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ABSTRACT 

Compared to conventional materials, polymer matrix composites (PMCs) have a 

number of attractive properties, including light weight, easiness of installation, potential to 

lower system-level cost, high overall durability, and less susceptibility to environmental 

deterioration. However, PMCs are vulnerable to fire such that they degrade, decompose, and 

sometimes yield toxic gases at high temperature. The degradation and decomposition of 

composites lead to loss in mass, resulting in loss in mechanical strength. 

This research aims to improve the structural integrity of the PMCs under fire 

conditions by designing and optimizing a fire retardant nanopaper coating, and to 

fundamentally understand the thermal response and post-fire mechanical behavior the PMCs 

through numerical modeling. Specifically, a novel paper-making process that combined 

carbon nanofiber, nanoclay, exfoliated graphite nanoplatelet, and ammonium polyphosphate 

into a self-standing nanopaper was developed. The nanopaper was then coated onto the 

surface of the PMCs to improve the fire retardant performance of the material. The 

morphology, thermal stability, flammability, and post-fire flexural modulus of the nanopaper 

coated-PMCs were characterized. The fire retardant mechanism of the nanopaper coating was 

studied. 

Upon successfully improving the structure integrity of the PMCs by the nanopaper 

coatings, a thermal degradation model that captured the decomposition reaction of the 
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polymer matrix with a second kind boundary condition (constant heat flux) was solved using 

Finite Element (FE) method. The weak form of the model was constructed by the weighted 

residual method. The model quantified the thermal and post-fire flexural responses of the 

composites subject to continuously applied heat fluxes. A temperature dependent post-fire 

residual modulus was assigned to each element in the FE domain. The bulk residual modulus 

was computed by assembling the modulus of each element. Based on the FE model, a refined 

Finite Difference (FD) model was developed to predict the fire response of the PMCs coated 

with the nanopapers. The FD model adopted the same post-fire mechanical evaluation 

method. However, unlike the FE model, the flow of the decomposed gas, and permeability 

and porosity of the composites were taken into account in the refined FD model. The 

numerical analysis indicated that the thickness and porosity of the composites had a profound 

impact on the thermal response of the composites. 

The research funding from the Office of Naval Research (ONR) and Federal Aviation 

Administration Center of Excellence for Commercial Space Transportation (FAA COE AST) 

is acknowledged. 
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CHAPTER 1 

INTRODUCTION  

1.1. Motivation 

Polymer-matrix composites (PMCs) are composed of high strength fibers and 

polymer matrix. Within the PMCs structure, both the fibers and matrix retain their individual 

properties. Yet, the combination shows a unique property that cannot be achieved with either 

of the fibers or matrix acting alone. In the resulting PMCs, the matrix works as a medium that 

keeps the fibers in a desirable direction and location. The fibers serve as the principal 

load-carrying members. The matrix transfers applied force between the fibers and also 

protects the fibers from environmental damages such as humidity and chemical corrosion [1]. 

Compared to metallic materials, the weight of a component that is made of PMCs materials 

could be substantially reduced due to their high specific strength (σult/ρ) and high specific 

stiffness (E/ρ). 

Because of these unique mechanical advantages, PMCs materials are considered to 

replace traditional metallic materials and are commonly applied in aircraft, military, space, 

automotive, sporting goods, marine, infrastructure, and biomedical sectors. For example, the 

materials used in the body of a Boeing 777 aircraft are 50 percent aluminum and 12 percent 

composites by weight, while in the newly developed Boeing 787 Dreamliner, the percentages 

by weight for aluminum and composite materials have changed to 20 percent and 50 percent, 

respectively [2]. According to a commercial report, the worldwide annual composites market 
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grows at a rate of 4 percent, from about $80 billion USD in 2008 to almost $110 billion in 

2013. Globally, the market shared by the so-called BRIC (Brazil, Russia, India and China) is 

expected to grow from around 22 percent 2008 to 29 percent in 2013, with China alone 

representing 23 percent of the worldwide market that year. The major contribution to the 

growth comes from wind energy market, aerospace sectors, and building, construction, 

automotive industries (especially in China) [3]. 

However, one shortcoming for PMCs materials that limits their implementation is 

their vulnerability to fire. Resulting from their organic nature, PMCs will degrade, 

decompose, and sometimes yield toxic gases when subject to radiant heat or fire. The 

degradation and decomposition of composites will lead to losses in mass: that leads to losses 

in mechanical strength of the structure. It is possible that the application of PMCs has 

contributed to the more than $12 billion in property loss and 3000 deaths in fire during 2009 

[4]. Therefore, the motivation of this study is to understand the fire response of polymer 

composites both experimentally and mathematically, and eventually to improve the flame 

resistance and structural integrity of the material by optimizing the material design. 

1.2. Research Methods 

1.2.1. Phenomenon of combustion and flame retardancy strategy 

In order to design effective flame retardant systems, it is imperative to understand the 

process of combustion reactions, or more specifically, the burning process of polymer. 

Generally speaking, there are two kinds of flames: premixed flame where gas and fuel source 
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are kept constant, such as that produce by an oxygen acetylene torch, and diffusion flame, 

where the oxygen diffuses into the fuel mixture from the surrounding atmosphere, such as the 

burning of PMCs [5]. During the evolving of the diffusion flame, which is the combustion 

phenomenon that will be discussed throughout this dissertation, three steps will be occurring 

in the following order: the heating of the fuel source, the decomposition of the fuel source 

into combustible and non-combustible materials, and finally the ignition of the combustible 

fuel and air mixture to produce a flame [6]. The decomposition of the polymer matrix (fuel 

source) essentially is the breaking of chemical bonds, transforming the fuel into high energy 

free radicals. This process is initiated by an external heat source. As long as the combustion 

process has begun and the fuel/air mixture remains at a certain level, the heat generated by 

exothermic combustion of the fuel is enough to keep the flame propagating. The mass 

transfer of the fuel/air mixture into the pyrolysis zone and energy transfer back to the fuel 

source are crucial to sustain the combustion process, during which the oxygen, heating rate, 

and pressure of environment are playing significant roles [6-8]. 

Once the combustion process is understood, it is possible to design the strategies to 

stop the propagation of fire. When polymer is under external heat flux, the material can 

decompose, to form the high energy free radicals and evaporate. If the concentration of 

volatile products is sufficient (within the flammability limits and the temperature is above the 

ignition temperature), the combustion proceeds [9]. Accordingly, one can extinguish the fire 

chemically and physically in both the vapor phase and condensed phase by reducing the heat 
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or fuel below critical levels [10]. In the condensed phase, there are two approaches to stop the 

combustion cycle. Firstly, one can dilute the solid fuel with inorganic fillers (e.g. talc or 

calcium carbonate), lowering the combustible portion of the material, and ultimately lowering 

the amount of heat per volume of material it can produce while burning. Alternatively, there 

are additives that would create an endothermic environment when reacting, such as 

magnesium and aluminum hydroxides, as well as various hydrates such as hydromagnesite. 

Secondly, one can carbonize the polymer, during the decomposition process to form foaming 

char (e.g. intumescent additives), which acts as a protective layer from both mass and heat 

transfer. In the vapor phase, the combustion cycle can be stopped by physically diluting the 

flame with inert gases (such as carbon dioxide and water), which are the result of the thermal 

degradation of the flame retardants, or by chemically removing fire-propagating radicals such 

as H· and OH· with halogenated gases (e.g. hydrogen chloride and hydrogen bromide) [6]. 

These chemicals can be permanently bonded into the polymer molecules to form intrinsically 

fire-resistant polymers, or added into the polymer as fire-retardant fillers. 

Even though halogenated fire retardants are effective, they will be abandoned sooner 

or later because of the growing environmental and health concerns [11-14]. The intrinsic 

flame resistant polymers, however, are so expensive that it is difficult to extend their 

applications unless break-through technologies appeared that dramatically reduced the cost of 

synthesizing this type of polymer. Other flame retardants, such as intumescent flame 

retardants, aluminum trihydrate (ATH), and magnesium hydroxide have their own 
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shortcomings: their expensive price and the high loading requirement in order to pass fire 

safety tests, which causes problems such as high density, lack of flexibility, low mechanical 

properties, and difficulty in processing [15]. The endeavor of seeking an effective flame 

retardant system in this dissertation is focused on nanomaterials and coating technologies. 

This is because the large aspect ratio of nanomaterials could provide desirable features to 

lower the loading of additives. The coating technology could potentially eliminate the 

difficulty of obtaining PMCs with the flame retardants homogenously dispersed in their 

matrices. 

1.2.2. Objectives 

Many researchers had reported that a high quality and compact carbonaceous 

protective char layer being formed under fire condition when the nanocomposites showed 

excellent flame resistance. The pioneering research had done by Kashiwagi et al have 

inspired a promising idea to achieve fire retardancy [19-23]. That is: instead of forming the 

char layer gradually during the combustion process, why not impose a pre-existing char layer 

directly onto the surface of PMCs! Therefore, one of the objectives of this work is to enhance 

the flame resistance of PMCs by seeking an effective yet practical coating system, or the 

“pre-existing protective char layer”, which is expected to serve as a mass and heat barrier for 

PMCs under fire scenario. First of all, the thermal stability of such a “char” should be high as 

it will experience the highest temperature, which automatically leads one to seek 

carbon-based material. Initially, carbon nanotube (CNT) was used to fabricate buckypaper. 
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Although it was possible to make a self-standing CNT paper without adding additional 

bonding agent or blender (because the bonding agent or blender might decrease the thermal 

stability of the nanopaper), the as-made buckypaper was extremely brittle as the short CNTs 

were hardly entangled with each other. This, unfortunately, resulted in the difficulty of further 

processing. Carbon nanofiber (CNF), on the other hand, does not exhibit such a shortcoming. 

Since CNFs can tangle with each other tightly, it is relatively easy to fabricate a CNF paper 

with high processability. Moreover, the cost of CNF is much lower than that of CNT, yet 

sometimes possesses similar physical properties. As a result, CNF is the ideal choice to form 

the scaffold for such a pre-existing “char layer”. Secondly, it is difficult to achieve flame 

resistance by coating the pure CNF paper onto the surface of composite materials. In fact, 

Zhao et al reported that when using pure CNF paper alone, the flammability of PMCs was 

increased instead of decreased. The PHRR of the sample was increased and the time to 

ignition was shortened. In other words, the sample coated with pure CNF paper ended up not 

only easy to catch fire but also releasing a large amount of heat, which could provide the heat 

source for the sustainable combustion. In such a case, the CNF paper was not a “fire 

retardant”, but only a “fire catalyst”. Therefore, as a second step, it is important to modify the 

CNF nanopaper by incorporating other types of particles so that a synergistic effect between 

nanofiber and other particles should be revealed. These types of nanopapers are called the 

“hybrid nanopapers”. 

When hybrid nanopaper is coated onto the surface of composite laminates, the 
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polymer matrix serves as the medium to tightly hold those nanoparticles together. For 

example, when designing the clay-CNF hybrid paper, multiple effects could be expected. The 

CNF scaffolding should hold the clay particles, which are very promising fire retardants. The 

well-dispersed clay in the polymer matrix will increase the viscosity of the polymer, which is 

important to form compact char during the combustion process. Furthermore, the planar 

structure of clay compensates for the relatively high permeability of the CNF paper: the 

permeability should play a significant role in preventing the mass flow of fuels originating 

from the decomposition of resin. Consequently, the conditions for sustainable flame 

propagation will be disturbed and fire resistance should be achieved. 

As a rule of thumb, desirable char layer that could able to protect the underlying 

structure should simultaneously possess the following characteristics: low thermal 

conductivity in thickness direction (to prevent heat transfer), high in-planar thermal 

conductivity (to dissipate heat as soon as possible), high stability, low heat absorption, high 

heat capacity, and a compact structure to prevent mass loss. 

The second objective of this work is to fundamentally understand the fire response 

and post-fire mechanical behavior of the polymer composites by means of numerical 

modeling. First, a classic PMCs thermal degradation model with a second kind boundary 

condition (constant heat flux) will be solved using the Finite Element Method (FEM), with 

the weak form being constructed by the weighted residue method (or, more specifically, 

Galerkin’s method). The predicted results should include the temperature and density profile 
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of the material at different locations and times, as well as the mass loss rate. Then a 

temperature dependent post-fire residual modulus will be assigned to each element within the 

FE Model. The bulk residual moduli will be calculated by assembling the modulus of each 

element. Base on the FE model, a refined Finite Difference (FD) model will be developed. 

This model is expected to predict the fire response of the composites coated with nanopaper. 

The FD model will adopt the same post-fire mechanical evaluation method. However, unlike 

the previous one, the permeability and porosity of the composites will be taken into account.  

1.3. Structure of the Dissertation 

The main body of the dissertation from Chapter 2 to Chapter 6 is organized by the 

following sequence. Chapter 2 reviews the typical nanocomposites processing approaches, 

and the research and development of the application of various shapes of nanoparticles as fire 

retardants. The topic of intumescent coatings is also discussed in the chapter. In Chapter 3, 

the discussion focuses on the processing of nanocomposites, namely, how to fabricate hybrid 

nanopapers with homemade equipment and how to manufacture PMCs coated with 

nanopapers by means of the Resin Transfer Molding (RTM) process. The reduction in 

flammability of PMCs by means of directly mixing nanoparticles with the polymer matrix 

and by fabricating nanoparticles into hybrid nanopaper coatings are compared and discussed 

in Chapter 4. Specifically, different types of nanoparticles are used to fabricate nanopapers 

under different weight ratios. The optimized hybrid system is selected as a result of the 
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comparison between these nanopapers in terms of flame retardancy and bonding with the 

underlying structure. Further discussions on temperature profiles and post-fire flexural 

degradation are carried out to estimate the effectiveness of the nanopaper protection. Chapters 

5 and 6 are focused on the computational modeling of the thermal degradation of the 

composite laminates with/without nanopaper coating. Two numerical models have been 

developed in these chapters. Chapter 5 focuses on the thermo-mechanical study of the PMCs 

where no nanopaper coatings are applied, while the Chapter 6 discusses the fire response of 

the PMCs coating with nanopapers. In addition, based on the numerical analysis, the impact 

of different material parameters on the thermal and post-fire flexural response of the 

composite structure are compared and evaluated. The results could provide important 

information for future material design. The dissertation ends in Chapter 7, where future 

improvement in material design and model development are proposed.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Fire Retardant Nanocomposites 

It is widely acknowledged that nanotechnology deals with structures sized between 1 

to 100 nanometer in at least one dimension. Nanocomposites can be made from a wide 

variety of starting materials such as gases, metals and minerals, giving a range of enhanced 

properties, including electrical conductivity, superparamagnetism, and fire retardancy [16]. 

The geometry of nanoparticles that been mixed with polymers to improve their fire resistance 

can be lamella structure: clays, graphite, layered double hydroxides (LDHs) to list a few 

examples; or two-dimensional linear structure such as carbon nanotubes and carbon 

nanofibers; or three dimensional structure such as polyhedral oligomeric silsesquioxane 

(POSS). Many scientists and groups have done pioneering work regarding to fire retarded 

nanocomposites such as Takashi Kashiwagi, Charles A. Wilkie, Jeffrey W. Gilman, NIST, 

Cornell University, etc. Various types of nanoparticles, such as nanoclay, TiO2, silica, layered 

double hydroxides (LDH), carbon nanotubes (CNT), and polyhedral silsesquioxanes (POSS), 

have been investigated and showed promising flame retardant effect, as even very small 

amount is mixed into polymer [17]. Many companies, including Nanocor and Albemarle 

Corporation, have already transferred the laboratorial achievements into real life application: 

nanoclay-based flame retardants have been used in electronics, wires, cables, and decorative 

wall papers [18]. 

http://en.wikipedia.org/wiki/Nanometre
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2.1.1. Processing of polymer nanocomposites 

Nanoparticles have been incorporated into polymers to develop high quality 

nanocomposites with unique properties. Although the techniques are inherently different, all 

of them are trying to address the fundamental issues: incorporating nanoparticles into the 

polymer matrix in a homogenous dispersion manner. Common approaches include: (a) 

Solution Processing; (b) In-situ Polymerization; (c) Melting mixing. 

(a) Solution processing 

 

Figure 1 Schematic of the solution processing. 

Figure 1 shows the sketch of the solution processing. Nanoparticles are first dispersed 

in a solvent or polymer solution. The nanoparticle/polymer/solvent solution is mixed by 

energetic agitation such as magnetic stirring, high shear mixing, reflux, or sonication. For the 

sonication process, there are two types of equipment: high-power sonication that uses a tip or 
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horn to disperse particles, and mild sonication during which particles are dispersed in a water 

bath. It is important to note that carbon nanotubes cannot be dispersed well in most of the 

solvents due to their exceptionally high aspect ratios. The quality of the dispersion can be 

improved by treating the nanoparticles with surfactants, such as the derivatives of sodium 

dodecylsulfate [24]. After the nanoparticles are homogenously dispersed, the solution is 

poured into a mold and the solvent is allowed to evaporate, leaving a composite film or sheet 

upon the completion of the evaporation [25]. 

The solution processing is the most commonly used method to prepare the 

nanocomposites with a film or sheet like structure. The choice of solvent is made based on 

the solubility of polymer matrices. Table 1 shows the properties of different types of solvents. 

Table 1 Properties of typical solvents. 

Solvent Boiling Point(oC) Dielectric Constant Density(g/ml) 

Non-polar solvents 
Pentane 36 1.84 0.626 
Toluene 111 2.38 0.867 
Benzene 80 2.3 0.879 

Polar aprotic solvents 
Acetone 56 21 0.786 

Dimethylformamide 153 38 0.944 
Dichloromethane 40 9.1 1.3266 

Polar protic solvent 
Water 100 80 1 

Methanol 65 33 0.791 
Ethanol 79 24.55 0.789 

One of the successful experiments to disperse high concentration of multi-walled 

carbon nanotubes (MWCNT) into polymer by solution processing was achieved by Jin et al 
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[26]. In their study, MWCNT produced by arc discharge were dispersed in chloroform by 

sonication. The polymer matrix, polyhydroxyaminoether (PHAE), was dissolved into the 

MWCNT-chloroform solution during sonication process. The well-dispersed suspension was 

poured into a Teflon mold and allowed to dry overnight in a fume-hood. The solution 

processing enabled them to prepare the nanocomposites containing 50wt% of MWCNT with 

a good quality. Another research group compared the quality of dispersion and mechanical 

properties of the nanocomposites (expanded graphite/epoxy) prepared by different types of 

processing methods [27]. During the direct mixing, expanded graphite (EG) was dispersed in 

the hardener of the epoxy by magnetic stirrer at room temperature. The epoxy matrix 

(DGEBA) was then added into the EG/hardener solution and the mixture was stirred on a hot 

plate. In addition, an accelerator was added into the mixture and was stirred with slow 

agitation followed by overnight degassing. The nanocomposite was made by casting the 

solution into a Teflon mold, being cured at 148ºC. During the solution processing, EG was 

first dispersed into acetone by sonication. The DGEBA epoxy matrix was introduced into the 

suspension and sonicated. The solution was stirred on a hot plate until acetone was 

completely evaporated. Then the hardener and accelerator were added, followed by degassing, 

casting, and curing process. The samples prepared by the two different processes were 

examined by optical microscopy. The results indicated that the quality of nanocomposites 

prepared by solution processing was much better than that of the nanocomposites prepared by 

direct mixing. 
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The solution processing is extensively used to prepare clay nanocomposites. By using 

an adequate amount of polymer soluble solvent (or a thermosetting reactive pre-polymer, in 

the case of insoluble polymers such as polyimide), nanoclays can be dispersed into single 

layers, due to the fact that the forces that stack the layers together are weak. The polymer 

matrix is then added into the solution, being absorbed into the gaps between the layered 

silicates. After the solvent is evaporated or the mixture is precipitated, the layered silicates 

will sandwich the polymer to form an ordered, multi-layered structure. As a result, two types 

of structures can be achieved, namely, intercalated and exfoliated (Figure 2).  

 

Figure 2 Structural variations of the clay/polymer composites. 

The intercalated structure is obtained by self-assembled, well-ordered multilayered 

structures. Between gallery spaces (2-3nm) of those parallel individual silicate layers, 
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extended polymer chains are inserted. When the spaces between individual silicates are large 

enough so that the interactions between gallery cations of the adjacent layers could not be 

kept any more, exfoliated or delaminated nanocomposites are formed. In this case, the 

interlayer spacing can be of the order of the gyration radius of the polymer [28]. The unmixed, 

intercalated, and exfoliated structures can be confirmed by the X-ray diffraction (XRD) 

analysis. The unmixed structure has the same peak with original nanoparticles. However, the 

peaks for an intercalated structure appear earlier than original nanoparticles. And there is no 

peak for an exfoliated structure. Rao and Pochan studied polymer-clay nanocomposites 

prepared by solution processing. 3wt% of montmorillonite clay (Cloisite Na+) was dispersed 

in water by vigorous mixing and centrifuging [29]. This process was also expected to remove 

impurities. The colloidal aqueous remained without settlement for several months. 

Copolymer latex (PBSMaSO3), which was synthesized by emulsion polymerization, was 

mixed with the clay aqueous. After the well-dispersed solution was obtained, it was poured 

into a Teflon cast overlaid by Kapton film and dried at ambient temperature. After the 

nanocomposite film was formed, it was peeled off and dried in a vacuum oven. The quality of 

PBSMaSO3-clay nanocomposite was evaluated by XRD, which suggested that if the loading 

of nanoclay was less than 4wt%, an exfoliated structure was achieved. However, the increase 

of clay loading (> 4wt%) could result in an intercalated structure.  
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(b) In-situ polymerization process 

 

Figure 3 Schematic of the in-situ polymerization process. 

Figure 3 schematically shows the in-situ polymerization process. During the in-situ 

polymerization process, nanoparticles such as CNTs and layered silicates are first dispersed 

in the liquid monomer. The polymerization reaction is initiated by heat, radiation, the 

diffusion of a suitable initiator, or by catalyst fixed on the surface of nanoparticles [24]. At 

the completion of polymerization, polymer molecules are either wrapped around or 

covalently bonded to nanoparticles depending on the surface functionality of the 

nanoparticles and the polymer being formed [25]. 

The in-situ polymerization process can be used to prepare the nanocomposites 

containing insoluble and thermally unstable polymer, which cannot be processed by solution 

or melting process. Ring-opening, radical, anionic, and chain transfer metathesis 

polymerizations are used, depending on the required molecular weight and molecular weight 
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distribution of the polymers. The advantages of the in-situ polymerization process include 

enabling the grafting of polymer macromolecules onto the surface of nanoparticles, allowing 

the preparation of the nanocomposites with high nanoparticle loading, and good miscibility 

with the polymer [30]. The first commercial application of the nanocomposites 

(clay/polyamide-6) prepared by this process was developed by Toyota Motor Corp in the 

early 90’s of the 20th century [31]. Zeng and Lee prepared poly (methyl methacrylate) and 

polystyrene/clay nanocomposites by in-situ polymerization [32]. They found that the 

compatibility of the initiator and monomer with the surface of clay was a critical factor to 

affect the dispersion of the clay. They claimed that a combination of more polar, less 

hydrophobic monomer and initiator was preferred in order to obtain high quality dispersion. 

Additionally, by introducing polymerizable groups onto the surface of the clay, the dispersion 

quality was further improved. Exfoliated PMMA and PS/clay nanocomposites were 

successfully synthesized with a clay concentration of 5wt%. Kim et al used this process to 

prepare multi-walled carbon nanotubes and high density polyethylene (HDPE) 

nanocomposites [33]. They first attached a metallocene catalyst complex onto the wall of 

multi-walled carbon nanotubes. The polymer branches were then generated on the walls by 

surface-initiated polymerization. Through transmission electron microscopy and scanning 

electron microscopy analysis, they found that the nanotubes were uniformly dispersed and 

were wrapped by PE molecules. Yang et al studied the dispersion of silica into polyamide 6 

by in-situ polymerization [34]. The silica nanoparticles were modified with aminobutyric acid. 
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They were dispersed in ε-caproamide by stirring. The mixture was polymerized at a high 

temperature under a nitrogen atmosphere. Their study showed that modified silica was 

dispersed more homogenous than pristine silica. The process was very useful in preparing 

inorganic/organic nanocomposites, which can avoid the agglomeration of inorganic particles 

and improve the interfacial interactions between inorganic components and the polymer.  

