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ABSTRACT 

 Electricity has become so ingrained in everyday life that the current generation has no 

knowledge of life without it. The majority of power generation in the United States is the result 

of turbines of some form. With such widespread utilization of these complex rotating machines, 

any increase in efficiency translates into improvements in the current cost of energy. These 

improvements manifest themselves as reductions in greenhouse emissions or possible savings to 

the consumer.  

 The most important temperature regarding turbine performance is the temperature of the 

hot gas entering the turbine, denoted turbine inlet temperature. Increasing the turbine inlet 

temperature allows for increases in power production as well as increases in efficiency. The 

challenge with increasing this temperature, currently the hottest temperature seen by the turbine, 

is that it currently already exceeds the melting point of the metals that the turbine is 

manufactured from.  Active cooling of stationary and rotating components in the turbine is 

required. Cooling flows are taken from bleed flows from various stages of the compressor as 

well as flow from the combustor shell. This cooling flow is considered wasted air as far as 

performance is concerned and can account for as much as 20% of the mass flow in the hot gas 

path. Lowering the amount of air used for cooling allows for more to be used for performance 

gain. 

 Various technologies exist to allow for greater turbine inlet temperatures such as various 

internal channel features inside of turbine blades, film holes on the surface to cool the outside of 

the airfoil as well as thermal barrier coatings that insulate the airfoils from the hot mainstream 
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flow. The current work is a study of the potential performance impact of coupling two effusion 

technologies, transpiration and discrete hole film cooling. Film cooling and transpiring flows are 

individually validated against literature before the two technologies are coupled. The coupled 

geometries feature 13 film holes of 7.5mm diameter and a transpiring strip 5mm long in the 

streamwise direction. The first coupled geometry features the porous section upstream of the film 

holes and the second features it downstream. Both geometries use the same crushed aluminum 

porous insert of nominal porosity of 50%. Temperature sensitive paint along with an ‘adiabatic’ 

Rohacell surface (thermal conductivity of 0.029W/m-K) are used to measure adiabatic film 

cooling effectiveness using a scientific grade high resolution CCD camera. The result is local 

effectiveness data up to 50 film hole diameters downstream of injection location. Data is laterally 

averaged and compared with the baseline cases. Local effectiveness contours are used to draw 

conclusions regarding the interactions between transpiration and discrete hole film cooling. It is 

found that a linear superposition method is only valid far downstream from the injection 

location. Both coupled geometries perform better than transpiration or the discrete holes far 

downstream of the injection location. The coupled geometry featuring the transpiring section 

downstream of the film holes matches the transpiration effectiveness just downstream of 

injection and surpasses both transpiration and film cooling further downstream.  
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CHAPTER 1:  INTRODUCTION 
 

Turbomachinery 

Turbomachinery is defined as the mechanical system responsible for the transfer of 

energy from a fluid utilizing a rotor.  This transfer of energy is the fundamental basis for power 

generation. Through turbomachines, power is generated, airplanes are flown, and marine vessels 

are propelled. Hydrocarbon fuels are the primary mode of energy generation and due to the 

increase in public awareness of the environmental and economic impact of burning hydrocarbon 

fuels, it is crucial to extract as much power from each pound of fuel as possible with the least 

amount of released pollution. With the push towards new "green" technologies, it is crucial to 

not forget that the old concepts are still being developed and improved in power output and 

efficiency. 
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Figure 1: Assembled Gas Turbine Rotor 

Turbines are responsible for nearly the entirety of power generation in the United States. 

The fundamental thermodynamic operation of gas turbines is the Brayton cycle. In the ideal open 

loop Brayton cycle, air is isentropically compressed in a compressor, heat is added to the air 

under constant pressure through the combustors, and power is extracted through the isentropic 

expansion of the air through the turbine. Figure 2 is a diagram of the open loop Brayton cycle. 

The Brayton cycle represented on a T-S diagram with and without losses is shown in Figure 3. 
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Figure 2: Open Loop Brayton Cycle 

 

Figure 3: Brayton Cycle T-S Diagram - Ideal and With Inefficiencies 
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Efficiency of the ideal Brayton cycle is defined using the difference in temperatures in 

Equation 1.  

 

 
                                                              

 

(1)  

 

Readily apparent in this equation is the increase in efficiency resulting from increasing 

T3 (Turbine Inlet Temperature). It has been argued that this is the most dependable method of 

increasing efficiency (Wilcock, Young, & Horlock, 2005). 

The Turbine Inlet Temperature (TIT), the hottest temperature experienced outside of 

combustion, has exceeded the allowable metal temperatures since the 1960's. Passive cooling is 

woefully insufficient for modern turbine blades, therefore active cooling is required. As the TIT 

increases, the heat transmitted to the turbine blades is increased. The primary method of cooling 

the blades is utilizing air bled before the combustion stage.  

Cooling air is fed through internal channels inside the blades and is ejected through 

features on the blade surfaces such as discrete holes or slots. The blade cooling system must be 

designed to minimize thermal gradients through the blade therefore minimizing thermal stresses. 

The blade cooling air is extracted after it has traveled through the entire compressor therefore has 

had the maximum amount of work imparted to it.  This air is considered the most "expensive"; 

the utilization of which incurs the greatest thermal efficiency penalty. Therefore minimization of 
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cooling air is crucial for high efficiency (Han, Sandip, & Srinath, 2000). The focus of the current 

work is on development of a more efficient implementation of current cooling schemes. 

Film Cooling 

Discrete hole film cooling is common in usage for turbine blade and vane cooling.  The 

first stage vane and blade are subjected to the highest heat fluxes downstream of the combustor, 

on the order of 1.5-2 MW/m
2
 (Polezhaev, 1997). Therefore the first stage vane and blade 

requires the greatest amount of coolant injection and requires the greatest surface area covered.  

Discrete hole film cooling directly protects the surface of the airfoils at discrete locations as well 

as downstream of the injection point (Han et al., 2000). The internal channels created through the 

airfoil surface are additionally cooled by internal convection. 

Showerhead cooling consists of multiple rows of closely space holes near the stagnation 

point of the airfoil. Areas of high thermal gradients on the pressure and suction sides of the 

airfoil can be cooled with single or multiple rows of film holes. Due to the non-uniformity of 

heat flow rate along the contour of the airfoil, cooling schemes are not symmetrical. The design 

of a film cooling system relies on knowledge of airfoil temperatures consequently "blade life 

may be reduced by half if the blade metal temperature prediction is off by 50°F” (Han et al., 

2000). Additionally, detrimental thermal gradients can be created downstream of injection 

locations from the unprotected surface between film jets. However, film cooling is a widely 

adopted method of cooling as opposed to transpiration cooling. 
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Transpiration Cooling 

Injection through a porous medium is denoted transpiration cooling. The coolant passing 

through the pores contributes to the cooling process by absorbing some of the internal energy of 

the airfoil as well as simultaneously decreasing the convective heat transfer on the exterior of the 

airfoil (Polezhaev, 1997). The exiting flow from the porous surface drives the hot gas boundary 

layer off of the airfoil surface and coats the downstream region with a lower temperature fluid. 

The result is a decrease in heat transfer rate to the surface. Transpiration cooling is the limiting 

case of film cooling where the pitch to diameter ratio is taken to unity (Eckert & Cho, 1994). 

Transpiration has been researched since the 1950's (Kays, 1972) and yet it is still not in common 

usage in production components due to structural and manufacturing difficulties. With the 

technological advancement of laser techniques such as laser additive manufacturing (LAM), 

porous sections will be able to be created simultaneously with the entire airfoil in a single step 

process. Implementation of these manufacturing techniques is in the foreseeable future and could 

allow transpiration to be finally utilized in airfoils. 

 

Current Work 

 The purpose of this study is to investigate the cooling performance of coupling of discrete 

hole film cooling and transpiration cooling. Experimental data is greatly lacking for transpiration 

cooling and although film cooling is a widely researched topic, no data coupling the two can be 

found in literature. By conducting this study, the body of knowledge in open literature is 

expanded.  
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With the absence of coupled data available in literature, an educated starting point had to 

be formulated. It has been shown that film cooling performance of multiple rows of discrete 

holes can be predicted using the data from a single row of holes through superposition (Sellers, 

1963). Discrete hole film cooling data and transpiration cooling data is separately available in 

open literature. Two baseline geometries are experimentally characterized, one purely discrete 

hole film cooling and one purely transpiration cooling. Boundary conditions for the transpiring 

flow were established utilizing hot-wire anemometry. The turbulence length scale described by 

Barrett and Hollingsworth (2001) was utilized which allowed for the length scale to be computed 

from a single location.  Integral time scales were calculated using the zero-frequency estimate of 

the one dimensional energy spectrum (Lewalle & Ashpis, 2004). The implications of this 

information are to provide more accurate boundary conditions used for computational fluid 

dynamic analysis of transpired flow from similar geometries. A computational fluid dynamic 

study was performed to evaluate those boundary conditions without modeling the porous wall. 

Multiple rows of discrete holes and multiple rows of discrete transpiration slots are 

investigated for the purpose of comparison for the coupled geometries. Different configurations 

of hole spacing along with compound angle are investigated in order to compare cooling 

performance to the multiple row transpiration case. Four multi-row configurations are tested 

experimentally using high resolution measurements of Temperature Sensitive Paint (TSP).  

 Through the analytical simulation, the critical features of the coupled geometry are 

identified, along with the relative sensitivity of those features to the cooling effectiveness and 

aerodynamic losses. In this study geometries were restricted such that separately the discrete hole 
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film cooling and transpiration cooling could be validated with available data. Two coupled 

geometries are tested experimentally using high resolution TSP measurements. The 

experimentally obtained surface data is used to characterize the performance of the two coupled 

geometries.  

 Adiabatic film cooling effectiveness data is presented for a total of eight different 

geometries. The geometries range from some which are comparable to literature and some that is 

completely novel. The advantages of coupling discrete hole film cooling and transpiration 

cooling could favorably influence further cooling designs.   
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CHAPTER 2:  BACKGROUND 
 

Film Cooling 

 Fluid injection has been utilized in a multitude of fields such as rocket nozzles, reentering 

space vehicles, plasma jets, and high temperature turbine parts. The body of knowledge is vast 

with publications dating more than half a century ago. The focus of film cooling research is to 

minimize coolant usage with the maximum amount of surface protected. Early investigations 

found that film cooling through a continuous slot was the most effective. Structural 

considerations prohibit the usage of large slots which gives rise to the preference of rows of 

holes (Goldstein, 1971). The film cooling reference by Goldstein provides an overview of the 

early investigations in film cooling for slots and discrete holes. Single hole studies evolved into 

single row studies, creating the most basic form of discrete hole film cooling; the row of 

cylindrical holes in a flat plate. One of the earlier studies by Bergeles investigated an inclined 

cylindrical hole injecting into a crossflow. It was found that the jet lifts off the surface and 

penetrates the crossflow boundary layer as the mass flux ratio of coolant to crossflow is 

increased (Bergeles, Gosman, & Launder, 1977). The interaction between the crossflow and the 

jet flow create counter-rotating vortices that promote crossflow entrainment and jet lift-off 

(Haven & Kurosaka, 1997), as shown in Figure 4. 
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Figure 4: Counter-Rotating Vortex Pair 

 

 The effect of hole geometry, coolant to crossflow density ratio, and crossflow boundary 

layer thickness was studied by Goldstein (Goldstein, Eckert, & Burggraf, 1974). The density 

ratio influences the film jets tendency to lift from the surface by increasing the necessary 

momentum flux ratio to achieve separation. Experimental efforts in this era of research focused 

primarily on film cooling effectiveness. Equation 2, the film cooling effectiveness equation in 

words is a nondimensional ratio of the temperature delta of an "adiabatic wall" temperature with 

the mainstream to the coolant exit temperature with the mainstream.   

               (2)  
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Film Cooling Nomenclature 

The adiabatic wall temperature is the imaginary quantification of temperature which the 

wall assumes when the heat flux from the cooled surface to the interior of the wall is zero. The 

film cooling effectiveness is essentially a nondimensionalized form of the adiabatic wall 

temperature with the useful properties of readily bounding the possible outcomes of cooling. An 

effectiveness of zero represents a wall temperature equal to the crossflow temperature which 

corresponds to insufficient cooling. Conversely an effectiveness of unity is the upper limit of 

cooling capabilities; the wall temperature is equal to the exiting coolant temperature. The other 

property commonly sought after in film cooling investigations is the heat transfer coefficient 

(htc). 

             (3)  

 

The heat flux is represented by q, Taw is the adiabatic wall temperature, and Tw is the wall 

temperature. The heat transfer coefficient, also known as convection conductance, must be 

known for a total overview of cooling performance. However heat transfer coefficients are not in 

the scope of the current study and will not be discussed further. 

Film cooling geometries are characterized by nondimensionalizing the various 

parameters by the hole diameter.   
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Figure 5: Film Cooling Nomenclature 

Pitch refers to the spanwise space of film holes, perpendicular to the crossflow direction. 

Alpha, which will be referred to as the inclination angle, is the angle between the upstream film 

surface and the film hole; 90 degrees would represent normal injection. Decreasing the 

inclination angle is one of the possible means of keeping the film jet close to the injection 

surface from the decrease in wall normal momentum. The length of the hole has different effects 
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depending on whether the L/D is considered long or short. A short L/D acts to increase the 

effective inclination angle, subsequently increasing wall normal momentum and achieving jet 

lift-off at a lower momentum ratio (Sinha, Bogard, & Crawford, 1991). 

            
(4)  

 

              
(5)  

 

         
(6)  

 

        
(7)  

 

 

The ratio of coolant mass flux to mainstream mass flux is represented by blowing ratio, 

M, and is a parameter often varied in film cooling studies. Blowing ratio is used to quantize the 

amount of coolant being injected as well as behavior of the jet once exiting the film hole. The 

momentum flux ratio and density ratio are seen in Equation 5 and Equation 6. The last equation 
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relates the momentum flux ratio with the blowing ratio and density ratio. All three ratios are 

required to predict the behavior of a film jet. 

