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ABSTRACT 

The need for cleaner and more fuel efficient means to produce electricity is 

growing steadily. Advancements in cooling technologies contribute to the improvements 

in turbine efficiency and are used for gas turbines and for power generation in 

automotive, aviation, as well as in naval applications, and many more. Studies 

introducing turbulators on walls of internal cooling channels, which can be applied to hot 

gas components and in recuperative heat exchangers, have been reviewed for their 

ability to promote heat transfer in the channel while observing pressure loss caused by 

adding the features. Several types of turbulators have been studied; ribs, pin fins, 

dimples, wedges, and scales are some examples of features that have been added to 

walls of internal cooling channels or heat exchangers to increase heat transfer.  

This study focuses on two types of wedge turbulator designs, a full symmetrical 

wedge and a half, or non-symmetrical right-triangular wedge for the purpose of 

disrupting the thermal boundary layer close to hot walls without causing large-scale 

mixing and pressure drops. There are two sizes of the wedges, the first set of full and 

half wedges have an e/Dh=0.10 with the second at e/Dh=0.40, a feature that fills the 

height of the boundary layer. There are six cases studied, two one-wall and four two-

wall cases in a 2:1 aspect ratio channel at Reynolds numbers of 10,000, 20,000, 

30,000, and 40,000. Two experimental setups are utilized: a segmented copper block 

and transient TLC, along with numerical simulation for computational flow visualization. 

Wall temperature data is collected from all four walls for the copper experimental setup 

and three walls on the transient TLC setup. The fourth wall of the acrylic test section for 
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the transient TLC tests is utilized for pressure testing, where static pressure ports are 

placed along the side wall.  

Although the small features did not show large influence in heat transfer on the 

side walls as much as the larger features or as high of heat transfer on the featured 

walls, the minimal pressure loss in the channel kept overall thermal performance of the 

small two wall full wedge features very high. The case of the large half wedge on two 

walls also showed very high thermal performance, having pressure loss values nearly 

half of the same sized (length and height) full wedge feature while having the ability to 

incorporate side walls into the overall heat transfer enhancement. The results found in 

the experimental setups are supported by the visualization of flow characteristics from 

the numerical testing. Comparing the initial wedge study to recent full rib studies show 

the wedges have similar improvements in heat transfer to the full rib cases with friction 

augmentations 5 to 10 times lower than the full rib cases. Further improvements to 

wedge heat transfer and pressure drop can be done by determining optimal wedge size 

and orientation. 
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CHAPTER 1: INTRODUCTION TO GAS TURBINES AND COOLING 

Progress for the Future 

A constant push for a cleaner, more fuel efficient energy supply to reduce 

harmful emissions as well as minimize strong dependence on natural gas consumption 

has been the focus of governmental, industrial, and educational research for many 

years past and will be for many years to come. Advancements toward improving clean 

and fuel efficient technologies can be applied to not only land-based power generation 

in gas turbines, but in smaller microturbines in automotive, aviation, as well as in naval 

applications, and many more.  Applications may be almost limitless; however these 

progressions must be studied in detail prior to employing them into industrial, 

commercial, or governmental functions.   

 

(a) 
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(b) 

 

(c) 

Figure 1: (a) GEnx Aviation (GE Aviation) (b) Siemens SGT-750 Power (European Petroleum Technology) 

(c) GE LM2500 Naval (Gas Turbine International, LLC) 

 

Although there is a strong urge for developing sustainable energy as well, 

improvements upon existing technology may be implemented faster and for a lower 

initial cost. Returns on green-energy sources such as solar power are not seen for 

decades and have issues with maintaining constant output. They can be paired with 

existing fuel powered sources to offset the inconsistencies in output to develop a hybrid 

energy source, seen in Figure 2 with integrated solar combined cycle (Gas and Steam 

Turbines). Improvements, then, for the fuel-fed energy sources are still pertinent in 
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these cases as well, emphasizing the need to progress these technologies for better 

efficiency.  

  

 

Figure 2: Hybrid Solar GT (& CC) (Solugas) 

Figure 2 shows a solar field pre-heating compressor exit air, prior to the 

combustion chamber. Pre-heating could also be established from incorporating 

recuperative heat exchangers, which use the waste heat from the hot turbine exhaust to 

pre-heat the air before combustion.  

Gas Turbine Efficiency 

 Advancements in heat transfer technology for cooling applications in gas turbines 

are continuously investigated in order to enhance gas turbine efficiency by either 

allowing for a higher turbine inlet temperature (at 3) or maintaining the same turbine 

inlet temperature while reducing amount of coolant flow and emissions (and hence fuel 

consumption in the combustion section) without compromising materials’ durability. A 

gas turbine operates under the Brayton cycle, shown in Figure 3 below. From this 

figure, you can compare the path of the ideal Brayton cycle, to the actual for which is 

seen during the operation of a gas turbine, indicated by the prime numbers. From this 

figure, observe that the actual has increases in entropy, whereas for ideal stages 1-2 
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and 3-4 would be isentropic. There is also an added pressure loss throughout the 

system, where ideal shows constant pressure from 2-3. The lower pressure (constant 

between 4-1) remains constant in the case that the inlet and exhaust are to ambient air.  

           

Figure 3: Ideal Brayton Cycle with Actual Deviation (left), GT System (right) 

  

 Useful work output occurs between stages 3 and 4. The heat input, in the 

combustion section, is then obviously between 2-3 in the chart. Any waste heat, then, is 

what is lost after the turbine section, after 4. The heat and work inputs and outputs are 

shown in Figure 4 below.  



5 
 

 

Figure 4: GT Work Output 

 Efficiency of the ideal Brayton cycle is the ratio of the net work to the heat input.   

 𝜼𝒕𝒉,𝑩𝒓𝒂𝒚𝒕𝒐𝒏 =
𝒘𝒏𝒆𝒕𝑸𝒊𝒏 = 𝟏 − 𝑸𝒐𝒖𝒕𝑸𝒊𝒏 = 𝟏 − (𝑻𝟒−𝑻𝟏)

(𝑻𝟑−𝑻𝟐)
= 𝟏 − 𝑻𝟏𝑻𝟐 = 𝟏 − 𝟏

(𝑷𝟑/𝑷𝟒)(𝒌−𝟏)/𝒌 (1) 

  

 Another way of increasing gas turbine efficiency with small scale, or 

microturbines, is by introducing a recuperative heat exchanger, which uses the waste 

heat exhaust gas exiting from the turbine stage and pre-heats air entering the 

combustion section to reduce fuel consumption, shown in Figure 5. Improvements in 

this section (such as adding transport-enhancing features) can increase the amount of 

heat transferred from the hot exhaust to the cooler air exiting the compressor.  
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Figure 5: Recuperative Heat Exchanger In GT System (left); Cycle in T-S Diagram (Carman, Kapat, Chow, 

& An, 2002) (right) 

 For minimizing coolant flow and maintaining durability of the materials, several 

types of cooling techniques are studied, including film cooling, impingement cooling, 

and adding turbulators, or transport enhancing geometries.  A variety of geometries 

have been introduced as surface enhancements for internal cooling channels or 

increasing heat transfer in heat exchangers; in the channels, the added roughness of 

the surface geometries break up the laminar sub-layer of the channel flow and promote 

mixing and secondary flows throughout the channel. Surface enhancements such as 

ribs, pin fins, swirl chambers, scales, and dimples have all been reviewed for 

contribution to mixing and secondary flows.  Mixing in the channel, however, causes an 

increase in total pressure loss in the system. A balance between the two is then needed 

for optimization, observing thermal performance.   
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Literature Review 

Previous studies reviewed in the following sections cover several types of 

positive, rib and rib-like turbulators for various applications with gas turbines.  Emphasis 

is placed on those studies which contributed to insight for the current paper, where the 

progression of varying rib geometries led to a wedge-shape turbulator.  

Rib Features 

Ribs have been reviewed for their ability to disrupt flow and promote mixing 

throughout the channel. Ribs are positive features that can take up a majority (if not the 

entire) width of the channel that act to trip the flow, disrupting boundary layer formation 

and causing the formation of complex vortices and secondary flow patterns.  This 

increased turbulence leads to a greater mixing of the flow and improvement in the 

advection of heat away from the channel walls. Typically, rib turbulators are rectangular 

in cross-section.  Many other parameters such as approaching and departing angles, 

orientation angle to flow direction, channel blockage ratio, rib width, and rib spacing 

(pitch) can be varied such that an optimal design is achieved.  A great deal of studies 

has been devoted to the application of these features to internal channel cooling 

designs.  

 In early rib studies, an experiment on the rib angle of attack was conducted by 

Han et al. who varied the attack angle from 90 degrees to 60, 45, and 30 degrees and 

investigated pressure drop and average heat transfer in a square duct with two opposite 

rib roughened walls (Han, Park, & Lei, 1985). Rib height to diameter ratio was kept 

constant where attack angle and pitch were varied; Reynolds number was varied from 

7000 to 90,000. A comparison of thermal performance for the rib orientations concluded 
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the oblique angles of 45 and 30 degrees was about 10 to 20 percent higher than the rib 

oriented perpendicular to the flow direction. Han and Park expanded upon this study, 

testing the combined effect of rib attack angle and channel aspect ratio on local heat 

transfer coefficient in developing flow. Channel aspect ratio was varied from 1 to 2 to 4 

and rib attack angle was varied from 90 to 60 to 45 to 30 degrees with two opposite rib 

roughened walls and varying Reynolds number between 10,000 and 60,000 (Han & 

Park, 1988).  

 In addition to observing effects of rib attack angle on thermal performance, 

studies followed that investigated effects of varying rib pitch, rib width, rib to diameter 

height, inlet conditions, arrangement, etc. onto rectangular cross-section ribs. Ligrani 

and Mahmood studied heat transfer and friction factors in a 4:1 aspect ratio channel of 

45 degree angled ribs oriented in a crossed formation on two opposite surfaces (Ligrani 

& Mahmood, 2003). The study considered Nusselt numbers calculated both with and 

without three dimensional conduction considered within the test surface and were tested 

at Reynolds numbers based on channel height ranging from 10,000 to 83,700. The tests 

agreed, approximately, with other investigators studies for square channels with 45 

degree angled ribs. With changes to the rib parameters, Wright and Gohardani 

investigated the effect of rib width and spacing (pitch) of 45 degree angled ribs in a 3:1 

aspect ratio channel with Reynolds numbers 10,000, 30,000, 50,000, and 70,000 on 

thermal performance (Wright & Gohardani, 2008). The study concluded that increasing 

the rectangular width of the rib while increasing the spacing of the ribs increased 

thermal performance. Another method of observing rib orientations can be thought of 

with the variation of the number of ribbed walls. This study, observing heat transfer and 
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friction behaviors in a square channel with 90 degree angled ribs (perpendicular to the 

flow), Chandra et al. reviewed effects of applying the ribs on one, two, three, and all four 

walls (Chandra, Alexander, & Han, 2003). Both the highest Nusselt number 

augmentation and friction factor augmentations were seen with the four wall ribbed 

case.  

 Varying rib width in a 2:1 aspect ratio channel with one wall featured at 20,000, 

30,000 and 40,000 Reynolds numbers was studied by Tran et al. using a transient TLC 

method (Tran, Valentino, Ricklick, & Kapat, 2011). The study examined heat transfer 

and friction augmentation for rib aspect ratios of 1, 3, and 5. Results from this study 

showed decreasing both heat transfer augmentation and friction factor augmentation 

with increasing rib width. A comparison of the ribs to the current study for heat transfer 

augmentation and friction augmentation is found in Chapter 5.  

Taslim et al.  studied twelve different rib-roughened channels with varying 

channel cross section, square as well as trapezoidal channel cross-section, with ribs 

applied on two or all four walls of a channel staggered (Taslim, Li, & Spring, 1998). 

Channels were designed to mimic the cross-section for mid-chord cooling cavities in 

small aircraft engines.  The rib geometries were oriented perpendicular to the flow (90° 

angle of attack) and spanned with entire width of the featured wall. This work utilized 

liquid crystals for temperature measurements and characterized the heat transfer and 

friction factor of each channel and geometry. Taslim, Li, and Spring concluded from this 

study that applying ribs to the partition walls (side walls so that all four walls are rib-

roughened) not only increases heat transfer to those walls, but consequently improves 

heat transfer on the other two (primary) walls. The addition of extra rib-roughened walls 
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of course increases the friction factor as well, however the overall thermal performance 

still increased for four wall ribbed channels over the two ribbed wall channels.  

 Delving further into variations on the rib, new rib shapes were created to offset 

the frictional issues of the square or rectangular cross-sectioned rib; rib-variation 

features were developed.   

Rib-Variation Features 

Variations of the typical rectangular rib shape include trapezoidal, triangular, or 

V-shaped and delta-shaped features. Several studies were conducted to compare the 

typical rib shape to these newly developed rib-variation shapes, a few of which are 

described below. 

An expansion on the angled rib, a V-shaped rib (or chevron) is formed with two 

angled ribs that meet in the center of the channel. Taslim et al. studied heat transfer and 

friction in a 2:1 rectangular channel with two opposite rib-roughened walls, comparing 

90 degree angled ribs to 45 degree angled ribs and 45 degree angled V-Shaped ribs 

(Taslim, Li, & Kercher, 1996). The study concluded that the lowest blockage ratio of the 

45 degree V-shaped ribs produced both the highest heat transfer and highest friction 

factors, over the 90 degree attack angle ribs; higher friction factors of the V-shaped rib 

corrupted thermal performance for the V-shape, where the 45 degree angled ribs 

showed improved results.  

Han et al. altered the typical rib shape to create a right triangle and a wedge-like 

feature which were called wedge shaped and delta shaped ribs, respectively (Han, 

Huang, & Lee, 1993). Images of these ribs are shown in Figure 6. The study conducted 
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tests at Reynolds numbers from 15,000 to 80,000 on two opposite walls, both aligned 

and offset configurations were observed. 

 

Figure 6: (Han, Huang, & Lee, 1993) 

The study concluded the backward delta-shaped offset rib configuration 

produced the lowest pressure drop penalty and the highest heat transfer was found with 

the aligned rib configuration of the same case. This feature is the ‘wedge’ feature 

discussed in this study as well as expanded with several other authors in the wedge 

features section below.  

The wedge-rib (right triangular rib) roughened channel was coupled with a 

winglet vortex generator at the entrance of the channel for a study conducted by 

Chompookham et al. with two opposite rib-roughened walls in a high aspect ratio 
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(AR=10) channel with Reynolds numbers based on the inlet Dh from 5000 to 22,000 

(Chompookham, Thianpong, Kwankaomeng, & Promvonge, 2009). A winglet vortex 

generator geometry is a thin surface into the flow path shaped for this case, as a right 

triangle angled into the flow and further winglet tests are found in the wedge features 

section; the winglet vortex generators have a similar (un-filled) shape to the wedge 

features tested in the current study and are typically created with a punch through the 

thin material in heat exchangers. The combination study by Chompookham et al. 

studied the triangular winglet vortex generators at the entrance for wedge ribs pointing 

downstream and pointing upstream of the flow. The study determined that the 

collaboration of winglet vortex generators with the downstream pointing wedge ribs 

resulted in the highest increase in both friction factor and heat transfer, with the highest 

performance seen in with the upstream pointing wedge.  

Thianpong et al. reviewed thermal performance over ribs shaped as isosceles 

triangles, spanning the width of the channel (Thianpong, Chompookham, Skullong, & 

Promvonge, 2009). The study investigated varying the triangular rib height in staggered 

and aligned rib arrangements on two walls of the channel, in a high aspect ratio 

(AR=10) channel with Reynolds numbers ranging from 5000 to 22,000. The results for 

heat transfer and friction factor were shown. As expected, the ribs with the highest e/H 

and at the in-line arrangement produced the highest frictional losses, but also the 

highest heat transfer. The best performing case, in terms of thermal performance at 

constant pumping power was the lowest e/H triangular rib in the staggered array.  

Promvonge and Thianpong determined thermal performance of four rib shapes in 

staggered and aligned arrangements for a high aspect ratio (AR=15) channel for cooling 
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channels or channel heat exchanger design (Promvonge & Thianpong, 2008). The rib 

variations included a rectangular cross-section, a triangular cross-section, and wedge 

cross-section ribs spanning the entire width of the channel. The wedge ribs were tested 

sloped both towards and away from the flow direction and all ribs were tested at 

Reynolds numbers from 4000 to 16000. The study concluded that the wedge rib 

pointing downstream (sloped away from the flow direction) yielded the highest increase 

in Nusselt number but also in friction factor, where the triangular shaped rib yielded the 

highest thermal performance with the staggered arrangement.  

Wedge Features 

Further manipulating these shapes or perhaps viewing the wedge ribs in a 

broken rib design, turbulators with similar cross-sections that did not span the entire 

width of the featured wall were developed. These ‘partial rib’ features can consist of full-

bodied vortex generators, punched vortex generators, or winglet vortex generators. A 

punched or winglet vortex generator will not be a full-feature as a rib turbulators, but a 

thin slice of material protruding into the flow. The full-bodied vortex generator, used for 

the current study, is more comparable to the rib, as a partial rib, in that it is a full ‘filled’ 

feature as well.  

The alteration to the full wedge rib to the partial rib wedge shape was discussed 

first above in the rib variation section by Han et al. (Han, Huang, & Lee, 1993).  Early 

studies of similar shaped features were of the winglet vortex generators and include a 

study of the development of longitudinal vortex pairs embedded in a turbulent boundary 

layer, a study by Pauley and Eaton (Pauly & Eaton, 1988). This study investigated the 

mean streamwise development of pairs of longitudinal vorticies as well as arrays of 
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longitudinal vorticies in a turbulent boundary layer following 16 different vortex generator 

pair configurations and two regular arrays. They concluded that a close proximity of 

counter-rotating vorticies developed from the VGs does not increase the loss of vortex 

circulation, but rather it affects the spreading of the vorticity.  

Punched vortex generators are typically for use in fin and tube heat exchangers, 

where the shapes are easily manufactured and are added to promote heat transfer as 

with previously discussed vortex generator applications. Tiggelbeck et al. studied flow 

structure and heat transfer in a channel with single and double rows of delta half-wing 

punched vortex generators. (Tiggelbeck, Mitra, & Fiebig, 1994). There were two general 

shapes tested with this study, the delta wing and the rectangular wing. The delta wing 

(or delta winglet pair) represented a shape similar to the test in this current study, 

unfilled. The winglet pair however was sloped toward the direction of the flow, where the 

delta wing, more similar to the current design, is sloped away from the direction of the 

flow. These vortex generators were tested at Reynolds numbers between 2000 and 

9000 with local heat transfer coefficients determined from utilizing the liquid crystal 

technique in a 2:1 aspect ratio channel. The study concluded that the winglet pairs (and 

more particularly the delta winglet pairs) contributed to the highest performance.  The 

four wings and winglet pairs tested by Tiggelbeck et al. are shown in Figure 7.  
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Figure 7: (a) Delta Wing, (b) Rectangular Wing, (c) Delta Winglet Pair, (d) Rectangular Winglet Pair 

(Tiggelbeck, Mitra, & Fiebig, 1994) 

Chen et al. studied heat transfer enhancement of finned tubes with staggered 

punched longitudinal vortex generators (Chen, Fiebig, & Mitra, 2000). Punched vortex 

generators in this study and the fin and tube arrangement can be seen in Figure 8(b). 

Visible in this image, the orientation of the winglet pair forms a similar shape to the full 

bodied wedge vortex generator in more recent, and the current, studies. 

 

Figure 8: Chen et al. 2000 

Chen et al. in this study presented and compared the velocity field, pressure 

distribution, vortex formation, temperature fields, local heat transfer distributions, and 

global results for the fins with the punched winglets. The study examined both aligned 

(shown in Figure 8b) and staggered winglet configurations. Chen et al. concluded 

staggered winglets were more effective than an in-line configuration for heat transfer 

enhancement.  
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Saha and Biswas conducted numerical simulation of turbulent flow with 

periodically mounted long VGs (Saha & Biswas, 2010). These VGs were oriented in a 

triangular fashion pointed toward the flow, similar to the wedge featured examined for 

this study, however no slope was developed in these VGs. Results showed streamwise 

velocity and vorticity at different spanwise locations. The study concluded the 

enhancement in heat transfer due to the mixing caused by the vortex generators are 

sustained over a long downstream zone.    

The development of a full-bodied vortex generator for turbine cooling applications 

with similar shape and orientation of the winglets followed.  

Liou, Chen, and Tsai followed with a study on twelve different shaped vortex 

geometries; included amongst these vortex geometries was a delta-wing vortex 

generator (Liou, Chen, & Tsai, 2000). Flow patterns were determined by use of laser-

Doppler velocimeter, friction factors determined from pressure measurements with a 

pressure transducer, and local Nusselt numbers were determined using a transient TLC 

technique. The tests were conducted at one Reynolds number, 12000, on 12 

configurations. Two of the better performing cases, a delta wing and 45°V rib were 

reviewed further in detail for fluid flow and heat transfer characteristics. The study 

concluded that the direction and strength of the secondary flows with respect to the heat 

transfer wall have the strongest effect on heat transfer promotion.  

More recent studies for a full bodied wedge-shaped vortex generator include 

Henze et al. in 2007 (Henze, Dietz, von Wolfersdorf, & Weigand, 2007). This study 

reviewed parallel and longitudinal arrangements of a wedge-shaped enhancement 

feature with sharpness of the edges on the features. Tests were conducted at Reynolds 
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numbers ranging from 150000 to 550000 with transient TLC thermometry along with 

numerical simulations to describe the flow field. In respect to the edge radii, as the 

radius increases, weaker vorticies are produced and in effect, lower Nusselt number 

augmentations resulted. In respect to the wedge arrangement, the study concluded that 

using several wedges in a row lead to an increase in heat transfer and the spacing of 

the wedges should be chosen to benefit vortex interactions.  

