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ABSTRACT 

Ultra High Temperature Ceramic (UHTC) ZrB2- 10, 20, 30wt%SiC composites are of 

high interest for use in hypersonic air-breathing vehicles. In this work, ZrB2- 10, 20, 30wt%SiC 

UHTC composites were produced by the Spark Plasma Sintering (SPS) technique. After 

sintering, almost dense ceramics with ~ 5-8% porosity were produced. Their mechanical 

properties, such as Young’s, shear, and bulk moduli, along with Poisson’s ratio, 4-point bending 

strength, and single edge V-notched beam (SEVNB) fracture toughness were measured. In 

addition, in-situ bending experiments under a Raman microscope were performed to determine 

the piezo-spectroscopic coefficients of SiC Raman active peaks for calculation of thermal 

residual stresses. The results show that these materials are possible candidates for hypersonic air-

breathing vehicles due to their high Young’s modulus, ability to withstand high temperatures, 

and relatively low densities.  
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CHAPTER 1: INTRODUCTION 

 From the beginning of time, mankind has sought ways to fly. In 1902, the Wright 

brothers made the dream of powered flight possible, allowing man to fly for extended periods of 

time. As the years grew on, advances in airplanes came about with the improvements of the 

understanding of aerodynamics. The development of planes had a great impact in war, especially 

during World War I, where the first dog fights occurred. From this war, both sides saw how 

important of a contribution an airplane would be to war; this caused the airplane to grow in 

design and development. With World War II (WWII), airplanes had a major role in combat. Not 

only did WWII give rise to an advent of new airplanes, it also led to the development of the new 

turbojet engine used in many military aircrafts to this day. After the wars were over, airplanes 

started to be used as a means of travel around the world. Airplanes had much shorter travel times 

compared to traveling by ship. When the Cold War set in, there were many secret government 

projects intended to develop the fastest and most technologically advanced airplanes in the 

world. Chuck Yeager broke the sound barrier using the Bell X-1 rocket, thus bringing man into 

the age of flying faster than the speed of sound. Chuck later broke this record by flying at a speed 

of Mach 2.44, or 2.44 times faster than the speed of sound.  The “Space Race” during the Cold 

War brought about even more technological advances that gave way to a new era of rockets and 

airplanes.  

 With this research and development to make airplanes more efficient and fly faster than 

ever, we are constantly searching for the technology of the future, especially in hypersonic 

missiles, and re-entry aerial vehicles. This is creating high demand for more research and better 

materials. We have already been able to achieve sustained supersonic flight and short flights at 
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hypersonic speed, speeds that are greater than 5 times the speed of sound or Mach >5.  At sea 

level, the speed of sound is around 342 m/s. So Mach >5 at sea level would be speeds higher 

than 1710 m/s.  However, we have not been able to sustain flight at a hypersonic range for long 

periods of time, such as a couple of hours. This is mainly due to the fact that materials used 

today are not able to withstand the extreme environment of hypersonic flight for extended 

periods of time. In this hypersonic flight regime, temperatures can exceed 2600°𝐶. At these 

temperatures, most materials melt or greatly lose their mechanical properties, which could cause 

catastrophic failure of the component and ultimately the aerial vehicle. High temperatures are not 

the only obstacles in hypersonic flight; there are also extreme aerodynamic loads, including 

separated strong shock waves, making it difficult to sustain the flight at speeds greater than 1710 

m/s. With the combination of the high temperature and high aerodynamic loading, very few 

materials would be able to withstand these conditions. In addition, hypersonic flight is an 

aggressive oxidizing environment, which further increases the difficulty of finding proper 

materials to withstand this extreme environment. The reason for the high oxidation is due to 

Oxygen and Nitrogen disassociation (the splitting of a diatomic molecule to single atoms that 

then can readily react) [1-6].  

 The main components that this extreme environment affects are the leading edges and 

nose cones. These components have to be able withstand the highest temperature that can 

potentially exceed 2600 °C, at the stagnation point. Not only do they need to withstand the high 

temperatures, but they also need to be able to withstand very high temperature gradients. These 

temperature gradients can be as high as 1000 °C in a very short distance of 2mm [7, 8]. An 

example of the heat transfer on a leading edge is shown below in Figure 1. 
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Figure 1: A schematic presentation of leading edge configuration [3] 

 On top of this, the material of these components must hold its shape, even with the high 

aerodynamic loading along with the high thermal loading. This environment also requires a 

material that is oxidation resistant, and withstands ablation (which is the removal of material by 

vaporization). 

With the environment characterized, one can come up with the requirements that the 

material must meet in order to be used for this application. Therefore, the material must have 

high strength to withstand the high aerodynamic forces, have a high thermal conductivity in 

order to be able to handle the high heat fluxes, and since the application is an aerial vehicle, the 

material must be light and thus have a low density. Therefore, one comes across the refractory 

metals, such as ZrB2. These materials are promising but, due to the flow, encouraging oxidation 

ZrB2 by itself would decompose, and then the material would be weakened and thus catastrophic 
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failure will would occur. Therefore, SiC-phase has been added to ZrB2 in order to increase the 

oxidation resistance, resulting in a ceramic composite [6, 9-11]. This increases the oxidation 

resistance, and is accomplished when SiC oxidizes to form a SiO layer, which is a stable glassy 

oxide that prevents oxygen from penetrating further into the material. Basically, the SiO layer is 

effectively a barrier between the flow environment and the component on the vehicle. Figure 2 

below shows the result of oxidation at 1900 °C at three different compositions of SiC in ZrB2.  

 

Figure 2: Oxidation models at 1900 °C of ZrB2 with low SiC content(a), medium SiC content(b) 

and high SiC content(c), with the white color representing holes [12]. 

A 

B 

C 
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From the conditions of the environment, we can determine the properties of materials that 

must be met. The materials must have a high melting temperature, oxidation resistance, high 

thermal conductivity, high toughness, and high Young’s modulus. This brings us to a group of 

materials that are called Ultra High Temperature Ceramic (UHTC) composites; these ceramic 

composites have high thermal conductivity and high melting temperatures, making them perfect 

candidates for hypersonic vehicles. Figure 3 below shows all of the components and effects of 

atmospheric re-entry from space.  

 

Figure 3: Re-entry to Earth's atmosphere [13] 
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 Following this introduction section is the literature review section, which will cover 

everything known about ZrB2-SiC ceramic composites found in literature. This includes 

everything from the crystal structure and phase diagrams to fatigue and arc jet tests. Following 

that section is the experimental procedure section, which will go over in detail how each 

experiment was conducted. Following the experimental procedure are the results, conclusion, 

and future plans for this research, which will be described in this thesis. 
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CHAPTER 2: LITERATURE REVIEW 

 When conducting research, it is imperative to know what others have done before so one 

can determine if the results are valid or not. That is why this section is included in this thesis. 

