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Abstract

Particulate composites are widely used in many aerospace and military applications

as energetic materials, armor materials or coatings and their behavior under dynamic

loads have gained increasing significance. The addition of modifiers such as alumina

nanoparticles generally facilitates the improvement of the mechanical strength to density

ratio due to high specific area and particle rigidity. This allows for sufficient particle-

matrix bonding and therefore improved stiffness and load transfer in the composite.

Photo-luminescent α-alumina nanoparticles when embedded in an epoxy matrix allow for

the added benefit of in situ measurements at low strain rates to provide stress-sensitive

information using the particle piezospectroscopic (PS) property. To investigate the low

strain rate behavior, cylindrical specimens of alumina-epoxy composites with varying

volume fractions of alumina were fabricated using a casting process to ensure minimal

surface finishing and reduced manufacturing time. The results illustrate the capability

of alumina nanoparticles to act as diagnostic sensors to measure the stress-induced shifts

of the spectral R-line peaks resulting from low compressive strain rates. The range of

PS coefficients measured, -3.15 to -5.37 cm−1/GPa for R1 and -2.62 to -5.39 cm−1/GPa

for R2, correlate well with static test results of similar volume fractions. Results reveal

a general trend of increasing sensitivity of the PS coefficients with increasing strain rate

when compared to similar materials under static conditions. In contrast to static results,

at a given strain rate, the PS coefficients show varying degrees of sensitivity for each
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volume fraction. This information can be used to determine the time-dependent micro-

scale stresses the nanoparticles sustain during composite loading. Additionally, this work

facilitates failure prediction by monitoring upshifts in the PS information. Calibration

of the in situ diagnostic stress sensing capabilities of varying volume fractions of alumina

nanocomposites under quasi-static strain rates in this work sets the precedent for future

studies at high strain rates.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Background

Reinforcing particles in a polymer binder are used in many military, aerospace, and civil

applications for their ability to improve the overall material properties of the composite.

Composites with reinforcing particles can be customized for desired mechanical proper-

ties with different matrix or filler materials, particle sizes, shapes, or volume content, and

loaded under any condition [39, 71, 22, 59, 17, 1, 21, 82, 75, 76, 6, 3, 29, 85, 11, 9, 63]. In

addition to the benefit of customization, particulate composites can have improved fa-

tigue resistance, corrosion resistance, and lower manufacturing costs, which makes them

very attractive when compared to their conventional metal counterparts [37]. The abil-

ity to customize and improve material properties have led particulate composites to be

used in a wide range of configurations. Nanometer sized TiO2 particles in an epoxy

matrix have been used to increase composite scratch resistance [63], flexural strength,

and toughness [80]. SiC has been used in various matrices to increase the strength of

the composite [16], and aluminum particles have been introduced to epoxy to increase

fracture toughness [87]. The contrast in rigidities offered by the particles and the matrix

has benefits in providing energy dissipating properties which are utilized in applications

for protection against micrometeorites for satellites and high-speed particle impact for

jet engine turbine blades [51] in layered nanocomposites.
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Ceramic nanocomposites, specifically, alumina particulate composites are becoming

more widely used due to their low densities and relatively high strengths [40]. High

stiffness-to-weight ratios due to increased particle rigidity also make alumina compos-

ites desirable as high surface areas allow for sufficient particle-matrix bonding and the

improved stiffness facilitates load transfer to the particles. Statically, alumina particles

have been used in adhesives [25, 50, 17] and as plasma sprayed coatings to improve the

wear, thermal, electrical, and/or corrosion properties of machine components [20, 84].

Dynamic applications of alumina particulate composites include encapsulation of fer-

roelectric elements for shock depoling [53] and potting compounds for explosive and

propellant tests [57, 18]. Various types of alumina composites have also been used as

armor materials [15], where the durability and energy dissipating properties have proved

beneficial.

In addition to improved mechanical properties, chromium doped α-alumina parti-

cles can offer additional diagnostic benefits through their photo-luminescent properties.

Through the use of optical methods, such as piezospectroscopy, particle stresses and load

transfer mechanics can be characterized through the piezospectroscopic (PS) coefficient

by measuring the stress-induced shifts of the characteristic R-line peaks present in the

emission spectrum of alumina, known as the PS effect as shown in Figure 1.1.
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Figure 1.1: Piezospectroscopic effect

The emission of R-lines under laser excitation is due to the naturally occuring Cr3+

impurities in the crystal lattice of α-alumina and these lines are easily identified as two

sharp and closely spaced peaks, known as R1 and R2. The application of the PS effect

was first introduced to monitor pressure in diamond anvil cells [5] which verified the abil-

ity of these materials to capture stress-induced shifts of the R-line peaks. Further studies

on chromium-doped sapphire [33] determined the PS coefficients, which is a measure of

the sensitivity of the R-line shift with stress, followed by studies on polycrystalline ceram-

ics [55, 67]. Piezospectroscopy of alumina-epoxy composites has been used to determine
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the thermal stress distribution of encapsulated microelectronic devices [62] and for stress

sensing calibration studies of variable volume fractions of alumina nanocomposites under

static conditions [75, 77]. Static stresses have also been studied in the thermally grown

oxide layer under thermal barrier coatings on jet engine turbine blades by utilizing the

trace Cr3+ ions incorporated in the growing α-alumina scale [13, 12, 64, 24, 65, 74].

Dynamically, the behavior of ruby has been characterized under shock loading for the

development of optical stress gages using the piezospectroscopic behavior of the mate-

rial [32, 70, 30, 35]. The fast data collection times associated with emission data collection

lend itself well to capturing material response under strain rates. Such measurements can

be envisioned to produce new and significant information in the study of the dynamic

response of particulate composites. One such application is the sensitivity of energetic

materials to mechanical stimuli, which is sometimes studied through dynamic tests on

non-reactive alumina-epoxy materials to experimentally assess the parameters affecting

the reliable functioning of a munition and avoidance or mitigation of accidents [7].

The increased significance of particulate composites such as alumina-epoxy nanocom-

posites, motivates the need to develop these novel measurement techniques to understand

the material behavior under various loading conditions, whether static, quasi-static, or

dynamic conditions . Our previous studies have demonstrated the successful piezospec-

troscopic calibration of the static response of alumina particulate composites [75, 77].

This highlights the potential for this method to monitor loading under variable strain

rates in many typical applications. Since the material behavior for many other types
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of composites has been shown to vary significantly with strain rate [37], understanding

the failure mechanics under variable strain rates is important for the design and safe

use of these materials. The need to understand the mechanics of particulate composites

such as alumina-epoxy nanocomposites coupled with the potential for high in-situ collec-

tion of strain information of this material using piezospectroscopy provides an excellent

motivation for the variable strain rate studies initiated through this work.

1.2 Effect of Strain Rate on Mechanical Properites

The general variation in material response between static and dynamic loading in tension

and compression is well-known and documented historically [2]. Outside the realm of

static tests, the response of materials under quasi-static, low, and high strain rates can

also differ substantially. For example, Law and Wilshaw concluded that the quasi-static

and dynamic response during indentation tests did not correlate well [49, 15]. Many

factors, including surface and friction effects, microcracking, and microplasticity, can

affect the material response during increased loading rates. Specifically, the rate of load

application has been found to influence the process of microcrack development [48]. With

higher strain rates, the increased strain rate dependency is thought to arise from crack

inertia, which is controlled through confining pressures [48].

Many fiber-reinforced polymer composites loaded in both tension and compression

show an improved mechanical response to increased loading rates. Tensile glass/polyester
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and glass/epoxy composite studies report an increase in tensile strength with increasing

loading rate [37]. Compressive studies on carbon/epoxy [28], graphite/epoxy, glass/polymer,

and glass/polyester all report an increase of compressive strength with increasing load-

ing rate [37]. In a similar way, some multi-constituent particulate composites, such

as aluminum/nickel/epoxy, have improved compressive strengths with increasing load-

ing rates [42, 39, 43]. Low and high strain rate compressive tests on polycrystralline

alumina reveal both increased compressive strength with loading rate and sensitivity

regimes transitioning around 10−1s−1 [46]. Several studies have investigated the effect of

strain rate on the mechanical properties of alumina-filled epoxy composites. For exam-

ple, micron-sized alumina particles added to epoxy at 37 and 43% volume achieve higher

axial stresses at increased loading rates [59, 68]. Various volume fractions, including 20,

33, and 42% alumina in epoxy revealed increasing Hugoniot stress with increasing impact

velocity [61]. Half and fully loaded alumina filled epoxy composites, approximately 20

and 42% volume fraction respectively, show a similar trend of higher axial stress with

increasing strain rate [57], with the fully loaded composite achieving the highest stress

values. The overall improvement in mechanical response of these materials under dy-

namic conditions points toward the strengthening mechanisms and interactions of the

constituents at the microscale. This highlights the need to enable and develop measure-

ments such as piezospectroscopy for strain rate studies to establish an understanding of

the response.
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1.3 Overview of Research

The improved mechanical properties at increased loading rates seen by the mechani-

cal response and failure of these composites is often dominated by the particle-matrix

and particle-particle interaction that leads to strengthening mechanisms in these mate-

rials. Understanding these interactions is difficult and deciphering the characteristics of

composites from the properties of the individual components remains a significant and

challenging problem [61]. Piezospectroscopic studies utilizing the characteristic photo-

luminescent alumina nanoparticles as “nano-sensors” within an epoxy matrix has the

capability of providing substantial information with respect to the stresses experienced

by the constituent particles. With the motivation of characterizing the effect of strain

rate on the stress transfer characteristics at the microscale, in-situ measurements at

quasi-static strain rates can be collected in order to elucidate the load transfer mechanics

through particle piezospectroscopic (PS) behavior.