(c) Melting process 

 

Figure 4 Schematic of the melting processing. 

Melting process is an approach to deal with the polymer matrix that is insoluble. It is 

particularly useful in preparing the nanocomposites composed by thermoplastic polymers 

such as high-density polyethylene, polyamide-6, polycarbonate, polypropylene, polystyrene, 

etc. In addition, this process allows a high volume of nanoparticles to be mixed into polymer 

matrix. The process is based on the fact that thermoplastic polymers become soft when being 

heated up, while the properties of the polymers remain the same after they are cooled down. 

In other words, the amorphous polymers and semi-crystalline polymers can be processed 

above their glass transition temperature and melting temperature, respectively. Figure 4 
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shows the schematic of the melting process. During the process, polymer pellets are melted to 

form a viscous liquid. The nanoparticles are then blended into the liquid polymer by a high 

shear mixer or in an extruder. The final bulk samples can be obtained by using injection 

molding, compression molding, or extrusion.  

The addition of nanoparticles into the melting polymer will affect its viscosity, which 

probably lead to the unexpected polymer degradation under high shear condition. Therefore, 

processing conditions should be optimized for the whole range of polymer/nanoparticle 

combinations [24]. Due to its simplicity and speed, this process has been widely applied for 

large-scale industry production. When preparing the clay nanocomposites using this method, 

the polymer molecules can enter into the interlayer space between the clay particles. The 

diffusion process tends to peel the clay layers away. Depending on the compatibility between 

clay and polymer matrix, and the processing conditions, either an intercalated or an exfoliated 

structure can be achieved [25]. Cho & Paul prepared Nylon 6/clay nanocomposites using two 

different types of extruders: single and twin screw extruders [35]. The Killion single screw 

extruder has a diameter of 25.4mm. The compounding process was carried out at 240oC using 

a screw speed of 40rpm and a residence of 2.35min. The Haake intermeshing co-rotating twin 

screw extruder has a diameter of 30mm and centerline spacing of 26mm. The barrel 

temperature during compounding process was 240oC but the screw speed was 180rpm with a 

residence time of 5.3min. The extruded pellets were then injected into an 80oC mold under an 

injection pressure of 70bar and a holding pressure of 35bar. The microstructures of the 
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nanocomposites were examined by XRD. The result indicated that the interlayer spacing of 

the clay used in the experiment was 18Å. The exfoliated structure nanocomposite was 

achieved by using twin screw extruder. The relatively poor dispersion of the nanocomposite 

using single screw extruder probably was due to the insufficient shear and residence time. 

Thostenson & Chou prepared CVD-grown multi-walled carbon nanotubes/polystyrene 

nanocomposites [36]. Since the nanotubes tended to stick to the walls of the mixer, it was 

difficult to disperse them into the polymer through melting process only. A technique that 

combined both solution method and melting process was developed. They first dispersed the 

nanotubes into polystyrene/tetrahydrofuran solution. The solution was then cast into a petri 

dish and sonicated until the solvent was evaporated. The purpose of the sonication was to 

assure that the nanotubes were dispersed at the micro-scale rather than the nano-scale, so that 

they should be encapsulated in the polymer after the solvent was evaporated. The dried 

nanotubes/polystyrene composites were processed by melting compound with a screw speed 

of 100rpm. By drawing the sample direct from the extruder, the nanotubes could be aligned. 

The dispersion of nanotubes was examined by TEM, indicating an excellent dispersion 

quality. 

(d) Special dispersion process for mixing CNTs/CNFs 

(1) Ultrasonication 

One of the widely used approaches to disperse CNTs into polymers is the 

ultrasonication process. The process utilizes ultrasound energy to agitate nanoparticles. This 
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process is usually carried out by an ultrasonic bath or a horn/probe which also known as the 

sonicator. During the process, the ultrasound propagates by a series of compression. When it 

passes through the polymer medium, attenuated waves are induced, promoting the “peeling 

off” of CNTs that located at the outer parts of the CNT bundles/agglomerates. As a result, the 

individual nanoparticles are separated and high quality dispersion is achieved [37]. 

Nevertheless, the ultrasonication process is only suitable for dispersing CNTs in solutions 

that have very low viscosity, such as water, acetone and ethanol. But most polymers are 

viscous and it is necessary to dissolve or dilute the polymer prior to the dispersion process. 

While it seems reasonable that when the duration of the process is longer and the intensity of 

the input energy is higher, better dispersion quality might be obtained, such aggressive 

treatment could also seriously damage the structure of CNTs, especially when a probe 

sonicator is employed. In some extreme cases, the graphene layers of CNTs were completely 

destroyed and the particles were converted into amorphous carbon nanofibers [38]. Obviously, 

such induced damage would deteriorate the electrical, mechanical, and thermal properties of 

the CNT-based nanocomposites. 

(2) Ball milling 

Ball milling is a grinding method that grinds CNTs into extremely fine powders. 

During the process, the collision between the tiny rigid balls in a concealed container will 

generate localized high pressure. In many cases, ceramic, flint pebbles and stainless steel are 

used [39]. In order to further improve the dispersion quality and introduce functional groups 
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onto the CNT surface, selected chemicals can be included within the container during the 

process. The factors that affect the quality of dispersion include the milling time, rotation 

speed, size of balls, and balls/CNT ratio. In some condition, this process can grind the 

particles to as small as 100nm, and has been employed to transform CNTs into smaller 

nanoparticles, generate highly curved or closed shell carbon nanostructures from graphite, 

enhance the saturation of lithium composition in SWCNTs, modify the morphologies of 

cup-stacked CNTs, and generate different carbon nanoparticles from graphitic carbon for 

hydrogen storage application [40]. Even though ball milling is easy to operate and suitable 

for powder polymers or monomers, similar to the ultrasonication process, the potential of 

induced damages exists. 

(3) Non-destructive process: shear mixing, extrusion, and calendaring 

While the ultrasonication and ball milling may occasionally introduce damages to the 

CNT structure, there are alternatives to disperse CNTs without damaging them. Such 

approaches include shear mixing, extrusion, and calendaring which also known as the 

three-roll mills. Shear mixing is commonly used in labs to disperse CNTs in a polymer matrix. 

It is well known that the size and shape of the propeller and its rotation speed determine the 

dispersion quality. However, it was observed that for some thermosetting polymers, obvious 

CNTs re-agglomerations become spontaneous under static condition [41]. In such case, much 

higher mixing speed is required. As discussed previously, extrusion process which usually 

carried out by a twin screw is available in industry field for large-scale production. The 
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process is only suitable for mixing CNTs into thermoplastics. Factors that influence the 

dispersion of CNTs includes the environmental temperature, and the configuration and 

rotation speed of the screw. The calendaring process, also known as the three-roll mills, is a 

machine tool that utilizes the shear force created by rollers to mix, disperse, and homogenize 

CNTs within liquid polymers, oligomers, or monomers. The factors such as rotation speed of 

the rollers and distance between adjacent rollers greatly affect the dispersion quality. In some 

conditions, aligned CNTs within polymer matrix could be observed [39]. 

It should be noted that in order to achieve high quality CNT dispersion, these 

techniques discussed above, in many cases, are not used alone. Free combinations such as 

ultrasonication plus ball milling, or ultrasonication plus extrusion are always adopted when 

fabricating CNT/polymer nanocomposites. Besides these procedures, there are some new 

techniques that have been developed recently which include: latex technology, densification, 

spinning of coagulant, layer by layer deposition, and pulverization [39]. 

2.1.2. Flammability and safety evaluations 

Heat release rate (HRR) is one of the most important parameters to evaluate the 

flammability of polymer materials. It is obtained by conducting cone calorimeter test. A 

sketch of the instrument is shown in the Figure 5. Besides the HRR, other useful information 

can also be obtained from the test, such as the total heat released, peak heat release rate 

(PHRR), time to ignition, mass loss rate, and production of smoke, CO and CO2. 



24 

 

 

Figure 5 The schematic representation of the ASTM E1345-10 cone calorimeter test method 
(left, source from internet) and the vertical orientation exploded view of the apparatus (right, 

source from ASTM E1345-10).  

The principle of estimating the HRR during cone calorimeter test is based on the 

empirical observation: almost all the types of fuel would generate 13.1MJ heat of combustion 

when 1kg of O2 is consumed [42]. The rate of oxygen consumption is readily determined by 

measuring the concentration of oxygen in the exhaust duct and the volumetric flow of air. As 

a result, the HRR is given by the following equation: 
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where 
•

q = Rate of heat release (kW); c = Orifice plate coefficient (kg0.5.m0.5.K0.5); P∆ = 

Pressure drop across the orifice plate (Pa); eT = Gas temperature at the orifice plate (K); 

2OX = Measured mole fraction of O2 in the exhaust air (no units). In accordance with ASTM 

E1354-10, before conducting a cone test, a heat flux meter should be placed below the cone 

heater and right at the sample holder to ensure the right amount of heat flux will be applied to 
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the surface of a sample. During the test, as shown in Figure 5, under the cone heater a spark 

igniter will be used to initiate the flame and will be removed immediately after ignition. 

Another important parameter to determine the flammability of PMCs is the thermal 

stability, which can be measured by thermal gravimetric analysis (TGA). The thermal 

stability of a polymer matrix not only directly tells how easy the matrix will undergoes 

decomposition when subject to heat, it also provide the estimation of the char yielding for the 

composites and the material parameters for the thermal decomposition modeling. The TGA 

equipment includes a high-precision balance with a platinum pan where the sample is loaded. 

The weight of the sample is usually in the order of milligram. Much smaller size can be 

measured if used a quartz crystal microbalance. The balance loaded with sample is placed in 

an electrically heated chamber, in which the temperature can be controlled and will be 

recorded against the residual weight of the sample. In many cases, the atmosphere of the 

chamber will be purged using an inert gas, such as nitrogen, before starting the heating 

process, in order to prevent oxidation or other undesired reactions. Besides the 

weight-temperature curve, the weight loss rate against temperature curve is also provided by 

the test, to evaluate the thermal stability of the sample. 

Even though data obtained from cone calorimeter test and TGA is among the most 

reported data in literatures to evaluate the flammability of composites samples, this 

information is far from enough to make a final judgment about the safety of the materials. In 

United States, comprehensive flammability test methods are defined and issued by four 



26 

 

organizations: American Society for Testing and Materials (ASTM), Underwriters’ 

Laboratories (UL), National Fire Protection Association (NFPA) and International 

Conference of Building Officials (ICBO). The types of flammability and safety tests include 

tests for smolder susceptibility, ignitability, flash-fire propensity, flame spread, heat release, 

fire endurance, ease of extinguishment, smoke evolution, toxic gas evolution, and corrosive 

gas evolution. Each of the tests also includes various types of sub-test. For example, tests for 

toxic gas evolution can be carried out by approaches such as infrared analysis, gas 

chromatography, mass spectrometry, chemiluminescence, polarographic methods, 

paramagnetic methods, ion-selective electrodes, titimetric methods, and colorimetric methods 

[43].  

2.1.3. Overview of the research in fire retardant nanocomposites 

The fire performance of nanoclay-polymer nanocomposites is among the most 

extensively studied. Natural clay, known as Bentonite, is originated from the alternation or 

deposition of volcanic ash. In some cases, natural clay can also be obtained by the 

hydrothermal alteration of volcanic rocks. The major content of natural clay is 

montmorillonite, which is mainly composed by silica. Montmorillonite has a layered 

structure, which is composed by tetrahedral silicate layer and octahedral alumina layer. In the 

silicate layer, a hexagonal network is formed by linking the SiO4 groups, composing a 

repeating unit of Si4O10. In the octahedral alumina layer, aluminum atoms are imbedded into 

the center of the gallery formed by two layers of closely packed oxygen or hydroxyl. The 
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octahedral layer shares their apex oxygen with the tetrahedral silicate layer, and together they 

form a sandwich structure. In general the thickness of one sandwich layer is approximately 

0.96nm. The chemical formula of montmorillonite clay is Na1/3(Al5/3Mg1/3)Si4O10(OH)2. 

It is always desirable to modify them organically before disperse into polymer. 

Otherwise, it is difficult to obtain the intercalated or exfoliated dispersion (because of the 

hydrophilic property of the natural clay platelets), rendering the size of the clay particles no 

longer in a “nano” range, and their enhancement in the expected properties, such as 

mechanical properties and flame retardancy, will be compromised.  

Organic modification is typically accomplished by exchanging the inorganic cations 

(such as Na+) with the desired organic cations. Hundreds types of organically modified clay 

have been launched commercially. For instance, Cloisite 20A produced by Southern Clay 

Products (SCP) is the natural montmorillonite modified with a quaternary ammonium salt. 

The product is designed to improve the reinforcement, coefficient of linear thermal expansion 

(CLTE), heat deflection temperature (HDT), and barrier properties of plastics. 

In the late 1940s, polymers that combined with nanoscale layered silicates appeared in 

a patent application [44]. During the early stage of the development, a large amount of clay 

loading (50% mass fraction) was required. The dramatically decrease in the clay loading (less 

than 10% mass fraction) were found in patents from General Motors (GM), Imperial 

Chemical Industries (ICI), and DuPont thirty years later [45]. As discussed previously, two 

types of morphologies of nanoclay can be achieved, namely, intercalated and delaminated (or 
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exfoliated) [46]. 

Zhu et al found that when only 0.1wt% of clay was incorporated into polystyrene, the 

PHRR was reduced by more than 40% and the onset degradation temperature was increased 

by 40oC, when compared to the pristine polymer [48]. The fire behavior of polystyrene 

polymer mixed with silicon-methoxide-modified clays was also studied by the same research 

group. They pointed out that also methoxide might react with clay hydroxyl group, to link the 

cation and the clay, the nanocomposites did not show any difference in terms of flammability 

when compared with other polystyrene nanocomposites [49]. Gilman et al compared the 

effectiveness of different kinds of layered silicates when they were added into polystyrene. In 

their research, they found that fluorohectorite had no impact on PHRR, whereas 

montmorillonite lead to a 60% decrease in PHRR. The study suggested that the 

“nanodispersion”, types of layered silicate, and processing conditions would influence the 

fire behavior of the nanocomposites [50]. Furthermore, research carried out by Morgan et al 

indicated that some other factors, including the clay loading and polymer viscosity would 

also affect the flammability of polystyrene-clay nanocomposites [51-52]. Other polymer-clay 

nanocomposites with various matrices such as polypropylene [53], polyethylene [54], PMMA 

[55], PVC [56-58], EVA [59-60], polyamide-6 [61], vinyl ester [62], unsaturated polyester, 

phenolic resins [63] etc., were also found the improvement in fire performance in terms of 

PHRR and TGA, when compared to the pristine polymers. These studies indicated that the 

intrinsic properties of the parent matrix would influence the effectiveness of nanoscale 
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additives that aimed to enhance the fire performance of composites. Different mechanisms 

should be introduced to explain those phenomena. Gilman suggested that, depending on the 

polymer matrix, the clay may change the decomposition products. It may cause cross-linking 

and, ultimately, catalyze the formation of carbonaceous char [45]. 

Researchers reported that a graphite-type char layer had formed during the 

combustion of polymer-clay nanocomposites with improved flame retardancy, indicating that 

graphite was potentially a good flame retardant candidate [61]. In fact, expandable graphite 

and graphite oxide, been considered as another type of nanoparticles that possess layered 

structure, have already been studied as fire retardants for years. Nyden et al conducted 

molecular dynamic simulations of the thermal degradation of nano-confined polypropylene. 

The thermal degradation was performed as the gallery spaces between individual graphite 

sheets changed. The mass loss results of the polymer-graphite nanocomposites indicated that 

when the space was 3.0nm, there was a pronounced improvement in the thermal stability of 

the nanocomposites. Nyden et al suggested this was resulted from interaction between 

polymer molecules as well as polymer molecules with graphite. However, when the distance 

of gallery space was less than 2.5nm, the density of polymer between the graphite sheets was 

very high, which made the polymer relatively unstable due to the van der Waals repulsions 

between atoms. Nevertheless, when the space between graphite sheets was too large, the 

decomposed products tended to escape very easily. This was different to the applications that 

aimed to improve the mechanical properties of PMCs, where large gallery space (exfoliate) 
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was always preferred [64]. Motivated by their study, Uhl et al studied the fire resistant 

performance of graphite when it was incorporated into polystyrene. Two approaches were 

used for preparing nanocomposites: in situ polymerization and melt blending. Organically 

modified and as received graphite oxide were used. The loading of modified graphite oxide 

were varied from 1% to 5%. The XRD results showed that the exfoliated dispersion was 

obtained when 1% of modified graphite oxide was mixed into the polymer. And intercalated 

dispersion was achieved when a higher loading of modified additives were incorporated. 

Moreover, the polymer with modified graphite oxide had a much larger d-spacing than the 

nanocomposites containing non-modified graphite oxide. They observed that the PHRR were 

reduced by 27-54% depending on the loading of modified graphite oxide (higher loading 

leaded to greater reduction). Similar results were obtained when the nanocomposites were 

prepared by melt blending approach. The only difference was that the latter approach leaded 

to a narrower d-spacing [65-66]. When compared the PS-graphite nanocomposites to the 

PS-clay nanocomposites, the PHRR reduction of the PS-graphite system was roughly 50% of 

the latter case [67]. However, there was no significant increase in thermal stability for all the 

samples in their research. Xu et al reported more pronounced improvement in thermal 

stability when graphite was introduced in poly (vinyl alcohol) and epoxy system [68-69]. The 

fire performance of phenolic-graphite and epoxy-graphite systems was studied and compared. 

The reinforcements of the composites were fiberglass and aramid. The results showed that 

phenolic-graphite system had the best flame resistance whereas the epoxy-graphite 
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composites had the worst flame resistance [70]. However, it was unclear whether the graphite 

particles were dispersed in nanoscale, as the dispersion had significant impact on the fire 

retardant performance. By using emulsion polymerization technique, the effective of graphite 

oxide on the flame resistance of styrene-butyl acrylate copolymer and polystyrene was 

studied by Zhang et al. They found that there was a drastic reduction in PHRR [71-73]. 

However, it was suggested that due to the thermal degradation of its organic emulsifier, the 

time to ignition was shorter than that of the pristine sample [74]. In fact, Kashiwagi et al 

claimed that due to the difference of transmission property between pure polymer and 

polymer mixed with carbon-based nanofiller, the time to ignition should be shorter for the 

latter case [75]. Uhl et al examined the flame resistance property of polyamide-graphite and 

polystyrene-graphite nanocomposites, the reduction in PHRR were achieved at a level that 

similar to that of the clay-polymer nanocomposites [76-77].  

Other types of famous carbon-based nanofillers are single-walled nanotubes 

(SWCNT), multi-walled nanotubes (MWCNT), and carbon nanofibers (CNF). Carbon 

nanotube (CNT), or more specifically MWCNT, was first synthesized in 1991 by Iijima [78]. 

Later in 1993, Bethune et al discovered SWCNT [79]. CNT, essentially, can be considered as 

rolling up a graphene sheet into a cylindrical structure [80]. It is necessary to stress that when 

the orientation of rolling up a graphene is different, various types of CNT could be obtained. 

The diameter of CNT can range from 0.3nm to around 10nm with the aspect ratios from 105 

to 106. While one layer of graphene sheet will form SWCNT, MWCNT can be obtained by 
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rolling up multiple layers of graphene sheets. In general, the gallery distance between the 

layers is about 0.36nm.  

The research about CNT is abundant, reporting CNT possesses extraordinary 

mechanical, electrical, and thermal properties [81-84]. For example, the elastic modulus of a 

SWCNT is about 1TPa and its density is only around 1.2g/cm3, while iron, in general, has an 

E of 200Gpa and ρ of 7.8g/cm3.  

Although CNF has a cylindrical nanostructure, unlike CNT, the arrangement of 

graphene layers of CNF can be varied diversely. The average diameter of CNF is larger than 

that of CNT, and is about 70-200nm. Its length is about 50-100μm. The mechanical properties 

of CNF, in general, are at a lower grade than that of CNT. However, the price of CNF is far 

more attractive. Furthermore, CNF is welcomed by its scaled-up potential [85]. 

The flammability of nanocomposites that containing those two-dimensional 

carbon-based nanoscaled fillers had been intensively studied by Kashiwagi et al. Besides 

evaluating the samples with the well-established cone calorimeter in air, they also examined 

the flammability of nanocomposites with a gasification device in nitrogen atmosphere. The 

advantage of the gasification device is that it allows researchers to take video record of the 

gasification process, which help them to understand the mechanisms of flame retardancy in a 

vivid manner [86]. For completeness, Kashiwagi et al also studied the flammability of PMCs 

containing other tubular nanoparticles such as alumina silicate nanotube (ASNT), and 

non-tubular carbon-based particles such as carbon black. After years of research, they found 
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out that there were five factors related to the fire response of those nanocomposites: the type 

and concentration of nanotubes, dispersion of nanotubes in polymers, molecular weight of 

resin, viscoelastic characteristics of nanocomposites, and aspect ratio (length divided by outer 

diameter of tubes) of nanoparticles. Kashiwagi et al reported that well dispersed SWCNTs 

showed the best effectiveness in reducing the flammability of PMMA. For example, when 

only 0.5wt% of SWCNT was introduced into the PMMA, the nanocomposites exhibited more 

than 50% reduction in PHRR, comparing to the neat PMMA. However, when the mass 

fraction of SWCNTs was less than 2%, the flame retardancy of the nanocomposites was poor. 

They also observed the aggregation of CNTs within the polymer matrix. Thus, they 

concluded that the poorly dispersed SWCNTs in polymer leaded to a higher PHRR than those 

nanocomposites with well-dispersed SWCNTs. Kashiwagi et al explained that a composites 

sample with well dispersed SWCNTs would form a char layer that had continuous compact 

network structure. The char layer act as protective coating which resisted both heat 

convection and radiation as well as slowed down mass (been considered as the fuel to flame) 

flow. Additionally, they studied the rheological behavior of nanocomposites. They pointed 

out that the greatest increasing in viscosity of PMMA occurred when adding 0.5wt% of 

SWCNT, which resulted in a solid-like behavior nanocomposites during the degradation 

process. This phenomenon ultimately leaded to a formation of the high quality char layer. 

Furthermore, they suggested that the integrity of the network at high temperatures was 

influenced by the molecular weight of the polymer matrix.  
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In order to address the impact of the aspect ratio of CNTs on the flammability of 

nanocomposites, Kashiwagi et al studied two different MWCNTs with aspect ratios of 49 and 

150, respectively. The results indicated that the aspect ratios had no influence in the thermal 

stability of the nanocomposites. However, the large aspect ratios of MWCNTs tended to 

increase the complex viscosity and storage modulus of the parent matrix. This leaded to the 

creation of compact char structure. As a result, the flammability of the polymers could be 

significantly reduced when containing MWCNTs with large aspect ratios [75] [19-23]. 

Besides those nanoparticles that have linear and planar structures, the three 

dimensional nanoscaled particles, such as polyhedral oligomeric silsesquioxane (POSS), have 

also been studied by researchers [75]. A POSS particle is composed by an inorganic silica like 

core and organic functional groups. POSS particles exhibit excellent oxidation stability due to 

its intermediate structure between silicone and silica. They also have excellent compatibility 

with polymer matrix because of their organic groups. The three dimensional nanoscaled 

structures enable their large interfacing area with the host polymer. As a result, the viscosity 

might be improved, which, as suggested by Kashiwagi et al, is desirable to enhance the 

quality of char during the degradation process of the nanocomposites. With these 

characteristics, POSS particles have been demonstrated as effective flame retardants [87-88]. 

If POSS particles contained functional groups that do not readily undergo cross-linking 

reactions, they would only evaporate at high temperatures. During the combustion process, 

instead of evaporating directly, they initially decompose by the partial loss of their organic 
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groups, which have no significant impact on the degradation of the parent polymers, 

following by the cross-linking reaction with polymer, which incorporates the polymer into the 

SiOxCy networks, namely, char [89-90]. The variations of POSS particles are abundant, 

depending on their organic substituents. Hybrid Plastics has launched more than 250 different 

types of POSS particles, making them become important molecular level reinforcements, 

multifunctional polymer additives, processing aids, and flame retardants.  