The first thing that one would be interested in learning about a material is the crystal structure or 

the smallest repeatable unit cell and the phase diagram of a material. This is important because 

the fact that the crystal structure determines the density of a material along with the mechanical 

properties. The phase diagram indicates which phase is present at what temperature and pressure. 

This is very helpful since this will help one know when a solid material will become a liquid.  

2.1: ZrB2 Crystal Structure 

First, the crystal structure of ZrB2 by itself will be discussed. The typical structure of 

ZrB2 has only one possible crystal structure for this phase, which is the hexagonal structure. This 

crystal structure is shown below in Figure 4. Looking at the ZrB2 crystal structure as shown 

below as Figure 4a, one can see the location of the boron and Zr atoms. The boron atoms are in a 

face-centered structure position, while the Zr atoms are located at the center of the unit cell and 

at the midpoint between each of the boron atoms. Figure 4B shows the ZrB crystal structure just 

for comparison to the crystal structure of ZrB2. On the next page, Figure 5 shows a better 3-D 

representation of the crystal structure. This representation of the ZrB2 crystal structure shows a 

layer of boron atoms and then a layer of Zr atoms, and then the layers repeat. The lattice 

parameters for ZrB2 are a ≈ 3.17�̇�, and c ≈ 3.5�̇� [14].      
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Figure 4:ZrB2 crystal structure (a) and ZrB crystal structure (b) [14] 

 

 

Figure 5: 3D Visualization of ZrB2 crystal structure [15] 
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2.2: SiC Crystal Structure 

The crystal structure of SiC is hard since SiC has many different polytypes. The 

polytypes refer to the order of the repeated structure. For example, 3-cubic would be a cubic unit 

cell with 3 different unit cells being repeated. There are over 200 polytypes for SiC thus making 

it hard to pinpoint the crystal structure throughout the entire component. The most common of 

these polytypes are as follows: 3-cubic, 2-hexagonal, 4-hexagonal, 15-rhombohedral, 6-

hexagonal, and 8-hexagonal [16]. Within the scopes of this paper and my current research, I will 

be using 6-hexagonal as my SiC crystal structure. Figure 6 below shows the crystal structure of 

6-hexagonal SiC. Figure 6 also shows 3-cubic and 4-hexagonal SiC crystal structures. Figure 7 

shows a 3-D depiction of the ideal SiC crystal structure.  

 

Figure 6: 6-hexagonal SiC crystal structure [17] 
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Figure 7: 6-hexagonal SiC crystal structure [18] 

 The lattice parameters for SiC are shown below in Table 1. Table 1 shows multiple 

polytypes of SiC lattice parameters. Based on Figure 6, one would expect that 3-cubic would 

have the smallest lattice parameter in the z-direction or vertical direction and that 6-hexagonal 

will have a larger lattice parameter in that direction. Looking at Table 1, one finds this to be the 

case.  
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Table 1: SiC lattice parameters with the Ceperly-Alder correlation are given in parentheses [19] 

 Calculation 

Method 
a(Aͦ) c/a 

Si 
Theoretical 

5.432
a
  

5.433
b
,5.435

c
   

Experimental 5.429
d
   

C 
Theoretical 

3.56
a
   

3.561
b
, 3.607

c
   

Experimental 3.567
d 

  

3C-SiC 
Theoretical 

4.358 (4.354)
a
   

4.361
b,e

, 4.326
f
, 4.365

g 
  

Experimental 4.36
d 

  

2H-SiC 
Theoretical 

3.072
a
 1.641

a
 

3.12
h 

1.611
h 

Experimental 3.076
c 
 1.641

c 

4H-SiC 
Theoretical 3.069

a
 3.292

a
 

Experimental 3.073
c 

3.271
c
 

6H-SiC 
Theoretical 3.077

a
 4.91

a
 

Experimental 3.073
c 

4.907
c 

a
[19], 

b
[20],  

c
[21], 

d
[22],

e
[23, 24],

f
[25]

 
,
g
[26],

h
[27] 

2.3: ZrB2 Phase Diagram 

The phase diagrams found for these compositions were actually for the Zr-B system, 

since at different temperatures and compositions one will either end up with ZrB or ZrB2. Figure 

8a below shows the Zr-B phase diagram without labels for the different phases. This figure was 

created by Kufman[28], but an updated version that is easier to see where the specific phases and 

what the compositions are is shown below as Figure 8b. This phase diagram, Figure 8b, shows 

the same information as Figure 8a, but includes labels of where the different phases of the Zr-B 

system are with respect to the composition of the molecules. Multiple phase diagrams exist for 

the same system. Looking at Figure 8 again, one can see that it is very easy to get ZrB or ZrB12 
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instead of ZrB2. This is very important when producing ZrB2 powders for commercial use or 

when using the powder to produce samples for testing.  

The three key factors that complicated the determination of accurate phase equilibrium 

diagrams for ZrB2 are it has very high melting temperatures, slow solid-state reaction rates and 

boron vaporization [2]. Another factor that contributes to the complexities of the phase diagram 

is that boron may have more than one phase present; this is most commonly found with powders 

produced with the powder-metallurgy techniques [2]. Figure 9 shows a Zr-B system phase 

diagram produced by experimental and theoretical methods and show the approximate 

temperatures and wt % for boron for which important phases are located. ZrB2 phase is the 

dominate phase of the Zr-B system.  

 

Figure 8: Phase diagram Zr-B system without labels(a), and with labels of the phases(b) [2, 28] 
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Figure 9: Phase diagram Zr-B system based on the experiments results [29] 

2.4: SiC Phase Diagram 

 Now for the phase diagram of the Si-C system, one finds not as many phase diagrams as 

found for the Zr-B system phase diagrams. Two phase diagrams were found for the Si-C system, 

which are shown on the next page as Figure 10 & Figure 11. Figure 10 shows the Si-C system 

phase diagram with some labels and approximated temperature at which the phase will change. 

Looking at this first phase diagram in Figure 10, one finds that the melting point of the SiC 

increases with an increase in pressure that the material is exposed to. One also sees a dotted 

region; I do not know what this region is and why it is there. The region is also not labeled with a 

phase, so one has no idea what it is just from looking at it. Now looking at Figure 11, one finds 

that this phase diagram only goes to 3500 °C while the other phase diagram, Figure 11, goes up 
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to 4500 °C. Also, the graph of Figure 11 starts at 1500 °C while Figure 10 starts at 1000 °C. 

Comparing the two figures further, one sees the temperature at which the phase occurs is slightly 

different between the two figures.  This goes to show that even though the two phase diagrams 

are of the same material, they can be reported very differently. One believes that the main cause 

of the difference in reporting the temperature at which the phase changes is the method at which 

the phase diagram was produced, and the method at which the powder was produced may be 

different and from a different company. Another cause could be that, since SiC has so many 

different polytypes, one was produced for one polytype and the other by another polytype. Upon 

looking at the phase diagrams further, one sees that there are only a few phases: Si(l), SiC+C, 

Si+SiC, and Si(l)+SiC. Comparing this to Zr-B system, one again sees that this phase diagram is 

a lot less complex, and it is much easier to produce these phase diagrams experimentally.  