 

Single Row Film Cooling 

The density ratios typically used in research are typically less than unity; a turbine blade 

film cooling scenario would see a density ratio on the order of two. Experimentally it is easier to 

create a heated coolant with an approximately ambient mainstream, thus creating the low density 

ratio. The effect of density ratio has been studied extensively in (Forth, Loftus, & Jones, 1985; 

Goldstein, Jin, & Olson, 1999; Pedersen, Eckert, & Goldstein, 1977; Pietrzyk, Bogard, & 

Crawford, 1990). Low density ratios have been shown to induce jet lift off at a lower mass flux 

ratio. Logically this makes perfect sense.  Assuming a constant mass flow rate through the film 

holes, as the density decreases, the velocity must increase.  Since the momentum of the film jet 

relies on the square of the velocity, the increase in velocity overpowers the decrease in density 

and the momentum is increased. The inverse occurs with higher density ratios, the net effect is 

for the jets to stay attached to the surfaces. Pedersen et al. (1977) varied the density ratio without 

changing the coolant temperature by using a mass transfer analogy and changing the gas used for 

the injected coolant. Centerline effectiveness and laterally averaged effectiveness is given at 

varying blowing and density ratios for a single row of inclined holes. Equation 8 represents the 

lateral average of the film cooling effectiveness. 



15 

 

     ∫                

(8)  

 

Laterally averaging the effectiveness allows the spanwise effectiveness distribution to be 

averaged and collapsed to single points at increasing downstream positions. 

Pedersen et al. (1977) found that at the lowest blowing ratio of 0.213 the change in 

density ratio has very little effect. However at the higher blowing ratio of 0.515, increasing the 

density ratio equals an increase in effectiveness downstream of injection. The two higher 

blowing ratio plots demonstrate the jet attachment effect of higher density ratios. The trend of 

decreasing effectiveness with increasing density ratio at a blowing ratio of approximately 1.0 is 

shown in Figure 6. As the density ratio increases at constant blowing ratio, a critical value were 

the jet detaches from the surface is reached. This shows that when comparing film cooling 

effectiveness, nearly equal density ratios must be considered solely. The less than unity density 

ratios exhibit markedly lower effectiveness at blowing ratios greater than or equal to 0.515. At a 

blowing ratio of 1.05 and 1.96 both density ratio 0.743 and 0.956 show jet lift off downstream of 

injection, characterized by the low effectiveness. 
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Figure 6: Laterally averaged effectiveness trend with density ratio at M=1.0 

The very long L/D used by Pedersen et al. (1977) was shown by Goldstein (1999) to not 

have a significant effect on laterally averaged effectiveness. Goldstein used a naphthalene 

sublimation mass transfer technique to measure film effectiveness and heat transfer coefficients. 

At the density ratio of unity used by Goldstein et al. (1999), the jet spreading is shown to 

decrease as the blowing ratio is increased from 0.5 to 1.0 due to the lift off of the jet. At a 

blowing ratio of 2.0, the jet lift off is significant; effectiveness is increased in between the holes 

due to the secondary flow turbulently mixing with the mainstream. 

Several studies approximately match the geometry used by Pedersen et al. (1977) and 

Goldstein et al. (1999), such as those by Brown and Saluja (1979), Foster and Lampard (1980), 

Pietrzyk, Bogard, and Crawford (1989); Pietrzyk et al. (1990), and Sinha et al. (1991). Brown 

and Saluja (1979) studied a single row of holes at P/D of 2.67 with an inclination of 30 degrees. 

Raising the freestream turbulence intensity was found to decrease effectiveness at an X/D of 5, 

but at X/D of 15 it increased the effectiveness for blowing ratios greater than 0.7.  For lower 
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blowing ratios, the higher turbulence intensity also decreased the effectiveness at X/D of 15. The 

turbulence intensity was increased up to a maximum of 12%; the majority of the presented data 

was at 1.7% however. The density ratio of 1.1 allows for lower momentum flux ratios which 

increases effectiveness for higher blowing ratios compared to low density ratio studies. The 

increase in effectiveness by higher turbulence intensities for higher blowing ratios is due to the 

increased jet spreading of the lifted off jet. However the increased jet spreading comes at the cost 

of higher jet lift off closer to the hole exit. 

The effect of injection angle, upstream boundary layer thickness, and hole spacing was 

studied by Foster and Lampard (1980). At low blowing rates, the effectiveness is increased by 

low inclination angles; however the trend reversal is due to jet lift off. At the higher blowing 

rates, the low inclination angle jets lift from the surface and penetrate further into the mainstream 

than the higher and normal injection cases. The normal injection case has the highest wall normal 

velocity, but the jet spreads immediately and subsequently stays closer to the surface. When the 

jets lift off the mainstream enters the region near the wall and low effectiveness is found. The 

spreading effect of the lifted jets is found for all inclination angles and the trend is for increased 

spreading with increasing inclination angle. Increasing the upstream boundary layer thickness 

was found to decrease effectiveness. It is concluded that increasing the upstream boundary layer 

thickness increases the mixing between the jets and the freestream flow, decreasing the 

effectiveness of the coolant. 

It is shown by Foster and Lampard (1980) that at low blowing rates, increasing the 

distance between holes decreases effectiveness by leaving the region between holes entirely 



18 

 

unprotected. The P/D of 2.5 however at the higher blowing rate of 2.4 forces the jets to coalesce 

and block the mainstream from entering the near wall region, increasing the effectiveness (Foster 

& Lampard, 1980). As the hole to hole spacing is increased, the high blowing ratio has 

effectiveness near zero due to jet separation and the uncooled area between jets. 

Pietrzyk et al. (1989) performed a hydrodynamic study of a row of inclined holes ejecting 

into a crossflow. Data for density ratio of unity and two is presented for a blowing ratio of 0.5. 

Laser Doppler Velocimetry was used to characterize the velocity vectors of the ejecting jet in 

crossflow. The entire flowfield one diameter upstream and 30 diameters downstream of the hole 

was graphically represented. Downstream of the hole exit the higher density jet maintained a 

lower near wall velocity than the unity density jets, this suggests a smaller amount of high 

velocity mainstream flow was entrained. The turbulence levels and uv shear stress maximums 

were similar between the differing density ratio jets, however the high density ratio jet had a 

significantly higher relaxation rate.  

Pietrzyk et al. (1990) shows that the unity density ratio case presents a greater inclination 

wall normal velocity than the high density case. This suggests a higher momentum flux and thus 

greater penetration into the mainstream for the unity density case at the blowing ratio of 0.5.  

The data presented by Sinha et al. (1991) is unique when compared to other P/D of 3 

data. The laterally averaged effectiveness values are low compared to literature and that is due to 

the very short L/D of 1.75 used in this study (Goldstein et al., 1999). The short L/D causes jet 

lift-off at a lower momentum flux ratio compared to longer holes.  
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Clearly shown in the centerline effectiveness data by Sinha et al. (1991) is the increasing 

and eventual decreasing trend caused by increasing blowing ratio or momentum ratio. Resulting 

from this study it was seen that as long as the jets stay attached to the cooled surface, 

effectiveness increases with increasing blowing ratio. Once the jets start to detach, the 

momentum ratio scales the magnitude of detachment. Jet lateral spreading was found to strongly 

affect lateral averaged effectiveness. Lateral averaged effectiveness is seen to decrease with 

decreasing density ratio an increasing momentum flux ratio due to decreased lateral spreading of 

the jets.    

Prediction of film cooling effectiveness at engine like conditions by correlating 

thermographic measurements in addition to a sensitivity study on various parameters such as 

blowing ratio, density ratio, turbulence intensity, and the geometric parameters, streamwise 

inclination angle and pitch was examined by Baldauf, Scheurlen, Schulz, and Wittig (2002a). 

The resulting correlation is valid from the point of injection to far downstream and includes jet in 

crossflow interactions as well as adjacent jet effects.      

Full Coverage Film Cooling 

 When a large surface needs to be cooled, for example a combustor transition duct, a 

multi-row array of discrete film holes can be used. The advantage to multiple rows of film holes 

over a single row is that multiple rows tend to build up a large coolant film until an effectiveness 

maximum is reach after a certain number of rows. Single row effectiveness starts to decay 

immediately downstream of injection which can’t be compensated for by increasing the amount 

of coolant injected. Past a critical momentum flux ratio the jet detaches from the surface, 
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entraining hot gas beneath the jet, decreasing cooling effectiveness. Distributing the coolant over 

multiple rows can give better coverage along the array surface. 

 

Figure 7: Geometrical Description 

 Full coverage studies typically consist of cylindrical hole geometries. Three geometrical 

arrangements are presented by Crawford, Kays, and Moffat (1980) α = 90°, β = 0°; α = 30°, β = 

0°; α = 30°, β = 45°. The study focuses on the effect of hole spacing as well as inclination angle 

and compounding angle at various blowing ratios. The significant conclusion is that inclined 

holes perform better than wall normal injection downstream of the last row of holes as well as 

inside the film array. The tighter spaced arrays (five hole diameters) perform better than the less 

dense arrays (ten hole diameters) simply from a mass injected perspective.    

 A fundamental study by Mayle and Camarata (1975) studied holes at large spacings (14 

diameters) at α = 30° and β = 45°. The inclination angle and compound angle were held constant, 

but the hole spacing varied from 8, 10, to 14 diameters. Film cooling effectiveness is found to 

drop off sharply as hole spacing is increased. Such large spacing between holes allows for the 
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individual jets to be recognized in laterally averaged data. Interactions between neighboring jets 

are not present. Such non-uniformity promotes thermal gradients and therefore thermal stresses.  

Transpiration 

 Transpiring flows have been modeled extensively analytically; however experimental 

data is scarce. Early work such as that by Eckert (1952) extensively detailed the heat transfer 

mechanisms behind transpiration cooling and film cooling. Transpiration, film cooling and 

convective cooling were analytically compared for the hot gas stream and coolant was air and the 

cooled wall is a flat plate. Eckert and Livingood (1954) analytically showed that transpiration 

had the potential to outperform traditional convective cooling. Transpiration was shown 

advantageous at cooling surfaces of high heat flux at smaller mass flux ratios when compared to 

film cooling or convective cooling.  

Experimental setup for a transpiration cooling test is virtually identical to a slot cooling 

experiment with the addition of porous media in the slot. Clearly inspired by slot cooling 

publications of the 1950s, Goldstein (1965) measured film cooling effectiveness through a 

porous section. Air was injected as a coolant through a porous section into a turbulent free 

stream normal to the direction of injection. The porous material used was a sintered stainless 

steel of unreported porosity. The entirety of transpiration literature consists of single row 

configurations exclusively. 

The profiles with blowing show a thicker boundary layer however they can still be 

represented by a turbulent profile on a smooth surface. Displacement thicknesses were compared 
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to a slot injecting tangentially to the free stream. Blowing ratio between the two studies are not 

comparable, however the blowing ratio per unit width, Mh, is comparable between the two sets 

of data. The similar effect on displacement thickness between the two datasets is explained by 

the similar Mh value.  

Downstream of the injection location, the wall temperature approximately equals the 

injected air temperature. The transpiring flow at the injection location promotes mainstream 

boundary layer separation and proceeds to flow underneath the mainstream.  

 

Figure 8: Effectiveness Trend 

The effectiveness decay after injection is clearly presented by Goldstein; the trends are 

recreated in Figure 8. The mainstream velocity was approximately held constant while varying 

blowing ratio. The result is curves which contain the same slope, but are linearly translated 
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upward with increasing mass injection. An effectiveness of 0.45 is obtained with a mass flux 

ratio of 0.0143 which decays to approximately 0.1 effectiveness by 12 inches downstream. 

Compared to film cooling blowing ratios which are on the order of 0.5 or more, transpiration still 

serves to protect the surface with 35 times less coolant. The effectiveness value is directly related 

to the amount of mass injected.  

Film cooling studies are commonly compared using the parameter X/MS where x is the 

axial downstream location, M is the mass flux ratio, and S is the equivalent slot length of a row 

of film holes.  

     (     )                    
(9)  

 

This quantity is replicated for transpiration cooling by replacing equivalent sloth length, Se, with 

the actual porous slot width denoted h. Goldstein (1965) correlated the effectiveness data using 

the following relationship built on X/Mh. 

       (    )       (10)  

 

An addition correlation was provided by Kutateladze and Leont'ev (1963) which assumes that 

the mainstream boundary layer fluid and the injected fluid are completely mixed. The result is an 

average temperature and similarity to a turbulent boundary layer with the addition of the injected 

mass. Equation 11 has the advantage of predicting unit effectiveness at the point of injection.        
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   (      (    )        )                  (11)  

 

 

Transpired turbulent boundary layers have been investigated in detail.  Extensive research 

has been provided by Kays (1972), Moretti and Kays (1965),and Georgiou and Louis (1985). 

Morris and Foss (2003) provided a detailed characterization of the turbulent boundary layer after 

a separation caused by a sharp discontinuation of the attached wall.  Cal, Wang, and Castillo 

(2005) performed an analysis of the effect of forced convection and external pressure gradients 

on the transpired turbulent boundary layer.  Lacking in these studies is experimental 

characterization of the turbulent quantities as the flow leaves the permeable wall. 

The rectangular free slot jet has been studied extensively, more than any noncircular 

geometry.  An extensive review can be found by Gutmark and Grinstein (1999). A transpiring 

flow in the scenario of film cooling is essentially a rectangular slot jet with a porous blockage. 

The turbulence generated in the near-field region of such a blocked jet is non-trivial; the 

characterization of these turbulent quantities is necessary for accurate flow predictions by 

Computational Fluid Dynamics (CFD).      