Henze et al. examined flow and heat transfer characteristics behind a single 

vortex generator using a transient TLC method and PIV, flow characteristics behind this 

VG can be seen in Figure 9 (Henze, von Wolfersdorf, Weigand, Dietz, & Neumann, 

2010). The combination of heat transfer and flow data describes the physical conditions 

in detail, and information was gathered at 300000 channel Reynolds number for 

validation of the numerical model. Local heat transfer coefficients are shown around the 

wedge and in the downstream region along with velocity and vorticity.  

 

Figure 9: (Henze, von Wolfersdorf, Weigand, Dietz, & Neumann, 2010) 

 A following study by Henze and von Wolfersdorf depicted heat transfer behind a 

vortex generator with various approach flow conditions and Reynolds number of 150000 

and 550000 (Henze & von Wolfersdorf, Influence of Approach Flow Conditions on Heat 

Transfer Behind Vortex Generators, 2011). An image of the local heat transfer behind a 

single vortex generator is shown in Figure 10.  
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Figure 10: (Henze & von Wolfersdorf, Influence of Approach Flow Conditions on Heat Transfer Behind 

Vortex Generators, 2011) 

 

General Introduction to Current Work 

The current study will investigate thermal performance of the full wedge-shaped 

partial ribs (considered in this paper as ‘full wedge’ or ‘symmetrical wedge’ shapes) and 

extend the study to a comparison with a ‘half wedge’ (or ‘non-symmetrical wedge’) 

turbulator. These half-shaped wedge turbulator geometries, unlike previous studies, 

have a right-angled triangular footprint, rather than an isosceles-triangle shaped 

footprint. This study will also examine the effect of placing these wedge turbulators on 

two opposite walls in a staggered pattern to create mixing of flow between features on 

opposite walls and include evaluation of heat transfer enhancement to the surrounding 

smooth side walls in a 2:1 aspect ratio, rectangular channel. Six cases are studied; two 

cases studied will compare symmetrical and non-symmetrical wedges that have an e/Dh 

of 0.10, considered to be just more than a surface roughness feature, the remaining two 

cases have quadrupled the dimensions to develop a symmetrical and a non-

symmetrical wedge that penetrate fully the boundary layer within the channel, observing 
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the two extremes with respect to e/Dh. The remaining two cases follow previous studies 

which place the full wedge shapes on one wall, so the same size full wedges tested in 

the two wall cases are also examined with the same spacing on one wall. To determine 

the effect of these features, two experimental setups will be utilized: transient TLC and a 

thermocouple embedded segmented copper-block setup.  Experimental results will also 

be compared with computational results (for fluid flow only) from Star-CCM+. 

Manufacturability 

 As a consequence of the complexity of the current tested wedge shape, the 

feature may contribute to difficulties manufacturing. However, progressions in 

manufacturing and materials could minimize or eliminate any production issues. 

Alterations to cooling channels in blade design and in heat exchangers including 

development processes, techniques, and materials allow for practicality of implementing 

more complex geometries, such as these wedge features.  

 The use of PDCs, or polymer derived ceramics, with a fabrication technique 

called micro-stereolithography for designing complex shapes in a recuperative heat 

exchanger was studied by Carman et al. in 2002 (Carman, Kapat, Chow, & An, 2002).  

The study concluded that the material and technique managed to successfully develop 

the complex channel design in multiple layers. This technique is one example of the 

possibility of implementing these complex features.  
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CHAPTER 2: EXPERIMENTAL OVERVIEW (METHODS AND 

MATERIALS) 

Geometries 

 There are two basic shapes tested, each with two different sizes. The first 

geometry is a full symmetrical tapered wedge, which has an isosceles triangular 

footprint seen in Figure 11b below. The second geometry is a tapered half-wedge, or 

non-symmetrical wedge shape which has a right-triangle footprint seen in Figure 11a 

below. The figure also shows the orientation of the wedges with respect to flow and 

location in the channel. The blue or hatched triangles represent features on the bottom 

wall and the green or solid triangles represent features on the top wall of the channel. 

The first four cases on two walls created a staggered formation, where two times the 

pitch is measured from the base of a feature to the base on the next feature on the 

same wall, i.e. one pitch measures base to base of the nearest wedge, on opposite 

walls. The wedges slope away from the flow direction, where the slope angle remains 

constant for all cases and is shown in Figure 12. The two one wall cases orientation can 

then be represented by the blue hatched triangles in Figure 11b, with the green solid 

triangles removed.  
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Figure 11: Configuration for (a) Non-Symmetric Wedge (b) Symmetric Wedge 

 

        

Figure 12: Geometries for Cases (A, C, E, F - right), (B, D - left) 

The full wedge cases staggered on two walls are cases A and C, where case A is 

the low e/Dh. The half wedge cases staggered on two walls are cases B and D, where 

case B is the low e/Dh.  

The two full wedge cases were also tested on one wall, succeeding tests in 

literature which follows the non-dimensional parameters of the experiments by Henze et 

al. (Henze, Dietz, von Wolfersdorf, & Weigand, 2007). The wedge for Case A, repeated 

for one wall is Case E and the wedge for Case C, repeated for one wall is Case F.  

The wedge dimensions, given in mm for all cases are shown in Table 1, with 

descriptions of the dimensions in Figure 13. The smaller wedge cases (A and B) yield 

an e/H of 0.13, representing a height near surface roughness. Case C, Case F and 

2xP
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Case D dimensions are Case A, Case E and Case B dimensions scaled 4 times to 

increase side wall flow interactions as well as penetrate the entire boundary layer 

thickness. The wedges C, D, and F are just over half the channel height, e/H=0.52 

(boundary layer thickness e/H=0.5) in order to keep consistent with all other parameters 

for placement on the modulated channel sections.   

 

Figure 13: Description of Geometric Parameters (a) Non-Symmetric Wedge (Case B, Case D) (b) Symmetric 

Wedge (Case A, Case C) 

 

Table 1: Wedge Dimensions (mm) 

Dimension Case A Case B Case C Case D Case E Case F 
Symmetric or Non Non Sym. Non Sym. Non Non 

e 2.08 2.08 8.32 8.32 2.08 8.32 
l 5.20 5.20 20.80 20.80 5.20 20.80 

e/l 0.40 0.40 0.40 0.40 0.40 0.40 

1/2-W 2.60 2.60 10.40 10.40 2.60 10.40 
0.5W/l 0.50 0.50 0.50 0.50 0.50 0.50 

e/Dh  0.10 0.10 0.40 0.40 0.10 0.40 

Wchannel 32.0 32.0 32.0 32.0 32.0 32.0 

H 16.0 16.0 16.0 16.0 16.0 16.0 

e/H 0.13 0.13 0.52 0.52 0.13 0.52 

Dh 20.90 20.90 20.90 20.90 20.90 20.90 

P/e 6.11 6.11 6.11 6.11 6.11 6.11 

P 12.70 12.70 50.80 50.80 25.4 101.6 
Number of Featured 

Walls Two Two Two Two One One 

ReDh All: 10,000, 20,000, 30,000, 40,000 
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Geometric Tolerances 

 From machining, the small wedge geometries all measured within 0.3mm of the 

design specifications and around 0.5mm of the design specs for the large wedge cases, 

with the exception of the width on the large full wedge, which on average measured just 

less than 1.5mm from the design specifications. Machining of the features was 

completing by electrical discharge machining (EDM). All wedges were measured by 

hand with a digital micrometer and results on the measurements are listed as follows 

(per case): 

Table 2: Case A,E Wedge Dimension Measurements 

 Length ( l  ) Width (2*W) Height (e) 

Mean 4.94 4.91 1.99 

Standard 

Deviation 

0.07 

 

0.06 0.02 

Variance 4.84e-3 3.71e-3 4.23e-4 

 

Table 3: Case B Wedge Dimension Measurements 

 Length ( l  ) Width (2*W) Height (e) 

Mean 5.09 2.51 2.02 

Standard 

Deviation 

0.06 0.31 0.04 

Variance 3.59e-3 9.77e-2 1.48e-3 

 

Table 4: Case C,F Wedge Dimension Measurements 

 Length ( l  ) Width (2*W) Height (e) 

Mean 20.96 19.31 7.89 

Standard 

Deviation 

0.31 0.30 0.08 

Variance 0.093 0.088 0.007 
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Table 5: Case D Wedge Dimension Measurements 

 Length ( l  ) Width (2*W) Height (e) 

Mean 20.16 9.68 7.72 

Standard 

Deviation 

0.40 0.12 0.08 

Variance 0.160 0.013 0.006 

 

  

Friction Factor 

 The channel designed for friction factor testing was designed to run both the 

friction factor tests and the transient TLC tests. The channel was developed out of 

acrylic to allow for viewing the TLC. One side wall remained unaltered for side wall 

transient TLC measurements while the other side wall, the pressure-tapped side wall, 

was outfitted with 45 static pressure ports located along the mid-plane of the channel. 

The channel length is 40 inches to allow room prior to and following the test section to 

minimize any entrance or exit effects. The inlet box (which contains mesh heaters for 

the transient TLC tests) is connected to the beginning of the channel with an exit box, 

which is used to connect the rectangular cross section of the channel to the circular pipe 

exit, at the other end of the channel. An image of the entire channel and piping is shown 

in Figure 14.  

  
Figure 14: Pressure Taps (left) & Piping Setup (right) 
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The wedges are attached with double sided copper tape to two (top and bottom) 

acrylic inserts which slide into the acrylic channel. An image of the wedges (case A) on 

the acrylic insert is shown in Figure 15. Also visible in this image is the location of the 

TLC test section (where TLC data is collected) as indicated by the black paint, or black 

backing. The wedges are placed on the acrylic insert 5 inches from the inlet and the test 

section starts 10 inches from the inlet. The channel length that includes wedges in the 

channel is 20 inches. 

 

Figure 15: Case A on acrylic insert with TLC 

 The channel operates with a vortex blower under suction. A gate valve controls 

the flow rate while a calibrated venturi is used to measure the flow rate. Tests are 

conducted at 10,000, 20,000, 30,000, and 40,000 averaged Reynolds number, based 

on hydraulic diameter of the smooth walled channel. A 1”-38 calibrated venturi was 

used to measure flow rate for the 20,000, 30,000, and 40,000 Reynolds numbers while 

a ½”-20 calibrated venturi was used for the 10,000 Reynolds number case. Ample 

distance was added (>10 hydraulic diameters) in piping prior to the venturi for proper 

measurement. A digital handheld manometer was then used to measure the pressure 
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drop over the venturi which was then added into an excel sheet containing the 

calibration curve to determine SCFM, provided by Homer R. Dulin Co. The mass flow 

rate is determined from the SCFM, which is then used along with the channel perimeter 

and dynamic viscosity; found using temperature measured via a T-type thermocouple 

and handheld reader, to determine Reynolds number. The wedges are placed on the 

acrylic insert 10 inches from the inlet to allow for fully developed flow before the test 

section.  

 Static pressure taps start at 1.5 inches from the inlet of the channel and are 

spaced ½” apart for the first 4 inches, then one inch apart (except where a 

thermocouple is added at 1 inch, 5 inches, 9 inches, and 21 inches for bulk temperature 

measurement) until the end of the channel. Since the test section only consisted of 20 

inches and starts 5 inches from the inlet, measurements were only taken from the 1.5 

inches from the inlet to 28 inches (3 inches past the end of the test section). 

Measurements were taken using a Scanivalve™® in conjunction with a Data Acquisition 

Board (DAQ) and an in-house created data collection system using LabView. The setup 

is shown in Figure 16 below.  



27 
 

 

Figure 16: Static Pressure Measurements 

 Once data is collected using LabView, the software outputs an excel sheet with 

all of the static pressure measurements. The software is setup to collect ten samples 

from each static pressure port, which will be averaged in excel. The program also 

records the bias from Scanivalve™® (from three open ports) which is subtracted from 

the static pressure measurements prior to analyzing the data. Slope, or dP/dx, is then 

determined from the static pressures and the location of the measurements along the 

length of the channel.  

 To determine the experimental friction factor, the slope is used along with the 

density, velocity, and hydraulic diameter of the channel to determine the Moody friction 

factor in Equation (2) below.  

 

𝑓 =
𝑑𝑃𝑑𝑙𝐷ℎ12𝜌𝑈2 (2) 

Pressure Taps

Test Section

Flow

Scanivalve

DAQ
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 Validation of the channel was first conducted; prior to completing any of the 

wedge tests a baseline smooth-wall test was completed to validate the test section for 

friction factor. The setup was identical as described and shown above, where no 

wedges were taped to the acrylic inserts’ surfaces. The experimental friction factors 

from Equation (2) in this baseline case where then compared to the theoretical value 

established by the Blasius solution for Friction Factor in a fully-developed, smooth-wall 

pipe flow, calculated using Equation (3).  𝒇𝟎 = 𝟎.𝟑𝟏𝟔𝑹𝒆−𝟎.𝟐𝟓 (3) 

 Results comparing the baseline test to Blasius smooth pipe solution and all case 

friction factor results are found in Chapter 3.  

Segmented Copper Block 

 Flow is provided by a vortex blower operated under suction. A gate valve controls 

the flow rate while a calibrated venturi along with a handheld digital manometer is used 

to measure the flow rate. Tests are conducted at 10,000, 20,000, 30,000, and 40,000 

averaged Reynolds number, based on hydraulic diameter of the smooth walled channel.  

The heated test section is made up of segmented copper modules totaling a 

length of ~25 hydraulic diameters (based on the smooth wall area of the channel). Each 

module consists of 4 copper blocks: all four walls are originally smooth, and then 

features are attached to top and bottom walls. The wedge features are adhered to the 

smooth top and bottom walls with a double-sided copper tape. The copper tape 

thickness as reported by 3M (for 1182 double-sided copper tape) was 0.088 mm, so 

resistance between the copper block and attached wedge are considered negligible. An 

acrylic entrance section (~35 Dh) was created to ensure a hydrodynamically fully 
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developed flow before entering the heated test section. Incoming air at the inlet of the 

entrance section is from ambient. Three thermocouples are placed immediately at the 

inlet and exit of the heated test section to measure the inlet and exit bulk temperatures.  

 

Figure 17: Copper Block Channel Setup 

The modules of the heated test section are depicted in Figure 18, with the entire 

channel length (1-side and top wall removed) in Figure 19. The four copper blocks are 

held within an acrylic housing to form a 2:1 AR channel. The acrylic housing is also 

meant to provide a structure that will allow the copper to form a channel without physical 

contact between the four copper blocks of each modulated section to eliminate 

conduction between blocks of a module. To minimize conduction between adjacent 

blocks on each wall, the copper pieces are separated with cork insulation. The copper 

blocks contain two, for redundancy, T-type thermocouples inserted into machined holes 

in the back of the block, to measure wall temperature, held in place with high 

conductivity thermal cement. The thermocouple measurements are recorded using a 

Measurement Computing© data acquisition system.   

Gate Valve

Venturi

Heated Test SectionEntrance Region

DAQ-Thermocouples PC
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Each copper block is backed by a thin foil heater, held to the block with double-

sided Kapton™ tape. The heaters are manufactured to cover the entire surface of the 

copper block. Power is supplied to the heaters by a 300 Amp adjustable DC power 

source. Additionally, the top, bottom, and side heaters are each controlled by an array 

of rheostats such that the voltage applied to each heater can be individually controlled. 

The voltage applied to each heater is measured with a digital multimeter. 

 

Figure 18: Copper Block Modular Section 

 

Figure 19: Segmented Copper Test Section 

 The full setup of the copper block test channel and the rheostats and DAQ 

boards are shown in the pictures below.  

SURFACE ENHANCEMENTS 

TO THESE SURFACES
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Figure 20: Copper Block Setup Pictures 

 Prior to conducting heat transfer tests, heat leakage tests are completed to 

determine heat lost through the acrylic housing as well as resistances for the heaters at 

three temperatures. To determine the heat lost, there is no flow and the channel is 

stuffed with insulation to ensure there is no natural convection in the channel. Heat is 

applied and adjusted so that the channel is isothermal. The test is run at three 

temperatures, 55°C, 65°C, and 75°C to establish a correlation (best fit curve) for both 

heat leakage and resistance in the heaters. For each test, data is collected once at 

steady state (no more fluctuation/increase in temperature) which usually takes 

approximately 8 hours once voltages have been set. Temperature data is collected from 

all thermocouples at ½ second intervals for 15 minutes (1800 samples). The calculated 

heat lost is then determined by Qloss=V2/R, where all Qloss values determined are plot 

versus the temperature difference (Twall-Tambient) to determine a second order (0-

intercept) curve fit for heat leakage. The resistance curve fit is a linear curve fit 

determined from plotting the measured resistances by the wall temperature. Both curve 

fits found here are then used in processing data for determining heat transfer coefficient 

after the heat transfer tests. A copy of the heat leakage Excel spreadsheet can be found 

in Appendix B.  
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 Heat transfer tests are started by first setting the flow in the channel via the 

calibrated venturi. The flows are set to 10,000, 20,000, 30,000, or 40,000 Reynolds 

number. Once the flows are set, heat is applied. The rheostats are used to adjust the 

voltage to each heater so that the channel is isothermal. The channel is typically set to 

70°C, so that ΔT=45°C. Once the channel temperatures are steady, the temperatures 

are recorded from all thermocouples (including the thermocouples installed at the 

channel exit to measure the bulk temperature), for 1800 samples; once every 0.5 

seconds for 15 minutes. Voltages for each heater are manually recorded, read from a 

Keithley Meter. The temperature data is then processed in the heat transfer coefficient 

Excel spreadsheet. A copy of this spreadsheet can be found in Appendix B.  

 First, the temperatures are input to the sheet, averaged over each thermocouple 

for all 15 minutes. Then, the average for the block is determined by averaging the two 

thermocouples from the copper block; these are the wall temperatures. The flow rate 

information from recorded in the calibrated venturi sheet for each test is also added 

manually to the heat transfer coefficient sheet. The heat transfer coefficient sheet first 

calculates all the local properties, based on the local film temperature: 𝑻𝒇𝒊𝒍𝒎 =
𝑻𝒘𝒂𝒍𝒍+𝑻𝒃𝒖𝒍𝒌𝟐  (4) 

 The voltages recorded are also entered into the heat transfer coefficient Excel 

spreadsheet. From this Excel file, all of the constant data is located on the first tab, 

which includes the curve fits for heat leakage and resistance. This curve fit data for the 

resistance is then used to calculate the resistance for each block’s heater from the 

measured wall temperature.  
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 Heat input from each copper block is then calculated as V2/R, where the R is the 

resistance as the function of Twall. The heat loss for each block location is also 

calculated via the curve fit, from the heat leakage curve fit as a function of ΔT= (Twall-

Tambient). Any lateral conduction between the blocks caused by any temperature 

difference is then calculated as: 

𝑸𝒍𝒂𝒕𝒆𝒓𝒂𝒍 =
𝑻𝒘𝒂𝒍𝒍𝒋+𝟏−𝑻𝒘𝒂𝒍𝒍𝒋𝑹𝒍𝒂𝒕𝒆𝒓𝒂𝒍 − 𝑻𝒘𝒂𝒍𝒍𝒋−𝑻𝒘𝒂𝒍𝒍𝒋−𝟏𝑹𝒍𝒂𝒕𝒆𝒓𝒂𝒍 ;𝑹𝒍𝒂𝒕𝒆𝒓𝒂𝒍 =

𝒕𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔𝒊𝒏𝒔𝒖𝒍𝒂𝒕𝒐𝒓𝒌𝒊𝒏𝒔𝒖𝒍𝒂𝒕𝒐𝒓∗𝑨𝒄𝒐𝒏𝒕𝒂𝒄𝒕 (5) 

The actual heat is then viewed at the input subtracting the losses, and adding in 

any lateral conduction from the previous block: 

Qactual= Qinput-Qloss+Qlateral        (6) 

To determine the heat added to the flow, a different equation is used for the 

“Qadded” term. This is determined from the following method, which is also used for 

determining the bulk temperature. This method is used so that the Tbulk and Qadded are 

found at the centerline of each modular section, rather than the end of the block, or the 

beginning of the next block. The two terms are found using the control volumes outlined 

in the broken line, the four copper blocks are shown to represent the top and bottom 

walls, where the large arrow indicates the flow direction. The first control volume would 

be considered the first module in the channel, where only half of all information from the 

four copper blocks in that module is taken. All other center module copper blocks 

calculate the bulk temperature and heat added to the flow by Equation 7 and Equation 

8.   
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Figure 21: Calculation for Tbulk and Qadded 

Qadded = Q = 0.5(Qcurrent block) + 0.5(Qprevious block)      (7) 

         (8) 

The heat transfer coefficient is then determined from Newton’s law of cooling: 

Qadded=hA(Twall-Tbulk); h=Qadded / [A(Twall-Tbulk)]     (9) 

Where the area is the smooth wall surface area (Baseline). Nusselt number is then: 𝑁𝑢 =
ℎ∗𝐷ℎ𝑘𝑓           (10) 

 The overall Nusselt numbers determined are the area-weighted averages of each 

wall’s fully developed Nusselt number average. The results are then shown for the local 

and overall averaged Nusselt numbers in Chapter 3. 

 Thermal performance is obtained for each case and Reynolds number as well. 

The thermal performance is calculated for constant pumping power as identified below: 

   𝜂 =

𝑁𝑢𝑁𝑢𝑜� 𝑓𝑓𝑜�1/3           (11) 
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 The thermal performance of each case and Reynolds number are presented in 

Chapter 3 and compared with the alternative testing method in Chapter 5.  