Chapter 2 outlines the theory and definition of the strain rate range used within

this work and describes the behavior of materials, including alumina-epoxy composites,

at various strain rates. The fundamentals behind the piezospectroscopic property of

the material is introduced including relevant theory, process of data analysis, and curve

fitting. Success of the method with both static and dynamic tests is discussed in order to

show the reliability of the method to collect stress-sensitive information at the microscale

and relate load transfer information through optical methods.
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The mechanical effects of particle size, volume fraction, and aspect ratio are discussed

in Chapter 3. The specimen fabrication is also discussed, along with the use of strain

gages to collect strain information from the bulk composite material. Methods and

measurements ensuring acceptable dispersion through intensity measurements, density

calculations, and elastic modulus determination is also outlined in Chapter 3.

Results for the mechanical and piezospectroscopic analysis of varying volume fractions

of alumina under quasi-static conditions is described in Chapter 4 and 5, respectively.

Relevant findings are also discussed in Chapter 5. Finally, conclusions and future direc-

tions in this work are discussed in Chapter 6.
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CHAPTER 2
MECHANICS OF STRAIN RATE TESTING AND

PIEZOSPECTROSCOPY

2.1 Mechanics of Strain Rate Testing

2.1.1 Definition of Strain Rate Range

Strain rate regimes are typically characterized in different regions, that is, static, quasi-

static, low, intermediate, and high. Static regimes are generally characterized by the

absence of a loading rate or loading without progressive motion. However, dynamically,

the regimes are usually characterized with varying definitions of the boundaries that

distinguish them. For example, in studies on polycrystalline alumina, Lankford described

three strain rate regimes, low on the order of 10−5s−1, intermediate on the order of

10−1s−1, and high on the order of 103s−1 [46]. On the other hand, Jordan described

quasi-static strain rates on the order of 10−4 to 10−3s−1 and intermediate strain rates on

the order of 103s−1 in her work with aluminum/nickel/epoxy composites [39]. The strain

rates employed in this work on alumina epoxy composites fall within the low strain rate

definition generally described as quasi-static and are generally in the order of 10−4, 10−3,

and 10−2s−1.
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2.1.2 Behavior of Materials at Various Strain Rates

Material behavior is affected by many factors including matrix and filler material, particle

size, shape, or volume content, but has also been shown to be highly affected by the

loading rate. Specifically, at increased rates of loading, many factors can affect the

material response, including surface and friction effects, microcracking, inertial effects

associated with motion of the microstructure, and microplasticity [18, 37]. According to

Drumheller [18], the dynamic response of particulate loaded materials presents several

challenges. First, contact between neighboring particles can transmit loads independently

of the load carried by the filler material, which may dismiss the assumption of equal

constituent pressures [18]. Second, the effective modulus of the particle matrix is a

strong function of the confining pressure as particles can “lock” together under large

confining pressures [18]. Third, distortion can result in dilation of the mixture due

to the interference pattern set up between particles during a shearing motion of the

particle matrix [18]. Lastly, finite deformation of the mixture is opposed by large internal

frictional forces originating at the interparticle contact sites [18].

Lankford suggested that all ceramics fail in pure compression by the coalescence

of multitiple axially-oriented microcracks [47]. Specifically, microstructural factors and

inhomogeneities are known to be responsible for the local tensile stresses near grain

boundaries that nucleate microcracks [47]. For quasi-static strain rates on the order of
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10−5 to 15−1s−1, it has been shown that the failure process obeys the following equation:

σc ∝ ε̇
1

(1+n) (2.1)

where σc is the compressive strength, ε is the strain rate, and n is equal to the stress

intensity exponent in the macroscopic tensile crack velocity relationship [47]. This process

dominates several common ceramics, such as SiC, Al2O3, and Si3N4 and is relatively

strain rate insensitive. However, at higher loading rates, the dependence of strength on

strain rate is much more sensitve. For strain rates in the range of 103 to 104s−1, the

dependence is described by the following equation:

σc ∝ ε̇
1
3 (2.2)

At much higher strain rates, such as 106s−1, microsplasticity dominates the material

response, where blocked plastic flow induces grain boundary stress concentrations and

microfracture or slip, in cases where the grain boundaries are relatively clean [47]. In

compression, the strain rate strengthening effect persists at much higher strain rates due

to stablization of microcracks under compressive loads [46]. On the other hand, under

tensile loading at increased strain rates, the critical stress intensity for failure is attained

at the tips of growing cracks and tensile falure becomes insensitive to further strain rate

increases [46].

At high strain rates, a sudden change in velocity causes a shock wave to travel through

the material [19]. At the limiting factor, the stress behind the shock is known as the

Hugoniot elastic limit (HEL), however, past the limiting factor, the material exhibits
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a response much different than in the region before the limit as two shock waves are

produced. This response is characterized by the Rayleigh line, where the region before

and after the HEL are straight lines with two different slopes. The jump in stress, due

to the shock, cause a leading and trailing shock wave, called the elastic precursor and

plastic shock wave respectively, to form before and after the HEL. For values that greatly

exceed the limiting factor, it is possible that the elastic precursor can be “overdriven” by

the plastic shock wave [19]. Regions before and after the HEL do not behave similarly for

elastic-plastic materials, therefore, care must be taken to ensure appropriate regions of

strain rates for comparison. While the region of strain rates addressed by the experiments

in this work covers the low strain rate range, it is envisaged that the methods and

approach taken in these studies can be extended in future studies to investigate the

significant events and response of the material that take place at high strain rates.

2.1.3 Polycrystalline/Ruby and Alumina-Epoxy Composites at Various Strain

Rates

The mechanical response of polycrystalline alumina has been studied under high strain

rates. It has been documented that the HEL increases with decreasing grain size, char-

acterized by a linear behavior, and is roughly 12 GPa for grain sizes in the 1 micron

range [60]. At impact stress values below the HEL, the microstructure shows clear ev-

idence of failure along the grain boundaries and above the HEL, grains show twinning,
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where crystals share lattice points [8]. Alumina has a three zone response, elastic, mixed-

response, and inelastic region, each separated by a lower and upper HEL [8]. The lower

HEL corresponds to the region of the onset of twinning in suitable grains [8]. Complete

twinning occurs in the upper HEL region which leads to intragranular fracture along

twin boundaries and fast grain fracture limited only by the speed of crack propagation

at pressure [8]. Polycrystalline alumina was shown to have a strength dependence on

strain rate in the region of 10−4 to 103s−1, with varying slopes between each endpoint

and roughly 10−1s−1 [46]. The rate of load application has been found to influence the

process of microcrack development [48]. With higher strain rates, the increased strain

rate dependency is thought to arise from crack inertia, which is controlled through con-

fining pressures [48]. Additionally, ruby, with a reported HEL of 14 GPa, has also been

studied under shock compression where higher stresses were achieved at increased load-

ing rates [45, 32]. Values for ruby in the elastic region have been reported up to 12.56

GPa [45].

Composites based upon particulate reinforcement can be considered isotropic [57].

Alumina-epoxy composites with 43% volume fraction of micron-sized particles are char-

acterized by an HEL of 3 GPa under shock compression for velocities between 0.42 and

0.91 km/s [68]. Therefore, given an applied range of shock stress up to a maximum point

near HEL, it has been assumed that alumina responds in a purely elastic way. In contrast,

the epoxy binder may be assumed to respond inelastically at higher shock stresses [57].

Studies on alumina epoxy composites with 20, 33 and 42% filler material revealed an
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increasing Hugoniot stress with strain rate [61] as determined by the Maxwell model,

a rate-dependent differential equation used to calculate the stress-wave propagation in

Al2O3 composites.

