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ABSTRACT 

 
The combustion of ultra-lean fuel to air mixtures provides an efficient way to convert the 

chemical energy of hydrocarbons into useful power. Conventional burning techniques of a 

mixture have defined flammability limits beyond which a flame cannot self-propagate due to 

heat losses. Matrix stabilized porous medium combustion is an advanced technique in which a 

solid porous matrix within the combustion chamber accumulates heat from the hot gaseous 

products and preheats incoming reactants. This heat recirculation extends the standard 

flammability limits and allows the burning of ultra-lean fuel mixtures, conserving energy 

resources, or the burning of gases of low calorific value, utilizing otherwise wasted resources. 

The heat generated by the porous burner can be harvested with thermoelectric devices for a 

reliable method of generating electricity for portable electronic devices by the burning of 

otherwise noncombustible mixtures. 

The design of the porous media burner, its assembly and testing are presented. Highly porous 

(~80% porosity) alumina foam was used as the central media and alumina honeycomb structure 

was used as an inlet for fuel and an outlet for products of the methane-air combustion. The 

upstream and downstream honeycomb structures were designed with pore sizes smaller than the 

flame quenching distance, preventing the flame from propagating outside of the central section. 

Experimental results include measurements from thermocouples distributed throughout the 

burner and on each side of the thermoelectric module along with associated current, voltage and 

power outputs. Measurements of the burner with catalytic coating were obtained for 

stoichiometric and lean mixtures and compared to the results obtained from the catalytically inert 

matrix, showing the effect on overall efficiency for the combustion of fuel-lean mixtures. 
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CHAPTER ONE: INTRODUCTION 

 
Matrix stabilized porous burner technology is an advanced combustion method in which a 

mixture of fuel and oxidizer is burned within a solid porous medium providing favorable 

conditions for the combustion of lean mixtures. The solid porous medium provides a method of 

enthalpy recirculation where the high temperature combustion products in the post flame zone 

heat the upstream porous solid which, in turn, preheats the incoming reactants [1,2,3,4]. The 

process results in a flame temperature higher than the equilibrium adiabatic value achievable by 

the fuel mixture; this process is called super-adiabatic combustion [5,6,7,8,9]. A porous medium 

with a very large surface area to volume ratio increases contact of the solid and gas, thus 

maximizing the heat transfer between phases [7,10,11]. A high thermal conductivity and high 

thermal capacity of the solid medium material facilitate the recirculation heat transfer mechanism 

through the solid matrix which does not exist in a typical gas burner. The heat transfer is further 

enhanced by the dispersion of the reactants flowing through the porous medium and the mixing 

due to turbulence generated by the presence of the solid medium [1,7,12]. Figure 1 shows a 

schematic presentation of a three section porous burner.  

 

Figure 1. Schematic of a three section porous medium burner 
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The flame is stabilized and localized within the central high porosity section in between two 

lower porosity sections that serve to quench the flame if it propagates too far upstream or 

downstream. It is a very safe technology because the mixture is so lean that it cannot burn 

outside the porous medium. Among possible practical applications of porous burner technology 

are power generation [4,13,14,15], small scale heating purposes [16] and the utilization of gases 

of low calorific value, byproduct or landfill seepage gases [7,17]. 

Special consideration must be made to the configuration, design and material selection for 

the solid medium within the porous burner in order to maximize the heat transfer capabilities and 

avoid degradation. The porous medium should have good thermal mechanical strength and 

thermal shock resistance to endure creep and thermal cycling during ignition and combustion. 

Good heat transfer properties of the solid medium allows the burning of very lean mixtures and 

helps maintain a low maximum flame temperature, which helps to reduce NOx formation, and 

helps keep a homogeneous temperature field over the length of the combustion zone, allowing 

time for CO oxidation [10,18,19,20].  The porous matrix in the burner can be catalytically inert, 

such as alumina, quartz or zirconia, and may be coated with a catalytically active material to help 

facilitate the combustion process [5,21,22]. The left hand photo in Figure 2 is a three section 

burner configuration with a central ceramic foam section and two outer low porosity ceramic 

honeycomb sections resting in a metallic casing. The right hand photo in Figure 2 is an end view 

of one of the honeycomb outer sections. The heat generated by the burner may be harvested to 

provide a source of power; one such method is by the use of thermoelectric devices. 



3 
 
 

 

Figure 2. Three section burner configuration and honeycomb end view 

Thermoelectrics operate by utilizing the Seebeck effect: a temperature gradient across two 

joined conducting materials will create a voltage [23]. In order to further increase the voltage and 

power output, the temperature gradient may be increased by increasing the hot-side temperature 

or decreasing the cool-side temperature across the device. Therefore, for a porous burner 

utilizing thermoelectric devices, the power generated can be maximized by cooling the cool-side 

of the device to reach the desired temperature gradient by either passive means like a heat-sink or 

active means like a fan or impinging jet. It is standard to connect multiple thermoelectric devices 

together in series to increase the voltage and power outputs although most commercially 

available thermoelectric devices already incorporate multiple individual thermoelectric elements 

[23]. A schematic of a typical commercially available thermoelectric device is provided as 

Figure 3, incorporating many small individual elements in series. The current burner prototype 

design uses an impinging jet of air to cool the cool-side of the thermoelectric device while a thin 

quartz plate may be placed in-between the exterior of the metallic burner casing and the hot-side 

of the thermoelectric module to optimize the maximum hot-side temperature to the specifications 

of the module and to prevent it from overheating. The use of a porous medium burner coupled 

with thermoelectrics has the potential to provide a reliable source of power. 
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Figure 3. Diagram of a typical thermoelectric module 

There have been interests in the development of new power systems for portable devices as 

use of these devices has been increasing significantly [24]. Hydrocarbon fuels have an 

exceptionally high power density over current portable power systems. Porous burner technology 

has a clear advantage over typical gas burners to burn these hydrocarbon fuels since the 

recirculation heat transfer enables leaner mixtures and low calorific value gases to be burned 

[1,6,25,26]. Other innovative aspects of a porous burner system over a traditional burner are an 

improved heat accumulation and transfer characteristics resulting in a thicker flame zone and 

therefore more complete and stable combustion, especially at lower temperatures [27]. A porous 

media burner offers lower emissions and a higher power density, up to 40 MW/m3, with a larger 

dynamic power range, space utilization and wider range of inlet velocities due to a more 

homogeneous temperature field and superior heat feedback mechanism [10,27,28]. There is a 

very good potential for the powering of portable and handheld devices with a porous burner 

system coupled with thermoelectric modules. The use of catalysts in the porous burner is 

expected to improve this potential, not only by allowing the burning of leaner mixtures, but also 

by allowing the device to be run at lower inlet flow velocities. These two factors will extend the 

amount of time a porous medium burner can power a portable device with a given amount of 

hydrocarbon fuel. 
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CHAPTER TWO: LITERATURE REVIEW 

 

The combustion of lean fuel and air mixtures provides an efficient way to convert the 

chemical energy of hydrocarbon fuels into heat. Conventional burning of a mixture has defined 

flammability limits beyond which a flame cannot self-propagate due to heat losses. The ability of 

a fuel and air mixture to maintain a self-sustained combustion reaction is largely dependent on its 

temperature, pressure and the heat of combustion value of the fuel. It was proposed by Weinberg 

and Lloyd in the 1970’s that a method of heat recirculation could be used to pre-heat the 

incoming reactant mixture and extend the traditional flammability limits [8,9]. One common 

method of heat recirculation before this was simply mixing some of the hot products in with the 

reactant flow, increasing the inlet enthalpy but diluting the reactant mixture. Weinberg and Lloyd 

proposed a burner with intertwined reactant and product flows such that heat transfer could flow 

through the duct walls, avoiding the dilution of the reactants [8,9]. This heat recirculation 

method could be used to control the combustion temperature of a mixture with less dependence 

on the actual fuel to air ratio of the reactant flow. Weinberg and Lloyd developed a spiral burner 

that was able to combust a mixture at one third the normal lean flammability limit [8,9]. 

Hardesty in 1974 theorized that heat recirculation could be used to increase the combustion 

temperature in the reaction zone of a burner without producing a high final temperature [25]. 

Heat recirculation could be used to burn mixtures of low calorific value, below the lean 

flammability limit; the recirculated heat would be used to raise the temperature of lean mixtures 

to the point of ignition while still maintaining a relatively low peak temperature due to the low 

heat content of the mixture. Controlling the amount of heat recirculation effectively eliminates 

the dependency the flame temperature has on initial mixture stoichiometry [8,9,25]. A burner 
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with a counter current heat exchanger and a spiral design for the inlet and outlets with heat 

transport through the walls from the hot products to the reactants similar to the design used by 

Weinberg are both shown in Figure 4. 

                                                                 

Figure 4. Counter current heat exchanger and double spiral burner [26] 

Alternative to these burner configurations, another method of heat recirculation could be 

realized by use of a solid porous medium within the combustion chamber. This would involve 

two phases being present within the combustion chamber, the gaseous fuel and air mixture and 

the solid porous medium [17]. The advantage of this is that the porous medium, being 

continuously present in the combustion chamber and having a much higher thermal capacity than 

the gas, would absorb the heat generated by the combustion process and preheat the incoming 

reactant flow much more efficiently than a free flame [9]. The adiabatic flame temperature of a 

mixture is defined as the maximum flame temperature in an ideal scenario if all of the heat 

released during combustion were used to heat the product composition with no losses. A 

combustion process utilizing a heat recirculation method could burn mixtures at super-adiabatic 

conditions. 

Porous media combustion has two main scenarios, surface and matrix stabilized combustion, 

primarily defined by the flame location in each case. With surface stabilized combustion, a flame 
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sheet is developed on the surface of a solid porous body by many small individual laminar 

premixed flames [29]. With matrix stabilized combustion, the combustion process takes place 

within the solid porous media. The two phase interaction of matrix stabilized combustion is 

similar to surface stabilized combustion within porous media except that it takes place within the 

three dimensional volume of the porous matrix rather than the two dimensional surface on the 

porous matrix, reducing the overall volume required for the combustion process, increasing the 

energy density of the burner [29]. In matrix stabilized combustion, a low porosity inlet section is 

used to transfer heat from the combustion chamber to the reactants and to prevent upstream 

ignition [29]. The low porosity inlet section has a pore diameter less than the flame quenching 

diameter at the operating conditions which prevents flashback from occurring, where the flame 

speed is higher than the mixture velocity and the flame propagates upstream [29].  

 

Figure 5. Illustration of the heat transport modes present within a porous medium [26] 

The heat transport modes present within the porous medium are depicted in Figure 5. In 

matrix stabilized porous media combustion a combustion chamber normally consists of an 

upstream low porosity solid section and a downstream high porosity section. A fuel and air 

mixture enters the combustion chamber, usually premixed, and encounters the low porosity 

section upstream of the combustion zone. The solid structure is hotter than the reactant mixture 

since it accumulates heat from the central porous media within the combustion zone by 
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conduction and radiation. The reactant mixture is effectively preheated by the solid by 

convection before reaching the combustion zone. The mixture will reach ignition temperature in 

the combustion zone which is stabilized within the higher porosity solid media section. The 

combustion reaction will reach a higher temperature than the porous media downstream of the 

reaction and will heat that porous media by convection which then heats the upstream solid 

media by conduction and radiation, completing the heat recirculation cycle. 

Porous medium combustion has a few notable advantages to traditional free flame 

combustion. The main benefit over a free flame system is a more efficient method of heat 

transfer from products to reactants [30]. The conduction and radiative modes of heat transfer are 

more significant in porous media combustion since the solid media has much better radiative 

properties than the gaseous phase and the convection heat transfer is improved due to an 

increased contact surface area with the solid media [29]. The large inner surface of the porous 

medium results in high heat transport between the gas phase and the porous medium, providing 

efficient heat recirculation [29]. The larger heat transport properties of the solid porous medium 

result in higher sustainable combustion speeds such that burner and heat exchanger can be about 

10 times smaller in volume than conventional burner heat exchanger units for comparable 

thermal loads, increasing power density [29, 31]. The solid media absorbs a significant amount 

of heat and transports it effectively resulting in a lower peak combustion temperature and more 

uniform temperature field keeping NOx and CO formation low; CNOx < 25mg/kWh, CCO < 7 

mg/kWh for some experimental burners and stable combustion for equivalence ratios of 0.53-

0.591 for CH4 and air mixtures or as low as 0.22 for C3H8 in some cases [29,31]. The 

equivalence ratio of a combustible mixture is defined in Equation 1where n is the number of 

moles of the air or oxidizer and “st” is at stoichiometric ratio. 
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𝜙 =
(
𝑛𝑎𝑖𝑟 𝑛𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟� )

(
𝑛𝑎𝑖𝑟 𝑛𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟� )𝑠𝑡                  (1) 

The high heat capacity of the porous medium ensures high combustion process stability 

against changes in thermal load and equivalence ratio making a porous media burner a much 

more stable environment for combustion than a conventional burner [29]. Porous burners 

therefore have wider stability limits and can operate over an extended range of firing rates when 

compared to conventional burners, especially at lean operation [32]. Overall, porous media 

burners may have higher power densities, offer higher efficiencies over a larger power dynamic 

range and have lower harmful emissions while minimizing heat losses [29,30]. 

Materials and Geometry 

Overall performance of a porous media burner is governed by both the material and 

geometric selection [30]. Different possible geometrical configurations which can be used in the 

combustion chamber include a packed bed of material, open-cell ceramic foams, fiber mats, 

ported metals or ceramics, metal-alloy wire mesh, or lamellas [33]. Each of these configurations 

has a similar goal, couple a large thermal capacity with a large surface area per volume to 

provide maximum heat retention within the burner for recirculation. The geometrical 

configuration should provide good contact, conduction and convective heat transport [28]. The 

material chosen must be resistant to high temperatures up to 1600 °C depending on fuel type and 

concentration and be resistant to the oxidative or reductive atmosphere within a combustion 

chamber in order to be used dependably. The thermal expansion coefficient of the porous 

material should be low due to the large temperature gradients that exist within the burner during 

the heating-up and cooling-down processes. The heat transport properties of the porous materials 

should be well known so that high heat transports in the combustion region can be achieved and 
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optimized for a particular application. High heat transport properties of the porous media in the 

combustion region reduce the peak combustion temperature and yield a homogeneous 

temperature field, reducing pollutant emissions. High heat transport in the radial direction is 

advantageous to maintain a low combustion temperature while high transport in the axial 

direction allows for higher combustion velocities by more effectively preheating the incoming 

flow, allowing a reduction in burner size and increasing power density [28]. 

   

Figure 6. Lamella, reticulated foam and honeycomb structures [26] 

Possible designs for the solid porous media include a reticulated foam, packed bed of 

material, thin wire mesh, foil or even an ordered structure such as a honeycomb [34,35,36]. 

Photos of a lamella, ceramic reticulated foam and honeycomb structure are shown in Figure 6. 

Ceramic foams have fair conduction heat transport, a long start-up time, low radiation heat 

transport properties, intermediate dispersion properties and a relatively high pressure drop [30]. 

In comparison with other porous media, foams exhibit much better convective heat transfer 

between solid and gas due to the large internal contact surface area. Foams are also easily 

manufacturable in a variety of complex shapes. Due to their rigid structure, foams allow the 

burner to be more flexible to the angles at which it can be operated whereas a packed bed may 

shift due to movement of the burner which is important if the burner is to be portable [26]. Foam 
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structures have a high porosity (70-90%) and may have a high optical thickness. The conductive 

heat transport is also good for foams due to a continuous solid structure, as opposed to packed 

beds where conduction is hindered between individual elements. 

Wire meshes and foils have poor dispersion properties due to their high porosity and may be 

problematic considering thermal degradation at higher temperatures [26,30,37]. Wire meshes, 

however, allow for greater radiative heat transfer and due to a minimal amount of solid material, 

have a shorter start-up time of the burner but therefore may have poor conduction heat transport. 

Wire meshes and mixer-like structures have a small pressure drop and good start-up behavior 

due to their typical high [30].  

Packed beds may be of elements such as saddles, Raschig rings and spheres. Images of the 

different types of packed bed geometries are presented in Figure 7 [38,39,40]. Each type can 

have a different porosity depending on size and shape, between 30-50% for spheres and up to 

90% for saddles or Raschig rings. Packed beds may have somewhat worse heat transfer 

characteristics in comparison with foams due to inferior contact thermal conductivity between 

individual elements [1,14,35]. Packed beds of spheres may a low optical thickness, reducing 

radiative transport. A packed bed of material therefore makes a good geometrical configuration 

for use in the upstream region where the aforementioned are desired characteristics [28].  