Specifying accurate boundary conditions is essential when attempting to predict a 

scenario in which there is flow exiting a permeable wall in CFD.  A more accurate solution can 
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be obtained by using more accurate boundary conditions.  The required conditions for the well-

known k-ε model are the turbulent kinetic energy (TKE) and turbulent dissipation rate (ε) values 

at the boundary.  Both k and ε can be estimated using the turbulence intensity and the turbulence 

length scales.  Hence, at bare minimum, estimations must be made of turbulence intensity and 

turbulence length scales for two-equation models.  The turbulence length scale is the physical 

quantity describing the size of energy containing eddies in the turbulent flow and the turbulence 

intensity is the RMS of the fluctuating component normalized by the local mean velocity (Fraser, 

Pack, & Santavicca, 1986).   
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CHAPTER 3: NUMERICAL PREDICTIONS 
 

First Order Analysis Domain 

 A domain is designed for the problem in order to compare all sources on an equal basis. 

A hot gas path with cross section of 1m x 1m is being cooled on one wall over 0.25m. Film 

geometry is installed at the leading edge of the domain. In the case of transpiration, 0.25m 

following the end of the permeable section is investigated. In the case of discrete holes, the 

0.25m domain begins at the trailing edge of the film row. Coupled scenarios of interest have a 

transpiration section upstream of the film rows, in these cases the problem domain begins at the 

trailing edge of the porous section and extends 0.25m downstream; the film source is always 

contained within the problem domain. 

 

Figure 9: Numerical Domain 
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 Physical quantities must be specified for the problem due to the some correlations 

requiring absolute, rather than nondimensionalized quantities; moderate values are chosen 

simply to give a physical feel for the problem rather than trying to predict against state-of-the-art 

in which there is certainty of the validity of the relations used.  The total temperature (1000 K) 

and static pressure (20 atm) of the mainstream are prescribed and constant throughout the 

analysis. The static temperatures are prescribed for the coolant sources. The transpired coolant 

(600K) is a higher temperature than the film coolant (500K) because there will be more heat 

addition to a transpired film than a discretely injected film as the coolant passes through the 

permeable wall.  At transpiration rate of M=0.1 and a transpiration slot width of 5mm, this 

corresponds to a heat removal from the wall of 110kW.  This value would change with 

transpiration geometry and operating environment (e.g. volume and permeability of the porous 

substrate) hence currently it is somewhat arbitrary. This added heat removal is one benefit of 

transpiration.  All other parameters governing the problem are shown in Table 1.  The turbulence 

intensity of the mainflow is kept low (1.5%) because only the correlation for cylindrical row 

effectiveness has the ability to incorporate such information.  The results from this analysis, 

although for a generic problem domain, will be qualitatively the same as results from either low 

speed testing or in an engine-like environment. 
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Table 1: Design Parameters 

Parameter Mainstream, ∞ Cylindrical, C Transpiration, T 

C
P
 [J/kg-K]  1080  1080  1080  

Ratio of specific heats - γ 1.4  1.4  1.4  

Mach # - Ma  0.5  fn(M)  fn(M)  

Velocity [m/s]  309.3  fn(M)  fn(M)  

T
O

 [K]  1000  fn(M)  fn(M)  

T [K]  952  500  600 

T∞/T   ,   ρ/ρ∞ - 1.90 1.59 

P
O

 [atm.]  23.7  fn(M)  fn(M)  

P [atm.]  20  20  20  

PO/PO, ∞ - fn(M) fn(M) 

Turb. Intensity [%]  1.5  -  -  

 

Predicting Mass Flow 

 After normalizing the coolant mass flow by the mass flow of the mainstream for the 

given problem, the expression for mass flow ratio is given by Equation 12.  The coolant spent 

from a coupled source is the summation of both transpiration and discrete coolant mass flow 

ratios. 

  ̇   𝐶𝑌𝐿𝑠      𝑁  

 

(12)  

 

Physically Equation 12 represents the coolant mass flow divided by the freestream mass 

flow because the mainflow has a unit area and the transpiration is of unit span.  In a general 



29 

 

sense the product of blowing rate into the equivalent slot width (h or s) represents the coolant 

mass injected per unit span. 

Predicting Effectiveness 

 Area averaged effectiveness over the 1m by 0.2m endwall is considered.  The 

effectiveness following a transpired film is predicted by integrating Equation 11 from x = h to x 

= [h+0.25m]. The effectiveness following a cylindrical row is predicted by integrating the 

correlation represented by Equation 13 from x = [d/(2sinα)] to x =  [d/(2sinα) + 0.25m]. Equation 

13 is given in detail by Baldauf et al. (2002a). These coordinates are chosen to unify the problem 

domain with the coordinate systems used in each respective correlation.   

 
( , , , , , )Cylindrical

x p
fn Tu M DR

d d
   (13)  

 

Predictions of coupled effectiveness from these correlations are made by simply summing 

the two laterally averaged effectiveness values at a given x then integrating numerically with a 

step size of 1mm, or 250 points over the problem domain. 

Predicting Aerodynamic Losses 

The losses associated with injection are quantified through an entropy rise coefficient of 

the mainflow. For an incompressible flow this would relate one-to-one with a pressure loss 

coefficient. For this analysis, Equation 14 and Equation 15 from Denton (1993) are used.  It is 

straight forward to cast Equation 14 only in terms of the above quantities from Table 1. 
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One such relation is shown below in Equation 16 which relates the stagnation temperature of the 

coolant, through an isentropic relation, to known quantities. 
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Predicting Thermo-Mechanical Stresses 

 From the proposed method for computing averaged effectiveness, a maximum gradient in 

effectiveness with respect to x/D or x/h can easily be computed by a first order finite difference 

approach.  The relation used for calculation of this gradient is shown in Equation 17. 
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This quantity is of interest because thermal stresses are directly proportional to 

temperature gradients on the surface.  This approach for quantifying the thermal gradients is used 

in order to provide a closed form method for calculating this quantity.  Ideally, correlations, or 

data, for local distributions of effectiveness could be computed for their gradients, and this 

maximum would be chosen.  These types of correlations are not nearly as common or general; 

hence, for the sake of observing large ranges, this approach is taken.  In the case of transpiration, 

however, this is an adequate method for determining thermal gradients because there will be no 

lateral gradients in effectiveness (assuming a very uniform permeable wall). In the case of 

discrete holes, this method severely under-predicts the maximum gradient present, hence, the 

maximum effectiveness gradient results must be interpreted cautiously.  

The majority of the following graphs in this section are presented as follows; mass flow 

ratio in the top left, average effectiveness over the endwall of the problem domain in the top 

right, entropy rise coefficient broken up into its two components in the bottom left, and the 

maximum gradient in laterally averaged effectiveness with respect to the streamwise coordinate 

normalized by the injection geometry reference length (h in the case of transpiration, d in the 

case of discrete holes.) 

Transpiration cooling results for the quantities of interest are shown as a function of 

blowing ratio for several transpiration section lengths in Figure 10. Equation 11 is used to predict 
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the average effectiveness following the permeable section in this instance. The benefits of 

transpiration can be seen as an increase in blowing rate that causes a corresponding increase in 

effectiveness.  Due to the transpiration section being infinitely long spanwise, the main flow has 

no path to the wall.  Hence, the adiabatic film effectiveness will be unity, by definition, 

immediately downstream of the porous section which contributes to the high levels of area 

averaged effectiveness throughout the domain.  The mass injected, MTRANh, contributes to the 

rate of decay from this starting point.  A small value of MTRANh implies a low thermal capacity 

of the film resulting in quickly diminished effectiveness values. 

 

Figure 10: Transpiration Analytical Results 
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When looking at the circled points on Figure 10 and comparing the effect of MTRANh, one 

does not see a preference of blowing ratio to either large MTRAN or h.  That is, the level of 

downstream effectiveness following a transpiring section is not affected by whether the 

transpired film jetted out through a short section, or was bled through a long section.  The 

gradient, however, is affected by the manner through which the coolant is injected.  For the same 

amount of mass injected, MTRANh, a short section operating at high blowing rates results in a 

lower maximum thermal gradient than a long section operating at low blowing.   

The cylindrical film cooling results are shown in Figure 11.  Again, Equation 12, 

Equation 14, and Equation 17 are used to calculate mass flow ratio, entropy rise coefficient, and 

maximum thermal gradient, but in this case Equation 13 from Baldauf et al. (2002a) is used to 

calculate average effectiveness. Unlike transpiration, discrete injection of coolant shows 

diminishing returns when looking at effectiveness.  All pitches, save for P/D=2, show that as the 

blowing rate is increased from zero the average effectiveness downstream rises to a maximum, 

after which, when the blowing rate is further increased until the extent of the range, MCYL=2.0, 

the effectiveness drops.  In the case of cylindrical holes, looking at the streamwise gradient is 

misleading because the range of effectiveness values is from η=0-1, η=0 at mid span and η=1 

downstream of a hole.  This range then averages out to a value which changes slowly with axial 

distance.  In this situation the gradient in average effectiveness is presented for an analytical 

perspective.  The true gradient driving thermal stresses, however, in the case of discrete film 

holes, is the gradient in the lateral, z-direction.  Discrete holes are seen to be better than 

transpiration in an aerodynamic sense when considering the entropy rise of the main flow due to 
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injection.  As the transpiring rate is increased the aerodynamic penalty is increased, this is not the 

case for discrete injection with an inclination angle of 30 degrees.  For discrete injection, the 

penalty rises slightly with blowing ratio until the momentum if the jet becomes comparable with 

that of the main flow, in which case, the entropy rise coefficient begins to drop from its 

maximum. 

   

 

 

Figure 11: Discrete Hole Film Cooling Analytical Results 
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With the behaviors of each baseline source understood, a linear superposition of the two 

is used in order to predict the behavior of a coupled source.  Figure 12 (top) shows the effect of 

offsetting the two individual sources from one another in a coupled scheme.  The offset (O) 

between the two is defined in this case as the distance between discrete hole center and 

transpiration leading edge for this analysis.  Shown at the bottom of Figure 12 are contours of 

laterally averaged effectiveness in x-O space.  The effect of moving the film row downstream 

from at first being adjacent to the transpiration results in a slow decay from a maximum at 

O/D=0 as the offset is increased.  This analysis result in a prediction of maximum effectiveness 

when the two geometries are adjacent to one another, which decreases as the cylindrical row is 

moved downstream.  The current method for coupling the two sources is insensitive to effects 

resulting from the interaction of the two sources.  The correctness of the simplified analysis must 

be checked in a further study. 
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Figure 12: (Top) Offset Analysis, (Bottom) Effectiveness Contours 

 

 In Figure 13 the effect of each source’s blowing ratio is analyzed with constant 

geometries of; h=5mm, D=7.5mm, O=0mm.  From the figure it can be seen that the transpiration 

blowing ratio shifts the results, this is because the assumptions used do not have any coupling 

between equations, hence, only translations are seen through the coupled analysis.  One key 

feature to note is that the maximum streamwise gradient in effectiveness is solely governed by 

the decay of the transpired film. There is no effect due to cylindrical blowing ratio. 
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Figure 13: Effect of Blowing Ratio 

 The effect of changing the geometrical features of the two sources is shown in Figure 14 

with constant blowing rates; MTRAN=0.05, MCYL=0.7. Again, it can be seen the transpiration 

geometry only tends to shift the prediction versus a solo cylindrical geometry. The transpiration 

is the major contributor to the value for maximum effectiveness gradient. From Figure 14, a 

P/D=8 geometry with h/D=1.5 operating at the given blowing ratios, performs just as well as a 

cylindrical row of P/D=2 at one third of the spent coolant and with an equal aerodynamic 

penalty. Film rows alone at any spacing of P/D=3 or greater cannot obtain the level of cooling 

resulting from this coupled scenario. From this analysis it seems possible that by coupling the 
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two sources one can have the best of both worlds, the effectiveness of a transpiration source with 

the losses of a discrete row. 

 

 

Figure 14: Effect of P/D and h/D 
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Coupled Geometries 

 Both elements of the coupled geometry have particular roles that need to be filled.  

The role of discrete holes 

 Mitigate losses 

 Provide strategic thermal mass 

 Loss mass flow  few holes placed far apart due to a required minimum mass usage  

The role of transpiration 

 High effectiveness 

 Uniform effectiveness 

 Low mass flow 

Goals of a coupled geometry: 

 Low aerodynamic impact 

 Uniform effectiveness  low thermo-mechanical impact 

 Low coolant mass flow rate 

 

From the previous analysis and requirements, a test matrix is chosen. It will be the goal of 

the discrete hole injection to use very little mass. The mass that is used will aide in thermal 

capacity of the resulting film while mitigating aerodynamic penalties. From this perspective a 

large pitch is required at as low an inclination angle as possible.  This approach has led to the 

geometry outlined in Table 2. 

Table 2: Cylindrical Hole Parameters 

Baseline - Cylindrical 

Inclination angle, α (deg) 30 

Compound angle, β (deg) 0 

Hole diameter, D (mm) 7.5 

Lateral pitch, P/D 3,6,9 

Hole length, L/D 5 
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The transpiration source will provide most of the film to the boundary layer.  However, it 

must not use an unnecessary amount of coolant.  In order to balance the competing effects of 

mass flow consumption and thermal gradient, h/d=2/3 is chosen based on Figure 14.  All 

parameters dictating the transpiration source are outlined in Table 3. 