2.2 Piezospectroscopy

An added benefit to the mechanical property characterization presented in this study,

is the ability to use photo-stimulated luminescence spectroscopy (PSLS) to measure the

stress-induced shifts of the R-line peaks present in the emission spectrum of chromium-

doped α-alumina as shown in Figure 1.1. Relevant to work with ruby, polycrystalline

alumina, and bulk alumina-epoxy composites, laser excitation causes the Cr3+ ions in

alumina to transition from an exicited state back down to a ground state, where photons

are emitted at set wavelengths to form the characteristic R-lines. The piezospectroscopic

(PS) effect, introduced by Grabner [27] relates the frequency shifts in the fluorescence

spectrum of the R-lines to applied stress as shown by the following equation:

∆ν = πijσij (2.3)

where ∆ν is the frequency shift, πij represents the piezospectrocopic coefficient, and

σij is the stress state as defined by the crystallographic frame of reference. However, the

frequency shift of a fluorescence line in a luminescing crystal oriented at an arbitrary angle

to a superimposed stress and strain field is given by the following tensorial relation [54,
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34]:

∆υ = πijaikajlσkl (2.4)

where πij represents the piezospectrocopic coefficient, aij is the transformation matrix,

and σkl is the stress state. Ma and Clarke derived an equation for the frequency shift of

fluorescence lines, irrespective of the crystal structure, from a large number of randomly

oriented grains in a polycrystalline material as shown below [54]:

∆υ =
1

3
(π11 + π22 + π33)(σ11 + σ22 + σ33) (2.5)

By neglecting tranverse stress (σ33 = 0) and assuming equal in plane stresses (σ11 =

σ22 = σ), the above equation can be expressed as follows:

∆υ =
2

3
(π11 + π22 + π33)σ (2.6)

For the case of alumina nanoparticles embedded within an epoxy matrix, the fre-

quency shift of the R-lines collected from the alumina particles and applied stress can

be directly related to the PS coefficient for the nanocomposite as shown in the following

expression:

∆ν = ΠNCσapplied (2.7)

where ∆ν is the frequency shift of the peak position of the fluorescence line of the

embedded alumina nanoparticles, ΠNC is the PS coefficient of the nanocomposite, and

σapplied is the stress applied to the nanocomposite. By using this equation, the particle

behavior is able to be distinguished from the matrix behavior. Therefore, determining the
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elasticity of the particles in relation to the inelasticity of the matrix is possible through

direct measurement of the load transfer to the much stiffer particle modifiers.

2.2.1 Deconvolution and Curve Fitting

As a consequence of alumina luminescence, the R-lines share a region of data that con-

tributes to peak positions affected by convolution in raw experimental data as shown in

Figure 2.1.

Figure 2.1: Deconvolution and curve fitting [66]
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Therefore, the raw experimental data must undergo a deconvolution and curve fitting

procedure to ensure accurate peak positions, and thus, accurate peak position shifts.

Previously used to correct the R-line peaks for polycrystalline alumina [66] and alu-

mina nanoparticles embedded in an epoxy matrix [75], a genetic algorithm (GA) based

procedure [23] was also used in this work on the raw experimental data.

As opposed to gradient-based methods, this GA method has the capability of global

optimization [81, 14] and is utilized while performing four main functions on unprocessed

data: baseline removal, curve cropping, curve separation, and curve recombination. This

optimization is accomplished by two pseudo-Voigt functions [44, 78, 36] which obtain

several important parameters for the R1 and R2 lines such as area, line-widths, peak

position, peak intensity, and goodness of fit. After the curve fitting procedure, the true

peak positions of the R-lines are realized, R-line shifts can be calculated, and piezospec-

troscopy can be utilized to determine the PS coefficients and resulting load transfer

characteristics.

2.2.2 Success with Static Measurements

Piezospectroscopy has been successfully used to determine the load transfer mechanics

for ruby, polycrystalline alumina, and alumina-epoxy composites. Many studies have

investigated the effect of applied stress on the shift of luminescence lines, including work

by He and Clarke, Raghavan, Ma and Clarke, and Stevenson. He and Clarke’s work
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determined the PS coefficients for ruby under uniaxial compressive stress and developed

the following relationships for the frequency shift of the R-lines in terms of the three

crystallographic directions [34]:

∆ν (R1) = 2.56σ11 + 3.50σ22 + 1.53σ33 (2.8)

∆ν (R2) = 2.65σ11 + 2.80σ22 + 2.16σ33 (2.9)

The effects of stress on the peak position shifts for ruby under uniaxial compressive

stress was also investigated by Raghavan [66]. With the use of a GA based procedure,

the PS coeficients for the a, c, and m axis for R1 were reported as 2.65, 2.83, and 1.51

cm−1/GPa. Raghavan also measured the stress induced shifts of the R-line peaks for

polycrystalline alumina with reported values of 2.64 and 2.47 cm−1/GPa for R1 and R2,

respectively [67].

Ma and Clarke investigated the effect of stress on the peak shift and broadening of the

R1 and R2 lines for polycrystalline alumina [54] using a four point bending stage to cap-

ture both tensile and compressive stresses. Their work determined the shift dependence

on stress as 2.46 and 2.50 cm−1/GPa for R1 and R2 using the least-squares analysis and

2.53 and 2.54 cm−1/GPa for R1 and R2 using the hydrostatic pressure dependence [54].

Alumina-epoxy composites of varying volume fractions of 5, 25, and 38% α-alumina

nanoparticles were investigated by Stevenson [75] in order to develop stress-sensing ad-

hesives using piezospectroscopy. Results for this study revealed increasing sensitivity

to load transfer as seen by increasing PS coefficients with increasing volume fraction.
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Specifically, the magnitude of PS coefficients were reported for R1 as 3.16, 3.65, and

5.63 cm−1/GPa for 5, 25, and 38% alumina, respectively. Additionally, collected photo-

luminescent intensity information was used to verify composite dispersion, regions of

voids, and areas of localized stress concentrations.

2.2.3 Strain Rate Studies using Piezospectroscopy

Dynamically, the behavior of ruby has been characterized under shock loading using the

piezospectroscopic behavior of the material. Horn and Gupta analyzed the wavelength

shift of ruby luminescence lines under shock compression using impact experiments with

a single stage gas gun [35]. This produced a state of uniaxial strain in the material using

two pressures, 40 and 99 kbar. Results revealed an upshift in wavelengths between 0-25

nm plotted against density compression as represented by the following equation:

Densitycompression =
ρ

ρo
(2.10)

An upshift in nm correlates to a downshift in cm−1 as would be expected for com-

pressive loading. Gupta also performed experiments on ruby under shock compression

in order to develop optical stress gages [31]. This work utilized impact experiments with

particle velocities of 0.117-0.200 mm/µs. R1 peak shifts for ruby were reported in the

range of 11.9 to 22.5 Å with longitudinal stresses of 52.5 to 91 kbar. These shifts can

be represented as downshifts in cm−1 also plotted against density compression as de-
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fined above. In both studies of ruby, the mechanical quantities were calculated using the

sapphire Hugoniot and Rankine-Hugoniot jump conditions [31].

In another study, Shen and Gupta investigated the ruby R-line shifts for high pressure

calibration [30]. These experiments utilized a single-stage, compressed gas gun to achieve

impact velocites of 200-600 m/s, which imparted stresses between 25 and 125 kbar.

Upshifts in Å were plotted against both density compression and mean stress (kbar) for

R1 and R2, which would correlate to downshifts if represented in cm−1. An important

finding of this work is the insensitivity of the R2 shift to crystal orientation and non-

hydrostatic stresses, with dependence only on density compression [30].
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CHAPTER 3
SPECIMEN GEOMETRY, FABRICATION, MATERIAL PROPERTY

DETERMINATION, AND EXPERIMENTAL SETUP

3.1 Mechanical Effects of Particulate Reinforcements

3.1.1 Particle Modifiers

In comparison to metal materials, an un-reinforced polymer will exhibit inferior mechan-

ical properties such as strength and poor resistance to crack initiation and propagation.

Therefore, it is imperative that polymers be reinforced with particle modifiers to improve

mechanical properties of interest. High stiffness-to-weight ratios due to increased parti-

cle rigidity make particle modifiers desirable and high surface areas allow for sufficient

particle-matrix bonding.

Silica [38, 4, 10], titanium oxide [80, 22], and aluminum oxide [25, 72, 86, 79, 56],

also known as alumina, are some of the more commonly used fillers. Ceramic reinforcing

particles have been used in lightweight armor applications to improve mechanical impact

properties [52, 69, 58, 73, 72, 16, 87] and in adhesive applications to improve adhesion,

toughness, and peel strength [25]. Specifically, alumina modifiers are becoming more

widely used in epoxy due to the relatively low densities and high strengths [40] of the

resulting composite.

When compared to micron-sized particles, nanoparticles offer higher surface-to-volume

ratios [26], which allow for improved bonding between filler and matrix material. Nano-
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sized modifers also show superior crack resistance over micron-sized particles. The rigid

particles serve as barriers that the crack must traverse in order to propagate, thus imped-

ing growth. Ultimately, these modifiers serve as reinforcing agents to the matrix material

by improving composite stiffness and increasing particle-matrix surface bonding area, and

typically, do not have an adverse impact on mechanical properties of the composite [83].

3.1.2 Volume Fraction

Particle modifiers have been shown to have offer substantial improvements to mechanical

properties of interest, however, the amount of filler content, or volume fraction, also has

an effect the mechanical response of the composite. Lower volume fraction composites are

typically dominated by the matrix behavior and higher volume fractions are usually much

stronger, but are notoriously more difficult to manufacture. Studies directly relating the

amount of filler material to improvements in mechanical properties have been performed

and are important as the amount of filler material should be minimized in order to re-

duce cost and waste, while maximizing mechanical performance. One such study, which

investigated nano-alumina modified epoxy based film adhesives, determined that 10% of

nanoparticles by weight is the maximum amount that could be added while still maintain-

ing even dispersion [25]. However, in stress-wave propagation studies for alumina-epoxy

composites, it has been shown that 43% α-alumina is the maximum amount that can
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be added to an epoxy without reducing the overall mechanical properties of the epoxy

itself [61].

