, the 

measured aspects of driver performance were significant. Additionally, the data within the 

interaction between the order which the participants experienced cueing and mental workload 

and driver performance indicates that cueing may provide some benefit to drivers. Perhaps this 

observed effect is a operating as a process of expectancy (Vroom, 1964). Drivers expectations of 

events following the cue, and the associated change in self-reported measures of workload 

associated with these, would act as the primary explanatory factor of performance after each 

driver received the cue’s information. Although the hypothesis that cueing will eliminate (or at 

least lessen the magnitude of) the hysteresis effect in driving was not supported, the results 

provides evidence that cueing may have some relationship to workload history effects.  

This may be viewed as partial support for the hypothesis that hysteresis operates through 

a process of overloading short term memory. The overall reduction in both objective and 

subjective measures observed in the first experiment support this, and the lag in subjective 

workload scores returning to nominal (pre-failure) levels is the reaction to the overloading of the 

participant’s available capacity (as described by Kahneman, 1973). Likewise, the increase in 

magnitude of braking actuations is an objective manifestation of this process of demand 

exceeding capacity. Although others (Smolensky, 1990) did not find clear support for the idea 

that hysteresis is a process of exceeding the capacity of an individual’s short term memory (see 
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Goldberg & Stewart, 1980), the findings of the present experiment do lend some support to the 

hypothesis.  

One clear parallel to the idea of hysteresis as a process of short term memory overload, 

and one that perhaps influenced Goldberg and Stewart’s hypothesis, is Norman and Bobrow’s 

(1975) resource allocation theory. The idea of various programs competing for finite cognitive 

resources allows for either data- or resource-limited processes. Most tasks shift from resource-

limited at an early stage to data-limited in later stages (Norman & Bobrow, 1975; and see 

Kantowitz & Knight, 1976). The short term memory hypothesis of hysteresis appears to illustrate 

the transitional period as a task moves from resource- to data-limited,  and returns to resource-

limited operation. Although Norman and Bobrow illustrate the unidirectional shift in terms of the 

performance-resource function, the reverse direction of this function is likely hysteretic. This 

transition may also be viewed as a shift between a prospective and retrospective processing of 

time (Michon & Jackson, 1985). As the drivers in this task were transitioning from the 

attentionally driven prospective judgments to memory-driven retrospective processing (Block & 

Zakay, 1997), the conversion from one resource to another is a lagged transition.   
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CHAPTER SEVEN: PRACTICAL IMPLICATIONS, SUMMARY, AND 

CONCLUSIONS 
 

 The question of what effects technology in the vehicle has on mental workload is a 

common one (Michon, 1993, Verwey, 1993). This may well be anticipated since technology 

almost always brings along questions of the impact on the human (Hancock, 1997). One salient 

example that has been incorporated into modern thinking is that of the Luddites in 19th century 

Britain seeking to avoid employment losses from technologies (Binfield, 2004). Although the 

advent of more modern in-vehicle technologies such as GPS, cellular telephones, and other 

entertainment and information systems have raised many questions about their safe usage during 

driving, specific questioning regarding the effect of new technologies on driver performance are 

nothing new. Windshield wipers and radios faced similar questioning regarding their distraction 

potential with their introduction to automobiles.  

 What has changed, however, is the nature by which people interact with these systems. 

Whereas windshield wipers require infrequent input from the driver and radios are a 

unidirectional form of communication, a navigation system constantly demands eye fixation time 

from the driver. The cellular telephone not only asks for eye fixations, but also fine motor control 

(See Fitts, 1954) and cognitive processing. In terms of Michon’s Model (1985), the strategy and 

maneuvering levels are receiving interference from technology. This presents a potentially 

dangerous situation, as is demonstrated by the increasing number of roadway accidents attributed 

to driver distraction (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006). 

 Therefore, it becomes ever more important to understand the nature of perceived mental 

workload which is associated with these tasks. Any reduction in overall capacity as a result 

increases in driver mental workload due to technology-related factors may have serious 



 78 

consequences for the driver (DeWaard, 1996; Kantowitz, 1992, Wierwille & Eggemeier, 1993). 

If increased task demands (presented by the introduction of new in-vehicle technologies) coupled 

with an overall decrease in driver cognitive capacities (again, presented by the introduction of 

new in-vehicle technologies) negatively impacts roadway safety, then it follows logically that a 

better understanding workload transitions in these situations would prove beneficial. In fact, 

many automakers have attempted to define levels of workload associated with the use of these 

systems within vehicles. These systems are being examined for the immediate impact on levels 

of driver workload (see Angell et al., 2006). However, an understanding of the impact in terms of 

the immediate past history of the individual driver’s mental workload has not been accounted 

for.  