 

Figure 10: Si-C system Phase Diagram [30] 
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Figure 11: Si-C binary system Phase Diagram [31] 

2.5: ZrB2-SiC Phase Diagram 

One was able to find one ZrB2-SiC phase diagram. This phase diagram is shown below as 

Figure 12. Looking at this Figure 12, one finds that in the ZrB2-SiC phase diagram, there is one 

eutectic point that occurs at approximately 2270 °C at a composition of 23 mol% ZrB2 of the 

ZrB2-SiC system. One also sees that there is only one phase labeled, and that is the liquid phase, 

the rest of the phases have been left unlabeled. This is probably due to the fact that the research 

was only interested in the point at which the ZrB2-SiC system becomes a liquid at different 

compositions of ZrB2. 
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Figure 12: ZrB2-SiC Phase Diagram [32] 

2.6: ZrB2-SiC Processing Methods 

Now looking in through literature to find out the mechanical properties and sintering 

processes used for ZrB2-SiC ceramic composites. The two most common methods of sintering 

these ceramic composites are hot pressing (HP) and spark plasma sintering (SPS). A few other 

methods have been used, such as Electron Beam Sintering [33] and reactive-SPS sintering [34]. 

The bulk of all publications have been in hot pressing, but, in the past year, a lot of research has 

been conducted using the relatively new process of SPS for UHTC composites. Hot pressing 

uses heating elements to heat a sample to be sintered to the temperature wanted, followed by 
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applying pressure on the sample while in a vacuum. Figure 13 below shows a diagram of a hot 

pressing machine.  

 

Figure 13: Schematic drawing of hot press sintering [35] 

SPS uses pulsing electrical current to heat up the powder being sintered to the 

temperature the sample sinters at. In addition, the sample is placed under pressure, along with the 

sample is in a vacuum all at the same time. Figure 14 below shows a diagram of a SPS machine. 

The pulsing electrical current allows for high heating cooling rates, which shorten the time to 

produce a sample to about 1-2 hours instead of 6 hours in a hot pressing machine. 
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Figure 14: Schematic pattern of spark plasma sintering [36] 

With this relatively new sintering process, a few papers were on the effects of heating 

rate and composition of ZrB2-SiC on its mechanical properties [37, 38]. Many of these recent 

publications are on finding the parameters in SPS that give a full density material, with the 

desired mechanical properties, the shortest amount of time to sinter and the lowest temperature to 

decrease cost of the sample. One such experiment, conducted by Akin, found that sintering ZrB2-

SiC with 20-60mass% SiC were 99% dense at temperature between 2000-2100ºC with a hold 

time of 180 seconds. Akin also found that the microstructures in samples above 2120ºC were 

different then samples with microstructures below that temperature [39]. The difference in 
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microstructure is shown below as Figure 15. Looking at Figure 15, one sees that at 1900ºC and 

2100ºC samples, the SiC grains are small and distributed throughout the entire sample, while the 

high temperature samples without hold times have large SiC grains and are not well distributed. 

The sample looks to be almost entirely SiC rather than a composite of ZrB2-SiC. Now looking at 

Figure 16, one finds that same pattern as in Figure 15 with the increase of sintering temperature. 

Figure 17 below shows the microstructure of ZrB2-SiC with a different weight percent of SiC. 

Figure 17 also shows the effect of adding carbon to the ZrB2-SiC on the microstructure of the 

composite.  

 

Figure 15: SEM images of polished surfaces of ZrB2–SiC composites containing 40 mass% SiC 

sintered at 1900 °C for 300 s (a), 2100 °C for 180 s (b), 2120 °C (c), 2200 °C (d) without a holding 

time and high magnification of irregular texture at 2200 °C (e) [39]. 
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Figure 16: SEM images of polished surfaces of ZrB2–SiC composites containing 50 mass% SiC 

sintered at 1900 °C for 300 s (a), 2100 °C for 180 s (b) and 2165 °C without a holding time (c) [39]. 

 

Figure 17: Microstructure of ZrB2 ceramics containing (A) 10 vol%, (B) 20 vol%, and (C) 30 vol% 

SiC (UF-25) additions and 5 wt% carbon [40]. 
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2.7: ZrB2-SiC Mechanical Properties 

Looking through many publications, one can find a range of the mechanical properties. 

Pure ZrB2 has the following mechanical properties that were found in literature and are shown in 

the Table 2 below. 

Table 2: ZrB2 Mechanical Properties 

Young’s Modulus [41, 42] 489-493 GPa 

Melting Temperature[43] 3100-3500 °C 

Density[44] 6.09 g/cm
3 

Vickers Hardness [41] 21-23 GPa 

Fracture Toughness [45, 46] 5.46-6.02 MPam
1/2 

Fracture Strength [45, 46] 416-708 MPa 

Coefficient of Thermal Expansion[47, 48] 5.9x10
-6

 K
-1

 

Thermal Conductivity [41] 60 W/mK 

 

Also looking at the mechanical properties of pure 6H-SiC, one finds the following mechanical 

properties as shown in the Table 3 below. The reason for the 6H-SiC polytype is that it is the 

material use to conduct the experiments for this thesis. 

Table 3: SiC Mechanical Properties  

Young’s Modulus [49, 50] 440±20 GPa 

Melting Temperature[51] 2700 °C 

Density[52] 3.21 g/cm
3
 

Vickers Hardness [49] 32 GPa 

Fracture Toughness [49] 6.8 MPam
1/2 

Fracture Strength [49] 490±70 MPa 

Coefficient of Thermal Expansion[53] 4.16x10
-6

 K
-1

 

Thermal Conductivity [52] 0.9-50 W/mk 
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Looking at this, one can infer that the ZrB2-SiC ceramic composites will have a Young’s 

modulus lower than pure ZrB2, but higher than pure SiC, based on the theory of mixers. When 

looking through existing literature, this is found to be the case. Table 4 and Table 5 below show 

the mechanical properties of ZrB2-SiC ceramic composites. Looking at these two tables, one 

notices that with the decrease of SiC maximum grain size, the strength, Knoop hardness and 

Young’s modulus increase. The Vickers hardness increases until a particle size of 6.4μm, and 

then starts to decrease again. Table 5 does not change the SiC particle size, but it does change the 

amount of SiC present in the ZrB2-SiC. From Table 5, one finds that as the SiC volume percent 

in the ZrB2SiC ceramic composites is increased, the Young’s Modulus, Hardness, Flexure 

Strength, and Toughness all increase.  