Higher volume fractions have been shown to have superior load transfer to the particles

in studies of alumina-epoxy composites under static conditions [75, 77]. The load transfer

mechanics can be visualized by Figure 3.1.

= Nanoparticle 

Figure 3.1: Increased load carrying capability with particle-to-particle contact

Lower volume fraction samples are dominated by matrix-particle contact, where the

less stiff polymer matrix deforms around the particle. For higher volume fraction sam-

ples, as shown by the extreme representation in Figure 3.1, individual particles touch

neighboring particles resulting in a significant increase in the load carrying capability of
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the mixture [18] due to increased stiffness of the particles. However, in order to maximize

the benefit of particle modifiers in a matrix on the mechanical properties, relatively uni-

form particle dispersion must be achieved to ensure an even stress distribution through

the sample.

3.1.3 Aspect Ratio

Aspect ratio plays an important role on the mechanical response of samples. Edge ef-

fects caused by friction between the sample surface and loading platens can cause stress

concentrations at each loading interface. If the aspect ratio is too small, these stress con-

centrations can cause higher stresses in the mid-region of the sample, which could lead to

premature failure. If the aspect ratio is too large, buckling can occur under compression,

leading to premature sample failure.

In this work, a length to diameter aspect ratio of 2:1 was maintained, as this ratio is

generally accepted for quasi-static compression testing [41]. Under these conditions, the

mechanical response can be optimized by avoiding frictional edge effects and minimizing

the chance of sample buckling.
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3.2 Fabrication of Alumina-Epoxy Composites

3.2.1 Bulk Composite Manufacturing

For low strain rate measurements, the bulk alumina-epoxy composite must first be fab-

ricated. This fabrication procedure closely followed the procedure from earlier work [75].

In order to fabricate the bulk alumina-epoxy composites, α-alumina nanopowder with an

average particle size of 150 nm, 99.85% purity, and a density of 3.97 g/cm3 was used as

the filler material. The epoxy resin, density of 1.17 g/cm3, and curing agent implemented

was Epon 862 (Bisphenol-F type) and Epikure-W, respectively. Volume fractions were

chosen to correlate to static studies [75], which resulted in 4.5, 13.6, and 29.7% alumina

filler material. It has been shown that 43% α-alumina is the maximum amount that can

be added to an epoxy without reducing the overall mechanical properties of the epoxy

itself [61]. The manufacturing process is shown in Figure 3.2.
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A B C D E

Figure 3.2: Fabrication of alumina-epoxy composites to include A) shear mixing, B)

degassing, C) casting, D) curing, and E) sample removal

The appropriate amounts of each component, α-alumina nanoparticles and epoxy

resin were measured and mixed using a high shear mixer for a duration of 1 hour. The

curing agent was measured and added to the particle-epoxy mixture and mixed for an

additional hour. The use of a high shear mixture removed most of the agglomerates that

were present, and a low-pressure vacuum system was then utilized for approximately 1

hour to completely remove entrapped air bubbles. The mixture in its uncured state was

transferred to a 0.5 in thick aluminum mold with 0.2 in diameter holes. As it is generally
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accepted that quasi-static compression tests should have a length to diameter ratio of

2:1 [41], the mold thickness was kept slightly larger than the desired specimen length to

allow for surface finishing of the top and bottom faces. The cast composite was cured

for 4 hours in a furnace at 120◦C. After the curing process was complete, the mold was

removed from the furnace and the nanocomposite billets were removed while the mold

was still warm using a gentle extraction process.

3.2.2 Surface Finishing

Upon complete cooling, the top and bottom faces of the cylindrical samples were surface

finished to ensure parallelism. This was accomplished by the use of an aluminum jig with

holes slightly larger than the sample diameter to ensure the samples fit securely as shown

in Figure 3.3.

Figure 3.3: Surface finishing using an aluminum jig
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Each sample was carely finished using a fine grit sanding process which included the

use of varying degrees of grit to ensure a smooth top and bottom face. Finished sample

dimensions were approximately 0.2 in diameter with 0.4 in length. Sample geometry

was chosen based upon work by Lankford [46] and Jordan [41] to ensure right cylindrical

samples with an aspect ratio of 2:1.

3.2.3 Strain Gage Attachment

In order to ensure superior attachment of the strain gage to the sample, the region of

strain gage attachment for each sample was lightly sanded and the sample was extensively

cleaned. Small tick marks were carefully drawn on the sample to ensure vertical and

horizontal alignment of the gage to the sample as shown in Figure 3.4.

Figure 3.4: Strain gage attachment
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Tape was used to align each annealed constantan foil gage with the tick marks, and

the gage was subsequently attached with a fast-acting cyanoacrylate adhesive. After a

24 hour cure, the tape was removed and additional wire was soldered onto the beryllium

Copper lead wires. Just before testing each sample, the strain gage was attached to a

wheatstone quarter bridge setup as shown in Figure 4.1.

3.3 Material Property Determination

3.3.1 Intensity Measurements for Dispersion Verification using Photo-Stimulated

Luminescence Spectroscopy

In order to ensure sufficient dispersion of the nanoparticles within the epoxy matrix,

intensity measurements were collected using a spectrometer and coupled fiber optic probe.

PSLS readings with an exposure time of 0.1 s and 1 accumulation for 4.5 and 29.7% and

0.05 s and 3 accumulations for 13.6% were collected using a five point scan along the

length of the sample as shown in Figure 3.5.
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Cr3+

Figure 3.5: Data collection for dispersion verification

The exposure time for each volume fraction was determined in order to allow for suf-

ficient exposure and resulting photo-luminescence, which is needed to produce sufficient

intensities for monitoring. For each point, the data was deconvoluted as described in 2.2.1

and the intensity compared. Previous work with alumina-epoxy composites verified the

ability to determine sample dispersion using the PSLS method [75]. The maximum and

minimum intensity value for each sample was compared and dispersion was character-

ized as the variance of intensity on a local sample scale. The result for each sample is

presented in Table 3.1.
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Table 3.1: Intensity variance for each sample

Volume % Sample ID Intensity Variance %

4.5 1 7.71

2 31.06

3 9.48

4 19.83

5 11.05

6 12.63

7 4.18

8 6.42

9 4.64

13.6 1 3.36

2 6.38

3 12.72

29.7 1 19.42

2 20.86

3 27.40

4 14.28

5 19.17

6 8.47

7 15.08

8 6.73
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For 4.5% volume fraction samples, the intensity variance was determined to range

between 4.18 and 31.06% with the average variance equal to 11.89%. Of the three volume

fractions investigated, 13.6% revealed the lowest intensity variance average of 7.48% with

values in the range of 3.36 to 12.72%. Recording the highest intensity variance average

at 16.43%, the 29.7% volume fraction sample intensity variance ranged between 6.73 and

27.40%. Therefore, it can be concluded that the 13.6% volume fraction samples were

generally more well dispersed, followed by 4.5 and 29.7%, with 29.7% generally having

the poorest dispersion of all the volume fractions.

3.3.2 Density Measurements for Volume Fraction Verification

In order to calculate the actual volume fraction of the manufactured samples, density

measurements were recorded. The following equations were used to determine the correct

volume fraction of filler material:

ρNC = vfρf + vmρm (3.1)

vm = 1− vf (3.2)

where ρNC is the measured density of the nanocomposite, v is the volume fraction, ρ is

the known density for each material, and the subscripts f and m refer to the filler and

matrix, respectively. Results for the volume fraction of both filler and matrix material are
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shown in Table 3.2 along with the measured density of the nanocomposite. As expected,

the measured densities of 1.30, 1.55, and 2.00 g/cm3 yield increasing volume fractions of

4.5, 13.6, and 29.7%, respectively.