Table 3: Transpiration Parameters 

Baseline - Transpiration 

Inclination angle, α (deg) 90 

Injection length, h (mm) 5 

Injection thickness, t (mm) 6 

Permeable wall Aluminum foam 

Porosity, ε (%) 50 

RMS pore diameter, δ (mm) 0.1 

 

Two coupled geometries are constructed from the above baseline configurations.  First, 

the above geometries are combined with an offset of one diameter, transpiration upstream, which 

results in the Coupled A geometry.  The effect of transpiration location relative to the row will be 

seen through Coupled B which places the transpiration one diameter downstream of the 

cylindrical row.  The coupled geometries are described below in Table 4. 
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Table 4: Coupled Geometries 

Coupled Geometry 
A (Baseline) B (Displaced) 

Cylindrical Holes 
 

 

Inclination angle, α (deg) 30 30 

Compound angle, β (deg) 0 0 

Hole diameter, D (mm) 7.5 7.5 

Hole length, L/D 5 5 

Transpiration 
 

 

Inclination angle, α (deg) 90 90 

Injection length, h (mm) 5 5 

Injection thickness, t/h 1.2 1.2 

Offset, O/D 1 -1 

 

 

Finalized Geometries 

 Baseline geometries are shown in Figure 15. Portion (a) shows the standard cylindrical 

holes with 30º inclination angle and a spanwise hole spacing (P/D) of three diameters and a 

maximum of 13 holes for the closely spaced geometry. Part (b) shows the transpiration setup; a 

slot is left open for a transpiring wall. In order to create the permeable section needed, ERG 

Aerospace created an aluminum foam coupon which is then crushed to a denser, more realistic 

porosity to provide realistic pressure drops. The material is aluminum 6101-T6 of ε=0.93 and 40 

ppi crushed to a nominal value ε=0.5; only one half of its volume is comprised of aluminum. 
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Actual samples received vary only a small percentage from the nominal value.  The crushing 

process was done in a way as to retain a more isotropic pore after crushing.   

 

Figure 15: Baseline Geometries. (a) Cylindrical Row, (b) Transpiration Section 

 

 The coupled geometries are shown in Figure 16. Part (a) features a row of 13 film holes 

with a spacing of three diameters followed by the transpiration slot having an aspect ratio of 61; 

leading to the assumption of it being infinite in the spanwise direction. The streamwise 

dimension, h, was five millimeters. The second geometry, shown in (b), has the transpiration slot 

upstream of the film holes. The spacing between the slot and the row of jets is 1.5 times the 

thickness of the transpiration slot. The hole pattern and dimensions are constant for both Coupled 

A and B. 
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Figure 16: Coupled Geometries. (a) Transpiration Upstream, (b) Transpiration Downstream, dimensions in mm. 
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CHAPTER 4: EXPERIMENTAL SETUP 
 

Wind Tunnel 

  The main flow is generated by a 6kW Ziehl-Abegg fan capable of 1.6kPa and 7m
3
/s.  The 

cross flow duct is 110D wide by 20D tall.  The duct is tall enough to ensure no influence on the 

behavior of the jet due to the opposite wall.  Access is also provided for various probe 

measurements so that the boundary layer growth and aerodynamic losses can be assessed using 

boundary layer and hot wire probes. The bottom acrylic view plate which serves as the majority 

of the bottom wall of the cross flow duct is removable. Separate acrylic windows were 

fabricated, one for probe access, and one for complete unobstructed optical access. The 

experimental apparatus diagram is shown in Figure 17. 

 

Figure 17: Experimental Apparatus 
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 The flow is guided into the cross flow duct by a 3:1 bell mouth nozzle converging to the 

test section dimensions.  The flow is then conditioned by 2 honeycombs (DH=0.5”, L/D=6) and a 

mesh screen.  Following the flow conditioning section is a sandpaper trip to ensure a fully 

turbulent boundary layer.  The test section is 10cm downstream of this trip.  At the first row of 

discrete holes, the hydrodynamic boundary layer based on 95% of the freestream velocity is 

measured to be 10mm. The freestream velocity reaches 26.5m/s over the entire test section. The 

test section is assumed to be a zero pressure gradient duct; this is confirmed experimentally to be 

valid with a pressure gradient of -15Pa/m over the test section. Turbulence intensity of the wind 

tunnel is considered low, 0.7%, measured by constant temperature anemometer.  The turbulent 

length scale, calculated by the integration of the autocorrelation coefficient until the first zero 

crossing, is 3.1cm. 

 An external air compressor is used to feed the coolant flow. Mass flow is metered 

through a calibrated venturi flow meter. The flow is directed through an inline heater into an 

insulated steel plenum. The plenum to coolant area ratio is sufficiently large (>100) to justify the 

assumption that the coolant mass flow is equally divided between the film holes. The film hole 

mass flow rates are calibrated using a calculated discharge coefficient and the static pressure of 

the plenum. Therefore the mass flow solely through the film holes can be determined using the 

static pressure of the plenum. The difference between total mass flow and calculated film mass 

flow is equal to the transpiration mass flow rate. The coupled flow mass flow rate is completely 

determined using the venturi flow meter and the static pressure. The error sensitivity to leaks is 

high; therefore the consistency of discharge coefficients was verified (Natsui, Johnson, Torrance, 

Ricklick, & Kapat, 2011). Great care is taken to ensure that the possibility of leaks is minimized.  
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The miniscule amount of coolant sent through the porous section compared to the film mass flow 

ensures that the transpiring flow has no effect on the flow through the cylindrical holes.  

Hot-wire Anemometry  

 In order to characterize the boundary conditions of the transpiring flow, a separate 

experimental setup was created. The slot jet consists of a 17.2 mm thick acrylic coupon with a 

slot milled for the porous blockage. The slot length and width, denoted l and h, are 305 mm and 

5 mm respectively. The aspect ratio of this rectangular slot, given by l/h, is 61. The flow 

originates from a compressed air line supplied by a 0.1 kg/s air compressor. The flow is metered 

by a venturi flow meter before the inlet of the plenum. The plenum measures 100x20 slot widths 

by 40 slot widths tall. Inside the plenum, the flow is redirected radially by a splashbox. 

Downstream flow conditioning consists of a series of fine mesh screens. The slot jet coupon 

attaches to the end of the plenum with gasket material and a series of clamps. The plenum and jet 

coupon are detailed in Figure 18.   

 

Figure 18: (a) Plenum Setup, (b) Transpiration Coupon 

In order to create the permeable section needed, ERG Aerospace created an aluminum 

foam coupon which is then crushed to a more realistic porosity to provide realistic pressure 

drops. The material is aluminum 6101-T6 of ε=0.93 and 40ppi crushed to a nominal value ε=0.4, 
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0.5, and 0.6. Actual samples received vary only a small percentage from the nominal value, as 

reported by the manufacturer.  The crushing process is done in a way as to retain a more 

isotropic pore after crushing. The porous insert measures 305mm by 5mm and 6.5mm in the 

streamwise direction.   

       

Table 5: Hot-Wire Test Parameters 

 

 

 

 

 

 

 

The hot wire probe is located immediately following the test coupon.  The hot wire is 

allowed to traverse in the spanwise direction as well as the perpendicularly to the test coupon.  

Hot wire measurements of turbulence are in error when using a wire with length the same order 

as the length scale (Dryden, Shubauer, Moch, & Skramstad, 1937).  The hot wire is chosen in 

order to minimize the diameter of the wire and to achieve a length to diameter ratio of greater 

Test Parameters 

Jet Conditions  

     Reynolds Number, ReDe  7500 

     Reynolds Number, Reh 850 

     Darcy Velocity [m/s] 2.7 

Permeable inserts  

     Porosity 0.379, 0.485, 0.616 

     Dimensions [mm] 5x305x6.5 
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than 20.  The model used is a TSI Model 1201 hot wire with a diameter of 50.8 μm and length of 

1.02 mm.  The hot wire is calibrated using a TSI model 1125 calibrator.       

 A TSI IFA-300 anemometer controls the hotwire probe and utilizes a high pass filter at 1 

Hz and a low pass filter at 50 kHz. Samples are taken at 100 kHz for 300k samples at each data 

point. Measurements are digitized utilizing a National Instruments PXIe-6366 DAQ card using a 

PXIe-1062Q chasis. The DAQ card features 8 channels and 16-bit resolution and is capable of 2 

MS/s per channel. Traverses are made using a Velmex model #A2512P40-S2.5 combined with 

model #A1509P40-S1.5, giving X-Z movement at 2.54 µm resolution. Data points are taken 

laterally every 12.7 µm at 1, 2, and 3 slot widths vertically from the exit.      

Turbulence Length Scale 

The basis of characterizing turbulence depends on G. I. Taylor’s Frozen-Flow Turbulence 

hypothesis.  This hypothesis states that the larger integral scales provide the majority of the 

advection energy compared to the turbulent circulation advection.  This is only valid when the 

smaller integral scales have sufficiently less power than the larger scales (Holm, 2005).  The 

significance of this hypothesis is that it allows an estimation of the spatial fluctuations of the 

turbulent eddies from the temporal fluctuations at a single point.  An extensive review of 

different methods of calculating a turbulent length scale was performed by Barrett and 

Hollingsworth (2001). Two length scales are taken from Barrett and the references used in 

(Barrett & Hollingsworth, 2001). ΛI and ΛIII are calculated and denoted by L1 and L2 

respectively.     
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The integral time scale is the integration of the autocorrelation coefficient function function 

given by Equation 18. A length scale can be found by multiplying the time scale by the mean 

velocity, Equation 19. This length scale that uses the integration of the autocorrelation can be 

seen as a measure of the longest significant correlation time between the velocities at two points 

in the flow field (Hinze, 1975). 

 

 

                                     

      ∫        
 

 (18)  

 

 

                                 

         ∫        
 

 (19)  

                                  

  An alternate definition of the time scale is based on the Fourier energy spectrum; this is 

preferred in order to avoid the errors inherent to numerically integrating the autocorrelation 

function (Lewalle & Ashpis, 2004).  This requires the use of the energy spectrum at zero 

frequency.  An approximation can be had by taking a well converged part of the Fourier 

spectrum and extrapolating it to the lower frequencies. The Welch method is used to 

approximate the Fourier spectrum, by dividing the record in many sub-records (typically >1000) 

with 50% overlap, the power spectrum is estimated on each sub-record by applying a Hamming 

window (Welch, 1967). A discrete Fourier transform is used to calculate a modified periodogram 

for each section and then averaged.    
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 (20)  

 

 

                                 

         
 

 (21)  

 

A length scale can be calculated from Equation 20 using Equation 21 (Barrett & Hollingsworth, 

2001). The extrapolation relies heavily on low frequency information. 

 

Transpiration Numerical Study 

 The experimental domain is modeled using GridPro and simplified to reduce the 

computational requirements. The slot is modeled and shortened within the computational 

domain, with symmetry planes along the bounding walls. The domain begins 15 slot widths 

upstream of the leading edge and continues to 45 slot widths downstream.  The crossflow is 

modeled to five diameters above the surface in following with Johnson, Nguyen, Ho, and Kapat 

(2010). A transpiring segment is modeled using a constant velocity inlet.  
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Figure 19: Computational Domain 

The lower crossflow surface is treated as a no-slip adiabatic wall.  The two planes normal to the 

lateral direction were given symmetry conditions. In this way, the model mathematically 

represents an infinite width of transpiration cooling.  The freestream plane at five diameters 

above the crossflow wall was also given symmetry conditions for reasons of computational 

convenience rather than physical meaning.  This is expected to have little effect on the film 

cooling effectiveness results, which typically stay within two-diameters of the crossflow wall.  

The analysis of Johnson et al. (2010) supports this expectation.  A pressure-outlet condition 

(prescribed uniform pressure with zero-gradient for other variables) is set at the outlet 45 slot 

widths downstream of the hole.  A uniform velocity-inlet is set at transpiring segment such that 

the mass flow corresponds to a chosen blowing ratio.  The temperature is set to 350 K (following 

the experimental conditions).  The inlet to the crossflow is also a velocity inlet, but here a 

boundary layer profile is prescribed for the velocity.  A power-law fit from an experimental 

velocity profile was applied. The crossflow temperature is specified at 300K to imitate 

experimental conditions and the turbulence quantities at the crossflow inlet are derived from 

experimental measurements of turbulence intensity and length scale. 
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Crossflow turbulence intensity is taken to be 0.7% with a length scale of 0.01m, as 

measured by hot wire anemometer. Transpiration turbulence intensity is taken to be the averaged 

measured turbulence intensity of 2.296%. The length scale of the transpiration turbulence is 

varied over the calculated values for the three porous inserts tested. An additional test is run 

using a length scale based off the hydraulic diameter of the slot. Length scales are varied in order 

to simulate changing the porosity of the wall insert without explicitly modeling the porous wall. 

The realizable k-ε turbulence model was used with enhanced wall treatment. 

The algebraic multi-grid (AMG) solver in Fluent was used to solve the coupled 

equations.  The SIMPLE technique was used for pressure-velocity coupling.  The solution was 

solved in steady-state, with under-relaxation factors acting to control convergence in the same 

way time step would for a transient solution. 

Grid Independence 

 This grid study consisted of a total of six grids, representing stages of systematic 

refinement.  The coarsest grid was just over 100,000 cells while the finest grid exceeded 2 

million cells. Figure 20 shows the grid convergence index (GCI) for 15 temperature points and 5 

velocity points in the flow.  The most uncertain points are the temperature points on the surface 

near the injection point.  Once those safely converged under 10% uncertainty, the other points, 

especially those away from the wall, converged to much lower GCI.  It was seen in the GCI 

method analysis that the complex geometry of the mesh did not lend to ideally-behaved 

convergence with refinement for all monitors.   
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Figure 20: The converging GCI indices for 20 point monitors 

The solution was started on the coarser grid and advanced for 100 iterations to achieve a 

quality initial guess for the refined grid. The built-in geometry-based adaption in Fluent was then 

utilized for embedded refinement in the area of interaction between the coolant and crossflow.  