 

Figure 7. Packed bed geometries: saddles, Raschig rings and spheres [38,39,40] 
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Ceramic and metallic materials are both suitable materials, each with their own advantages. 

Ceramics may have high thermal conductivity and emissivity which are desired properties in the 

downstream section [28]. Aluminum oxide is relatively cheap, has moderate thermal 

conductivity and a high application temperature [28]. Aluminum oxide can be used up to about 

1700 °C in air but exhibits a high thermal expansion coefficient [10]. Silicon oxide has a very 

high thermal conductivity, a high application temperature, lower thermal expansion, a high 

emissivity and excellent thermal shock behavior [28]. Silicon carbide oxidizes to SiO2 at around 

600 °C which is inert and thermally resistive with operational temperatures up to 1750 °C.  

Table 1. Physical properties of different material selections [41] 

1) Dissociation starts at temperatures over 2000 ˚C 

Stabilized zirconium oxide has a very high application temperature, up to 2400 °C, a good 

thermal shock behavior, high thermal expansion but a poor thermal conductivity [28]. Most 

Material Specification 
Mean linear thermal 

coefficient 
Thermal 

conductivity 
Melting 

point 
Application 
temperature 

  
30-100 °C 

10-6K-1 
30-600 °C 

10-6K-1 
Wm-1K-1 °C °C 

PSZ partly stabilized zirconoxide  9-13 1.2-3 2700 900-2400 

ATI aluminiumtitanat  5.0 1.5-3  900-1600 

 cordierite,  (Mg,Fe)2Al4Si5O18  1.7 3  1371 

 Al2O3 aluminiumoxide 80% 5-7 6-8 10-16 

2050 

1400-1500 

Al2O3 aluminiumoxide 86% 5.5-7.5 6-8 14-24 1400-1500 

Al2O3 aluminiumoxide 95% 5-7 6-8 16-28 1400-1500 

Al2O3 aluminiumoxide >99% 5-7 7-8.2 19-30 1400-1700 

SSN sintered siliconntrid  2.5-3.5 15-45 

 

1750 

RBSN reaction bound siliconnitrid  2.1-3 4-15 1100 

HPSN hot forced siliciumnitrid  3.0-3.4 15-40 1400 

AIN aluminiumnitrid 2.5-4 4.5-5 100-180  1750 

SSIC pressureless sintered siliconcarbid  4-4.8 40-120 28001 1400-1750 

SISIC silicon infiltrated siliconcarbid  4.3-4.8 110-160 

 

1380 

HPSIC hot forced siliconcarbid  3.9-4.8 80-145 1700 

RSIC recrystallized siliconcarbid 4.2 4.8 20 1600 

NSIC nitridbound siliconcarbid 4.2 4.8 14-15 1450 

PS 1 iron-chromium-aluminium-alloy   13 1500 1400 
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metals cannot be used at as high temperatures but have good thermal shock resistance, 

mechanical strength and good conductive heat transport [30]. Metallic materials such as nickel-

based and FeCrAl-alloys have an upper thermal stability limit of about 1400 °C and with high 

thermal capacity but lose stability at higher operational temperatures [10]. A comparison of 

different materials and their properties is presented in Table 1 [41]. 

Most of the proposed materials and geometries have been investigated and tested 

experimentally along with a number of studies that have focused solely on optimizing material 

properties and burner configurations for a particular application. Howell et. al. performed a 

survey on different porous media materials used in other experimental investigations. They 

focused on the difficulty of modeling the overall material properties of each porous media 

configuration. Each geometrical configuration has a complicated flow characterization and when 

coupled with each material’s unique properties, it makes computer modeling difficult but 

essential to choosing an optimal configuration for any particular application. They were able to 

reliably predict maximum flame speeds, minimum equivalence ratio, trends of flame speed 

versus pore diameter and equivalence ratio and emission concentrations of CO, CO2 and NO for 

different geometries [37]. Pickenäcker et. al. in 1999 surveyed and highlighted the use of 

different geometrical configurations including ceramic foams, lamella structures and static 

mixers within a burner versus the typically used packed bed of material. Their survey mostly 

focused on what geometries, currently being manufactured for other uses, were applicable and 

the individual benefits of each geometrical configuration, particularly for SiC. Since the ceramic 

foam is a continuous solid it exhibits very good heat transfer properties especially compared to a 

packed bed of spheres which has poor heat conduction between individual elements and has an 

open-pore structures which keep pressure losses low [10]. Babkin et. al.  in 1980 and 1985 used a 
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packed bed and thermally reticulated polyurethane foam with a cell size of 3.8-4 mm and 

porosity of 97-98%  to examine the basic properties of the combustion process and associated 

pressure increase within the combustion vessel. They concentrated mainly on the difference 

between low and high porosity media and determined that the rate of combustion was dependent 

not only on the temperature and pressure, but by the effect of the porous medium in creating a 

turbulent flow field [42,43]. 

Fu et. al. in 1998 conducted a review of conduction heat transfer literature on porous 

materials and developed an applicable theoretical model. Their purpose was to model different 

configurations of porous media to try to accurately predict the heat transfer characteristics. Their 

models confirmed that the thermal conductivity of the porous solid decreased with porosity and 

were reasonably predictive of experimental results for each configuration [44]. Barra et. al. in 

2003 performed a computational and parametric study on the flame stabilization in a two section 

porous burner by varying the properties of each porous section. Their model showed that there 

was a much larger preheat zone for the porous matrix combustion versus a free flame. The peak 

flame temperature for the methane and air mixture was 50 K higher in the porous matrix, which 

was expected. As they varied the porous medium properties they concluded that the matrix 

properties significantly affected the stability range. They determined that the upstream section 

should have low thermal conductivity, a low volumetric heat transfer, and a high radiative 

extinction coefficient and that the downstream section should have a high thermal conductivity, 

high volumetric heat transfer, and an intermediate radiative extinction coefficient [45]. Tierney 

and Harris in 2009 began a study on a variety of materials and geometries used in a porous 

burner for ultra-lean combustion with a particular interest in minimizing greenhouse gas 

emissions. The materials to be used include alumina, zirconia, silicon-carbide, among other 
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ceramics and metals. They identified alumina as a good material for the upstream section due to 

its limited thermal transport properties and silicon carbide as a good combustion zone material 

due to its good heat transport and thermal shock performance. Preliminary testing of the base 

case of the study with a packed bed of alumino-silicate saddles achieved a stable lean limit of 

3.8% methane, below the 5% flammability limit [9,10,46]. Khatami et. al. in 2007 numerically  

investigated the effects of porosity and permeability of the upstream and downstream porous 

sections on the centerline temperature distribution, peak flame temperature, flame structure, and 

preheating of the inlet gas mixture. Their model quantified and confirmed previous work 

indicating that the porosity of the upstream preheating section has a direct impact on the mixture 

temperature as it enters the combustion zone. A smaller porosity increases heat transfer to the gas 

and increases temperature. An optimal permeability for the preheat zone of 𝐾 = 10−10 𝑚2 or 

less is identified following the so-called Carman-Cozney permeability model given as Equation 2 

where 𝑑𝑚 is the porous cavity diameter or pore size and 𝜀 is porosity [47]. 

𝐾 =
𝑑𝑚∙2 𝜀3180(1−𝜀)

      (2) 

A number of studies have hence been reviewed concerning the impact of material and 

geometrical selection on porous burner performance. It was identified that an optimal 

configuration and material selection should be made on a case-by-case basis. However, for an 

overall guideline the preheat section should have a have low thermal conductivity, a low 

volumetric heat transfer, and a high radiative extinction coefficient for which alumina was 

identified as a good material and that the downstream section should have a high thermal 

conductivity, high volumetric heat transfer, and an intermediate radiative extinction coefficient 

for which SiC was identified as a good material. Most of the reviewed experimental work was 
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performed with a two section burner incorporating an upstream monolith or honeycomb structure 

and a downstream packed bed although ceramic foam was identified as a better alternative. 

Previous Notable Works 

There have been many previous works done in the field of porous medium combustion to try 

to fully understand the mechanics, determine fuel flexibility and establish lean limits for different 

fuels. Echigo et. al. in 1983 built a heat recuperation burner with a porous permeable wall of 

stacked wire mesh combined with copper tubing surrounding the burner forming an air jacket for 

increased preheating of the reactants. The burner was operated at a flow rate of 5, 6, 7 and 8 

L/min and was able burn a lean limit of equivalence ratio of 0.1 of a mixture of methane and 

hydrogen, below the mixture’s normal lean limit of 0.284 [48]. Min and Shin in 1991 

experimentally investigated the burning of premixed propane-air inside a cordierite honeycomb 

to provide detailed data for a numerical model. The lean flammability limit was extended from 

0.52 to 0.49. It was found that a maximum inlet temperature occurred at 0.53 equivalence ratio. 

The burner produced a higher than adiabatic flame temperature at the flame front due to the heat 

recirculation from the solid matrix [49]. Babkin in 1993 performed a review of combustion in 

inert porous media. He defined four different combustion regimes: combustion in a low velocity 

regime, combustion in a high velocity regime, combustion of gas in the sound velocity regime, 

and low velocity detonation in porous media which laid the theoretical background for many 

later models [50]. Hsu et al. in 1993 performed an investigation of premixed methane 

combustion within a nonhomogeneous porous ceramic. They used a two section burner, 

consisting of an upstream and downstream porous ceramic cylinder. They tested multiple 

matrices of partially stabilized zirconia with porosities of 87%, 85%, 84% and 84% at 10, 30, 45 
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and 65 pores per inch (ppi), respectively. They used the 65 ppi matrix as the upstream section 

and varied the downstream section in multiple cases. They measured a lean limit of 0.41 

equivalence ratio using the 10 ppi matrix, 0.44 for the 30 ppi matrix and 0.51 for the 45 ppi 

matrix with a confidence of ± 0.03, 0.04 and 0.03 respectively. Each of these was below the lean 

limit of 0.52 for the combustion of methane in air [51].  

 

Figure 8. Schematic of a reciprocating flow porous burner used by Hanamura [52] 

Hanamura et. al. in 1993 performed a numerical study on combustion within a reciprocating 

flow system with a porous media.  The principle behind it is that with a three section burner, the 

flow direction could be reversed such that the hot section downstream of the combustion zone 

would then become the preheat section, more effectively recirculating the stored enthalpy. The 

burner and valve system are shown in Figure 8. The burner creates a steep trapezoidal 

temperature gradient within the burner, with the central section being the hottest and cooling 
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towards the ends of the outer sections. Their numerical investigations mostly focused on the 

optimal time interval to switch the flow direction in order to ensure enough time to heat the 

downstream section but not so long as to lose the benefit from utilizing that stored enthalpy. 

Their model predicted a peak temperature 13 times that of the free-flame theoretical and laid the 

groundwork for experimental investigations [4].  Hanamura and Echigo continued their work on 

super-adiabatic combustion within a reciprocating flow system with an experimental and 

numerical investigation of the thermal structure within the burner. The burner consisted of a 

mesh and a packed bed with porosities of 20% and 87.5%, respectively, in a stainless-steel 

conduit 300 mm long and 100 mm in diameter. They burned a mixture of 88% methane and 12% 

other hydrocarbons in air at an equivalence ratio of 0.054, 0.044 and 0.036. As the flow direction 

was switched the reactant mixture was preheated up to 900 °C for the leanest case, proving the 

reciprocating flow system a very effective method of heat recirculation [52]. Kennedy et. al. 

studied the physical phenomena present in the super-adiabatic combustion of methane, hydrogen 

and acetylene in porous media. They performed a basic experiment with a porous alumina 

material of 40% porosity, using air to fuel ratios between 20 and 100. They measured a 

maximum temperature of 1000-1400 °C compared to the predicted adiabatic temperature of 200-

600 °C. The experiments performed are detailed in the work of Zhdanok et. al.  [53]. To model 

this they considered a case where the incoming gas was preheated but with no combustion, given 

as Equation 3, where 𝑅 = radius of the porous plug, 𝜌 = density, 𝑐 = heat capacity, 𝑔 = subscript 

denoting the gaseous phase, 𝑇𝑐 = preheat zone or thermal wave temperature, and 𝑇0 = incoming 

gas temperature. Φ = 𝜋𝑅2𝑣𝑔�(𝜌𝑐)𝑔𝑇𝑐 − (𝜌𝑐)𝑔𝑇0�        (3) 
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Nothing that 𝑇𝑐 ≫ 𝑇0 and that the heat loss is to the porous solid, denoted with a subscript 𝑠. 

One can equate the loss of heat of the gaseous phase to the gain of heat to the solid phase: Φ = 𝜋𝑅2𝑣𝑔(𝜌𝑐)𝑔𝑇𝑐 = 𝜋𝑅2𝑣𝑡(𝜌𝑐)𝑠𝑇𝑐           (4) 

Simplifying the equation gives an estimation of the thermal wave velocity as a ratio of the 

physical properties of the two phases and the velocity of the flow. 𝑣𝑡 =
𝑣𝑔(𝜌𝑐)𝑔

(𝜌𝑐)𝑠         (5) 

Repeating this process with a term representing the heat addition by the combustion process 

yields an equation for the SAC wave where Δ𝑇𝑎 is the adiabatic temperature rise and 𝑇𝑐 is the 

combustion temperature. 𝑣 =
𝑣𝑔(𝜌𝑐)𝑔

(𝜌𝑐)𝑠 �1 − Δ𝑇𝑎𝑇𝑐 �             (6) 

These numerical predictions were found to correspond fairly well with the experimental 

results obtained. A better accuracy was obtained by taking into account the increase of specific 

heat of the incoming gas with temperature, the ignition limit of the mixture and extending the 

model to included heat flow in the radial direction [5].  Trimis and Durst in 1996 performed 

developmental work on the design of a combustion heat exchanger based on combustion in 

porous media. They defined a minimum Peclet number of 65 for flame propagation in porous 

media defined in Equation 7 where 𝑆𝐿 is the laminar flame velocity, 𝑑𝑚 is the equivalent porous 

cavity diameter, 𝑐𝑝 is the specific heat capacity, 𝜌 is the density and 𝜆 is the heat conductivity of 

the gaseous mixture.  𝑃𝑒 =
𝑆𝐿𝑑𝑚𝑐𝑝𝜌𝜆         (7) 

Their experiment involved a two section burner using a packed bed with the entire 

combustion chamber wrapped in a water jacket to serve as a heat exchanger. They were able to 
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burn at an excess air ratio of 1.9, equivalent to an equivalence ratio of about 0.52. They 

highlighted the advantages of a combined porous media burner and heat exchanger which was 

about 10-15 smaller than separate systems with a power dynamic range of 20:1 and showing 

lower emissions [34]. Hoffmann et. al. performed an experimental study with a reciprocating 

flow system. They focused on the effect of flow velocity, half cycle for the switching of flow 

direction and equivalence ratio on performance. They used three different types of ceramic 

foams in the experiments: cordierite at 6 and 30 ppi and SiC at 13 ppi, all 3 with 87.5% porosity 

and burned a mixture of 88.0% methane, 5.8% ethane 4.5% propane, and 1.7% butane. They 

showed that an increasing equivalence ratio created a steeper temperature gradient within the 

burner, increasing exhaust temperature and therefore heat losses. Exhaust temperature also 

increases with increasing half cycle, but more notably, there was a strong increase in combustion 

efficiency with longer half cycles. An equivalence ratio of 0.028 for the 30 ppi matrix was 

observed, less than half that of the 6 ppi matrix [54]. 