Table 4: Summary of Mechanical Properties  for Varying SiC Particle  Size ZrB2–SiC  Composites 

[54] 

Composition 

Final  maximum 

SiC particle size 

(μm) 

Strength  

(MPa) 

Elastic 

modulus  

(GPa) 

Vickers 

hardness  

(GPa) 

Knoop  

hardness  

(GPa) 

HC Starck SiC grade 

UF-25 
4.4 1150 ± 115 541 ± 22 21.4 ± 0.6 17.2 ± 0.2 

HC Starck SiC grade 

UF-10 
6.4 924 ± 100 532 ± 13 21.7 ± 0.6 17.1 ± 0.3 

HC Starck SiC grade 

UF-5 
8.2 892 ± 120 534 ± 20 21.2 ± 0.4 17.0 ± 0.2 

ZrB2-30vol%SiC 

Milled 8 hours 
11.5 825 ± 118 531 ± 14 21.2 ± 0.6 17.1 ± 0.3 

ZrB2-30vol%SiC 

Milled 4 hours 
11.8 724 ± 83 520 ± 12 19.3 ± 1.8 16.1 ± 0.3 

ZrB2-30vol%SiC 

Milled 2 hours 
12 460 ± 47 518 ± 16 18.6 ± 0.5 15.6 ± 0.4 

ZrB2-30vol%SiC 

Milled 1 hour 
13 280 ± 34 505 ± 7 18.4 ± 1.3 15.6 ± 0.4 
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Composition 

Final  maximum 

SiC particle size 

(μm) 

Strength  

(MPa) 

Elastic 

modulus  

(GPa) 

Vickers 

hardness  

(GPa) 

Knoop  

hardness  

(GPa) 

HC Starck SiC grade 

UF-25 
4.4 1150 ± 115 541 ± 22 21.4 ± 0.6 17.2 ± 0.2 

HC Starck SiC grade 

UF-10 
6.4 924 ± 100 532 ± 13 21.7 ± 0.6 17.1 ± 0.3 

HC Starck SiC grade 

UF-5 
8.2 892 ± 120 534 ± 20 21.2 ± 0.4 17.0 ± 0.2 

ZrB2-30vol%SiC 

Milled 8 hours 
11.5 825 ± 118 531 ± 14 21.2 ± 0.6 17.1 ± 0.3 

ZrB2-30vol%SiC 

Milled 4 hours 
11.8 724 ± 83 520 ± 12 19.3 ± 1.8 16.1 ± 0.3 

ZrB2-30vol%SiC 

Milled 2 hours 
12 460 ± 47 518 ± 16 18.6 ± 0.5 15.6 ± 0.4 

ZrB2-30vol%SiC 

Milled 1 hour 
13 280 ± 34 505 ± 7 18.4 ± 1.3 15.6 ± 0.4 

ZrB2-30vol%SiC 

Milled 0 hour 
18 245 ± 23 484 ± 6 17.3 ± 1.4 15.2 ± 0.3 

 
 

 
 
 

Table 5: Comparison of mechanical properties of ZrB2 with 10, 20, and 30 vol% SiC [40] 

SiC volume fraction 

(vol%) 10 20 30 

Carbon addition (wt%) 5% Based on the SiC weight 

  B4C addition (wt%) 4% Based on ZrB2 weight 

  Sintering conditions 2000 °C/3 h 2000 °C/3 h 2000 °C/3 h 

Sintered density (%) ~97 >97 >99 

Elastic modulus (GPa) 446 ± 7 474 ± 7 490 ± 7 

Hardness (GPa) 15.3 ± 1.2 18.8± 1.1 22.4 ± 0.7 

Flexure strength (MPa) 404 ± 62 463 ± 53 492 ± 49 

Toughness (MPa m^1/2) 3.1 ± 0.1 3.4 ± 0.1 3.5 ± 0.3 

 

 Continuing the search for the mechanical properties, one finds many more papers about 

ZrB2-SiC ceramic composites; such papers cover more about the effects of the SiC grain size on 

the mechanical properties of the ceramic composites. But one can find papers about elevated 
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temperature mechanical properties as well as ablation and oxidation resistance tests. Starting 

with the other mechanical properties found, first of which is strength testing, or flexure test, one 

sees again that, with increase of SiC volume/mass percent in the composites, there is a decrease 

in the SiC grain size. There is also an increase in the fracture strength of the ceramic composites. 

Figure 18, Figure 19, Figure 20 and Figure 21 shown below show this trend and all agree with 

each other. These results were from multiple sources. Thus one can conclude that this trend 

should be the same for the results of this thesis.  

 

Figure 18: Room temperature flexure strength, as well as ZrB2 and SiC grain sizes, for ZrB2–SiC 

materials as a function of SiC (UF-25) volume fraction [40]. 
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Figure 19: Strength of ZrB2–SiC composites as a function of the average SiC particle size measured 

as an average circular diameter from Zhu [55], Rezaie [11, 56] and the current study as a function 

of the maximum SiC particle size also measured as a circular diameter [54]. 

 

Figure 20: Strength as a function of the maximum SiC size measured as a circular diameter 

indicating that the ZrB2-30vol%SiC milled for 1 hour and the ZrB2-30vol%SiC milled for 2 

hour compositions do not follow the linear trend that was suggested in the previous studies [54]. 



  

26 

 

 

Figure 21: Strength as a function of maximum SiC particle size measured as the major axis of an 

ellipse for ZrB2–SiC composites showing a 1/c1/2 relationship up to 11.5 lm at which point strength 

decreased more rapidly. Lines indicate predicted flaw size based on the Griffith criteria using a Y 

parameter of 1.98 and the indicated values of K1C [54]. 

 

The effect of sintering temperature on the strength of ZrB2-SiC has also been researched. One 

finds that, for 40 mass% SiC in the ceramic composites, an optimum temperature of 2000ºC gave 

the strongest sample same as shown below in Figure 22, and for the 50mass% SiC ceramic 

composites, maximum strength was reached at 1900ºC and increasing the sintering temperature 

decreased the strength of the sample.  
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Figure 22: Effect of sintering temperature on the tensile strength of ZrB2–SiC composites 

containing 40 and 50 mass% SiC sintered at 1900–2100 ºC [39] 

 

 Now looking at the hardness of the ZrB2-SiC, one finds the following general trend; 

increasing the SiC content until around 50mass% increases the Vickers hardness and the fracture 

toughness of the ceramic composite but by further increasing the SiC content, the Vickers 

hardness and fracture toughness begin to decrease with a low at pure SiC. These trends are 

clearly visible in Figure 23 and Figure 24, which show the Vickers hardness and the fracture 

toughness, respectively. Figure 24 and Figure 25 below show the effects of hardness with the 

increase of SiC grain size. This aligns with the other trends found in Tables 4 and Table 5 above, 

which show that the SiC grain size increases, the hardness of the ceramic composites decreases. 

These graphs show both Knoop and Vickers hardness test, which both show the same type of 

trend.  
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Figure 23: Effect of SiC content and sintering temperature on the Vickers hardness of ZrB2–SiC 

composites sintered at 1900–2100 ºC [39]. 