Table 3.2: Volume fraction and measured density of each volume fraction composite

Volume Percent of Filler Volume Percent of Matrix Density (g/cm3)

4.5 95.5 1.30

13.6 86.4 1.55

29.7 70.3 2.00

3.3.3 Elastic Modulus Determination

The elastic modulus for composites can be determined by utilizing the theory of the rule

of mixtures which defines the elastic modulus of a composite as:

ENC = vfEf + vmEm (3.3)

where E is the elastic modulus, v is the volume fraction, and the subscripts f and m

refer to the filler and matrix respectively as shown in Table 3.3. As expected, the elastic

modulus increases with increasing volume fractions reported as 15.80, 42.88, and 90.79

GPa for 4.5, 13.6, and 29.7% volume fractions, respectively.
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Table 3.3: Elastic modulus (ENC) of each volume fraction composite

Volume Percent of Filler Volume Percent of Matrix ENC (GPa)

4.5 95.5 15.80

13.6 86.4 42.88

29.7 70.3 90.79

3.4 Experimental Setup

A Renishaw Raman spectrometer with a 2400 l/mm grating and attached fiber optic

probe [23] was used to obtain PSLS readings. A Ne-Ar source was used to calibrate

the spectrometer before data collection. The laser used had an excitation wavelength

of 532 nm with approximately 18.5 mW of power at the probe exit. A MTS Insight

Electromechanical system with a calibrated 10 kN load cell was utilized to apply a com-

pressive stress via crosshead deflection. Lubricated sapphire platens were placed between

the cylindrical samples and the MTS steel compression platens to reduce the effects of

friction. The complete experimental setup is shown in Figure 3.6. This experimental

setup was utilized for both mechanical and piezospectroscopic characterization.
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Figure 3.6: Experimental setup
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CHAPTER 4
MECHANICAL ANALYSIS OF ALUMINA-EPOXY COMPOSITES

UNDER QUASI-STATIC CONDITIONS

4.1 Objectives

Improved mechanical properties, such as toughness, corrosion resistance, and strength,

have motivated the use of particulate composites in many applications. Alumina-epoxy

composites are no exception and have often been utilized due to high particle stiffness and

improved mechanical properties of interest. With the increased use of alumina particulate

composites, comes the need to understand the material behavior under various loading

conditions, whether static, quasi-static, or dynamic conditions exist.

In static studies on alumina-epoxy composites of varying volume fractions, mechanical

strength was shown to improve with alumina content [75, 77]. On the other hand, several

studies have reported the dynamic response of alumina-epoxy composites, where the

mechanical strength was shown to improve with both increasing volume fractions of

alumina and increasing strain rates [68, 61].

The test methods in this study utilize conventional strain gages to monitor the over-

all composite response including the linearity of strain behavior. However, the microme-

chanics, including particle interactions between the matrix and particles and interparticle

effects, are not captured by strain gage measurements, which monitor the composite be-

havior on a macroscale. The collection of spectral emission using piezospectroscopy has
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promise in terms of providing an insight on the particle-to-matrix behavior, which could

substantially improve material strengthening mechanisms.

The strain gage studies performed here, in-situ with PS data collection, provide cor-

relating behavior of the overall composite and the linear strain range for PS analysis.

4.2 Data Collection

A MTS Insight Electromechanical system was utilized to apply a stress via crosshead de-

flection in order to achieve target strain rates of 10−4, 10−3, and 10−2s−1. The maximum

force the sample sustained was recorded using values from the electromechanical test

system. This value was divided by the initial sample cross-sectional area and correlated

to calculated strain values using data from attached strain gages.

Strain gages made from annealed constantan foil with a tough, high-elongation poly-

imide backing, gage factor of approximately 2.05 - 2.1, Beryllium Copper lead wires, and

a strain range of up to 20% were used to collect in-situ strain information with respect

to time during loading. A schematic illustrating the strain gage connections is shown in

Figure 4.1.
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Figure 4.1: Strain gage setup

The strain gage lead wires were attached to a terminal block, connecting the strain

gage across nodes CD as shown in Figure 4.1. A DC power source rated at 5V was

connected across nodes CB in Figure 4.1, which was dissipated across the two resistors

CA and AB in series, as well as the strain gage and resistor DB in series. Since the

sample was loaded in compression, it was expected that the resistance on the gage would

decrease, as well as the voltage across the gage, which would result in a slightly higher

potential at node D than at node A as shown in Figure 4.1. By measuring the voltage

difference across node DA with the NI DAQ 6008, as shown in Figure 4.1, it was possible

to calculate the strain experienced by the gage.
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4.3 Loading Rates

The calculated strain was plotted against time in order to elucidate the actual strain

rate for each sample by analyzing the linear portion of data. In the event that strain

information was unable to be recorded, strain rates were estimated using the parameters

from the electromechanical test system. Loading rates for 4.5% as calculated from the

strain gage data are shown in Figure 4.2. Sample 1 and Sample 8 for 4.5% have estimated

strain rates of 10−4 and 10−2s−1, respectively.
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Figure 4.2: Strain rates as calculated from strain gage data for 4.5% volume fraction
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Figure 4.3: Strain rates as calculated from strain gage data for 29.7% volume fraction

Due to the absence of strain gages on all 13.6% samples, loading rates for 13.6% are

estimated values and are 10−4, 10−3, and 10−2s−1 for Sample 1, Sample 2, and Sample 3,

respectively. Loading rates for 29.7% as calculated from the strain gage data are shown

in Figure 4.3.

The loading rates for each sample are summarized in Table 4.1. Estimated strain rate

values are indicated by an asterisk.
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Table 4.1: Strain rate for each sample where * denotes an estimated value

Volume % Sample ID Strain Rate (s−1)

4.5 1 0.0001*

2 0.00008

3 0.00005

4 0.00087

5 0.00079

6 0.00080

7 0.00426

8 0.01*

9 0.00573

13.6 1 0.0001*

2 0.001*

3 0.01*

29.7 1 0.00008

2 0.00008

3 0.00008

4 0.00071

5 0.00053

6 0.00711

7 0.00706

8 0.00074
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4.4 Determination of the Mechanical Performance Dependency on Strain

Rate

4.4.1 4.5% Volume Fraction Alumina-Epoxy Composites

Using the strain rates as defined in Table 4.1, ultimate strength dependence on strain rate

was plotted for 4.5% as shown in Figure 4.4. Results reveal a general trend of increasing

ultimate strength with increasing strain rate. However, at strain rates in the range of

10−4s−1, the lower range, a slight trend of decreasing ultimate strength with strain rate

is revealed, which could be attributed to the normal variance of experimental data due

to sample defects. Additionally, data points at 10−4 and 10−2s−1 are estimated strain

rates, therefore, some error exists between this estimated value and calculated values

from strain gage measurements.
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Figure 4.4: Ultimate strength dependence on strain rate for 4.5% volume fraction

4.4.2 13.6% Volume Fraction Alumina-Epoxy Composites

In a similar manner, the ultimate strength dependence on strain rate was plotted for

13.6% as shown in Figure 4.5 by using the estimated strain rates as defined in Table 4.1.

Results reveal a general trend of increasing ultimate strength with increasing strain rate

through the lower, mid, and upper ranges. However, each of these data points are

estimated strain rates, therefore, some error exists between this estimated value and

calculated values from strain gage measurements.
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Figure 4.5: Ultimate strength dependence on strain rate for 13.6% volume fraction

4.4.3 29.7% Volume Fraction Alumina-Epoxy Composites

Using the strain rates as defined in Table 4.1, ultimate strength dependence on strain

rate was plotted for 29.7% as shown in Figure 4.6. Results reveal a general trend of

increasing ultimate strength with increasing strain rate at strain rates in the mid-range

of 10−3s−1. However, at strain rates in the lower range of 10−4s−1, ultimate strength

varies significantly with little change in strain rate. Similarly, results in the upper range

of 10−2s−1 show variation in the ultimate strength with little change in strain rate.

Since 29.7% volume fraction samples are fairly difficult to manufacture and dispersing
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the alumina particles evenly within the matrix proves challenging, these fluctuations in

ultimate strength could be attributed to uneven particle dispersion or sample defects,

such as agglomerations or voids.
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Figure 4.6: Ultimate strength dependence on strain rate for 29.7% volume fraction

4.4.4 Combined Mechanical Results

In order to determine the effect of volume fraction on the ultimate strength dependence

with strain rate, 4.5, 13.6, and 29.7% volume fractions were plotted as shown in Figure 4.7

using the strain rates as defined in Table 4.1. Results reveal a general trend of increasing

ultimate strength with increasing volume fraction for all three strain rate ranges of 10−4
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(lower), 10−3 (mid), and 10−2s−1 (upper). In each range, 4.5 and 13.6% volume fractions

show little variation in strength values, however, 29.7% shows a substaintal increase in

ultimate strength over 4.5 and 13.6%. This mechanical response is expected, as adding

nanoparticle modifers to a weaker epoxy matrix, generally increases the strength of the

composite.
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Figure 4.7: Ultimate strength dependence on strain rate for all volume fractions

4.5 Conclusion

The mechanical response of alumina-epoxy composites under quasi-static strain rates

was investigated to determine the impact of strain rate on mechanical strength of the

overall composite using conventional test methods. For 4.5 and 13.6% volume fraction
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samples, a general trend of increasing ultimate strength with strain rate was revealed, as

in generally expected for these materials, however, a trend was not as easily characterized

with 29.7%. Results were also used to determine the linear range of strain, which was

used to determine the range of stress for PS analysis as described in Section 5.3.
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CHAPTER 5
PIEZOSPECTROSCOPIC ANALYSIS OF ALUMINA-EPOXY

COMPOSITES UNDER QUASI-STATIC CONDITIONS

5.1 Objectives

As the Cr3+ ions within alumina are excited by a laser, photons are emitted at set

wavelengths, which form the characteristic R-lines. Deformation to the particles due to

an applied stress, causes the photons to emit at different wavelengths, which ultimately

causes a shift in the characteristic R-lines. In relation to a reference position, typically

an unstressed state, the peak position shift of the R-lines, to include R1 and R2, with

applied load can be quantified and described by the PS effect.