Transient TLC 

 The channel used for the transient TLC measurements is the same as described 

and shown in the Friction Factor testing. The test section where the TLC data is pulled, 

is located 10 inches from the inlet of the channel to 20 inches from the inlet; the test 

section is 10 inches long. Three of the acrylic walls (two inserts on the top and bottom 

and one side wall) are painted with the sprayable Thermochromic liquid crystal coating, 

provided by LCR Hallcrest. The fourth wall is the pressure-tapped wall. The TLC paint 

has a green peak centered at 35 degrees C one degrees C bandwidth. The red peaks 

at 34.8°C, the green peaks at 35.1°C, and the blue peaks at 35.7°C. The sprayable TLC 

is then coated with a black backing, also provided by LCR Hallcrest, for easy viewing of 

the color change through the backside of the acylic (where the cameras are located).  

 Three cameras are set up, one perpendicular to each painted wall to capture the 

color changes in the paint. The three cameras are identical, all Panasonic PV-GS180. 

Recordings are started prior to turning on the heat for each test conducted. For the 

transient testing, two LEDs are placed in the viewing window for the cameras; the LEDs 

are connected to a switch with the power supply for the heater so that the light turns on 

as soon as heat is added to the flow and turns off once the heat is also turned off. All 

background lighting in the room was turned off for testing to avoid wash-out in the 

cameras. Four lights where then attached to the test rig to allow proper lighting for 

viewing the color changes in the cameras. 
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 Mesh heaters (2) are used to heat the flow at the inlet section of the channel. The 

heaters are connected to a 7.5V,300A Xantrex DC power supply where voltage is 

regulated for each test. Setup with the cameras, lighting, and heater box are shown in 

the images below.  

 

Figure 22: TLC Channel Setup & Inlet Heater Box 

 

 Four T-type thermocouples are placed at 1”, 5”, 9”, and 21” along the length of 

the channel in the center of the channel to capture the flow bulk temperature. The 

thermocouples are connected to a DAQ board and recorded with an in-house 

developed code in LabView at 0.25 second intervals for the entire duration of the test 

(typically 30-45 seconds until test completion).  The output from LabView is an excel 

file, which is then converted to three columns (length from the test section inlet, time of 

each data point or temperature collected, and the temperature recorded) to determine 

the bulk temperature with a non-linear regression and curve fitting analysis program, 

NLREG. One example of the code and the output from NLREG can be found in 

Appendix A.  
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 There are two temperature collections done for each test completed, one ‘starting 

temperature’ test and then the ‘actual heated’ test temperature collection. This 

temperature information is input to the NLREG code to output the bulk temperature 

curve fit used in the MATLAB code for determining the local heat transfer coefficients.  

 The videos from the cameras are downloaded via Panasonic MotionDV Studio. 

There will be three separate videos (one for each TLC coated wall) for each Reynolds 

number test with four Reynolds numbers and therefore there will be 12 videos for each 

case needed for post processing. The videos are then edited to create images of the 

TLC painted section only (eliminate any background) for the duration of the test (as 

indicated by the LED lights). These images are obtained using the Sony Vegas Pro 

software. Each test may have anywhere from 900 to 1400 images, depending on the 

time duration. These images are then imported into MATLAB to determine the local heat 

transfer coefficients and ultimately local, streamwise average, and overall Nusselt 

number augmentations.  

There are 5 separate MATLAB codes used to determine the overall Nusselt 

number augmentations. An example of each code may be found in Appendix A. The 

first code is used to read all of the images into a .mat file for reading in the following 

MATLAB codes. This code will output information for the color in each pixel at each 

point in time. The next code is a filtering code; the filter code will eliminate any areas 

from the .mat files that exceed the input threshold and create a time step for all the 

frames in the .mat file for interpreting in the next code which determines the heat 

transfer coefficient at each pixel.  After the filter code finishes, the heat transfer 

coefficient code is run. The heat transfer coefficient code utilizes the information 
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obtained in the filtering code, the time step, and then determines the bulk temperature, 

resolutions for each pixel location, and backs out heat transfer coefficient for each color 

peak (red, green, and blue) at each location from the information obtained and user 

defined (acrylic properties).  

The local heat transfer coefficient over a surface coated with liquid crystals can 

be obtained from a transient test using the 1D semi-infinite solid model. This 

assumption is valid for sufficiently short test duration such that the heat penetration 

depth is less than the wall thickness; the maximum Fourier number of the longest test 

was calculated to be less than 0.02 to verify this assumption. The heat diffusion 

equation, for the one-dimensional case, reduces to Equation 12.  𝛼 𝜕2𝑇𝜕𝑥2 =  
𝜕𝑇𝜕𝜕           (12) 

The known boundary conditions are as follows: 

 

Equation 12 can be solved with the initial and boundary conditions to obtain the non-

dimensional surface temperature at the convective channel surface in the form of 

Equation 13.  

(𝑇𝑤−𝑇𝑖)𝑇𝑏−𝑇𝑖 = 1 − exp(𝛽2) erfc(β)        (13) 

where     𝛽 =
ℎ√𝛼𝜕𝑘  

The transient technique used is the so-called slow transient technique whereby 

the increase in flow temperature cannot be considered an ideal step-change; a typical 

@ t = 0, 𝑇(𝑥, 0) =  𝑇𝑖) 

@ x = 0,  −𝑘 𝜕𝑇𝜕𝜕 =  h(𝑇𝑤 – 𝑇𝑏) 

@ x→∞, T(∞, 0) =  𝑇𝑖) 
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measurement of the centerline temperature at the start of the viewing window is shown 

in Figure 23. To account for this, Duhamel’s superposition theorem is applied as 

suggested by Metzger and Larsen (Metzger & Larson, 1986). By segmenting the overall 

temperature change into a number of smaller temperature steps, the accuracy of the 

method can be maintained by use of Equation 14.  

 

 

Figure 23: Centerline Entrance Temperature at Start of Viewing Window 

𝑇𝑤 − 𝑇𝑖 = ∑ �1− exp �ℎ2𝛼�𝜕−𝜏𝑗�𝑘2 � erfc�ℎ�𝛼�𝜕−𝜏𝑗�𝑘 ��𝑁𝑗=1 �∆𝑇𝑚(𝑗,𝑗−1)�  (14) 

 

The characteristic TLC temperature of the peak green color intensity is used for 

Tw. The channel bulk temperature, measured at steady state before the heat is 

provided, is used for Ti. The measured centerline temperatures from the thermocouples 

dispersed in the test section is used to curve fit the local time varying bulk temperature, 

using Equation 15, from NLREG to determine the curve fit parameters, Tf, A, B, and C.  𝑇𝑏 = �𝑇𝑓 − 𝑇𝑖�(𝐴𝑥 + 𝐵)(1− 𝑒𝐶𝜕) + 𝑇𝑖      (15) 
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The elapsed time history of the color change of each pixel is obtained from the 

digitized recorded video images. The recorded RGB intensities are digitized using an 8-

bit scheme. An example of the elapsed history of the green signal intensity is shown in 

Figure 24. A 3-point moving average filter is performed for each pixel location to filter 

out some of the noise in the recorded intensity versus time before a peak finding 

algorithm is used to determine the time since the test start at which the peak green 

intensity occurs for every individual pixel in the interrogation window. A 3x3 pixel block 

spatial average filter is performed to smooth the calculated peak times (t). 

 

Figure 24: Recorded Green Intensity History 

 

Knowing Ti, Tb, Tw, the thermophysical properties of acrylic, and the time at which 

Tw occurs (t) for each pixel, the heat transfer coefficient at each pixel location can be 

calculated using an iterative technique using Equation 14 and Equation 15.  

For the featured channels; excluding the baseline, a mask code is run to 

determine the heat transfer over the copper features, using lumped capacitance, and 
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replace that information into the previously obtained heat transfer coefficient output in 

the next code. The mask is first created in Microsoft paint, where an image of the 

channel with the copper pieces still heated immediately following a test is input as a 

.bmp file, then the areas identified as copper are covered with white. The mask 

processing code then uploads this masked image and determines the heat transfer 

coefficient from the white areas using the user defined wedge dimensions and copper 

properties. The new copper values are input back to the original heat transfer coefficient 

output and replace the values at the identified locations (masked areas).  

Calculation for these sections are done following Equation 16 for a constant bulk 

temperature; the Biot number of the copper rib is estimated to be less than 10-4 to 

support the validity of using the lumped model. Because the time scale of the color 

change of the copper rib is greater than the transient bulk temperature change, a 

superposition of the temperature steps is not necessary for the lumped capacitance 

portion. The surface area, A, used to calculate the heat transfer coefficient of the wedge 

portion is the surface area of the wedge base. This area is chosen in order to 

consistently evaluate the heat transfer of each different wedge channel relative to an 

equivalent un-ribbed, smooth channel. The actual average surface heat transfer 

coefficient of the wedge surface is correspondingly lower and can easily be calculated 

using the ratio of surface area of the exposed wedge surface and wedge base for each 

case. ℎ =  
𝜌𝑐𝑢𝑉𝐶𝜕𝐴 ln �𝑇𝑤−𝑇∞𝑇𝑖−𝑇∞�         (16) 

 The final code to determine the Nusselt number augmentations: local, 

streamwise averaged, and overall, is the post-processing code. The post processing 
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code will find the Nusselt numbers at each pixel location for all three color peaks (red, 

green and blue) for local Nusselt numbers found from heat transfer coefficient as in 

Equation 10, results reported for this study are from the values determined with the 

green peaks. Local augmentations are then found by dividing through by Nusselt 

number from Dittus-Boelter. Streamwise augmentations average the columns in the 

Nusselt number output and divide through by Dittus-Boelter; these streamwise 

augmentations are then plotted as a function of pixel location (x/P) and are shown in 

Chapter 3 for the green peaks. Overall augmentations then average the entire Nusselt 

number outputs to determine the Nu/Nuo overall, shown to compare copper block 

results. All local Nusselt number augmentations are also shown in Chapter 3, which 

were plotted with Tecplot. The data for local Nusselt number augmentations are copied 

from MATLAB into Excel which uses a Tecplot add-in to create the color contoured local 

Nusselt number augmentation plots.  

 

CFD 

 For further insight into flow characteristics, STAR CCM+ from CD-adapco was 

utilized. Prior to STAR-CCM+, geometries were first created in SolidWorks. The fluid 

zone for the small wedge cases were 2 inches long, showing 4 wedges for the two wall 

cases, and 2 wedges on the one wall case. The fluid zone for the large wedge cases 

were 4 inches long, showing 2 wedges for the two wall cases and one for the one wall 

case. Images of the Parasolids for each case used for importing into STAR-CCM+ are 

shown in Figure 25 to Figure 30 below, where the arrow shows the flow direction.  
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Figure 25: Fluid Zone Case A 

 

Figure 26: Fluid Zone Case B 

 

Figure 27: Fluid Zone Case C 
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Figure 28: Fluid Zone Case D 

 

Figure 29: Fluid Zone Case E 

 

Figure 30: Fluid Zone Case F 

 Once all of the fluid zone parts had been created in SolidWorks and saved as 

parasolids, each figure was imported as a surface mesh into STAR-CCM+. Polyhedral 

 

 

 



45 
 

meshes were created in STAR-CCM+ by defining the meshing parameters in the mesh 

continua for prism layer mesher (defining boundary layer), polyhedral mesher, and 

surface remesher. The sizing of the mesh was determined from an in-lab created y+ 

MathCAD code, found in Appendix D. All meshes had a y+ of less than 5, where the 

highest y+ values were at the tips of the wedges on the bottom wall surface. One 

example of the y+ values on the surfaces is shown in Figure 31. Images of all case 

meshes are shown in Figure 32 to Figure 37 below. The meshes were between 2 to 4 

million cells each, where the further from the wedge, the mesh became coarser. There 

were 6 prism layers used with a prism layer stretching of 1.5 (STAR default) and 

absolute prism layer thickness of 2.1E-4 (from y+ calculator sheet). The global settings 

for surface growth rate was 1.05, so that the cells grew slowly away from the wedges to 

minimize skewness, 5E-5 was the absolute minimum surface size and 2.54E-4 was the 

target surface size of the smaller wedge features and 4E-4 for the larger features. All 

other settings were left at the default in STAR-CCM+, however, some of the individual 

wedge surfaces were adjusted lower than the global size settings to reduce any skewed 

angles between the wedge and the surrounding surfaces so that the maximum 

skewness angle in the volume mesh was less than 85 degrees.  
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Figure 31: y+ Values on Wedge Surface 

 

Figure 32: Case A Mesh 

 

Figure 33: Case B Mesh 
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Figure 34: Case C Mesh 

 

Figure 35: Case D Mesh 

 

Figure 36: Case E Mesh 
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Figure 37: Case F Mesh 

 Multiple viewing planes and monitor points were also created prior to running the 

solution. The viewing planes were created to view the velocity vector plots at multiple 

locations along the streamwise direction as well as spanwise plans visualizing flow 

structures near the side walls, and top or bottom surface. The monitor points were 

placed at the top tip of the wedges and at the base of the wedges. The monitors 

determined maximum velocity at each point and were compared from all wedges in 

each case to check for fully developed flow. Mass flow rate for each case was also 

monitored to match with experimental cases after convergence.  

 The initial condition was set to the velocity for the 40,000 Reynolds number 

cases and the pressure drop as determined from the friction factor testing for each case 

was set in the periodic interface. The physics model selection or solution was set up 

with the parameters listed on the right in Figure 38. Realizable k-epsilon solvers were 

used for the RANS solution with constant density fluid (air) at steady conditions.  
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Figure 38: Physics Model Selection 

 

 Two plots were created when looking for convergence, the residual and the 

monitor points of maximum velocity. Reviewing the monitor points for maximum velocity, 

the system was converged once the velocities at all points stopped changing and 

showed the solution was fully developed because the values of points in corresponding 

locations on the wedges were aligned. Typically, the cases ran for 8,000 to 10,000 

iterations for the results shown.  

 Images for the results were taken from the viewing planes created as velocity 

vectors to show the rotation of flow caused by the wedges, the interactions of the flows 

with the side walls, and the continuation of the secondary flows along the streamwise 

direction in the channel. These results are found in Chapter 3, listed for each case.  
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Uncertainty 

 The calculated experimental uncertainty for the overall heat transfer 

augmentation, friction factor augmentation, and thermal performance was performed 

using the procedures described by Kline and McClintock (Kline & McClintock, 1953). 

         (17) 

For the copper block experiment, the calculated experimental uncertainty for the 

overall Nusselt number augmentation was found to be 11%. To determine the highest 

possible uncertainty for all six cases, Case C at 10,000 Reynolds number results were 

used to calculate experimental uncertainty. The friction factor augmentation and 

channel Reynolds number uncertainties were 8% and 4%, respectively. The overall 

thermal performance for the copper block experiment was ~11%; exact values 

determined are in Table 6.  

Table 6: Uncertainty (Copper-Block) 

 Reynolds 
Number 

Friction Factor 
Augmentation 

Nusselt 
Number 

Augmentation 

η 

Uncertainty (%) 4.0 8.1 11.0 11.3 
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 For the transient TLC experiment, the overall Nusselt number augmentation 

uncertainty was 21.4%. The MathCAD files, used to determine the uncertainty can be 

found in Appendix C.  

 

Heat Loss into Acrylic for TLC 

 Calculation of the heat transfer coefficient for TLC results using lumped 

capacitance for the areas where copper features were attached to the acrylic does not 

account for heat loss into the acrylic. To determine the error in neglecting this loss, a 

transient conduction model was run in STAR-CCM+ using a large acrylic base with a 

copper wedge attached to the surface. Constant heat transfer coefficient was applied to 

all surfaces exposed to the flow and monitors to measure temperature were placed on 

non-featured areas as well as at the interface between the copper feature and the 

acrylic. Time and temperature from the monitor points were output to excel. An image of 

the transient conduction into the acrylic surface from STAR-CCM+ is in Figure 39.  

 

Figure 39: Transient Conduction into Acrylic 

The curves for temperature as a function of time based on lumped capacitance 

(as calculated in the experiment), temperature as a function of time for the semi-infinite 
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model (non-featured areas), and the temperature as a function of time for the exact 

solution (as determined in STAR-CCM+ from the location at the interface between 

acrylic and copper) are shown in the plot below. A time correction coefficient was 

determined using the NLREG software and the exact data found for the semi-infinite 

(smooth wall) equation so that the exact solution for the heat transfer coefficient under 

the wedge features could be determined from the semi-infinite solution. The correction 

coefficient is multiplied by time in the semi-infinite Equation 14. This equation also 

includes the Tbulk step, which was not originally in the lumped capacitance calculation. 

Therefore to determine only the error with heat loss into the acrylic, lumped capacitance 

was calculated with stepping Tbulk first, then applying the correction to time. The results 

determined show <1% difference with the heat loss calculation added, but a 4% 

difference with the stepping Tbulk added. More error is associated with the Tbulk 

calculation in the original lumped capacitance calculation, increasing the overall Nusselt 

number augmentation by 4%, closer to the copper block results. The corrected semi-

infinite solution is shown as SEMI-CORR in Figure 40. From this plot it is clear that the 

semi-infinite correction only works at short times (time <25 seconds), before deviating 

from the exact solution.  

Table 7: Percent Errors with LC Calculations 

Method % Difference from Original Calculation 

for Nu Augmentation 

Tbulk stepping 4.1% 

Semi-infinite correction 3.8% 
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Figure 40: Heat Loss into Acrylic Correction 

 Since the semi-infinite correction does not follow the actual solution after a given 

amount of time, a second correction was determined for the time (in this example) after 

25 seconds. The actual solution curve was found to match a semi-infinite curve for the 

time up to 25 seconds and a lumped capacitance curve after 25 seconds. A plot of the 

actual solution from STAR-CCM+ and the correction developed from the two functions 

is shown in Figure 41. The multiple function correction proposes difficulty in determining 

a general correction to implement into the MATLAB processing code. Further study is 

then necessary to determine the exact correction to be implemented, which will further 

raise the value for heat transfer coefficient following the curve for the semi-infinite 

correction used were time will be decreased to the exact solution, increasing heat 

transfer coefficient.  
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Figure 41: Heat Loss Correction Curve 

Transient TLC Bulk Temperature 

 The method for which the bulk temperature is determined for the transient TLC 

tests makes a substantial difference in the results for heat transfer coefficient, up to 40 

percent according to a study by Chyu et al. (Chyu, Ding, Downs, & Soechting, 1998). 

This study reviewed four methods for determining Tbulk and found one method to be 

particularly close to the exact solution. The best method found in this study consisted of 

using invariant local heat flux, where a conversion factor was determined to convert 

heat transfer coefficient based on inlet bulk temperature to a ‘corrected’ heat transfer 

coefficient. To determine the error associated with the nonlinear regression Tbulk 

calculation for the current study, the best solution as determined from the study by Chyu 

et al. is completed for the large full wedge two wall Case C. Values for overall Nusselt 

number augmentations as determined from 2 methods are reported in the tables below: 

marching bulk (as presented in results) and Chyu’s conversion factor. The offset 
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associated with the bulk temperature calculation used in this study in comparison with 

Chyu’s conversion factor helps the reader understand a large issue in comparing the 

TLC experiment to the copper block. The MATLAB codes for determining Nusselt 

number augmentation based on the conversion factor presented by Chyu et al. is in 

Appendix A. 

Table 8: Case C Nu Augmentation from Tbulk Comparison (as % from Copper-Block) 20,000 Re 

 Nu Aug % from Cu-Block 

Marching Tbulk 2.10 -6.5 

Chyu Conversion 2.31 +2.4 

 

 The method proposed by Chyu however was not designed for use on the areas 

where lumped capacitance is used (underneath the wedge features). Once a correction 

using the semi-infinite equation for the exact solution under the copper wedge features 

is determined, the results for the Chyu method may vary.  
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CHAPTER 3: RESULTS 

Friction Factor 

 Friction factor results determined at all four Reynolds numbers tested for all two 

and one wall cases as well as the baseline validation are shown in the following 

sections below, separated by case.  

Baseline 

 

Figure 42: Friction Factor Results SW 

Table 9: Friction Factor Augmentation SW 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10340 20400 29970 40150 

Friction Factor Augmentation (f/fo) 0.92* 0.87* 0.91* 0.92* 

 

 Results for the friction factor augmentations of all cases are augmented by the 

Blasius correlation for a smooth pipe. Results marked with an asterisk (*) indicate 

values that are less than one, resulting from augmenting with the Blasius solution, 
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rather than augmenting to the baseline case. These values should then be considered 

to be equal to one, i.e. no increase in friction over the smooth wall baseline case.  

Case A 

 

Figure 43: Friction Factor Results Case A 

Table 10: Friction Factor Augmentation Case A 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10150 20290 29910 39920 

Friction Factor Augmentation (f/fo) 1.26 1.17 1.14 1.17 
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Case B 

 

Figure 44: Friction Factor Results Case B 

Table 11: Friction Factor Augmentation Case B 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10180 20230 30160 40060 

Friction Factor Augmentation (f/fo) 1.07 1.06 0.97* 0.98* 

Case C 

 

Figure 45: Friction Factor Results Case C 
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Table 12: Friction Factor Augmentation Case C 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10300 20130 29860 40080 

Friction Factor Augmentation (f/fo) 4.51 3.80 4.02 4.17 

 

 

Case D 

 

Figure 46: Friction Factor Results Case D 

Table 13: Friction Factor Augmentation Case D 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10250 20220 29890 40120 

Friction Factor Augmentation (f/fo) 2.21 1.99 2.07 2.04 
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Case E 

 

Figure 47: Friction Factor Results Case E 

Table 14: Friction Factor Augmentation Case E 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10300 20210 30080 40140 

Friction Factor Augmentation (f/fo) 1.14 0.95* 0.92* 0.97* 
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Case F 

 

Figure 48: Friction Factor Results Case F 

Table 15: Friction Factor Augmentation Case F 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10300 20250 29950 40140 

Friction Factor Augmentation (f/fo) 2.48 1.73 1.82 1.82 
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Segmented Copper Blocks 

 The results shown as Nusselt number for each modular location along with 

comparison to Dittus-Boelter for all Reynolds numbers are shown in the plots below, per 

case. The smooth side walls are averaged together and featured walls are averaged, 

top and bottom for the two wall cases, separated for one wall cases. Comparisons of 

overall Nusselt number augmentations and thermal performance are discussed and 

shown in Chapter 4.  