After conducting thermal gravimetric analysis, Ni et al found that when increase the 

loading of POSS in polymer, the thermal stability and residue of the polymer matrix increases 

[89] [91-92]. Gupta et al studied the flame resistant property of epoxy vinyl ester resin 

containing POSS. The results showed a reduced heat release rate and smoke. Furthermore, 

unlike carbon base nanofiller, the ignition time of this nanocomposites was delayed. 

Therefore, they claimed that the mechanism of POSS to retard flame propagation was the 

reduction in fuel volatilization, the formation of stable and non-permeable surface chars [93]. 

Devaux et al found a simultaneous reduction in total heat release and heat release rate when 

10wt% of POSS particles were introduced into polyurethane (PU), and which was coated 

onto PET knitted fabric. They explained that the reduction in flammability should be 

attributed to the high thermal stability of the nanocomposites and the formation of uniform 

and compact char residue during the combustion reaction [94]. Okoshi and Nishizawa also 

reported the high quality char formation, when POSS-based nanocomposites was coated onto 

the surface of polycarbonate [95]. However, the flame resistant efficiency of POSS-based 
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nanocomposites have not yet been extensively studied because of their high cost and 

sometimes failing to form strong residue when compared to clay or nanotubes-based 

nanocomposites [96]. Kashiwagi et al studied the flame retardancy of POSS in PTME-PA, 

SBS and PP. They found that even though the PHRR was decreased, the total heat release of 

the nanocomposites didn’t show significant reduction. Moreover, the char analysis indicated 

that when POSS particles were incorporated into polymer, there was no great increase in 

carbonaceous char yielding, and the majority of the residue was composed by the inorganic 

component of the POSS [97]. Another study done by the same group examined the 

flammability of textiles containing. They found that there was no significant changes in 

PHRR, even though the time to ignition was delayed, indicating that POSS served only as 

thermal stabilizers rather than flame retardants [97]. Moreover, a recent study showed that 

when trisilanol phenyl POSS particles were incorporated into PMMA, no significant 

flammability reduction was observed during cone calorimeter tests [98]. General speaking, 

the flammability of nanocomposites containing POSS depends on three factors: the structure 

of POSS particles, the type of polymer matrix, and the dispersion quality. As long as a certain 

type of POSS could increase their cross-links with the parent polymer and form large amount 

of SiOxCy network, the flame retardancy of the nanocomposites would be improved [75]. 

2.1.4. Intumescent fire retardant coating 

In addition to direct mixing flame retardants into polymer matrix to achieve the fire 

retardancy, coating intumescent layers onto the surfaces of PMCs is another popular and 
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effective approach. There are two types of intumescent coatings: the traditional chemical 

intumescent fire retardant coating and the physical intumescent coatings containing 

expandable graphite [99]. 

The traditional chemical intumescent coating is usually composed by a carbon source 

(monomer, dimer, trimer), an acid source (ammonium phosphate, diammonium phosphate), 

and a gas source (urea, melamine, chlorinated paraffins). The mechanism of the fire 

retardancy is to produce foaming char, which serves as barrier to prevent mass loss and heat 

transfer. Namely, dehydrate the materials into char, release gas in a transitional semi-liquid 

state that sufficient to enable foaming and expansion, and carbonize the materials without 

char collapse. However, the application of urea formaldehyde, ammonium phosphate and 

starch would reek of formaldehyde, and thus is not leach resistant [100]. 

As the name may suggest, the other type of the intumescent coatings contains 

expandable graphite. The expandable graphite is obtained from treating crystalline graphite 

with intercalants, such as sulfuric acid or nitric acid. Since no covalent bonding exists 

between the planes of the carbon atoms, the intercalant can be inserted into the gaps between 

the planes and positioned within the graphite lattice. When exposed to heat, the inserted 

molecules would decompose and release gases, resulting in the expansion of the coating. The 

expansion rate of the expandable graphite is much higher than that of the traditional 

intumescent coatings, and thus it provides better insulation. However, it is well known that 

the expandable graphite might experience the “popcorn effect”, that is the expansion of the 
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grains of graphite would cause the grains to pop off from the underlying materials and might 

also damage the underlying structure by inducing in air turbulence [100].  

There are other shortcomings associated with the intumescent coating. For instance, 

due to application of the hydrophilic components, the exterior intumescent coatings usually 

lack weathering ability. This may lead to the coatings be dissolved and rendered inactive by 

water or water vapor, or require elevated cure temperatures and extended cure times. 

Protective top coating can be used to overcome this drawback, but the cost will rise. Another 

shortcoming is the poor adhesion of the intumescent coating to substrates [101]. Compared to 

other fire retardant system, even though intumescent coating has better fire retardancy, lower 

smoke emission, high temperature resistant, etc., screening tests conducted by Sorathia et al 

had led them to conclude that intumescent coatings were not sufficient to protect shipboard 

spaces during fire scenario, and thus could not replace the thick batt or blanket type fibrous 

fire insulation. For example, the requirement for the cold side temperature of a composite 

structure, after being subjected to certain heat flux for 30min, should be lower than 250F. 

However, the measured cold side temperatures of the composites coated with commercial 

intumescent coatings were about 260F. Only those sandwich structure composites samples 

that containing 3 inches of balsa core can pass the test. Future more, Sorathia et al suggested 

that prior to the wide application of intumescent coating, issues such as the cost, performance, 

and durability of the coatings over a life time of use should be carefully addressed [102-103]. 
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2.2. Numerical Modeling of PMCs Subject to Heat Flux 

While the experimental research provides qualitative information to understand the 

mechanisms of flame retardancy for various types of retardant systems, it is necessary to 

develop a mathematical model that is able to predict the evolution of material status and 

temperature in a quantitative sense, as such, critical information could be obtained for the 

future materials design. However, it is difficult to develop a comprehensive model for such a 

complex and unstable phenomenon, in which involves the coupling of fluid dynamics, 

chemistry, and conjugate heat transfer between solid, liquid and gas phase. Nevertheless, it is 

still possible to come up with some relatively manageable models, which is constructed based 

on the simplification of some conditions during combustion reaction. For example, the 

physical condition of a simplified combustion reaction is that the sample is horizontally 

exposed to a stable external heat flux and the materials in each phase are isotropic. When this 

model is set up, it can be extended to the conditions of filled polymer, filled composites, and 

simple char-forming systems.  

The ability to develop an accurate mathematical model to explain fire resistance 

mechanisms crucially depends on the understanding of fluid dynamics and degradation 

phenomenon of the polymers. And also depends on the understanding of how these factors 

(such as thermal conductivity, heat capacity, heat absorption and permeability of char, and 

viscosity of the polymer) affect the flammability of the composites. Fortunately, the models 

to simulate the combustion phenomenon are abundant [104-105]. 
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Furthermore, the degradation and decomposition of the composites will lead to losses 

in mass and that leads, in turn, to losses in mechanical strength of the structure. Therefore, it 

is important to develop the capability to predict the mechanical properties of PMCs when 

they are subjected to high temperatures.  

Bai et al studied the stiffness of PMCs composites under high temperature conditions. 

They presented a model that estimated the mechanical properties of the material by dividing 

the states of the polymer matrix into four temperature dependent and three transition states 

[106]. In the case of the thermo-mechanical response of PMCs simultaneously subjected to 

heat flux and loading, Asaro et al proposed a temperature and time dependent constitutive 

theory to study the mechanical degradation of the material, a theory inspired by the crystal 

plasticity study, takes full account for the anisotropy of the laminate elastic and interlaminar 

shear inelastic behaviors, also proposing that the property degradation is monotonic with 

density [107-108]. Other examples of real time thermo-mechanical models involving 

anisotropic properties of PMCs and softening of matrix and reinforce fibers were presented 

by Gibson [109] and Feih [110-112].  

However, in the case of post-fire mechanical analysis, it is found that when the heat 

treated PMCs cooled down to room temperature, the material tends to regain some of their 

initial strength and stiffness [113]. With this in mind, it would be problematic to assemble the 

temperature and time-dependent material properties to obtain the bulk material properties. 

Sorathia et al proposed a temperature-limit criterion to assess the post-fire mechanical 
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properties of coupon shape composites. They assumed that when the temperature of the 

material during fire exposure was lower than the critical temperature, the sample would retain 

its initial mechanical properties after cooling down to the ambient temperature [114]. Mouritz 

and Mathys presented a two-layer model to study the post-fire mechanical properties of 

marine composites such as glass fiber reinforced polyester and glass fiber reinforced vinyl 

ester. After the composites were exposed to heat flux, they assumed that the residues were 

composed of one layer of un-degraded material and one layer of charred material, with the 

virgin mechanical resistance assigned to the un-degraded layer while zero mechanical 

resistance was assigned to the char layer. The challenge in this model lies in the 

determination of the depth of the char layer. Initially, an empirical correlation between the 

depth of the char layer, the exposure time, and the time at that charring first occurred was 

proposed, with  experimental data of char depth was acquired through physical 

measurement [115-116]. Later, they introduced a thermal degradation model into their 

post-fire mechanical study. Then the depth of the char layer was determined by using a 

pulse-echo instrument and percentage remaining resin content (RRC) criterion [117-118]. 

Unlike Mouritz’s small scale study, Keller et al studied the post-fire mechanical behavior of 

liquid cooled PMCs slabs in large scale. They proposed a three-layer model that modeled the 

heat treated PMCs as composed by the fully degraded layer, the partially degraded layer, and 

the virgin layer [119-120]. Recently, Bai and Keller presented a post-fire mechanical model 

that considering the E-modulus recovery which occurred between the glass transition and 
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decomposition of the polymer matrix [121]. 

Due to the complex nature of the polymer degradation and the combustion process, 

governing equations of the thermal degradation models are difficult to solve by analytical 

methods such as Fourier Transforms, Bessel Function, and Separation of Variable (SOV) 

Techniques, or by the semi-analytical procedure in reference to the global coordinates such as 

variational and weight residue methods. This problem has often been analyzed by numerical 

methods. One of the early studies regarding the thermal degradation model for PMCs was 

proposed by Henderson et al [122]. In their model, it was assumed that there was no 

accumulation of gas, no volumetric expansion, material parameters such as specific heat was 

only a function of temperature, and thermal equilibrium exists between gases and solid. In the 

model, a second order PDE for energy equilibrium with proper boundary and initial 

conditions was solved using finite difference method (FDM). Later, modified and refined 

models with more accurate input material parameters that solved either by FEM, finite 

volume method (FVM), or FDM were presented by Gibson, Looyeh, Krysl, Lattimer, and 

Lua [123-128]. Recently, Staggs developed a much different model with the inclusion of a 

developing char layer front at which energy and mass balance equations were established 

[129].  

There are also many research papers that deal with the thermal response modeling of 

composites panels coated with protective layers while subjecting to heat, especially the 

thermo-chemical modeling of the composites panels protected by intumescent coating 
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[130-136]. However, most of research was focused on the detailed modeling of the coating 

layer while, the impact of porosity and permeability of the underlying composites was 

ignored, probably due to the limited available data. These parameters have recently been 

estimated by Goodrich et al as they were studying the microscopic changes within the 

composites structure during fire, which makes it possible to refine the thermal response 

model of the structure [137].  
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CHAPTER 3 

SYNTHESIS AND PROCESSING OF NANOCOMPOSITES AND 

HYBRID NANOPAPER 

3.1. Processing of Hybrid Nanopaper 

As mentioned in the first chapter, the purpose of coating a nanopaper onto the surface 

of a composites structure is to take advantage of the pre-existing char layer to improve the 

fire resistance performance of the structure. The effectiveness of the pre-existing char layer 

depends on their thermal conductivity in the transverse and perpendicular directions, their 

permeability, and some other related properties. Therefore, in order to fully reveal the 

synergistic effect between those nano-sized particles within the hybrid nanopaper, the design 

is critical. 

The base material has been used in this study to fabricate the hybrid nanopaper is the 

vapor grown carbon nanofibers (Polygraf III, PR25-PS-HHT), supplied by Applied Science, 

Inc. with a diameter of 50-100nm and a length of 30-100µm. The choice of CNFs over CNTs 

is based on their following advantages: 

(a) Easier to disperse and process 

CNFs have diameters of 50-200nm, while CNTs have diameters of only 1-30nm. 

As a result, the energy associated with CNFs/solution interfacing should be much 

less than that with CNTs/solution interfacing. Therefore, CNFs are easier to be 

dispersed and processed.  
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(b) Easier to modify 

Unlike CNTs’ “perfect” cylindrical structures, the surfaces of CNFs are featured 

with graphene edge planes. And this “pre-existing defect” makes CNFs readily 

modified through traditional chemical functionalization or thermal treatments in 

both small and large scales. On the other hand, the walls of CNTs have to be 

modified before the functionalization process. As such, it requires more steps and 

costs more to process CNTs. 

(c) Lower cost 

Typically, CNFs cost an order-of-magnitude lower than CNTs. The price of CNFs 

ranges from $100 per pound to $500 per pound, while that of CNTs, depending on 

the quality and purity, goes from $100 per pound to more than $750 per gram. 

Due to the difficulty in processing, the cost for CNTs can go even higher. 

Other nanoparticles used in this study included: the Cloisite Na+ clay, which was the 

pure and non-modified form of montmorillonite clay and was obtained from Southern Clay, 

Inc; the exfoliated graphite nano platelets (xGnP), which were obtained from XG Sciences. 

Both of them had a layered structure. Besides these nanoparticles, traditional fire retardants, 

ammonium polyphosphate (APP), were also used in the hybrid system. The specific type of 

APP, AP423, is supplied by Clariant International Ltd.  

The as-received nanoparticles were mix together under designated weight ratios (more 

details will be discussed in the next chapter). Then they were dispersed in distilled water 
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(0.6g of the base material CNF + 600ml water + other nanoparticles) with the aid of 

surfactant Triton-X100 (3-5 drops per 600ml). The mixture was sonicated by a sonicator for 

certain amount of time under designated input power (more detail will be presented in the 

next chapter). It is important to note that the more the input power during the sonication 

process, the better the dispersion quality should be. Nevertheless, the nanoparticles could be 

damaged if the sonication time was too long or the input power was too high. Therefore, it is 

important to control the input energy carefully in order achieve an optimized dispersion 

quality. 

 

Figure 6 High pressure filtration system. 

After the sonication process, the well dispersed suspension will be filtered through a 

polycarbonate or hydrophilic PTFE filter with the pore size of 0.5µm. The filtration process 

can be carried out by a vacuum pump or a compressor. The system, as shown in Figure 6, 

uses compressed air to fabricate nanopapers. The maximum pressure of the compressed air is 

100psi and the diameter of the closed cylinder container is about 110mm. Therefore, this 
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system is capable of fabricating relatively small size hybrid nanopapers that have low 

permeability. 

Another way to fabricate hybrid nanopapers is by using vacuum as a driving force to 

filtrate the suspended mixture. As shown in Figure 7, the size of nanopapers made by this 

type of filtration system can be relatively large (18 by 18 inches) as the suspension can be 

continuously poured into the open container during the filtration. In addition, it is possible to 

roughly control the concentrations of the nanoparticles layer by layer. For example, when 

fabricating hybrid nanopapers that containing nanoclay, the pores of the filter would probably 

be covered by the clay particles and thus inhibit the flow of the water. Sometimes it is even 

impossible to continue the filtration process. However, the problem can be solved by first 

pouring the suspension without the planar structure nanoparticles into the container, so that 

the thin initial layer on the surface of the filter will prevent the above phenomenon from 

occurring. 

 

Figure 7 Vacuum assisted filtration system. 

The quality of the nanopaper made by the high pressure or vacuum assisted system is 
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shown in Figure 8. It can be seen that the carbon nanofibers and nanoparticles are well 

dispersed, no aggregation can be found. The nanoparticles are entangled in the CNF network 

(more nanopaper SEM images will be shown in the next chapter). 

 

Figure 8 SEM image of a hybrid nanopaper. 

3.2. Processing of Nanocomposites Coated with Nanopapers 

After the nanopapers have been fabricated, they are coated onto the surface of PMCs 

by resin transfer molding (RTM) process. Since it is undesirable for the fire resistance 

purpose that the surface of the nanopaper been covered with resin, a surface treatment prior to 

the RTM is necessary. It is carried out by the following steps: 1. Place a piece of mold release 

fabric that has slightly larger size than that of the nanopaper on the inside surface of a mold; 2. 

Evenly brush nanoclay/water paste on the fabric and then place the nanopaper onto the wet 

fabric so that the pores of the nanopaper should be covered by the nanoclay particles and the 

resin should not penetrate through the nanopaper during the RTM process; 3. Heat up the 
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mold in an 120oC oven for 2 hours to dry the nanopaper and fabric. In order to prevent the 

distortion of the nanopaper while drying, a proper weight should be applied onto it. The final 

appearance of the surface treated nanopaper before RTM process is shown in Figure 9. As 

shown in the figure, the edges of the nanopapers are sealed by tapes in order to prevent the 

resin from flowing to the other side of the nanopaper, rendering the surface treatment useless. 

 

 

Figure 9 Final appearance of the nanopapers before the RTM process. 

There are two approaches to carry out the RTM process in this study. The difference 

between them is the source of the force to drive the resin: one uses compressed air and the 

other uses compressed nitrogen. The pressure of the compressed air system can reach up to 

100psi. The chamber size of the aluminum mold used for this system is 10 by 10 by 0.3 

inches. Eight layers of glass fiber mats should be fit into the chamber before RTM process. 

Most of hybrid nanopapers can be infused with resin in this system and it is relatively easy to 

operate it when compared to the compressed nitrogen system. As shown in Figure 10, initially, 



50 

 

valve 3 will be opened and valve 1 and 2 will be closed, such that the vacuum pump will 

remove the air that is trapped within the glass fiber mats in the mold. Then valve 3 will be 

closed and valve 1 and 2 will be opened such that the compressed air being generated by a 

compressor will drive the resin in the resin tank into the mold. By slightly opening and 

closing valve 3, extra air could be driven out of the mold. Therefore, a better quality 

composites panel will be made. 

 

 

Figure 10 Compressed air VARTM system. 

However, when the permeability of the nanopaper becomes very low such as when it 

contains nanoclay, the 100psi pressure is not high enough to fabricate high quality 

nanocomposites, i.e. some locations of the nanopaper may detach from its underlying 

structure due to the incomplete resin infusion. Therefore, a higher pressure is needed to 

accomplish the infusion. And the compressed nitrogen RTM is designed for this special 

purpose. The pressure of the compressed nitrogen can reach to 2000psi. The size of this 

aluminum mold is about 12 by 8 by 0.16 inches and 4 layers of glass fiber mats should be 
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placed in the chamber of the mold. Due to the pressure limitation of the pipe system, the 

pressure of the compressed nitrogen is regulated to 300psi, which is enough for the infusion 

of any nanopapers mentioned in this dissertation. As shown in Figure 11, resin is added into 

the resin tank through valve 2 before the RTM process. During the infusion process, initially, 

valves 5 and 6 are opened and valves 1, 2, 3, and 4 are closed. Therefore, the air trapped 

within the glass fiber mats in the mold will be removed by the vacuum pump. Then valve 6 

will be closed and the vacuum line will be disassembled. Valve 1 and 5 will be opened and 

the high pressure from the nitrogen tank will drive the resin into the mold. By slight opening 

and closing valve 6, extra air within the mold could be driven out. After holding pressure for 

about 5 minutes, valve 1 and 5 will be closed, and the RTM process is completed. 

 

Figure 11 High pressure VARTM system. 

The challenge to operate this system is the limited time margin. In order to sustain the 

300psi pressure, the pipes that been used in this system are not disposable and the diameter of 

the pipe is small. In addition to that, the resin been used in this dissertation is polyester, 

which will cure under the room temperature. Therefore, the limited operation time is 



52 

 

necessary to prevent the resin from blocking the pipes. Immediately after the RTM process, 

the whole system will be thoroughly flushed with acetone to eliminate the resin residue. 

Specifically, open valve 2 to reduce the pressure within the resin tank. Then close valve 2, 

disassemble the pipe that is connected to valve 5 and put it in a sealed empty container. Open 

valve 3 and 4, such that the acetone will be driven into the resin tank to flush the system. In 

order to make sure that the residual resin has been completely washed away, a second flush is 

necessary. 
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 CHAPTER 4 

FIRE RETARDANT PERFORMANCE EVALUATION OF THE 

NANOCOMPOSITES  

4.1. Introduction 

Understanding the combustion process of composite laminates has led to the 

knowledge that fire resistant performance can be improved chemically and physically in both 

vapor phase and condensed phase by reducing the heat and/or fuel below critical levels. In 

short, fire can be prevented if the concentration of gaseous mixture and auto-ignition 

temperature are maintained below critical values [138-139].  

For the analysis of the fire resistant performance of polymer composites, open 

literature primarily focuses on discussing parameters such as heat release rate, peak heat 

release rate, and time to ignition. If the evaluation on material’s fire performance was based 

solely on these data, it ran the risk of oversimplification, and possibly misleading [140]. For 

example, when evaluating structural materials, understanding their capability to sustain 

loading under heat condition is also important [115-116] [141]. While the glass transition 

temperature “Tg” is an intrinsic material property that cannot be modified without changing 

the molecular structure of the polymer, it is possible to reduce the mass loss and mass loss 

rate in order to enhance the structural integrity of the material during heating. In this case, it 

is necessary to evaluate those parameters, which would otherwise have been ignored. 

The discussion in this chapter focuses on the experimental study and can be divided 
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into three steps: 1. optimize the weight ratio between the nanoparticles that compose the 

hybrid nanopaper, 2. select right materials to realize the proposed idea, and 3. extensively 

evaluate the optimized nanopaper by various tests, to gain deep understanding in the fire 

retardant mechanism of the nanopaper and to provide data for future thermo-mechanical 

degradation modeling. Specifically, the flame retardant performance of the composites 

prepared by directly mixing nanoparticles into polymer matrix was studied. It was found that 

when the polymer matrix was composed by 3% of xGnP, 17% of APP, and 80% of polyester 

resin, the synergistic effect between xGnP and APP was better revealed. The fire response of 

the nanocomposites was further investigated after coated with the xGnP/CNF nanopapers. 

The study showed that the nanocomposites coated with the nanopaper containing xGnP/CNF 

were equal to 3/1 possessed best flame retardant property. Then the fire performance of the 

composites coated with the xGnP/CNF nanopaper was compared with the nanopaper that 

containing nanoclay particles. Due to the low permeability (leaded to the pressure build-up 

beneath the nanopaper) of the Clay/CNF nanopaper, the detachment of the nanopaper was 

observed. However, such phenomenon did not occur to the xGnP/CNF nanopaper. Based on 

these findings, fire performance of the composites coated with the nanopapers containing 

xGnP/CNF/APP equaled 3/1/9 was thoroughly evaluated under various heat fluxes. And the 

fire retardant mechanism was studied. 
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4.2. Fire Retardant Performance Evaluation of the xGnP/APP Nanocomposites 

In this section, exfoliated graphite nanoplatelets (xGnP) were introduced into polymer 

matrix to reduce the flammability of the composites. Their planar structure is such that the 

permeability of the composites would be reduced and, thus, the path of decomposed polymer 

(fuel) would become torturous [86] [142-144]. However, the addition of nanofillers alone into 

the polymer, sometimes, will not satisfy the requirements of fire regulations. The 

incorporation of traditional additives is still necessary [145-146]. Therefore, when preparing 

the samples, the intumescent flame retardants-APP particles were used with a weight ratio of 

APP/resin equaled. Under this ratio, 25wt%, 15wt%, 10wt% and 5wt% of APP particles were 

replaced by xGnP. The samples were characterized by XRD and cone calorimeter. To attempt 

a further improvement of the flame resistant efficiency of the nanocomposites, xGnp/CNF 

hybrid nanopapers were designed, fabricated, and coated onto the surfaces of the laminates. 