 

Figure 24: Effect of SiC content and sintering temperature on the fracture toughness of ZrB2–SiC 

composites sintered at 1900–2100 ºC [39]. 
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Figure 25: Hardness as a function of maximum SiC particle size measured as the major axis of an 

ellipse exhibiting a discontinuity for particle sizes greater than 11.5 μm [54]. 

 

 In addition to the hardness and the fracture strength, the Young’s Modulus or elastic 

modulus was also investigated with the effects of the maximum SiC particle size. One again 

finds the trend to be that as the SiC particle size increases, the Young’s Modulus decreases. This 

is shown in Figure 26 below.  
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Figure 26: Elastic modulus as a function of the maximum SiC particle size measured as the major 

axis of an ellipse showing a reduction in modulus for composites containing SiC particles larger 

than 11.5 μm [54]. 

 The mechanical properties of ZrB2-SiC have also been investigated at elevated room 

temperatures. Hu conducted a 3-point bending flexure strength test of ZrB2-15vol%SiC and 

ZrB2-30vol%SiC at a temperature of 1800°C [57].  Figure 27 below shows the results of this test 

by Hu, including the load vs. displacement curve for the test.  
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Figure 27: Load–displacement curves as obtained from three-point bending experiments conducted 

at 1800 °C [57]. 

Other experiments have been conducted to investigate the effects of temperatures on the strength 

of ZrB2-SiC. Neumen investigated the Young’s Modulus and flexure strength with respect to 

temperature and compared that to other experiment done previously. Figure 28 show the results 

of Young’s Modulus, and Figure 29 shows the results of Flexure Strength. These Figures also 

show the results done initially by Rhodes earlier in 1970, when this ceramic composites was first 

studied [58, 59]. Bird also conducted experiments on temperature-dependent mechanical and 

long crack behavior [60]. 

 

Figure 28: Elastic modulus of ZrB2 tested in air atmosphere as a function of temperature [58, 59] 
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Figure 29:  Four-point flexure strength of ZrB2 ceramics tested in air (circles) and argon 

(diamonds) atmospheres as a function of temperature. For comparison, the data of Rhodes et al. 

(squares) are also shown [58, 59] 

Fatigue is the life of a part under cyclic loading or environmental factors that a part or 

sample will encounter in the real world. There are many types of fatigue: cyclic loading, thermal 

cycling, and corrosion and rust resistance.  Most of the papers in this section have been found to 

be mainly about thermal shock resistance. These papers were written by Zimmermann [61] and 

Meng [62]. Figure 30 below shows the results of thermal shock test done by quenching the 

samples in water. The points at which the strength the sample failed were plotted versus the 

change in temperature [61]. Zimmermann also investigated the depth of damage and stiffness as 

the temperature changed.  Figure 31 below shows the results of strength of samples after a 

number of thermal shock cycles from Meng [62]. 
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Figure 30: Strength values as a function of the change in temperature (ΔT) for fibrous monolith 

specimen quenched into water (27 °C) [61] 

 

 

Figure 31: Effect of increasing number of shock cycles on the flexural strength [62]. 
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 Other types of fatigue are crack growth behavior and Mode I fracture toughness have 

been investigated by Bird [60] and Kurihara [63], respectively. Figure 32 below shows the 

average crack length for a compressive load applied to a sample. 

 

Figure 32: An example of applied load versus crack lengths [63]. 

Environmental and creep effects have also been studied by Orlvskaya [64] on ZrB2-

30wt%SiC ceramic composites.  

Many papers have been published on oxidation results and oxidation resistance of ZrB2-

SiC ceramic composites. Such papers were written by Mallik [65], Tian [66], Hu [67], Guo [68], 

Opeka [6], and Han [69]. All of these papers were about oxidation and oxidation resistance. In 

addition to just looking at the oxidation mechanisms, tests were conducted with torches and high 

enthalpy flow using arc-jet test and plasma torch. These tests were done to simulate the intense 

heating of the leading edge upon re-entry. Figure 33 below shows the before and after images of 

one such test, using an oxyacetylene torch. Looking at the specimen after the test, one notices the 
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sample is no longer smooth and is charred, showing the effects of oxidation on the sample. In 

Figure 34, one can see the shear stress encountered by the samples during the test. Figure 35 

shows the results of a plasma wind tunnel test of not only a blunt sample but also one with a 

sharp cone. Figure 36 shows a SEM image of the surface of the sharp cone, showing the creators 

as a result of oxidation and the high speed flow effects on the sample. 

 

 

Figure 33: ZrB2–20%SiC specimen before (left) and after (right) oxyacetylene torch testing at 

2200 °C for 10 min [69].  
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Figure 34: Shear stress vs. curvilinear normalized coordinate (x/L) [45] 

 

Figure 35: Visual appearance of the ceramic models before (a and b) and after testing (c and d); R: 

radius of curvature [70]. 
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Figure 36: Exposed surface of the sharp cone: details by SEM [70]. 

 

In addition to oxidation tests, ablation tests have been conducted on sharp model leading 

edges. Figure 37 below shows the results of an ablation test with before and after pictures. Labels 

(a) and (b) on the figure are the before and after picture of the ZrB2-SiC during the test. Looking 

at Figure 37 (a) and (b) labeled a and b, one sees that not only is there very little difference 

between the before and after, but also that the sample retained its shape. While looking at (c) and 

(d) of Figure 37 of SiC/C sample, one sees that there are significant changes in the shape, which 

would most likely result in failure. This experiment was conducted by Zhang [71]. Other 

publication on ablation have been found such as Li [72], and Tang [73], which just like Zhang 

investigated the effect of ablation on samples of UHTC. 
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Figure 37: Photographs of the sharp leading edge models before ((a) and (c)) and after ((b) and (d)) 

ablation testing. (a) and (b): ZrB2–SiC [71] 

 

 Recent papers have been published on the design and theory of materials for use with 

hypersonic and re-entry to the Earth’s atmosphere. One such paper, by Savino, was an 

aerothermodynamics study of UHTC for thermal protection [74]. Another publication, by Oplia, 

was on ceramic materials for extreme environment applications. Finally, Parthasarathy published 

a paper about developing a test to evaluate aerothermal responses of materials for hypersonic 

applications [75].  
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2.8: Raman Spectroscopy of ZrB2-SiC 

 Now looking at the Raman Spectroscopy of ZrB2-SiC, one only finds SiC peaks, since 

ZrB2 has not been previously reported as Raman active. This means either that ZrB2 does not 

have any peaks at all in the spectra or the peaks are so small that they are not noticeable 

compared to the intensity of the SiC peaks. Conducting a search about this composition, one 

finds that each of the SiC polytypes have their own Raman spectra and are different from each 

other, even though most of the time they share the same peak position. Table 6 below shows a 

summary of the Raman peak position of each of the common types of SiC polytypes being used 

today in industry and research. 