In this work, the PS effect was investigated by monitoring the peak position shifts of

R1 and R2 under dynamic loads to determine the PS coefficient for each sample, which is

the slope of linear trend of the peak position shift with stress. In order to determine PS

coefficients for 4.5, 13.6, and 29.7% volume fraction of alumina nanoparticles in an epoxy

matrix under variable rates of loading, it is necessary to investigate these materials by

utilizing their photo-luminescent properties. Each volume fraction should have sufficient

intensity in regards to collection time in order to determine the R-line shifts with stress

with precision without limiting the number of data collection points or causing camera

saturation. By maximizing this combination, the photo-luminescent properties are able

to be utilized to correlate the peak position shifts with stress. As a result, a PS coefficient
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can be determined for each sample, which represents the amount of shift in wave number

per unit of applied stress (cm−1/GPa) to the nanocomposite.

Since the peak position shifts occur due to stresses experienced by the α-alumina

particles, particles experiencing higher stresses, caused by external loading, will exhibit

greater R-line peak position shifts. The PS coefficient, which relates the amount of

applied stress to a measurable shift in peak position of the emission lines of embedded

α-alumina particles, can ultimately be used as an indicator of load transfer to particles.

Higher magnitude PS coefficients would relate to greater shifts, thus inherently more

particle stress, for a range of applied loads than lower magnitude PS coefficients.

Static experimental test results on alumina-epoxy composites revealed increased PS

sensitivity with increasing volume fractions for both R1 and R2 as a higher portion of

the applied stress to the nanocomposite is supported by the much stiffer and stronger

α-alumina nanoparticles [75]. However, that may not be the case for alumina-epoxy

composites under quasi-static conditions, as time-dependent loading, stress transfer, and

failure are much more complicated processes. Specifically, as the composite is loaded, the

particles are initially confined by the weaker, less stiff epoxy matrix, which inherently

transfers stress to the particles. However, as the loading process continues, particle-to-

matrix contact transforms into particle-to-particle contact, which ultimately affects the

load transfer mechanics and thus, resulting PS sensitivity. Eventually, the composite is

limited by the strength of the epoxy matrix, and the composite fails due to microcracks

that form within regions of high stress concentrations.
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Additionally, with increasing concentrations of ceramic alumina nanoparticles to an

epoxy matrix, the material has the tendency to become more brittle and the response

more suseptible to changes in loading rate. Therefore, the R1 and R2 PS behavior for

each volume fraction was investigated in the linear elastic region as determined through

the mechanical analysis described in Section 5.3 and the results compared in order to

determine composite sensitivity in regards to volume fraction and strain rate.

5.2 Data Collection

The spectrometer and coupled fiber optic probe, as shown in the experimental setup in

Figure 3.6, were used to obtain PSLS readings with an exposure time of 0.1 s and 1

accumulation for 4.5 and 29.7% and 0.05 s and 3 accumulations for 13.6% at all rates of

loading. The exposure time for each volume fraction was determined in order to allow

for sufficient exposure and resulting photo-luminescence, which is needed for sufficient

intensities to enable accuracy in R-line peak monitoring, without camera saturation. In

the case of 13.6%, 3 accumulations were observed to limit the number of data collection

points, especially at higher loading rates. Therefore, only 1 accumulation and sufficient

exposure time was utilized for subsequent tests of 4.5 and 29.7% volume fractions at all

loading rates.

The unloaded R-line peak positions for each sample were used as the reference point to

which all subsequent R1 and R2 shifts with stress were analyzed. This reference position
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would also account for any residual stress introduced by the manufacturing process and

as a result, the PS coefficients presented in this work are determined with respect to

the unloaded sample. Each sample was loaded continuously under compression at the

quasi-static strain rates shown in Table 4.1 as determined by the attached strain gage.

Photo-luminescent data was collected in-situ as shown in Figure 5.1 and peak position

shifts for R1 and R2 were analyzed throughout the linear elastic region as discussed in

the next section.
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Figure 5.1: In-situ data collection for PS coefficient determination

The calculated PS coefficient as described in Equation 2.7 characterizes a linear trend

which relates an applied stress to the nanocomposite to a shift in the captured photo-
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luminescent R-lines, thus, ultimately describing the load transfer to the nanoparticles,

serving as a mechanism to elucidate the load transfer sensitivity.

5.3 Correlation of Piezospectroscopic Findings with Mechanical Results

Due to the complex nature of time-dependent characterization and necessity to determine

the PS relationship under linear elastic conditions, only the linear elastic region of the

stress-strain response as established by the attached strain gage was used to correlate

peak shift with stress. An example of the method used to find this region is shown in

Figure 5.2. For samples with corresponding strain gage information, the maximum PS

stress was determined in the manner shown in Figure 5.2, otherwise, it was estimated

using the parameters from the electromechanical test system.
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The maximum PS stress values are different than the offset yield stress in order

to determine the compressive PS coefficient with successive peak position downshifts

exclusive of slight peak position upshifts. In this work, PS upshifts were noted to occur

slightly before the offset yield stress, which may be the onset of microcracking and stress

relief to the particles. Generally, the maximum PS stress values were approximately

70% of the offset yield stress. As a result, the maximum PS stress limits the region

of PS analysis to correspond with stress-strain linearity and does not include regions of

upshift, which would affect the sensitivity value. The maximum PS stress for all the
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samples tested is shown in Table 5.1. Using this region of stress, the corresponding peak

shift at a given applied stress for each sample was determined as outlined in the next

section.
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Table 5.1: Maximum PS stress for all samples

Volume % Sample ID Strain Rate (s−1) Max PS Stress (GPa)

4.5 1 0.0001* 0.044

2 0.00008 0.047

3 0.00005 0.047

4 0.00087 0.069

5 0.00079 0.070

6 0.00080 0.068

7 0.00426 0.045

8 0.01* 0.044

9 0.00573 0.067

13.6 1 0.0001* 0.049

2 0.001* 0.041

3 0.01* 0.077

29.7 1 0.00008 0.089

2 0.00008 0.099

3 0.00008 0.095

4 0.00071 0.088

5 0.00053 0.084

6 0.00711 0.099

7 0.00706 0.059

8 0.00074 0.093
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5.4 Determination of the Piezospectroscopic Coefficient Dependency on

Strain Rate

5.4.1 4.5% Volume Fraction Alumina-Epoxy Composites

Using the stress from the linear elastic region as defined in the previous discussion, the

R1 and R2 peak shift with stress for each 4.5% volume fraction sample was analyzed as

shown in Figure 5.3 and 5.4, respectively.
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Figure 5.3: R1 peak position shift with stress for 4.5% volume fraction samples
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Figure 5.4: R2 Peak position shift with stress for 4.5% volume fraction samples

The capability to track changes in nanoparticle stress, i.e. load transfer, was verified

by the ability to discern peak shifts for R1 and R2 even at relatively low stresses. Based

on static results [75], which revealed increasing PS sensitivity with increasing volume

fraction, tracking discernable peak shifts for 4.5%, even at low stresses, shows promise

for continuous rate loading and collection.

As a means to quantify the R1 and R2 PS sensitivity with strain rate, the linear

trend in peak position shift with stress was determined. Results for peak shift reveal

goodness of fit values in the range of 0.83 to 0.97 for R1 and 0.70 to 0.97 for R2, thus,
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lending confidence to the results. The slopes of the linear trend, the PS coefficients,

range from -3.34 to -4.87 cm−1/GPa for R1 and -2.74 to -4.85 cm−1/GPa for R2. These

results correlate well with the static data for 5% alumina, -3.16 cm−1/GPa for R1 and

-2.6 cm−1/GPa for R2 [75]. Based on previous work with alumina-epoxy composites

under static conditions where the PS coefficient was determined to increase with volume

fraction, a composite with 4.5% volume fraction of particles would be expected to have

a lower magnitude PS coefficient than a composite with 5% volume fraction of particles.

Thus, the 4.5% volume fraction samples tested in this work, generally show increased PS

sensitivity.

In order to determine the effect of strain rate on the PS coefficient sensitivity for

4.5%, the R1 and R2 PS coefficients for all samples were plotted against their respec-

tive strain rates as shown in Figure 5.5. A general trend of increased R1 and R2 PS

coefficients for quasi-static strain rates over static values is revealed. However, a slight

decrease in sensitivity is revealed between the lower and mid-range of strain rates tested,

while an increase is revealed between the mid and upper range. Since the PS coefficient

is akin to the load transfer to the nanoparticles, it is observed that the nanoparticles

experience more stress at increased strain rates, thus indicating improved load transfer.