Besides their unique planar structure that should introduce the barrier effect, the selection of 

xGnP was also intended to take advantage of their anisotropic thermal conductivity 

(K∥=3000W/m; K ⊥=6W/m), so heat could be easily dissipated transversely during the heat 

transfer process. Thus, less heat should be able to penetrate through the coating. In addition to 

that, xGnP and APP were still mixed into the polymer matrix at the given ratio of 

xGnP/APP/Resin equaled 2/18/80. The samples coated with hybrid nanopapers were 

characterized by cone calorimeter, and the char collected after the test was examined by 

SEM. 
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Materials 

Vapor grown carbon nanofibers (Polygraf III PR25-HHT) were supplied by Applied 

Sciences, Inc. (Cedarville, Ohio, USA), with an average diameter of 80nm and average 

surface area of about 50m2/g. The traditional flame retardants, ammonium polyphosphate 

(AP423), were supplied by Clariant International Ltd. The exfoliated graphite nanoplatelets 

(xGnP) were obtained from XG Sciences with a thickness of 5-15nm. The reinforcement, 

E-glass fiber mat, was supplied from Composites One, Inc. with a surface density of 800g/m2 

and an average thickness of 0.85mm. The matrix material for the composites was unsaturated 

polyester resin. It was a pre-promoted, thixotropic, orthophthalic type of resin that was 

supplied by PolyGard (product code: GP100P; density: 1.1g/cm3; heat deflection temperature: 

75oC). The hardener used in this study was methyl ethyl ketone (MEK) peroxide, and was 

mixed with resin at a weight ratio of 100:1. 

Processing nanocomposites containing xGnP and APP 

Prior to mixing with the unsaturated polyester, xGnP was rinsed with acetone to 

improve its wettability with the resin. Specifically, xGnP powders were dispersed in acetone 

and then the mixture was sonicated using the Misonix S-3000 sonicator with a power of 90 

watts for 20min. The acetone was then drained using a vacuum system. Finally, the treated 

xGnP and as-received APP were mixed into the unsaturated polyester by a mechanical shear 

mixer (Model 50002-30, manufactured by Cole-Parmer Instrument Company, Illinois, USA) 

with the speed of 1400rpm for 2.5 hours. After preparing the matrix, the RTM process was 
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carried out to prepare the glass fiber reinforced nanocomposites. The polymer was injected 

into an aluminum mold containing eight layers of glass fiber mats at a pressure of 80psi. 

After resin was allowed to cure in the mold at room temperature overnight, the composites 

were post-cured at 120oC in an oven for 2 hours. Table 2 shows the compositions of the xGnP 

nanocomposites. 

Table 2 Composition of the xGnP-based nanocomposites. 

Sample ID* 
Contents (wt %) Weight ratios of 

GNP/APP/Resin (%) GF Resin Additives 

xGnP-APP-0-laminates 51.75 48.25 0 0/0/100 
xGnP-APP-15-laminates 48.23 41.41 10.35 5/15/80 
xGnP-APP-17-laminates 49.18 40.66 10.16 3/17/80 
xGnP-APP-18-laminates 47.30 42.16 10.54 2/18/80 
xGnP-APP-19-laminates 49.78 40.18 10.04 1/19/80 
xGnP-APP-20-laminates 50.71 39.43 9.86 0/20/80 

* For the purpose of simplification, the above sample IDs are called Control, APP15, APP17, 
APP18, APP19 and APP 20 later, respectively. 

Processing hybrid nanopapers and nanocomposites 

The as-received CNF and xGnP were dispersed in distilled water with the aid of 

surfactant Triton-X100. The mixture was sonicated with the Misonix S-3000 for 30min under 

a power of 30-50 watts. After the suspension was well-dispersed, nanopaper was fabricated 

by filtering the suspension with a compressed air system (see Figure 6 in Chapter 3) at a 

pressure of 80psi. The nanopaper was then coated onto the surface of the nanocomposites by 

RTM process. The compositions of the hybrid nanopapers and nanocomposites are shown in 

Table 3.
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Table 3 Composition of the hybrid nanopapers and nanocomposites. 

Nanocomposites 
sample ID* 

Composition (wt %) Weight ratios 
in the nanopaper GF Resin xGnP APP Nanopaper 

GA-L 49.83 40.14 1.00 9.04 0 no paper 
C0G1-GA-L 50.17 38.91 1.10 9.84 1.20 CNF/xGnP = 0/1 
C1G3-GA-L 49.16 39.73 1.11 9.99 1.17 CNF/xGnP = 1/3 
C1G5-GA-L 49.10 39.81 1.10 10.00 1.16 CNF/xGnP = 1/5 
C1G1-GA-L 48.12 40.59 1.13 10.17 1.15 CNF/xGnP = 1/1 
C3G1-GA-L 48.85 39.99 1.12 10.04 1.17 CNF/xGnP = 3/1 
C5G1-GA-L 48.88 40.01 1.11 10.00 1.17 CNF/xGnP = 5/1 
C1G0-GA-L 48.27 40.46 1.13 10.14 1.15 CNF/xGnP = 1/0 

* For the purpose of simplification, the above sample IDs are called GA, C0G1, C1G5, C1G3, C1G1,  
C3G1, C5G1 and C1G0 later, respectively, GA is the control sample. 
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Cone Calorimeter Tests 

According to the standard ASTM E 1345-10 (ISO 5660-1), the fire retardant 

performance of the composites with and without nanopaper coatings was evaluated by a FTT 

cone calorimeter (manufactured by Fire Testing Technology Ltd) with an incident heat flux of 

50kw/m2. For all the samples, the unexposed surfaces and side edges were wrapped in an 

aluminum foil. There was ceramic wool within the sample holder of the cone calorimeter. 

Therefore the unexposed surfaces of the samples were insulated. The samples were evaluated 

in a horizontal position with the surfaces coated with nanopapers, when applicable, directly 

exposing to the heat flux during cone calorimeter tests. The thickness and diameter of the 

samples were, respectively, 8mm and 75mm, with resin volume and weight fraction of 

approximately 70% and 50%, respectively. The experiments were repeated 2 times for all of 

the samples. The results showed less than 10% variation. The flammability data reported in 

this study was the average of the 2 replicated tests. 

X-Ray Diffraction Analysis  

X-Ray Diffraction (XRD) analysis was carried out to evaluate the microstructure of 

the direct mixing samples (i.e. without nanopaper coating) by using a Rigaku D/MAX X-ray 

diffractometer (45kV, 30mA), which was equipped with a copper X-ray tube (wavelength of 

1.54Å). The scanning rate of the analysis was 0.06 degree per 7 seconds.  

Scanning Electron Microscopy Analysis 

The hybrid nanopapers and the char of the samples coated with nanopapers after cone 
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calorimeter test were sputter-coated with a conductive gold layer. They were analyzed by a 

Zeiss Ultra –55 SEM machine at extra high tension (EHT) of 5kV. This SEM machine was 

also equipped with an energy-dispersive X-ray spectroscopy (EDX), which was able to 

identify the chemical composition of the sample. 

4.2.1. Results and discussion 

Cone calorimeter test results of the nanocomposites containing xGnP and APP 

 

Figure 12 Heat release rate of the samples with different weight ratios of APP and xGnP. 

Figure 12 shows the Heat Release Rates (HRR) of the samples containing different 

weight ratios of polyester, APP and xGnP. Compared to the control sample, the HRR of the 

samples containing APP and/or xGnP are visibly lower. The sample APP17 that is composed 

of 80% of resin, 17% of APP and 3% of xGnP shows the lowest HRR curve. However, the 
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other samples with the content of APP greater than 17% (xGnP is lower than 3%) or lower 

than 17% (xGnP is higher than 3%), show a higher HRR. With this information, it is inferred 

that there is an optimized weight ratio between APP and xGnP.  

 

Figure 13 Air bubbles that had been trapped in the char structure of the 
xGnP-APP-17-laminates after the cone calorimeter test. 

A reason for these results is that the APP particles serve to reduce the HRR of the 

samples by acting as “blow agents” to generate air bubbles, which are expected to lower the 

thermal conductivity in the thickness direction (Figure 13), and eventually, slow down the 

heat being transferred into the underlying materials.  

However, the presence of xGnP could impair the thermal isolation ability of the 

foaming char layer due to its planar structure, high thermal conductivity, and heat absorption 

ability [75]. Therefore, the reduced HRR should be a consequence of a competing mechanism 

with the introduction of xGnP particles, that is their high heat absorption and thermal 

conductivity will stimulate the pyrolysis of the polymer. While the high thermal conductivity 
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and the stimulation of polymer pyrolysis will accelerate the heat dissipation and rate of char 

creation, respectively. In addition, the planar structure of xGnP might serve as barrier to 

inhibit the diffusion of the decomposed fuel to feed the flame above the surface of the 

laminates. As shown in Figure 14, it is proposed that the mechanism is that the planar 

structure of xGnP will decrease the permeability of the samples, making the diffusion path of 

the decomposed gases tortuous.  

 

Figure 14 The presence of the xGnP nanoparticles inhibits the diffusion of the decomposed 
gases. 

This mechanism is supported by the Mass Loss Rate (MLR) of the samples. Figure 15 

shows the MLR of the control sample and the sample containing 3% of xGnP and 17% of 

APP (other samples have the similar results, but are excluded in this figure for ease of 

reading). It can be seen that the MLR curves closely line up with the HRR curves, which 

suggests that the reduced HRR is the consequence of reduced MRL. In other words, the xGnP 

effectively slow down the migration of the decomposed fuel.  
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Figure 15 Mass loss rate of the samples. 

From the cone calorimeter tests results shown in Table 4, it can be seen that the 

variations in weight ratios of xGnP and APP among the non-control samples yield limited 

differences in total heat release rate and char yielding. This indicates that the relatively large 

amount of intumescent flame retardants, APP, has a dominant effect. With the exception of 

APP15, the PHRR of APP17, APP18, APP19, and APP20 are relatively close, as shown in 

Table 4, suggesting that the addition of small amounts of xGnP particles into the polymer 

would not significantly reduce the flammability of the samples that already have a high 

concentration of APP additives, unless the loading of xGnP is relatively high (5% in this 

case). 
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Table 4 Summary of cone calorimeter test results of the mixing group. 

Sample ID Control APP15 APP17 APP18 APP19 APP20 

Total Mass (g) 55 58 58 57 57 56 
Char Yielding (wt%) 0 17.8 14.6 10.9 15.9 14.1 
Total Heat Released 

(MJ/m2) 
135 111 115 115 118 116 

Peak Heat Release Rate 
(kw/m2) 

410 389 281 310 295 270 

Total Smoke 
Release(m/m2) 

6063 6455 5270 5677 6104 4948 

* The thickness of all the samples is about 8mm. 
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Figure 16 Heat release rate of the samples coated with the xGnP/CNF hybrid nanopapers. (a) 
0~800s; (b) 0~100s. 

The HRR of those samples coated with xGnP/CNF hybrid nanopapers are shown in 

Figure 16. As shown in Figure 16(b), the PHRR of C0G1 is 11% less than that of the control 

sample GA. The PHRRs of the C1G5, C1G3, C1G0, C3G1, C1G1 and C5G1 samples are 7%, 

11%, 28%, 33%, 39% and 100% higher than that of the control sample, respectively. Such a 

high PHRR is undesirable for the purpose of fire retardancy and a more sophisticated material 

design is needed. However, it can be seen in Figure 16(a) that immediately following the 

peaks of the paper coated samples, there is the dramatic decrease in the HRR. Considering 

long high HRR after the peak, it is unlikely that the drop is due to the complete consumption 

of the composite material, rather is likely due to the formation of a protective char layer. In 

fact, it is intended that the introduction of the hybrid nanopaper should serve as a pre-existing 

char layer (which would otherwise being formed gradually during the combustion process 
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such as the case of direct mixing) to reduce the HRR as soon as possible. In terms of 

analyzing the long term heat release behavior, the Total Heat Release (THR) during different 

time period can be calculated by: 

∫=
t

t

HRRdtTHR

0

 (4-1) 

By integrating the HRRs from 0s to 100s, the THR before 100s is shown in Table 5. 

The THR before 100s of the samples coated with C0G1, C1G5 and C1G3 papers are, 

respectively, 33%, 16% and 31% less than that of GA sample. The differences between the 

GA sample and the rest of samples are within 10%. 

 

Figure 17 Heat release rate between 100s~350s. 

During the major burning stage (100-350s) where most of the mass is consumed, 

Figure 17 shows that the samples coated with xGnP dominated hybrid nanopapers exhibit 
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lower heat release. By integrating the curve, it can be seen that the sample coated with C1G3 

has the lowest THR (as listed in Table 5). The difference of THR between this sample and GA 

sample is more than 17%. Only the sample coated with a pure CNF nanopaper has similar 

THR value to the GA sample. This is attributed to the fact that the pure CNF nanopaper has 

much higher permeability, thermal conductivity, and heat absorption ability than the 

nanopapers containing xGnP. Therefore, only promoting the flammability of the composites. 

 

Figure 18 Smoke production rate of the samples coated with the nanopapers. (a)0~700s; 
(b)0~350s. 

The above results demonstrate that the reduction in the THR of the composites is 

achieved by coating with the hybrid nanopapers. The hybrid nanopapers that are dominated 

by xGnP have better flame retardancy than that of the CNF dominated hybrid papers. Similar 

to the fire retardant mechanism previously discussed (Figure 14), it is suggested that the  
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Table 5 Summary of cone calorimeter test results of the paper-coated group. 

Sample ID GA C0G1 C1G5 C1G3 C1G1 C3G1 C5G1 C1G0 

Total Mass(g) 57 57 57 57 59 58 59 57 

Char Yielding 
(wt%) 

10.9 18.3 18.9 11.1 19.9 19.1 19.3 18.9 

Peak Heat Release 
Rate (kw/m2) 

310 276 331 344 430 411 621 396 

Total Heat Released 
(MJ/m2) 

114 110 115 112 117 113 122 114 

Heat Released 
(MJ/m2) (0~100s) 

17.1 11.5 14.4 11.8 17.3 16.7 18.9 18.1 

Heat Released 
(MJ/m2) (100~350s) 

69.3 60.3 62.0 57.2 60.7 60.6 59.0 67.5 

Total Smoke 
Release(m/m2) 

5677 4811 5582 5765 5760 5578 5670 6011 

* The thickness of all the samples is about 8mm. 
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xGnP dominated nanopapers have much lower permeability, thereby slowing the diffusion 

rate of the decomposed gases that feed the flame above the surface of nanopaper. In addition, 

despite resulting in a higher PHRR, it is expected that the CNF/xGnP hybrid nanopaper 

should accelerate the char formation process. This fire retardancy mechanism is further 

confirmed by analyzing of the Smoke Production Rate (SPR) data. As shown in Figure 18, 

the SPR curves are highly similar to the heat release rate curves. Most of the smoke generated 

before 350s, with the peaks of the GA samples (a) and the sample coated with CNF 

dominated nanopapers (c,d,g,h) occurring before 150 seconds, while the peaks of the samples 

coated with xGnP dominated nanopapers (b,e,f) occurring near 350s. The SPR of the sample 

coated with xGnP dominated nanopaper before 150s is much lower than the GA sample. 

While HRR is an important parameter to evaluate the fire performance of PMCs [140], 

other parameters such as mass loss are useful in regarding to the material’s post-fire 

mechanical properties. Figure 19 shows the change of remaining mass of the matrices during 

fire testing. Mathematically, the parameter is calculated by normalizing the instantaneous 

mass of the matrices during cone calorimeter test with the initial mass of the matrices. Since 

the glass fibers are thermally stable, and their mass remains unchanged during the whole 

testing, the instantaneous mass of the matrix of a sample can be obtained by minus the weight 

of the glass fibers from the total instantaneous mass of the sample, which is recorded by the 

cone calorimeter.  

Mass Percentage of Matrix = 
Gi

Gt

MM

MM

−
−

 (4-2) 
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where: Mt is the mass of sample recorded during test; 

      MG is the mass of glass fiber which equals 8g/m 800 2 ×× sampleA ; 

      Mi is the initial mass of the sample 

 

(a)                               (b) 

Figure 19 Mass percentage of the remaining matrices during the cone calorimeter tests. (a) 
mixing samples; (b) paper coated samples. 

As shown in Figure 19(a), the polymer matrix of control sample has almost been 

completely consumed, while the samples containing APP and xGnP show an improved ability 

to retain their matrices during the fire testing. The sample containing 17% of APP and 3% of 

xGnP exhibits the similar results with the sample containing 20% of APP only. For the 

nanopaper-coated samples, as shown in Figure 19(b), all the samples show an improved 

capability in preventing the mass loss when comparing to the control sample. In addition to 

the low permeability of the CNT/xGnP hybrid nanopaper, which will effectively slow down 

the diffusion of decomposed gases, another possible explanation, as discussed previously, is 

that carbon-based material might accelerate the process of forming the protective char layer 

on the surface of the samples. 
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XRD results of the samples containing different concentrations of APP and xGnP 

 

Figure 20 XRD results of the samples with different concentrations of APP and xGnP. 

As shown in Figure 20(a), there is no peak for the sample only composed of glass 

fiber and polyester resin, while the peaks for APP powder (curve b) and the sample only 

containing APP are similar, only differencing in their intensity, which is due to the obvious 

fact that the concentration of APP in the composites sample is lower than pure APP powder. 

Figure 20(b) shows the XRD pattern of the xGnP powder, the samples containing APP only, 
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and the samples containing both APP and xGnP. It can be seen that the peak for xGnP is 

around 26.5o. When the particles are mixed into polymer with APP, the XRD patterns of the 

mixed samples are simply the combination of the XRD patterns of the pure APP and xGnP 

powder. For example, there are two peaks around 26o for the samples containing 2 and 3% 

(curves d and e) of xGnP. The lower angle peak is attributed to APP and the higher angle peak 

comes from xGnP. When the concentration of xGnP is increased to 5%, the contribution from 

xGnP around 26o becomes more obvious. These curves indicate that the mixing xGnP into the 

polymer using mechanical mixer at room temperature will not result in a significant change 

of intercalated distance between xGnP platelets. 

As shown in Figure 20(c), it is interesting to note that there is no peak for the sample 

with its matrix being composed of 1% of xGnP, 19% of APP and 80% of polyester. If the 

xGnP particles had been exfoliated, there should be peaks for APP. The possibility of 

significant experiment errors is highly unlikely, since the tests for this sample was repeated 

for four times at different locations of the sample. This might have resulted from the APP and 

xGnP particles becoming amorphous under such a ratio. However, the phenomenon needs 

further investigation. 

Morphologies of the nanopapers and char materials of the paper-coated samples after cone 

calorimeter tests 

Morphologies of the nanopapers 

The morphology of the nanopaper before coating onto the surface of PMCs is shown 
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in Figure 21. SEM images 21(a) and 21(b) indicate that xGnP particles are well dispersed and 

entangled within the CNF networks. As the loading of xGnP increases within the hybrid 

nanopapers, due to more pores of the CNF network will be covered by xGnP, the 

permeability of the nanopapers decreases. As shown in figure 21(c) and (d), the pure xGnP 

and CNF nanopaper should have the lowest and highest permeability, respectively. 

 

Figure 21 SEM images of the hybrid nanopapers. (a) C1G3; (b) C3G1; (c) C0G1; (d) C1G0. 

 



74 

 

Morphologies of the char materials after cone calorimeter tests 

Figure 22 and 23 show the char characteristics of the composites samples coated with 

the nanopapers after cone calorimeter tests. There were three types of char had formed during 

the combustion reaction, labeled as A type, B type and C type. It is clear that A type char is 

the most compact, while the C type char has the highest porosity. Generally speaking, a 

sample that generates more compact char should possess higher flame retardant property 

[147]. The sample, C1G3 and C0G1, shows the largest amount of A type chars in the surface 

and also shows best flame resistance (Figure 22). However, most of the chars from sample 

C1G0 are composed of type B and C (Figure 23), and the sample even shows higher 

flammability than the control sample. 

 

Figure 22 Char SEM image of the samples C1G3-GA-L and C0G1-GA-L. 

A 

C 
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Figure 23 Char SEM image of the sample C1G0-GA-L. 

4.2.2. Conclusions 

By analyzing cone calorimeter test data and char characteristics, it is found that the 

thermal properties and permeability of composites and chars play important roles in 

determining the flammability of the materials. xGnP particles show an excellent barrier effect 

when they are mixed in polymers and incorporated into CNF-based nanopapers. Specifically, 

with an addition of 3% xGnP and 17% APP into polymer matrix, fire performance of the 

sample is the best of those tested, suggesting that there is an optimized weight ratio between 

xGnP and APP that uses their synergistic effect. By coating hybrid nanopapers onto the 

C 

B 
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surfaces of those samples, the fire resistance performance of the composites is further 

enhanced. The traditional flame retardants, APP, are proved to be important to reduce the 

overall heat release of the PMCs during the combustion reaction process. 

4.3. Fire Retardant Performance Evaluation of the Glass Fiber Reinforced Polyester 

Coated with the xGnP/CNF/APP and Nanoclay/CNF/APP Nanopaper 

In this study, new types of hybrid nanopapers were developed. APP particles were 

introduced into the CNF paper. As demonstrated by the previous section, APP was expected 

to serve as a blow agent when subjecting to heat. The expansion of the coating layer should 

lower the through-thickness thermal conductivity of the nanopaper. Furthermore, APP itself 

should initiate the creation of char that would protect the underlying polymer from fire 

damage. Nanoclay, similar to xGnP that possessed planar structure, was incorporated into the 

nanopaper. The fire retardant efficiency of nanopapers containing nanoclay or xGnP was 

evaluated and compared by cone calorimeter test. In addition, since the tensile modulus of the 

composites is dominated by glass fibers which should have no damage after fire, and the 

compressive modulus of the composites is determined by the mechanical properties of matrix, 

while the flexural modulus represents the combined effect of glass fibers and polymer matrix, 

the post-fire flexural moduli of the PMCs coated with these two types of nanopaper were 

evaluated by three-point bending test. The outcome of this study should help to determine 

which nanopaper system is more effective to improve the structure integrity of the PMCs 

under fire conditions. 
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In addition to the materials descripted in section 4.2.2, Cloisite Na+ clay was used in 

the following study. The nanoclay particles were the pure and non-modified form of 

montmorillonite clay, which was obtained from Southern Clay Products, Inc. According to 

the product specifications, 90% by volume of the dry particles have sizes that less than 13µm. 

The procedure of fabricating nanopaper and nanocomposites was similar to the process 

discussed in section 4.1.2, except that the RTM process was carried out by the compressed 

nitrogen system (Figure 11). As discussed in Section 3.2, the width and length of the chamber 

of the mold was 8 inches by 12 inches. The pressure used in RTM process was 250psi. The 

final thickness of the sample was roughly 3.5 mm. Furthermore, it should be note, due to the 

low permeability, the time to fabricate the nanopapers containing nanoclay was much longer 

than that nanopapers containing xGnP. The composition of the hybrid nanopapers and 

nanocomposites is shown in Table 6. 

Table 6 Composition of the hybrid nanopapers and nanocomposites. 

Nanocomposites 
sample ID 

Contents (wt %) Weight ratios of particles 
in the nanopaper GF Resin Nanopaper 

Control 50.6 49.4 0 no paper 
CCA serials 49.3 47.6 3.1 CNF/Clay/APP=5/1/9 
CXA serials 51.0 45.8 3.2 CNF/xGnP/APP=5/1/9 

Besides the cone calorimeter test (35kw/m2 applied heat flux in this section) and SEM 

analysis descripted in section 4.2.2, other characterization experiments had been conducted, 

which include: 
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Thermal gravimetric analysis (TGA) 

The TGA instrument used in this study was TGA-Q500 from TA Instruments, USA. 

The characterization of the hybrid nanopapers infused with the polyester resin was conducted 

in a nitrogen atmosphere at a flow rate of 40ml/min and a heating rate of 10oC/min. The 

weight of a sample was approximately 10mg, which was obtained by knocking off the 

surface of the nanocomposites. Therefore, the TGA sample was composed of resin and hybrid 

nanopaper. The nitrogen atmosphere was chosen to simulate the anaerobic degradation of 

polymer within the PMCs. 