Baseline 

 

Figure 49: SW 10,000 Copper Block Nusselt Number 
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Figure 50: SW 20,000 Copper Block Nusselt Number 

 

Figure 51: SW 30,000 Copper Block Nusselt Number 
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Figure 52: SW 40,000 Copper Block Nusselt Number 

 

Table 16: Overall Augmentations SW Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9330 18300 27350 36320 𝑁𝑢𝑁𝑢𝐷𝐵 1.09 1.01 1.01 1.01 
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Case A 

 

Figure 53: Case A 10,000 Copper Block Nusselt Number 

 

Figure 54: Case A 20,000 Copper Block Nusselt Number 
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Figure 55: Case A 30,000 Copper Block Nusselt Number 

 

Figure 56: Case A 40,000 Copper Block Nusselt Number 
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Table 17: Overall Augmentations Case A Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9500 19200 28500 37700 𝑁𝑢𝑁𝑢𝐷𝐵 1.81 1.56 1.50 1.44 

 

 

Case B 

 

Figure 57: Case B 10,000 Copper Block Nusselt Number 
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Figure 58: Case B 20,000 Copper Block Nusselt Number 

 

Figure 59: Case B 30,000 Copper Block Nusselt Number 
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Figure 60: Case B 40,000 Copper Block Nusselt Number 

 

Table 18: Overall Augmentations Case B Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9500 19000 28200 37800 𝑁𝑢𝑁𝑢𝐷𝐵 1.47 1.32 1.27 1.24 
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Case C 

 

Figure 61: Case C 10,000 Copper Block Nusselt Number 

 

Figure 62: Case C 20,000 Copper Block Nusselt Number 
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Figure 63: Case C 30,000 Copper Block Nusselt Number 

 

Figure 64: Case C 40,000 Copper Block Nusselt Number 
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Table 19: Overall Augmentations Case C Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9500 18900 28300 37100 𝑁𝑢𝑁𝑢𝐷𝐵 3.03 2.25 2.10 2.05 

 

 

Case D 

 

Figure 65: Case D 10,000 Copper Block Nusselt Number 
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Figure 66: Case D 20,000 Copper Block Nusselt Number 

 

Figure 67: Case D 30,000 Copper Block Nusselt Number 



74 
 

 

Figure 68: Case D 40,000 Copper Block Nusselt Number 

 

Table 20: Overall Augmentations Case D Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9500 19000 28500 37500 𝑁𝑢𝑁𝑢𝐷𝐵 2.36 1.88 1.79 1.71 
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Case E 

 

Figure 69: Case E 10,000 Copper Block Nusselt Number 

 

Figure 70: Case E 20,000 Copper Block Nusselt Number 
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Figure 71: Case E 30,000 Copper Block Nusselt Number 

 

Figure 72: Case E 40,000 Copper Block Nusselt Number 
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Table 21: Overall Augmentations Case E Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9530 19050 28700 37900 𝑁𝑢𝑁𝑢𝐷𝐵 1.37 1.21 1.16 1.17 

 

 

Case F 

 

Figure 73: Case F 10,000 Copper Block Nusselt Number 
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Figure 74: Case F 20,000 Copper Block Nusselt Number 

 

Figure 75: Case F 30,000 Copper Block Nusselt Number 
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Figure 76: Case F 40,000 Copper Block Nusselt Number 

 

Table 22: Overall Augmentations Case F Copper-Block 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9500 19000 28500 37400 𝑁𝑢𝑁𝑢𝐷𝐵 2.09 1.74 1.65 1.57 
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Copper-Block Thermal Performances 

 

Figure 77: Thermal Performance Copper Block 

 

Table 23: Thermal Performance (η) Values Copper-Block Setup 

 Case A Case B Case C Case D Case E Case F 

10000 1.68 1.44 1.83 1.81 1.31 1.54 

20000 1.48 1.29 1.44 1.50 1.23 1.45 

30000 1.44 1.28 1.32 1.40 1.19 1.35 

40000 1.37 1.25 1.27 1.35 1.18 1.29 
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Transient TLC 

Baseline 

 

Figure 78: SW TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 

 

Figure 79: SW TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 
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Figure 80: SW TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 

 

Figure 81: SW TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 
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Figure 82: SW TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 

 

Figure 83: SW TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 
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Figure 84: SW TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 

 

Figure 85: SW TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 
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Figure 86: SW TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 

 

Figure 87: SW TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 
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Figure 88: SW TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 

 

Figure 89: SW TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Side

x/P

N
u
/N

u
o

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Bottom

x/P

N
u
/N

u
o



87 
 

 

Figure 90: SW Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-high) 
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Figure 91: SW Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-high) 
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Figure 92: SW Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Table 24: Overall Augmentations SW TLC 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 9500 19000 28500 37400 𝑁𝑢𝑁𝑢𝐷𝐵 1.07 0.94 0.93 0.91 

 

Case A 

 

Figure 93: Case A TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 
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Figure 94: Case A TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 

 

Figure 95: Case A TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 
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Figure 96: Case A TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 

 

Figure 97: Case A TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 
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Figure 98: Case A TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 

 

Figure 99: Case A TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 
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Figure 100: Case A TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 

 

Figure 101: Case A TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 
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Figure 102: Case A TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 

 

Figure 103: Case A TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 
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Figure 104: Case A TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 
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Figure 105: Case A Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 106: Case A Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 107: Case A Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered 

low-high) 

Table 25: Overall Augmentations Case A TLC 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10230 20400 29870 40000 𝑁𝑢𝑁𝑢𝐷𝐵 1.65 1.37 1.28 1.21 
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Case B 

 

Figure 108: Case B TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 

 

Figure 109: Case B TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 
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Figure 110: Case B TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 

 

Figure 111: Case B TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 
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Figure 112: Case B TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 

 

Figure 113: Case B TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 
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Figure 114: Case B TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 

 

Figure 115: Case B TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Top

x/P

N
u
/N

u
o

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Side

x/P

N
u
/N

u
o



104 
 

 

Figure 116: Case B TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 

 

Figure 117: Case B TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 
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Figure 118: Case B TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 

 

Figure 119: Case B TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 
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Figure 120: Case B Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 121: Case B Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 



108 
 

 

Figure 122: Case B Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered 

low-high) 

Table 26: Overall Augmentations Case B TLC 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10190 20150 30000 39870 𝑁𝑢𝑁𝑢𝐷𝐵 1.34 1.07 0.96 0.84 
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Case C 

 

Figure 123: Case C TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 

 

Figure 124: Case C TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 
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Figure 125: Case C TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 

 

Figure 126: Case C TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 
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Figure 127: Case C TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 

 

Figure 128: Case C TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 
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Figure 129: Case C TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 

 

Figure 130: Case C TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 
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Figure 131: Case C TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 

 

Figure 132: Case C TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 
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Figure 133: Case C TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 

 

Figure 134: Case C TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 
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Figure 135: Case C Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 



116 
 

 

Figure 136: Case C Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 137: Case C Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered 

low-high) 

Table 27: Overall Augmentations Case C TLC 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10300 19920 29750 39850 𝑁𝑢𝑁𝑢𝐷𝐵 2.59 2.09 1.89 1.76 
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Case D 

 

Figure 138: Case D TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 

 

Figure 139: Case D TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Top

x/P

N
u
/N

u
o

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Side

x/P

N
u
/N

u
o



119 
 

 

Figure 140: Case D TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 

 

Figure 141: Case D TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Bottom

x/P

N
u
/N

u
o

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Top

x/P

N
u
/N

u
o



120 
 

 

Figure 142: Case D TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 

 

Figure 143: Case D TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Side

x/P

N
u
/N

u
o

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Bottom

x/P

N
u
/N

u
o



121 
 

 

Figure 144: Case D TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 

 

Figure 145: Case D TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 
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Figure 146: Case D TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 

 

Figure 147: Case D TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 
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Figure 148: Case D TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 

 

Figure 149: Case D TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 
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Figure 150: Case D Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 151: Case D Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 152: Case D Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered 

low-high) 

Table 28: Overall Augmentations Case D TLC 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10260 20110 30100 39850 𝑁𝑢𝑁𝑢𝐷𝐵 1.98 1.65 1.49 1.44 
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Case E 

 

Figure 153: Case E TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 

 

Figure 154: Case E TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 
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Figure 155: Case E TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 

 

Figure 156: Case E TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 
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Figure 157: Case E TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 

 

Figure 158: Case E TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 
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Figure 159: Case E TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 

 

Figure 160: Case E TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 
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Figure 161: Case E TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 

 

Figure 162: Case E TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 
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Figure 163: Case E TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 

 

Figure 164: Case E TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 
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Figure 165: Case E Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 166: Case E Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 



135 
 

 

Figure 167: Case E Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered 

low-high) 

Table 29: Overall Augmentations Case E TLC 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10236 19954 29930 40100 𝑁𝑢𝑁𝑢𝐷𝐵 1.33 1.16 1.13 1.04 
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Case F 

 

Figure 168: Case F TLC Streamwise Averaged Nu/Nuo Top 10,000 Re 

 

 

Figure 169: Case F TLC Streamwise Averaged Nu/Nuo Side 10,000 Re 
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Figure 170: Case F TLC Streamwise Averaged Nu/Nuo Bottom 10,000 Re 

 

Figure 171: Case F TLC Streamwise Averaged Nu/Nuo Top 20,000 Re 
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Figure 172: Case F TLC Streamwise Averaged Nu/Nuo Side 20,000 Re 

 

Figure 173: Case F TLC Streamwise Averaged Nu/Nuo Bottom 20,000 Re 
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Figure 174: Case F TLC Streamwise Averaged Nu/Nuo Top 30,000 Re 

 

Figure 175: Case F TLC Streamwise Averaged Nu/Nuo Side 30,000 Re 
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Figure 176: Case F TLC Streamwise Averaged Nu/Nuo Bottom 30,000 Re 

 

Figure 177: Case F TLC Streamwise Averaged Nu/Nuo Top 40,000 Re 
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Figure 178: Case F TLC Streamwise Averaged Nu/Nuo Side 40,000 Re 

 

Figure 179: Case F TLC Streamwise Averaged Nu/Nuo Bottom 40,000 Re 
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Figure 180: Case F Local Nusselt Number Augmentations Top Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 181: Case F Local Nusselt Number Augmentations Side Wall for 10k, 20k, 30k, 40k Re (ordered low-

high) 
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Figure 182: Case F Local Nusselt Number Augmentations Bottom Wall for 10k, 20k, 30k, 40k Re (ordered 

low-high) 

Nominal Reynolds Number 10,000 20,000 30,000 40,000 

Actual Reynolds Number 10260 20260 30000 39950 𝑁𝑢𝑁𝑢𝐷𝐵 2.03 1.61 1.42 1.27 
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Transient TLC Thermal Performances 

 

Figure 183: Thermal Performance TLC 

Table 30: Thermal Performance (η) Values TLC Setup 

 Case A Case B Case C Case D Case E Case F 

10000 1.53 1.31 1.57 1.52 1.27 1.50 
20000 1.30 1.05 1.34 1.31 1.18 1.34 
30000 1.23 0.97 1.19 1.17 1.16 1.16 
40000 1.15 0.85 1.09 1.14 1.05 1.04 
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CFD 

Case A 

 

Figure 184: Streamwise Plane Cuts Case A 

 

Figure 185: Centerline Velocity Case A 
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Figure 186: Velocity at Wedge Tip Case A 

 

Figure 187: Case A Velocity Plane 1 



148 
 

 

Figure 188: Case A Velocity Plane 2 

 

Figure 189: Case A Velocity Plane 3 
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Figure 190: Case A Velocity Plane 4 

 

Figure 191: Case A Velocity Plane 5 
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Figure 192: Case A Velocity Plane 6 

 

Figure 193: Case A Velocity Plane 7 
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Figure 194: Case A Velocity Plane 8 
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Case B 

 

Figure 195: Centerline Velocity Case B 

 

Figure 196: Recirculation at Wedge Tail 
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Figure 197: Case B Velocity Plan 1 

 

Figure 198: Case B Velocity Plan 2 
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Figure 199: Case B Velocity Plan 3 

 

Figure 200: Case B Velocity Plan 4 
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Figure 201: Case B Velocity Plan 5 

 

Figure 202: Case B Velocity Plan 6 
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Figure 203: Case B Velocity Plan 7 

 

Figure 204: Case B Velocity Plan 8 
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Figure 205: Case B Velocity Plan 9 

 

Figure 206: Case B Velocity Plan 10 



158 
 

 

Figure 207: Bottom Surface Velocity Case B 

 

Figure 208: Side Wall Interaction Case B 
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Case C 

 

Figure 209: Centerline Velocity Case C 

 

Figure 210: Case C Velocity Plane 1 
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Figure 211: Case C Velocity Plane 2 

 

Figure 212: Case C Velocity Plane 3 



161 
 

 

Figure 213: Case C Velocity Plane 4 

 

Figure 214: Case C Velocity Plane 5 
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Figure 215: Case C Velocity Plane 6 

 

Figure 216: Case C Velocity Plane 7 
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Figure 217: Case C Velocity Plane 8 

 

Figure 218: Case C Velocity Plane 9 
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Figure 219: Case C Velocity Plane 10 

 

Figure 220: Side Wall Interaction Case C 
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Case D 

 

Figure 221: Centerline Velocity Case D 

 

Figure 222: Case D Velocity Plane 1 

 

Figure 223: Case D Velocity Plane 2 
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Figure 224: Case D Velocity Plane 3 

 

Figure 225: Case D Velocity Plane 4 

 

Figure 226: Case D Velocity Plane 5 
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Figure 227: Case D Velocity Plane 6 

 

Figure 228: Case D Velocity Plane 7 

 

Figure 229: Case D Velocity Plane 8 
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Figure 230: Case D Velocity Plane 9 

 

Figure 231: Bottom Wall Velocity Case D 
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Case E 

 

Figure 232: Centerline Velocity Case E 

 

Figure 233: Case E Velocity Plane 1 
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Figure 234: Case E Velocity Plane 2 

 

Figure 235: Case E Velocity Plane 3 

 

Figure 236: Case E Velocity Plane 4 
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Figure 237: Case E Velocity Plane 5 

 

Figure 238: Case E Velocity Plane 6 
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Figure 239: Case E Velocity Plane 7 

 

Figure 240: Case E Velocity Plane 8 

 

Figure 241: Case E Velocity Plane 9 
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Figure 242: Side Wall Interaction Case E 

 

 

Case F 

 

Figure 243: Centerline Velocity Case F 
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Figure 244: Case F Velocity Plane 1 

 

Figure 245: Case F Velocity Plane 2 

 

Figure 246: Case F Velocity Plane 3 
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Figure 247: Case F Velocity Plane 4 

 

Figure 248: Case F Velocity Plane 5 

 

Figure 249: Case F Velocity Plane 6 
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Figure 250: Top Wall Velocity Case F 

 

Figure 251: Bottom Wall Velocity Case F 
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Figure 252: Bottom Wall Velocity Case F (Around Wedge) 
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CHAPTER 4: DISCUSSION 

Friction Factor 

The results for the friction factors determined in the acrylic channel for all seven 

cases (when including the baseline), have been shown in the figures as experimental 

friction factor (f) versus the Blasius correlation (fo) in Chapter 3 - Friction Factor. The 

values for each case are shown in the tables below the figures. The figures show the 

nominal Reynolds numbers, where the actual Reynolds numbers tested may be located 

in each case table.  

The first case friction factors, the validation baseline case, show a similar trend in 

relation to increasing Reynolds number to the Blasius correlation. The values, however, 

are approximately 10% lower, with the largest difference at the 20,000 Reynolds 

number at 13.5% less than Blasius, seen in Table 9. The offset present results from the 

uncertainty of the experiment including Reynolds number, bias in the Scanivalve, and 

uncertainty in the flow measurement devices. Results remain within the uncertainty of 

the experiment as described in Chapter 2 – Uncertainty.   

Results for experimental friction factors and Blasius friction factors for Case A are 

shown in Figure 43. The values for the actual Reynolds number tested and friction 

factor augmentation are in Table 10.  The friction factor augmentation shows a 

decreasing trend with increasing Reynolds numbers, as expected, following the 

increase in pressure drop and Equation 2 above. The results for the small full wedge, 2 

wall case, also show minimal increase in pressure drop over the smooth pipe Blasius 

correlation. This minimal increase is not surprising, as the features e/H was near a 
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surface roughness feature. There is a comparison though to the same feature on one 

wall, for Case E, where the at the 10,000 Reynolds number case, the one and two wall 

setups have similar pressure drop, but at the 20,000, 30,000, and 40,000 Reynolds 

number cases, the friction augmentations are approximately 10% less than Case A.  

Results for Case B, friction factor experimental versus baseline correlation are 

displayed in Figure 44. The friction factor augmentation still decreases with Reynolds 

number, however it decreases more rapidly than the full wedge case; the small full 

wedge case stayed near 20% increase in friction over the smooth wall channel where 

the half wedge case drops from 10% increase over the smooth wall to 0%. The values 

for the friction augmentations for Case B are in Table 11.  

Friction factor augmentation results as determined for Case C are shown in 

Table 12 and Figure 44. The decrease in friction factor shows a large drop in friction 

augmentation between the 10,000 and 20,000 Reynolds number and, similarly to Case 

A, there is a more steady trend in friction factor trend from 20,000 to 40,000 Reynolds 

numbers. Friction augmentation for Case C in comparison to the smaller full wedge 

Case A, is ~3.5 times higher at all four Reynolds numbers. The large increase in friction 

factor augmentation is caused by the increased blockage in the channel, contributing to 

a much higher pressure drop over the length of the channel.  

 Friction factor augmentations for Case D are more than double the friction factor 

augmentations shown for Case B, the smaller half wedge case on 2-walls but almost 

half the friction augmentation of the larger full wedge Case C. This half wedge feature 

does have the same channel height blockage as the full wedge Case C, however, as a 

half shape wedge, the pressure loss over the length of the channel is significantly less. 
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This reduction in friction augmentation for the half wedge case could offset Case D from 

Case C in overall thermal performance, dependent on the Nusselt number 

augmentations.  

 Friction augmentation for the one wall small symmetrical wedge Case E, results 

in lower values for the three higher Reynolds numbers, as discussed above with Case 

A. However, at the lowest Reynolds number, 10,000, both cases resulted in similar 

frictional losses. Better visualization of how the flow acts at this Reynolds number may 

help support this conclusion.  

 The final case, the one wall large symmetrical wedge Case F, shows a significant 

reduction in frictional losses from the same feature on two walls. The lesser effect on 

pressure loss through the channel with the one wall case is as expected, since there are 

less features and less overall blockage through the channel. The comparison of this 

case to the large half wedge Case D shows similar frictional losses between the cases. 

It will be interesting then to review these two cases side by side in thermal performance, 

where the heat transfer effects on the surrounding smooth walls for each case may 

contribute to the enhancement of thermal performance of one case over the other.  

 

Segmented Copper Blocks 

The smooth-wall validation baseline case for the copper block setup Nusselt 

numbers are viewed in Figure 50 thru Figure 52, with overall area weighted Nusselt 

number augmentation values in Table 16. From the figures, the fully developed region is 

evident; this region is where the Nusselt numbers are in a linear trend where they 

overlap (for validation case) the Dittus-Boelter correlation. This fully developed area is in 
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the range from x/Dh~10 to x/Dh~20. For each Reynolds number on the SW case, the 

Nusselt number values in the fully developed overlap so that augmentations are all ~1. 

The match to Dittus-Boelter validates the copper block test section, unquestionably 

within the uncertainty of the experiment.  

In reviewing data shown in Chapter 3 for Case A with the copper-clock setup, the 

Nusselt number values are plotted by averaging the featured walls (top and bottom) 

together and the side walls together. The combination allows for easier viewing of the 

data on the plot, however, when each wall is plotted separately, Nusselt number values 

for each location on the top wall lie on the values for the bottom wall (within uncertainty 

of the experiment), since the two walls for this case are both featured. This match in 

Nusselt number values at the locations between the top and bottom wall is expected; 

the walls contain identical features. This concept is the same for the smooth side wall 

Nusselt number values as well.  

From these results for Case A, there is a clear distinction between developing 

section and fully developed section of the channel at all four Reynolds numbers. There 

is also a slight drop in Nusselt number visible at the end of the channel section. This 

drop may be due to added heat loss, since there are no surrounding copper blocks at 

the exit, or from exit flow effects propagating back into the copper block section.  

The large offset between Nusselt numbers for the featured walls and the surrounding 

smooth side walls shows the added increase in heat transfer to the walls that contain 

the wedge features and imply the features do not contribute to as much of an increase 

on the surrounding smooth walls. Nusselt number augmentations for the side walls for 

both the 10,000 and 20,000 Reynolds number cases do show an increase in heat 



182 
 

transfer from the Dittus-Boelter smooth pipe correlation of 30% and 10%, respectively. 

In other words, the side walls benefitted from the vortices created by the wedges.  

The overall area weighted Nusselt numbers for each Reynolds number for Case A are 

shown in Table 17. Although the side walls of the 30,000 and 40,000 Reynolds number 

cases saw no improvement from the smooth wall correlation, the overall heat transfer 

augmentation showed improvements around 45%. The overall heat transfer 

augmentation also shows a decreasing trend with increasing Reynolds number. The 

reason the improvement drops with increasing flow rate, in addition to the side walls not 

showing improvement at the 30,000 and 40,000 Reynolds numbers discussed above, 

can be contributed to the increase in free-stream flow turbulence. As the flow becomes 

more turbulent, the flow interactions between the vortices created by the shape of the 

wedge, shown in Figure 9, and the turbulent free-stream flow are less significant 

because of the increased free-stream turbulence, diminishing the effect the wedge 

features have on the heat transfer augmentation. 