The presence of a hysteretic-type workload transition in the studies described show that 

the history of task demand most likely has a strong effect on driver spare capacity well after the 

reduction in demand. Although these studies were conducted in a simulation environment, it is 

reasonably most likely safe to assume that the results extrapolate to the actual roadway 

environment. Cueing findings indicate that workload management systems (Green, 2004) which 

control the timing of non-essential messages presented to the driver may serve a beneficial role 

in reducing hysteresis and any accompanying reduction in capacity. These results also point to 

the necessity of future research in this domain, including further examinations of the impact of 

more varied levels of task demand and scenarios. 

The presence of hysteresis effects in driving also raises interesting questions in regards to 

resource theories (Kahneman, 1973; Navon & Gopher, 1979; Wickens, 1980). These theories 

(especially Wickens’s Multiple Resource Theory) posit a mechanism of inputs, processing, and 

outputs where demand is modulated by the relationship of task to response modality. Although 
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some research has pointed out that emotional states may also serve as a modulating factor in this 

relationship (Hancock, Szalma, & Oron-Gilad, 2005), hyteresis implies that context and history 

also serve as a controlling variable. The constraints hysteresis places on Multiple Resource 

Theory would likely restrict encoding and central processing, explaining the increased variability 

and negative impacts seen in driver performance during the present study.  

A way to examine the impacts of hysteresis on safety is by viewing hysteresis in the 

larger framework of Gibson and Crooks’s field of safe travel (1938). As Gibson and Crooks 

discussed, when the driver travels along the roadway a spatial-temporal area in which (relative) 

levels of safe vehicular travel is assumed is present (and see Hancock & Diaz, 2002). The driver 

adjusts this spatiotemporal field as he or she travels, with factors such as traffic, speed, and 

uncertainty serving to either expand or constrict the field. Hysteresis may provide further 

definition of how drivers are dynamically defining their field of safe travel. The current context 

of driving (through uncertainty) serves to constrain the field. However, the history of the driver’s 

field of safe travel should also moderate the current state of the field. If a driver travels through a 

series of intersections and then onto a clear and wide roadway, hysteresis should continue to 

constrain their field of safe travel for some time. Likewise, a driver traveling from a clear and 

open roadway into a series of intersections may be consciously aware of the shift in environment, 

however a lagging shift may be present in their operation strategy. Thus, their field of safe travel 

would remain inappropriately large. This leads to a scenario 

One salient example of where a better understanding of hysteresis effects in driving 

safety is the need to better understand how drivers process information from displays which are 

becoming increasingly prevalent in modern vehicles (commercial and otherwise). These displays 

are taking the form of GPS-linked navigation systems, messaging and phone system, and 
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secondary control systems (such as the BMW iDrive system). To some extent these systems have 

been explored in terms of impact on the driver (Verwey, 1993). Additionally, systems such as 

Generic Intelligent Driver Support (GIDS; Michon, 1993) attempt to mitigate the task demand 

placed upon the driver by controlling the sequencing and presentation of information to drivers 

based on the context of the driving task. Understanding context is of great importance in 

presenting information to drivers in a less taxing manner. These systems must carry context 

forward with the understanding that the human has a memory for not only bits of information, 

but also for the workload associated with their use combined with the task of safely controlling 

the vehicle.  

Therefore it is imperative that future systems include some manner of accommodating the 

immediate past as well as the immediate present demands from the driver. Such systems can 

provide cognitive load-leveling for the driver and allow for the accommodated by scaling 

information presentation to not only the immediate temporal demands (a driver traveling through 

New York City while talking on a mobile phone), but also the history of the drive (a driver 

traveling through New York City while talking on a mobile phone who had just made an 

emergency avoidance maneuver to avoid a pedestrian). 

Thus my recommendations for advanced designs for modern driving cognitive load-

leveling technologies are as follows: 

 Account for the immediate past history when adjusting for driving context 

 Reduce message transmission rate after a high demand situation 

 Provide highly reliable cues to upcoming high demand situations 

It appears that hysteresis effects are present in the driving task, very similar in form to 

those described by Cumming and Croft (1973), Goldberg and Stewart (1980), Farrell (1999), and 

others in tasks restricted to more direct forms of human information processing. This has interest 
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to a wide range of topics within surface transportation, from those dealing directly with the 

driver as an information processor to broader questions about safety. Future research and 

applications seeking to better understand the impact that contextual history has on driver mental 

workload and performance should have an immediate and direct impact on the overall safety and 

efficiency of surface transportation.   
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APPENDIX A: DRIVER COPING QUESTIONNAIRE 
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APPENDIX B: DRIVER STRESS INVENTORY 
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APPENDIX C: SIMULATOR SICKNESS QUESTIONNAIRE 
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APPENDIX D: IRB APPROVAL 
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APPENDIX E: DSI-DRIVER HISTORY CORRELATIONS 
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Intercorrelations between DSI Scores and Driver History 
 
 1.  2.  3.  4.  5.  6.  7.  8.  9.  10.  