Post-fire three-point bending test 

Post-fire flexural moduli of the samples were determined by three-point bending test 

by using an INSTRON 5582 universal testing machine. The coupons’ sizes were 25x130mm 

which were cut from the composites plates that were prepared by the RTM process. Prior to 

the bending test, they were exposed to 35kw/m2 heat flux for varied amounts of time. The 

exposure time was selected based on the HRR curves, and was selected such that the samples 

would not lose all their mechanical resistance. When the samples caught fire, due to their 

small size, the flame could be easily quenched by covering a fire proof fabric. In accordance 

with the standard ASTM D790-10, the support span was 76mm and the speed of crosshead 

motion was 2.4mm/min. The test would stop if either the deflection of the centerline of the 

specimen reached 12mm or there was a dramatic drop in the load-deflection curve. The 

flexural modulus degradation rate was evaluated using a normalized modulus of elasticity, 
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which was calculated by [148]: 
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4 Edb
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En ⋅⋅⋅

⋅
=  (4-3) 

where: En was the normalized modulus of elasticity in bending, E0 was the modulus of the 

sample before it was exposed to heat, L was the support span, b was the width of the sample, 

d was the depth of the sample, and m was the slope of the initial straight line of the 

load-deflection curve. 

During the bending test, the surface against the support experienced the largest stress. 

Hence, it was possible that even though the samples might have slight differences in the 

degree of damage within the exposed surfaces. The placing of the undamaged surface against 

the support might eliminate such differences on the flexural moduli being measured. 

However, this result was unlikely to occur if the damaged surface was chosen to be placed 

against the support, as shown in Figure 24. 

 

Figure 24 Experimental setup of a composites sample for the three-point bending test. 
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4.3.1. Results and Discussion 

Cone calorimeter test results 

Table 7 Summary of cone calorimeter test results. 

Sample 
ID 

THR 
 

(MJ/m2) 

THR 
(0~180s) 
(MJ/m2) 

THR 
(“platform”) 

(MJ/m2) 

First 
PHRR 

(kw/m2) 

Second 
PHRR 

(kw/m2) 

Time to 
Second PHRR 

(s) 

Control 57.9 51.7 38.4 / 430 80 
CCA 59.5 37.3 34.4 271 332 170 
CXA 55.5 38.2 28.2 359 283 185 

 

The HRR curves of these three groups of composite samples are shown in Figure 25 

and summarized in Table 7. By integrating the heat release rate through time, the heat 

released before 180s for the Control, CNF/Clay/APP (CCA), and CNF/xGnP/APP (CXA) 

samples are 90%, 63%, and 69% of the total heat release (THR), respectively. Initially, the 

control samples have the highest HRR and become the lowest after 180 s. Such drop in HRR 

for the control samples is due to the fact that most of the polymer has been consumed up. 

Specifically, because all the samples have the same amount of polymer, when the control 

sample burns dramatically during the 0~180s period (90% of THR), it has less fuel to 

consume in the later combustion stage. Therefore, it can be concluded that in general, the 

samples coated with hybrid nanopapers exhibited better fire retardancy than the control 

samples. 
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Figure 25 Heat release rate of the samples. 

It is interesting to note that there are two peaks for the samples coated with hybrid 

nanopapers while there is only one peak for the control samples. The first and second peaks 

of the CCA samples are 37% and 23% lower than that the peak heat release rate (PHRR) of 

the control samples. The first and second PHRRs of CXA are 17% and 34% lower than that 

of the control samples. The first peaks of the paper-coated samples come from the ignition of 

the samples. The second peak of paper-coated samples and the peaks of the control samples 

all appear in the highest “platform” of their HRR curves. The “platform” represents the major 

period of decomposition of the composites, since the heat release during the platform period 

(less than one third of the total combustion process) for the Control, CCA and CXA samples 

take 66%, 58%, and 51% of the THR of the samples, respectively. It can be seen that the 

second PHRR of the CCA and CXA samples appear at 170 s and 185s, respectively. Much 

later than the control samples whose peaks occur at about 80s. As shown in Figure 25, 
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immediately following the first peak of the paper-coated samples, a dramatic decrease in 

HRR occurs. It is unlikely that the drop is due to the complete consumption of the polymer 

matrix as the control sample does. Rather it is due to the formation of the protective char 

layer. In fact, the introduction of the hybrid nanopaper is intentionally designed to serve as a 

pre-existing char layer and to prompt the formation of the protective char. The occurrence of 

the second peaks could be attributed to the cracking of the char layer near the end of 

combustion process.  

 

Figure 26 (a) The built-up pressure beneath a nanopaper results in the delamination and (b) 
the mechanism of permeability-related ignition (arrows indicate the decomposed fuel). 

Since we expect the protective char to be formed at the early stage, the ignition time 

of the paper-coated samples is shorter than the control samples, as shown in Figure 25, and 

the first PHRR occurs when the samples catch fire. The shortened ignition time of CXA serial 

samples is attributed to high content of carbon particles in the hybrid nanopaper, which easily 

absorb energy and conduct heat. The reason for the first peaks (or ignition) in HRR curves of 

the CCA serial samples, besides the effect of high carbon content, could also be attributed to 
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the extremely low permeability, as mentioned in experimental section of this study, which 

results in the pressure (lump in Figure 26(a)) being built up between nanopaper and 

underlying structure. Consequently, the delamination of nanopapers occurs and the gas 

bursting out from the gap reaches the critical fuel concentration value that eventually leads to 

the ignition (as shown in Figure 26 (b)). Therefore, the peak occurs due to the large amount 

of newly-freed fuel igniting.  

 

Figure 27 Flame patterns on the surfaces of the samples immediately after ignition. (a) 
control sample and (b) nanopaper-coated sample.  

When the samples continuously burn, the resin within the nanopaper will be 

consumed up, and the protective char layer forms. Then, since the flame is maintained by the 

fuel that comes from the underlying polymer decomposition, the permeability of the 

nanopaper affects the long term HRR, i.e. the lower the permeability, the less the fuel pass 

through the protective layer, thus the lower the HRR. This is indicated as a dramatic drop in 

the HRR immediately after the first peak, then a relatively low HRR maintained after the 

drop. As shown in Figure 27(a), the lack in protection for the control sample leads to a large 

sparking area appears before and immediately after the ignition, which is barely observed 

with the sample coated with the nanopaper (Figure. 27(b)). The large sparking area of the 

control sample indicates that large amount of fuel present. It is important to note that despite 
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the HRR of the paper-coated sample being lower than the control sample, the THR of the 

three groups of samples are similar (about 57MJ/m2) which indicates that the small quantity 

of the hybrid nanopaper does not affect the overall heat release of the material and a large 

amount of traditional fire retardants is indispensable if attempting to lower the value and 

achieve V-0 rating in the UL-94 test [146] [149].  

The CCA type of nanopaper has much lower permeability than the CXA nanopaper, 

which causes the relatively lower HRR (less fuel penetrates the coating) during the first peak 

period and the lump of the nanopaper (Figure 26 (a)). However, the HRR of the CCA samples 

becomes much higher than the CXA samples after that. This phenomenon can be attributed to 

the complete detachment of the coating from the samples coated with the CCA papers. When 

the coating is detached from the underlying glass fiber mat, the barrier effect of the coating 

will be compromised. As evidenced by Figure 28, the CCA coating has already detached from 

the underlying glass fiber mat after cone calorimeter test, while the CXA paper is still 

attached to the 1st layer of the glass fiber mat. Furthermore, when there is no coating applied 

to the control sample, all the polymer matrix is completely burnt without turning into char, 

leaving the white original glass fiber mats behind. On the other hand, for the paper-coated 

samples, the glass fiber mats have caught more char as the coating stopped the degraded fuel 

to feed the surface flame during the combustion process. 
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Figure 28 Char materials after the cone calorimeter test (first layer is more close to the heat 
flux than successive layers). (a) control sample; (b) CXA sample; and (c) CCA sample.  

 

Figure 29 Mass loss rate of the samples. 

Figure 29 shows the mass loss rate of the composite samples. The curves closely 

follow the HRR curves, i.e. the moment of the highest rate of mass loss is the same time 

when PHRR appears. Within the first 50s the mass loss rate of the paper-coated sample 
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increases and then decreases dramatically. The phenomenon suggests that the protective char 

layer has effectively lowered the available decomposed fuel to feed the flame. 
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Figure 30 Remaining mass of the samples during the cone calorimeter test. 

Figure 30 shows the change of the remaining mass of the samples, while they are 

exposed to heat flux. The mass ratios are calculated from normalizing the mass of the 

samples during the test by their initial weight. The hybrid nanopapers protect the samples in 

fire scenario by means of retaining the weight of samples. It can be seen that the mass of 

paper-coated samples begins to drop earlier than the control sample due to the reduced 

ignition time. However, since these samples are well protected by the nanopaper, the decrease 

in mass is much slower than the control samples. 
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Thermal stability 

 

Figure 31 TGA results of the samples. 

The thermal stability of the hybrid nanopapers is one of the important factors that 

affect the fire performance of the nanocomposites. TGA is the most widely used technique to 

evaluate the thermal stability of various polymer composites. As shown in Figure 31 and 

Table 8, the temperatures at 5% weight loss, which are defined as the initial decomposition 

temperatures, for the Control, CXA and CCA samples are 274oC, 289oC, and 242oC, 

respectively. The residual at 600oC for the above three samples are 3.65%, 27.1%, and 

24.53%, respectively. Therefore, the incorporation of nanopaper into resin results in very high 

percentage of char yielding, which can be attributed to the high thermal stability of the CNF 

and xGnP particles. Compare to the CCA sample, the higher initial decomposition 

temperature and char residues for the CXA sample can be attributed to the fact that the 
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layered graphite can prevent the oxygen from diffusing into the substrate to decompose the 

polyester resin. And the resultant high degradation temperature stimulates the formation of 

the intumescent char due to the existence of APP. However, for the CCA sample, besides the 

positive effect due to the layered structure of clay, an ablative reassembling of the silicate 

layers from clay can hinder NH3 from swelling, which has a negative effect on the formation 

of the intumescent char [150]. It can be seen that all the samples seem to have the same 

decomposition rate during the major mass loss period (300-450oC). However, if one 

considers the fact that CNF and xGnP particles are very stable (i.e. the exaggerated 

denominator for the decomposition rate of resin that containing hybrid nanopaper), it is 

reasonable to conclude that the introduction of hybrid nanopaper indeed increases the 

decomposition rate of resin which, also explains why the paper-coated sample has shorter 

ignition time.  

Table 8 Summary of thermal stability of the samples. 

TGA sample ID T-5wt% (
oC) Char (wt%) @ 600oC 

Control 274 3.7 
CCA 242 24.5 
CXA 289 27.1 

Post-fire mechanical properties 

Since the samples exposed to heat flux for more than 150 s delaminated and their 

mechanical resistances were very low, the mechanical tests were only conducted for the 

samples with exposure times of 0s, 20s, 60s, 100s, and 150s. The post-fire mechanical 
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properties of these composite samples are shown in Figure 32. 
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Figure 32 Residual elastic modulus of the samples with different exposure times. 

It can be seen that the decrease rate in elastic modulus of the samples coated with 

hybrid nanopapers is lower than the control sample, both at the early stage (before 100s) and 

through overall period. The reductions in elastic modulus before 100s for the Control, CCA 

and CXA samples are 54%, 35%, and 25%, respectively, indicating the samples coated with 

hybrid nanopapers exhibit more than 20% improvement in mechanical resistance during the 

early stage of combustion. The greater improvement in the CXA samples can be attributed to 

the fact that they have remarkably low heat release rate during the major decomposition 

period, as shown in Figure 25. The overall decrease in elastic modulus for the Control, CCA, 

and CXA samples are 97%, 85%, and 84%, respectively. The curves that connect the data 

points were generated by Boltzmann Fit. 
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Figure 33 Comparison of the self weight-sustaining ability. 

Figure 33 shows the mechanical resistance of the samples with exposure time of more 

than 150s. As shown in Figure 33, the control sample cannot sustain its own weight after an 

exposure time of 200s, while the samples coated with the nanopapers can sustain their own 

weight even after 300s of exposure. The observation confirms that the hybrid nanopapers 

have effectively retained the mechanical properties of PMCs during fire scenario. 

Furthermore, even though the paper-coated samples are completely turned into char, the 

self-weight sustaining ability indicates that the samples still have mechanical resistance. 

Therefore, one cannot claim that the charred layer has no mechanical resistance. 
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Morphologies of the nanopapers and char materials 

 

Figure 34 Hybrid nanopapers. (a) morphology of nanofibers; (b) nanoparticles within the 
nanofiber networks; (c) CNF/Clay/APP hybrid nanopaper; (d) CNF/Clay/xGnP hybrid 

nanopaper. 

Figure 34 (a) to (d) show the morphologies of the nanofibers and hybrid nanopapers 

with the scale bar of 100nm, 200nm, 2µm, and 1µm, respectively. As shown in Figure 34 (a), 

nanofibers are entangled with each other and the average diameter of nanofibers is about 

80nm. Figure 34 (b) shows that the particles fit within the network structure of nanofibers so 

that the permeability of the nanopaper will be reduced. The morphology of hybrid nanopapers 

show in Figure 34 (c) and (d) indicate that the nanofibers and particles are well dispersed 

without aggregation. 
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(a)                               (b) 

  

(c)                                (d) 

Figure 35 Morphologies of different types of char. (a) top surface char structure of all 
samples; (b) back surface char structure of both types of nanopapers; (c) and (d) back surface 

char structure of CCA nanopaper. 

Figure 35 shows the morphology of different types of char obtained from the samples. 

The scale bar for the first image is 2µm and for the rest of images is 200nm. The char 

indicated in Figure 35 (a) is the only type of char that appeared in the top surfaces of all the 

samples. It comes from the deposition of burnt gas and is very loose. Figure 35 (b) shows the 

type of char that appears in both the back surfaces of the CXA and CCA nanopapers. Figure 

35 (c) and (d) show the types of char that appear only in the back surfaces of the CCA 

nanopapers. Type (c) and (d) are more compact than type (b) char, which is formed due to the 
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low permeability of the CCA nanopapers; the compact morphology of the char also explains 

why the PMCs samples coated with the CCA nanopaper tends to build up pressure 

underneath the coating. 

  

(a)                          (b) 

Figure 36 Morphologies of the glass fibers of the samples coated with hybrid nanopapers. (a) 
2µm, (b) 200nm.  

Figure 36 (a) and (b) shows the morphology of glass fiber after the paper-coated 

sample is exposed to heat flux for 200s. It can be seen that the un-decomposed resin is still 

attached to the surface of glass fiber, which retains the mechanical properties of the sample. It 

is reasonable to conclude that there is a direct proportional relationship between the amount 

of un-decomposed resin retention and the elastic modulus of the sample, and by extension, 

the efficiency of the nanopaper. 
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(a)                                  (b) 

  

(c)                               (d) 

Figure 37 Morphologies of the resin. (a) back of the sample with the exposure time of 150s 
and scale bar of 200µm; (b) back of the sample with the exposure time of 150s and scale bar 

of 200nm; (c) virgin resin with the scale bar of 200nm; (d) front surface of the control sample 
with an ignition time of less than 5s. 

Figure 37 shows the morphology of virgin, degraded, and burnt resin. It is interesting 

to note that even though the back of the PMCs sample has been severely degraded, the 

microscopic structure of the resin is similar to the virgin resin and is quite different from the 

resin that is even slightly burnt. 
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4.3.2. Conclusions 

Hybrid nanopapers containing CNF/Clay/APP or CNF/xGnP/APP were fabricated and 

coated onto the surface of PMCs. Their efficiency in improving the fire resistance of PMCs 

was evaluated. The test results indicate that the hybrid nanopaper has effectively reduced the 

heat release rate and mass loss of the composite samples. The peak heat release rate (PHRR) 

of the CCA and CXA samples in the major decomposition period are 23% and 34% lower 

than the control samples. The time to reach this PHRR for the CCA and CXA samples is 

roughly 125% longer than the control samples. However, even though the CCA nanopaper 

has much lower permeability than the CXA paper, this is not necessary preferable for fire 

retardancy due to the fact that the CCA paper tends to detach from the underlying structure, 

because of the built-up pressure underneath the nanopaper. Although the sample coated with 

the CCA paper has lower HRR than the CXA during the initial period of combustion, the 

CXA sample exhibit a lower HRR in the most of the combustion period. 

Bending tests indicate the post-fire mechanical properties of PMCs have been 

enhanced with coating the hybrid nanopapers onto the surface. As a result, the samples coated 

with hybrid nanopapers exhibited more than 20% improvement in mechanical resistance 

during the early stage of combustion. The overall decrease in elastic modulus for the Control, 

CCA, and CXA samples are 97%, 85%, and 84%, respectively. The SEM images of the char 

materials suggest that the compact char under the nanopapers results in an improvement in 

fire performance and post-fire mechanical properties. 
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4.4. Fire Retardant Performance Evaluation of the Glass Fiber Reinforced Polyester 

Coated with the xGnP/CNF/APP Nanopaper Subject to Various Heat Fluxes 

The nanopaper that was composed by xGnP, CNF, and APP with a weight ratio of  

xGnP/CNF/APP equaled 3/1/9 was selected for experimental study, because of its relatively 

good flame resistance performance (as discussed in section 4.2) and bonding with underlying 

PMCs (as discussed section 4.3). To gain deeper insight into the combustion process of the 

samples for future modeling, and to understand the flame retardancy mechanism which 

provides guidelines for material design, PMCs coated with 3xGnP/1CNF/9APP went through 

extensive testing. The flammability of the nanocomposites was thoroughly investigated by 

exposing them to different levels of heat fluxes. In addition, the temperature profiles were 

recorded and the post-fire flexural moduli of the samples were also determined. 

The materials and sample preparations were discussed in the previous sections. 

Nevertheless, it was found that the APP powders run the risk of decomposing into smaller 

particles during sonication, potentially preventing their inclusion in the nanopaper during 

filtration. Instead of directly mixing them with CNF and xGnP in the sonication process, they 

were mixed into the polymer matrix using a mechanical shear mixer (Model 50002-30, 

manufactured by Cole-Parmer Instrument Company, Illinois, USA) at 1400rpm for 4 hours, 

and then the mixture was brushed onto the back surface of the dry paper. The amount of APP 

was calculated based on the weight of nanoparticles used for the nanopaper and the 

designated weight ratios shown in Table 9. The weight ratio of the paste for APP and resin 

was 1 to 4 in order to balance the viscosity of the paste and the amount of resin that had been 
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used.  

Table 9 Composition of the hybrid nanopapers and nanocomposites. 

Nanocomposites 
sample ID 

Contents (wt %) Weight ratios of particles 
in the nanopaper GF Resin Nanopaper 

3xGnP/1CNF/9APP 51.0 46.0 3.0 xGnP/CNF/APP=3/1/9 

Similar to the previous sections, the samples were characterized by cone calorimeter 

test and three-point bending test. The difference in this section was that the samples were 

subjected to various heat fluxes, including 25, 35, 50, 75, and 100kw/m2. The heat exposure 

time of the samples for the three-point bending test is showed in Table 10. 

Table 10 Heat treatment for the post-fire three-point bending test. 

Applied Heat 
Flux 

(kW/m2) 
Exposure Times (s) 

25 
35 

 
0, 120, 180, 240, 300 
0, 60, 100, 140, 180 
0, 40, 80,120, 150 
0, 20, 50, 75,100 
0, 15, 40,70,100 

50 
75 
100 

 

In addition to that, the temperature histories were recorded for the paper coated 

samples and the control samples, as they were exposed to varied heat fluxes in cone 

calorimeter. The thermocouples used in this study were the K-type, GG-K-24-SLE (obtained 

from Omega Engineering Inc.) with a diameter of 0.51mm, and a maximum temperature 

measurement of 1250oC, and an error of ±0.4%. The temperature data was recorded at one 
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second intervals using the NI USB-9213 data acquisition system and NI Labview. Both were 

developed by National Instruments. As shown in Figure 38, the side and bottom of the 

samples were insulated. The temperature profiles of the middle and back surface of the 

samples were recorded using embedded thermocouples, as shown in Figure 38 (a). The size 

of these samples was the same as the size of the cone calorimeter test samples. The applied 

heat fluxes also included 25, 35, 50, 75, and 100kw/m2.  

  

(a)                                 (b) 

Figure 38 (a) Temperature measurement setup and (b) actual samples. 
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4.4.1. Results and discussion 

Cone calorimeter test results 

 

Figure 39 Heat release rate curves of the control samples subjected to various heat fluxes. 

Figure 39 and Table 11 show the HRR curves and summarized cone calorimeter test 

data for the control samples subjected to varying heat fluxes, respectively. From these, it is 

observed that the HRR and PHRR gradually increase with the increase of applied external 

heat fluxes. According to Schartel and Hull [140], the HRR curves shown in Figure 39 

suggest that the control samples might belong to the “thermally thick charring” type of 

samples. However, the curves related to a higher intensity external heat flux, including 50, 75, 

and 100kw/m2, do not strictly follow the characteristic of “thermally thick charring”, in 

which the HRR initially hits a maximum value, and as the char layer thickens, the HRR 

decreases. In fact, it appears that the char produced by polyester decomposition that was 

observed on the surface of the sample when it was subjected to 25 and 35kw/m2 heat fluxes 
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disappears when the sample is exposed to 50, 75, and 100kw/m2 heat fluxes, as determined 

by a closer examination of the residual materials after the cone calorimeter test (Figure 40). 

The phenomenon indicates that the “char” is unstable and is more like intermediates, which 

eventually will be completely decomposed provided that the applied heat flux is strong 

enough. In fact, Lattimer et al also claimed that the remaining char in the char/fiber matrix 

after the completion of the resin decomposition process will oxidize in the presence of 

oxygen and sufficiently high temperature, leaving only the reinforced fiber for composites 

[151]. 

Table 11 Summary of cone calorimeter test results for the control samples. 

Applied 
heat flux 
(kW/m2) 

Time to 
ignition 

(s) 

Initial 
weights 

(g) 

THR 
(MJ/m2) 

PHRR 
 

(kW/m2) 

Time to 
PHRR 

(s) 

Char Yield 
 

(%) 

25 116 25 57 350 170 6 
35 64 25 57 361 110 3 
50 
75 
100 

39 
21 
14 

26 
24 
25 

58 
49 
54 

488 
510 
648 

80 
80 
45 

1 
-1 
-5 

 

As expected, Table 11 shows that when the applied heat flux increases, time to 

ignition (TTI), time to PHRR, and char yield decreases. The negative values of char yield 

(CY) in the table arise from the definition of CY which is calculated by excluding the 

influence of the weight of glass fiber that is considered to be very stable during combustion 

process (see Equation 4-2). Therefore, the negative values of CY would indicate that even the 

glass fibers are severely damaged and degraded for the control samples when they are 
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exposed to high heat flux (75 and 100kw/m2). These damaged glass fiber mats are clearly 

observed and shown in Figure 40. 

 

Figure 40 Residues of the control samples after the cone calorimeter test.  

 

Figure 41 Heat release rate curves of the paper-coated samples subjected to various heat 
fluxes. 

The HRR curves and cone test data for the composites coated with 

3xGnP/1CNF/9APP nanopaper are shown in Figure 41 and Table 12, respectively. The HRR 
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curves in Figure 41 suggest that the value of the 1st PHRR increases when the applied heat 

flux is increased, with this trend holding to a heat flux of 50kw/m2. After that point, the 1st 

PHRR appears to be independent of heat flux, which exhibits a “thermally thin sample” 

characteristic [140]. Such a result is reasonable when considering that the 1st PHRR is the 

result of the ignition of a very thin coating layer of resin that remained in the nanopaper. A 

probable explanation is that since the weight of resin within the coating layer is the same for 

all of the paper coated samples, the increase of heat flux results in the increase of the 1st 

PHRR of the paper coated sample at a low heat flux until there is not enough resin within the 

coating layer for further degradation at a high heat flux. This results in a phenomenon that the 

1st PHRR is independent of heat flux. This aside, the behavior for time to ignition, 1st PHRR, 

2nd PHRR, and char yield of these samples is otherwise unremarkable. When compared with 

Figure 40 and Table 11, however, the yield of char for the paper coated sample is much 

higher than that of the control sample, likely due to the impact of the protective coating. The 

2nd PHRRs for the paper coated samples are substantially lower than the PHRR of the control 

sample. 

Additionally, the paper coated samples as a whole behave as “thick charring with 

additional peak at the end of burning” materials. This is shown by the 2nd PHRR occurring at 

the end of the test [140]. The reason for the occurrence of the 2nd PHRR can be attributed to 

either, the pyrolysis zone approaching the insulation fabric of the sample holder, which 

prevents heat from transferring to the surrounding environment, or to the char cracking, with 
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either occurring near the end of the test [140]. 