Results for the Nusselt number augmentation of the featured and smooth side 

walls for all four Reynolds numbers for Case B are in Figure 57 thru Figure 60. For the 

10,000 Reynolds number case, an overlap in the fully developed region for the smooth 

side walls and the featured walls is evident. The small half wedge 2-wall design at a 

10,000 Reynolds number shows similar improvement in heat transfer for the smooth 

side walls as in the featured walls. This improvement is approximately 20% above the 

Dittus-Boelter correlation. However, for the remainder of Reynolds numbers tested, the 

offset between Nusselt numbers from the featured walls and side walls begins to 

increase. Overall heat transfer augmentations are noted in Table 18. The overall heat 
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transfer augmentation again decreases with increasing Reynolds number, following the 

same trend as Case A, the small full wedge 2-wall setup. Improvements in heat transfer 

range from 24% at 40,000 Reynolds number to 47% at 10,000 Reynolds number. 

Although the smooth side wall shows similar heat transfer to the featured wall, where 

Case A did not show this, the overall heat transfer improvement is significantly less than 

the small full wedge 2-wall case. The minimal offset between the smooth side walls and 

the featured bottom walls in Case B, then, is due to the features not contributing as 

much to heat transfer on the featured walls, rather than an improvement of heat transfer 

in the side walls when compared to the full wedge Case A.  

The Nusselt number results for wedge design Case C, where Case A is upscaled 

four times, for all four Reynolds numbers are shown in Figure 61 to Figure 64. The 

Nusselt numbers for the featured walls are 20% to 30% higher than the smooth side 

walls for all four Reynolds numbers. The overall heat transfer augmentations for Case C 

are nearly double the augmentation seen for Case A at the 10,000 Reynolds number 

and 50% higher than Case A at the 40,000 Reynolds number. Actual Reynolds numbers 

and Nusselt number augmentation value are found in Table 19.  

Results for copper block setup Case D, Nusselt numbers, are shown in Figure 65 

to Figure 68for all Reynolds number tested. The offset between smooth side walls and 

the featured top and bottom walls is again minimal, as seen with the first set of half 

wedges tested for 2-walls. Also similar to the wedges in Case B, the wedges in Case D 

result in a smaller overall heat transfer augmentation than the full size wedges of the 

same size on 2-walls. Again, the half wedge shapes contribute less to the featured wall 

in terms of heat transfer improvement, when compared to the large full wedge 2-wall 
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Case C. Overall Nusselt number augmentations for the copper block Case D are in 

Table 20. The overall heat transfer augmentations of Case D are approximately 1.5 

times higher than the Nusselt number augmentations of the ¼ sized Case B wedges.  

 For the first one wall case, using the small full wedges tested in Case A for 1-wall 

Case E, the figures for Nusselt numbers in the channel split the top and bottom wall, 

which before were averaged for the two feature wall cases. They were left separated for 

the one wall cases to view the effect of the feature on the bottom wall to the opposite 

smooth top wall. For this case, however, it is visible there is no effect of the small wedge 

features onto either the smooth side walls or the opposite non-featured top wall. The 

contribution to the overall Nusselt number augmentations, then are primarily from the 

bottom featured wall. These overall Nusselt number augmentation values range from 

37% improvement above the baseline to 17% improvement above the baseline. This is 

approximately 30% lower than the two wall case at the lowest Reynolds number and 

roughly 20% lower than the two wall case at the 40,000 Reynolds number.  

 The last case, the large full wedge on one wall Case F shows improvements from 

the baseline on all four walls, including the opposite smooth top wall. The size of this 

feature contributed to the improvements in heat transfer on the non-featured walls as 

well as the bottom featured wall. These findings are supported in the results from the 

transient TLC results reviewed in the section below. The overall Nusselt number 

augmentations however did not exceed those from the 2-wall case as expected with 

less features and less overall channel blockage. Case F resulted in overall Nusselt 

number augmentations 50% lower than Case C at the 10,000 Reynolds number and 

30% lower than Case C at the highest Reynolds number tested.  
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 Comparing thermal performance for all the copper block tests, at constant 

pumping power, is shown in Figure 77 and Table 23. At the lowest Reynolds number, 

the full wedges on 2-walls outperform the half wedges for both sized cases. However, 

as Reynolds number increases, the thermal performances of the large half wedges 

exceed (~5% to 8%) the thermal performances of the large full wedges on two walls. 

Comparing the smaller wedge two wall cases, the symmetrical wedge (Case A) has 

higher thermal performance values at all Reynolds numbers when compared to Case B. 

Consistently, the worst performing case with respect to thermal performance at constant 

pumping power for the two-walled cases is the smaller half wedge, Case B.  

At 20,000, 30,000 and 40,000 Reynolds numbers, cases B and E have thermal 

performance values that vary at a maximum of 3.5%. Since this variation is less than 

the uncertainty, these cases can be stated to have the same thermal performance at 

constant pumping power at the three higher Reynolds numbers.   

Comparing the one wall cases to the two wall cases, the small full wedge on one 

wall had thermal performance values that were lower than Case B, making this case the 

worst performing case out of all cases tested. The large full wedge on one wall (Case F) 

however, showed similar results to the same wedge on two walls, Case C for the three 

higher Reynolds numbers. The lowest Reynolds number still resulted in higher 

performance from Case C over Case F by 20%. The one wall case could have resulted 

in similar performance because of the lower frictional losses. With frictional losses 

similar to the half wedge Case D, it was interesting to see that the half wedge shapes 

outperformed both the two wall and one wall full large wedges (Case C and F) at the 

20,000, 30,000, and 40,000 Reynolds numbers, although only by approximately 5%.  
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Transient TLC 

 The results from the transient TLC experiments are displayed in three ways: the 

streamwise averaged Nusselt number augmentations for each wall, the local Nusselt 

number augmentations for each wall, and finally the overall Nusselt number 

augmentations for each case. The streamwise averaged Nusselt number 

augmentations are plot versus the distance x, shown per the pixel number. The baseline 

plots shown the entire viewing window in the streamwise averaged plots, where the 

remaining cases are zoomed in to the first half of the viewing window. Local plots are 

shown with W or H on the left axis (representing either the width or height of the 

channel) versus the normalized distance x/Dh.  

 For the baseline validation, all Nusselt number augmentations should be equal to 

one, within the uncertainty of the experiment. For the SW validation, the 10,000 

Reynolds number streamwise averages show values just above or below one, 

depending on the wall. For the 20,000, 30,000, and 40,000 cases, the trends decrease 

along the length of the channel. This decrease could be due to improper measurement 

of the bulk temperature in the channel. However, the overall Nusselt number 

augmentation values for all four Reynolds numbers fall within 10% of the Dittus-Boelter 

smooth pipe solution. Reviewing local plots for the SW, ideally should all appear as one 

color, there are some ‘streaks’ viewed which could have occurred from the bulk 

temperature calculation, not allowing enough time for the test, or uneven heating at the 

inlet from the mesh heaters.  

 Case A, viewing streamwise Nusselt number augmentation values on the side 

wall, a decrease with increasing Reynolds number is observed; minimizing heat transfer 
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contribution on the side walls as the turbulence in the main flow increases. On the top 

and bottom streamwise average plots, peaks in augmentation values are clearly visible. 

These peaks occur at the location of the wedges; on the local plots, the highest areas of 

heat transfer are immediately following the wedge, and decreasing thereafter until the 

following wedge. This idea is shown by the large jump in Nusselt number augmentation 

on the streamwise averaged plots followed by a shallower-sloped decrease. From the 

local plots of the top and bottom walls, it is also evident how far out the improvements in 

heat transfer reaches, i.e. the increased heat transfer is minimal (if any) as the flow 

progresses out toward the side walls. This supports the copper results, in that there was 

very little to no improvement observed on the side walls for Case A. Also visible from 

the local data, is the decrease of Nusselt number augmentation on all walls as the 

Reynolds number increases. This is as expected, as the free-stream turbulence in the 

channel increases; the overall Nusselt number augmentation should decrease, as there 

is less contribution from the included features. A comparison of the overall Nusselt 

number augmentations obtained in the TLC tests to the results obtained in the copper 

block test are shown in Chapter 5.  

 The streamwise average results are quite different for the half wedge feature of 

the same size and setup for Case B. Viewing the local Nusselt number augmentation 

results however, the highest augmentations are shown at the base of the wedge and 

continue toward the side wall as seen with the full wedge. The streamwise results do 

not show the jump with the decreasing slope at the wedge locations as seem with the 

full wedge, because of the way the data is averaged. Since Case B wedge results are 

limited to half of the channel for each featured wall as viewed in the local results, and 
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results from the opposite featured wall do not progress around to the other side 

because of the free-stream turbulence, the half of the channel wall with no heat transfer 

is averaged into the x-location for the streamwise averages. Therefore, the peak is less 

obvious then viewed in Case A. Side wall streamwise augmentations are also lower 

than 1, which could be contributed to the issues with running the TLC tests as described 

previously, and outlined in Chapter 6. The overall augmentations then, show results less 

than one at the 30,000 and 40,000 Reynolds number as well, with only 7% improvement 

in heat transfer on the 20,000 case and 34% for the 10,000 Reynolds number case.  

 The first of the large wedge cases, Case C, which consisted of symmetrical 

wedges staggered on two walls shows peaks on all three walls in the streamwise 

averaged plots for all four Reynolds numbers, decreasing with increasing Reynolds 

number. It is more easily visible on the large wedge local Nusselt number augmentation 

plots where the wedge is located, as well as the increases in heat transfer following the 

wedge. The local plot is similar to the results obtained from Henze and von Wolfersdorf, 

shown in Figure 9 (Henze & von Wolfersdorf, Influence of Approach Flow Conditions on 

Heat Transfer Behind Vortex Generators, 2011). The highest areas of heat transfer are 

shown at the tip of the wedge and at the base of the wedge, then spans out toward the 

side walls. The secondary flows created from the wedges are pushed into the side 

walls, where it added improvement in heat transfer also travels up the side walls from 

both featured walls, visible in Figure 136. Viewing again the streamwise averaged plots, 

at the peak locations in augmentation following the wedge features on the top and 

bottom walls at all four Reynolds numbers show points that do not lie in near the plot. 

On the bottom wall streamwise averaged plots, there are a few points of very high 
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Nusselt number augmentations (above 3) on the 20,000, 30,000, and 40,000 Reynolds 

number cases and low augmentations at the location immediately after the wedge in the 

10,000 case and on the top wall at 10,000 and 20,000 Reynolds numbers the points like 

further below . This variation from the trend could have resulted from improper masking. 

When the mask created for the wedge lumped capacitance calculation covers too much, 

the augmentation is too high, where the mask doesn’t cover the entire feature, the 

augmentation is too low. For the side wall streamwise average plots, higher 

augmentation ‘peaks’ are seen, corresponding to the locations where the secondary 

flow from the wedge features is projected toward the side wall. Further studies into the 

flow structures from this setup may help support these findings. Overall augmentations 

range from 159% over the baseline at the lowest Reynolds number to 76% over 

baseline at the highest Reynolds number tested.  

 For the large half wedge Case D, results are similar to the full wedge, in terms of 

trends for the streamwise average plots. The peaks again in streamwise averaged 

Nusselt numbers are located at the base of the wedge location and decrease until the 

following wedge on the same wall. The peaks from the half wedge case are less 

prominent, where the rise in augmentation is faster, before the ‘peak’ location following 

the base of the wedge occurs. This higher augmentation over a longer distance 

downstream could be a result of the continuation of the secondary flows around the 

channel from the opposite wall. This data is supported by the local Nusselt number 

augmentation data, where an increase in heat transfer on each of the featured walls is 

seen towards the side wall on the non-featured half of the channel (the top of the 

images for Figure 150 and Figure 152. The vortices from the bottom featured wall travel 
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into the side wall and mixing continues upward toward the top featured wall and vice-

versa. The effects of course, die down with increase in Reynolds number, visible on all 

three walls in both the local and streamwise plots. Again, the highest areas of heat 

transfer are found at the tip and base of the wedges. The increased heat transfer 

following the wedge features does not look the same as the full wedges, in a sense that 

if the full wedge local data plot were cut down the mid-plane for the features walls (W=0 

on the plots) that it would match that of the half-wedge local data, but this is not the 

case. From the local Nusselt number augmentation plots, the increased heat transfer 

from the half wedge shifts more toward the side wall. This angle toward the side wall 

could also be due to the flow from the opposite featured wall, traveling down the side 

and pushing the flow toward the right and from the free stream flow along the flat side of 

the wedge spreading into the wake region. Further studies into the flow structures are 

needed to support these conjectures, concluded from the local Nusselt number 

augmentation results. Overall augmentations range from 98% above the baseline at the 

10,000 Reynolds number to only 44% at the 40,000 Reynolds number.  

 The first one wall feature Case E, which consisted of the small full wedge 

features on the bottom wall, was the worst performing case for the copper-block setup. 

This is consistent with the results seen from the TLC tests. On the top and side walls, 

little improvement is seen with both the streamwise average and local Nusselt number 

augmentation plots for the 10,000 Reynolds number case. Where no improvement is 

seen from the streamwise averaged plots for the remainder of the top wall and side wall 

cases. The peaks on the bottom wall for Case E match locations and peaks from the 

bottom wall on Case A for the streamwise averaged Nusselt number plots. Reviewing 
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the local data plots, Nusselt number augmentations follow the trends shown in the 

streamwise plots, and in the copper data. The top wall lowest Reynolds number case 

shows 20% to 5% improvement, and local augmentations decrease with increasing 

Reynolds number. The side wall also shows small improvement at the 10,000 Reynolds 

number case, approximately 5% to 10%, also decreasing locally with increasing 

Reynolds number. The bottom wall local Nusselt number augmentation data for the one 

wall case agrees with the bottom wall local data from the two wall case. Overall 

augmentations for the one wall case range from 33% at the 10,000 Reynolds number to 

4% at the 40,000 Reynolds number.  

 The final one wall Case F is the first large full wedge Case C with features from 

the top wall removed. Viewing the side wall streamwise averaged plots, the Nusselt 

numbers show enhancement above the baseline for all four Reynolds numbers. For the 

top wall streamwise averaged plots, the first three Reynolds numbers show 

improvements from the baseline, with no improvement seen at the 40,000 Reynolds 

number case. As with the first one wall case, results on the bottom wall for the 

streamwise averaged plots concur with the results on the bottom wall for the two wall 

case. When reviewing the local data, again the bottom wall local Nusselt number 

augmentation matches that shown for the two wall case. The side wall also shows 

improvement from where the secondary flows from the wedges on the bottom wall are 

directed toward the side walls. Viewing the top wall local data, the contribution from the 

features to the opposite non-featured top wall is observed. Secondary flows caused by 

the wedge features on the bottom wall impede on the side walls and are pushed upward 

toward the top wall, as reviewed for the two wall Case C, with better visualization on the 
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top wall of these effects from the opposite featured wall. The overall Nusselt number 

augmentations from the TLC for Case F show, at the 10,000 Reynolds number case, a 

103% improvement in heat transfer over the baseline to 27% improvement over the 

baseline for the highest Reynolds number case tested.  

 Thermal performances from the transient TLC experiments for all six cases are 

shown in Figure 183 and Table 30. The results for the overall thermal performances in 

comparison to the copper block results are varied. The worst performing case, in terms 

of the transient TLC result is Case B, which was only the second worst performing case 

from the copper block results. Cases A, D, and F are the three highest performing cases 

for both the copper block and transient TLC thermal performance results, with Case C 

performing similar with the TLC results. Trends within each case, in terms of thermal 

performance, are similar to individual case trends for the copper block results. The 

variation in thermal performance results (more specifically the Nusselt number 

augmentation results, since the friction results for the thermal performance calculations 

were constant for both copper and TLC) is observed in the offset of the Nusselt number 

augmentation results for each case, where the TLC results are consistently lower than 

the copper block. These discrepancies are further reviewed in Chapter 5.  
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CFD 

 Numerical testing was completed using STAR-CCM+ to further support results 

determined from experimental heat transfer tests with flow visualization. A comparison 

to the experimental results is in Chapter 5. The results for the numerical testing in 

Chapter 3 show multiple viewing planes for the velocity vectors. The velocity vectors 

depict secondary flows where circulation is seen on the planes oriented in the spanwise 

direction. The centerline planes show areas where there is recirculation after the wedge 

features. Side wall interaction planes are also shown to determine how or if the 

secondary flows caused by the wedge features on the bottom and top walls extend out 

to the side walls.  

 The first image in Chapter 3 – Case A shows the location of spanwise planes. 

These planes are set so that they cover one period of wedge features, including the tip 

of the wedges, the centerline of the wedges, the tail of the wedges, and distances 

between the wedges. The results are then placed in order of distance down the 

streamwise direction to show how the flow progresses down the length of the channel. 

These spanwise plane locations are repeated for all wedge cases. Spanwise results 

from Case A show secondary flows at the first wedge, seen in the Plane 2 image, that 

continue after the feature, but dissipate prior to the second wedge (Plane 6). Also visible 

from the spanwise images is the inability for the secondary flows to travel to the side 

walls. The streamwise centerline velocity for Case A also shows an area after the 

wedges where the flow has recirculation and reattaches to the bottom (or top) surface.  

 Results for Case B velocity planes are in Figure 195 to Figure 208. The first two 

images, showing the centerline plane in the streamwise direction show the recirculation 
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following the half wedge shape.  The reattachment after the recirculation zone does not 

appear as dramatic as the full wedge case. The spanwise planes for Case B show the 

secondary flows dissipate before reaching the next wedge, not traveling as far as the 

full wedge of the same size.  The last two images show the velocity along the bottom 

wall and the interaction of the flows from the featured wall to the side wall. The flow 

direction is pointed toward the side wall after the wedge feature, but does not make it 

across from the free-stream flow.  

 Case C velocity planes are shown in Figure 209 to Figure 220. From the 

centerline streamwise plane, the highest velocities follow immediately after the tip of the 

wedge features, as expected. The first spanwise plane at the inlet of the periodic 

section shows secondary flows from the previous wedge feature continuing toward the 

next wedge feature on the opposite wall. From the first and second plane images the 

spanwise planes also show the ability of these features’ secondary flows to extend out 

to the smooth side walls. At plane 3, the secondary flows of the next wedge feature on 

the opposite wall are formed, while the rotating flows from the previous wedge are still 

observed on the bottom sides of the image. This case is the first feature to show the 

interactions on all four walls at one spanwise plane cut. The flow structures are 

continued in the same manner for the full period of wedges plotted. The final Case C 

image shows the direction of the velocity along the featured bottom surface and the 

interaction with the side wall. This image shows flow from the previous wedge on the 

same wall extending down to the next wedge and into the side walls.  

 Numerical results for Case D velocity planes are shown in Figure 221 to Figure 

231. The streamwise centerline plane for Case D is similar to Case C, where again the 
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highest velocities are follow the tip of the wedge. The spanwise planes for Case D, 

however are very different from those of the same sized full wedge. Clockwise rotation 

through the channel is observed following the orientation and placement of the half 

wedge features. The secondary flows extend toward the side wall, but are limited to one 

side. The bottom wall velocity plane agrees, and shows the clockwise flow direction 

from the periodic condition.  

 Case E velocity plane images are in Figure 232 to Figure 242. The centerline 

streamwise velocity plane for Case E is similar to the two-wall Case A, limited to one 

side. The spanwise results however, show directional changes (secondary flows) 

developed off of the wedge features dissipating prior to the following wedge feature. It 

also appears from the spanwise images that the changes to the flow cause by the 

features also fails to extend out to the side walls or propagate upward to the non-

featured top wall. The side wall interaction image agrees. Comparing the one wall to the 

two wall case with the same feature, Case A incorporates all four walls better than the 

one wall Case E.  

 Results for Case F velocity planes are in Figure 243 to Figure 252. The 

centerline streamwise velocity plane shows the maximum area of velocity following the 

wedge tip as well as the recirculation and reattachment zone following the tail of the 

wedge. At the first spanwise plane at the tip of the wedge feature, the secondary flows 

fully encompass the channel, as with the 2-wall case of the same feature (Case C). As 

with the two wall case, Case F shows the continuation of secondary flows from the 

previous wedge on the same wall, as new vorticies are formed from the next wedge 

feature. Also visible from the spanwise planes is the side wall interaction and how the 
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vorticies travel up the side walls to the non-featured top wall. The top wall and bottom 

wall velocity images agree with the spanwise plane images showing the flows directed 

toward the side walls off the bottom wall feature and the change in direction of the flow 

on the top surface. The last image shown for the one wall full wedge feature case 

shows the velocity directions and intensities around the feature, with the recirculation 

zone following the tail of the wedge visible.  

  



197 
 

CHAPTER 5: GENERAL DISCUSSION/CONCLUSIONS 

Copper Block Data 

A comparison of the two different sizes of the wedge cases (smaller cases A and 

B to larger cases C and D) supports results found. The large wedges with an e/H=0.52 

means the wedges completely penetrate the boundary layer, so increase in heat 

transfer and resultant increase in friction are found. The smaller wedges with an 

e/H=0.13 are slightly larger than typical surface roughness features (surface roughness 

typically less than e/H=0.1), so subsequently there is less heat transfer but less friction 

increase as well. Despite the 2:1 channel aspect ratio, the smaller sized wedge cases, 

A and B, had no impact on heat transfer on the surrounding smooth side walls at the 

higher Reynolds numbers tested. However, some increase in heat transfer on the 

smooth side walls was observed at the 10,000 Reynolds number, 29% and 22% for 

Case A and B, respectively. The increase in heat transfer on the smooth side walls for 

the larger sized wedge cases, C and D, ranged from 50% to 115% higher than the 

smooth pipe correlation. The large jump in heat transfer improvement on the side walls 

of the large wedge cases compared to the smaller wedge cases, contributed to the 

significantly higher overall Nusselt number augmentations (nearly doubled at all four 

Reynolds numbers). However, quadrupling the parameters, including the blockage as 

e/Dh, resulted in friction factor augmentations two to four times higher than the friction 

factor augmentations of the smaller wedge cases. With the calculations of thermal 

performance, both at constant pumping power and constant pressure ratio, the increase 

in friction factor for cases C and D resulted in thermal performance values less than or 
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equal to the smaller wedge cases A and B. Further optimization of the wedge size, 

spacing, and shape has potential to result in configurations superior in performance to 

the ones in the current study. 