 

Figure 9. Radial porous medium burner used by Zhdanok [55] 
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Zhdanok et. al. in 1998 performed a numerical simulation of a radial porous burner, shown in 

Figure 9, to quantify the effect on operational parameters on flame localization. They concluded 

that the flame front location was defined not only by fuel flow rate, but also on the  ignition 

coordinate with heat losses at the outer boundary of the porous media being a significant factor 

in the overall system [55]. Dillon, under the advice of Dr. Joe Shepard, studied flame 

propagation and quenching in a porous media burner. He used a cylindrical combustion vessel, 

burning a mixture of hydrogen and air in a packed bed of 6 mm diameter glass spheres. The 

burner was run to a lean limit of 0.338 with flame propagation apparent between 0.389 and 1 

equivalence ratio. One notable result of this experiment was a reported critical Peclet number of 

37, lower than the aforementioned value of 65 from Trimis and Durst. This was attributed by the 

author to the use of hydrogen as a fuel with a higher mass diffusivity than the hydrocarbons used 

to obtain the value of 65 [56]. Henneke and Ellzey in 1999 numerically modeled the low-velocity 

regime of combustion of methane in air within a packed bed. They included a complete methane 

and air kinetics mechanism in their model and it was found to be in good agreeance with 

Zhdanok and Kennedy’s experiments for a mixture at an equivalence ratio of 0.15. They 

confirmed that the wave speed is dependent on the heat capacity of the solid medium and 

gaseous phase but was relatively unaffected by the dispersion properties of the porous medium at 

lower equivalence ratios [57]. Mare et. al. performed a study of the flammability limits for 

propane and methane combustion in air within porous media and their dependence on the 

material and geometrical properties of the porous matrix. The burner was tested with a packed 

bed of glass, stainless steel or brass spheres with a varied diameter between 9.5 and 12.5 mm. 

Overall, the flammability limits for each experimental case was found to weakly depend on the 

material being used with a much  stronger dependence on the geometrical properties of the 
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matrix. They reported a lean limit for the combustion of methane between 6.30 and 6.52% for 

12.5 mm spheres and between 7.38 and 7.93% for 9.5mm spheres compared to a 5.35% limit 

with no porous media [58]. 

Huang et. al. investigated the effects of critical energy content, firing rate, and equivalence 

ratio on the ignition and extinction of a flame in an inert porous medium. The firing rate is 

defined by the fuel mass flow, calorific value and the cross sectional area of the empty tube and 

signifies the rate at which chemical energy is being put into the burner. The device burned a 

mixture of propane and air in a stack of stainless steel screens. They observed a super-adiabatic 

temperature at an equivalence ratio of 0.4 of 1000 °C, above the normal limit of 870 °C. They 

were able to maintain a stable flame down to 0.22 equivalence ratio, below the normal value of 

0.57 for propane in air. They observed a dramatic decrease in the critical preheating value 

necessary for with increasing preheating equivalence ratios at lower values but no effect at 

equivalence ratios above 0.7 [59].  Mathis and Ellzey experimentally investigated flame 

stabilization, operating range, and emissions of a two section porous media burner. Three 

different burner configurations were tested. The first burner configuration used sections 

composed of an yttria-stabilized zirconia/alumina composite. The second burner configuration 

used sections composed of zirconia-toughened mullite. The third burner was the same material as 

the first except the upstream section was 2.5 cm in length instead of 5.1 cm for the first two 

cases. Each burner had an upstream section at 23.6 ppcm followed by a section at 3.9 ppcm. 

Results showed a more stable flame using the yttria-stabilized zirconia/alumina composite 

sections over zirconia-toughened mullite. Flame speed was tested with the third configuration at 

0.65 equivalence ratio and was found to have an upper blowout limit of 190 cm/s compared to 

the normal laminar flame speed of about 14 cm/s without a porous medium. The emission of 
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UHC was highest at lower firing rates, CO was low at lower firing rates and NOx emissions were 

low for all measured cases. [60]. Smucker and Ellzey continued this work in 2004 with an 

experimental and computational study of the two section porous media burner. Only the yttria-

stabilized zirconia foam was considered and the data was used for a mathematical model. They 

took radial temperature, pressure drop and emission level measurements for the burner for 

validation of their model. Experiments were conducted with methane fuel and stable operational 

limits were determined for equivalence ratios between 0.55 and 0.65. Their model had good 

agreeance at higher equivalence ratio but poor agreeance at the lower limit. This was attributed 

to using a material with slightly different properties for the model than the material used in the 

experiments and to the discontinuity at the interface between the high and low porosity sections. 

It was found that methane was able to burn at a lower equivalence ratio than propane likely due 

to propane having a lower laminar flame speed [61]. Vogel and Ellzey investigated the velocity 

limits of combustion in a similar two stage porous media burner. The porous sections used were 

FeCrAlY with 23.6 and 3.9 ppcm and 84% and 87% porosity respectively. Four burner 

configurations were tested; one with two sections at 5.08 cm completely shielded within the 

casing and three end-mounted sections: one with each section at 1.27 cm in length, the second 

with the upstream section at 1.27 cm and downstream section at 2.54 cm and the third with both 

sections at 2.54 cm in length. The shielded and end-mounted configurations are shown in Figure 

10. For each configuration, the lower and upper velocity limits all occurred near an equivalence 

ratio of 1.1, suggesting an indifference to media length and position. One main difference is that 

flame oscillations were observed in all three end mounted configurations but not in the shielded 

configuration [62]. 
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Figure 10. Shielded and end mounted configurations for a two stage porous burner [62] 

Al-hamamre et. al. investigated the use of a porous media burner to combust low calorific 

gases from landfills and pyrolysis processes. The major components of landfill seepage gas were 

identified as CH4 and CO2 and for the pyrolysis processes were H2, CO, CH4, N2 and CO2. They 

tested two 10 ppi SiC foams at 10 and 100mm in length and a static Al2O3 structure 100mm in 

length. The SiC foam was found to have a lower blowoff limit due to a higher thermal 

conductivity where the 100 mm SiC section presented a lower blowoff limit than the 10 mm 

section. Overall, porous media technology was found to be a very good technology to burn low 

calorific gases [63]. Kakutkina et. al. in 2006 experimentally studied the combustion of 

hydrogen, propane, and methane with air within an inert porous media. The medium used was a 

granular carborundum with grain sizes of 1-2 mm for hydrogen combustion, 2-3 mm for propane 

combustion and both 2-3mm and 5-6mm for methane combustion. The data was used for 

validation of numerical models and they identified a minimum stable flow rate for methane 

combustion of 24 cm/s at around a 1.5 equivalence ratio for their experimental setup [64]. Kamal 

and Mohamad performed an experimental investigation of a radial flow porous burner. A 

premixed methane/air mixture was fed axially to a hollow perforated tube surrounded by Al2O3-

SiO2 fibers. The concentric tube assembly was mounted on ball bearings, being allowed to rotate 
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with the use of a variable-speed motor. A few different tube designs with varied hole 

configurations were tested and it was found that the tube with simply the most number of outlet 

holes performed the best. The burner was tested with a motor spinning the central section of the 

burner at different rpm, determining the effect of swirl on performance. The swirl was found to 

increase flame stability in a free flame configuration but cause a pulsation when applied to 

combustion in a porous media. The burner displayed a practical lean operation of 0.74 

equivalence ratio and burning capacities up to 1.7 times those with a free flame [65]. 

 

Figure 11. Schematic of the burner used by Marbach [66] 

Marbach and Agrawal in 2006 developed a heat-recirculating premixed burner utilizing 

porous media and preheating annulus shown in Figure 11. They used methane fuel at 0.5 and 1.0 

m/s inlet velocity and measured the burner performance with and without the porous media and 

with and without exterior insulation. They measured reactant and product gas temperatures as 

well as NOx and CO emissions. A super-adiabatic peak temperature for the gaseous products was 

observed and notably, they observed a greater fraction of enthalpy remaining in the product gas 

for the case of higher inlet velocity. The reactant gas temperature was nearly the same with 

porous media in the annulus compared to without it; however, the product temperatures were 
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slightly higher showing lower heat loss. The exterior insulation greatly increased the inlet gas 

temperature from 150 K to about 700 K. An equivalence ratio of 0.39 at the lean blow-out limit 

was obtained for the lower inlet velocity and emissions increased at the higher flow rate [66].  

 

Figure 12. Components and schematic of burner used by Marbach [67] 

Marbach et. al. continued work with the miniature combustor and annulus shown in Figure 

11. This burner utilized surface stabilized porous media combustion on a SiC coated 40 ppi 

carbon foam. Figure 12 shows the components of the burner next to a penny for size comparison 

and an updated schematic of the burner and annulus system. The entire volume of the 

combustion chamber was 0.364 cm2. Methane was burned with air at a varied flow rate between 

0.25 to 1.0 m/s and an equivalence ratio between 0.5 and 0.8. From the measurements of CO and 

UHC, combustion efficiency was calculated to exceed 99.5% with emission levels increasing 

with equivalence ratio. A peak temperature of 1800 K was recorded in the combustion zone with 

about 1580 K at the exit [67]. Alavandi and Agrawal demonstrated the fuel flexibility of a two-

section porous burner by burning lean hydrogen-syngas and methane mixtures. The burner 
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consisted of upstream SiC coated carbon foams of 26 ppcm and downstream 4 ppcm sections of 

varying length. A mixture of methane and air mixture was fed into the burner and the methane 

content in the fuel was decreased from 100% to 0% by volume, with the remaining amount split 

equally between CO and H2, the two reactive components of syngas. Adiabatic flame 

temperature increases for mixtures with increasing amount of H2/CO however; the burner 

showed a sustained flame at lower temperatures for fuels with more H2/CO, likely due to the 

high reactivity of H2. The burner was shown to be very effective in burning of fuels with 

moderate amounts of syngas which resulted in an overall decrease of CO and NOx emissions and 

a decreasing lean blowout limit with increasing H2/CO content [68]. 

 

Figure 13. Two valve reciprocating flow burner used by Dobrego [69] 

Dobrego et. al. performed a numerical investigation of the effects of heat loss coefficient, 

reactor length, pressure, particle size and porosity on the lean combustibility limit of a methane 

and air reciprocal flow combustion reactor, shown in Figure 13. The modeled burner utilizes a 

two valve system which is simpler in design than previous reciprocating flow reactors which 

used a 4 valve system. They validated their model with experimental results obtained from 
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Hoffmann et. al. [54]. Dobrego found that an increasing reactor length generally meant a lower 

lean combustibility limit. Higher pressure in the system corresponded to a lower limit as well. 

The porosity of the burner did not have considerable influence on the limit likely because on a 

small change was possible due to using a packed bed. Foamed ceramics would provide greater 

room for optimization. The particle size of the packed bed was the most important factor in 

lowering the lean combustibility limit with the model taking into account dispersion 

conductivity, photon free path, specific area of porous media and secondary effects. Smaller 

diameter particles showed a lower lean limit [69]. 

Shi et. al. numerically investigated the influences of the material properties on the 

combustion wave speed and maximum temperature of lean combustion in a packed bed porous 

medium burner. Experimental data from Zhdanok et. al. [53] is compared to the results from the 

numerical model and shows good qualitative agreement with the exception of maximum 

temperature. This was attributed by the author to an uncertainty of thermal properties of the 

packed bed. The wave velocity is found to almost double when the heat capacity of the porous 

medium is halved. The maximum temperature remained constant with decreasing thermal 

capacity of the medium. Increasing the conductivity of the solid medium is found to increase the 

heat feedback mechanism, lowering the maximum temperature and increasing the wave speed 

[70]. Akbari et. al. in 2009 numerically investigated the effects of turndown ratio and porosity on 

flame propagation of methane and air combustion in porous medium. Turn-down ratio is defined 

as the range of admissible firing rates, which correlate with inlet flow rate and are measured in 

kW/m2. They varied the porosity between 60 and 90%. An equivalence ratio of 0.43 is found to 

be the lower limit at which the flame stabilizes in the matrix. Figure 14 is a plot of equivalence 
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ratio versus porosity, depicting the region of a stabilized flame and where a blowout would occur 

for higher porosities and lower equivalence ratio [71]. 

 

Figure 14. Equivalence ratio vs. porosity for a stable flame [71] 

Emissions 

Through careful material choice and burner design, porous media combustion can produce 

lower NOx and CO emissions when compared to a similar free flame burner. Homogeneity of the 

temperature field within the burner is very important for low emissions since hot spots can 

produce large amounts of NOx and cold spots result in incomplete combustion with high CO and 

UHC emissions [29]. The amount of NOx produced depends mainly on the maximum 

temperatures reached in the center of the combustion region and on the residence time in those 

hot regions [29]. Durst and Trimis predicted that porous burners would show an overall 

insensitivity of NOx emission behavior to firing rates. This was explained by the decreased 

residence time at higher heat loads and decreased temperatures at lower heat loads [29]. NOx 
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emissions are affected very strongly by the excess air ratio since with an increasing excess air 

ratio, the residence time and maximum temperature both decrease [29]. Porous material with 

good heat conductivity will help keep a homogeneous temperature field. 

Hardesty and Weinberg were of the first to study the emissions of a porous media heat 

exchanger in 1974. They noted that, unlike conventional systems, the use of leaner mixture ratios 

will actually have a notable effect on pollutant emission. Increasing the heat recirculation and 

decreasing equivalence ratio will reduce emissions. NO emissions become negligible altogether 

if the peak temperature within a burner is restricted to less than 1800 K, which is possible for 

most porous burner systems [25]. Bouma and Goey performed a numerical and experimental 

study on the matrix stabilized combustion of methane and air in a ceramic foam burner. They 

measured CO and NO concentration as a function of power load, given as Equation 8, which is a 

measure of the calorific content and mass flux of the inlet flow. 

𝑃 = 𝜌𝑢𝐻 �1 + 𝑠𝐶𝐻4 𝑛𝑋𝑂𝑠�−1     (8) 

Two plots, given as Figure 15, show the numerical prediction and experimental measurement 

of CO and NO concentration as a function of power load. The results for NO concentration do 

not agree with what Durst and Trimis predicted [29]. NO concentration seems to increase with 

increasing power load. The maximum temperature for the ceramic foam burner at a power load 

of 100 kW/m2 was measured at about 1650 K whereas the maximum temperature at 600 kW/m2 

is measured at 2000 K. This is likely the cause of to the large increase in NO concentration [6]. 
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Figure 15. CO and NO concentrations vs. power load [6] 

Brenner et. al. developed a numerical code modeling combustion in porous media and used it 

to perform a numerical parametric study and predict CO and NOx formation. The model was 

compared to data from an experimental setup using SiC and Al2O3 lamellae. The temperature 

inside the burner varied from 300 K at the inlet to about 2000K in the flame region. The 

predicted CO concentration for the SiC matrix was 16 ppm and the predicted concentration for 

Al2O3 was 24 ppm at a firing rate of 1500 kW/m2. The measured values were 25 ppm and 29 

ppm respectively. The difference between the two materials is attributed to the higher heat 

conductivity of the SiC lamellae. NOx concentration was difficult to predict for their numerical 

code due to the discontinuity and imperfect modeling of the flame stabilization at the interface 

between the preheat and combustion regions [72]. Marbach and Agrawal investigated the 

performance of surface vs. matrix stabilized porous media combustion. They measured pressure 

drop, NOx and CO emissions and lean blow-off limit. They found that for both combustion 

regimes, NOx formation was weakly dependent upon the flow velocity and pore size but that the 

NOx concentration increased exponentially with equivalence ratio. The CO concentration 

increased with increasing equivalence ratio for both combustion regimes and decreased with 
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increasing pore size. The NOx and CO concentrations for different equivalence ratios are shown 

in Figure 16 at different inlet velocities. The matrix stabilized combustion had a lower lean blow-

off limit than surface stabilized for all conditions tested [73]. 

 

Figure 16. NOx and CO emissions vs. equivalence ratio for different inlet velocities [73] 

Mößbauer et. al. aimed to create a zero emission engine by the use of porous media burners 

in a steam engine utilizing exhaust gas recirculation. The thermal mechanism for NOx formation 

only significantly takes place above 1300 ˚C. The recirculated air consists of mostly inert 

components such as H2O, CO2 and N2, causing the recirculation to reduce the combustion 

temperature.  Increasing exhaust recirculation also decreases O, N and OH concentrations with 

only a small change to O2 concentration. Therefore, the thermal NO mechanism O + N2 = NO + 

N is reduced due to its dependence on O concentration. At lower exhaust recirculation rates, the 

combustion temperature is reduced, causing an increase in incomplete combustion products such 

as CO and UHC.  The end result is that with an optimal exhaust recirculation rate, NOx 

formation can be greatly reduced while still maintaining low CO and UHC concentrations  [74]. 

Pickenäcker and Trimis used a multi-staged porous media burner to investigate the potential to 

decrease NOx emissions from existing methane/air combustion systems. The burner used a 
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highly porous plate composed of 53% SiO2 and 45% Al2O3 upstream of a lamellae composed of 

80% alumina and 20% silica or a SiC foam, each of 90% porosity in the combustion region. The 

burner had lateral feeds of methane, air or a mixture of both which could be fed into different 

locations within the porous combustor to create a homogeneous temperature profile. The burner 

showed a 30-40% decrease in NOx formation when using at least a 10% lateral feed over each 

operational firing rate, with a better performance at lower firing rates. The pollutant amount was 

only slightly affected by the porous structure used but was strongly affected by the 

homogenization of the temperature field caused by the staging [75].  