 

(a)                              (b) 

Figure 42 (a) Heat release rate and (b) mass loss rate of the two groups of samples subjected 
to low heat flux (25kw/m2). 

 

(a)                              (b) 

Figure 43 (a) Heat release rate and (b) mass loss rate of the two groups of samples subjected 
to high heat flux (100kw/m2). 

Figure 42 and 43 show the HRR curves of the control and paper coated samples under 

low and high intensity heat flux, respectively. It is evident that the flame retardant properties 
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Table 12 Summary of cone calorimeter test results for the 3xGnP/1CNF/9APP samples. 

Applied 
heat flux 
(kW/m2) 

Time to 
ignition 

(s) 

Initial 
weight 

(g) 

THR 
(MJ/m2) 

1st PHRR 
(kW/m2) 

Time to 
1st PHRR 

(s) 

2nd 
PHRR 

(kW/m2) 

Time to 
2nd 

PHRR 
(s) 

Char 
Yield 
(%) 

25 110 28 55 362 155 220 230 14 
35 68 28 55 393 75 260 205 12 
50 
75 
100 

32 
18 
12 

28 
28 
28 

54 
51 
49 

468 
481 
442 

55 
35 
30 

273 
302 
343 

170 
120 
95 

10 
5 
4 
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of the paper are improved when the sample is exposed to a higher intensity of heat flux, 

indicating its potential for the thermal protection system (TPS) of space probes. The 1st and 

2nd PHRR of the paper coated sample are more than 32% and 47% lower than the PHRR of 

the control sample, respectively, when samples of the same makeup are exposed to 

100kW/m2 heat flux. Since the protective layer has already formed after the resin in the 

coating layer is consumed, the 2nd PHRR does not exhibit a substantial increase proportional 

to the heat flux. Due to the formation of protective char layer at the early stage of combustion, 

as shown in Figure 42 (a) and 43 (a), immediately following the 1st PHRR of the paper coated 

samples there is a dramatic decrease in HRR change. The 2nd PHRR then increases slowly 

compared to the change in heat flux, even when it is increased to 100kW/m2. For the control 

sample, since there is no protective layer being formed during combustion process, the HRR 

dramatically increases with the increase of heat flux, especially at high intensity. Thus, the 

difference in HRR between these two groups of samples becomes increasingly evident and 

the flame retardant efficiency of the nanopaper is better demonstrated at higher heat flux 

intensity. 

As discussed in the Introduction section, the nanopaper is designed to serve as a 

pre-existing char layer and to prompt the formation of protective char. As shown in Tables 11 

and 12, the ignition time of the paper-coated samples is slightly shorter than the control 

samples. The shortened ignition time of paper coated samples is attributed to high content of 

carbon particles in the nanopaper, as they easily absorb heat. The 1st PHRR of the paper 
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coated sample is relatively higher than its 2nd PHRR, except the samples subjecting 25 and 

35kw/m2 heat flux, they are generally still lower than the PHRRs of the control samples.  

Figure 42(b) and Figure 43(b) show the mass loss rate of the composite samples. It 

can be seen that the curves closely follow the evolution of HRR curves, i.e. the moment of 

the highest rate of mass loss is the same time when PHRR appears. This result confirms 

Morgan’s statement that regardless of the different phenomena occurring when one tries to 

reduce the flammability of polymers by incorporating nanofillers, the HRR is reduced by 

inhibiting the mass loss rate [152]. 

 

Figure 44 Mass remains of the samples during the cone calorimeter test. 

Figure 44 shows the evolution of remaining mass of the samples during the cone 

calorimeter test. As shown in this figure, these curves indicate that there are three stages of 

decomposition for the polyester resin [152]. It can be seen for all the samples, the mass loss 

rate is faster and char yield is lower when they are exposed to a higher heat flux. For the 
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control samples, the remaining mass at the end of the test at high intensity of heat flux 

becomes negative due to the damage to glass fiber mats, as previously discussed. In contrast, 

the paper coated samples are well protected by the coatings, and the rate of decrease in mass 

is much lower than that of the control samples. With this in mind, it can be said that Figure 44 

suggests that the nanopapers protect the samples in a fire scenario by means of retaining the 

weight of samples due to the low permeability of the nanopapers, which contain the planar 

structure nanoparticles-xGnP. Considering the reduced HRR curves for the paper coated 

samples, the result confirms that HRR reduction was indeed achieved by inhibiting the mass 

loss rate [153]. Additionally, the ability to prevent the mass loss is also critical for retaining 

the mechanical properties of the composites which will be addressed in the following 

discussions.  

Temperature profiles of the composites under fire condition  

To gain deeper insights into the combustion process of the samples for future 

modeling, and to understand the flame retardancy mechanism for material design, it is crucial 

to study the evolution of temperatures at different locations in the samples during the 

combustion process. Figure 45 shows the middle and back temperature profiles of the 

samples when they are subjected to varying intensities of external heat. Keeping in mind that 

the pyrolysis zone for glass fiber reinforced polyester is roughly from 250oC to 400oC [152], 

the temperature profiles can be divided into three regions, as shown in Figure 45. The reason 

for increased temperature before the pyrolysis zone can be attributed wholly to heat 
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conduction. During the heat conduction period, the differences of the back surface 

temperature curves between the coated and uncoated samples in Figure 45 are very small. 

This would indicate the coating of a thin layer of nanopaper does not affect the overall 

thermal conductivity of the composites. The temperature differences of the middle surface of 

the samples are more obvious than that of the back surface. This was probably due to the 

imbedding of the thermal couple, which was not perfectly in the middle of the samples. 

Within the pyrolysis zone, as shown in Figure 45, the temperature increases at a much 

lower rate than the previous heat conduction region. This is because the pyrolysis of the 

polymer and vaporization of the decomposition products are endothermic in nature, and the 

temperature increases at a lower rate in this region. Furthermore, by close examination of 

these temperature profiles, it is observed that the rate of temperature increase for the paper 

coated samples is slower than of that the uncoated samples. The differences in the 

temperature increase rate is much greater at higher temperatures and when exposed to higher 

heat flux as shown in Table 13. For example, the time for the paper coated sample to reach a 

middle surface temperature of 400oC at 25kW/m2 (Figure 45(a) and Table 13) is delayed 40% 

compared to the control sample. This difference grows to 190% at 100kW/m2 (Figure 45(e) 

and Table 13). As a result, the fire retardancy of the nanopaper is better revealed at higher 

heat fluxes. This is very likely due to a char layer which forms more quickly at higher heat 

fluxes, growing into the composite as the nanopaper slows down mass loss. 
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Figure 45 Temperature profiles of the samples subjected to various heat fluxes. (a) 25kw/m2; 
(b) 35kw/m2; (c) 50kw/m2; (d) 75kw/m2; (e) 100kw/m2.  
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Table 13 Time (seconds) to reach the critical temperatures for the samples. 

 
25kw/m2 35kw/m2 50kw/m2 75kw/m2 100kw/m2 
M B M B M B M B M B 

250oC 
Control 90 126 69 70 49 60 26 44 3 36 
XCA 121 135 70 69 50 60 44 56 36 44 

400oC 
Control 179 282 152 212 105 148 66 108 45 87 
XCA 248 332 221 224 150 190 145 205 124 146 

*In this table M, B, and XCA represent middle, back, and 3xGnP/1CNF/9APP, respectively. 

Above the pyrolysis zone, all of the thermocouples for the control sample can be 

treated as free standing and they recorded the temperature evolution due to the heat 

conduction of the glass fiber mat, since there was no formation of char within the control 

samples. However, the thermocouples of the paper coated samples measure the temperature 

evolution within the char materials. Due to thermal barrier effect of the thick char layer, the 

temperature of the paper coated sample is much lower than that of the control sample in this 

region. For example, at 100kw/m2 heat flux, the final temperature within the paper coated 

sample is approximately 280 oC lower than the control sample. 

Post-fire flexural moduli  

When composite materials are exposed to heat flux, the polymer matrices decompose, 

resulting in degradation in mechanical properties. The major degradation in mechanical 

properties usually occurs above the glass transition temperature of the polymer [154]. In this 

section, the mechanical degradation rate is evaluated using the normalized flexural moduli of 

the samples after they are exposed to varied heat flux with different times. They are 

calculated using Equation 4-3. It should be noted that when the samples are cooled to ambient 
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temperature, they tend to regain some of their mechanical properties [155]. Since the 

objective of this study is to evaluate the flame retardant performance of the nanopaper, and 

since the post-fire flexural moduli of the control and paper coated samples are compared 

under the same conditions, the effect of the above mechanical property recovering 

phenomenon can be neglected. 

As shown in Table 14, the degradation rate of flexural moduli is faster at higher 

intensity of heat flux, for all these samples. However, the rate for the paper coated sample is 

much lower than that of the control sample. For example, when a sample is exposed to 

25kW/m2 heat flux for 240s, the flexural modulus of the control sample is almost completely 

depleted, while the paper coated sample retains half of its flexural modulus. Since the char 

yield, as shown in Table 12 and Figure 44, is very high for the paper coated samples, it is 

reasonable to conclude that there is a correlation between mass loss and flexural moduli 

depletion: the nanopaper coating can effectively protect the structural integrity of the 

underlying composites by retaining their mass under fire conditions. 

Furthermore, an interesting phenomenon of the relationship between flexural moduli 

and the temperature can be obtained by comparing data in Table 13 and 14. As shown in 

Table 13, the time that the back surface of the control sample reaches 400oC for the 25, 35, 50, 

75, and 100kW/m2 heat fluxes is 282, 212, 148, 108, and 87 seconds, respectively. At this 

temperature, the polymer matrix has apparently been completely decomposed. The time that 

the control samples lost all their flexural moduli for the above heat fluxes is roughly 300, 180 
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Table 14 Normalized flexural moduli of the samples subjected to various heat fluxes with different exposure times. 

Heat flux Sample Normalized flexural moduli (Exposure Times) 

25kw/m2 
Control 1 (0s) 0.90 (120s) 0.65 (180s) 0.08 (240s) 0 (300s) 

3xGnP/1CNF/9APP 1 (0s) 1 (120s) 0.99 (180s) 0.45 (240s) 0 (300s) 

35kw/m2 
Control 1 (0s) 0.60 (60s) 0.45 (100s) 0.16 (140s) 0 (180s) 

3xGnP/1CNF/9APP 1 (0s) 0.70 (60s) 0.68 (100s) 0.35 (140s) 0.1 (180s) 

50kw/m2 
Control 1 (0s) 0.56 (40s) 0.32 (80s) 0.04 (140s) 0 (150s) 

3xGnP/1CNF/9APP 1 (0s) 0.57 (40s) 0.47 (80s) 0.28 (140s) 0.03 (150s) 

75kw/m2 
Control 1 (0s) 0.58 (20s) 0.34 (50s) 0.11 (75s) 0 (100s) 

3xGnP/1CNF/9APP 1 (0s) 0.59 (20s) 0.49 (50s) 0.38 (75s) 0.13( 100s) 

100kw/m2 
Control 1 (0s) 0.57 (15s) 0.34 (40s) 0.09 (70s) 0 (100s) 

3xGnP/1CNF/9APP 1 (0s) 0.60 (15s) 0.59 (40s) 0.29 (70s) 0.06 (100s) 
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140, 100, and 70 seconds, respectively. This means that when the temperature of the back 

surface of the control sample reaches the upper limit of pyrolysis temperature of the polyester 

resin, the sample will lose all its flexural resistance. The same result is observable by 

examining the data of the paper coated sample in Table 13 and 14, and the only difference is 

that the time to reach the critical temperature has been prolonged due to the presence of the 

coating. It can be concluded that the nanopaper can also protect the composites by means of 

thermal barrier. It is also reasonable to treat the region that has passed by the upper limit line 

of pyrolysis zone as no mechanical resistance. This information is important for future 

post-fire mechanical modeling. 

Morphologies of the nanopapers and char 

 

(a)                                  (b) 

Figure 46 (a) Morphlogies of the dry nanopaper and (b) the paper structure after resin transfer 
molding. 

The morphologies of a nanopaper before and after coating onto the surface of PMCs 

are shown in Figure 46. The SEM images show that xGnP particles are well dispersed and 
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entangled within the CNF networks, and the APP particles are clearly observed after resin 

transfer molding. Since the CNF and xGnP particles are more thermally stable than the 

polyester resin, as indicated in Figure 46, the structure is stable and is expected to effectively 

prevent the mass loss of the underlying composite materials in a fire scenario by convoluting 

the path of the decomposed polymer (fuel) as discussed before.  

 

Figure 47 Morphlogies of the residues of the samples that had been exposed to 100kw/m2 
heat flux. 

Figure 47 shows the morphlogy of the glass fiber mats after the samples are exposed 

to 100kW/m2 heat flux. The smaller number in the figure means the layer is closer to the heat 

source. It can be seen that for the control sample, even the glass fibers are severely damaged, 

while no obvious damage can be observed from the glass fibers of the paper coated sample. 

This indicates the excellent flame retardant efficiency of the nanopaper. Furthermore, the 

color of the upper layers is much darker than that the lower layers for the paper coated 

sample, as shown in Figure 47. In contrast, the bottom layer of the control sample is the 

darkest. Even the bottom layer of the paper coated sample is darker than that the bottom layer 
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of the control sample. Therefore, there is much more char material collected by the upper 

layers of the glass fiber mats in the paper coated samples, which also explains why the paper 

coated sample has better flame retardancy. 

 

Figure 48 Char materials on the back surface of the hybrid nanopaper. 

 

Figure 49 Char materials attached to the glass fibers of the control sample. 

Figure 48 and Figure 49 show the SEM images of the char collected from paper 

coated sample and control sample, respectively. It can be seen that the char materials in the 
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back surface of the nanopaper are more compact than that the char materials of the control 

sample. Together with the relatively low permeability of the nanopaper, they can effectively 

reduce the rate of decomposition products (fuel) that feed the flame on the surface of the 

sample, thus enhancing the flame resistance of the composites.  

4.4.2. Flame retardancy mechanism 

 

(a) 

 
(b) 

Figure 50 Flame retardancy mechanism. 

Figure 50 is a sketch that shows the flame retardancy mechanism of the hybrid 

nanopaper coating. Under fire conditions, the polymer in the composites decomposes into 
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gases, which will evaporate. Due to the low permeability of surface coating, however, the 

gases are caught and aggregated on the upper layers of the sample as demonstrated by Figure 

47. The direct result of this is decreased mass loss, less fuel to support the fire propagation, 

and a lower HRR. As the combustion process continues, a thicker char layer forms that in 

turn serves as a thermal barrier to further protect the underlying structure. In contrast, since 

there is no coating on the surface of the control sample to prevent the mass flow, the 

decomposed products (or fuel) directly enter into the combustion zone, stimulating flame 

development, which in turn accelerates the pyrolysis of the intermediates attached to the glass 

fiber mats. Since the upper layer of the control sample is subjected to higher temperature and 

easier access to oxygen, the rate of pyrolysis is much higher for the intermediates in the upper 

layer in this scenario, hence less char is observed as evidence by Figure 47. Future more, due 

to the relatively high in-plane thermal conductivity and low through-thickness thermal 

conductivity of the coating layer, the nanopaper, as shown in Figure 50(a), should also serve 

as a heat barrier/sink to further protect the underlying structure. It should be noted that this 

advantage was not full revealed during the cone calorimeter tests in which the samples 

experienced 1-D heat transfer scenario. However, in reality, this mechanism should take place 

and alleviate the localized heat concentration. 

In summary, with the aid of the nanopaper, a char layer with low permeability is 

developed on the surface of composites at the very beginning of combustion process. The 

surface char serves as a mass barrier, inhibiting the mass loss of the matrix. This results in the 
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thickening of char layer that serves as a thermal barrier, preventing heat transfer into the 

underlying structure. 

4.4.3. Conclusions 

The fire response of glass fiber reinforced polyester composites with and without the 

3xGnP/1CNF/9APP nanopaper coating were thoroughly studied by cone calorimeter tests, 

using heat fluxes from 25kw/m2 to 100kw/m2. It was observed that at higher heat flux, the 

flame retardant effect of the nanopaper was better revealed, indicating its potential for the 

ablation application. When both samples were exposed to 100kW/m2 of heat flux, the 1st and 

2nd PHRR of the paper coated sample were more than 32% and 47% lower than the PHRR of 

the control sample, respectively. Furthermore, the middle and back temperature profiles of 

the samples during the cone calorimeter tests were recorded to gain deeper insight into the 

pyrolysis process and flame retardancy mechanism. It was found that the time for paper 

coated sample to reach the middle surface temperature of 400oC at 25kW/m2 heat flux was 

40% later than that of the control sample. Such difference became 190% at 100kW/m2 heat 

flux, and the final temperature within the paper coated sample, under this level of heat flux, 

was roughly 280oC lower than the control sample. The degradation rates in flexural moduli of 

the samples with coupon shape were determined using three-point bending test. The results 

also indicated a good fire retardant property of the nanopaper coating. For example, when a 

sample was exposed to 25kW/m2 heat flux for 240 seconds, the flexural modulus of the 

control sample almost was 0, whereas the paper coated sample still retained half of its 
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flexural modulus. Based on the above observations, a relationship between the fire behaviors, 

temperature evolutions, mass loss, and mechanical properties of the samples can be inferred. 

And a flame retardancy mechanism was developed for the nanopaper coated composites. 
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CHAPTER 5 

FINITE ELEMENT MODELING OF THERMAL RESPONSE AND 

POST-FIRE FLEXURAL DEGRADATION OF GLASS FIBER 

REINFORCED POLYESTER 

5.1. Introduction 

The degradation and decomposition of composites will lead to loss in mass and that 

leads, in turn, to loss in mechanical strength of the structure. Therefore, it is important to 

develop the capability to predict the mechanical properties of PMCs when they are subjected 

to high temperatures.  

In this study, a temperature dependent post-fire mechanical model was presented. 

Unlike the two layer model or three layer model, in which a bulk mechanical property value 

was assigned to each layer [115-121], the residual mechanical properties of the partial 

composites presented in this chapter, were modeled as temperature-dependent. First, the 

classic PMCs thermal degradation model with second kind boundary condition (constant heat 

flux) was derived and solved using finite element method (FEM) with weak form 

constructing by Galerkin Method. Then using the temperatures that were calculated at 

different depths and in different locations, a temperature-dependent post-fire residual 

modulus was assigned to each element within the FE model. Finally, the bulk residual 

modulus was obtained by assembling the modulus of each element. Both the predicted 

temperatures and normalized residual modulus were compared with experimental data, and a 

reasonable agreement was achieved. Furthermore, based on the model, a composites design 



121 

 

application was proposed.  

5.2. Thermal Degradation Model Derivation 

5.2.1. Energy equations 

The first law of thermodynamics indicates that the change in the total energy of the 

system equals the total energy entering the system minus the total energy leaving the system: 

[155] 

Qin-Qout+Eg=ΔEsys (5-1) 

The first two terms in the left hand side represent the net heat transfer and the third 

term represents the energy generated within the system. The right hand side term represents 

the energy change of the system. Taking the derivative of the above equation yields: 
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When Δx and Δt approach to zero, the above equation can also be written as: 
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Using Fourier’s law, equation (5-5) can be re-written as: 
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In the case of the degradation of PMCs, the density of the material is time-dependent, 

not a constant. By assuming the volume of the material doesn’t change, the rate of change of 
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internal energy on the right side of equation (5-6) should be: 
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where pc is the specific heat of the material. During degradation, part of the polymer 

becomes char, therefore pc is a function of temperature and time.  

The energy generation term on the left hand side of Equation (5-6) is composed by the 

convection of energy resulting from gas flow and mass flux from the decomposition of the 

polymer: 
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where 
•

gm is the mass flux of gas, gh  is the gas enthalpy, Q is the heat of decomposition 

(negative for the endothermic reactions). 

Assuming that there is no accumulation of the gas within the composites structure, 

due to the conservation of mass, the rate of gas production right at the degradation front can 

be expressed as: 
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Assuming that the enthalpy of the material and gas to be functions of temperature 

only: 
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where pgc is the specific heat of decomposed gas and ∞T  is the ambient temperature. 

From equation 5-6~5-10, the governing equation of the decomposition of PMCs can 

be rearranged as: 
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The decomposition rate of the polymer matrix can be expressed by the well-known 

Arrhenius empirical equation, namely: 
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where m, mv and me are, respectively, the mass of the current, virgin (initial), and end stage of 

the composites during thermal degradation process, A is the pre-exponential factor, Ea is the 

activation energy, R is the gas constant, n is the order of reaction. 

Since it is assumed that there is no volume change throughout the whole 

decomposition process, by dividing the mass with the volume of the material, equation (5-12) 

can be written as: 
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The non-linear partial differential equations (5-9), (5-11), and (5-12) must be solved 

simultaneously for
•

gm , T, and m, respectively. 

Defining the fraction of remaining virgin material in the solid matrix as: 
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Assume that only reinforced fiber left at the end stage of the degradation (also see 

Figure 51). The density, thermal conductivity, and specific heat of instantaneous stage 
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composites could be estimated by using the mixture rule: 

rfffv VV ρρρ )1( −+=  (5-15-a) 

prfpffpv cVcVc )1( −+=  (5-15-b) 

ev FF ϕϕϕ )1( −+=  (5-15-b) 

where the subscripts v, f, r, and e respectively represent virgin composites, fiber, resin, and 

the end stage. Letterϕ can be either ρ , k  or pc . 

 

Figure 51 Residues of the composites after cone calorimeter tests. 

In this study, a constant heat flux is applied to the surface of the composites. 

Therefore, the boundary condition for exposed surface is: 
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where )(xf  is a function related to the applied heat flux.  

For the material subjected to constant heat flux. Staggs suggested [129]: 
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where ε , 
″•

q , 1h , s , and sT  denote the emissivity of the exposed surface, applied heat 

flux, convection heat transfer coefficient at the exposed surface, Stefan-Boltzmann constant, 

and surface temperature, respectively. The values of the above parameters, except the surface 
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temperature, are assumed to be constant. 

At the cold (unexposed) surface, where the material is insulated, the boundary 

condition can be denoted as: 
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The initial conditions are: 

T=T0, ρ=ρ0, 0=
•

gm  , F=1 for lx ≤≤0  at  t=0 (5-19) 

5.2.2. Finite element implementation 

As previously mentioned, it is difficult to solve the above set of non-linear equation 

analytically or even semi-analytically. With the development of modern computational 

technologies, however, one can easily solve the problem by means FDM, FVM or FEM. In 

this study, the non-linear partial differential equations are solved by means of FEM. And the 

only remaining challenge is the construction of element matrix. There are many well 

established techniques to perform this task, including the direct method, variational 

(Rayleigh-Ritz) method, and weighted residual methods (collocation, subdomain, Galerkin, 

lease square, moment). The Galerkin Method is employed in this study. In the case of global 

coordinates (semi-analytical approach), the Galerkin method requires the construction of the 

trial functions that are required to satisfy all the boundary conditions. The difficulty in the 

procedure is obtaining the coefficients of these trial functions that ultimately compose the 

explicit expression of the temperature function. In the case of applying Galerkin Method in 

FE analysis, the trial functions are comprised of nodal temperatures and shape functions and 
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are derived in local coordinates. The advantage of this process is that the boundary condition 

is no longer a consideration. It only requires that the shape functions satisfy the geometric 

continuity, and ultimately, the temperatures at each node are found directly.  

Based on the boundary and initial conditions, the nature of heat conduction process, 

and the properties of the composites, the solution domain is modeled as a one-dimensional 

body of thickness l, being divided into n elements with the same thickness h. Each element 

has two nodes at both sides, as shown in Figure 52. 

 

Figure 52 Geometric discretization of the solution domain. 

Therefore, the linear trial function is: 
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where N is the shape function, which represents bar element with two nodes. 

From the governing equation (5-11), the residue of the problem could be directly 

expressed as: 
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Then the weak form of the residue expressed in the global coordinate is: 
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Using integration by parts, dx
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Invoking boundary condition of equation (5-19): 
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Keeping in mind that the objective is to reduce the weighted residual as close to zero 

as possible and substituting equation (20) into the weak form, finally one could obtain that: 
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or in a matrix form of 
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ρ is the capacitance matrix with the local form in element e 
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is the thermal load vector.  