Comparing half-wedge cases B and D to full-wedge cases A and C, the full 

wedge cases had higher overall Nusselt number augmentations for both sizes, 

approximately 30% to 50% higher for the large wedges and 20% higher for the smaller 

wedges. The increase in heat transfer for the full wedges was seen on both the featured 

walls and smooth side walls. The full wedges have a larger surface area to transfer heat 

to the flow and are angled to push secondary vortices to both smooth side walls from 

the top and bottom wall features. The half wedges, however, were arranged in an effort 

to generate additional secondary flows with continuously rotating flow down the length 

of the channel, to increase heat transfer on all surfaces with a smaller feature, for 

minimizing material for cost and weight as well as minimize pressure loss through the 

length of the channel. These positive effects of cutting the wedge in half are seen in the 

friction augmentation results. Cutting the wedge in half for cases B and D resulted in 

friction factor augmentations cut nearly in half for the larger wedge and approximately 

20% to 40% less for the smaller wedge. The overall thermal performance results, 

comparing the half to the full shaped wedges and evaluated at constant pumping power, 

shows the half-wedges having a higher thermal performance than the full wedge case of 

the same size for the larger wedge cases, but showing lower thermal performance than 

the full wedge for the smaller size. Out of all six cases, the large half wedge and the 

small full wedge cases oriented on two walls are the best cases in terms of thermal 

performance at constant pumping power, at all four Reynolds numbers tested.  
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Comparing to the one wall cases, friction augmentations for the Case F were 

more than double the friction augmentation for Case E and Nusselt number 

augmentations for Case F were 50%-60% higher than Case E. However, in terms of 

thermal performance at constant pumping power, the large wedge Case F results 

exceed the thermal performance results for Case E at all Reynolds numbers tested. The 

small one wall Case E stands out from all other cases as the worst wedge case setup, 

in terms of thermal performance. Case F, however, stands out as one of the top three 

cases, in terms of thermal performance. The added frictional benefit of removing one 

wall of features helped to increase the thermal performance of this case, even though 

the heat transfer in terms of Nusselt number augmentation, comparing the same wedge 

on two walls in Case C, was 1.5 times lower for the one wall with comparable thermal 

performance at the three higher Reynolds numbers. In terms of application, Case F 

would succeed over Case C, since there would be less material and machining.  

Copper-Block vs. Transient TLC 

 Results of the averaged wall Nusselt number augmentations from each 

experimental setup are shown per case, per wall in the following sections to compare 

the two techniques. The overall averaged Nusselt number augmentations are also 

shown for each case, where error bars are added for 10% uncertainty.  The values for 

the overall Nusselt numbers can be found in Chapter 3: Results under each case 

section.  
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Case A 

 Nusselt number augmentations for the top, side, and bottom wall for Case A, the 

small full wedge case on two walls, are shown in Figure 253, Figure 254, and Figure 

255. Copper Nusselt numbers are represented by the blue diamonds and TLC results 

are represented by the red squares. For all walls, the TLC results are lower at all four 

Reynolds numbers tested. The trends however, in reference to the increasing Reynolds 

number for each experimental setup are the same. The TLC results are approximately 

20% lower than the copper block results for each wall and at all four Reynolds numbers. 

When reviewing the overall results in Figure 256, the transient TLC technique produced 

results 9%-16% less than the copper block technique. The error bars then, at 10% for 

each experiment, overlap showing the results are within the uncertainty of both the 

experiments. Although the bias is present in reviewing the Nusselt number values, the 

local plots of the data from Chapter 3 show valuable insight into approximating the flow 

structures caused by the features.  

Results for the top and bottom wall, which have identical features, have the same 

Nusselt number augmentation values for each experimental setup, as expected. For the 

side wall, the three highest Reynolds numbers tested for each setup show 

approximately no heat transfer improvement, however there is a discrepancy in the 

10,000 Reynolds number case, where the offset present between the experimental 

techniques shows some improvement with the copper block test, but no improvement 

with the transient TLC.  
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Figure 253: Nusselt Number Augmentation Copper to TLC Comparison Case A Top Wall 

 

Figure 254: Nusselt Number Augmentation Copper to TLC Comparison Case A Side Wall 
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Figure 255: Nusselt Number Augmentation Copper to TLC Comparison Case A Bottom Wall 

 

Figure 256: Nusselt Number Augmentation Copper to TLC Comparison Case A Overall 
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Case B 

 Wall averaged Nusselt number augmentation results for Case B for each 

experimental setup are shown in Figure 257, Figure 258, and Figure 259 for the top, 

side, and bottom wall respectively. As found with Case A, the transient TLC results for 

Nusselt number augmentations are lower than the copper block results for each wall 

and all four Reynolds numbers. The offset between the copper block results and the 

TLC results for the top, side, and bottom walls at the 40,000 Reynolds number are the 

furthest from the copper block data, where the 10,000 Reynolds number case shows 

the least offset for all three side walls. The side wall TLC Nusselt number augmentation 

results are consistently near 30% for all four Reynolds numbers tested. The offset for 

the top and bottom walls range from approximately 10% to 40%. The larger 

discrepancies between the copper and TLC results support the difference in thermal 

performance results, where for the copper Case E showed the worst thermal 

performance and for the TLC, Case B showed the worst thermal performance.  

 The overall averaged Nusselt number augmentation results, in Figure 260 also 

shown with 10% error bars for each experimental setup, continue the trends seen from 

the individual walls; as the Reynolds number increases, the offset between the copper 

block results and the TLC results increases. The percent difference of the TLC results to 

the copper block range from 9% to 32%. Although the TLC is again under-representing 

the heat transfer enhancement, the local plots shown in Chapter 3 still help predict 

direction of the flow caused by the small half wedge features. Further investigation into 

the flow, from CFD results support the trends found in the TLC local Nusselt number 

augmentation results.  
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Figure 257: Nusselt Number Augmentation Copper to TLC Comparison Case B Top Wall 

 

 

Figure 258: Nusselt Number Augmentation Copper to TLC Comparison Case B Side Wall 
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Figure 259: Nusselt Number Augmentation Copper to TLC Comparison Case B Bottom Wall 

 

Figure 260: Nusselt Number Augmentation Copper to TLC Comparison Case B Overall 
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Case C 

 Wall Nusselt number augmentation results for comparing copper block to TLC 

show approximately a 30% offset for all four Reynolds numbers on the side wall and the 

10,000 Reynolds number on the top wall, but only a 4% to 20% offset on the bottom 

wall and remaining top wall Reynolds numbers, viewed in Figure 261, Figure 262, and 

Figure 263. The largest difference for the bottom wall data is at the 10,000 Reynolds 

number case (20%), all other Reynolds numbers show a difference of less than 15% 

with similar drop in the offset at these Reynolds numbers for the top wall. The 

differences between the percent changes for the 10,000 Reynolds number case, and 

the reason why the bottom wall shows better (as closer to the copper results) than the 

top and side could be from the mask. As described above, and further outlined in 

Chapter 6, if the mask for the bottom wall covered too much (as in covering more than 

the copper feature area), the results for the Nusselt number augmentation would show 

higher. Furthermore, the 10,000 case would be different from the three remaining 

cases, because for the 10,000 case the venturi has to be changed to the 1/2”-20, which 

causes slight movement of the channel, and therefore has a different mask than the 

remaining Reynolds number cases tested.  

 The overall averaged Nusselt number augmentation results, shown in Figure 

264, show overlap of the 10% error bars for the 10,000, 20,000, 30,000, and 40,00 

Reynolds number cases. Results from the transient TLC experiment support the values 

determined in the copper block setup.  
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Figure 261: Nusselt Number Augmentation Copper to TLC Comparison Case C Top Wall 

 

Figure 262: Nusselt Number Augmentation Copper to TLC Comparison Case C Side Wall 
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Figure 263: Nusselt Number Augmentation Copper to TLC Comparison Case C Bottom Wall 

 

Figure 264: Nusselt Number Augmentation Copper to TLC Comparison Case C Overall 
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Case D 

 Similar to the previous case, the differences between the copper block and 

transient TLC results change, dependent on the wall. For the top wall, the TLC Nusselt 

number augmentations for all four Reynolds numbers are approximately 18%-23% 

lower than the copper block; for the side wall, augmentation results for the TLC are 

25%-29% lower than the copper block results; for the bottom wall, TLC results are only 

about 10% lower than the copper block results. The differences again could be in part to 

the masks. If the values are significantly lower than the copper block, the mask created 

for the TLC processing was too small, perhaps did not cover the entire copper feature 

footprint; whereas for the bottom, the mask again may have covered too much, or more 

than just the copper feature footprint. Side wall results are near consistent for all the 

cases thus far, within 20% to 30% offset between results for the two experimental 

techniques. The trends with respect to Nusselt number augmentation as Reynolds 

number increases, for all three walls between the two experiments are the same and 

therefore the local results from the TLC help depict the flow characteristics that occurred 

in the copper block setup, with further studies into the flow from CFD.  

 The 10% error bars on the overall averaged Nusselt number augmentation plot in 

Figure 268 overlap at all Reynolds numbers tested, the percent difference between the 

experimental tests range from 12% to 16%, where trends of the overall averaged 

augmentation with respect to Nusselt number for all four tests are consistent.   
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Figure 265: Nusselt Number Augmentation Copper to TLC Comparison Case D Top Wall 

 

Figure 266: Nusselt Number Augmentation Copper to TLC Comparison Case D Side Wall 
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Figure 267: Nusselt Number Augmentation Copper to TLC Comparison Case D Bottom Wall 

 

Figure 268: Nusselt Number Augmentation Copper to TLC Comparison Case D Overall 
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Case E 

 Case E, the first one wall test, shows variation in the trends for Nusselt number 

augmentation as a function of Reynolds number between the copper block and TLC 

tests. In Figure 269, Figure 270, and Figure 271 below, the 30,000 Reynolds number 

case for the TLC results are much closer to the copper block results than any other 

Reynolds number tests, for all three walls, with the TLC results from the 40,000 case as 

the furthest away from copper block results, with the exception of the side wall TLC 

result at 10,000 which is 4% less than the 40,000 Reynolds number TLC result. 

Differences between these Reynolds numbers could result from the timing of the test, 

which is visible in the local Nusselt number augmentation results of the TLC experiment 

by the ‘streaks’ or areas of higher augmentation that indicate the test may not have 

been run at either a long enough time, or the voltage was too low to complete the test 

during the 30 second test duration time.   

Although the 40,000 case for the top wall appears to be much larger than the 

experimental uncertainty, the issue is ultimately with the scale for the plot. The TLC 

results for the top wall range from only 2% to 9% below the copper block tests, 5% to 

18% below copper block results on the side wall, and 14% to 22% on the bottom wall. 

The overall Nusselt number augmentation results in Figure 272 show the TLC 2% to 

11% below the copper block; results for the TLC support the copper block and results 

are within the uncertainty of the experiment.  
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Figure 269: Nusselt Number Augmentation Copper to TLC Comparison Case E Top Wall 

 

Figure 270: Nusselt Number Augmentation Copper to TLC Comparison Case E Side Wall 
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Figure 271: Nusselt Number Augmentation Copper to TLC Comparison Case E Bottom Wall 

 

Figure 272: Nusselt Number Augmentation Copper to TLC Comparison Case E Overall 
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Case F 

 Comparisons of the Nusselt number augmentations from both experimental 

setups for all three walls tested are in Figure 273, Figure 274, and Figure 275. As with 

the other cases, although there is an offset between copper block and TLC Nusselt 

number augmentation results, the trends of the augmentations as a function of 

Reynolds number are still consistent between the two test setups. The TLC Nusselt 

number augmentation results for the top wall are 13% to 21% less than the copper 

block results, 13% to 33% less than the copper block results for the side wall (where the 

jump is between the 10,000 and 20,000 Reynolds number cases), and -1% to 12% from 

the copper block results on the bottom wall. The jump for the side wall is evident in the 

local Nusselt number augmentation plots as well, where very high heat transfer is 

shown from where flow from the first wedge location interacts with the side wall at the 

10,000 Reynolds number. The top wall results show increase in heat transfer for both 

experiments at all four Reynolds numbers and with the similar trend in augmentation as 

a function of Reynolds number; the local TLC results help support the copper block 

results (this is for all walls) and help to picture the flow interactions that rise from the 

featured wall around to the opposite smooth top surface.  

 The overall averaged Nusselt number augmentation results from both the copper 

block and TLC as a function of Reynolds number are shown in Figure 276.  The TLC 

results are 3% less than the copper block at the 10,000 Reynolds number, 7.5% less at 

the 20,000 Reynolds number, 13.6% less at the 30,000 Reynolds number, and 19.5% 

less at the 40,000 Reynolds number case. The error bars then overlap at the first three 

Reynolds numbers tested and are separated by 1.6% at the 40,000 Reynolds number.  
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Figure 273: Nusselt Number Augmentation Copper to TLC Comparison Case F Top Wall 

 

Figure 274: Nusselt Number Augmentation Copper to TLC Comparison Case F Side Wall 
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Figure 275: Nusselt Number Augmentation Copper to TLC Comparison Case F Bottom Wall 

 

Figure 276: Nusselt Number Augmentation Copper to TLC Comparison Case F Overall 
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CFD Comparison 

 Flow visualization using STAR-CCM+ was used to help support conclusions on 

the flow characteristics developed from the heat transfer experiments, more particularly 

the local results from TLC and give more insight to the secondary flows developed from 

the features. The bottom wall, top wall, and side wall interaction velocity planes show 

consistencies with the local heat transfer results from the transient TLC plots, with 

respect to intensities. The areas of higher velocity near the wall from the CFD results 

are areas of higher heat transfer with the TLC results.  

 Case A velocity results near the bottom wall and the side wall interaction planes 

agree with the local transient TLC results. The higher velocities follow the wedge 

features and spread toward the side walls but do not reach the side walls. This result is 

supported by the secondary flows observed in the spanwise planes discussed in 

Chapter 4. Vorticities formed by the wedge feature directed toward the side walls are 

pushed by the free-stream flow in the streamwise direction. The velocity planes agree 

with the local TLC results that show areas of high heat transfer following the wedge 

aimed toward the side walls, but dissipate before reaching the smooth side walls.  

 Velocity results for Case B, observing the bottom wall plane and side wall 

interaction planes in Figure 207 and Figure 208 also agree with local TLC results in 

Chapter 3. Similar to the full wedge feature of the same size, Case A, higher velocities 

are pointed toward the side wall (following the angle of the wedge, but limited to one 

side with the half wedge) but do not extend all the way out to the side wall. The same 

angles are also observed in the velocity plane magnitudes as observed with the higher 

heat transfer in the local TLC results, where the half wedge feature did not mimic the full 
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wedge results from the centerline of the channel. Also visible in the velocity plane is the 

higher velocities from the previous wedge feature on the same wall following the 

direction for the next wedge, developing the angled flow away from the centerline of the 

channel, where velocities curve around the flat side of the wedge (in the centerline) 

toward the tail of the wedge following more of the angle from the clockwise shaped right 

triangle wedge design.  

 Case C, Figure 220, showing the bottom and side wall velocity planes indicate 

the secondary flows and higher velocities induced by the wedge features extend out to 

the side wall, alternating from the top and bottom features and continue in the 

streamwise direction to build on the following wedges in the channel. The local TLC 

results also are supported by these flow characteristics, where areas of higher heat 

transfer on the side wall are alternated from top and bottom, dependent on the location 

of the wedge feature on the top and bottom walls, and the higher heat transfer on the 

top and bottom featured walls continues to the next wedge in the streamwise on the 

same walls, fanned or angled toward the side walls.  

 Case D velocity directions and magnitudes observed near the bottom (or top) 

wall surface in Figure 231 are similar to the smaller wedge Case B; however the higher 

velocities do extend out to the side wall, in the clockwise direction following the wedge 

angle. The higher velocities angled toward the side wall that reach the side wall in Case 

D support the local TLC results for the side wall in Figure 151, showing areas of higher 

heat transfer following a wedge feature, limited to one side (near the top or bottom 

dependent on the side, since the wedges only point toward one side).  
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 The first one wall wedge, Case E velocity plane showing side wall interaction in 

Figure 242 is similar to the two-wall Case A of the same size full wedge, similar to local 

results determined from the TLC results. Similar to the two-wall case, higher velocities, 

or higher areas of heat transfer in the TLC results are limited to the featured wall, where 

free-stream flows prevent the flow from continuing toward the side walls. The flow does 

continue streamwise on the bottom wall to the following wedge feature, consistent with 

the local TLC results in Figure 167. From the spanwise velocity plots, results support 

the TLC, where the flow characteristics from the wedge features do not reach the top 

wall; higher augmentations on the top wall are not achieved.  

 Case F near wall velocity planes shown in Figure 250 to Figure 252. The two-wall 

large full wedge Case C showed significant incorporation of all four walls with all tests 

completed. The one-wall Case F also showed ability to increase heat transfer on all four 

walls, where experimental results are supported by the flows observed in the CFD 

results.  The spanwise plots show secondary flow created by the wedge features 

continuing to expand in the streamwise direction and extending out to the side walls. 

The flows build with the following streamwise wedge features and propagate up to the 

top non-featured wall, observed in both the spanwise plane cuts and Figure 250. The 

near top wall velocity plane in this figure shows higher areas of velocity near the side 

walls, this is duplicated from the local TLC results in Figure 180, where flow effects from 

the feature continue up to the top wall, not seen with the smaller full wedge one-wall 

feature Case E.  
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Comparison to Rib Study 

 The wedge Nusselt number augmentations of all cases for the current study are 

comparable to the Nusselt number augmentations of the three rib aspect ratio cases 

tested by Tran et al. (Tran, Valentino, Ricklick, & Kapat, 2011).  Results of the three 

aspect ratio cases are shown in Figure 277 and Figure 278 below. A1 corresponds to 

the rib aspect ratio of 1, A3 to rib aspect ratio of 3, and A5 to rib aspect ratio 5. Although 

the Nusselt number augmentations for the wedge cases are similar to the full rib cases, 

the friction factor augmentations of the full ribs are 5 to 10 times higher than the wedge 

cases tested in the current study. With the ability of the wedges to increase heat 

transfer while resulting in minimal frictional losses, parametric studies of the wedge 

spacing and size to determine the optimal wedge case design is the next step, 

continuing the current study.  

 

 

Figure 277: Rib Aspect Ratio Nu Aug Results from (Tran, Valentino, Ricklick, & Kapat, 2011) 
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Figure 278: Rib Aspect Ratio Nu Aug Results from (Tran, Valentino, Ricklick, & Kapat, 2011) 
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CHAPTER 6: FURTHER STUDIES AND RECOMMENDATIONS FROM 

LESSONS LEARNED 

 Conclusions from these tests indicate that further studies altering the wedge pitch 

and size are necessary for determining the optimization. Error associated with the TLC 

data may also be minimized with the following: 

• Calculation of Tbulk; only one thermocouple was inserted into the flow in this case 

at 4 locations along the center of the channel to determine a non-linear curve fit 

equation to determine Tbulk ; adding multiple thermocouples traversed in height 

and/or width of the channel at each location could reduce the offset in Tbulk 

• The bulk temperature calculation for the lumped capacitance on wedge areas 

was not calculated with the same step function (varying Tbulk) as with the semi-

infinite to save on process time. However, one case run with the varying Tbulk and 

found to have a 4% difference in local heat transfer coefficient. Future cases then 

should all be processed with the varying Tbulk to eliminate this error.   

• Test section inlet/heater box; mesh heaters heated flow uneven in the channel 

and may have caused offset in the heat transfer calculations (seen with the 

smooth wall where the streak in temperature was shifting toward the bottom of 

the side wall). This issue may have resulted from creating a heater inlet box 

larger than the channel, funneling the heated air to the channel and causing 

uneven distributions.  

• Masks; if the masks created for the image did not completely cover the copper 

piece; the results would turn out numbers too low for the augmentations, if the 
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masks created for the image covered too much, the results would turn out too 

high in augmentations. Issues came up with covering the correct size of the 

wedge, since it was difficult to identify through the black backing, or when being 

heated or cooled. 

• Although the bulk temperature correction factor method presented by Chyu et al. 

and reviewed in this study showed TLC results closer to the copper block results, 

it is not applicable in the lumped capacitance areas. Further study re-developing 

the correction factor for the areas or cases with lumped capacitance would be 

necessary before applying the correction in each case test.  

• As the test section in the TLC experiments starts 10 inches from the inlet, the 

proper inlet temperature is not calculated properly since there is heat absorbed 

into the acrylic over the first 10 inches of the channel. It is proposed then to 

develop a test channel with an insulated starting section, i.e. using Rohacell 

instead of acrylic at the first 10 inches.  

Another issue with the wedges tested in this study for both TLC and Copper 

block experiments is the alignment. Since the features were designed to be removed for 

placement on other test rig setups, the wedges were placed onto either the copper 

blocks or acrylic inserts by measuring and marking their location with a digital 

micrometer. This placement technique leaves a lot of room for human error, where 

placement of the wedges could have been shifted. One way to solve this issue would be 

machining the feature directly to the copper block and acrylic insert; however this would 

add significant cost in machining to the experiments. Another method could include 

etching the footprint of the feature into the copper block or acrylic, but again, costs 
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would be added for materials, as each case would need separate copper block and 

acrylic smooth wall pieces. The most cost effective way to minimize issues with 

placement of the wedges could be achieved by machining stencils for each case. The 

stencils would not have significant cost for either the material or machining. This method 

then may be applied for further testing.  