 

Figure 17. NOx emission versus equivalence ratio for varying oxidizer concentration [76] 

Kennedy et. al. experimentally studied the temperature, combustion waves and emissions of 

porous media combustion in a packed bed of alumina. Methane was burned with air at 

equivalence ratios ranging from 0.1 to 2 while the oxygen content of the oxidizer was varied 

between 10 and 30%. Since the maximum temperature in each case was not over 1650 K, the 

prompt mechanism was identified as the major pathway for NOx formation. Figure 17 shows the 

resulting NOx measurements for different oxygen contents in the oxidizer versus equivalence 



34 
 
 

ratio. Even with higher overall temperatures, the mixtures with 10 and 15% oxygen have lower 

NOx emission based on fuel inputs [76]. 

 

Figure 18. NOx and CO emissions of different burner types [20] 

Rørtveit et. al. compared four different types of burners to determine an optimal 

configuration for low-NOx combustion of methane and hydrogen. The four burners are a radiant 

surface burner from Acotech (fiber), a swirl burner from the International Flame Research 

Foundation (IFRF), a porous inert material (PIM) and a catalytically supported porous inert 

material (CSPIM). The porous media burner used corrugated fibers of Al2O3 and SiO2 and the 

catalytic supported porous media used a SiC monolith with an alumina based washcoat of Pt and 

Pd. Two plots showing NOx and CO concentrations vs. excess air ratios (reciprocal of 

equivalence ratio) for the configurations burning methane and natural gas at different firing rates 

are shown in Figure 18. They reduced the methane content of the fuel, replacing with hydrogen, 

and the two porous media burners showed lower emissions with increasing hydrogen content 

[20]. 

Porous media burners prove to be able to reduce harmful emissions with special design 

considerations and material selection. They can maintain a low peak temperature and 
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homogeneous temperature field, keeping emissions low over a wide range of equivalence ratios 

and fuel mixtures. The use of catalysts to improve these positive aspects and help facilitate the 

combustion reaction is a promising technology for the reduction harmful emissions such as NOx, 

CO and UHCs. 

Catalysts 

The use of catalytically active materials to facilitate the combustion process could increase 

the overall efficiency of the burner and help to reduce emissions [29]. The overall combustion 

reaction can be described as consisting of two processes: fuel oxidation, or release of the 

electrons, and oxidant reduction, or acceptance of the electrons. If the proposed fuel is a simple 

CH4 molecule then the activation energy to separate CH4 into hydrogen atoms and hydrocarbon 

radicals, with further release of the electrons, is not very high. The most problematic aspect is the 

splitting of O2, since the covalent bonding in oxygen molecules is very strong. However, if 

catalysts could be used to promote O2 molecule splitting, bond energy could be significantly 

decreased thus facilitating combustion [77]. Therefore, it is fair to expect that significant 

improvements in the overall efficiency of a porous media combustor coupled with thermoelectric 

devices can be achieved by exploring advanced ceramics catalysts. 

There have been a number of studies on the catalytic effects and benefits of different 

materials on the combustion of hydrocarbon fuels. Karim and Kibrya in 1986 experimentally 

investigated the lean blowout limit of the combustion of methane and hydrogen in air. The 

burner was a cylindrical combustor 150 mm in diameter with a metallic wire mesh as a porous 

media. They coated the wire mesh with eight different materials by electroplating. The materials 

listed in decreasing order of effectiveness are Pt, Cu, Ag, Brass, Cr, Cd, Ni, and stainless steel, 
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with the Pt coating supporting lean combustion of methane down to 2.7% by volume, a 0.26 

equivalence ratio, and lean combustion of a 50% methane/hydrogen mixture down to a 0.15 

equivalence ratio.  When comparing the results obtained from the hydrogen combustion, it was 

found that hydrogen is more sensitive to the catalytic effects of the materials than methane, 

particularly at lower temperatures [78]. Dupont et. al. investigated the combustion stability, 

pollutant emissions and radiation efficiency of honeycomb monoliths containing platinum and 

palladium catalysts for the combustion of mixtures of methane and air. The honeycomb was 

made of cordierite and had 400 square cells per square inch. They found that the palladium 

catalyst supported a lower inlet concentration than the platinum one and had a proportional effect 

over all inlet flow rates tested. The results showed that a minimum stable concentration of 4.4 

mol % of CH4 was seen with Pd at 4.4 grams per piece and 60 L/min flow rate. The burner 

configuration and resulting lower combustibility limit versus flow rate are shown in Figure 19 

for each catalyst [79]. 

 

Figure 19. Burner schematic and concentration vs. flows rate plot [79] 
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 Dupont et. al. built on their previous work and developed a numerical model to predict the 

effect of Pt and Pd catalysts on the lean combustibility limit of methane in air. They tested the 

catalysts in a stagnant point burner and with the ceramic monolith burner shown in Figure 19.  

They confirmed that palladium was a better catalyst for methane combustion than platinum, 

showing a lower lean combustibility limit. The stagnation point burner showed a combustion 

efficiency of about 30% whereas the monolith burner with Pd catalytic support reached 90-

100%, showing only scarce amounts of NOx, CO and UHCs [80]. Anh et. al. performed an 

experimental study on the ability of a bare-metal catalyst to extend extinction limits of propane 

and hydrogen combustion at different Reynold’s number flows. They used a spiral counter-flow 

burner with thin strips of Pt lining the walls. The results showed that the catalyst greatly affected 

the extinction limits and in a non-symmetrical manner with respect to the lean and rich limits. 

The extinction limits without the presence of a catalyst were nearly symmetric. With a catalyst, 

the lean combustibility limit was actually rich of stoichiometric with a limit >40 equivalence 

ratio at low Re. At higher Re the catalyst enabled slightly leaner mixtures to be burned and at 

much lower temperatures [81]. Cimino et. al. aimed to develop a burner which combined low 

and high temperature catalytic activity to widen its operating range. A combination of Pd and 

LaMnO3 were applied to ceramic monoliths as washcoats. A table depicting the compositions 

and amounts of the wash coatings along with a plot of conversion efficiency vs. temperature are 

shown in Figure 20, where PLM-3 was activated at 1000 °C for one hour in the final case. The 

author notes that the combination of two types of catalytic sites requires good overlapping of the 

operational windows to be effective in steady state combustion. It can also be seen that only a 

small amount of Pd makes a large improvement in low temperature combustion efficiency [82]. 



38 
 
 

 

Figure 20. Combustion efficiency and associated washcoat compositions [82] 

Arendt et. al. investigated the catalytic activity of LaMnO3 perovskite catalysts in the 

combustion of methane. The catalyst was deposited on both ceramic and metallic monoliths by 

dip coating and an orbital stirring procedure. A comparison between structured and powdered 

catalyst showed a higher catalytic activity of the structured catalysts. It was observed that the 

catalyst performed better on metallic monoliths at lower temperatures and better on ceramic 

monoliths at a higher temperature. It was found that the monolith prepared by orbital stirring 

were more active than those prepared by dip coating for similar deposited weights and that 

monoliths with a lower deposited weight showed better catalytic behavior [83]. Bijjula and 

Vlachos studied the catalytic combustion of JP-8 with the aim of utilizing it as a fuel for portable 

power generation systems. They used a packed bed reactor to study surface ignition, extinction 

and autothermal combustion with a Pt/γ-Al2O3 catalyst of 1.17 wt.% Pt. They studied JP-8, a six 

component surrogate fuel mixture, and the individual components of the mixture to try to 

accurately understand the combustion mechanics of JP-8. The full autothermal temperature plot 

of JP-8 and some of the other fuels is shown in Figure 21. Notably, the ignition temperature 

decreases with increasing equivalence ratio for 2,2,4-trimethyl-pentane and methylcyclohexane 

until reaching a minimum. This is attributed to the surface stoichiometric point of those fuels. 
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The ignition of JP-8 seems to most closely resemble that of dodecane and tetradecane. Catalytic 

ignition of JP-8 was shown to occur at very low temperatures of about 270 °C at equivalence 

ratios of about 0.2 [84]. 

  

Figure 21. Autothermal and ignition temperatures for JP-8 and surrogate components [84] 

Tacchino et. al. experimentally investigated new types of catalysts for the combustion of 

methane and hydrogen in monoliths. The micro-monoliths were made of SiC with 6mm x 6mm 

channels. Catalysts were deposited on the monoliths by in situ solution combustion synthesis, 

dipping them in solution and then placed in an oven at 600 °C bringing the solution to boil, 

producing the desired catalyst. The monoliths were tested in a burner with methane, hydrogen 

and a mixture of the two all at equivalence ratio of 0.5. The four catalyst investigated were 2% 

Pd/(5% NiCrO4), 2% Pd/(5% CeO2·ZrO2), 2% Pd/(5% LaMnO3·ZrO2), and 2% Pt/(5% Al2O3). 

The catalyst 2% Pt/(5% Al2O3) was found to have the highest combustion efficiency for the 

combustion of only CH4 or H2 but not for the combined mixture. The Pd catalysts were better for 
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the CH4/H2 mixtures with 2% Pd/(5% NiCrO4) being the best followed by 2% Pd/(5% 

LaMnO3·ZrO2) and 2% Pd/(5% CeO2·ZrO2) [85]. 

The use of catalysts to enhance the combustion of hydrocarbons has been shown in numerous 

experimental studies to help improve the performance of hydrocarbon burners. A number of 

different types of catalysts have been used to extend flammability limits, promote the 

combustion of different mixtures of fuel and to reduce the harmful emission of NOx, CO and 

UHCs. With the lowering of lean flammability limits, a catalyst could be used to minimize the 

fuel consumption of a porous media burner and help increase the overall efficiency of a power 

generation system. 

Power Systems 

Hydrocarbon fuels contain about 100 times more energy per unit mass than lithium-ion 

batteries [81]. Converting this chemical energy to useful power at a better than 1% efficiency 

would represent an overall improvement in the powering of portable electronic devices and other 

battery-powered equipment [81,86,87]. Most portable or handheld devices require 10-100 watts 

of power, with personal laptops ranging from 20-60 watts, and have a target operating duration 

of 10 hours [24,88]. As a preliminary calculation, to power a 50 watt device for 10 hours, 

considering the heat of combustion for methane is 55.6 MJ/kg [89] and an overall conversion 

efficiency of 1%, would take 3.24 kg of fuel. This amount could be further reduced if the overall 

efficiency of this conversion was increased to even 2% by the use of the heat recirculation 

mechanism of a porous medium burner, supportive catalytically active material and properly 

chosen porous structure (optimal porosity, pore size and material). This represents a great 

potential for the powering of handheld or portable electronics by a porous burner system. 
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Fernandez-Pello performed a general overview of the miniaturization of hydrocarbon 

combustion systems for power generation. Some of the difficulties with micro-sized combustors 

are the thermal and chemical management. The dimensions are so small in these systems that the 

residence time of the fluid within the combustor is very short. The Reynolds and Peclet numbers 

are very small due to the short characteristic length, which means that the flows will be mostly 

laminar. Therefore, mixing will be mostly due to diffusion which needs to occur quicker than the 

residence time to ensure complete combustion. Many of these micro-combustors utilize 

piezoelectric, thermoelectric or thermophotovoltaic devices to harvest the energy from the 

combustion process [86]. Mitsos et. al. addressed portable power generation systems, focusing 

on the difference between maximizing efficiency vs. energy density for any particular 

application. Overall, they found for large scale operations that conversion efficiency was the best 

design parameter but small portable power systems, the maximization of energy density was the 

optimal objective [90]. 

A number of works have been done on super-adiabatic combustion or the use of porous 

media for small-scale power generation. Echigo et. al. investigated super-adiabatic combustion in 

a reciprocating flow in a porous body for power generation. They proposed to utilize the steep 

trapezoidal thermal gradient present in their reciprocating flow burner with a thermoelectric 

porous matrix present in the flow field. Their numerical study and preliminary experiments with 

ten alumel-chromal thermoelectric elements measured 0.15 watts from a 1040 K temperature 

gradient with a matched load resistance. Expanding this estimate to a full set of thermoelectric 

elements would yield up to 5-10 kW/m2 from the design [91]. Echigo et. al. in 1994 and 1995 

continued this work on the reciprocating flow system by developing a mathematical model to 

analyze how major parameters like flow velocity, the heating value of the combustible mixture, 
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the thermal conductivity of the thermoelectric elements and the electric power extracted affected 

the conversion efficiency. They created a dimensionless figure of merit based on the thermal 

conductivity of the gas and initial temperature and detailed how it was affected by each 

parameter. They found at an optimal dimensionless figure of merit, their overall conversion 

efficiency could be as much as 4% at an inlet velocity of 20 cm/s [92,93]. 

 

Figure 22. Reciprocating flow burner with power, voltage and current plot [94] 

Hanamura and Kumano in 2003 experimentally investigated super-adiabatic combustion in a 

pair of thermoelectric porous elements. The reciprocating flow burner was based on the proposed 

system by Echigo et. al., a three section burner with upstream and downstream porous 

thermoelectric sections to utilize the steep temperature gradient present at those areas. They used 

a Pt/Pd catalyst layer on an 87% porous honeycomb of FeSi2 thermoelectric elements. A 1% lean 

mixture of methane and air was introduced to the electrically heated porous media once it 

reached 600 °C within the burner system shown in Figure 22. The burner reached a maximum 
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temperature of between 900 and 995 °C and generated a peak power of about 0.3 watts, plotted 

in Figure 22, with a total thermal efficiency of 0.2%. They suggested that the efficiency could be 

increased to between 7 and 10% by use of Ge-Si thermoelectric elements [94]. Hanamura and 

Kumano proposed using thermophotovoltaics instead of thermoelectrics to generate power from 

a reciprocating-flow porous media super-adiabatic combustor. The porous media would be a thin 

foam-ceramic sandwiched between parallel quartz glass plates. The thermophotovoltaics could 

harvest the radiant energy emitted through the quartz glass. Much of the radiant energy would 

absorbed by the quartz glass but the designed system was expected to reach a 14.4% total 

thermal efficiency, compared to the predicted 7-10% with thermoelectrics in the previous study 

[95]. Hunt et. al. designed an auxiliary power unit for a hybrid electric vehicle by using an alkali 

metal conversion system with a cellular ceramic porous medium, reaching an efficiency of up to 

15.5%  [96,97]. Katsuki et. al. also developed a power generation system within a reciprocating 

flow burner with porous thermoelectric elements. The porous elements consisted of two semi-

cylindrical Mn- and Co- doped FeSi2 couples with an 80% porous cylindrical Al2O3 ceramic 

foam in the center.  The burner was ignited with a stoichiometric mixture and once combustion 

was stable, the equivalence ratio was turned down to 0.27 with a half cycle of 10 s at a flow rate 

of 0.84 m/s. The temperature gradient over the thermoelectric elements reached 200 K/cm, with 

a maximum power for a single element on the order of 100 mW. This equated to an overall 

energy density of 7 kW/m3 [14].  

Suzuki et. al. developed a micro-scale catalytic combustor of butane with Pt as a catalyst. 

The focus was on heat release rate, CO and NOx emissions and reaction rate vs. catalyst 

temperature. The combustion channel measured 12x12x0.5 mm3 with an overall size of 34x20x2 

mm3. Porous alumina was used for the micro combustor but generating uniform flow rate with a 
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simple manifold geometry proved difficult so they used a high-precision tape-casing technology 

to construct a more complex three dimensional manifold geometry. Under stoichiometric 

conditions the combustor was able to generate 60 W of heat at 50 sccm with a combustion 

temperature of 380 °C. This equates to an overall heat release rate of 830 MW/m3 for the burner 

[98]. Kamijo et. al. developed a micro-scale combustor with a Pd catalyst for thermophotovoltaic 

power generation. The system burned a butane and air mixture in a combustion chamber that was 

40 mm in diameter and 3.5 mm tall after minor optimization in design from preliminary testing. 

The burner was operated at equivalence ratio of 0.95 and 10 sccm and showed a 100% fuel 

conversion to produce a heat generation density of 212 MW/m3. When the flow rate was 

increased to 30 sccm, the conversion efficiency decreased but produced a greater heat generation 

density of 515 MW/m3 [99]. Okamasa et. al. built a micro-scale burner for the combustion of 

butane. The burner utilized a Pd catalyst with a combustion chamber measuring 25x25x5.3 mm3. 