Applying boundary condition at the first node (the subscripts of letter L in the 

following equations denote the node) is:  
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at the last node is: 
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at any other node is: 
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Therefore, within the first order differential equation (5-26), the unknown coefficients 

are ρ , pc , k ,
•

gm , and 
t∂

∂ρ
. As indicated by equation (5-15), the first three parameters are 
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functions of F. By manipulating equation (5-12) (5-13), and (5-14), one can derive the 

following expression: 
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Furthermore, the integration of equation (5-9) throughout with dx

l

x

∫ and the 

application of the boundary condition (5-19) yield: 
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Therefore, all the coefficients are eventually functions of F only, which initially has a 

value of 1. 

5.2.3. Treatment of the transient part 

By using the finite difference theory (Crank-Nicolson approximation), the matrix 

equation (5-26) has been re-written as: 
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where subscripts n and n+1 denote the known and unknown quantities, respectively. 

Therefore, if one can calculate the value of Fn+1, the unknown temperature Tn+1 in 

equation (5-38) can be solved using typical numerical iterations. 

And Crank-Nicolson approximation and equation (5-34) give: 
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which indicates that Fn+1 can be expressed as a function of Tn+1. 

Finally, given the initial conditions of T and F, equation (5-37) is solvable as it is only 

a function of Tn+1.  

5.3. Post-Fire Flexural Modulus Implementation  

The post-fire mechanical properties differ from the real time thermal mechanical 

properties of the PMCs structures. For the post-fire scenario, when the materials are cooled to 

ambient temperature, they tend to regain their mechanical properties. One may assume that 

the mechanical properties are unchanged if the temperature of the polymer is only higher than 

its glass transition temperature, but lower than its degradation temperature. However, if 

PMCs were simultaneously subjected to thermal and mechanical loads (the real-time case), 

the structure was more likely to fail. In this case, a certain reduction in mechanical properties 

occurs when the temperature is higher than the glass transition temperature of the polymer.  

Suppose the temperature range of the major mechanical degradation is from T1 to T2. 

For polyester resin, T1 is likely the same as its onset decomposition temperature, which from 

TGA analysis is about 500K. Therefore, in the following post-fire mechanical modeling, one 

could assume that the normalized modulus of the composites that experiences a temperature 

profile that below 500K have a value of 1, i.e. full recovery. However, when the temperature 

of the material is higher than the decomposition temperature of the polymer matrix, there will 

be irreversible damage even after the sample is cooled down to the ambient temperature. As 



131 

 

observed by Goodrich and Lattimer, the pore size (originated from debonding) between fibers 

gradually increased as the polymer matrix started to decompose [137]. Therefore, it is 

assumed that the bonding between reinforced glass and resin is destroyed long before the 

polymer is completely decomposed. T2 should be much lower than the final decomposition 

temperature of the polymer. When the temperature is higher than T2, however, it is assumed 

that there is no mechanical resistance left for the sample. 

Therefore, the remaining challenges are to determine the value of T2 and the 

temperature and time dependent normalized residual mechanical properties functions. The 

residual mechanical moduli in this study are modeled as linearly dependent on the 

temperature, i.e.:  
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where ),( txEn  represents the normalized residual mechanical properties. The coefficient 

α and the temperature 
2T  at which the composites have no mechanical resistance are 

determined by experiment. It should be note that in this model, sinceα is experimentally 

determined, the coefficient has already taken into account the effects of different loading 

conditions. That is whenα is determined under bending condition, En should be the flexural 

modulus. Therefore, the FE implementation of the temperature dependent normalized 

residual mechanical properties in the global coordinates is: 
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where i represents the position of the element. It should be noted, since the modulus of 

reinforced fiber is not affected by high temperatures and the mass loss is dominated by the 

decomposition of the resin matrix [137], the mechanical model which is derived based on the 

thermal degradation of the polymer matrix is only valid for the matrix-dominated properties 

such as flexural modulus. 

Finally, the FE computational procedure for the thermo-mechanical problem is shown 

in the following flow chart. 
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Figure 53 Computational algorithm of the FE model. 
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5.4. Verification and Discussion 

Due to the limited available thermo-physical data for the polyester-based composites 

in the literature, the material properties such as specific heat and thermal conductivity were 

assumed to be temperature-independent. Furthermore, as indicated by the residues collected 

after cone calorimeter test in this study (Figure 51), it is reasonable to assume that in the final 

stage of the degradation process, there was only glass fiber left. As a result, the parameters of 

the glass fiber reinforce polyester panel used in this study were summarized in Table 15. 

Table 15 Input parameters of the materials. 

Parameters (Definition) Value (Unit) [Ref.] 

A (Pre-exponential factor) 1000 (s-1) [TGA] 
cpf  (Specific heat of glass fiber) 760 (J.kg-1 .K-1) [125] 

cpr (Specific heat of polyester resin) 1600 (J.kg-1.K-1) [125] 
cpg (Specific heat of decomposed gas) 2386.5 (J.kg-1.K-1) [125] 

Ea  (Activation energy) 50000 (J.g-1.mole-1) [TGA] 
kf (Thermal conductivity of glass fiber) 1.04 (W.m-1.K-1) [125] 

kr (Thermal conductivity of polyester resin) 0.20 (W.m-1.K-1) [125] 
Q (Heat of decomposition) -234460 (J.kg-1) [125] 

Vf (Glass fiber volume fraction) 30% 
L (Thickness of the composites) 3.5 (mm) 

ρf (Density of glass fiber) 2694.7 (kg.m-3) 
ρr (Density of polyester resin) 1102.4 (kg.m-3) 

ρv (Density of virgin composites) 1580 (kg.m-3) 
n (Reaction order) 1[126] 

ε (Emissivity of the exposed surface) 0.9 [129] 
h1 (Convection heat transfer coefficient) 10 (W.m-2.K-1) [129] 

For the thermal conductivity of the virgin composites, Staggs suggested that for a 

heterogeneous medium with cylindrical glass fiber inclusions, which have a volume fraction 
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of Vf, in the direction normal to the fibers (heat conduction direction), the thermal 

conductivity is [156]: 
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For the residual materials which are composed by glass fibers and voids where 

polyester resin used to be, the thermal conductivity could be expressed as: 
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where T is approximately equal to 400K [127]. 

Arrhenius kinetic constants are readily determined by fitting the TGA curve using 

Equation (5-12). In this paper, the adopted fitting technique was proposed by Feih et al as 

they found that the accuracy and reliability of the method was to be superior to the graphical 

analysis tools that were normally used [112]. Assuming that the polymer decomposition is a 

first-order Arrhenius process, F as a function of temperature (K) can be expressed as: 
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where F(T) is the normalized mass fraction defined by Equation (5-14); Ff is the remaining 

mass of the polymer at the end of decomposition process, and is readily obtained from the 

experimental TGA data; T0 is the onset decomposition temperature; HR is the heating rate. 

The TGA instrument used in this study was TGA-Q500 manufactured by TA 

Instruments, USA. The experiment was conducted in nitrogen atmosphere at a flow rate of 40 

ml/min and a heating rate of 10oC/min. In general, the determination of Arrhenius constants 
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goes through the fitting of TGA curves that obtain from different heating rate and the set of 

best fitted data is selected. However, the study done by Lua et al showed that the fire 

response predictions show little sensitivity to the heating rates [128]. Therefore, the kinematic 

parameters obtained from the TGA test at a single heating rate can be used in the modeling.  

 

Figure 54 TGA data of the composites with curve fitting.  

As shown in Figure 54 and Table 15, by using Mathcad, the values for Ea and A from 

curve fitting are 50000J.g-1mol-1 and 1000s-1, respectively. In addition, for the 1-D FE model 

presented in this study, the solution domain in the thickness direction is divided into 10 

elements, each with the same length of 0.35mm. The time step was chosen to be 0.5s and the 

model was computed for 300s based on the exposure time shown in Table 14. 
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Figure 55 Temperature at different locations for different exposure times. 

T2 and α, shown in equation (5-40) are determined through an inverse solution 

technique. Experimentally, for the samples subjected to 35kW/m2 heat flux for 100s and 180s, 

the normalized post-fire flexural moduli respectively are 0.5 and 0. And the predicted 

temperatures at different depths of the samples with different exposure times are shown in 

Figure 55. As a result of Equation (5-40) and (5-41), the inversely determined values for T2 

and α are 573K and 1.674, respectively. Then these two values are used in the rest of the 

calculations. 
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Figure 56 3-D plot of the thermal degradation model with applied heat flux of 50kW/m2. 

Figure 56 shows the predicted temperature for those samples subjected to the 

50kW/m2 heat flux as a function of time and location. The 3-D plot indicates that the 

calculated data are in good agreement with the expected physical behavior, with higher 

temperature at the front surface and lower temperature at the back surface. The temperature 

gradually increases with time. And the zero slope for the data at the back surface, denoting 

the insulated boundary condition. Furthermore, the concave temperature surface in the 3-D 

plot at the middle stage (100s~200s) of degradation process indicates that endothermic 

decomposition reaction occurs. 
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(a)                             (b) 

 

(c)                             (d) 

Figure 57 Convergence study. (a) mass loss rate; (b) mass loss rate with different 
discretizations (75kW/m2); (c) back side temperature with different discretizations 

(75kW/m2); (d) remaining mass with different discretizations (75kW/m2). 

The convergence of the FE model presented in this study was studied and shown in 

Figure 57. As shown in Figure 57 (a), the mass loss rate gradually increases with the increase 

of applied heat flux, which physically makes sense. In addition, all of the predictions start 

with the value of zero and increase to a maximum before they drop back to the zero value, 



140 

 

indicating the convergence of the model. Furthermore, as shown from Figure 57 (b) to (d), 

the convergence of the model is confirmed by the result that the predictions are almost 

indistinguishable when the discretization level is changed. 

 

(a)                             (b) 

 

(c)                             (d) 

Figure 58 Comparison of experimentally measured temperatures with numerical predictions. 

Figure 58 shows the comparison of the back side temperature between the predicted 

results and experimentally measured data. Generally speaking, a reasonably agreement 
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between the prediction and experimental data is observed for the samples that are exposed to 

heat fluxes of 35kW/m2, 50kW/m2, 75kW/m2, and 100kW/m2. The agreement is especially 

good during the initial and final stages of exposure. However, the predicted temperature 

during the middle stage is lower than the experimental data. Excluding the errors arising from 

the input parameters such as the thermal conductivity and specific heat, a possible reason for 

this result is that the model does not take the flame temperature into account. As a result, 

during the middle of decomposition process where the flame should be well developed, the 

re-radiation energy of flame back to the surface of the sample could increase its temperature. 

During the initial and final stages of the decomposition process, the contribution of flame 

temperature is small, leading to better fits. Therefore, in order to further improve the accuracy 

of the temperature prediction, it is important to redefine the surface boundary condition. 

Another possible reason is that when embedding thermocouples by the RTM process, the 

wires might not be perfectly located at the surface of the cold side. One notable shortcoming 

is that their diameter is about 0.51mm while the total thickness of the sample is only about 

3.5 mm. In fact, the parameter such as the thickness would greatly affect the temperature 

distribution. This will be presented in the following discussion. Considering these factors, a 

higher cold side temperature might be observed. 
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(a)                             (b) 

 

(c)                             (d) 

Figure 59 Comparison of experimentally measured ratio of remaining mass with numerical 
predictions. 

The remaining weight ratios are shown in Figure 59. As expected, when the applied 

heat fluxes increased, the time at which the entire polymer matrix had been degraded (there is 

no change in mass residue) occurred earlier. Furthermore, in this model, no glass fiber 

degradation is taking into account. Therefore, all of the predicted results end up with 

approximately the same 52% of residue, which equals to the weight percentage of glass fiber 
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within the composites.  

 

Figure 60 Remaining glass fiber mats after the sample was exposed to 100kw/m2 heat flux 
(the surface layer is in the most left). 

However, in reality, as shown in Figure 60 the degradation of glass fiber occurs at 

100kw/m2 of applied heat flux. As a result, the experimental data of the remaining mass is 

lower than the calculated value at the end of degradation process. Other than that, the 

predicted remaining mass seems very accurate, with less than 5% of difference.  

Figure 61 shows the comparison of residual flexural moduli between the predicted 

value from the FE model, the two-layer model proposed by Mouritz et al (by assuming that 

when the remaining resin content of the composites is more than 80%, they will regain their 

original strength), and the experimental data. The results indicate that the temperature related 

FE model prediction is more accurate than that of the two-layer model. Therefore, the 

assumption of the residual moduli being linearly temperature-dependent is acceptable, since a 

very good agreement can be obtained. 
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(a)                             (b) 

 

(c)                             (d) 

Figure 61 Model verification by normalized residual flexural moduli. 

As both the experimental and predicted data suggest, the degradation rate in residual 

moduli increases when the samples are subjected to higher heat fluxes, and the exposure time 

of the samples after which they can fully regain their initial mechanical resistance becomes 

shorter. Furthermore, the good agreement of the bulk material flexural moduli implies that the 

predicted temperature cold side temperature profiles as shown in Figure 57 might be more 



145 

 

accurate than that the measured data. 

 

(a)                               (b) 

Figure 62 Material design. (a) model predictions of temperatures; (b) model predictions of 
residual moduli. 

Upon successful developing the thermo-mechanical model, future material design can 

be formulated. In this study, two parameters, namely, fiber volume fraction and sample 

thickness are modified in order to find an efficient design of PMCs structure, for the given 

fiber and resin. The results for varying the content of fiber and thickness are shown in Figure 

62 (a) and (b). As suggested by the figure, by increasing fiber volume fraction by 20% in the 

sample, the impact for the cold side temperature as well as the rate of mechanical resistance 

degradation is modest. However, the effect is more noticeable when the thickness of the 

sample is increased 20%, with both the cold side temperature and the mechanical resistance 

degradation rate being greatly reduced. From the model, it can be shown that improvement of 
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the latter case (increasing thickness) over the former (increasing the fiber count) being 

roughly doubled. In other words, it is more effective to enhance the durability of the 

composite by increasing its thickness than its fiber volume fraction. This might also partially 

explain the mechanism of the intumescent coating, namely, under the fire condition, the 

thickness of the composite materials is increased. 

5.5. Conclusions 

In this chapter, a FE model that couples with the temperature-dependent residual 

moduli to study the post-fire mechanical behavior of composites was successfully developed. 

The calculated temperature and residual mechanical moduli demonstrated reasonable 

agreement with the experimental data which was obtained from the samples exposing to 

various heat fluxes. However, it is suggested that if the temperature-dependent variables such 

as the thermal conductivity and specific heat are available, and if the front surface boundary 

condition is better defined, the accuracy of the model could be further improved. Furthermore, 

by manipulating some parameters of the model, an effective strategy was proposed for the 

design of PMCs structure with enhanced durability: it is more desirable to get a thicker 

composite than a higher fiber volume fraction composite.  
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CHAPTER 6 

FINITE DIFFERENCE MODELING OF THERMAL RESPONSE AND 

POST-FIRE FLEXURAL DEGRADATION OF GLASS FIBER 

REINFORCED POLYESTER COATED WITH CARBON NANOFIBER 

BASED NANOPAPERS 

6.1. Introduction 

Extensive research has been done to improve the flame resistance performance of 

polymer composites, either by means of mixing different types of fire retardants directly into 

the polymer matrix or by means of coating various kinds of protective layers onto the surface 

of PMCs [10][12][15][157]. Morgan et al summarized that regardless of different approaches, 

the ultimate goal was to reduce the heat release rate of the material by inhibiting the mass 

loss rate [153]. Consequently, it is expected that with the lowered mass loss rate during fire 

scenarios, the structural integrity of the material will be improved. As discussed in previous 

chapters that when glass fiber reinforced polyester composites were surface coated with a 

very thin layer of CNF-based nanopaper, the post-fire flexural moduli of the materials were 

improved. As shown in the Figure 33 (the self-weight sustaining experiment), the control 

sample cannot sustain its own weight after a heat (35kw/m2) exposure time of 200s, while the 

samples coated with the nanopapers can sustain their own weight even after 300s exposure. 

Further investigation in the residues of the cone calorimeter test of the composites 

samples with and without surface nanopaper coating (Figure 47), showed that the paper 

coated samples produced a greater amount of char than the control sample. The upper layer 



148 

 

(layer 1 in Figure 47) of the reinforced glass fiber mats showed damage and shrinkage when 

the control samples were exposed to 100kw/m2 heat flux. However, there was no clear 

damage observed for glass fiber mats of the nanopaper-coated samples. 

The objective of this study is to numerically analyze the impact of the nanopaper on 

the post-fire mechanical property of the polymer composite materials. There are many 

research papers that deal with the thermal response modeling of composites panel coated with 

protective coating while subjecting to heat, especially the thermo-chemical modeling of the 

composites panel protected by intumescent coating [130-136]. However, most of research 

was focused on the detailed modeling of the thermal response of the coating layer while the 

impact of porosity and permeability of the underlying composites was ignored, probably due 

to the limited available data. These parameters have recently estimated by Goodrich et al as 

they studied the microscopic changes within the composites structure during fire, which 

makes it possible to refine the thermal response modeling of the composites structure [137].  

In Chapter 5, a thermal response coupled with post-fire mechanical degradation model 

was developed for glass fiber reinforced polyester composites. The predicted results showed 

reasonable agreement with experimental data. In this study, a finite difference model was 

developed to predict the fire response of the composites coated with nanopaper. The model 

adopted the same post-fire mechanical model proposed in the previous study. However, 

unlike the previous model, the permeability and porosity of the composites were taken into 

account for the thermal degradation model in this study. 
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6.2. Thermal Degradation Model Derivation 

6.2.1. Energy equations 

 

Figure 63 Schematic of the energy and mass flow within a finite volume of the composites. 

Assuming that thermal equilibrium exists between the solid and gas phase and the 

decomposed gases are non-reactive, for the finite volume as shown in Figure 63, the energy 

equation will be: 
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where h, mg, m, 
•

gm , and S are enthalpy, mass of gases stored within the composite structure 

(kg), solid mass of composite structure (kg), mass of gases flow out of the composite 

structure (kg.m-2.s-1), and rate of heat generation per unit volume (J. m-3.s-1), respectively, 

with the subscript g referring to the gas phase. When Δx becomes 0, the above equation can 

be re-written as: 
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By assuming there is no volume change during thermal decomposition of the 
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composite structure and invoking Fourier’s law, equation (6-2) becomes: 
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where ϕ, ρ, k, and Q are the porosity of the composite structure (unit less), density (kg.m-3), 

thermal conductivity (J.m-1.K-1.s-1), and heat of decomposition (J.kg-1), respectively. Q is 

negative in this equation, due to the endothermic nature of polymer decomposition reaction. 

Additionally, the value of 
•

gm should be negative due to the definition of positive direction 

shown in Figure 64, while the value of 
•

∂
∂

gm
x

should be positive if the direction of gas flow 

was toward exposed surface. 

Furthermore, the conservation of mass gives: 
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The physical meaning of this equation is that the gases flow out of the composite 

structure plus the gases stored within the composite structure equal to the mass change of the 

solid material. Due to the decomposition of the polymer matrix, the value of 
t

g

∂

∂ρ
should be 

positive and the value of 
t∂

∂ρ
should be negative. 

By substituting equation (6-4) into equation (6-3) and assuming enthalpy is only a 

function of temperature, the energy equilibrium equation become: 

]))([(.])1([).( QTTcc
t

cm
x

T

x

T
k

x

T
k

x
cc

t

T
pgppgggppgg +−−

∂
∂

−
∂
∂

−
∂
∂

−+
∂
∂

∂
∂

=+
∂
∂

∞

• ρφφρρφ
 

(6-5) 

where cp is the specific heat (J.kg-1.K-1) and ∞T  is the ambient temperature (K). 

In addition, assume that the decomposed gases behave ideally and the flow of gases is 
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governed by Darcy’s law, one can get the following two equations: 
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where r, µ , P, R, and M are permeability (m2) of the material, viscosity of the gases 

(kg.s-1.m-1), pressure (Pa), gas constant (8.31J.mol-1.k-1), and molecular weight of the gases 

(kg.mol-1), respectively. 

Furthermore, the decomposition reaction of the polymer matrix is modeled by the 

Arrhenius empirical equation, namely: 
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where m, mv and me are, respectively, the mass of the current, virgin (initial) and end state of 

the composites during thermal degradation process, A is the pre-exponential factor(s-1), Ea is 

the activation energy (kJ.kg-1.mol-1),  and n is the order of reaction. 

As it is assumed that there is no volume change during the entirety of the 

decomposition process, dividing the mass with the volume of the material, equation (6-7) can 

be written as: 
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Since the reinforced glass fibers are thermally more stable than the other materials, 

one could assume that there is only glass fibers left at the end of the decomposition process. 

Therefore, the fraction of virgin material remaining in the solid matrix can be defined as: 
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Assume the density, thermal conductivity, and specific heat of current stage 

composites could be approximately calculated by using the mixture rule: 

rfffv VV ρρρ )1( −+=
 (6-10-a) 

prfpffpv cVcVc )1( −+=  (6-10-b) 

ev FF ϕϕϕ )1( −+=  (6-10-c) 

where the subscripts v, f, r, and e respectively represent virgin composites, fiber, resin, and 

the end stage. Letter φ stands for the material parameters that are evolving during the 

decomposition process and can be either ϕ, k, r, or cp. 

The non-linear partial differential equation set (6-4), (6-5), (6-6) and (6-8) must be 

solved simultaneously for ρg, T, 
•

gm and ρ, respectively. Similar thermal response models 

have been solve by Henderson, Gibson, Looyeh, Krysl, Lattimer, Lua, and Summers using 

finite difference method, finite volume method, and finite element method. But these 

solutions neglected the effect of the porosity and permeability of the composites structure and 

the impact of gas storage, [122-128][158]. In this study, due to the complexity of the 

non-linear equation system, the straightforward finite difference method was used to 

discretize the one dimensional geometry and the time zone. By incorporating equation set 

(6-10), the nonlinear system is ultimately expressed as functions of ρg, T, 
•

gm and ρ.  
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6.2.2. Post-fire flexural degradation model 

As long as the temperatures of the sample at different locations and in different times 

are calculated, the post-fire mechanical properties can be determined based on the 

temperature dependent model proposed in the previous chapter:  









≤
<≤−

<≤
=

TT

TTTtxTT

TT

tTEn

2

212

1

0

)),((

01

),( α  (6-11) 

where En(T, t) represents the normalized residual mechanical properties. For polyester resin, 

T1 is likely the same as its onset decomposition temperature which is about 513K. The 

coefficient α and the temperature T2 at which the composites have no mechanical resistance 

are determined experimentally. 

Finally, with proper initial and boundary conditions, the whole set of non-linear 

equations formulated by finite difference method are solved directly by using Newton 

iteration and Gaussian elimination with partial pivoting. The algorithm of the MATLAB code 

is shown in the following flow chart. 
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Figure 64 Computational algorithm of the FD model. 
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6.3. Input Parameters, Initial Conditions, and Boundary Conditions 

The accuracy of the model predictions not only depends on the mathematical 

equations mentioned above, but also on the accuracy of the input parameters. Unfortunately, 

the material properties such as specific heat and thermal conductivity were assumed to be 

temperature-independent due to the limited thermo-physical parameters available for the 

glass fiber reinforced polyester composites in literature. The parameters including specific 

heat, thermal conductivity, heat of decomposition, and reaction order of the thermal 

decomposition process were obtained from the research papers of Looyeh et al [124] and 

Krysl et al [126]. And the viscosity, molecular weight, and thermal conductivity of the gas of 

H41N phenolic were used to approximately simulate the decomposed gas from polyester 

[159]. The porosity and gas permeability of the virgin and char states of laminate were 

obtained from the recent study presented by Goodrich and Lattimer [137]. Arrhenius kinetic 

constants were readily determined by fitting the TGA curve and had already been calculated 

in previous chapter. The coefficient α and the temperature T2 at which the composites have 

zero mechanical resistance have also been discussed and determined. The input material 

properties used in this study were summarized in Table 16. 
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Table 16 Input parameters of the materials. 

Parameters (Definition) Value (Unit) [Ref.] 