1. Driving 
Frequency -- -.41* -.01 .14 .10 .02 .42* -.25 .29 .19 

2. Miles Driven 
Per Year  -- .01 .03 .34 .25 -.21 .04 -.32 .35 

3. Minor 
Accidents   -- .13 .17 .37* .27 -.18 .18 .08 

4. Major 
Accidents    -- .43* .13 .27 .05 -.04 -.14 

5. Speeding 
Tickets     -- .18 .08 -.22 -.14 .27 

6. Aggression      -- .61** -.31 .40* .31 
7. Dislike of 

Driving       -- -.34 .77** -.07 
8. Hazard 

Monitoring        -- -.34 -.08 
9. Fatigue 

Proneness         -- -.04 

10. Thrill Seeking          -- 
* p < .05 (2-tailed), ** p < .01 (2-tailed) 
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APPENDIX F: DCQ-DRIVER HISTORY CORRELATIONS 
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Intercorrelations between DCQ and Driver History 

 1. 2.  3.  4.  5.  6.  7.  8.  9.  10.  

1. Driving Frequency -- -.41* -.01 .14 .10 -.08 -.02 .25 .01 -.05 

2. Miles Driven Per Year -- .01 .03 .34 .09 -.33 -.17 .00 .31 

3. Minor Accidents  -- .13 .17 .45** -.13 .47** .30 .14 

4. Major Accidents   -- .43* .06 .09 .25 .13 .17 

5. Speeding Tickets    -- .24 -.45** .10 -.04 .15 

6. Confrontive Coping    -- -.44* .67** .22 .49** 

7. Task Focus      -- -.11 .44* -.24 

8. Emotion Focus       -- .27 .50** 

9. Reappraisal        -- .03 

10. Avoidance         -- 
* p < .05 (2-tailed), ** p < .01 (2-tailed) 
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APPENDIX G: DRIVER MENTAL WORKLOAD ACROSS BASELINE 

TRIALS 
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Introduction 

 Some researchers have noted an increase in subjective mental workload across periods of 

time in vigilance type tasks. For instance,  Dember, Warm, Nelson, Simons, Hancock, & 

Gluckman (1993) found a 3.2 unit increase in subjective rating of mental workload (using the 

NASA TLX) over every 10 minutes on watch. Other researchers have noted similar positive-

leading trends in subscales of the NASA TLX (Szalma, Warm, Matthews, Dember, Weiler, 

Meier, & Eggemeier, 2004). The presence of such effects in certain tasks necesate the 

examination of driver’s mental workload across basal tasks, especially since driving across 

extended periods may lead to the drop in task performance characteristic of vigilance decrements 

(Davies & Parasuraman, 1982).  

 In order to test for such an effect, 10 drivers from the University of Central Florida’s 

undergraduate student population served as participants in this study. The 5 males had an 

average age of 19.0 years (SD = 0.7) and had held their driver’s license 3.8 years on average (SD 

= 0.84). The 5 females in the study had an average age of 20.2 years (SD = 1.3) and had held 

their driver’s license 4.2 years on average (SD = 1.1). The experimental apparatus described in 

Experiments 1 and 2 was used, with the modification that no failure or cue to possible failure 

was given via the heads-up display (HUD). Participants completed a series of four trials 

corresponding to those used in Experiment 2. Subjective measures of mental workload (using the 

S-SWAT) were recorded at the same points within the drive as used in Experiment 2. 

Results 

A repeated measures Analysis of Variance (ANOVA) was performed on the collected 

scores. The effect of trial (4), measurement time (3), and scale facet (3) on participants’ 

subjective mental workload was assessed. A significant change in driver’s mental workload was 
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observed across trials, F(3,24) = 3.92, p = .02. This effect was present as a significant decrease in 

S-SWAT scores across the individual trials (see Table X). No significant effects were present 

within trials. 

 

Table 8. Repeated Measures ANOVA. 

Source df (Hypothesis) df (Error) F P 

Sex 1 8 6.57 < .0005 

Workload Across Trials 3 24 3.92 .021 

Workload Within Trials 2 16 .916 .420 

S-SWAT Subscales 2 16 3.90 .042 

Note: N = 10.  

 

Table 9. Cell means and standard deviations for base trials. 

Sex Measure Mean SD 

Female Across Trials 

  

 

1 20.42 11.54 

 

2 14.51 4.11 

 

3 14.09 5.97 

 

4 7.11 7.65 

 

Within Trials 

  

 

1 16.23 12.27 

 

2 17.62 7.76 

 

3 8.25 7.83 

Male Across Trials 

  

 

1 28.33 21.36 

 

2 25.11 17.27 

 

3 29.73 14.59 

 

4 25.07 14.07 

 

Within Trials 

  

 

1 22.30 19.99 

 

2 29.55 14.59 

 

3 29.33 22.32 
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Figure 37. The individual facets of the S-SWAT displayed a similar trend across trials. Error bars 
represent Standard Error. 

 

 

Figure 38. S-SWAT scores across trials. 
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Figure 39. S-SWAT scores within the trials. Error bars represent Standard Error. 

 

Figure 40. S-SWAT facets within the trials. 
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