The refinement was bounded only in the y-direction, extending from the bottom wall to three slot 

widths above the surface in the crossflow.  The solution was then continued until convergence on 

the finer grid.  Convergence was judged by iterative convergence of monitors for the temperature 

and velocity field as well as the normalized residuals of the governing equations.  The criteria for 

convergence of normalized residuals were as follows: below 1e-5 for continuity, below 1e-6 for 

the momentum equation, below 1e-7 for the energy equation, and below 1e-5 for turbulence 

quantities.  Once the residuals fell below these marks and the temperatures and velocities no 

longer changed to four decimals over a period of 100 iterations, the solution was treated as 

converged.  The results were then post-processed using the built-in capabilities of Fluent. 
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Film Cooling Effectiveness 

 The film cooling effectiveness tests are run with a heated coolant, giving a density ratio 

of approximately 0.85. An approximate 50 degree K temperature difference is maintained 

between the coolant and the mainstream. Coolant temperature on average  equaled 75°C (350K) 

controlled by the inline heater while the freestream temperature was largely dictated room 

temperature conditions (25°C, 300K). Three Type T (copper-constantan) thermocouples 

measured the coolant temperature. Two are placed in the coolant plenum while one was inserted 

into a film hole. The coolant temperature increased negligibly through the film hole. The 

freestream temperature is taken as the recovery temperature measured from the test surface, 

measured by Temperature Sensitive Paint (TSP) and verified by thermocouple mounted on the 

surface. Additional thermocouples mounted in the freestream are used as a sanity check of 

freestream temperature. The test coupon, a removable insert featuring the injection geometry, is 

fitted in the test plate which forms the upper wall of the mainstream duct. Both features are 

machined out of acrylic. The coupled geometry coupons include both discrete holes and a 

rectangular slot. The porous aluminum insert is fitted and sealed into the rectangular slot. The 

aluminum inserts were purchased from ERG Aerospace. The material is aluminum 6101-T6 of 

ε=0.93 and 40 ppi crushed to a nominal value ε=0.5; only one half of its volume is comprised of 

aluminum. Actual samples received vary only a small percentage from the nominal value.  The 

crushing process was done in a way as to retain a more isotropic pore after crushing.   

 Downstream of the injection coupon, a low thermal conductivity (0.029 W/m-K), 

Rohacell® RIMA plate is fixed in the acrylic test plate to form an adiabatic wall. Rohacell is 

closed cell foam of a composition that is able to resist the solvents in TSP. The Rohacell surface 
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facing the freestream flow is dry sanded to minimize grain structures and is coated with multiple 

coats of TSP. The final coat of TSP is finished with high grit sand paper to ensure an even 

surface finish. The painted Rohacell plate is flush mounted in the acrylic test plate with a 

negligible transition between the injection coupon and the test surface.  

Experimental Geometries 

 In addition to the baseline discrete hole, baseline transpiration, and the two coupled 

geometries listed in Table 4, four multi-row configurations are tested. These arrays are denoted 

by their discrete hole film geometrical parameter [α/β/(P/D)], or equivalent transpiration 

parameter as seen in  

Table 6. The film arrays are inclined 30 degrees and one of the geometries has a 45 degree 

compound angle. These arrays were tested in the same wind tunnel experimental setup, 

consisting of acrylic plates containing the flow features with a downstream rohacell recovery 

region. Figure 21 gives a visual indication of the naming convention used; further details can be 

found in Natsui, Torrance, Miller, Ricklick, and Kapat (2011). The first geometry [30/45/14] 

corresponds to one used by Mayle and Camarata (1975) and serves as a validation case. It 

consists of staggered holes with a streamwise non-dimensional spacing of 14 and a spanwise 

spacing of 12.1. The Mayle geometry is also tested without compound angle ([30/0/14]) to study 

the effect of compound angle on effectiveness. The geometry denoted [30/0/7] consists of two 

period film cooling rows with the same amount of mass injected every four rows as the other 

film geometries to ascertain the effectiveness of this configuration. A multi-row transpiration 

array, [90/0/1], is compared with these discrete arrays, generally at much lower injection rates; 
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however, the high rate on the transpiration array consumes the same amount of coolant as the 

low rates on the discrete arrays.  One section of transpiration is used for every four rows of 

discrete hole.  

 

Table 6: Multi-Row Geometries 

Multi-row Geometry 

[αo/βo/(P/D)] 
[30/45/14] [30/0/14] [30/0/7] [90/0/1] 

Source Type 
Cylindrical Hole Cylindrical Hole Cylindrical Hole Transpiration 

Inclination angle, α (deg) 30 30 30 - 

Compound angle, β (deg) 45 0  - 

P/D 14 14 7 - 

X/D 12.1 12.1 12.1 48.4 

Streamwise Rows 
12 12 6 3 

Hole Diameter (mm) 2.5 2.5 2.5 - 

Injection length, h (mm) - - - 5 

Injection thickness, L/D or t/h 8 8 8 1.3 

M (low, mid, high) 0.5,1.0,1.5 0.5,1.0,1.5 0.5,1.0,1.5 0.06, 0.12, 0.18 
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Figure 21: Test geometries, from top; [30/0/14], [30/45/14], [30/0/7], [90/0/1] 
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Temperature Sensitive Paint 

 Local, high resolution, temperature measurements are possible using temperature 

sensitive paint. TSP requires only optical access to the surface that needs temperature 

measurements; there is no disruption of the flow field. The active ingredient in TSP is 

luminescent molecules immobilized in the polymer based paint. Illuminating the TSP painted 

surface with 475nm wavelength light (blue light emitting diodes) causes photons to excite the 

luminophores moving them to a higher energy state. In order to return to the ground energy state, 

the luminophore may either emit luminescent radiation or drop energy levels by a process known 

as thermal quenching. The different energy levels and photophysical processes of luminophores 

are described by the Jablonski energy level diagram (Figure 22). As the temperature increases, 

the quantum efficiency of luminescence in most of the molecules decreases because at elevated 

temperatures the frequency of intermolecular collision increases. This increased frequency 

creates a higher probably of deactivation by external conversion. This effect associated with 

temperature is thermal quenching (Liu & Sullivan, 2005). Therefore the intensity of emission 

from the illuminated TSP surface is inversely proportional to the temperature of the surface. This 

correlation can be established through calibration. A more detailed explanation of the physics 

behind TSP is given by Liu and Sullivan (2005).   
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Figure 22: Jablonski Energy-Level Diagram 

 

For every test piece painted with TSP, an additional Rohacell coupon is painted. This 

coupon is placed in a vacuum chamber along with an electrical heater. A calibration curve is 

established by taking measurements at multiple temperatures. The calibration curves have proven 

to be robust and vary little between batches of TSP. A sample calibration curve is shown in 

Figure 23.  
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Figure 23: Calibration Curve 

Images of the TSP surfaces are taken with a scientific grade CCD camera, a PCO 1600, 

through a high pass filter. TSP emits at a longer wavelength (525nm) than it takes to excite it 

(475nm). Therefore the high pass filter removes the excitation light. In order to calculate 

temperatures from an intensity distribution, two images must be taken. One image is taken at 

“cold” wind-off conditions with a measured temperature distribution and one image is taken at 

“hot” wind-on conditions where the temperature distribution is unknown. The ratio of intensities 

of these two images, along with the calibration curve allows for temperatures to be calculated. 

To reduce noise, four images are taken each at hot and cold conditions and averaged. The TSP 

was purchased in aerosol cans from ISSI.  

The high resolution (1200x1600) images allow for pixel by pixel temperature calculation. 

Due to slight image variations between the wind-off and wind-on images, the wind-on images 

had to be shifted to line up with the wind-off image. Image processing is done using MATLAB 

y = 0.6173x2 - 1.4392x + 1.0220 
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scripts written for this purpose. A bi-linear interpolation scheme is used for shifting the wind-on 

images. This allows for sub-pixel image shifting before the temperatures are calculated.  

Film Cooling Effectiveness Data Reduction 

 The film cooling effectiveness, presented earlier in Equation 2, represented by η, is a 

nondimensional temperature ratio. The driving potential behind an effectiveness measurement is 

the temperature difference between injected coolant and mainstream flow. Since the injected 

mass flow rate is considerably less than the mainstream flow, it is more convenient to heat the 

coolant flow rather than heat the mainstream. The smaller mass flow requires less energy input to 

reach a usable temperature delta of 50°C. At the low temperatures of the study, 300 to 350 K, 

and only a 50°C delta in temperature, it is valid to assume constant property flow. With this 

assumption and the assumption of negligible radiant energy input, the film cooling effectiveness 

(dimensionless temperature difference) in the boundary layer is independent of having a hotter or 

colder injection flow (Goldstein, 1971). Realistically however, the density ratio of a real turbine 

blade film cooling scenario is on the order of 2.0, opposed to 0.85 of this study. In general, 

higher blowing rates are required for optimal cooling at higher density ratios compared to lower 

density ratios (Baldauf, Scheurlen, Schulz, & Wittig, 2002b). Data from Pedersen et al. (1977) 

indicates that as the blowing ratio is increased, the effect of density ratio increases, except near 

the downstream exit of the film hole. The effect of density ratio cannot be neglected for the study 

of film cooling effectiveness meant for gas turbine blade scenarios. The lateral averaging of film 

effectiveness is carried out for the interior seven film holes; the three outside film holes on each 

side are not included in the averaging window. This is to reduce possible end wall effects on the 

lateral average. 
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Experimental Uncertainty 

 Uncertainty calculations were performed in accordance with the method proposed by 

Kline and McClintock (1953). Multiple measurement devices were used wherever possible, for 

example multiple thermocouples for each temperature measurement and multiple static pressure 

ports for pressure measurements.  Averages were taken of the respective measurement devices 

and used for the true measured value. The uncertainty tree for adiabatic film cooling 

effectiveness is shown in Figure 24. The tree represents the measurands in the Kline and 

McClintock method. 

 

Figure 24: Effectiveness Uncertainty Tree 

The ‘adiabatic wall’ temperature is the wall temperature as measured by temperature 

sensitive paint. Therefore the uncertainty inherent in that measurement technique contributes 

only to one term in the film cooling effectiveness. Contributions to uncertainty in the 

temperature sensitive paint measurement technique include paint thickness (luminophore 

concentration) or variations in chemical/physical properties of the paint, illumination uniformity, 
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photodetector noise, wavelength overlap between illumination source and optical filter, photo 

degradation, and temperature hysteresis. Through the use of an intensity ratio to calculate 

temperatures, the dependence on absorption intensity is removed. Furthermore the effects of 

spatial non-uniformities of illumination, paint thickness, and luminophore concentration are 

removed as well by taking the ratio of intensities. Uncertainty in the adiabatic wall temperature is 

taken to be ±0.5°C at 95% confidence level.  

 Mainstream temperature and coolant temperature are measured with multiple T-type 

thermocouples each. Coolant temperatures are taken in the plenum as well as inside film holes 

when available (holes nearest to the lateral walls were chosen since these are not used in the 

lateral averaging window). These thermocouples are un-calibrated and required the usage of 

extension cables. Contributors to uncertainty include heat flow along thermocouple leads, 

extension cables, position bias, and the uncertainty in the thermocouple reader. Accordingly at 

95% confidence level the uncertainty in mainstream temperature is ±0.4°C and coolant 

temperature is ±2.8°C. Total uncertainty in the effectiveness measurement as calculated by the 

method detailed in Kline and McClintock (1953) is ±0.0204 at 95% confidence level. The largest 

contributor to the effectiveness uncertainty is adiabatic wall temperature uncertainty with 48.8% 

of the total uncertainty coming from the adiabatic wall temperature. The coolant temperature 

uncertainty accounts for 31.2% of the total effectiveness uncertainty; the mainstream temperature 

accounts for the remaining 20% of the total effectiveness uncertainty. For a typical effectiveness 

value of 0.2 ± 0.0204, adiabatic wall temperature contributes ±0.01. Reducing uncertainty would 

benefit greatest from a reduction in adiabatic wall temperature uncertainty, followed by coolant 

temperature uncertainty. The uncertainty is least sensitive to mainstream temperature.   
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 Uncertainty of the hot-wire anemometer measurements are calculated using the same 

method. Contributors to uncertainty include calibrator uncertainty, linearization, analog-to-

digital resolution, probe positioning, temperature variations, ambient pressure variations, and 

humidity variations. The largest source of error is due to the calibrator used (TSI Model 1125 

calibrator) which contributes 2% of the total 4% uncertainty at 95% confidence level in hot-wire 

velocity measurements. The uncertainty in turbulence intensity is also 4% of the calculated 

value.  



65 

 

CHAPTER 5: EXPERIMENT RESULTS 
 

Jet Lateral Profiles 

High aspect ratio rectangular slot jets create a lateral profile with a shape that depends on 

the normal distance from the jet exit (Quinn, 1992). The three traverses were performed at 1, 2 

and 3, slot widths from the exit of the jet, these are denoted “1h”, “2h”, and “3h” respectively.   

 

Figure 25: Hot-wire Traverse Locations 

The profiles in Figure 26 show a profile that continually increases until a local maximum 

at the jet centerline. The shear layer increases as the streamwise distance is increased due to 

lateral diffusion of momentum.  The peak velocity, even at these small axial distances, decreases; 

indicating there is not significant penetration of the potential core past the exit of the jet orifice. 

This is not apparent in the plot because of the normalization by the maximum velocity of the 

respective lateral traverse. 

The turbulence intensity, Tu, for the rectangular slot jet is presented in Figure 27. The 

saddle like shape created is similar across the three traverses. The intensity of the streamwise 

fluctuations at the largest distance from the jet exit presents peaks of lower magnitude indicating 
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most of the turbulence production occurs immediately after the jet exits the slot, where the shear 

layer on either side is smallest. Approximately 60% of the peak turbulence intensity value, 15%, 

is seen at the jet centerline for all locations. The location of maximum turbulence intensity does 

not change; furthermore, the peak corresponds with the inflection point of the mean velocity. 

 

Figure 26: Slot Jet Lateral Traverse Velocities 
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Figure 27: Slot Jet Turbulence Intensities 
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28. The profile taken at the first slot width location shows a velocity profile skewed to one side, 
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streamwise direction, the distribution spreads as expected; however compared to a free jet, the 

distribution peaks higher in the centerline with a more narrow spread. The individual jets allow 
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rather than slot width due to the porous blockage.  The distribution is still skewed to one side at 

all downstream locations. 