A (Pre-exponential factor) 1000 (s-1) [Chapter 5] 
cpf  (Specific heat of glass fiber) 760 (J.kg-1 .K-1) [125] 

cpr (Specific heat of polyester resin) 1600 (J.kg-1.K-1) [125] 
cpg (Specific heat of decomposed gas) 2386.5 (J.kg-1.K-1) [125] 

Ea  (Activation energy) 50000 (J.g-1.mole-1) [Chapter 5] 
kf (Thermal conductivity of glass fiber) 1.04 (J.m-1.K-1.s-1) [125] 

kr (Thermal conductivity of polyester resin) 0.20 (J.m-1.K-1.s-1) [125] 
kg (Thermal conductivity of gas) 0.03 (J.m-1.K-1.s-1) [159] 

Q (Heat of decomposition) -234460 (J.kg-1) [125] 
Vf (Glass fiber volume fraction) 30% 
L (Thickness of the composites) 3.5 (mm) 

ρf (Density of glass fiber) 2694.7 (kg.m-3) 
ρr (Density of polyester resin) 1102.4 (kg.m-3) 

ρv (Density of virgin composites) 1580 (kg.m-3) 
n (Reaction order) 1[125] 

ϕv (Porosity of the virgin laminate) 0.1[137] 
ϕch (Porosity of the char laminate) 0.68[137] 

µ (viscosity of the gas) 1.48x10-5(kg.s-1.m-1)[159] 
rv (Gas permeability of the virgin laminate) 1x10-17(m2)[137] 
rch (Gas permeability of the char laminate) 1x10-10(m2)[137] 

M (molecular weight of the gas) 18.35 (g.gmole-1) [159] 
T2 (up limit of the temperature) 573 K [Chapter 5] 

α(post-fire flexural moduli coefficient) 1.674 [Chapter 5] 

As specified in the sample preparation section, the initial conditions for the four sets 

of unknowns discussed in the model construction section were set to be: 

ρg=0, T=T0, ṁg=0, ρ=ρ0 for 0≤x≤l at t=0 (6-12) 

where T0 and ρ0 were equal to the room temperature and virgin density of the composites, 

respectively.  

The surface of the sample was composed of CNF, xGnP, APP, and polyester resin, 
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therefore the reaction within the surface layer was very complicated. And the coating in this 

study was modeled as a regulator, imposing the surface temperature which was measured by 

the thermocouple beneath the nanopaper coating. Therefore, the boundary conditions for the 

exposed surface were: 

Ts=T(t); Ps=Patm=10
5
Pa for x=0 when t>0 (6-13) 

where Patm was the pressure of atmosphere. 

The measured temperature profiles of the surface and their 4th order polynomial 

( 4
5

3
4

2
321)( tAtAtAtAAtT ++++= ) curve fitting is shown in Figure 65. The coefficients of 

the fitting equation are summarized in Table 17. 
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Figure 65 Fourth Order polynomial fitting of the surface boundary conditions. 
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Table 17 Curve fitting parameters of the surface boundary conditions. 

 A1 A2 A3 A4 A5 

35 kw/m2 30.42 8.494 -0.054 1.628e-4 -1.82e-7 
50 kw/m2 86.9 11.7778 -0.09944 3.873e-4 -5.49e-7 
100 kw/m2 185.436 13.31945 -0.148 7.592e-4 -1.41e-6 

The boundary conditions for the cold (unexposed) surface, which was thermally and 

structurally insulated, were: 

0)1( =
∂
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−+
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∂

x

T
k

x

T
kg φφ , 0=

•

gm  for x =l when t>0 (6-14) 

In addition, for the 1-D finite difference model presented in this study, the solution 

domain in the thickness direction was divided into 20 elements, each with the same length of 

0.175mm. The time step was chosen to be 0.5 seconds and the model was computed until the 

remaining mass becomes stable, namely, the decomposition process was completed (as the 

model was valid only when there was decomposition reaction). 
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6.4. Verification and Discussion 

 

(a)                               (b) 

Figure 66 Convergence study of the FD model. (a) cold side temperature prediction; (b) 
remaining mass prediction. 

The convergence study of the FD model presented in this study is shown in Figure 66. 

As indicated by the figure, the convergence of the model is achieved when the number of 

nodes increases from 10 nodes to 20 nodes. The predicted results between 20 and 30 nodes 

model are almost indistinguishable from each other. However, it is interesting to note that the 

model is relatively insensitive to time, as the predicted results between the 0.5 seconds 10 

nodes and 1 second 10 nodes are almost identical.  

Figure 67 (a) shows the predicted temperature for those nanopaper coated samples 

subjected to the 100kw/m2 heat flux as a function of time and locations. The 3-D plot 

indicates that the calculated data are in good agreement with the expected physical behavior. 

Higher temperatures were at the front surface and lower temperatures were at the back 
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surface. The temperature gradually increases with time. The zero slope, as shown in Figure 

67 (b), for the data at the back surface, illustrating the insulated boundary condition. The 

evolution of porosity of the sample subjected to various heat fluxes is shown in Figure 67 (c). 

As indicated by the figure, porosity increases with the increase of exposure time and the 

increase rate is higher at higher heat fluxes. 

 

(a)                               (b) 

 

(c) 

Figure 67 Model results. (a) 3-D Temperature profile as a function of thickness and exposure 
time; (b) temperature evolution as a function of thickness; (c) porosity evolution as a function 

of exposure time. 
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(a)                               (b) 

 

(c) 

Figure 68 Comparison of experimentally measured ratio of remaining mass with numerical 
predictions. 

The remaining weight ratios are shown in Figure 68. As expected, when the applied 

heat flux increases, the time where the entire polymer matrix been degraded (there is no 

change in mass residue) occurs earlier (roughly 190s for 100kw/m2, 220s for 50kw/m2, and 

250s for 35kw/m2). Furthermore, since no glass fiber damage is taken into account in this 
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model, all of the predicted results show approximately the same 52% of residue, which equals 

the weight percentage of glass fiber within the composites. The comparison of the model 

predictions, as well as the experimental data between nanopaper coated and uncoated samples 

shown in Figure 68 (a), suggests that the coating has effectively slowed down the rate of 

mass loss. This is very important to the structural integrity of the composites, with a lower 

mass loss rate meaning a smaller amount of fuel supply to the flame. This leads to the lower 

rate of structural temperature increase, and thus better structural integrity of the composites. 

For the case of the composite samples without nanopaper protection, the experimental 

remaining mass data is lower than the calculated value at the end of degradation process due 

to the possible damage of upper layer glass fiber mats (Figure 47.), where the temperature 

could reach upwards of 950oC, much higher than the softening temperature (about 830oC) of 

the glass fiber. However, this phenomenon does not occur for the nanopaper coated samples, 

indicating the efficiency of the nanopaper protection. 
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(a)                               (b) 

 

(c) 

Figure 69 Comparison of experimentally measured temperature with numerical predictions. 

As the model is valid only for the decomposition process of the composites, the 

calculation of temperature stops when the remaining mass does not change, namely, no more 

degradation is taking place. Figure 69 shows the comparison of temperature between the 

predicted results and experimentally measured back side temperature data. As shown in 
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Figure 69 (a), nanopaper coated sample exhibited lower rate of mass loss (thus less fuel 

supply to the flame) than that of the control sample, both the experimental data and model 

prediction show that the cold side temperature of the nanopaper coated samples is higher than 

that the control sample. However, all the predicted results showed lower temperature than the 

experimental data. The errors arising from the input material parameters aside, another 

possible reason associated with the imbedding of the thermocouples as discussed in the last 

chapter. Considering these factors, a higher cold side temperature might be recorded. 

Nevertheless, the behavior of the cold side temperature predicted by the model agrees well 

with the experimental data. Initial fast increase in temperature when the thermal response is 

dominated by heat conduction, followed by slow increase in temperature when dramatic 

endothermic reaction take place, and then followed by fast increase in temperature when most 

of the polymer matrix has been decomposed and the thermal response is again dominated by 

heat conduction. Considering the complicated nature of the decomposition process, which 

includes not only the decomposition of the polymer matrix, but also the chemical reaction 

within the coating layer that is composed by APP, xGnP, CNF, and polyester, the overall 

results of the model prediction are reasonable. However, the accuracy of the model can be 

further improved by providing more accurate input parameters and with refined coating layer 

model.  
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(a)                               (b) 

 

(c) 

Figure 70 Comparison of experimentally measured flexural moduli with numerical 
predictions. 

Figure 70 shows the comparison of residual flexural moduli between the value 

predicted by the model and experimental data. As discussed previously that the nanopaper 

coated samples experienced slower rate of mass loss than that the control samples, therefore, 

as shown in Figure 70 (a), the former samples also have higher post-fire flexural moduli than 

the latter ones. The results indicate that the temperature dependent numerical model 
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prediction has achieved acceptable accuracy for the samples subjected to 35 and 50kw/m2 of 

heat flux, while the prediction for the 100kw/m2 case is not as accurate as the former two 

cases. The possible reason may be attributed to the fact that parameters T2 and α were 

inversely derived in the case of 35kw/m2, even though the parameters worked well as heat 

flux independent in the model discussed in Chapter 5, where no nanopaper was introduced, 

they are not accurate enough to describe the post-fire flexural moduli of the composites 

samples coated with nanopapers and subjected to 100kw/m2, suggesting the parameters are 

not only temperature-dependent, but also temperature increase rate dependent. Therefore, the 

accuracy of the post-fire mechanical model probably could be improved by including the 

influence of temperature increase rate. 

 

Figure 71 Model results of solid phase density.  

Figure 71 shows the evolution of the solid phase density of the composite material 

subjected to heat. As expected, the density gradually decreases as the exposure time increases 
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and the upper layers of the sample first reach a stable value as the polymer matrix has been 

completely decomposed, leaving behind only the more thermally stable reinforced glass fiber. 

 

Figure 72 Model results of mass flux rate.  

Figure 72 depicts the mass flux rate through the material. The model results clearly 

indicate that the decomposed gases flow toward the heat exposed surface and the unexposed 

bottom surface experiences no gas flow because the surface is insulated. In addition, the 

figure also indicates that the value of mass flow gradually increases to a peak and then drops 

back. This is the expected behavior since the decomposition reaction of the polymer matrix 

will become more dramatic as the reaction proceed and the matrix will eventually be 

decomposed completely, resulting the decrease of the reaction rate. Furthermore, compared to 

the solid state density, the value of mass flow is relatively small, indicating its impact on the 

thermal response of the material should be limited. 
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Figure 73 Impact of the input parameters on the residual moduli predictions.  

In order to verify the above statement, a parametric study was carried out. As 

suggested by equation (6-6), the mass flux rate is determined by the permeability of the 

material, viscosity of the decomposed gas, and the molecular weight of the decomposed gas. 

As shown in Figure 73, when all of these parameters are increased by 20% separately, the 

difference in the predicted residual moduli with the baseline results is very small. However, 

the impact of porosity on the residual moduli is more profound than that of the former 

parameters. The porosity of the material not only influences the mass flux rate (as suggested 

by equation 6-4), but also directly governs the energy equation (equation 6-3). As a result, 

when the porosity is increased by 20%, the residual moduli also have clear increment. This 

result agrees with the expected physical behavior, since the increase in porosity will decrease 

the thermal conductivity of the structure, and the temperature increase rate within the 

structure will be reduced, leading to the improved structure integrity. 
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6.5. Conclusions 

A thermal response FD model of the composites coated with the nanopaper subjecting 

heat flux was developed. This model has taken the permeability and porosity of the 

composites into account. Additionally, the thermal response model was coupled with the 

temperature-dependent residual modulus. In general, the results predicted by the model 

showed reasonable agreement with the experimental data and the expected physical behaviors. 

It was suggested that the nanopaper coating considered as the regulator to impose the surface 

boundary condition had successfully reduced the mass loss of the material in fire scenario. 

Specifically, the reduction in mass loss has led to the decrease in cold side temperature, 

resulting in an improved post-fire mechanical property of the composites structure. In 

addition, the parametric study of the model suggests that the porosity of the material has 

profound influence in the residual moduli of the composites, thus also in the thermal response, 

and therefore has to be taken into account. Nevertheless, the accuracy of the model can be 

further improved if more precise material parameters were provided and if the diameter of the 

thermal couples could be neglected when compared to the thickness of the composites 

samples. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions 

This dissertation presents the experimental and computational study of PMCs subject 

to heat flux. The contributions of this work can be summarized as: 

1. Various types of nanopaper have been developed and coated onto the PMCs, 

which can improve the fire retardant performance of PMCs up to 100%. The 

flammability results show that CNF/xGnP/APP hybrid nanopaper revealed better 

performance under higher level of heat flux, indicating its potential for the 

ablation applications. The fire retardant mechanism, namely, the hybrid nanopaper, 

which successfully inhibits the diffusion of decomposed gases and the heat 

transfer process, has been studied. 

2. The FE and FD models have been developed and have the capability of defining 

the relative impact of parameters (e.g. thermal decomposition of polymer, flow of 

gas, and porosity and permeability of the composite structure) on the 

thermo-mechanical degradation of materials. Compared to the existing post-fire 

mechanical models, the accuracy of the predictions by the temperature dependent 

post-fire mechanical models in this work has been improved by more than 100%. 

From the point of view of material design, the models indicate that the thickness 

and porosity of the composite have a profound impact on its thermo-mechanical 



171 

 

response. 

7.2. Fire Retardant Hybrid Nanopaper Design and Optimization 

7.2.1. Improving the expansion rate of hybrid nanopaper 

The assumption presented in this study is that if one could manage to create a 

“pre-existing char layer” (which would otherwise form slowly during the combustion process 

on the surface of the composites) that has proper permeability and thermal properties to retard 

polymer mass loss and heat conduction under fire conditions, the goal of flame retardancy 

could possibly be accomplished. A designated “pre-existing char layer”, namely, the carbon 

nanofiber-based hybrid paper was designed. As the name might imply, the major element of 

the nanopaper was CNFs. They could structurally support the nanopaper, therefore making it 

easier to handle. Simultaneously, the CNFs were expected to stimulate the pyrolysis of flame 

retardants, spurring the formation of char due to their high thermal conductivity and heat 

absorption. In addition, the CNFs themselves were thermally stable materials, which indeed 

made the paper behave as a “pre-existing char layer”. Ammonium polyphosphate (APP), a 

traditional intumescent flame retardant, had been incorporate into the nanopaper. Ideally, the 

APP particles (the gas source as described in Chapter 2) should expand when subjected to 

heat, which should thicken the nanopaper, resulting in a reduction in through-thickness 

thermal conductivity, thereby enhancing the thermal shielding effects of the char layer. 

Furthermore, APP particles (also the carbon and acid source) are believed to produce and 

promote char formation when exposed to heat. Unfortunately, the type of APP used in this 
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study tends to be hydrophilic. It was found that the APP powders ran the risk of decomposing 

into smaller particles during sonication, potentially preventing their inclusion in the 

nanopaper during filtration. As a result, instead of directly mixing them with CNFs in the 

sonication process, they were mixed into the polymer matrix using a mechanical shear mixer, 

and then the paste was brushed onto the back surface of the dry paper. Even though the 

weight ratio of the paste for APP and resin was carefully controlled (in order to balance the 

viscosity of the paste and the amount of resin being used) and a 250psi pressure was used to 

carry out the RTM process, the amount and dispersion of APP into the nanopaper must not 

have reached the desirable level, which resulted in deteriorated flame retardant efficiency. In 

fact, by observing the cone calorimeter tests, it was found that the expansion ratio of the 

nanopaper under heat condition was limited. Therefore, in order to maximize the contribution 

of APP in the fire retardant system, the direct mixing of APP, CNFs, and other nanoparticles 

when fabricating hybrid nanopaper is probably a better approach and a hydrophobic type of 

APP is highly desirable in this case. In fact, Weil had indicated that there were many 

variations on APP, including low molecular weight, water-soluble and high molecular weight, 

water-insoluble versions. The former version was used primarily for non-durable cellulosic 

flame-retardant textile finishes. The latter version, sometimes called Phase II APP (there is a 

Phase I APP which is water-insoluble but relatively hydrolysable and is used in coatings 

where water resistance is not needed), was preferred for use in coatings. And this type of APP 

should be used in the hybrid nanopaper system in future research [101]. 
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7.2.2. Optimizing the heat transfer property of hybrid nanopaper 

Within the nanopaper, the planar-structured particles-xGnP were also introduced, 

aimed at lowering its permeability and convoluting the path for the decomposed polymer 

(fuel), which inhibited the mass loss from the polymer degradation. The inclusion of xGnP 

particles was also to take advantage of their anisotropic thermal conductivity (K∥=3000W/m, 

K⊥=6W/m), so it was expected that the heat could be easily dissipated transversely during the 

heat transfer process in fire, with less heat penetrating through the coating. It was clear that 

this expectation was based on the assumption that the xGnP particles should be laid in a 

parallel position within the nanopaper. Unfortunately, due to limited resources, this 

assumption has not been confirmed. Therefore, in future research, the structure of the 

nanopaper should be characterized more carefully, particularly the lay-up details of the xGnP 

particles. However, if the morphology examination had failed to provide the evidence for the 

assumption, it would be desirable to design and carry out necessary experiments to align the 

xGnPs and, if possible, CNFs. The outcome of the alignment should maximize the 

anisotropic thermal conductivity of the nanopaper. There have been numerous studies trying 

to align the CNTs, which might inspire the alignment of xGnPs and CNFs: 

(a) Ex situ alignment 

The term “ex situ” refers to the alignment of CNTs that has already been achieved 

before fabricating CNT/polymer nanocomposites. This method is adopted by the in situ 

polymerization process, during which, the placements of CNTs will not be disturbed. 
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Therefore, the challenge is aligning the CNTs beforehand. One can obtain aligned CNTs by 

filtration process, during which, the CNTs are first dispersed within solutions such as water, 

ethanol, and acetone. Then, they are aligned by high pressure filtration through a selected 

medium [160-161]. Another method is by using the so called plasma-enhanced chemical 

vapor deposition process. In this process, the CNTs are synthesized in an aligned direction 

[162-163]. One can also align CNTs by manipulating the template used in the chemical vapor 

deposition (CVD) process. In many cases, porous substrates are required and CNTs are 

grown within the pores [164-165]. Nevertheless, Yanagi et al reported self-oriented short 

SWCNTs were deposited on highly oriented pyrolytic graphite (HOPG) that served as a 

template [166]. 

(b) Induced alignment 

There are many ways to induce the alignment of CNTs. One of which is align CNTs in 

a force field such as a field of shear force. Ajayan et al developed a simple method to align 

CNTs through flow-induced anisotropy (the nature of rheology in composite media). 

However, their approach is only suitable for fabricating thin film because the alignment effect 

becomes less pronounced with increasing the thickness of composite slices [167]. Vigolo et al 

were able to fabricate meter-long ribbons by injecting low viscous SWCNT solution into a 

high viscous PVA solution using a syringe [168]. Because of the difference in viscosity, shear 

force was induced and SWCNTs were rapidly stacked together as they were injected out from 

the syringe needle. Other processes for shear force induced alignment can be achieved 
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through stretching or extrusion [169]. 

Another approach to induce the alignment of CNTs can be achieved by a magnetic 

field. The degree of the alignment can be customized by controlling the intensity of the 

magnetic field. Kimura et al were the first to utilize a high magnetic field to prepare 

anisotropic CNT/polymer nanocomposites [169]. In their research, a constant magnetic field 

of 10T was applied to MWCNTs/unsaturated polyester solution. Then the solution was 

polymerized under the magnetic field such that the aligned MWCNTs were freezed within the 

polyester matrix. Similar to the principal of the magnetic field induced alignment, CNTs can 

also be aligned by electrospinning. In this method, there is a high direct current voltage been 

generated between a negatively charged CNT/polymer fluid and a positive metallic fiber 

collector. The CNTs are, initially, randomly oriented. Because of the “sink-like” flow that 

been generated in a wedge-like electrospun jet, the CNTs are gradually aligned along the 

streamlines [170]. 

Besides the force induced alignment, CNTs can also be aligned by the geometric 

constraints (created by a liquid crystalline phase). Due to the unique properties of the liquid 

crystals, their geometries can be easily modified by the force, magnetic and electric field. 

This principal was adopted by Lynch et al. They aligned MWCNTs by using a liquid crystal 

matrix that had been oriented in an electric field [171]. 

In addition to that, the in plane and through thickness thermal conductivity of the 

nanopaper should be determined. This is necessary to confirm whether the thermal 
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conductivity anisotropy of the nanopaper is so remarkable that the in plane heat dissipation 

has a major contribution to the flame retardancy. It is also recommended to carry out medium 

scale fire response tests, where the composites should be exposed to localized heat, and the 

ignition time should be recorded. If the ignition time of the composites coated with the 

nanopaper was delayed compared to the control samples, then the in-plane heat dissipation of 

the coating was demonstrated. 

7.3. Thermo-mechanical Degradation Model Improvement 

7.3.1. Improving the accuracy of the input material parameters 

The thermo-mechanical degradation model was numerically solved with FEM in 

Chapter 5 and FDM in Chapter 6. Compared to the model in Chapter 5, where no structural 

properties of the composites were taken into account, the model was improved in Chapter 6. 

However, there are still many aspects need to be refined. The accuracy of the model 

predictions not only depends on the mathematical equations, but also the accuracy of the 

input parameters. Unfortunately, due to limited thermo-physical parameters available for the 

glass fiber reinforced polyester composites in open literature, the material properties such as 

the specific heat and thermal conductivity were assumed to be temperature-independent. The 

parameters of the composites during the degradation process were calculated by the rule of 

mixture. In the model presented in Chapter 6, the viscosity, molecular weight, and thermal 

conductivity of the gas of H41N phenolic were used to approximately model the decomposed 

gas from polyester. All these, more or less, compromise the accuracy of the model predictions. 
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Therefore, many refined work could be done in terms of estimating the material parameters. 

For example, for the E-glass vinyl ester laminates, Lua et al had improved the Henderson’s 

model by introducing the temperature and mass dependent material parameters [128]. And 

the morphology, porosity, and gas permeability of the composite laminates during the thermal 

degradation process were carefully analyzed by Goodrich and Lattimer [137]. The similar 

work could be done to estimate the material parameters for the 30vol% E-glass fiber 

reinforced polyester composites used in this dissertation.  

For the prediction of the flexural modulus, the temperature dependent model has 

proved to be superior to that of the two-layer model as discussed in Chapter 5. It was found 

that the parameters T2 and α may also be temperature increment rate dependent. Therefore, 

even though the parameters worked well as heat-flux-independent in the model discussed in 

Chapter 5, where no nanopapers were introduced, they were not accurate enough to describe 

the post-fire flexural moduli of the composites samples coated with nanopapers and were 

exposed to 100kw/m2 of heat flux. As suggested in Chapter 6, the accuracy of the post-fire 

mechanical model could be improved by including the influence of the temperature increase 

rate. 

Besides the material parameters, the reliability of measured results to verify the model 

prediction in this dissertation could also be improved in future study. As noted previously, for 

the type of the thermocouples used in this study, one notable shortcoming is that their 

diameters are about 0.51mm, while the total thickness of a nanocomposites sample is only 
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about 3.5mm. Considering these factors, a higher cold side temperature might be recorded. In 

fact, numerical study in Chapter 5 showed that the thickness would greatly affect the 

temperature distribution. A better way to conduct this experiment in future is using thicker 

composites panels or thermocouples with smaller diameter, such that the impact of the 

thermocouple’s diameter in the temperature measurement could be neglected. 

7.3.2. Refining the thermal response model 

The thermal degradation model of PMCs coated with nanopaper presented in Chapter 

6 treated the nanopaper coating as a regulator to impose a temperature boundary condition. 

And the temperature was measured by thermocouples located beneath the nanopaper. 

However, by doing so, the thermal responses and interactions of the nanoparticles within the 

coating layer was neglected. This information could be important for the coating design. 

Therefore, the detailed model should be developed to simulate the thermal response of the 

coating layer. While there have been numerous research papers that deal with the thermal 

response modeling of a composites panel coated with an intumescent coating [130-136], the 

modeling of the nanopaper that composed by APPs, CNFs, xGnPs, and polyester resin should 

be different and could be challenging. However, those studies could provide useful guidelines. 

If allowable, a molecular dynamic simulation package could be very helpful. 
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