Table 6: Raman frequencies of the folded modes for typical SiC polytypes. Only the FTA and FTO 

modes with E(E1, E2) symmetry and FLA and FLO modes with A1 symmetry are shown [76] 

Polytype 

  Frequency(cm
-1

) 

  

Planar 

acoustic 

planar 

optic  

axial 

acoustic  

axial 

optic 

z=q/qb FTA FTO FLA FLO 

3C 0 - 796 - 972 

2H 0 - 799 - 968 

  1 264 764 - - 

4H 0 - 796 - 964 

  2/4 196,204 776 - - 

  4/4 266 - 610 838 

6H 0 - 797 - 965 

  2/6 145,150 789 - - 

  4/6 236,241 - 504,514 889 

  6/6 266 767 - - 

8H 0 - 796 - 970 

  2/8 112,117 793 - - 

  4/8 203 - 403,411 917,923 

  6/8 248,252 - - - 

  8/8 266 768 615 - 
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Polytype 

  Frequency(cm
-1

) 

  

Planar 

acoustic 

planar 

optic  

axial 

acoustic  

axial 

optic 

z=q/qb FTA FTO FLA FLO 

15R 0 - 797 - 965 

  2/5 167,173 785 331,337 932,938 

  4/5 255,256 769 569,577 860 

21R 0 - 797 - 967 

  2/7 126,131 791 241,250 - 

  4/7 217,220 780 450,458 905,908 

  6/7 261 767 590,594 - 

 

The three most common polytypes are 3C, 4H and 6H. The spectra of each of these are 

shown in Figure 38 for 3C, Figure 39 for 4H, and Figure 40 for 6H polytypes. Looking at the 

three spectra, one finds that 4H, 6H and 3C share two peaks: the TO and the LO peaks. In 

addition, 4H and 6H have additional peaks in lower than 600 Raman shift named the FTA peaks.  

 

Figure 38: Raman spectra measured with a quasiback scattering geometry for 3C [76] 
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Figure 39: Raman spectra measured with a quasiback scattering geometry for 4H [76] 

 

Figure 40: Raman spectra measured with a quasiback scattering geometry for 6H [76] 
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2.9: Piezo-Spectroscopy coefficient Using Raman Spectroscopy 

 ZrB2-SiC ceramic composites have residual stress due to the mismatch of the coefficient 

of thermal expansion and the Young’s modulus, and the difference between the sintering or 

processing temperature and room temperature. Since the residual stress distribution can affect the 

mechanical properties of the material, one would naturally want to find the distribution so that it 

can be altered to meet the specifications wanted. These residual stresses can be found using 

Raman spectroscopy, which is the method that will be used in this thesis to find the residual 

stresses in ZrB2-SiC ceramic composites. This method has been used in ZrB2-SiC [77], Yttria-

Stabilized Zirconia [78], and SiC [79]. All of these experiments used compression to apply a 

load to a specimen under a Raman spectrometer. Watt was able to apply 0-90GPa compressive 

stress to ZrB2-SiC and correlate an equation to give the reader the stress at a given point based on 

the change in the peak position from the stressed state to the unstressed state [77]. Figure 41 

below shows a 6H-SiC Raman spectra in the stressed state compared to the unstressed state 

shown in red. One notices that the peak positions are shifted to the right from the un-stressed 

state. As a compressive stress is applied, the peak position of the Raman spectra shifts to a higher 

wavenumber, while if a tensile stress is applied, the peak shifts to a lower wavenumber.  
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Figure 41: Raman pattern for 6H SiC from a hot pressed ZrB2–SiC composite with unstressed peak 

positions identified with lines [77] 

 Another experiment on finding the piezo-spectroscopy coefficient was conducted by 

Grokecki on Bulk 6H-SiC [80].   
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

This section covers how each part of this thesis was conduct in order to get the results. 

The machines and model used as well as any other detail needed to replicate this research are 

included in this section of this paper. 

3.1: Sample Fabrication and Density Measurements 

Spark Plasma Sintering (SPS) technique was used to process the ZrB2- 10,20, 30wt% SiC 

composites. Figure 42 below shows a picture of the SPS used to produce all of the samples. 

Three batches were prepared by weighing the ZrB2 powder (H.C. Starck-ZrB2 Grade B) and the 

SiC powder (H.C. Starck- Alpha -SiC Grade UF-10) in a certain proportion, and grinding them 

together in the plastic bottle, using ZrO2-Y2O3 balls and acetone as a milling media. After 48 

hours of grinding, the batches were dried up and sieved to break up the agglomerates. The sieved 

powders were loaded in the graphite die, using the graphite foil as an intermediate layer between 

the die and powder. The ZrB2-10, 20, and 30 wt% SiC samples were sintered at 1950 ºC, 70 

MPa, 100 ºC/min, heating and cooling rate, and dwell time of 15 minutes.  
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Figure 42: SPS Machine Picture 

After grinding/removal of the graphite foil from the surface of the sintered samples, the 

density of the samples were determined using the liquid immersion technique, also known as the 

Archimedes method. In this method, one measures the mass of the sample in air and then 

measures the mass of the sample in acetone. Then using the two masses and the density of 

acetone, the densities of the samples were calculated using the following equation 1, 

 𝜌 =
𝑚𝑎𝑖𝑟𝑚𝑎𝑖𝑟 −𝑚𝑎𝑐𝑒𝑡𝑜𝑛𝑒 𝜌𝑎𝑐𝑒𝑡𝑜𝑛𝑒 (1) 

where mair is the mass of the sample in air in grams, macetone is the mass of the sample in acetone 

in grams, and ρacetone is the density of acetone of 0.97g/cm
3

 for 99% lab grade Fisher Scientific 

acetone. The scale used was a Mettler Toledo JB1603-C and is shown below as Figure 43. 
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Figure 43: Picture of the Mettler Toledo Scale 

After the sample densities were calculated, the theoretical densities of the three compositions, 

ZrB2-10wt%SiC, ZrB2-20wt%SiC, and ZrB2-30wt%SiC were calculated using the rule of 

mixtures, which is shown in the following equation 2 below, 

 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑣1𝜌1 + 𝑣2𝜌2 + ⋯+ 𝑣𝑖𝜌𝑖 (2) 

where ν1 is the volume percent of the first component of the composite, ν2 is the volume percent 

of the second component of the composite, νi is the volume percent of the i
th

 component of the 

composite, ρ1 is the theoretical density of the first component of the composite, ρ2 is the 

theoretical density of the second component of the composite, and ρi is the theoretical density of 

the i
th

 component of the composite. Since the ceramic composites were produced using weight 

percent in order to calculate the theoretical densities, one must convert the weight percent to 

volume percent; this is done by using the following equation 3. 
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 𝑉𝑜𝑙𝑢𝑚𝑒% =

𝑤𝑒𝑖𝑔ℎ𝑡%𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 100 
(3) 

  3.2: Mechanical Properties Testing  

2x2.5x25mm bars were machined out of the SPS samples at Prematech Advanced 

Ceramics, MA. Flexure strength was measured with the four-point test technique in accordance 

with EN843-1 standard. 5 samples were used for room temperature testing for each composition. 