The burner was run at 2.5 and 5 sccm at an equivalence ratio of 0.95 and 0.5, producing between 

5 and 10 watts of heat. The burner achieved complete combustion efficiency at a flow rate of 5.0 

sccm with a maximum temperature of 390 °C. The overall heat generation density of the system 

was calculated as 100 MW/m3 [100]. 

The concept of power generation by harvesting the energy released during combustion within 

a porous medium burner is not novel but is very promising. Many previous experiments suggest 

an achievable conversion efficiency greater than 1% which would represent an overall higher 

energy density and power output than current lithium battery systems. The development of a 

porous burner system to efficiently convert the chemical energy of hydrocarbon fuels to useful 

power for portable electronics is very feasible. 
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Other Applications 

Porous media combustion has a number of other applications including: blast furnace 

production of steel, agglomeration of ores, in-situ combustion, smoldering combustion, self-

propagating high-temperature synthesis, catalytic combustion, household burners for air and 

warm water heating systems, premixed industrial burners, air-heating systems for dryers, gas 

turbine combustion chambers and steam generation [31, 50]. 

A number of studies have been performed investigated liquid fuel combustion in porous 

media. Itaya et. al developed a porous ceramic burner in order to investigate the combustion of 

liquid kerosene with future application aimed towards using porous media in Stirling engines, 

boilers and gas turbines. The liquid fuel was deposited drop-wise directly onto a 36% porosity 

mullite plate with a mean pore size of 180 μm. The burner showed a lean flammability limit of 

between 0.1-0.2 for various inlet flow rates and decreased NOx emission [101]. Kaplan and Hall 

built a radiant burner and tested various design configurations using magnesia-stabilized 

zirconia, silicon carbide, and yttrium-stabilized zirconia porous ceramics. Heptane was impinged 

on the combustion section using an oil burner spray nozzle at 0.025 L/min. They tested each 

ceramic type with 4 ppcm and 10 ppcm in the stacked in various configurations along with two 

different spray nozzles. They concluded that the yttrium-stabilized zirconia matrix supported the 

most complete combustion but only for prevaporized fuels. The silicon carbide matrix melted at 

peak temperature. Complete combustion was achieved with the magnesia-stabilized zirconia 

matrix at a fuel flow rate of 0.025 L/m for equivalence ratios of 0.57-0.67 [102]. Liu and Hsieh 

experimentally investigated the combustion of liquid petroleum within porous heating burners. 

The flame temperature ranged from 1050-1250 °C, which is about 200 degrees lower than the 

adiabatic flame temperature for a corresponding equivalence ratio. The burner showed to have 
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very low NOx and CO emissions and realized a lean limit lower than the standard flammability 

limit [103]. Jugjai and Rungsimuntuchart applied the concept of combustion in porous media to 

increase the efficiency of heat-recirculating domestic gas burners. They constructed a novel 

semi-confined porous radiant recirculated burner with stacked stainless steel wire meshes with 

40 ppi. The new gas burner had an increased thermal efficiency of about 12% higher than that of 

the conventional one [104]. Agrawal and Gollahalli experimentally investigated the lean 

combustion of liquid fuels in a porous inert media. They tested different configurations of porous 

inert media with a 26 ppcm piece as the combustion section and varied the number of 4 ppcm 

pieces around it. They found that the burner best performed when there was a space between the 

combustion zone and injector, allowing the fuel to mix. The burner had significant radial heat 

loss and caused them to develop a prototype with an annular heat recirculation zone which 

proved to be more efficient, decreasing the formation of CO and NOx [105]. Vijaykant and 

Agrawal experimentally investigated the combustion of liquid kerosene inside an SiC coated 

carbon foam. They tested an air-assist injector and a swirling-air injector at three different 

upstream locations as well as a number of stacked porous media configurations building on 

Kaplan and Hall’s work with the goal of reducing the emissions of NOx, CO and soot. They 

found that with a premix section greater than 45 cm, the fuel was fully premixed and had 

minimum emissions. An equivalence ratio of 0.63 was the lowest tested and showed the lowest 

CO and NOx concentrations [106].  

A number of people investigated the use of porous media in reciprocating heat or internal 

combustion engines. Weclas in 2005 wrote a general overview of various engine concepts, 

describing the porous structures, materials and their properties with respect to use in a porous 

medium internal combustion engine. The main benefits listed included: the ability to recirculate 



47 
 
 

energy between engine cycles, the material properties of the porous medium aided a very fast 

vaporization of the liquid fuel and the engine would exhibit more homogeneous combustion 

conditions [107].  Hanamura et. al. performed a numerical investigation on the use of porous 

media in a reciprocating heat engine similar to a Stirling engine. They noted that using a porous 

medium with a high absorption coefficient, the realized a maximum temperature was lower than 

the theoretical open flame temperature. The use of the porous medium extended the flammability 

limits for the combustion engine and proved a promising concept [108]. Durst and Weclas 

demonstrated the use of porous media in an internal combustion engines for the reduction of 

harmful emissions. They modified a single cylinder piston by placing a SiC porous media in the 

engine head between the intake and exhaust valve. Their experiments demonstrated a reduction 

of NOx, CO, UHC and soot formation [27]. Macek and Polášek also predicted an improvement 

of emissions from reciprocating internal combustion engines with a homogeneous temperature 

field, an attribute of combustion in porous media. Their work mostly focused on the development 

of a numerical and CFD model to estimate the effects of the porous media within an internal 

combustion engine and used the code to evaluate possible future improvements [19,109].  

A few studies were performed on the use of porous media for syngas and hydrogen 

production. Drayton et. al. experimentally investigated the production of syngas in porous media 

combustion by the partial oxidation of ultra-rich methane–air mixtures. They showed that a 

packed bed of Al2O3 spheres of diameters 2-5 mm could support combustion up to an 

equivalence ratio of 8. They conducted parametric studies on the effect of the equivalence ratio, 

filtration velocity, reactor pressure, and porous body diameter on combustion temperature. The 

burner achieved a maximum conversion rate of methane into 65% H2, 75% CO2, 10% C2H2, and 

8% C2H4, each at separate conditions [110]. Bingue et. al. designed a burner for hydrogen 
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production. The burner used a packed bed of alumina pellets and a flow velocity of 12 cm/s. Six 

oxidizer compositions were investigated between 10 and 35% O2 while varying equivalence ratio 

between 1 and 3.5. It was found that maximum hydrogen was produced for the 35% oxidizer 

mixture at around 2.9 equivalence ratio. Maximum CO was produced for the same oxidizer level 

at 2.5 equivalence ratio with higher percentages of oxidizer having a maximum product at higher 

equivalence ratios [111].  

Dobrego et. al. numerically investigated the use of a porous media combustor for water 

purification of organic inclusions or solutes. The burner essentially evaporates the liquid water 

while simultaneously combusting the organic inclusions and proved to be a promising 

technology [112]. Avdic et. al. aimed to investigate and develop a household heating system 

utilizing porous media technology. The final result was a system with lower emissions of CO and 

NOx, which could burn a mixture at 0.65-0.78 equivalence ratio at an increased thermal power 

modulation [16].  
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CHAPTER THREE: PRELIMINARY DESIGN AND ASSEMBLY 

 
The purpose of the porous medium burner is to burn a lean mixture of fuel and oxidizer to 

convert the stored chemical energy into thermal energy within the combustion chamber. A 

thermoelectric device will be used to harvest that thermal energy and convert it into useful 

electrical energy.  The porous burner prototype being used in the current study was designed and 

built by an undergraduate senior design group at the University of Central Florida, in the 

Department of Mechanical, Materials and Aerospace Engineering. The following sections were 

extracted from their final design report and updated for the current work [113]. Preliminary 

calculations and design were done to ensure the prototype will function as intended and are 

outlined in the following chapter, including an outline of the design guidelines and goals, 

computer modeling, heat transfer calculations, thermal expansion predictions and thermoelectric 

module cooling assembly design. 

The CAD drawings were used to give a visual representation of the burner. The 2D drawings 

were made to aid in the construction and to machine the burner casing to specific dimensions and 

determination of an optimal material to be used while considering all tolerance. Preliminary heat 

transfer analyses predicted the thermal gradient within the burner to not only try to predict the 

heat output, and therefore power generation, but to be used to ensure that thermal expansion 

would be taken into account in the design. An assembly to house and cool the thermoelectric 

module was designed, including a thermal resistance element to ensure that the hot-side of the 

thermoelectric module would not exceed its maximum operating temperature. The cooling 

manifold ensures the best possible temperature gradient across the thermoelectric element for 

maximum power generation. 
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Preliminary Design Guidelines and Goals 

A number of requirements were considered during the design and manufacturing of the 

burner and are listed below: 

• The primary goal is to create a burner which will burn a lean mixture of fuel and air within a 

porous matrix, coupled with a thermoelectric device to harvest the thermal energy and 

generate power. 

• The thermoelectric module should be cooled to meet its design specifications to generate the 

maximum amount of electrical power. 

• The aim is to maximize the overall conversion efficiency, generate the most power with as 

lean a mixture as possible, to power portable electronic devices such as cellular/satellite 

phones, GPS devices or a laptop computer. 

• Temperature measurements should be included in multiple locations within the burner to 

obtain an accurate temperature profile and should not interfere with the combustion reaction. 

• Stabilization of the reaction at a fixed location within the central porous medium inside the 

porous reactor is required. 

• Analysis of the thermoelectric module’s output should be performed to determine the 

wattage, voltage and amperage of the system. 

• The porous media and casing assembly must be designed so that the thermal expansion of the 

different materials does not damage the components. 

• Flow controllers will provide inlet gases and must be able to adjust the concentration and 

flow rate of the reactant mixture to determine a lean operation limit. 
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• The porous media should be easily replaceable within the reactor in order to facilitate the 

testing of catalytic enhancement to the reaction. 

• The burner is expected to be portable. Dimensions should be within 1m x 0.1m x 0.1m. 

• The combustion zone should be a minimum of 400 K and should not be so high that the heat 

diffusion between the burner and thermoelectric module exceeds its maximum operating 

temperature or cause harm to any of the burner components. 

• The burner should ignite the flame 95% of the time when turned on and used properly. 

• The device should be robust enough to avoid damage from transportation or general use. 

• The burner should have no risk of explosion, have no open flame, be capable of a quick 

shutdown, be well insulated and the exhaust must leave the device at a low velocity and safe 

temperature. 

Computer Aided Design 

The purpose of the CAD work was to provide detailed drawings of each part in two and three 

dimensions in order to visualize how the parts would be configured and to provide all 

dimensions necessary for the fabrication of any parts which needed to be manufactured. Shown 

in Figure 23 are the drawings used to manufacture and visualize the burner casing. The center of 

the casing is cylindrical in order to easily house the cylindrical porous alumina sections. The 

outside of the casing is rectangular in order for the thermoelectric module to lay flat against it for 

maximum contact surface. The burner is constructed of two separable halves in order to facilitate 

the removal and replacement of the porous sections for ease of use. A high temperature gasket 

material is used at all joining locations to ensure an air-tight fit even considering thermal 
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expansion of the parts. The material for the case is A36 Low Carbon type steel and was 

machined at the University of Central Florida machine shop. 

 

Figure 23. CAD drawings of the burner casing (in mm) 

 

Figure 24. Shaded drawings of the assembled burner casing with exploded view 

The casing assembly in Figure 24 consists of: 1) a bottom half to hold the porous alumina 

media. 2) A top part which will be separated from the bottom half by a layer of gasket material to 
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ensure a good fit. 3) An end plate which will have a large enough hole to freely allow the 

combustion products to exit the burner. 4) An inlet plate which will screw into the top and 

bottom halves and be separated by a gasket material to ensure a good fit. 5&6) Screws which 

need special consideration so that they can withstand the high temperatures expected to be 

reached by the casing while not seizing in the casing. 7) A screw nozzle on the inlet plate to 

connect the hosing carrying the reactant flow to the burner. 

Heat Transfer Analysis 

The casing of the burner is made out of A36 steel. It is a good heat conductor and easy to 

work with when manufacturing. The exterior rectangular shape is a good base to place the 

thermoelectric devices as they are flat and will allow maximum contact surface between them. 

The original senior design group a designed the burner to optimize the power output of a 

thermoelectric module which required a heat flux of 350 𝑊. They assumed a maximum internal 

temperature of 1020 K and calculated the thickness of the casing required to create the desired 

temperature drop to match the hot side operational temperature of the thermoelectric, 230 °C 

(~500K). To find the thickness of the casing with a heat transfer rate of 𝑄0 = 350 𝑊, hot side 

temperature of 𝑇ℎ𝑜𝑡 = 1020 𝐾, cold side temperature of 𝑇𝑐𝑜𝑙𝑑 = 500 𝐾, thermal conductivity of 

the steel casing 𝑘 = 51.9
𝑊𝑚∗𝐾, and surface area of the thermoelectric module 𝐴 = 0.003136 𝑚2, 

Fourier’s Law of heat conduction is used. 

𝑑 = 𝑘 ∙ 𝐴 ∙ 𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑𝑄0 = 0.242 𝑚         (9) 

From the calculations it can be seen that the thickness required for the casing is about 9 

inches, too large to be practical, so in order to meet the compact design requirement, an element 

of thermal resistance was added between the casing exterior and hot-side of the thermoelectric 
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device. In order to find the best material to use, the temperature drop between the casing and the 

thermal resistance was calculated. The depth of the thermal element was fixed to something 

appropriate which was: 𝑑 = 0.25 𝑖𝑛𝑐ℎ = 0.00635 𝑚. The contribution from the metallic casing 

was calculated to be minimal, 11 K, so the temperature drop needed was about 509 K. To find 

the appropriate material for a resistance element between casing and thermal electric, Equation 

10 was used with the given information. 

𝑘 =
𝑄0∙𝑑𝑒𝑙𝑒𝑚𝑒𝑛𝑡

(𝑇ℎ𝑜𝑡−𝑇𝑐𝑜𝑙𝑑)∙𝐴 = 1.392
𝑊𝑚∙𝐾.    (10) 

The thermal conductivity came out to be 1.392 
𝑊𝑚∙𝐾. A good material to use with the closest 

thermal conductivity is quartz, with a thermal conductivity of about 1.4 
𝑊𝑚∙𝐾. 

Thermal Expansion Analysis 

The thermal expansion and stresses due to the temperature gradients within the burner during 

normal use, specifically the interaction between the porous medium and the casing, are 

evaluated. The casing is constructed of A36 steel and for the porous matrix material alumina is 

used. If the casing expands more than the porous matrix, a gap would form around the porous 

plugs, allowing flow to bypass the matrix. The alumina matrix is very brittle material, and if it 

was to expand more than the casing, the ceramics alumina could easily crack. Thermal expansion 

in a one dimensional model in the radial direction is calculated using Equation 11. 

𝑟𝑓 = 𝑟𝑖𝛼Δ𝑇𝑚𝑎𝑥 + 𝑟𝑖        (11) 

The thermal expansion for the casing is calculated with the coefficient of A36 Steel as 𝛼𝑐 = 11.7 ∗ 10−6 𝐾−1, a maximum temperature change of Δ𝑇max = 11 K coming from the 
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preliminary heat transfer analysis in the previous section, and the initial radius, one can find the 

final radius that casing will have after the change.  

𝑟𝑓 = 0.025502𝛼𝑐Δ𝑇𝑚𝑎𝑥 + 0.025502 = 2.540229 ∗ 10−2𝑚         (12) 

It can be seen that the final radius for the casing will be 0.02540 m which is very minimal 

since it is only ten thousandths (0.000102 m) from the initial radius.  

Calculating now the thermal expansion for the porous alumina, with the coefficient of 

thermal expansion for the alumina itself, 𝛼𝑐 = 8.2 ∗ 10−6 𝐾−1, its initial radius of 0.0254 m,A 

temperature gradient of 503 K, and the same equation:  

𝑟𝑓 = 0.0254𝛼𝑐Δ𝑇𝑚𝑎𝑥 + 0.0254 = 2.5504882 ∗ 10−2𝑚      (13) 

The temperature changes insides of the alumina will not be a large factor concerning the 

dimensional changes of the porous alumina. Total radius change between the initial and final is 

approximately only ten thousandths (0.000105 m) as well. The total difference between the final 

radius of the porous alumina and the final radius of the casing is1.03 ∗ 10−5𝑚. The temperature 

gradient within the casing and porous alumina is not be expected to cause any damages or 

significant gaps to form in the system. 