 

Figure 28: 0.6 Porosity Lateral Traverse Velocities 

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

V
/V

M
A

X
 

x/δ 

0.6 "1h"

0.6 "2h"

0.6 "3h"



69 

 

 

Figure 29: 0.6 Porosity Turbulence Intensity 
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centerline of the jet, seen in Figure 30. A local maximum is located on the far side of the porous 

insert, indicating a concentration of open pores surrounded by a section of pores that are blocked.  

The further streamwise traverses do not show this non-normal distribution; instead a bell curve 

with distinct peak is presented. Only a slight indication of the other local maximum is seen, 

indicating the jet spreading has evened the distribution nearly completely.  Again, this spreading 

occurs much more quickly than it would if the length scale dictating diffusion were the slot 

width.  The porous insert acts to reduce the length scale of the jet. The furthest stream wise 

traverse presents a peak in turbulence intensity approximately 160% greater than the other local 

maximum, shown in Figure 31. This is likely due to the large gradients in the mean profile 

causing a large production of TKE in this region. The one slot width displacement traverse also 

shows this increase in turbulence intensity magnitude on that side of the porous slot; however the 

two slot width case does not. 
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Figure 30: 0.5 Porosity Lateral Traverse Velocities 

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

V
/V

M
A

X
 

x/δ 

0.5 "1h"

0.5 "2h"

0.5 "3h"



72 

 

 

Figure 31: 0.5 Porosity Lateral Turbulence Intensities 
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The turbulence intensity distribution for the 40% porosity porous insert displays the same 

saddle distribution as the other porous filled jets, with similar magnitude for the two slot width 

displacement cases. There is not a large production of TKE rather the fluctuations are overall 

maintained as the jet travels downstream with a slight increase on one side, the side 

corresponding to more curvature of the mean profile.  An asymmetric peak is seen on one side of 

the jet that dissipates as the distance is increased, seen in Figure 33. The normalized streamwise 

fluctuation has three peaks in the 1h traverse.  This is due to there being two individual, smaller 

jets, on either side of slot center. They quickly merge, as seen in the mean profile, and form the 

typical saddle shaped distribution of Tu. 

 

Figure 32: 0.4 Porosity Lateral Traverse Velocities 
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Figure 33: 0.4 Porosity Lateral Turbulence Intensities 
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data is terminated after the first zero crossing. The integral of the autocorrelation coefficient is 

used to calculate LI. The autocorrelation is a measure of how well the signal correlates with itself 

over time. The power spectral densities are calculated for each case at the same location, one slot 

width in the stream wise direction at the jet centerline. The Welch method approximated E1(f)m 

with lower noise than the conventional discrete FFT. The power spectrum for the 0.4 porosity 

test is shown in Figure 35. Data past 5 kHz can be considered noise in the power spectrum, it 

was not used in any calculations. The power spectral density is extrapolated to zero frequency in 

the calculation of LII. 

 

Figure 34: Autocorrelation at 0.4 porosity jet centerline 
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Figure 35: Power Spectral Density 0.4 porosity 

 

Turbulence Length Scale 

 Two turbulence length scales are calculated at the slot centerline for each test case at one 

slot width streamwise displacement. Table 7 presents the calculated turbulent length scales for 

each test; nominal porosities are presented as case name.   
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Table 7: Turbulence Length Scales 

Case LI [m] LI/h LII [m] LII/h 

Free Jet 0.0305 6.1 0.0097 1.94 

0.4 Porosity 0.0076 1.52 0.0023 0.46 

0.5 Porosity 0.0063 1.26 0.0029 0.58 

0.6 Porosity 0.0104 2.08 0.0054 1.08 

 

Each length scale provides a set of conditions that must be met to be valid as well as certain 

unique sensitivities as described by Barrett and Hollingsworth (2001). For each case, the two 

length scales provide differing results. The free jet has the largest length scales across all three 

calculated values. The porous inserts have significantly lower length scales; on average they are 

the size of the slot width. The decrease in size of the length scales for the porous pieces represent 

a measure of the decrease in turbulence intensity as well as a physical representation of the effect 

of pore size. The LII length scale appears to best fit the current data set since physically the pore 

size increases as the porosity increases. The densest porous insert, the 40% porosity case, 

displays the lowest LII length scale and it has the smallest pore sizes. Correlation between length 

scale and pore size is not seen as well between the other two length scales, likely due to the range 

of porosities tested not causing a discernible change large enough to capture in the current 

measurement scenario. However in general the length scale does increase as porosity increases, 

due to the screen mesh like effect of the porous insert. The inlet and outlet of the slot consists of 
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sharp edges, forcing the flow to enter aggressively, causing a large amount of TKE production, 

and exit with enhanced levels of turbulence. The result is large length scales for the free jet case 

compared to the porous cases.    

Transpiration Numerical Results 

A total of four CFD cases were run using various turbulence length scales for the 

transpiring flow. LII was chosen for the length scale due to the purely increasing trend seen with 

increasing porosity. Cases 1 through 3 correspond to porosities of 0.4 through 0.6 respectively. 

Case 4 is unique in that it does not represent the free jet, but instead the turbulence length scale 

was chosen to be the hydraulic diameter of the slot, a common choice of length scale. However 

due to the similarity in length scale between the free jet and hydraulic diameter, the outcomes 

will be identical. Table 8 shows the relevant boundary conditions.     

Table 8: CFD Case Description 

Case # TI [%] Blowing Ratio LII [m] LII/h 

Case 1 2.296 0.100 0.0023 0.46 

Case 2 2.296 0.100 0.0029 0.58 

Case 3 2.296 0.100 0.0054 1.08 

Case 4 2.296 0.100 0.0098 1.96 

 

Blowing ratio and turbulence intensity were held constant between the four cases, leaving 

the only changing parameter the turbulence length scale. The blowing ratio was chosen such that 

it directly compared with one of the experimental test cases. During post processing, laterally 
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averaged film cooling effectiveness is calculated using planes of finite thicknesses at discrete 

points downstream of the slot in the domain. Laterally averaged film cooling effectiveness for 

the four cases is shown in Figure 36. 

 

Figure 36: Transpiration CFD Laterally Averaged Effectiveness 

 The difference seen between the four cases is very slight. Figure 37 shows the difference 
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turbulence length scale variation due to the low turbulence intensity. This parameter is not 

sufficient to model the intended change in porosity of the porous wall.   

 

Figure 37: Difference in Effectiveness from Case1 

 

Experimental Validation 

 In order to validate the film cooling effectiveness measurements taken from the current 
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Discrete Hole Film Cooling   

 The discrete cylindrical hole geometry was chosen based on data available and previously 

validated in literature along with manufacturing constraints. The three diameter P/D ratio with 30 

degree inclination angle geometry has been well studied. The authors cited in the literature 

review used very similar geometries with similar film parameters, M, I, and DR.  

 Pedersen et al. (1977) studied the effect of density ratio on film cooling effectiveness.  

The effect of density ratio is to increase momentum flux ratio for a given blowing ratio, 

increasing likeliness of jet liftoff at lower blowing ratios. Data provided by Pederson fits closely 

above and below the density ratio used in this current experiment of approximately 0.85; the 

values being 0.96 and 0.753 respectively.     

 Film cooling effectiveness is obtained for one row of holes with three diameter hole 

spacing by Goldstein et al. (1999). The naphthalene sublimation technique is used along with a 

mass transfer analogy to establish adiabatic film cooling effectiveness with a density ratio of 1. 

The mass transfer analogy allows for measurements without “contamination” by lateral 

conduction and radiation effects. The data presented agrees well with conventional effectiveness 

measurement data. 

 Effectiveness results are presented by Brown and Saluja (1979) at a P/D of 2.67 with an 

inclination angle of 30 degrees. The results agree well with other authors, thus they are used for 

further validation.   

 The last validation case is the correlation provided by Baldauf et al. (2002a). The 

effectiveness correlation incorporates jet in cross flow behavior as well as adjacent jet interaction 
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at engine-like conditions. This correlation was reconstructed utilizing values realized from the 

current experimental setup. 

Table 9: Validation Cases 

 P/D 
Inclination Angle 

(degrees) 

Density 

Ratio 
Blowing Ratio 

Current Study 3 30 0.85 
0.4, 0.5, 0.8, 1.0, 1.2, 

2.0 

Pedersen et al. (1977) 3 35 0.75, 0.95 0.5, 1.0 2.0 

Goldstein et al. (1999) 3 35 1.0 0.5, 1.0 2.0 

Goldstein (1969) 3 35 <1.0 0.5, 1.0 2.0 

Brown and Saluja 

(1979) 
2.67 30 1.1 0.5, 1.0 

Baldauf et al. (2002a) 3 35 0.85 
0.4, 0.5, 0.8, 1.0, 1.2 

2.0 

 

 

The baseline cylindrical case was run at blowing ratios of 0.4, 0.5, 0.8, 1.0, 1.2, and 2.0. 

Experimental data from literature was found with blowing ratios of 0.5, 1.0 and 2.0.  Therefore 

those three blowing ratios were run for strictly validation purposes. Data was averaged 

perpendicular to the stream wise direction (laterally) to provide a span averaged film cooling 

effectiveness. The span averaged effectiveness for a blowing ratio of 0.5 can be seen in Figure 

38. 
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Figure 38: Laterally average effectiveness M=0.5 
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measured data the best, due to the 30 degree inclination angle, however no data further than 15 

diameters downstream is provided. Additional 35 degree inclination angle data is taken from 

Goldstein (1969), which agrees well with the other 35 degree inclination data. “Coverage” is 

frequently used in film cooling to refer to the ratio of open area at a row of film cooling holes to 

the total are being cooled. For unshaped cylindrical holes, the coverage is simply the inverse of 

the hole-to-hole spacing (also called pitch), P/D. The physical limit for laterally averaged film 

cooling effectiveness immediately downstream of the first row is equal to the coverage, because 

η ≤ 1 immediately downstream of the open area of the holes and η = 0 elsewhere. However 

due to noise just downstream of injection, this trend is not seen in the experimental data. 
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Figure 39: Laterally Averaged Film Effectiveness at M=1.0 
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effectiveness approximately 25 diameters downstream may be due to an increase in turbulent 

mixing between the coolant jet and main stream flow (Goldstein et al., 1999). The differences 

between literature and the current measurements are explainable by the differences in inclination 

angle and coolant properties (density ratio and momentum ratio).  

 

Figure 40: Laterally Averaged Film Effectiveness at M=2.0 

 

Further increasing the blowing ratio to 2.0 results in significant jet lift-off, causing a 

period of very low effectiveness until the jet reattaches approximately 10 diameters downstream 

of the film holes, shown in Figure 40. The increase in effectiveness after the jet reattaches is 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50

La
te

ra
ll

y 
A

ve
ra

g
e

d
 F

il
m

 E
ff

e
ct

iv
e

n
e

ss
 

X/D 

M=2.05, DR=0.87, I=4.83

M=1.96, DR=0.963 -

Pederson (1977)

M=1.96, DR=0.742 -

Pederson (1977)

M=2.0 - Goldstein (1999)

P/D=3, M=2.0, DR=0.9,

I=4.44 (Baldauf Correlation)

M=2.0 - Goldstein et al.

(1969)



87 

 

significant; the jet spreading and subsequent strong turbulent mixing occurs further upstream 

than the blowing ratio of 1.0 case (Goldstein et al., 1999). The Goldstein et al. (1999)  data 

agrees very well with the current study. The initially low effectiveness points towards a larger 

magnitude of jet lift-off due to the steeper injection angle with a reattachment that agrees with 

the current study. The Baldauf correlation under predicts the effectiveness, possibly due to using 

a low density ratio on a correlation created using high density ratio data.  The resulting effect 

would be decreased lateral spreading due to the low density ratio, while expecting a large amount 

of spreading due to correlating from high density ratio data (Sinha et al., 1991). 

 

Figure 41: Laterally Averaged Film Effectiveness at M=0.4 
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 Due to the lack of literature data at the blowing ratios of 0.4, 0.8 and 1.2, those are only 

plotted against the Baldauf correlation for comparison. Due to the lower density ratio used in the 

Baldauf correlation, the laterally averaged effectiveness reaches a high effectiveness peak at the 

low blowing ratio of 0.4 (Baldauf et al., 2002a). The high peak is due to jet spreading at the exit 

of the film hole, followed by a decay caused by the coolant being diluted by the mainstream 

flow. The downstream effectiveness agrees very well past 30 diameters. 

 

Figure 42: Laterally Averaged Film Effectiveness at M=0.8 
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 The blowing ratio of 0.8 can be considered a critical value where the jet is very close to 

the momentum ratio required to lift from the surface. The result is a flat profile which can be 

considered to decay very slightly (within experimental uncertainty. Compared to the blowing 

ratio 1.0 data, it can be seen that very near the hole exit a very slight, partial jet detachment. The 

effectiveness slightly increases from the jet reattaching, but since the jet never fully detached, 

only small amounts mainstream flow are entrained underneath the jet. The effectiveness curve 

shape can be seen in data by Pedersen et al. (1977) at a blowing ratio of 1.05 with a density ratio 

of 1.18, the resulting momentum flux ratio is 0.933. 