The crosshead speed was set to 0.5mm/min. An MTS 810 Machine applied the load and is shown 

below along with the 4-point bending configuration in Figure 44. In the 4-point bending, the L1 

was 10mm and L2 was 20mm, which is a standard loading and support span distance for flexure 

tests and fracture toughness tests as well. 

 

Figure 44: (a) MTS 810 system, (b) schematic diagram of the 4-point bending configuration, where 

H and B are the sample dimensions and L1 is the loading distance and L2 is the supporting span.  

 The flexure strengths of the samples were calculated using the following equation 4,  
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 𝜎𝑓 =
3𝑃(𝐿2 − 𝐿1)

2𝑏ℎ2  (4) 

where σf is the fracture stress, P is the load at which the sample failed at, b is the base of the 

sample, h is the height of the sample and L2 and L1 are the 4-point bending distances as show 

above in Figure 44. For fracture strength part test, the base was 2.5mm and the height was 2mm. 

The dimensions of the samples were measured using a Mitutoyo Digital Micrometer with an 

uncertainty of 0.0005 mm. This results in more accurate dimensions of the samples than when 

using a regular caliper. 

A scanning electron microscope (Zeiss-SEM) was used for the analysis of fracture 

surfaces of the ZrB2-10, 20, 30wt% SiC bars after mechanical tests. A picture of the Zeiss-SEM 

is shown below in Figure 45. This analysis was done to find out the type of defects are the 

samples.  Also what caused the samples to fail; was it dislocations, pores, or a scratch defect on 

the surface of the bar from machining the samples. The fracture origin was also sought in order 

to find out what was the biggest defect that caused the samples to fail. Three of the five samples 

of each composite composition were selected for investigation for both the flexure strength and 

the fracture toughness strengths. The three samples were selected based on the lowest, highest, 

and average loads at which the sample failed for each composition and test. Pictures were then 

taken of key surfaces of these samples at high resolution and are shown and described in the 

results section of this thesis. 
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Figure 45: Zeiss Ultra 55 SEM 

Fracture toughness was measured using the Single Edge V Notch Beam (SEVNB) 

technique in accordance with the CEN/TS 14425-5 standard. A single notch was made on the 2 

mm side of the 2x2.5x25mm bar as near to the center as possible with a depth between 20 to 40 

% of the total depth of the bar, since it was shown that within this range, the depth of the notch 

has no influence on the K1c values. The diamond saw was used to make the initial cut, which 

would bring the 0.5 mm of the notch, after that the final ~ 45μm tip radius was produced by 

manually cutting the notch with 15 and 3 μm diamond paste deposited on the razor blade. Five 

samples were tested at room temperature with the crosshead speed of 0.5mm/min, again using 

the same MTS system as the flexure strength and the same 4-point bending configuration the 

samples were loaded until failure. The 2.5mm side was the height and the 2mm side was the base 
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in this test. Once the testing was completed, a scanning electron microscope was used to take a 

picture of the fracture surface of the SEVNB. This was done by first making sure the fracture 

origin occurred at the notch tip in order to make sure that the test was valid. Then the average 

notch depth was checked to see if the 20-40% of the total depth of the bar was achieved. The 

average notch depth was measured using Adobe Photoshop software by using the scale on the 

picture itself. Then using the measuring tool in Adobe Photoshop, the depth of the notch was 

found. The depth of the notch was measured at four locations and then averaged. After the test 

was deemed valid, the fracture toughness was calculated using the following equation 5,  

 𝐾1𝑐 =
𝐹𝐵√𝑊 𝑆1 − 𝑆2𝑊 3√∝

2(1−∝)1.5 𝑦 (5) 

where F is the fracture load, K1c is the fracture toughness, B is the sample width, W is the sample 

depth, S1 and S2 is the support span of the 4-point bending device. In addition to these 

parameters, y and α need to be calculated using the following equation 6, 

 𝑦 = 1.9887 − 1.326 ∝ − (3.49 − 0.68 ∝ +1.35 ∝2) ∝ (1−∝)

(1+∝)2  𝑎𝑛𝑑 ∝= 𝑎/𝑊 (6) 

where a is the average notch depth. Again five samples of each of the three composites were 

used in this test. 

The Young’s, bulk, and shear moduli along with the Poisson’s ratio of materials were 

measured at room temperature using Resonant Ultrasound Spectroscopy (RUS). RUS is a highly 

accurate method for determining the resonant spectra of a sample of known mass, geometry and 
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dimensions [81-83]. The composite pallets 20 mm in diameter and 2-3 mm thick were placed on 

3 transducers; one sent out ultrasonic waves at sweeping frequency and the other two transducers 

recorded the natural frequencies at which the sample was vibrating. For determining the elastic 

moduli of the examined materials from resonant spectra, it was assumed that the composite 

pallets are isotropic and thus only two elastic constants, i.e., C11 and C44 are required. From the 

known sample dimensions, density, and a set of “guessed” elastic constants C11, and C44, the first 

40 resonant frequencies were calculated for each sample. A multidimensional software Quasar 

RuSpec (Magnaflux Quasar Systems, Albuquerque, NM) that iteratively minimizes error 

between the measured and calculated resonant frequencies by changing the initially “guessed” 

elastic constants was used to determine elastic constants for the set of measured resonant 

frequencies of the sample.  The elastic constants C11 and C44 were further used to calculate 

Young’s, shear and bulk moduli and Poisson’s ration of the composite samples. It is worth 

noting here that fitting error, i.e. the root-mean-square (RMS) error between the measured and 

calculated resonant frequencies, never exceeded 0.3% for all tested samples.  

3.3: Raman Spectroscopy and Residual Stresses 

The Micro-Raman InVia Renishaw spectrometer was used to study the stress distribution 

in ZrB2-SiC ceramic composites. The Raman microscope system comprises of a laser (532nm) to 

excite the sample, a single spectrograph fitted with holographic notch (beam splitter edge) filters, 

and an optical microscope (a Leica microscope with a motorized XY2 mapping stage, Figure 46 

shows the entire Raman system) rigidly mounted and optically coupled to the spectrograph. The 

generated laser power was 25mW. The average collection time for a single spectrum varied from 
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50 to 300s per point. The incident and scattered beams were focused with a microscope using a 

100x objective, which allowed for a laser spot as low as 1-2μm. All measurements were 

performed at room temperature. Before the ZrB2-SiC measurements, the spectrometer was 

calibrated with a Si standard using a Si band position at 520.3 cm
-1

. 