Thermoelectric Assembly and Cooling 

The thermoelectric module assembly is the assembly of parts attached to the steel case which 

harvest the heat and generate electricity.  These parts include the thermal resistance quartz plate, 

the thermoelectric module, and the impinging jet manifold to cool the thermoelectric module.  

The quartz plate serves the purpose reducing the heat passing through the steel so that the 

thermoelectric module does not overheat.  The power generated by the thermoelectric module is 
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a function of the temperature gradient across it.  In order to maximize the power output of the 

module, the cold side needs to be cooled.  An aluminum heat sink was originally chosen in the 

preliminary design, which allowed natural convection to dissipate heat from the cold side of the 

thermoelectric device. This did not provide enough cooling and was replaced by the impinging 

jet manifold to reach the desired cool-side temperature of 50-75°C. The manifold is designed to 

sit on top of the thermoelectric module and provide a 1.5 mm gap between the jet nozzles and the 

surface of the module.  The cooling air enters the manifold inlet, passes through the nozzles and 

onto the surface of the thermoelectric and then flows up through the slotted depletion areas and 

through the manifold outlet.  The holes are designed to be 0.25 mm diameter to provide the 

necessary amount of heat transfer.  The depletion slots are meant to reduce the boundary layer 

accumulation caused by several jets overlapping.  The inlet and outlet will be fitted with male 

hose fittings. 

The dimensions for the thermoelectric module are very important characteristics in the design 

of the cooling manifold. This assembly was originally designed for the commercially available 

thermoelectric device from Thermal Electronics Corporation, Aurora, ON, Canada. The part 

number is TEG1-1263-6.0 which is 56mm by 56mm in size. It has match load output current and 

voltage of 3.5A and 4.2V respectively, which produces an estimated power output of 14.7W. 

The surface area of this module is therefore 𝐴 = 3.136 ∗ 10−3𝑚2.  Using the area, one can 

now find the heat flux for through the module with Equation 14 where q = 350 W from the part 

specification.  

q′′ =
qA = 1.116 ∗ 105 W/m2     (14) 
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Assuming a maximum temperature difference of 100 K between the cooling air and the 

surface of the module, the minimum average heat transfer coefficient can be calculated. This can 

be used to determine the diameter of the holes for the impinging jet system. The heat transfer is 

found to be:  

ℎ =
𝑞′′Δ𝑇 = 1.116 ∗ 102 𝑊𝑚2∙𝐾              (15) 

Now that the heat transfer has been found, the diameter for the impinging jet holes can be 

calculated with 𝑘𝑎𝑖𝑟 = 0.025
𝑊𝑚∗𝐾 as the thermal conductivity of air at 350 K.  

𝐷 =
𝑁𝑢∙𝑘𝑎𝑖𝑟ℎ = 4.48 ∗ 10−4 𝑚               (16) 

where D is the diameter of the jets and the average Nusselt number for array of impinging jets , 

is Nu=20, based on experimental findings of Dr. Mark Ricklick and Near Wall Cooling 

experiments. Dr. Ricklick, a professor at UCF, was consulted by the senior design team for this 

calculation. Since it is better to have a smaller change in temperature, it is important to have a 

larger heat transfer, and a smaller jet diameter; however, the smaller the hole, the larger the 

difficulty to machine them. A compromise must be made between the cost of the machining the 

manifold and the efficiency of the heat transfer. The manifold assembly is shown in Figure 25.  

The size of the original thermoelectric module is 56 mm square, and has a maximum 

powered output of 14.5 W. The maximum temperature that the TEG modules can withstand is 

500 K.  It was calculated that with the steel case, the temperature of the case would be 1009 K at 

the outer surface.  To create a safe temperature for the TEG module, it was devised that a quartz 

plate with low thermal conductivity could be placed between the steel case and TEG.  The 

thickness required was found to be 6.35 mm; a plate 63.5 mm square and 6.35 inch thick was 

found. The manifold assembly will be clamped to the case using C-clamps for easy attachment.  
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Figure 25. Thermoelectric module cooling assembly 

Burner Construction 

Construction of the burner was done in Dr. Ruey-Hung Chen’s lab at the University of 

Central Florida. All the casing parts were machined at UCF machine shop. Figure 26 shows the 

manufactured burning casing, gasket material and porous plug assembly. The gasket material 

was cut by hand with a rotary tool and drill press to fit in between the two halves of the burner 

casing and the end caps. The porous alumina was placed inside the casing and finally the two 

parts of the casing were screwed together with the end caps. 

The burner utilizes an intermittent spark igniter which was fed through the upstream 

honeycomb section as shown in the bottom left photo of Figure 26. The inlet gases are separately 

controlled by flow controllers during experimental testing.  Two flow meters shown in the 

bottom right photo in Figure 26 were used during the preliminary tests. The methane and air inlet 

hoses combine at ‘T’ junction, with the hosing fastened to the front end plate at the other end, of 

sufficient length to allow mixing. The casing was covered with insulation except the portion 

where thermoelectric module was placed and the exhaust section. Pictures of the insulated 

assembly on fire bricks are shown in Figure 27.  
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Figure 26. Burner casing, gasket material, burner interior and position of igniter 
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Figure 27. Flow meters, control values and insulated burner assembly       
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The temperature profile is measured using K-type thermocouples which are connected to a 

DAQ system and the measurements are viewed using Lab View Signal Express. The burner 

assembly and thermocouple positions are shown in Figure 28. The parts are labeled as follows: 

1) Impinging jet cooling system, 2) Thermoelectric module, 3) Quartz thermal resistance plate, 

4) Metallic casing, 5) Low porosity section, 6) Inlet plate, 7) Exhaust side plate, 8) High porosity 

section for combustion stabilization. The burner was assembled in a fume hood to collect exhaust 

gases as shown in Figure 29 and 30 with an overall schematic as Figure 31. The testing 

procedure is detailed in the next chapter.  

 

 

Figure 28. Exploded view of porous burner assembly 
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Figure 29. Final burner assembly in fume hood 

 

Figure 30. Side view of final assembly
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Figure 31. Overall burner system schematic 
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Design Summary 

The final design of the porous media burner for super-adiabatic combustion includes the 

following parts: 

• A rectangular steel casing with a cylindrical interior to house the porous sections. 

• A high porosity 99.5% pure alumina reticulated foam (76.2 mm long and 50.8 mm in 

diameter, porosity of 80%, 20 ppi) that will contain the flame as the central section and 

transport heat to the casing. Supplied by Süd-Chemie Hi-Tech Ceramics. 

• Two lower porosity alumina honeycomb sections (400 cells per square inch) before and after 

the central section to keep the flame confined. Supplied by Applied Ceramics. 

• A thermoelectric device to harvest the heat released by combustion. The current work uses a 

commercially available Bi2Te3 alloy module from Marlow Industries, Inc., model number TG 

12-8-01-L. It has a maximum no-load power output of 7.95 W and hot-side temperature limit 

of 250 °C and 4.97% conversion efficiency. 

• A quartz plate to limit the temperature of the hot-side of the thermoelectric.  

• An impinging jet manifold to cool the cool-side of the thermoelectric to maximize the 

temperature gradient, and therefore power output, of the thermoelectric module. 

• The flow controllers used to measure the incoming air and fuel flows are OMEGA FMA-

3206 models.  

• The filter used for the reactant air flow is an Ingersoll Rand 3/8” NPT (F) Air Line Filter.  

• The variable voltage sources used as inputs to the flow controllers are GW INSTEK PSS-

2005 Programmable Power Supplies.  
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• The data acquisition system used is a National Instruments USB-6210 16 inputs 16-bit 250 

kS/s Multifunction I/O. 

• Eight type-K insulated thermocouples to obtain an accurate temperature profile within the 

burner and to measure the temperature difference across the thermoelectric module. Supplied 

by OMEGA, #XC-K-24-25, 24awg gauge, rated to 1200 °C. 

• KLINGERsil Milam Laminate , Type PSS , high temperature, 1600 °F, gasket material is 

used between the joining sections of the casing. Supplied by Macroseal, Inc. 

• Durablanket S type insulation was used, made from spun ceramic fibers, rated up to 1260 °C. 

Supplied by Unifrax Corporation. 

• The igniter used has a power supply of 117 V and 10 mA firing at a rate of 4Hz. 

The metallic burner casing allows for good heat conduction and with a flat exterior is very 

suitable to mount the thermoelectric module assembly and at the same time provide a stable 

housing for the porous alumina sections. The casing is split into two separable parts and is sealed 

with a high temperature gasket to allow of easy replacement of the porous alumina sections. 

Thermal expansion analyses were conducted to ensure no gaps or untolerable stresses would 

occur. Preliminary heat transfer calculations were performed and it was found that it is necessary 

to include a layer of thermal resistance between the casing and the hot-side of the thermoelectric 

module. A value of 1.392 
𝑊𝑚∙𝐾 for the thermal resistance element was calculated and quartz was 

chosen with a thermal resistance of about 1.4 
𝑊𝑚∙𝐾. Five of the thermocouples are located inside 

the metal casing within the flow and 3 are located outside the casing, detailed in the next chapter,  
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CHAPTER FOUR: TESTING AND EXPERIMENTAL RESULTS 

 
The purpose of these tests is to determine the effectiveness of a catalytic coating on the 

overall efficiency of a porous media burner. In order to achieve this goal the following well 

defined and interrelated tasks are performed. Task 1 is the preliminary testing of the designed 

burner. Initial runs are conducted to determine the functionality of the burner and to determine an 

optimal flow rate at which to conduct testing. Task 2 includes the selection of a catalytically 

active coating which is expected to allow a leaner fuel concentration to be burned, improving the 

overall conversion efficiency of the system. Task 3 outlines the coating procedure for the 

deposition of a powdered ceramic catalyst onto the central porous alumina section. Task 4 is the 

characterization of the catalyst coating with Scanning Electron Microscopy (SEM). Images will 

be taken for both the inert and coated central sections, before use, and after use at both an interior 

and exterior section of the central porous matrix. These images will be used to determine if the 

catalyst was active during the combustion process. Task 5 will detail the measurement of the 

thermoelectric module’s output. The experimental procedure to be followed for the testing will 

be discussed and the experimental results will be presented. 

Task 1 – Preliminary Testing 

The prototype porous burner was assembled and tested without a catalytic coating on the 

central section. A stoichiometric ratio of methane and air was burner for preliminary testing. 

Temperature measurements were taken in several locations: 1) five locations inside burner, 2) 

one between the casing of the burner and the protective quartz plate, 3) one between the quartz 

plate and the hot-side of the thermoelectric device, and 4) one on the cool-side of the 

thermoelectric device. The quartz plate in the current design was specifically used to protect the 
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thermoelectric device from overheating by the heat generated in the porous burner. Alumina 

honeycomb is used as the two outer sections of the burner and a highly porous, 80%, alumina 

reticulated foam is used as central section to stabilize the flame. 

The flow controllers were tested and calibrated before use. The flow controllers were 

attached to a bubble testing apparatus, a glass tube marked with volumes with a small amount of 

soapy water at the bottom shown in Figure 32. Injecting gas from the flow controllers through 

the soapy water caused bubbles to be formed inside the glass tube. Recording the time it took for 

the bubbles formed to fill a certain volume gave the flow rate in liters per minute and when 

compared to the readings from the flow controllers, allowed the calculation of a conversion 

factor for each flow controller. The data is provided in Table 2 for the methane controller and 

Table 3 for the air controller. A linear curve fit was done on the data and the resulting conversion 

factor for the air flow controller was 1.0374 and 1.094 for the methane flow controller. 

 

Figure 32. Bubble testing apparatus for calibration 
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Table 2. Bubble test results for calibration of methane flow controller 

Controller output (L/min) Volume filled (L) Time (s) Measured flow (L/min) Ratio 

0.99 0.8 43.87 1.09 1.105 
0.99 0.8 43.41 1.11 1.117 

0.79 0.8 56.42 0.85 1.077 
0.79 0.8 55.11 0.87 1.103 

0.59 0.8 74.98 0.64 1.085 
0.59 0.8 74.80 0.64 1.088 

0.39 0.4 58.35 0.41 1.055 

0.39 0.4 57.83 0.42 1.064 
0.195 0.2 65.29 0.18 0.943 

0.195 0.2 66.45 0.18 0.926 

 

Table 3. Bubble test results for calibration of air flow controller 

Controller output (L/min) Volume (L) Time (s) Measured flow (L/min) Ratio 

0.98 0.75 42.24 1.07 1.092 
0.98 0.75 41.59 1.08 1.102 

0.98 0.75 41.67 1.08 1.102 

0.98 0.75 40.49 1.11 1.133 
2.00 0.75 20.47 2.20 1.100 

2.00 0.75 20.18 2.23 1.115 
2.00 0.75 20.28 2.22 1.110 

2.00 0.75 20.60 2.18 1.090 
4.02 0.75 10.52 4.28 1.065 

4.02 0.75 10.46 4.30 1.070 

4.02 0.75 10.46 4.30 1.070 
4.02 0.75 10.63 4.23 1.052 

6.20 0.75 7.37 6.11 0.985 
6.16 0.75 7.26 6.20 1.006 

6.26 0.75 7.32 6.15 0.982 
6.16 0.75 7.22 6.23 1.012 

8.32 0.75 5.30 8.49 1.021 

8.26 0.75 5.29 8.51 1.030 
8.30 0.75 5.27 8.54 1.029 

8.32 0.75 5.31 8.47 1.019 
10.18 0.75 4.13 10.90 1.070 

10.22 0.75 4.21 10.69 1.046 
10.18 0.75 4.22 10.66 1.047 

10.12 0.75 4.14 10.87 1.074 
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A trial and error test was done to determine the optimal flow rate for the reactant mixture. 

Ignition was attempted while varying the flow mixture from 7.5 L/min to 40 L/min and the 

burner most quickly and stably ignited with an inlet flow rate of 11.5 L/min. This flow rate is 

kept constant during all the experimental testing. 

 

Figure 33. Temperature plot for inert section at stoichiometric mixture with quartz plate 

The temperature profile shown in Figure 33 is from a preliminary run. Each dataset 

corresponds to an individual thermocouple, matched with its corresponding location in Table 4 

and Figure 34. From Figure 33 we can see that the outside of the casing of the burner, Input 5, is 

no hotter than 250 °C. This means that since our thermoelectric can withstand up to a 250 °C 

temperature on its hot-side, that the presence of the quartz plate to lower the temperature is not 

necessary. For the experimental tests detailed later on, the quartz plate was removed and only 
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Inputs 0-5 and Input 7 will be included, since the hot-side of the thermoelectric will be in direct 

contact with the casing. 

Table 4. Detailed thermocouple placement locations 

Data set label Thermocouple location 

Input0 Before inlet honeycomb section, 12.7 mm (1/2 the radius) out from the radial center 

Input1 
Between the inlet honeycomb and the central foam section, 12.7 mm (1/2 the radius) 
out from the radial center 

Input2 Between the central foam section and the exit honeycomb, placed at the radial center 

Input3 Below the central foam section, direct bottom middle of the combustion chamber 

Input4 Above the central foam section, direct top middle of the combustion chamber 

Input5 Outside of the burner casing, middle of the top surface, underneath the quartz plate 

Input6 Above quartz plate, bottom (hot) side of the thermoelectric device 

Input7 Top (cold) side of the thermoelectric device 

 
Figure 34. Illustration of thermocouple locations 
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Task 2 – Catalyst Selection 

The selection of a catalytically active material to facilitate the combustion reaction is an 

important task. As a coating, both oxides and non-oxide ceramic compositions were considered. 