 

Figure 43: Laterally Averaged Film Effectiveness at M=1.2 
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  The critical value of blowing ratio (and correspondingly momentum flux ratio) that 

causes jet lift-off is already surpassed by 1.0. Therefore the blowing ratio of 1.2 represents a jet 

that is already strongly detached from the test surface. The effectiveness peak has been shifted to 

approximately 35 diameters downstream of the hole exit. The large film blanket created with the 

large thermal capacity seen with that amount of mass prevents mainstream flow entrainment. The 

jet at this point is no longer dominated by jet in crossflow effects, but rather adjacent jet 

ineractions (Baldauf et al., 2002a). The Baldauf correlation at this blowing and density ratio does 

not yet predict jet lift-off.  
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Figure 44: Centerline Film Effectiveness at M=0.5 

 

 The centerline effectiveness for the center most film hole is shown for a blowing ratio of 

0.5 in Figure 44. The effectiveness peaks quickly downstream of the film hole, at these low 

blowing ratios the jet tends to spread immediately exiting the film hole. The rapid decay in 

effectiveness is due to the mainstream mixing and diluting the temperature difference. The data 

agrees well with two runs with similar density ratio by Pedersen et al. (1977). The reduction in 

effectiveness decay is due to the increase in stream wise momentum due to the shallower 

injection as well as the reduction of jet spreading due to the low density ratio.  
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Figure 45: Centerline Film Effectiveness at M=1.0 

 

At the blowing ratio of 1.0, the laterally averaged effectiveness profile shows that the jets 

have lifted off. The centerline effectiveness however shows the peak value of effectiveness just 

downstream of injection location. The current study matches exceptionally well with Pedersen et 

al. (1977) at density ratio of 0.753 until approximately 25 diameters downstream where the 

effectiveness starts to slightly increase. At this point the discrete jets spread out further and mix 
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turbulently, causing the low effectiveness between jets to potentially increase; however the 

difference in effectiveness is within experimental uncertainty.  

 

Figure 46: Centerline Film Effectiveness at M=2.0 

 

 The jet centerline effectiveness for blowing ratio of 2.0 shows a higher effectiveness than 

both of the Pedersen et al. (1977) cases. The jet reattachment is further upstream due to the less 

severe lift-off from the shallower injection angle.  
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Figure 47: Centerline Film Effectiveness 

  

 The centerline film effectiveness for all blowing ratios is shown in Figure 48. Clearly 

shown is the high effectiveness peak just downstream of the film hole exit for the low blowing 

ratios, caused by the jet spreading immediately downstream of the exit. The blowing ratios below 

1.0 all display an entirely decaying trend due to the cooling flow being diluted by the 

mainstream. At blowing ratios of 1.0 and above, jet lift off becomes apparent. However the 

effectiveness downstream continues to increase past the jet reattachment point due to the 

increased thermal capacity of the coolant. Past 50 diameters downstream, all cases show a 

similar magnitude in film effectiveness.  
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Figure 48: Laterally Averaged Effectiveness 

 

 The laterally averaged film effectiveness shows very similar trends to the centerline film 

effectiveness and the same conclusions can be made. Figure 48 shows the laterally averaged film 

effectiveness for all blowing ratios. The blowing ratio of 2.0 clearly detaches from the surface 

downstream of the injection location.  The large amount of mass and increased turbulent mixing 

allows for the film effectiveness to reach approximately 0.2 past the jet reattachment point. The 

jet has clearly detached fully from the surface for a blowing ratio of 1.20 as well, shown by the 
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similar magnitude in film effectiveness just downstream of the hole exit. The transition point 

between where the jet starts to detach appears to be approximately a blowing ratio 0.8. The result 

is a low film effectiveness downstream of the film hole and not a large enough thermal capacity 

to regain much effectiveness downstream.  

 

 

Figure 49: Local Film Effectiveness Contours M=0.4 

 Downstream of the film holes shows discrete jets that have started to spread out and 

eventually dissipate into an even effectiveness field. Figure 49 shows a contour plot of 

effectiveness for a blowing ratio 0.4. Initially between the film jets there is a region of low 
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effectiveness. By 10 diameters downstream, the jet has already spread to twice the original size. 

The discrete jets are visible until 35 diameters downstream of injection location.  

 

Figure 50: Local Film Effectiveness Contours M=0.5 

 Similarly, the blowing ratio of 0.5 shown in Figure 50 displays a very similar set of 

contours to the blowing ratio of 0.4. The jets show increased spreading at a downstream location 

closer to the injection location compared to the lower blowing ratio. Downstream the film has 

created a relatively even surface at a higher effectiveness value. 
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Figure 51: Local Film Effectiveness Contours M=0.8 

 

 The low effectiveness region between film jets extends further downstream for a blowing 

ratio of 0.8, shown in Figure 51. The jets remain narrow throughout their realizable area. The jets 

are no longer distinct by 24 diameters downstream of injection location, due to the increased 

turbulent mixing with the mainstream brought by the increase in momentum flux ratio.  
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Figure 52: Local Film Effectiveness Contours M=1.0 

  

 The distinct jet shape has become even shorter for a blowing ratio of 1.0. The low 

effectiveness point just downstream of the hole exit shows where the jet has detached and the 

mainstream has become entrained underneath the jet. The jet reattaches shortly downstream and 

dissipates.   
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Figure 53: Lateral Variation of Film Effectiveness M=1.0 

 

 Figure 53 represents the lateral variation in film effectiveness for a blowing ratio of 1.0. 

The data sets donated a X/D value are a lateral slice of film effectiveness, the red lines in Figure 

54 are the location of the local slices. The jets are highly uniform in magnitude, showing an even 

distribution of coolant.  
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Figure 54: Spanwise Local Effectiveness Trace Location 

 

 The black line in Figure 53, denoted streamwise average, is the average of the film 

effectiveness at a given Z/D in the streamwise (X/D) direction. Figure 55 shows a diagram of the 

procedure; the horizontal red line represents the streamwise average of a row of pixels. This 

average is carried out at each Z/D. The result, in Figure 53 has only been shown for the film 

holes used for the lateral averaging. The side three holes on each side are not included in lateral 

averaging because of potential endwall effects. The streamwise average is laterally uniform. This 

average shows the effect of the low effectiveness between the film holes on the total streamwise 

film effectiveness value. Even with the increased jet spreading downstream, the film 

effectiveness average is lower between the film holes.  
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Figure 55: Streamwise Average Diagram 

 

 

Figure 56: Local Film Effectiveness Contours M=1.2 
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 As the blowing ratio increases, the distinct visibility of film jet decreases in length. The 

low effectiveness region between film jets increases in size, shown for a blowing ratio of 1.20 in 

Figure 56. As the momentum flux ratio increases with blowing ratio, the jet spreading location 

moves further upstream due to strong interaction between the jets and mainstream flow 

(Goldstein et al., 1999).  

 

Figure 57: Local Film Effectiveness Contours M=2.0 

 

 The jets begin spreading out only 12 diameters downstream of the hole exit at a blowing 

ratio of 2.0, shown in Figure 57. The high effectiveness area further downstream is indicative of 

jet reattachment. The high momentum coolant flow strongly interacts with the mainstream flow 

and spreads the coolant film which flattens the effectiveness in the downstream areas.  
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Transpiration Cooling 

 The transpiration testing was performed at nominal blowing ratios of 0.05, 0.10, and 

0.15. Comparisons are made to two correlations found in literature, 1) Goldstein (1965) and 2) 

Kutateladze and Leont'ev (1963). These correlations are shown in Equation 10 and 11, shown 

again below.  

   

       (    )       (10) 

 

   (      (    )        )    
 

                           

(11) 

 

Both of these correlations are found to fit data with blowing ratios below 0.03 very well.  

Application to the current study is extrapolation at best; however they serve as a baseline to 

compare against. The Goldstein correlation tends to over predict effectiveness. At low X values, 

effectiveness values greater than unity are given. X is the stream wise distance started at the 

leading edge of the porous slot. One of the assumptions of the Kutateladze correlation is unity 

effectiveness at the point of injection (Goldstein, 1965).  
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The correlations serve to bound the measured effectiveness. The Goldstein correlation 

has initial over prediction, a period of under prediction at approximately X/h of 50. The 

Kutateladze correlation predicts the effectiveness well until further downstream where it under 

predicts. The span averaged effectiveness for M = 0.05 is plotted log-log against X/Mh in Figure 

58.   

 

 

Figure 58: Transpiration Film Effectiveness M=0.05 

An increase in surface protection by increased effectiveness is the result of increasing the 

blowing ratio to 0.10. The correlations follow the same trend as for the low blowing case of 0.05. 

The span averaged effectiveness values are shown in Figure 59. The decay rate in effectiveness 

is more logarithmic for blowing ratio of 0.10. 
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Figure 59: Transpiration Film Effectiveness M=0.10 

 

The greatest effectiveness is seen from the highest blowing ratio case of 0.15. The 

Goldstein correlation greatly over predicts the effectiveness at this blowing ratio over the entire 

stream wise area. However, for this blowing ratio, the Kutateladze correlation agrees with the 

current data well. These values are shown in Figure 60.   
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Figure 60: Transpiration Film Effectiveness M=0.15 

 

The three transpiration baselines are plotted with the two correlations for each case in 

Figure 61. The curves essentially collapse down into a single mass. The slope of decay for the 

experimental cases changes midway down the test surface, illustrated by surpassing the 

correlations in effectiveness.  
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Figure 61: Transpiration Film Effectiveness, Log-Log 

 

Increasing the relative mass injected through the porous section results in greater surface 

protection by increased effectiveness. The highest blowing ratio case shows the slowest decay 

over the test surface; an effectiveness of greater than 0.08 is attained over the entire surface. A 

greater increase in effectiveness is seen increasing from 0.05 to 0.10 than from 0.10 to 0.15 

blowing ratio, shown in Figure 62. The shape of each curve is similar; the effect of increasing 

blowing ratio serves to translate the curve vertically to higher effectiveness over the entire 

surface. 
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Figure 62: Transpiration Laterally Averaged Effectiveness 

 

The centerline effectiveness profiles appear in Figure 63 and are similar in shape and 

magnitude to the laterally averaged film effectiveness profiles. The significance of this is the 

injected film is distributed uniformly such that on average the lateral profile is close to the 

centerline value. Local lateral non-uniformities which appear due to the porous structure are not 

apparent in the lateral average.   
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Figure 63: Centerline Transpiration Effectiveness 

 

Transpiration Numerical Versus Experimental 

The CFD study did not capture the expected change in effectiveness due to the porosity 

of the porous wall. However without further experimental results with the other porosity inserts, 

an explicit conclusion cannot be made. The method of using a constant velocity boundary 

condition to model a flow exiting a porous wall is a relatively poor indicator of cooling 

performance by over predicting the film cooling effectiveness downstream of injection.  
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Figure 64: CFD Versus Experimental Laterally Averaged Effectiveness 

The velocity profile exiting from the porous wall is not uniform over the slot length. 

Reducing the complexity down to a simple constant velocity increases the effectiveness 

predicted. Figure 64 shows the CFD results with the 0.40 porosity insert experimental data. At 

the same blowing ratio, the CFD predicts a much slower decay in effectiveness than the 

experimental data.  
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Table 10: Area Averaged Effectiveness 

Case # M=0.05 M=0.094 M=0.155 

Case 

1 

Case 

2 

Case 

3 

Case 

4 

Area Averaged 

Effectiveness 

0.1609 0.2509 0.3005 0.4506 0.4505 0.4503 0.4483 

 

The area averaged effectiveness is shown in Table 10. The CFD predicted effectiveness 

exceeds the experimental data even at higher blowing ratio. Attention needs to be paid to the 

velocity profile exiting the unmodeled porous wall when performing numerical simulations of 

transpiration. 
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Multi-Row Results 

 The first geometry, [30/45/14] serves as a validation case as it closely approximates a 

geometry used by Mayle and Camarata (1975) with the addition of an adiabatic recovery region 

devoid of holes. This geometry also serves to investigate the effect of including a compound 

angle on a full coverage film array. The results given by Mayle and Camarata (1975) are given 

on a streamwise averaged basis due to their use of a discrete point measurement technique while 

the current experiment is shown as laterally averaged film effectiveness. There is little difference 

between blowing ratio inside the film array for this geometry. Recovery region effectiveness is 

dictated by the amount of mass preceding it; effectiveness and the reduction in decay rate are 

governed by blowing ratio. Figure 65 shows the agreement in effectiveness between literature 

data and the current experiment.  
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Figure 65: [30/45/14] Film Cooling Effectiveness versus Data Reproduced From Mayle 

 

 The 45° compound angle was removed to create a similar geometry, [30/0/14]. The 

laterally averaged effectiveness is shown in Figure 66; for this case the low blowing ratio of 0.5 

provides maximum film effectiveness towards the end of the film array. The two higher blowing 

ratios show sign of jet lift-off after the first row. The jet lift-off and subsequent interactions with 

the following rows decreases overall film effectiveness. The highest blowing ratio gives the 

lowest film effectiveness over the array due to the severity of jet-lift off. 
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Figure 66: [30/0/14] Laterally Averaged Effectiveness 

 The [30/45/14] and [30/0/14] geometries are shown together at the low blowing ratio in 

Figure 67. An equivalent amount of coolant is injected in each region of both arrays, however the 

45° compound angle creates greater laterally averaged film effectiveness. The compound angle 

creates a spreading effect that contributes to greater coverage of the surface. The net result is 

greater effectiveness over the entire array at the same blowing ratio.  
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Figure 67: Effect of 45° Compound Angle 

 The periodic double row geometry [30/0/7] is shown in Figure 68. Between sets of rows 

the effectiveness declines rapidly, however the effectiveness continues to increase over the film 

array due to the injected mass. There is a discontinuity at the transition to the recovery region, 

this is due to the different materials used between the test plate and recovery region, acrylic and 

rohacell respectively. Thermal expansion differences between the plates created a minor 

misalignment. The magnitude of effectiveness in the recovery region is questionable however the 

decaying trend is not. Once again the low blowing ratio case is near optimal for this geometry. 

The higher density hole spacing has the benefit of twice the geometric coverage over the 

[30/0/14] and almost twice that of the [30/45/14] array. This allows the effectiveness 
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immediately downstream of the array to be greater, yet decay at nearly the same rate. Hence, a 

denser hole array spaced slightly farther, in this case, provides a more efficient use of coolant. 