In most cases, the R2 PS coefficient magnitude is slightly less than the R1 PS coefficient

magnitude, but many of the values are closely grouped, lending confidence to results.
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Figure 5.5: R1 and R2 PS dependence on strain rate for 4.5% volume fraction at

quasi-static strain rates

5.4.2 13.6% Volume Fraction Alumina-Epoxy Composites

The R1 and R2 peak position shift with stress was analyzed for 13.6% using the estimated

linear region as previously defined. Similarly to 4.5%, peak position shifts with stress

were easily discernable for 13.6%, even at low stresses. Here again, the capability to track

nanoparticle stresses and elucidate the load transfer at the nanoscale is verified by the

ability to discern these shifts. As a means to quantify the PS sensitivity with strain rate,
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the linear trend in peak position shift with stress was determined as shown in Figure 5.6

for R1 and Figure 5.7 for R2.
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Figure 5.6: R1 Peak position shift with stress for 13.6% volume fraction
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Figure 5.7: R2 Peak position shift with stress for 13.6% volume fraction

Results reveal goodness of fit values in the range of 0.96 to 0.98 for R1 and 0.93 to

0.98 for R2. R1 and R2 PS coefficients ranged from -4.26 to -4.41 cm−1/GPa, and -4.06

to -4.72 cm−1/GPa, respectively. While slightly higher in magnitude than the static

value for 25% of -3.65 cm−1/GPa [75], the PS coefficients for 13.6%, even considering
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the lower volume fraction, have improved sensitivity to stress transfer under quasi-static

conditions.

In order to determine the effect of strain rate on the PS coefficient sensitivity for

13.6%, the R1 and R2 PS coefficients for all samples were plotted against their respective

estimated strain rates as shown in Figure 5.8. A general trend of increasing R1 and R2

PS coefficients is revealed between the lower and mid-range, while a slight decrease is

evident in the mid to upper range. Actually, the R2 PS coefficients for the mid and upper

range of strain rates showed more sensitivity to load transfer than in the lower strain

rate region.
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Figure 5.8: R1 and R2 PS dependence on strain rate for 13.6% volume fraction samples

at quasi-static strain rates
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5.4.3 29.7% Volume Fraction Alumina-Epoxy Composites

Using the stress from the linear elastic region as defined in previous discussion, the peak

position shift with stress was plotted for each sample as shown in Figure 5.9 for R1 and

Figure 5.10 for R2.
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Figure 5.9: R1 Peak position shift with stress for 29.7% volume fraction
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Figure 5.10: R2 Peak position shift with stress for 29.7% volume fraction

Results reveal goodness of fit values in the range of 0.75 to 0.99 for R1 and 0.55 to

0.99 for R2. R1 and R2 PS coefficients range from -3.15 to -5.37 cm−1/GPa and -2.62 to

-5.39 cm−1/GPa, respectively. The R1 PS coefficient for sample 5, -5.37 cm−1/GPa, was

in the range of the 38% static value of -5.63 cm−1/GPa for R1 [75]. On the other hand,

the R2 PS coefficient for sample 7, -5.39 cm−1/GPa, was in the range of the 38% static

value of -5.08 cm−1/GPa for R2 [75]. However, the magnitude of the R1 and R2 PS

coefficients reported for the other 29.7% samples tested in this work are lower than the

reported static values of -5.63 cm−1/GPa for R1 and -5.08 cm−1/GPa for R2 for 38%.
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Due to the lower volume fraction of 29.7%, in comparison to 38%, lower PS coefficients

are expected based on results of static work.

Higher volume fractions of alumina are notoriously more difficult to disperse within

the matrix, which may lead to a higher prevalence of agglomerations, voids, or flaws

within the sample. These material defects would ultimately change the way stress is

distributed throughout the sample, attributing to poor load transfer and sensitivity.

Additionally, higher volume fractions of alumina-epoxy composites behave differently

than lower volume fractions due to the reduction in the amount of matrix binder and

increased ceramic content, which may also change the stress distributions throughout the

sample. This may help to explain the range of PS coefficients for the 29.7% samples.

Despite the span in R1 and R2 PS coefficients among the 29.7% samples, the PS

coefficient sensitivity dependency on strain rate is shown in Figure 5.11. A general trend

for the R1 and R2 PS coefficients in relation to strain rate for 29.7% is not easily ascer-

tained. Again, this could be potentially explained by the difficulty in sample preparation

of higher volume fractions and high likelyhood of poor dispersion, to include voids and

agglomerations. These types of defects would greatly impact the load transfer mechan-

ics, especially at increased rates of loading. However, there are some noticeable trends at

each strain rate region. In the lower to mid-range, R1 PS coefficients indicate a greater

sensitivity to load transfer for R1 in comparison to R2 as the magnitude in values for the

R1 PS coefficients are greater. Generally, there is an increase in sensitivity for both R1

and R2 in the lower to mid-range of strain rates. On the other hand, in the upper strain
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rate region, the R2 PS coefficients reveal heightened sensitivity to load transfer over R1,

and a general decrease in sensitivity for both R1 and R2 in the mid to upper range is

revealed.
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Figure 5.11: R1 and R2 PS dependence on strain rate for 29.7% volume fraction samples

at quasi-static strain rates

5.4.4 Combined Piezospectroscopic Results

In addition to the effect of strain rate on the R1 and R2 PS sensitivity for the individual

volume fractions, the PS coefficients for all volume fractions were plotted against strain
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rate in order to determine the relationship between volume fraction, strain rate, and PS

coefficient sensitivity. The R1 values are shown in Figure 5.12 and outlined in Table 5.2.
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Figure 5.12: R1 PS coefficient dependence on strain rate for all volume fractions

As shown in Figure 5.12 for the lower range of strain rates around 10−4s−1, R1

PS coefficients for 4.5, 13.6 and 29.7% vary in the range of -3 to -5 cm−1/GPa with

no clear determination of the effect of volume fraction on R1 PS coefficient sensitivity.

In the mid-range of strain rates around 10−3s−1, clear evidence of increasing R1 PS

coefficient with increasing volume fraction is presented as 4.5% has the lowest magnitude

R1 PS coefficients centralized around -4 cm−1/GPa, 13.6% has a R1 PS coefficient at

approximately -4.5 cm−1/GPa, and 29.7% has the highest magnitude R1 PS coefficients

between -4.5 and -5.50 cm−1/GPa. In the upper range of strain rates around 10−2s−1, R1

PS coefficients vary in the range of approximately -3.5 to -5 cm−1/GPa with 4.5% volume
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fraction exhibiting the highest sensitivity and 29.7% exhibiting the lowest sensitivity to

applied stress.

Similarly, the R2 PS coefficients for all volume fractions were plotted against strain

rate in order to determine the relationship between volume fraction, strain rate, and R2

PS coefficient sensitivity as shown in Figure 5.13 and outlined in Table 5.2.
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Figure 5.13: R2 PS coefficient dependence on strain rate for all volume fractions

As shown in Figure 5.13 for the lower range of strain rates around 10−4s−1, R2 PS

coefficients for 4.5, 13.6 and 29.7% vary in the range of -3.5 to -4.5 cm−1/GPa with

no clear determination of the effect of volume fraction on R2 PS coefficient sensitivity.

Similarly, in the upper strain rate region around 10−2s−1, R2 PS coefficients vary in the

range of approximately -4.5 to -5.5 cm−1/GPa with no clear determination of the effect of

volume fraction on R2 PS coefficient sensitivity. However, in the mid-range of strain rates
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around 10−3s−1, clear evidence of increasing R2 PS coefficient with increasing volume

fraction is presented between 4.5 and 29.7%, as 4.5% has the lowest R2 PS coefficients

centralized around -4 cm−1/GPa and 29.7% has higher R2 PS coefficients around -5

cm−1/GPa. In this region, the 13.6% R2 PS coefficient revealed heightened sensitivity

to load transfer for R2 of all the volume fractions.
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Table 5.2: PS dependence on strain rate for all volume fractions

Volume % Sample ID Strain Rate R1 PS Coefficient R2 PS Coefficient

(s−1) (cm−1/GPa) (cm−1/GPa)

4.5 1 0.0001* -3.34 -2.74

2 0.00008 -4.52 -4.16

3 0.00005 -4.40 -4.47

4 0.00087 -4.16 -4.00

5 0.00079 -3.96 -3.71

6 0.00080 -3.78 -3.67

7 0.00426 -4.67 -4.46

8 0.01* -4.87 -4.85

9 0.00573 -4.55 -4.65

13.6 1 0.0001* -4.30 -4.06

2 0.001* -4.41 -4.72

3 0.01* -4.26 -4.61

29.7 1 0.00008 -3.77 -3.63

2 0.00008 -3.15 -2.69

3 0.00008 -4.54 -4.47

4 0.00071 -4.39 -4.17

5 0.00053 -5.37 -4.58

6 0.00711 -3.61 -4.45

7 0.00706 -3.40 -5.39

8 0.00074 -4.46 -2.62
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5.5 Discussion of Results

5.5.1 Comparision with Static Results

A comparison between the static and quasi-static PS coefficient ranges for R1 and R2 is

shown in Table 5.3.

Table 5.3: Comparison of static and quasi-static PS coefficient magnitude ranges

Volume Fraction 4.5% 5% 13.6% 25% 29.7% 38%

Static R1 — 3.16 — 3.65 — 5.63

PS Coefficient R2 — 2.6 — 3.42 — 5.08

Quasi-Static R1 3.34 - 4.87 — 4.30 - 4.41 — 3.15 - 5.37 —

PS Coefficient R2 2.74 - 4.85 — 4.06 - 4.72 — 2.62 - 5.39 —

For 4.5%, the R1 PS coefficients range from -3.34 to -4.87 cm−1/GPa and the R2

PS coefficients range from -2.74 to -4.85 cm−1/GPa, which correlates well with static

data for 5% volume fraction, -3.16 cm−1/GPa for R1 and -2.6 cm−1/GPa for R2 [75].