For oxides, two classes of ceramics were considered. One class was mixed ionic electronic 

conducting perovskites with different ions residing on A and B sites of the ABO3 perovskite 

structure. Another class of oxides was the fast ionic conductors with a fluorite structure. From 

the group of non-oxide ceramics, boron rich compositions, ceramics containing tungsten (W) as 

one of the elements and SiC are possible catalysts. LaCoO3, LaMnO3, LaFeO3, and LaCrO3 

based perovskites were one of the groups of materials of high interest. For example, 

La0.7Sr0.3Fe0.95Ru0.05O3 perovskite exhibits high ionic and electronic conductivity and is an 

excellent catalyst that significantly promotes oxygen reduction and, therefore, should actively 

facilitate a combustion reaction [114,115,116]. Co3+/Co4+ were also of extreme interest as cations 

of very high catalytic activities, so perovskites with Co content on the B site were carefully 

considered. Another group of ceramics considered is a group of conductors with fluorite 

structure. CeO2 doped with Gd2O3 and Sm2O3 are intensively used as a coating with a fluorite 

structure. 10-20mol% Gd2O3 - 90mol% CeO2 and 10-20mol% Sm2O3 - 90mol% CeO2 have very 

high oxygen conductivity, are easily reduced in a reducing environment and become an 

electronic conductor upon reduction. Gadolinia and samaria doped cerias are well known for 

their superior properties to facilitate fuel oxidation reactions and, therefore, will also promote 

combustion [117,118].  What is known of boron rich solids is that the catalicity of pure ZrB2 is 

very different than the catalicity of ZrB2-SiC compounds which are used as leading edges in 

hypersonic vehicles. ZrB2 and HfB2 are candidate materials to use as a catalytic coating. Another 

candidate of the non-oxide boron rich ceramics that was considered was B4C. However, the use 
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of WC powder as a coating is better justified since WC is a good catalytically active anode that is 

a very promising material to facilitate the hydrogen oxidation reaction in solid oxide fuel cell, if 

it does not present a problem by oxidizing.  

SiC was ultimately decided on as the trial catalyst from advice by Dr. Orlovskaya, project 

advisor, and being readily available and inexpensive. 

Task 3 – Catalyst Coating 

The catalytic powder of intrest was coated on the central porous section using a dip coating 

technique, shown in Figure 35. Dip coating is a very simple slurry coating technique which 

refers to a) immersing a sample (in this case a porous ceramic foam) into a tank containing a 

slurry with the coating material; b) keeping the sample in the slurry for a specific amount of 

time, allowing the coating to bond to the surface; c) removing the sample from the tank and 

allowing the sample with coating to drain and dry.  

 

Figure 35. Dip coating procedure of central porous foam section 

Dip coating is very straightforward and is the most suitable technique for this purpose since 

the porous structure and its surface are difficult to coat using other methods, such as spray 

deposition or sputter coating. Immersing the matrix in the slurry will ensure that all or almost all 

of the available surface will be covered with coating. The success of dipping depends on the 
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viscosity of the slurry in the dip tank. The dip coating solution is made by mixing the ceramic 

powder with propan-2-ol. Efficient mixing of ceramic powder with a solvent will be performed 

using ultrasound which will allow both an efficient homogenizing and stabilized suspension. In 

order to determine the loading of the porous burner with ceramic coating, the weight of the 

central porous part will be measured before deposition and after each deposition. Such 

measurements will determine how much coating was deposited and is available to promote 

combustion. If the coating thickness/loading was too little, then repetitive dipping into the slurry 

will be made, with each dipping followed by slow and consistent drying to ensure that there is no 

spallation and delamination of the coating layers after deposition. The goal is to develop a 

homogenous porous coating with high specific surface area strongly attached to the surface of 

the porous matrix. Three sections were dip coated with SiC as shown in Figure 36. Through trial 

and error, an optimal mixture ratio of 45 g of SiC powder to 100 mL of propan-2-ol was 

determined. This produced the desired viscosity necessary to coat the interior surface of the 

porous media. Three alumina sections were dip coated, covered and allowed to dry for 24 hours. 

A second dip coating was deemed necessary for an even and complete deposition of the catalyst. 

The sections were placed back to dry with the reverse side upwards, allowing them to drain in 

the opposite direction, providing a more even coat. Weight measurements were taken with just 

the initial alumina sections, after the first dip coating and after the second dip coating to 

determine how much of the catalyst was deposited and are listed in Table 5. 

Table 5. Dip coating weights (in grams) 

Section # Before dip coating After 1st dip 
 

After 2nd dip 
 

Deposited Catalyst 

1 108.95 115.01 121.20 12.25 

2 117.59 126.68 136.70 19.11 

3 120.66 130.29 139.70 19.04 
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Figure 36. Photos of dip coating procedure and resulting coated central sections  
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The top four photos in Figure 36 depict the dip coating process. The beaker containing the 

slurry mixture was placed in a water bath within the ultrasound machine, ensuring 

homogenization of the slurry. The alumina section was slowly lowered into the slurry by hand, 

held suspended as to not come in contact with the bottom or sides of the vessel for 60 seconds 

then slowly removed. The bottom left photo shows all three sections sitting to dry and the bottom 

right photo is a close up of one of the sections completely dry after the second coating. 

Task 4 – Coating Characterization 

Both the inert alumina porous media and a section with deposited catalytically active 

coatings were characterized using Scanning Electron Microscopy (SEM). SEM is an important 

microscopy technique which is indispensable to characterize the morphology and surface 

specifics of the coating. The surfaces were characterized at 500x and 5000x both before the 

combustion reaction to determine the quality of the surface and after combustion in order to 

detect changes which would help to clarify how the material affected combustion. Grain size and 

inhomogeneity in the material is studied with particular interest in the microstructural and 

compositional changes in the catalytic coating as a result of combustion. 

The micrographs of uncoated alumina surfaces are shown in Figure 37 with A&B being 

before testing, C&D from and outer edge of the porous section after testing and E&F from an 

interior section, closest to the igniter and combustion reaction. The surface of alumina before 

testing in the lower magnification image, Figure 37A, shows a rather homogeneous grain size 

and grain size distribution with no excessively large grains present. The surface termination steps 

can be found at the surface of alumina and more morphological features of the grains can be seen 

at the higher magnification, shown as Figure 37B. The overall alumina surface is clean from 
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external impurities and no deposits can be found. After testing with this piece of porous media in 

the reactor, certain amounts of deposits can be detected, shown in Figures 37C through F. The 

amount of the deposits is less for alumina on the outer edge of the combustion chamber, Figures 

37C and D, with larger quantities of deposits seen  at the location near the center of the reactor, 

where most likely the combustion reaction occurred, Figures 37E and F. Most likely the deposits 

are products of incomplete combustion and their source and chemical nature has to be studied in 

further detail. 

The surfaces of the porous media after dip coating with the catalytically active SiC ceramic 

layers are shown in Figure 38. While grain size of alumina without coating is rather large (3-5 

micron) the particles of SiC powder are all in the range of less than 1 µm and one can see that the 

alumina surface is homogeneously coated with SiC before testing (Figure 38A) and the grain size 

is rather small (Figure 38B). The surface of alumina coated with SiC after use in the combustion 

chamber in an outer area of the combustion chamber is shown in Figures 38C and D. The surface 

is still rather homogeneous, Figure 38C, but at high magnification one can see that the surface of 

alumina is not coated completely with SiC, as a layer of Al2O3 grains is still visible, with small 

SiC particles deposited in different selected locations, shown in Figure 38D. The alumina surface 

coated with SiC particles nearest to the combustion zone is shown in Figures 38E and F. Some 

contamination and non-homogeneous areas are visible with no clear deposits (Figure 38E), but at 

higher magnification one can see that morphology of the SiC fine grains has slightly changed 

from irregular sharp corner shapes in the unused section (Figure 38B) to a more smooth and 

rounded morphology after particles were exposed to the combustion (Figure 38F). No visible 

deposits can be detected on the surface, which might mean that all byproducts of combustion are 

used by the catalytically enhanced media. 
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Figure 37. SEM pictures of Al2O3: unused (A&B), used at the outer (C&D) and inner (E&F) areas of the combustion 

chamber at magnifications of 500x (left) and 5000x (right) 
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Figure 38. SEM pictures of SiC coated Al2O3: unused (A&B), used at the outer (C&D) and inner (E&F) areas of 

the combustion chamber at magnifications of 500x (left) and 5000x (right) 
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Task 5 – Power Output 

Thermoelectric modules do not operate the same way regulated power supplies do. As the 

load resistance of what the device is powering decreases, so does the output voltage of the 

thermoelectric. Thermoelectric modules have an appreciable internal resistance, meaning that as 

more current is drawn from the device, more of the available power is dissipated within the 

module itself [119]. Maximum load power is achieved when the load resistance is matched to the 

internal resistance of the thermoelectric module. During preliminary runs of the burner, the 

internal resistance of the thermoelectric was calculated with Equation 17 using a 1.3 Ohm 

resistor and measuring the load and no-load voltages. The internal resistance was calculated at 

different times during the preliminary run and the resulting values are listed in Table 6. 

𝑉𝐿𝑜𝑎𝑑 = 𝑉𝑁𝑜−𝑙𝑜𝑎𝑑 ∙ 𝑅𝐿𝑜𝑎𝑑𝑅𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙+𝑅𝐿𝑜𝑎𝑑                (17) 

The internal resistance was calculated to be between 5 and 6 Ohms over our operating range. 

A circuit was made with a 5 Ohm resistance to act as the load resistance for all further testing 

from readily available 10 Ohm resistors for near-optimal load power outputs. 

Table 6. Measured internal resistance of thermoelectric module 

TE Hot Side (°C) TE Cold Side (°C) ΔT(°) VLoad (V) VNo-load (V) RInternal (Ω) 

177.70 45.39 132.31 0.4527 2.433 5.69 

192.01 50.66 141.35 0.4477 2.4172 5.72 

206.47 54.32 152.15 0.4625 2.5204 5.78 

217.77 57.33 160.44 0.4527 2.5296 5.96 

223.98 58.28 165.70 0.4576 2.5523 5.95 

196.45 51.93 144.52 0.4602 2.5296 5.85 

166.37 47.79 118.58 0.4152 2.2466 5.73 

148.04 46.83 101.21 0.3537 1.8994 5.68 

 

Thermocouples will take recordings at the hot-side and cold-side of the thermoelectric device 

during testing. The current, voltage and power will be calculated and plotted for each test run. 
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The DAQ system used will measure the voltage drop over the load resistor connected to the 

thermoelectric module and the current and power will be calculated. The results of the 

measurements with the catalyst will be compared to the measurements performed using the inert 

Al2O3 medium and the effect of the catalyst on overall energy conversion will be determined. 

Experimental Procedure 

The porous burner will first be run at a stoichiometric mixture of methane and air at the 

predetermined total flow rate of 11.5 L/min for the inert central section. The burner will be 

allowed to run until it reaches a steady state temperature and will create base-line results for the 

operational parameters of the burner. The burner will then be run again with the inert central 

section except that once that burner has reached a near steady state temperature as determined by 

the base-line test; the fuel concentration will be slowly reduced. The inlet air flow will be 

increased alongside a decreasing methane content thereby keeping the total flow rate a constant. 

The concentration will be reduced every ten minutes, allowing the burner to plateau at the new 

concentration before further decreasing. This will be repeated until it is seen that the 

temperatures within the burner are not sustainable at that fuel concentration, thereby establishing 

the lean operation limit of the burner. If possible, after each temperature fall-off the 

concentration will be immediately increased and the test repeated, attempting again to determine 

the lean limit. This procedure will be repeated twice for the inert central section. 

The burner will then be tested with the sections with deposited catalytically active material. 

A base-line run will be performed with a stoichiometric mixture and be allowed to reach a steady 

state temperature. The burner will then be run at the same lean fuel concentration as found by the 

testing with the inert central sections. This will allow us to compare the power output and 
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temperature profile at the same concentration. Another test will be performed with the coated 

section where the concentration will be reduced as low as possible to determine the lean limit of 

operation of the burner with the coated section. Air at 80 L/min is fed into the cooling system for 

these tests. In each test the igniter is shut off once ~100 ˚C is measured inside. 

Experimental Results 

The burner was first run with the inert porous alumina section to obtain a base-line result. A 

stoichiometric mixture of methane and air was used for this test. The temperature profile is 

shown as Figure 39. The thermocouple between the inlet and central sections recorded a 

maximum steady-state temperature of 480 ˚C. The steady state temperature on the hot-side of the 

thermoelectric device was 225 ˚C and on the cold-side was 61˚C, giving a ∆𝑇 = 164 ℃. 

 

Figure 39. Temperature plot for inert central section, stoichiometric mixture 
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This run confirmed the results from our preliminary testing that the quartz plate is not 

necessary to reduce the exterior temperature to a value below the maximum operating 

temperature of the thermoelectric module. The burner took approximately 3 hours to reach its 

steady state temperature. The associated power plot for the inert section run at stoichiometric 

conditions is presented in Figure 40. The missing values in the middle of the chart correspond to 

when the thermoelectric was disconnected from the data acquisition device to measure the no-

load voltage with a hand-held multimeter. These measurements were used to calculate the 

internal resistance of the thermoelectric module in order to have a matched load resistance at the 

normal operating temperature as discussed in the Power Output section. The measured values 

were presented in Table 6. The maximum load current for this run was measured as 374 mA. The 

maximum load voltage was measured as 486 mV. The peak power obtained was 181 mW. 

 

Figure 40. Power plot for inert central section, stoichiometric mixture 
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The next test of the burner was to determine its lean operational limit with the inert central 

section. The burner, at a stoichiometric mixture, was allowed to reach a temperature of 470 ˚C, 

near the measured stoichiometric steady state. The flow rate of the methane was decreased in 

0.04 L/min intervals at higher equivalence ratio and at 0.01 L/min near the lean limit to 

maximize resolution. The air flow rate was correspondingly increased to maintain the 11.5 L/min 

overall inlet flow rate. The flow rate was decreased approximately every 10 minutes to allow the 

burner to reach a steady state temperature before further decreasing the concentration. A small 

temperature plateau is seen in both this and the previous run. The burner heats up to about 180 

˚C before a sudden temperature increase, reaching its higher steady-state value. The small 

increases in flame temperature seen at the 3.5 hour mark correspond to the flame extinguishing 

and the concentration being increased to allow a re-ignition before lowering concentration again. 

 

Figure 41. Temperature plot for inert central section at varying equivalence ratio, 1st run 
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The associated power plot for the first lean run with the inert central section is presented in 

Figure 42. A load resistance of 5 Ohms, as determined from the Power Output section, is used 

for this and all the remaining tests. The peak measured load current is 239 mA. The maximum 

measured load voltage is 1.19 V. The peak power is 285 mW. 

 

Figure 42. Power plot for inert central section at varying equivalence ratio, 1st run 

Figure 43 and 44 are temperature plots, each associated with a specific equivalence ratio. 

Each plot begins when the inlet mixture is decreased to the corresponding value and records until 

temperature reaches a steady state and the ratio is further reduced. Figure 43 is the yellow 

highlight from Figure 41 at an equivalence ratio of 0.609; steady state temperature was achieved 

at 410 ˚C. As the equivalence ratio was reduced, Figure 44, the green highlight, at equivalence 

ratio of 0.589 shows the temperature decreasing at a rate of 2.58 ˚C/min. This means that 

combustion was not sustainable and that the lean limit is between 0.589 and 0.609.   
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Figure 43. Temperature plot for 1st run of inert section, 𝜙 = 0.609, yellow highlight 

 

Figure 44. Temperature plot for 1st run of inert section, 𝜙 = 0.589, green highlight 
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The concentration was then increased to 0.737 to allow re-ignition and the methane flow rate 

was again reduced in intervals in order to measure the lean operating limit of the burner. Figure 

45 shows the red highlighted segment from Figure 41. At 0.589 equivalence ratio a steady state 

temperature of 365 ˚C was achieved. Figure 46 shows the purple highlighted section from Figure 

41. At an equivalence ratio of 0.572, the temperature continues to drop at a rate of 10.16 ˚C/min 

and combustion is not sustained. The obtained lean limit for combustion within an inert porous 

matrix is as low as 0.589. 

The smallest resolution obtainable by these tests is determined by the inlet flow rate and the 

smallest interval input into the flow controllers. With an inlet flow rate of 11.5 L/min and a 

minimum input of 0.01 L/min of methane, a minimum resolution of overall equivalence ratio of 

about 0.01 is achievable. 