 

 

  



226 
 

APPENDIX A: MATLAB AND NLREG CODES 
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Matlab Codes (In the order as run): 

ReadImages 

%-------------------------------------------------------------------------% 
% TRANSIENT TLC 
%   Processing Step 1 () 

%   Reading Sequenced Images 
%  
% LUCKY TRAN & MICHELLE VALENTINO 
% Open Publication Project 
% Revision 3 
% Last Updated 05/12/2010 
%-------------------------------------------------------------------------% 
% Bitmap Info 
%   imread ('filename','BMP') 
%   IM(:,:,1) = red data; 
%   IM(:,:,2) = green data;  
%   IM(:,:,3) = blue data; 
%   imwrite ( IM, 'file.bmp', 'BMP' ) 
%-------------------------------------------------------------------------% 

  
clc 
close all 
clear all 

  
% Inputs 
%Set Working Directory if needed 
cd ('E:\Documents\Wedges\TLC\Run 2 8_2011\SW\SW_9-1-11\ASM3_2W_T1_10k'); 

  
% Directory Names for Bot,Bot,Bot wall images 
directory = 'Top'; 

  
%Total Number of Sequenced Images 
numimages = 1351; 

  
% Reads File ahead of time to pre-allocate output & oneFile 
% Use any arbitrary representative image 
fullFileName = fullfile(directory,'ASM3_2W_T1_10k_1_Top_000000.bmp'); 
oneFile = imread(fullFileName,'BMP'); 
[h w r] = size(oneFile) ;       
output = zeros(h,w,3,numimages); 

  
tic 
%READIN loop 
    index = 1; 
    for i = 0:9 
        for j = 0:9 
            for k = 0:9 
                for l = 0:9 
                    bmpfilename = 

sprintf('ASM3_2W_T1_10k_1_Top_00%d%d%d%d.bmp', i, j, k, l); 
                    fullFileName = fullfile(directory,bmpfilename); 
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                    oneFile= imread(fullFileName,'BMP'); 
                    output(:,:,:,index) = oneFile(:,:,:); 
                    if index == numimages  
                        break 
                    end 
                    index = index + 1; 
                end 
                if index == numimages 
                    break 
                end                     
            end 
            if index == numimages 
                break 
            end 
        end 
        if index == numimages 
            break 
        end 
    end 
toc 

  
%     Restore and save the image array 
if (directory == 'Top') 
    T = zeros(h,w,3,numimages); 
    T(:,:,:,:) = output(:,:,:,:); 
    save ('ASM3_2W_T1_10k_1_T.mat','T'); 
end 

  
% if (directory == 'Side') 
%     S = zeros(h,w,3,numimages); 
%     S(:,:,:,:) = output(:,:,:,:); 
%     save ('ASM3_2W_T1_10k_1_S.mat','S'); 
% end 

  
% if (directory == 'Bot') 
%     B = zeros(h,w,3,numimages); 
%     B(:,:,:,:) = output(:,:,:,:); 
%     save ('ASM3_2W_T1_10k_1_B.mat','B'); 
% end 

  
toc 
clear i j k l h w r x y index; 
clear output numimages directory bmpfilename fullFileName oneFile; 

 

 
FilterAverage 

 

%-------------------------------------------------------------------------% 
% TRANSIENT TLC 
%   Processing Step 2 
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%   3 Point Moving Average-Time Series Filtering 
%   3x3 Spatial Filter 
%   X-Install a Low-Pass Filter to filter out noise 
%   Frame Uncertainty 
%   Build Time Matrix (t) 
%  
% LUCKY TRAN & MICHELLE VALENTINO 
% Open Publication Project 
% Revision 4 
% Last Updated 07/08/2011 
%-------------------------------------------------------------------------% 

  
%Inputs Required: 
%   Top Wall RGB(x,y,z,t) Array                 <-- From Previous Codes 

(named 'T') 
%   Side Wall RGB(x,y,z,t) Array                <-- From Previous Codes 

(named 'S') 
%   Bottom Wall RGB(x,y,z,t) Array              <-- From Previous Codes 

(named 'B') 
%   Camera Speed                                <-- Frames Per Second (Hz) 

  
clc; 
close all; 
clear all; 
tic; 

  
%Set Working Directory if needed 
cd ('E:\Documents\Wedges\TLC\Run 2 8_2011\SW\SW_9-1-11\ASM3_2W_T1_10k');      

  
%INPUTS 
load ASM3_2W_T1_40k_1_T.mat 
load ASM3_2W_T1_40k_1_B.mat 
load ASM3_2W_T1_40k_1_S.mat 

  
% time threshold to filter 
threshold = 0.0; 

  
%Camera Frame Rate 
% 29.97 fps for progressive scan, do not change 
cam_speed = 29.97; 

  
%FIND SIZES OF INPUT ARRAYS 
[Ty Tx Tw Tz] = size(T); 
[Sy Sx Sw Sz] = size(S); 
[By Bx Bw Bz] = size(B); 

  
% time series filter 
T(:,:,:,2:end-1) = (T(:,:,:,1:end-2)+T(:,:,:,2:end-1)+T(:,:,:,3:end))/3; 
S(:,:,:,2:end-1) = (S(:,:,:,1:end-2)+S(:,:,:,2:end-1)+S(:,:,:,3:end))/3; 
B(:,:,:,2:end-1) = (B(:,:,:,1:end-2)+B(:,:,:,2:end-1)+B(:,:,:,3:end))/3; 
toc 
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% 3x3 spatial filter 
T(2:end-1,2:end-1,:) = 1/9*(T(1:end-2,1:end-2,:)+T(2:end-1,1:end-

2,:)+T(3:end,1:end-2,:)+T(1:end-2,2:end-1,:)+T(2:end-1,2:end-

1,:)+T(3:end,2:end-1,:)+T(1:end-2,3:end,:)+T(2:end-

1,3:end,:)+T(3:end,3:end,:)); 
S(2:end-1,2:end-1,:) = 1/9*(S(1:end-2,1:end-2,:)+S(2:end-1,1:end-

2,:)+S(3:end,1:end-2,:)+S(1:end-2,2:end-1,:)+S(2:end-1,2:end-

1,:)+S(3:end,2:end-1,:)+S(1:end-2,3:end,:)+S(2:end-

1,3:end,:)+S(3:end,3:end,:)); 
B(2:end-1,2:end-1,:) = 1/9*(B(1:end-2,1:end-2,:)+B(2:end-1,1:end-

2,:)+B(3:end,1:end-2,:)+B(1:end-2,2:end-1,:)+B(2:end-1,2:end-

1,:)+B(3:end,2:end-1,:)+B(1:end-2,3:end,:)+B(2:end-

1,3:end,:)+B(3:end,3:end,:)); 
toc 

  
% a(1:Tz)=T(30,250,2,1:Tz); 
% b(1:Tz)=T(30,250,2,1:Tz); 
% plot(1:Tz,a,1:Tz,b) 
% figure 
% plot(1:Tz,a) 
% figure 
% plot(1:Tz,b) 

  
%BUILD Z MATRICES 
% C dummy variable to carry magnitude 
% z Matrix carries the index of each peak 
z_T = zeros(Ty,Tx,Tw); 
z2_T = zeros(Ty,Tx,Tw); 
z3_T = zeros(Ty,Tx,Tw); 
uT = zeros(Ty,Tx,Tw); 
[C,z_T(:,:,:)]=max(T,[],4); 

  
for i = 1:Ty 
    for j = 1:Tx 
        for k = 1:Tw 
            l = z_T(i,j,k); 
            T(i,j,k,l) = NaN; 
        end 
    end 
end 

  
[C,z2_T(:,:,:)]=max(T,[],4); 

  
for i = 1:Ty 
    for j = 1:Tx 
        for k = 1:Tw 
            l = z2_T(i,j,k); 
            T(i,j,k,l) = NaN; 
        end 
    end 
end 

  
[C,z3_T(:,:,:)]=max(T,[],4); 
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for i = 1:Ty 
    for j = 1:Tx 
        for k = 1:Tw 
            uT(i,j,k) = max ([abs(z3_T(i,j,k) - z2_T(i,j,k)) abs(z2_T(i,j,k) 

- z_T(i,j,k)) abs(z3_T(i,j,k) - z_T(i,j,k)) ]); 
        end 
    end 
end 

  
z_S = zeros(Sy,Sx,Sw); 
z2_S = zeros(Sy,Sx,Sw); 
z3_S = zeros(Sy,Sx,Sw); 
uS = zeros(Sy,Sx,Sw); 
[C,z_S(:,:,:)]=max(S,[],4); 

  
for i = 1:Sy 
    for j = 1:Sx 
        for k = 1:Sw 
            l = z_S(i,j,k); 
            S(i,j,k,l) = NaN; 
        end 
    end 
end 

  
[C,z2_S(:,:,:)]=max(S,[],4); 

  
for i = 1:Sy 
    for j = 1:Sx 
        for k = 1:Sw 
            l = z2_S(i,j,k); 
            S(i,j,k,l) = NaN; 
        end 
    end 
end 
[C,z3_S(:,:,:)]=max(S,[],4); 

  
for i = 1:Sy 
    for j = 1:Sx 
        for k = 1:Sw 
            uS(i,j,k) = max ([abs(z3_S(i,j,k) - z2_S(i,j,k)) abs(z2_S(i,j,k) 

- z_S(i,j,k)) abs(z3_S(i,j,k) - z_S(i,j,k)) ]); 
        end 
    end 
end 

  
z_B = zeros(By,Bx,Bw); 
z2_B = zeros(By,Bx,Bw); 
z3_B = zeros(By,Bx,Bw); 
[C,z_B(:,:,:)]=max(B,[],4); 

  
for i = 1:By 
    for j = 1:Bx 
        for k = 1:Bw 
            l = z_B(i,j,k); 
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            B(i,j,k,l) = NaN; 
        end 
    end 
end 

  
[C,z2_B(:,:,:)]=max(B,[],4); 

  
for i = 1:By 
    for j = 1:Bx 
        for k = 1:Bw 
            l = z2_B(i,j,k); 
            B(i,j,k,l) = NaN; 
        end 
    end 
end 

  
[C,z3_B(:,:,:)]=max(B,[],4); 

  
for i = 1:By 
    for j = 1:Bx 
        for k = 1:Bw 
            uB(i,j,k) = max ([abs(z3_B(i,j,k) - z2_B(i,j,k)) abs(z2_B(i,j,k) 

- z_B(i,j,k)) abs(z3_B(i,j,k) - z_B(i,j,k)) ]); 
        end 
    end 
end 

  
toc 

  
% %CONVERT FROM FRAMENUMBER TO TIME (s) 
t_T = z_T/cam_speed; 
uT = uT/cam_speed; 
t_S = z_S/cam_speed; 
uS = uS/cam_speed; 
t_B = z_B/cam_speed; 
uB = uB/cam_speed; 

  
% Filter values based on threshold 
for i = 1:Ty 
    for j = 1:Tx 
        for k = 1:Tw 
            if ( t_T(i,j,k) < threshold) 
                t_T(i,j,k) = NaN; 
            end 
        end 
    end 
end 

  
for i = 1:Sy 
    for j = 1:Sx 
        for k = 1:Sw 
            if ( t_S(i,j,k) < threshold) 
                t_S(i,j,k) = NaN; 
            end 
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        end 
    end 
end 

  
for i = 1:By 
    for j = 1:Bx 
        for k = 1:Bw 
            if ( t_B(i,j,k) < threshold) 
                t_B(i,j,k) = NaN; 
            end 
        end 
    end 
end 

  
save('ASM3_2W_T1_40k_1_t_T.mat', 't_T' , 'uT'); 
save('ASM3_2W_T1_40k_1_t_S.mat', 't_S' , 'uS'); 
save('ASM3_2W_T1_40k_1_t_B.mat', 't_B' , 'uB'); 

  
toc; 
%Clean Workspace 
%Clears Variables that are no longer needed 
clear cam_speed threshold; 
clear i j k l 
clear Ty Tx Tw Tz; 
clear Sy Sx Sw Sz; 
clear By Bx Bw Bz; 
clear z_T z2_T z3_T z_S z2_S z3_S z_B z2_B z3_B C 
clear T S B; 

 

 
HTCProcessing 

%-------------------------------------------------------------------------% 
% TRANSIENT TLC 
%   Processing Step 3 

%   Heat Transfer Coefficient and Nusselt Number Processing Code 

  
% LUCKY TRAN & MICHELLE VALENTINO 
% Open Publication Project 
% Revision 4 
% Last Updated 07/08/2011 
%-------------------------------------------------------------------------% 

  
clc; 
close all; 
clear all; 

  
%Inputs Required: 
%   Time Matrix (t)             <-- From Previous Codes (named 't') 
%   Dimensions of Time Matrix   <-- [x,y] - Value of Time (t) in space 
%   Wall Temperature (T_wall)   <-- From TLC Calibration (T_MaxG)(Kelvin) 
%   Initial Temperature (T_init)<-- From DAQ (One Value)(Kelvin) 
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%   Inlet Temperature (T_inlet) <-- From DAQ (T_inlet)(Kelvin) 
%   Bulk Temp Curve (T_bulk)    <-- From Excel Fit (fn(x)) 
%   Channel Mass Flow-Rate      <-- Input From Venturi Sheet (m_dot)(kg/s) 
%   Channel Wetted Perimeter    <-- Specific to Case Tested 

  
%Set Working Directory if needed 
cd ('E:\Documents\Wedges\TLC\Run 2 8_2011\SW\SW_9-1-11\ASM3_2W_T1_10k');    

  
% Shortcuts  
TRUE = 1; 
FALSE = 0; 

  
TOP=TRUE; 
SIDE=FALSE; 
BOTTOM=TRUE; 

  
% Method0=FALSE; % Using inlet temperature as reference temperature 
Method1=TRUE; %Interpolation from measured inlet and outlet temperatures 

  
% Shortcuts lead into while statements which are used only to group large 
% segments of code together. Otherwise, there is no point to the while 
% loop.  Break statements at the end of loop ensures termination of the 
% loop upon completion. 

  
% Take advantage of shortcuts to execute parallel threads of MATLAB 
% Take due care to make sure that variables are not accessed simultaneously 

  
% Code time matrices 
load 'ASM3_2W_T1_10k_t_T.mat'  
% load 'A1_2_40k_t_S.mat'  
load 'ASM3_2W_T1_10k_t_B.mat' 

  
% Bulk Temperature Curve-Fit Parameters 
% Tbulk = (Tf-Ti)(Ax+1)(1-e^(Bt))+Ti 
Ti = 23.051025; 
Tf = 55.3583903; 
A = -0.0131897472; 
B = -0.370117751; 
save('Tbulk.mat','Ti','Tf','A','B') 

  
%INPUTS 
T_wall = [34.8 35.1 35.7]; %From Calibration Don't Touch 
T_init = Ti; %Initial Condition 

  
%Acrylic Properties 
rho_a = 1400; % kg/m^3 
cp_a = 1466; % J/kg/K 
k_a = 0.20; % W/m/K 
alpha_a = k_a/(rho_a*cp_a); %m^2/s 

  
%L = length of the channel 
L = 10; % in. 
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% Setup Number of Steps for Superposition 
N = 250; 

  
%FIND SIZES OF INPUT ARRAYS 
[Ty Tx Tw] = size(t_T); 
% [Sy Sx Sw] = size(t_S); 
[By Bx Bw] = size(t_B); 

  
% Calculate Resolutions 
% needed to calculate bulk temperature from pixel location 
RT = L/Tx; 
% RS = L/Sx; 
RB = L/Bx; 

  
while(Method1 == TRUE && TOP == TRUE) 
% TOP SOLUTION 
% Superposition 
% Method1 : Tref taken by Linear Interpolation 
% ============ 
tic 
h1_T(:,:,:) = 100*ones(Ty,Tx,Tw); 
vi(1,1,1,1:N)=1:N; 
vi = vi./N; 
v = vi(ones(Ty,1),ones(Tx,1),ones(Tw,1),:); 
wi = t_T(:,:,:).*ones(Ty,Tx,Tw); 
w(:,:,:,:) = wi(:,:,:,ones(N,1)); 
Tau_T(:,:,:,:) = w(:,:,:,:).*v(:,:,:,:); 

  
lh1(1:Tx)= ((A*([1:Tx]*RT)) + 1); 
lhs = lh1(ones(Ty,1),:,ones(Tw,1),ones(N,1)); 
rhs(1:Ty,1:Tx,1:Tw,1:N)=(1 - exp(B*Tau_T(1:Ty,1:Tx,1:Tw,1:N)))*(Tf-Ti); 
T_step2 = zeros (Ty,Tx,Tw,N); 
T_step2 = lhs(:,:,:,:).*rhs(:,:,:,:); 
T_step1=zeros(Ty,Tx,Tw,N); 
T_step1(:,:,:,2:N)=T_step2(:,:,:,1:N-1); 
delT(:,:,:,:) = T_step2(:,:,:,:) - T_step1(:,:,:,:); 
t_prime = t_T(:,:,:,ones(N,1)) - Tau_T(:,:,:,:); 

  
toc 
for k = 1:Tw 
    for i = 1:Ty 
        for j = 1:Tx 
            if (isnan(t_prime(i,j,k))) 
                h1_T(i,j,k) = NaN; 
            else 
                h1_T(i,j,k) = fsolve(@(h)(T_init - T_wall(k) + sum((1-

exp(h^2*alpha_a*(t_prime(i,j,k,:))/k_a^2).*erfc(h*sqrt(alpha_a*t_prime(i,j,k,

:))/k_a)).*delT(i,j,k,:),4)),h1_T(i,j,k),optimset('Display','off')); 
            end 
        end 
        [i k] 
    end 
end 
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toc 
save('ASM3_2W_T1_10k_h1_T.mat','h1_T') 
clear lh1 lhs rhs T_step2 T_step1 delT t_prime vi v wi w Tau_T 
break 
end 

  
while(Method1 == TRUE && SIDE == TRUE) 
% SIDE SOLUTION 
% Superposition 
% Method1 : Tref taken by Linear Interpolation 
% ============ 
tic 
h1_S(:,:,:) = 100*ones(Sy,Sx,Sw); 
vi(1,1,1,1:N)=1:N; 
vi = vi./N; 
v = vi(ones(Sy,1),ones(Sx,1),ones(Sw,1),:); 
wi = t_S(:,:,:).*ones(Sy,Sx,Sw); 
w(:,:,:,:) = wi(:,:,:,ones(N,1)); 
Tau_S(:,:,:,:) = w(:,:,:,:).*v(:,:,:,:); 

  
lh1(1:Sx)= ((A*([1:Sx]*RS)) + 1); 
lhs = lh1(ones(Sy,1),:,ones(Sw,1),ones(N,1)); 
rhs(1:Sy,1:Sx,1:Sw,1:N)=(1 - exp(B*Tau_S(1:Sy,1:Sx,1:Sw,1:N)))*(Tf-Ti); 
T_step2 = zeros (Sy,Sx,Sw,N); 
T_step2 = lhs(:,:,:,:).*rhs(:,:,:,:); 
T_step1=zeros(Sy,Sx,Sw,N); 
T_step1(:,:,:,2:N)=T_step2(:,:,:,1:N-1); 
delT(:,:,:,:) = T_step2(:,:,:,:) - T_step1(:,:,:,:); 
t_prime = t_S(:,:,:,ones(N,1)) - Tau_S(:,:,:,:); 

  
toc 
for k = 1:Sw 
    for i = 1:Sy 
        for j = 1:Sx 
            if (isnan(t_prime(i,j,k))) 
                h1_S(i,j,k) = NaN; 
            else 
                h1_S(i,j,k) = fsolve(@(h)(T_init - T_wall(k) + sum((1-

exp(h^2*alpha_a*(t_prime(i,j,k,:))/k_a^2).*erfc(h*sqrt(alpha_a*t_prime(i,j,k,

:))/k_a)).*delT(i,j,k,:),4)),h1_S(i,j,k),optimset('Display','off')); 
            end 
        end 
        [i k] 
    end   
end 

  
toc 
save('ASM3_2W_T1_10k_h1_S.mat','h1_S') 
clear lh1 lhs rhs T_step2 T_step1 delT t_prime vi v wi w Tau_S 
break 
end 

  
while(Method1 == TRUE && BOTTOM == TRUE) 
% BOTTOM SOLUTION 
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% Superposition 
% Method1 : Tref taken by Linear Interpolation 
% ============ 
tic 
h1_B(:,:,:) = 100*ones(By,Bx,Bw); 
vi(1,1,1,1:N)=1:N; 
vi = vi./N; 
v = vi(ones(By,1),ones(Bx,1),ones(Bw,1),:); 
wi = t_B(:,:,:).*ones(By,Bx,Bw); 
w(:,:,:,:) = wi(:,:,:,ones(N,1)); 
Tau_B(:,:,:,:) = w(:,:,:,:).*v(:,:,:,:); 

  
lh1(1:Bx)= ((A*([1:Bx]*RB)) + 1); 
lhs = lh1(ones(By,1),:,ones(Bw,1),ones(N,1)); 
rhs(1:By,1:Bx,1:Bw,1:N)=(1 - exp(B*Tau_B(1:By,1:Bx,1:Bw,1:N)))*(Tf-Ti); 
T_step2 = zeros (By,Bx,Bw,N); 
T_step2 = lhs(:,:,:,:).*rhs(:,:,:,:); 
T_step1 = zeros(By,Bx,Bw,N); 
T_step1(:,:,:,2:N)=T_step2(:,:,:,1:N-1); 
delT(:,:,:,:) = T_step2(:,:,:,:) - T_step1(:,:,:,:); 
t_prime = t_B(:,:,:,ones(N,1)) - Tau_B(:,:,:,:); 

  
toc 
for k = 1:Bw 
    for i = 1:By 
        for j = 1:Bx 
            if (isnan(t_prime(i,j,k))) 
                h1_B(i,j,k) = NaN; 
            else 
                h1_B(i,j,k) = fsolve(@(h)(T_init - T_wall(k) + sum((1-

exp(h^2*alpha_a*(t_prime(i,j,k,:))/k_a^2).*erfc(h*sqrt(alpha_a*t_prime(i,j,k,

:))/k_a)).*delT(i,j,k,:),4)),h1_B(i,j,k),optimset('Display','off')); 
            end 
        end 
        [i k] 
     end 

  
end 

  
toc 
save('ASM3_2W_T1_10k_h1_B.mat','h1_B') 
clear lh1 lhs rhs T_step2 T_step1 delT t_prime vi v wi w Tau_B 
break 
end 

  
%Clean Workspace 
%Clears Variables that are no longer needed 
clear x y i j N 
clear RT RS RB L 
clear A B Ti Tf 
clear TRUE FALSE TOP BOTTOM SIDE Method0 Method1 Method2 
clear lims phch phud 
clear rho_a cp_a k_a alpha_a 
clear Ty Tx 
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clear Sy Sx 
clear By Bx 
clear T_wall T_init T_inlet 
clear m_dot P_wet Dh A_x 
clear thigh tlow; 

 

MaskProcessing 

 

%-------------------------------------------------------------------------% 
% TRANSIENT TLC 
%   Processing Step 4 () 
%   Heat Transfer Coefficient and Nusselt Number Processing Code 
%   Reading Image Mask and 
% LUCKY TRAN & MICHELLE VALENTINO 
% Open Publication Project 
% Revision 3 
% Last Updated 06/30/2011 
%-------------------------------------------------------------------------% 

  
clc; 
close all; 
clear all; 
% Set Working Directory 
cd ('E:\Documents\Wedges\TLC\Run 2 8_2011\JPC2_2W_T1\10k');    

  
% Shortcuts  
TRUE = 1; 
FALSE = 0; 

  
average = 1; 

  
% Load time matrices 
load 'JPC2_2W_T1_10k_2_t_T.mat'  
% load 'JPC2_2W_T1_10k_2_t_S.mat'  
load 'JPC2_2W_T1_10k_2_t_B.mat' 

  
% Load processed HTC matrices 
load JPC2_2W_T1_10k_2_h1_T.mat 
% load JPC2_2W_T1_10k_2_h1_S.mat 
load JPC2_2W_T1_10k_2_h1_B.mat 

  
%INPUTS 
% Bulk Temperature Curve-Fit Parameters 
% Tbulk = (Tf-Ti)(Ax+1)(1-e^(Bt))+Ti 
load Tbulk.mat 

  
T_wall = [34.8 35.1 35.7]; %From Calibration Don't Touch 
T_init = Ti; %Initial Condition 

  
%L = length of the channel 
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L = 10; % in. 