Based on previous work with alumina-epoxy composites under static conditions where

the PS coefficient was determined to increase with volume fraction, a composite with
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4.5% volume fraction of particles would be expected to have a lower PS coefficient than

an composite with 5% volume fraction of particles. Based on the range of PS coefficients

for 4.5% presented in this work, 4.5% has improved sensitivity to stress transfer under

quasi-static conditions, even considering the lower volume fraction.

In the case of 13.6%, PS coefficients range from -4.30 to -4.41 cm−1/GPa, which are

higher than the static values for a 25% volume fraction of -3.65 cm−1/GPa for R1 and

-3.42 cm−1/GPa for R2. Based on previous static work, the PS coefficients for 13.6%

under static conditions would be expected to have a lower sensitivity in comparison to

25%, however, even considering its lower volume fraction, 13.6% has improved sensitivity

to stress transfer under quasi-static conditions.

With PS coefficients ranging from -3.15 to -5.37 cm−1/GPa for R1 and -2.62 to -5.39

cm−1/GPa for R2, 29.7% volume fraction has the largest spread of PS coefficients of all

the volume fractions. While sample 5 for 29.7%, tested in the mid-range of strain rates

of 10−3s−1, has an R1 PS coefficient in the range of the 38% static R1 PS coefficient of

-5.63 cm−1/GPa [75], generally, the R1 PS coefficients reported for the 29.7% samples

tested in this work are lower than the reported static value of -5.63 cm−1/GPa. Similarly,

while sample 7 for 29.7%, tested in the upper strain rate range of 10−2s−1, has an R2

PS coefficient in the range of the 38% static value of -5.08 cm−1/GPa, generally, the

R2 PS coefficients reported for the 29.7% samples tested in this work are lower than the

reported static value of -5.08 cm−1/GPa. As a result, 29.7% volume fraction samples
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generally have decreased PS coefficient sensitivity in relation to the 38% static value,

which is expected due to the lower volume fraction.

5.5.2 Variation of PS Properties with Increasing Strain Rates

The effect of strain rate on the PS properties of alumina-epoxy composites of 4.5, 13.6,

and 29.7% particle content varies across the strain rate ranges investigated. For 4.5%,

R1 and R2 PS properties generally decrease in sensitivity in the lower to mid-range

and increase in the mid to upper range. The opposite is true for both 13.6 and 29.7%,

where the R1 and R2 PS properties generally increase in sensitivity between the lower to

mid-range and decrease in the mid to upper range. While it was expected that the PS

coefficient would increase in sensitivity with increasing strain rate, the complex microscale

factors ultimately have a large influence on the PS sensitivity results. Factors such as

microcracking are most certainly affected by increasing strain rates, which affect the

degree of load transfer to the particle modifiers and thus affect the PS sensitivity. In this

work, the particle behavior in relation to strain rate was determined, and it was clearly

shown that the loading rate does have an impact on the load transfer and resulting PS

sensitivity.
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5.5.3 Volume Fraction Effect

The volume fraction effect on R1 and R2 PS coefficient sensitivity revealed no distin-

guishable trend in the lower strain rate region. In the mid-range, it was determined that

the R1 and R2 PS coefficient sensitivity generally increases with increasing volume frac-

tion. The upper strain rate range revealed decreasing PS sensitivity with volume fraction

for R1 and no distinguishable trend for R2.

Higher volume fractions of alumina-epoxy composites are generally more difficult to

manufacture and issues completely dispersing the filler material in the matrix could lead

to the presence of agglomerations and voids within the sample. Regions that are not

completely homogeneous could cause localized stress concentrations within the sample,

resulting in an uneven stress distribution and poor load transfer mechancis. Stress con-

centrations within the sample would cause the sample to fail prematurely or have high

stresses in regions other than the data collection location, thus lending to innaccurate

values of PS coefficient sensitivity. In addition to the manufacturing difficulties, higher

volume fraction samples inherently have more particles and less matrix material. As a re-

sult, there is less binding material within the sample and higher concentrations of ceramic

particles, which may also affect the stress distribution of the sample at the microscale.
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5.6 Novel Findings

5.6.1 Potential for Failure Monitoring

A novel finding of this work is the potential for failure monitoring using piezospectroscopy

as shown in Figure 5.14. The onset of R-line upshifts correlate to the onset of non-linear

loading behavior. In compression, R-line upshifts are stress relief to the particles, which

may be the result of failure initiation in the form of microcracking and microplasticity.

The non-linear loading behavior corresponds to the onset of plasticity or permanent

damage to the material. Determining the origination of plasticity in compression through

PS R-line upshifts is a promising outcome of this work, which will be further addressed

in subsequent studies. This type of early failure detection through the use of alumina-

epoxy composites could revolutionize structural health monitoring and mechanics testing

in many applications.
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Figure 5.14: Potential for failure monitoring using piezospectroscopy
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5.6.2 Potential for Density Compression Collection

Density compression is an important concept to consider when studying materials, es-

pecially at variable strain rates. As a material is continuously loaded in compression,

a mismatch in the rate of changing dimensions could cause a higher or lower volume

fraction of modifiers in relation to an unloaded composite as shown in Figure 5.15. This

increase or descrease in volume fraction, even for small changes, can have a significant

impact on the material response. A novel finding of this work is the potential to monitor

density compression using PSLS. Intensity changes as a function of time can be moni-

tored as shown in Figure 5.15 and compared to a reference calibration to determine the

extent of volume fraction changes. However, in order to develop this technique, the laser

must remain perfectly focused for the duration of collection, which is a challenge with

dynamic deformation that must addressed in future work.
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CHAPTER 6
CONCLUSIONS

Since modifiers, such as alumina nanoparticles, are often added to increase the load

carrying capability of a weaker, less stiff matrix material, understanding the load transfer

mechanics to the particle is an important and necessary aspect of particulate composite

optimization. Small changes in particle size, shape, or volume fraction, or varying the

loading rate could substantially change the composite response. However, these types of

changes are typically only related to the overall mechanical response of the composite,

a macro-scale approach, which is limted due to manufacturing, surface finishing, and

experimental testing errors that can skew mechanical test results.

Conventional devices, such as strain gages, have offered a means to collect material

information on a smaller scale, however, these devices are limited to discrete locations

in the region in which they are attached. Additionally, the differences in load carrying

capability of the modifiers and matrix, as individual components, is not ascertained by

strain gages as only the overall composite behavior can be determined. These devices

collect information from a composite as if it were one homogeneous material, however, in

reality particulate composites are a combination of materials, each having a unique me-

chanical response. Establishing the individual response will serve an important purpose

in the design of these particulate composites for optimal properties under the required

conditions.
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In actuality, the matrix-to-particle and particle-to-particle interactions in particulate

composites are innately the mechanisms that lead to improved mechanical properties,

such as strength, and are highly affected by loading rate. Results presented in this work

through the use of conventional strain gages, revealed improved mechanical strength

for increased loading rates. However, these results do not give insight into the particle

response, which has been shown to be the response that drives mechanical property

improvement.

The use of photo-luminescent alumina particles in an epoxy matrix offerred a solu-

tion, as changes in particle stress could be monitored through optical methods, such as

piezospectroscopy, by measuring the stress-induced peak shifts of the characteristic R-line

peaks present in the emission spectrum of alumina. For the alumina-epoxy composites

studied in the work, the ratio of peak shift with applied stress, the PS coefficient, was

used to describe the time-dependent particle behavior under quasi-static strain rates.

The PS coefficient magnitude described the particle sensitivity to load transfer at each

strain rate investigated.

The results illustrate the capability of alumina nanoparticles to act as diagnostic

sensors to measure the stress-induced shifts of the spectral R-line peaks resulting from low

compressive strain rates. The range of PS coefficients measured, -3.15 to -5.37 cm−1/GPa

for R1 and -2.62 to -5.39 cm−1/GPa for R2, correlate well with static test results of

similar volume fractions. Results reveal a general trend of increasing sensitivity of the

PS coefficients with increasing strain rate when compared to similar materials under
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static conditions. In contrast to static results, at a given strain rate, the PS coefficients

show varying degrees of sensitivity for each volume fraction. Improvements in composite

dispersion, especially at higher volume fractions, and improved curve fitting techniques

may lend to improved stress distributions and more accurate R-line peak position shifts.

A novel finding of this work revealed the potential to use piezospectroscopy as a

means to monitor early failure in these types of composites through PS upshifts that

exist as a result of stress relief to the particle modifiers. Additionally, the potential to

use piezospectroscopy as a means to monitor changes in sample density was revealed.

These findings and the calibration of the in-situ diagnostic stress-sensing capabilities

of varying volume fractions of alumina-epoxy nanocomposites under quasi-static strain

rates in this work set the precedent for future studies at high strain rates.
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