 

Figure 45. Temperature plot for 1st run of inert section, 𝜙 = 0.589, red highlight 
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Figure 46. Temperature plot for 1st run of inert section, 𝜙 = 0.572, purple highlight  

The burner was run again with the inert porous section to try to obtain the lean limit to verify 

the results obtained in the first test. The temperature profile is shown in Figure 47. The burner 

was again allowed to reach a near steady state temperature of about 480 ˚C at stoichiometric 

conditions before the concentration was decreased. The associated power plot is shown as Figure 

48. The maximum measured load current is 193 mA. The maximum measured load voltage is 

0.964 V. The peak power is 186 mW. Figure 49 shows the yellow highlighted section from 

Figure 47. At an equivalence ratio of 0.589 a steady state temperature is achieved. Figure 50 

shows the green highlighted section and that at an equivalence ratio of 0.579, the temperature 

continues to drop at a rate of 3.41 ˚C/min and combustion is not sustainable. Both trials of the 

inert central section determined a lean limit of 0.589 equivalence ratio. 
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Figure 47. Temperature plot for inert central section at varying equivalence ratio, 2nd run 

 

Figure 48. Power plot for inert central section at varying equivalence ratio, 2nd run 
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Figure 49. Temperature plot for 2nd run of inert section, 𝜙 = 0.589, yellow highlight 

 

Figure 50. Temperature plot for 2nd run of inert section, 𝜙 = 0.579, green highlight 
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The burner was then run with one of the central sections with deposited catalytically active 

material at a stoichiometric inlet mixture. For this run, dip coated section #1 from Table 5 with 

12.25 grams of deposited material was used. The burner was allowed to reach a steady state 

temperature which took approximately 5.5 hours. Similar to previous runs, a temperature plateau 

at a relatively low value for the initial part of the run was seen. After about 2 ½ hours the cooling 

air flow was turned off as seen by the increase in the temperatures of Input5 and Input7 since it 

was possible that too much heat was being extracted from the system to achieve stable 

combustion. After about an hour the temperature suddenly increased, similar to the previous 

runs, and the cooling was turned back on and the burner achieved a steady state temperature. 

Shown in Figure 51, the maximum steady state temperature achieved was 544 ˚C. The hot-side 

of the thermoelectric device only reached 181 ˚C and the cold-side reached 53 ˚C for a ∆𝑇 =

128 ℃. The hot-side of the thermoelectric device is notably lower than in previous runs even 

though the maximum temperature is larger. The top-side of the central section within the burner, 

just below the thermoelectric device, shown as Input 4 achieved a maximum temperature 322 ˚C. 

For the stoichiometric test with an inert central section this location reached a maximum 

temperature of 355 ˚C which may account for part of the ~ 40 ˚C difference on the hot-side of the 

thermoelectric. As seen by the temperature profile, the location of Input1 is substantially higher 

than the others suggesting a more localized combustion region accounting for the temperature 

difference. Another explanation is that there may have been difference in the amount of contact 

surface with the metal casing and the central ceramic section in each run. This would mean a 

decreased amount of heat conduction to the outer casing, causing a lower temperature on the hot-

side of the thermoelectric module. Figure 52 is the associated power plot with maximum load 

current of 249 mA, maximum measured load voltage of 1.246 V and peak power of 311 mW. 
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Figure 51. Temperature plot for coated section at a stoichiometric mixture 

 

Figure 52. Power plot for coated section at a stoichiometric mixture 
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The burner was run with another dip cpated central ceramic section, allowed to reach a 

maximum temperature of 573 ˚C at a stoichiometric ratio and then the inlet ratio was reduced in 

intervals, allowing a steady state value to be reached in between each decrease to find the lean 

limit with a coated section. Dip coated section #2 from Table 5 with 19.11 grams of deposited 

catalyst was used. The burner was Figure 53 shows the overall temperature profile for the burner. 

The burner was ignited without cooling and was turned on once the first small plateau was 

passed at around the 2.5 hour mark. Once the peak was reached, a hot-side temperature on the 

thermoelectric of 128 ˚C and cold-side temperature of 47 ˚C is measured. These values are much 

lower than previously recorded and is likely due to the top central thermocouple within the 

burner, Input 4, only reading ~280 ºC compared to 322 ºC and 355 ºC from previous runs. This 

indicates that the temperature peaked right at the front of the central porous section. 

 

Figure 53. Temperature plot for coated section at varying equivalence ratio, 1st run 
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Figure 54. Power plot for coated section at varying equivalence ratio, 1st run 

 
Figure 54 shows the power plot for this lean run with a catalytically coated central section. 

The large jump at the 2.5 hour mark corresponds to when the cooling was turned on. The peak 

load current is 168 mA, maximum load voltage is 0.841 V and peak power is 141 mW. The 

mixture ratio was reduced to determine the lean operation limit with the catalytic section. Figure 

55, the yellow highlighted section of Figure 53, shows steady state at an equivalence ratio of 

0.698. Figure 56, the green section, shows the temperature decreasing by 7.94 ˚C/min at an 

equivalence ratio of 0.649. The concentration was increased to 0.728 to allow the burner to reach 

a steady temperature and then again reduced. Figure 57, the red section, shows steady state 

achieved at 0.688 equivalence ratio. Figure 58, the purple highlight, shows the temperature 

continuously decreasing by 6.50 ˚C/min at 0.668 equivalence ratio. This means that combustion 

was not sustainable at this condition and that the lean limit is between 0.688 and 0.668.  
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Figure 55. Temperature plot for 1st run of coated section, 𝜙 = 0.698, yellow highlight 

 

Figure 56. Temperature plot for 1st run of coated section, 𝜙 = 0.649, green highlight 
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Figure 57. Temperature plot for 1st run of coated section, 𝜙 = 0.688, red highlight 

 

Figure 58. Temperature plot for 1st run of coated section, 𝜙 = 0.668, purple highlight 
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The burner is again tested with a central section with a catalytically active deposition to try to 

determine its lean operation limit. For this run, dip coated section # 3 from Table 5 with 19.04 

grams of deposited material was used. The burner was allowed to reach a peak temperature of 

508 ˚C at stoichiometric conditions before the cooling was turned and mixture ratio was 

decreased in intervals. Figure 59 shows the temperature profile for this run. The burner took 

about one hour to reach its near-peak temperature at stoichiometric conditions. Figure 60 shows 

the corresponding power plot. The peak measured load current is 165 mA. The maximum 

measured load voltage is 0.825 V. The peak power is 136 mW. It is noted that the initial plateau 

for this run was very short and the temperature jump occurred at only 110 ˚C before rising to its 

peak temperature. 

 

 

Figure 59. Temperature plot for coated section at varying equivalence ratio, 2nd run 

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4

T
em

p
er

a
tu

re
 (

°C
) 

Time (Hours) 

Input0

Input1

Input2

Input3

Input4

Input5

Input7



97 
 
 

 

Figure 60. Power plot for coated section at varying equivalence ratio, 2nd run 

The equivalence ratio of the inlet mixture is reduced to try to determine a lean operating limit 

for the burner with a coated center section. Figure 61, the yellow highlighted segment from 

Figure 59, shows a stable temperature at an equivalence ratio of 0.651. Figure 62, the green 

highlight, shows the temperature profile declining by 5.14 ˚C/min when the equivalence ratio 

was reduced to 0.631. The concentration was increased back up to 0.692, allowed to reach a 

steady level and then further reduced. Figure 63, the red highlight, shows that at an equivalence 

ratio of 0.634 the temperature remained level. Figure 64, the purple highlight, showed a 

decreasing temperature profile by 2.03 ˚C/min at an equivalence ratio of 0.631. From this test we 

can infer that the lean limit for the burner with a catalytically coated central section is between 

0.634 and 0.631. 
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Figure 61. Temperature plot for 2nd run of coated section, 𝜙 = 0.651, yellow highlight 

 

Figure 62. Temperature plot for 2nd run of coated section, 𝜙 = 0.631, green highlight 
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Figure 63. Temperature plot for 2nd run of coated section, 𝜙 = 0.634, red highlight 

 

Figure 64. Temperature plot for 2nd run of coated section, 𝜙 = 0.631, purple highlight 
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Table 7. Compilation of experimental results 

Minimum steady equivalence 
ratio observed 

Inert section stoichiometric mixture 1.000 

Inert section, lean mixture, run 1 

 

0.589 

Inert section, lean mixture, run 2 

 

0.589 

Catalytic section stoichiometric 
 

1.000 

Catalytic section, lean mixture, run 1 

 

0.688 

Catalytic section, lean mixture, run 2 

 

0.634 

Peak steady state temperature 
at lean limit 

Inert section stoichiometric mixture 480 ˚C 

Inert section, lean mixture, run 1 

 

365 ˚C 

Inert section, lean mixture, run 2 

 

306 ˚C 

Catalytic section stoichiometric 
 

544 ˚C 

Catalytic section, lean mixture, run 1 

 

407 ˚C 

Catalytic section, lean mixture, run 2 

 

266 ˚C 

TEM hot-side temperature at 
lean limit 

Inert section stoichiometric mixture 223 ˚C 

Inert section, lean mixture, run 1 

 

94 ˚C 

Inert section, lean mixture, run 2 

 

141 ˚C 

Catalytic section stoichiometric 
 

181 ˚C 

Catalytic section, lean mixture, run 1 

 

95 ˚C 

Catalytic section, lean mixture, run 2 

 

87 ˚C 

TEM cold-side temperature at 
lean limit 

Inert section stoichiometric mixture 60 ˚C 

Inert section, lean mixture, run 1 

 

39 ˚C 

Inert section, lean mixture, run 2 

 

45 ˚C 

Catalytic section stoichiometric 
 

53 ˚C 

Catalytic section, lean mixture, run 1 

 

39 ˚C 

Catalytic section, lean mixture, run 2 

 

40 ˚C 

Load current at lean limit 

Inert section stoichiometric mixture 374 mA 

Inert section, lean mixture, run 1 

 

171 mA 

Inert section, lean mixture, run 2 

 

125 mA 

Catalytic section stoichiometric 
 

249 mA 

Catalytic section, lean mixture, run 1 

 

116 mA 

Catalytic section, lean mixture, run 2 

 

95 mA 

Load voltage at lean limit 

Inert section stoichiometric mixture 0.486 V 

Inert section, lean mixture, run 1 

 

0.853 V 

Inert section, lean mixture, run 2 

 

0.625 V 

Catalytic section stoichiometric 
 

1.246 V 

Catalytic section, lean mixture, run 1 

 

0.578 V 

Catalytic section, lean mixture, run 2 

 

0.477 V 

Load power at lean limit 

Inert section stoichiometric mixture 181 mW 

Inert section, lean mixture, run 1 

 

145 mW 

Inert section, lean mixture, run 2 

 

78 mW 

Catalytic section stoichiometric 
 

311 mW 

Catalytic section, lean mixture, run 1 

 

67 mW 

Catalytic section, lean mixture, run 2 

 

46 mW 
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A compilation of all the results obtained from testing is listed in Table 7. It includes the 

minimum achieved lean limit, the peak steady state temperature, the TEM hot- and cold-side 

temperatures at steady state and the measured load current, voltage and power at the steady state 

lean limit. The minimum achieved lean limit for the inert porous section was at an equivalence 

ratio of 0.589. The achieved lean limit for the catalytically coated porous section was 0.634. 

The overall conversion efficiency of the burner system is calculated and presented in Table 8 

for operation with inert and catalytic central sections at both stoichiometric mixture and the 

achieved lean limit. The input chemical energy is calculated considering a heat of combustion of 

methane of 55.6 MJ/kg [89], density of 0.668 kg/m3 at NTP (20 °C, 1 atm) conditions [89], with 

an inlet total flow rate of 11.5 L/min, assuming complete combustion and the listed 

stoichiometric mixture or lean equivalence ratio.  The inert porous section at a stoichiometric 

inlet mixture had the largest hot-side temperature and temperature gradient across the 

thermoelectric and was closest to the manufacture’s specifications but it did not produce the most 

power. This is likely due to the load resistance not being matched to the internal resistance of the 

thermoelectric (~5.95 Ohm internal vs. 1.3 Ohm load) which was the case the later runs.  The 

catalytically coated section at stoichiometric had the greatest overall efficiency even though it 

only had a ∆𝑇 = 128 ℃ across the thermoelectric module.  Both inert and coated sections, 

during their lean limit tests, had low peak temperatures and therefore low temperature gradients 

over the thermoelectric and generated the least amount of power. 

Table 8. Overall conversion efficiency 

Test conditions Lean limit 
Input chemical 

energy 
Output electrical 

energy 
Conversion 
Efficiency 

Inert, stoichiometric mixture 1.000 676.88 W 181 mW 0.027 % 

Inert, lean mixture 

 

0.589 414.86 W 145 mW 0.035 % 

Catalytic, stoichiometric 
 

1.000 676.88 W 311 mW 0.046 % 

Catalytic, lean mixture 

 

0.634 444.35 W 46 mW 0.010 % 
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CHAPTER FIVE: CONCLUSION 

 
The porous burner was successful in meeting most of the design guidelines and goals. The 

notable shortfalls are the low overall conversion efficiency, low power generation and the 

decreased lean performance with the catalytically coated central sections. The SEM 

characterization showed notable changes in the microstructure of the catalyst coating, indicating 

that it was likely active durin combustion. One possible explanation for the poor performance of 

the catalyst was that the dip coating procedure significantly changed the physical structure of the 

porous sections as shown in Figure 65. The coating is visibly quite thick, reducing the pore size 

of the medium which possibly had a significant impact on the medium’s heat transfer properties. 

 

Figure 65. Uncoated and coated alumina foam sections 

The change of porosity of the section by the catalyst may have affected the combustion 

characteristics. During testing, the burner with the catalytically coated section was noticeably 

more difficult to ignite, requiring disassembly and small changes in the placement of the porous 

sections and igniter before ignition was achieved. The dip coating process also blocked some of 

the pores of the porous medium, affecting the gaseous flow. A less viscous solution, drying the 

sections length-wise to minimize clogged pores or considering other methods of coating the 

central section with catalytically active material may solve this problem. 
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The start-up time for each test run was quite long, between 1 and 3 hours in most cases. This 

is not practical for a portable power source to compete with current batteries. The long start-up 

time is likely due to the strong influence of thermal and boundary extinction on the combustion 

process when trying to ignite with a cold porous medium. A method of preheating the central 

section, which was considered in many of the reviewed experimental cases, would solve this 

problem. Another option is to use a different material for the central section with higher heat 

transfer properties. The end goal would be to allow the burner to produce useable power only 

minutes after ignition. 

Power output will be greatly increased by simply attaching more thermoelectric devices 

although at the current output, 20 watts would take as many as 60 thermoelectric modules to 

obtain. The power output obtained from the thermoelectric modules was far less than the 

manufacturer’s specifications. Only a small portion of the casing surface was covered with a 

thermoelectric, particularly for testing purposes, but to become a more efficient power source 

more thermoelectric devices can be added, utilizing more of the otherwise lost heat. Connecting 

the thermoelectric modules together and being able to vary their combined internal resistance to 

match the resistance of the device to be powered would increase power output and overall 

conversion efficiency. 

Surface contact between the interior of the casing and the central porous medium may have 

been poor, reducing heat flow to the thermoelectric module. The manufacturing tolerances for 

the steel casing, central porous foam and outer honeycombs sections were all slightly off. The 

central section was slightly too large to fit inside the burner and had to be filed down prior to use. 

The honeycomb sections were slightly too small and a piece of gasket material was wrapped 

around them to ensure the flow would travel through the pores, not around. These imperfections 
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in manufacturing could have significantly affected the conduction heat transfer characteristics 

within the burner, effecting overall performance. 

Future recommendations include varying the material selection for the central porous section, 

possibly to SiC or a metal with higher heat transport properties. Different pore sizes and 

porosities should be considered and their effect on overall performance measured. Numerous 

catalytic materials were considered in this research and future tests should compare and 

characterize the performance of these. Many of the experimental set-ups reviewed in literature 

only had a two-section burner consisting of a pre-heat and combustion section. The lean fuel and 

air mixtures would not be combustible outside the burner so, with optimization, there is no 

chance of the flame propagating outside the burner. A two section burner would reduce overall 

size and increase energy density. The heat losses from the system can be measured in future tests 

to calculate the overall Carnot cycle efficiency to compare with other power generation systems. 

To become a portable and marketable power system the porous burner has to be simplified 

and self-contained. These experimental tests used two flow controllers, each with their own 

variable power sources and an electric igniter. This meant that the system took a significant 

amount of external power to operate; a simpler set-up should be considered. If the cooling 

assembly were significantly improved, the inlet air flow of ~10 L/min could be used as the 

impinging flow or to cool a heat-sink also preheating the flow and reducing heat losses. 

Thermoelectric conversion efficiency is naturally low; other methods of converting the energy 

released during combustion into useful power should be explored in future work. A porous 

medium burner will take a significant amount of optimization to be used as a power generation 

system but is a very promising technology.   
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