  
%FIND SIZES OF INPUT ARRAYS 
[Ty Tx Tw] = size(t_T); 
% [Sy Sx Sw] = size(t_S); 
[By Bx Bw] = size(t_B); 

  
% Calculate Resolutions 
% needed to calculate bulk temperature from pixel location 
RT = L/Tx; 
% RS = L/Sx; 
RB = L/Bx; 

  
% Copper Properties 
rho = 8800; %kg/m^3 
c = 385; % J/kg*K 
kcu = 401; %W/m*K 

  
% Rib Parameters 
wedgepitch=2*.0254; 
SA = 299.76/ 1000^2; %heat transfer surface area of wedge 
footprint = 108.16/1000^2; %mm^2 
m = rho*(299.96/1000^3); % mass of copper 
weight = SA/footprint; 

  
maskimtop = zeros(Ty,Tx,Tw); 
maskimbot = zeros(By,Bx,Bw); 
masktop = zeros(Ty,Tx); 
maskbot = zeros(By,Bx); 

  
t_T_min = zeros(1,Tx,Tw); 
t_T_avg = zeros(1,Tx,Tw); 
t_T_max = zeros(1,Tx,Tw); 

  
t_B_min = zeros(1,Bx,Bw); 
t_B_avg = zeros(1,Bx,Bw); 
t_B_max = zeros(1,Bx,Bw); 

  
maskimtop = imread('10kMASKTop3all.bmp','BMP'); 
maskimbot = imread('10kMASKBot.bmp','BMP'); 

  
h1_T_mask = zeros(Ty,Tx,Tw); 
h1_B_mask = zeros(By,Bx,Bw); 

  
% PT = zeros(1,Tx); 
% PS = zeros(1,Sx); 
% PB = zeros(1,Bx); 

  
tic 
% Read Mask Images 

  
for i = 1:Ty 
    for j = 1:Tx 
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        if ( maskimtop(i,j,:) == 255*TRUE(ones(1,1,3))); 
            masktop(i,j) = TRUE; 
        else 
            masktop(i,j) = FALSE; 
        end 
    end 
end 
save('masktop.mat','masktop') 

  

  
for i = 1:By 
    for j = 1:Bx 
        if ( maskimbot(i,j,:) == 255*TRUE(ones(1,1,3))); 
            maskbot(i,j) = TRUE; 
        else 
            maskbot(i,j) = FALSE; 
        end 
    end 
end 
save('maskbot.mat','maskbot') 

  

  
% Fetch times 
% t_min, t_max not used 
%  
% while (TOP == TRUE) 
% for k = 1:Tw 
%     for j = 1:Tx 
%         if ( masktop(1,j) == TRUE); 
%             t_T_min(1,j,k) = nanmin(t_T(:,j,k)); 
%             t_T_avg(1,j,k) = nanmean(t_T(:,j,k)); 
%             t_T_max(1,j,k) = nanmax(t_T(:,j,k)); 
%         end 
%     end 
% end 
% break 
% end 

  
% for ribs spanning entire width 

  
% while (BOT == TRUE) 
% for k = 1:Bw 
%     for j = 1:Bx 
%         if ( maskbot(1,j) == TRUE); 
%             t_B_min(1,j,k) = nanmin(t_B(:,j,k)); 
%             t_B_avg(1,j,k) = nanmean(t_B(:,j,k)); 
%             t_B_max(1,j,k) = nanmax(t_B(:,j,k)); 
%         end 
%     end 
% end 
% break 
% end 

  
% Calculate Tbulk 
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Tb(1,1:Tx,1) = (((A*([1:Tx]*RT)) + 1)*(Tf-Ti)+Ti); 
Tbulk(1,:,:) = Tb(1,:,ones(1,1,3)); 

  
for k = 1:Tw 
    for j = 1:Tx 
        for i = 1:Ty 
            if ( masktop(1,j) == TRUE) 
                h1_T_mask(i,j,k) = (m*c)/(SA*t_T(i,j,k))*log((T_init - 

Tbulk(1,j,k))/(T_wall(k) - Tbulk(1,j,k))); 
                h1_T(i,j,k) = weight*h1_T_mask(i,j,k); 
            end 
        end 
    end 
end 
clear Tb Tbulk 

  
% Calculate Tbulk 
Tb(1,1:Bx,1) = (((A*([1:Bx]*RB)) + 1)*(Tf-Ti)+Ti); 
Tbulk(1,:,:) = Tb(1,:,ones(1,1,3)); 

  
for k = 1:Bw 
    for j = 1:Bx 
        for i = 1:By 
            if ( maskbot(i,j) == TRUE) 
                h1_B_mask(i,j,k) = (m*c)/(SA*t_B(i,j,k))*log((T_init - 

Tbulk(1,j,k))/(T_wall(k) - Tbulk(1,j,k))); 
                h1_B(i,j,k) = weight*h1_B_mask(i,j,k); 
            end 
        end 
    end 
end 
clear Tb Tbulk 

  
toc 

  
save('JPC2_2W_T1_10k_2_h1_T_mask3.mat','h1_T') 
save('JPC2_2W_T1_10k_2_h1_B_mask.mat','h1_B') 
% 

save('JPC2_2W_T1_10k_2_tstats.mat','t_T_min','t_T_avg','t_T_max','t_B_min','t

_B_avg','t_B_max') 
clear lh1 lhs rhs T_step2 T_step1 delT t_prime vi v wi w Tau_B 

 
 

PostProcessing 

%-------------------------------------------------------------------------% 
% TRANSIENT TLC 
%   Post-Processing Step 5 () 
%   Heat Transfer Coefficient and Nusselt Number Processing Code 

  
% LUCKY TRAN & MICHELLE VALENTINO 
% Open Publication Project 
% Revision 3 
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% Last Updated 05/03/2010 
%-------------------------------------------------------------------------% 

  
clc; 
close all; 
clear all; 
% Set Working Directory 
cd ('E:\Documents\Wedges\TLC\Run 2 8_2011\JPC2_2W_T1\10k');    

  
load JPC2_2W_T1_10k_2_h1_T_mask2.mat 
load JPC2_2W_T1_10k_2_h1_S.mat 
load JPC2_2W_T1_10k_2_h1_B_mask.mat 

  
% Reynolds number 
Re = 10000; 
Pr = 0.7; 

  
low= 0; 
high= 5; 

  
% Channel Dimensions 
H = 0.63*0.0254;    % H = Channel Height (m) 
W = 1.26*0.0254;    % W = Channel Width (m) 
L = 10*0.0254;      % L = Window Length (m) 
A = W*H;            % A Flow Cross Section 
P = 2*W+2*H;        % P Wetted Perimeter 
Dh = 4*A/P;         % Dh hydraulic diameter 

  
k_air = 0.025; 

  
NuDB = 0.023*Re^0.8*Pr^0.3; 

  

  
% Array Dimensions 
[Ty Tx Tw] = size(h1_T(:,1:end-276,:)); 
[Sy Sx Sw] = size(h1_S(:,1:end-262,:)); 
[By Bx Bw] = size(h1_B(:,1:end-259,:)); 

  
% Filter Threshold 
threshold = 100*NuDB*k_air/Dh; 
lowthreshold = 0*NuDB*k_air/Dh; 

  
% Threshold Filter 
% Filter Top Wall 
for i = 1:Ty 
    for j = 1:Tx 
        for k = 1:Tw 
            if ( h1_T(i,j,k) > threshold) 
                h1_T(i,j,k) = NaN; 
            end 
            if ( h1_T(i,j,k) < lowthreshold) 
                h1_T(i,j,k) = NaN; 
            end             
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        end 
    end 
end 

  
% Filter Side Wall 
for i = 1:Sy 
    for j = 1:Sx 
        for k = 1:Sw 
            if ( h1_S(i,j,k) > threshold) 
                h1_S(i,j,k) = NaN; 
            end 
            if ( h1_S(i,j,k) < lowthreshold) 
                h1_S(i,j,k) = NaN; 
            end                         
        end 
    end 
end 

  
% Filter Bottom Wall 
for i = 1:By 
    for j = 1:Bx 
        for k = 1:Bw 
            if ( h1_B(i,j,k) > threshold) 
                h1_B(i,j,k) = NaN; 
            end 
            if ( h1_B(i,j,k) < lowthreshold) 
                h1_B(i,j,k) = NaN; 
            end                         
        end 
    end 
end 

  
Top_Red = h1_T(:,:,1); 
Top_Green = h1_T(:,1:end-276,2); 
Top_Blue = h1_T(:,:,3); 
Side_Red = h1_S(:,:,1); 
Side_Green = h1_S(1:end-5,1:end-262,2); 
Side_Blue = h1_S(:,:,3); 
Bot_Red = h1_B(:,:,1); 
Bot_Green = h1_B(5:end-5,1:end-259,2); 
Bot_Blue = h1_B(:,:,3); 

  
% load PT.mat 
% load PB.mat 

  
SpnT(:,1) = (1:Ty)/Ty-0.5; 
SpnS = (1:Sy)/Sy-0.5;  
SpnB(:,1) = (1:By)/By-0.5; 

  
xT = ((1:Tx)/Tx)*(L/Dh); 
xS = ((1:Sx)/Sx)*(L/Dh); 
xB = ((1:Bx)/Bx)*(L/Dh); 

  
figure 
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plot(1:Tx, nanmean(Top_Green(:,1:Tx))./(NuDB*k_air/Dh),'g.') 
hold on 
% plot(PT, nanmean(Top_Blue(:,1:Tx)),'b.') 
% plot(PT, nanmean(Top_Red(:,1:Tx)),'r.') 
hold off 
% xlim([0 2]) 
ylim([low high]) 
title ('Top') 
xlabel('x/P') 
ylabel('Nu/Nuo') 

  
figure 
plot(1:Sx, nanmean(Side_Green(:,1:Sx))./(NuDB*k_air/Dh),'g.') 
hold on 
% % plot(1:Sx, nanmean(Side_Blue(:,1:Sx)),'b.') 
% % plot(1:Sx, nanmean(Side_Red(:,1:Sx)),'r.') 
% hold off 
% xlim([0 8]) 
ylim([low high]) 
title ('Side') 
xlabel('x/P') 
ylabel('Nu/Nuo') 

  
figure 
plot(1:Bx, nanmean(Bot_Green(:,1:Bx))./(NuDB*k_air/Dh),'g.') 
hold on 
% plot(PB, nanmean(Bot_Blue(:,1:Bx)),'b') 
% plot(PB, nanmean(Bot_Red(:,1:Bx)),'r') 
hold off 
% xlim([0 8]) 
ylim([low high]) 
title ('Bottom') 
xlabel('x/P') 
ylabel('Nu/Nuo') 

  
% figure 
% plot(PT, nanmean(Top_Green(:,1:Tx)./NuDB),'r.') 
% hold on 
% plot(PB, nanmean(Bot_Green(:,1:Bx))./NuDB,'b.') 
% hold off 
% xlim([0 8]) 
% ylim([low high]) 
% title ('Top & Bot') 
% xlabel('x/P') 
% ylabel('Nu/Nuo') 
% legend ('Top','Bottom') 

  
NuTr = nanmean(Top_Red)*Dh/k_air; 
NuTg = nanmean(Top_Green)*Dh/k_air; 
NuTb = nanmean(Top_Blue)*Dh/k_air; 
NuSr = nanmean(Side_Red)*Dh/k_air; 
NuSg = nanmean(Side_Green)*Dh/k_air; 
NuSb = nanmean(Side_Blue)*Dh/k_air; 
NuBr = nanmean(Bot_Red)*Dh/k_air; 
NuBg = nanmean(Bot_Green)*Dh/k_air; 
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NuBb = nanmean(Bot_Blue)*Dh/k_air; 

  
NuT= nanmean([NuTg]); 
NuS= nanmean([NuSg]); 
NuB= nanmean([NuBg]); 
Nua = nanmean([NuT NuT NuS NuB NuB]); 

  
NuAugTOP = ((Top_Green)*Dh/k_air)/NuDB; 
NuAugSIDE = ((Side_Green)*Dh/k_air)/NuDB; 
NuAugBOT = ((Bot_Green)*Dh/k_air)/NuDB; 

  
etaT= NuT/NuDB; 
etaS= NuS/NuDB; 
etaB= NuB/NuDB; 
eta = mean([NuT NuB])/NuDB; 

  
[etaT etaS etaB eta ] 

  
clear Tw Tx Ty 
clear Sw Sx Sy 
clear Bw Bx By 
clear i j k low high threshold 
clear H W P A Dh 
clear Dh k_air 
% clear NuTr NuTg NuTb 
% clear NuSr NuSg NuSb 
% clear NuBr NuBg NuBb 

 

 

 

 
NLREG Code & Output (Example) 

The three columns in the code represent location from the test section, time step, and 

temperature measured.  
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Output: where the “Calculated Parameter Values” are input to the MATLAB 

htcprocessing code.  

1: VARIABLE X, time, Tbulk; 
   2: PARAMETER Tmax=55, A=-0.001, B=1.5; 
   3: FUNCTION Tbulk = (Tmax - 25.35424583)*(A*x + 1)*(1 - exp(-B*time) ) +25.35424583; 
   4: PLOT XVAR=X, residual, grid; 
   5: RPLOT; 
   6: NPLOT; 
   7: DATA; 
 
Beginning computation... 
Stopped due to: Both parameter and relative function convergence. 
 
 
   ----  Final Results  ---- 
 
NLREG version 6.5 
Copyright (c) 1992-2010 Phillip H. Sherrod.  All rights reserved. 
This is a registered copy of NLREG that may not be redistributed. 
 
Number of observations = 720 
Maximum allowed number of iterations = 500 
Convergence tolerance factor = 1.000000E-010 
Stopped due to: Both parameter and relative function convergence. 
Number of iterations performed = 11 
Final sum of squared deviations = 6.9235290E+003 
Final sum of deviations = 4.9835220E+001 
Standard error of estimate = 3.10745 
Average deviation = 2.50413 
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Maximum deviation for any observation = 9.61802 
Proportion of variance explained (R^2) = 0.9088  (90.88%) 
Adjusted coefficient of multiple determination (Ra^2) = 0.9086  (90.86%) 
Durbin-Watson test for autocorrelation = 0.045 
This Durbin-Watson value indicates autocorrelation or inappropriate function. 
Analysis completed 24-Sep-2011 11:36.  Runtime = 0.14 seconds. 
 
 
             ----  Descriptive Statistics for Variables  ---- 
 
      Variable       Minimum value   Maximum value    Mean value     Standard dev. 
------------------  --------------  --------------  --------------  -------------- 
                 X              -9              11              -1        7.488517 
              time            0.25              45          22.625        12.99921 
             Tbulk          24.987          84.544        68.48111        10.27663 
 
 
                   ----  Calculated Parameter Values  ---- 
 
     Parameter      Initial guess   Final estimate   Standard error      t      Prob(t) 
------------------  -------------  ----------------  --------------  ---------  ------- 
              Tmax             55        71.1821715       0.1383355     514.56  0.00001 
                 A         -0.001     -0.0180314768    0.0003690376     -48.86  0.00001 
                 B            1.5       0.278345791     0.005431992      51.24  0.00001 
 
 
                  ----  Analysis of Variance  ---- 
 
  Source     DF   Sum of Squares    Mean Square    F value   Prob(F) 
----------  ----  --------------  --------------  ---------  ------- 
Regression     2        69009.47        34504.73    3573.31  0.00001 
Error        717        6923.529        9.656247 
Total        719           75933 
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APPENDIX B: EXCEL SPREADSHEETS 

  



249 
 

Friction Factor (also showing venturi calibration for the 1”-38) 
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Constants Page for the HTC Processing; next 4 pages show the heat transfer post 

processing sheet 
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APPENDIX C: UNCERTAINTY (MATHCAD) 
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Copper-Block HTC 
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FF & Augmentations 
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TLC 
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APPENDIX D: Y+ CALCULATION 
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APPENDIX E: PUBLICATIONS 
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Conference Publications 

Slabaugh, C., Valentino, M., Ricklick, M., Kapat, J.S. Heat Transfer and Friction 

Augmentation in a Narrow Rectangular Duct with Ribs Applied to One Wall. Joint 

Propulsion Conference. 2010. 

Valentino, M., Slabaugh, C., Ricklick, M., Kapat, J.S. Heat Transfer and Friction 

Augmentation in a Narrow Rectangular Duct with Ribs Applied to One Wall.  Florida 

Center for Advanced Aero-Propulsion (FCAAP) – Annual Technical Symposium 2010. 

Valentino, M., Tran, L., Ricklick, M., Kapat, J.S. A Study of Heat Transfer Augmentation 

for Recuperative Heat Exchangers: Comparison between Two Dimple Geometries.  

Turbo Expo 2011. 

Tran, L., Valentino, M., Saha, A., Ricklick, M., Slabaugh, C., Kapat, J.S., Basu, S. 

Detailed Flow Visualization in a Narrow Rectangular Channel with Dimples Applied to 

One Wall. Turbo Expo 2011. 

Tran, L., Valentino, M., Ricklick, M., Kapat, J.S. Overall Thermal Performance of 

Transport Promoters in Internal Cooling Channels of Various Rotating Machineries. 

(Draft Submitted). IGTC 2011.  

Valentino, M., Tran, L., Ricklick, M., Kapat, J.S. Comparison of Heat Transfer and 

Friction Augmentation for Symmetric and Non-Symmetric Wedge Turbulators on Two 

Opposite Wall. Joint Propulsion Conference 2011 

Tran, L., Valentino, M., Ricklick, M., Kapat, J.S. Effect of Varying the Rib Width and 

Number of Ribbed Walls on Heat Transfer and Friction in High Aspect Ratio Channel. 

Joint Propulsion Conference 2011.  
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Presentations 

Slabaugh, C., Valentino, M., Ricklick, M., Kapat, J.S. Heat Transfer and Friction 

Augmentation in a Narrow Rectangular Duct with Ribs Applied to One Wall. Joint 

Propulsion Conference. 2010.  

Valentino, M., Slabaugh, C., Ricklick, M., Kapat, J.S. Heat Transfer and Friction 

Augmentation in a Narrow Rectangular Duct with Ribs Applied to One Wall.  Florida 

Center for Advanced Aero-Propulsion (FCAAP) – Annual Technical Symposium 2010. 

Valentino, M., Tran, L., Ricklick, M., Kapat, J.S. A Study of Heat Transfer Augmentation 

for Recuperative Heat Exchangers: Comparison between Two Dimple Geometries.  

Turbo Expo 2011. 

In-Progress 

Valentino, M., Tran, L., Ricklick, M., Kapat, J. A Study of Heat Transfer Augmentation 

for Recuperative Heat Exchangers: Comparison between Two Dimple Geometries.  

(Submitted). Journal of Engineering for Gas Turbines and Power.  
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