 

Figure 68: [30/0/7] Laterally Averaged Effectiveness 

 

 The transpiration geometry, [90/0/1], creates very high effectiveness peaks just 

downstream of injection, as expected. The effectiveness quickly decreases downstream of 

injection until the next row of transpiration are reached. The area between transpiration sections 

shows an increase in effectiveness past each row due to the buildup of a coolant layer. The 

discontinuity, not shown in Figure 69, in recovery region data is present here as well for the 
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same reason. The film effectiveness increases as blowing ratio and hence mass injected 

increases. The momentum flux ratios for these cases are low such that the coolant film never 

detaches from the flow surface. 

 

 

Figure 69: [90/0/1] Laterally Averaged Effectiveness 

 The low blowing ratio cases between all geometries are compared in Figure 70. The 

transpired array decays at a comparable rate to the discrete hole arrays despite the lower usage of 

coolant, showing a more efficient usage per mass injected. The double row [30/0/7] shows an 

advantage in film effectiveness over the full coverage arrays at low blowing. 
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Figure 70: Multi-Row Geometry Laterally Averaged Effectiveness 

 

The lateral uniformity downstream of [30/0/7] and [90/0/1] is compared in Figure 71. 

Ideally, transpiration is able to provide much more gradual lateral variations in effectiveness 

when compared with discrete injection. In practice, there will be variations present are due to 

material tolerances in the porous substrate. 
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Figure 71: Streamwise Averaged Effectiveness 

 

Coupled – B Results 

The ‘Coupled – B’ geometry features a 5mm porous strip downstream of the thirteen 

7.5mm discrete film holes. Mass flows were set to keep film hole blowing ratio equivalent to the 

film baseline of 0.4, 0.8 and 1.2. Discharge coefficients were calculated using differential 

pressures between the plenum and crossflow for the film baseline. The differential pressures 

were approximately reproduced on the ‘Coupled – B’ geometry allowing for the mass flow 

through the film holes to be known. A curve fit was established with the discharge coefficient 

data to calculate the mass flow for pressures that varied slightly from the film baseline pressures, 
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shown in Figure 72. The venturi flow meter installed upstream of the coolant plenum measures 

the total mass flow through the coolant plenum; therefore the transpiration mass flow rate is also 

known. 

 

Figure 72: Mass Flow vs Differential Pressure 

 

The local effectiveness contours for the three blowing ratios tested are shown in Figure 

73 through Figure 75. The lateral non-uniformity is present in the same location as the 

transpiration baseline. Therefore the reinstallation of the porous piece did not affect it, showing 

that the non-uniformity is inherent in the porous piece. The areas of low effectiveness between 

the discrete jets present in the film baseline are diminished due to the injection from 
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downstream. Increasing the blowing ratio to 0.81 does not qualitatively increase effectiveness 

versus the 0.4 case. The peaks of the jets extend a shorter distance downstream due to jet lift-off 

present at this blowing ratio. The transpiration received the same blowing ratio for both cases, 

causing a constant effectiveness downstream on the test surface. The highest blowing case of 

1.21 resulted in a high transpiration blowing ratio of 0.21; the result of which is an increase in 

non-uniformity at a Z/D of 0. High effectiveness extends downstream of the porous section 

followed by noticeable jet lift-off.  Reattachment occurs followed by significant mixing between 

the transpired and discrete film. With this number of contours, the flow becomes homogenous 

past 30 diameters downstream, except for the non-uniformity at Z/D of 0.    

 

 

 

Figure 73: Local Effectiveness Contours MCYL = 0.41 MTRAN =0.074 
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Figure 74: Local Effectiveness Contours MCYL =0.81 MTRAN=0.075 

 

 

Figure 75: Local Effectiveness Contours MCYL = 1.22 MTRAN =0.21 
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The laterally averaged effectiveness profiles for the Coupled-B geometry are shown in 

Figure 76. The transpiration strip is downstream of the film holes in this arrangement. The 

different sets of blowing ratios tested give effectiveness curves similar in magnitude and slope. 

The lowest film blowing ratio case, Mcyl = 0.4, surpasses the higher film blowing ratio of 0.8 

case past an X/D of 5. This can easily be attributed to the film blowing ratio at the critical value 

between staying attached to the wall and being lifted from the surface. This results in low 

effectiveness. Since the two cases have the same transpiration blowing ratio, they reach the same 

effectiveness value far downstream of the injection location. The highest blowing ratio case 

reaches the highest effectiveness over the entire test surface. The first 10 diameters of 

effectiveness appears to be dominated by the transpired flow. Far downstream the increased 

thermal capacity of the larger film injected mass as well as increased turbulent mixing from the 

higher momentum film flow results in the effectiveness being dominated by the discrete hole 

injection.  
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Figure 76: Laterally Averaged Effectiveness Coupled-B 

When plotted with the two baseline cases that approximately match the coupled case, it is 

apparent that the transpiration effectiveness does dominate the effectiveness value. Figure 77 

shows the lowest blowing ratio cases. The discrete hole film begins to dominate in the 

downstream region where the discrete jets have mixed and spread out. From a linear 

superposition perspective, the region just downstream of injection is not indicative of positive 

effect on effectiveness from coupling the two technologies. However, far downstream appears to 

have validity for a linear superposition approach. If the blowing ratios between the three cases 

were the same, past a X/D of 35, the linear superposition technique could be valid. The net effect 

is an effectiveness profile that reaches transpiration levels just downstream and exceeds both 

film and transpiration further downstream.  
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Figure 77: Laterally Averaged Effectiveness Comparison, Mcyl=0.4, Mtran=0.07 

 The next set of blowing ratios is shown in Figure 78. The point that discrete hole film 

injection surpasses the transpiration effectiveness has been shifted downstream, due to the lower 

effectiveness of the Mcyl blowing ratio case. The coupled case once again matches and surpasses 

the transpiration effectiveness. Only far downstream would a linear superposition possibly be 

valid. 
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Figure 78: Laterally Averaged Effectiveness Comparison, Mcyl=0.8, Mtran=0.08 

 

 The highest transpiration blowing ratio fell short of the coupled transpiration blowing 

ratio, 0.155 versus 0.21 respectively. With this magnitude greater transpiration blowing ratio, 

one would expect greater effectiveness just downstream of injection. However this is not the 

case, the coupled geometry once again matches the transpiration effectiveness regardless of the 

greater amount of mass injected. As the blowing ratios are increased, the point which film 

cooling surpasses transpiration cooling effectiveness is shifted further downstream. The coupled 

case approximately stops decaying past a X/D of 15, due to the increasing trend in effectiveness 

of the film injection.  
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Figure 79: Laterally Averaged Effectiveness Comparison, Mcyl=1.2, Mtran=0.21 

 

Coupled – A Results 

The Coupled-A geometry features a 5mm porous strip upstream of a row of 7.5mm 

discrete film holes.  This is a shift of the permeable section by 4-5 hole diameters upstream 

compared to the previous Coupled-B geometry.  This significant shift in the permeable section 

can be seen to only marginally affect the surface downstream. Also very similar is the film 

effectiveness following the coupled source despite the large shift in permeable section location. 

At large downstream distances, greater than thirty, the effectiveness following each coupled 

source collapse on one another showing the downstream effectiveness is governed by the 

discrete row alone; transpiration no longer governs cooling at large downstream distances. The 

laterally averaged effectiveness for the Coupled-A geometry is shown in Figure 80. 
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Figure 80: Laterally Averaged Effectiveness Coupled-A 

 

 The magnitude of effectiveness is similar for the three cases. The cylindrical blowing 

ratio cases of 0.4 and 0.8 show nearly identical effectiveness until an X/D of 20. Since a 

cylindrical blowing ratio 0.8 is shown to have characteristically low effectiveness, therefore the 

initial high effectiveness is entirely due to the transpiration injection. The highest blowing ratio 

case has negligibly higher initial effectiveness than the two lower blowing cases despite having 

twice the amount of transpired flow. The film flow serves to increase effectiveness past an X/D 

of 20 from the thermal capacity of the larger mass of coolant and the increased turbulent mixing 

with the mainstream. 

 Local effectiveness contours for the three cases are shown in Figure 81 through Figure 

83. From these contours, it is seen that the transpiring flow appears to have less effect on the film 
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effectiveness. The film jets remain discrete for an extended duration compared to baseline. The 

low momentum film created by the upstream transpiring flow appears to decrease the spreading 

of the film jets downstream of injection. 

 

 

Figure 81: Local Effectiveness Contours MCYL = 0.4 MTRAN =0.11 

 

Figure 82: Local Effectiveness Contours MCYL = 0.8 MTRAN =0.12 
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Figure 83: Local Effectiveness Contours MCYL = 1.2 MTRAN =0.22 

 

 Comparison plots of the coupled runs with the approximately equal film and transpiration 

baseline cases are shown in Figure 84, Figure 85 and Figure 86. The upstream transpiration 

coupled geometry fails to reach the effectiveness levels given by transpiration alone. Interactions 

between the transpired and discrete hole injected films negatively impact the coolant 

performance just downstream of injection. The large difference in momentum between the 

transpired and discretely injected flows creates a strong shear layer that serves to separate the 

transpired flow from the surface, similar to how the kidney vortices promote jet lift off. The 

point that the coupled geometry surpasses the effectiveness of both transpiration and discrete 

hole injection is approximately a X/D of 10 for the two lower blowing ratio cases. This point 

shifts further downstream as the blowing ratio is increased. 
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Figure 84: Laterally Averaged Effectiveness Comparison, MCYL=0.4, MTRAN=0.11 
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Figure 85: Laterally Averaged Effectiveness Comparison, MCYL=0.8, MTRAN=0.12 
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Figure 86: Laterally Averaged Effectiveness Comparison, MCYL=1.2, MTRAN=0.22 

 

Coupled Comparison 

 The laterally averaged effectiveness for both coupled geometries is shown in Figure 87. 

Coupled-A is depicted as solid lines (O/D=1) while Coupled-B is shown as dashed lines (O/D=-

1). The Coupled-A geometry has the transpiration strip upstream of the film holes while 

Coupled-B has it downstream. The difference in geometry causes two distinct trends, the 

Coupled-B geometry has greater initial effectiveness due to the downstream placement of the 

transpiration segment, and far downstream the discrete hole injection clearly dominates the 

effectiveness. Since the discrete hole blowing ratios were able to be consistently kept the same, 
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the far downstream effectiveness for the cases between geometries with the same blowing ratio 

reach the same effectiveness value. It appears that having the transpiration segment downstream 

of the discrete holes allows for the discrete jets to entrain transpired flow instead of the 

mainstream flow. 

 

Figure 87: Laterally Averaged Effectiveness Coupled Geometries 

 

 Further analysis must be performed to compare the relative amount of losses generated 

from either coupled geometry. Comparisons from an application perspective would then be more 

possible.  

  

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

La
te

ra
ll

y 
A

ve
ra

g
e

d
 E

ff
e

ct
iv

e
n

e
ss

 

X/D 

Mcyl=0.4, Mtran=0.11, h/D=2/3, O/D=1, P/D=3

Mcyl=0.8, Mtran=0.12, h/D=2/3, O/D=1, P/D=3

Mcyl=1.2, Mtran=0.22, h/D=2/3, O/D=1, P/D=3

Mcyl=0.4, Mtran=0.07, h/D=2/3, O/D=-1, P/D=3

Mcyl=0.8, Mtran=0.08, h/D=2/3, O/D=-1, P/D=3

Mcyl=1.2, Mtran=0.21, h/D=2/3, O/D=-1, P/D=3



136 

 

CHAPTER 6: CONCLUSION 

Ex Supra 

 The first chapter introduced basic theory behind gas turbine operation and explained the 

need for advancing turbine cooling technologies. The two distinct technologies, discrete hole 

film cooling and transpiration cooling were introduced. The current work was introduced as the 

coupling of those two technologies for the improvement of cooling performance. 

 The second chapter described some of the history of film cooling and transpiration and 

detailed the governing parameters as well as fundamental concepts behind those two 

technologies. Included is an extensive literature review of research regarded as directly 

applicable to the current work.  

 The third chapter incorporated correlations found in literature in order to find an optimal 

starting point for a coupled discrete hole and transpiration cooling system. The two coupled 

geometries were described in detail. 

 The fourth chapter detailed the experiment wind tunnel and measurements techniques 

used to characterize the performance of the baseline, coupled, and multi-row geometries. The 

hot-wire anemometry setup was detailed and calculation methods for turbulence length scales 

were explained. The temperature sensitive paint measurement technique luminescent process is 

overviewed. The data acquisition and processing systems utilized along with the image 

registration process is given. 

 The fifth chapter incorporated experiment validation as well as experiment results. The 

discrete hole and transpiration baselines were validated against literature data and correlations 
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from literature respectively. The baseline data was found to be valid and of excellent resolution. 

The coupled geometries were analyzed based on film effectiveness. The local effectiveness as 

well as laterally averaged effectiveness was presented and detailed. Both geometries increased 

effectiveness over the baseline cases; giving credibility to incorporating either geometry based 

on design constraints. However having the transpiring section downstream of the film holes did 

increase effectiveness downstream of injection to the levels of transpiration. The upstream 

transpiring section geometry did not match the transpiration level of effectiveness just 

downstream of injection.  

 

De Futuro 

 The current study is just the first step in the research of coupling these cooling 

technologies. The increase in cooling performance has been established, now the physics behind 

how the two flows interact needs to be analyzed. Flow imaging technology such as PIV or LDV 

should be used to visualize the interactions between the transpiring and discretely injected flows. 

Furthermore, experimental data needs to be compared with CFD simulations in order to create 

design tools for implementation. Additionally, with the progression of laser additive 

manufacturing, airfoil shapes can be created with discrete holes and porous sections. The 

inclusion of surface curvature as well as varying levels of turbulence intensity needs to be 

experimentally performed. From a mechanical standpoint, the effect on thermo-mechanical 

stresses from having both transpiration and film cooling needs to be addressed. 
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