 

Figure 46: Picture of the Renishaw Raman Spectrometer 

In order to find the residual stress in ZrB2-SiC ceramic composites, an in-situ bending 

Raman spectroscopy test needs to be performed. For the bending test, a 3-point bending device 

coupled with the micro Raman spectrometer was used. A senior design group built the 3-point 

bending device, and the device is shown below as Figure 47. The calibration and use of this 

device are mentioned in the results section of this thesis.   
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Figure 47: (a) Schematic of loading ceramic bar in three point bending for collection of in-situ 

scattered light.  (b) A photograph of the in-situ loading device.  (c) Loading device coupled with 

Leica optical microscope connected to InVia micro-Raman spectrometer. 

While using the 3-point bending device described above, one found that the same exact 

point was not easily maintained. The Raman spectra must be collected at the same point 

throughout the entire in-situ bending experiment, since at different locations the peak position 

may be different and thus would throw off the data. Therefore, A XYZ motorized stage was also 

designed in order to allow the bending device previously designed to be moved so the same exact 

spot/area used to obtain the initial unloaded spectra could be found and held constant throughout 

the duration of the experiment. Figure 48 below shows the XYZ motorized stage used for this 

research. 

A B 

C 
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Figure 48: XYZ Stage design for 3-point bending device. 

Bar samples were machined to the dimensions of 4mm x 1.5mm x 27mm, from a 50mm 

diameter sample that was SPS’s at the same conditions as the samples made for mechanical 

testing, in order to achieve high loading stress for the load cell that the bending device is 

equipped with. The bending experiment was carried out by first loading the sample into the 

device, and then taking a Raman spectrum at the 0 stress state, and then loading in 20MPa 

increments to 300MPa. The Raman spectra were taken at each of the intervals using the 

following parameters: Raman Shift range 700-1100 cm
-1

, exposure time 200 seconds, 532 nm 

laser, long working distance 50x objective lens, and 50% laser power. This was held constant for 

all of the bending experiment conducted. Throughout the experiment, the location at which the 

Raman spectra was collected was monitored to make sure the same exact location only was 

collected. Once the experiment was complete, the spectra was curve fitted. Then the center of 
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each of the LO and TO peaks were plotted against stress to find a correlation. The entire set up of 

the experiment can be seen in Figure 49 shown below.  

. 

Figure 49: In-situ Raman Spectroscopy bending experiment Set-up 

For mapping, Raman scattering was performed on the mechanically polished (1μm 

diamond) surface. The representative 20x20μm area on the surface of the ceramic has been 

chosen. The area mapping was conducted with a laser having a spot size of 1μm. Autofocusing 

was used to collect the Raman spectra because it maintains a good focus on the sample during 

line/area confocal mapping experiments. To produce two dimensional (2D) maps, Renishaw 

Wire-2 software with a mixed Lorentzian and Gaussian peak fitting function was used. The 

system was set up to take spectra from all points inside the selected area of interest. Peak 

positions determined by peak fitting were plotted to create a strain map with a spectral resolution 

better than 0.1 cm
-1

. The total acquisition time to collect all spectra for one map was 12 hours. 
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CHAPTER 4: RESULTS & DISCUSSIONS 

 The results of this thesis were separated into sections starting with the processing, then 

the mechanical properties, followed by the Raman results and finally the Piezo-Spectroscopy 

coefficient. 

4.1: Spark Plasma Sintering of ZrB2-SiC Ceramic Composite 

 While the samples were being SPSs the pressure, temperature and displacement history 

were all record in order to form the shrinkage plot of the sample sintering. Figure 50 below 

shows this shrinkage plot. Looking at this figure, one notices numbers; these numbers 

correspond to distinct points in the sintering process. Point #1 marks the start of the pressure 

being applied to the sample. Point #2 is the point where 50MPa was reached and held constant. 

Point #3 marks the point where the sample starts sintering. Point #4 marks where the holding 

temperature 1950ºC was reached. Point #5 marks the end of the holding temperature. At this 

point the sample is starting to be cooled where it shrinks more due to temperature. Point #6 

marks where the pressure is being removed and point #7 marks the point where there is no more 

pressure being applied, and the sampling continuing to shrink due to the cooling and the 

coefficient of thermal expansion. Looking at the figure again between point #4 and point #5, one 

sees the sample shrinks very little; this is believed to be because the sample has already finished 

sintering. 
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Figure 50: Shrinkage Plot for all three composites 

Before calculating the density of each sample sintered, the theoretical density of the 3 

compositions of interest, ZrB2-10wt%SiC, ZrB2-20wt%SiC and ZrB2-30wt%SiC needs to be 

calculated. The theoretical densities were calculated using the rules of mixture and the theoretical 

density of ZrB2 of 6.1 g/cm
3
 and SiC of 3.21g/cm

3
. The rules of mixtures are based on volume 

percent instead of weight percent, thus one needs to convert the weight percent into volume 

percent. The weight percent is converted to volume percent using equation 3 as shown in the 

experimental section of this thesis. The conversion of mass percent to volume percent for each of 

the composition is shown below as Table 7. 

Table 7: Volume Percent Calculations 

 

wt%ZrB2 wt% SiC vol% ZrB2 vol% SiC 

ZrB2+10wt%SiC 90 10 82.59 17.41 

ZrB2+20wt%SiC 80 20 67.83 32.17 

ZrB2+30wt%SiC 70 30 55.15 44.85 
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 Now that the volume percent is calculated, one can now calculate the composite 

theoretical densities. This is done by using the rules of mixtures equation. The rules of mixtures 

are described in the experimental procedure section of this thesis as equation 2. The calculated 

theoretical densities are shown below in Table 8. 

Table 8: Composites Theoretical Density 

 

vol% 

ZrB2 

vol% 

SiC 

Theoretical 

Density(g/cm
3
) 

ZrB2+10wt%SiC 82.59 17.41 5.59 

ZrB2+20wt%SiC 67.83 32.17 5.16 

ZrB2+30wt%SiC 55.15 44.85 4.80 

 

After the samples were sintered, the densities of the samples were measured using the 

Academies method described above in the experimental procedure section with equation 1. The 

densities of each of the three compositions were average and plotted as shown in Figure 51 

below. The porosity of the samples was also calculated by using the theoretical density of each 

composition; the average results with error are also shown in Figure 51 below. The density of 

each of the samples was measured and averaged to get the data shown in Figure 51. In addition, 

the effects of sintering temperature on sample density for each composition were investigated 

and are shown below in Figure 52, Figure 53, and Figure 54 below.  Looking at these figures, 

one sees for all three of the compositions, that around 1950 ºC, the samples are close to 

theoretical density of each composition. Thus one can conclude that this temperature is a good 

temperature to sinter the sample to get close to a fully dense sample.  Included with the 20 and 

30 weight percent composites is the density of each of the bar samples used to conduct the in-situ 

Raman bending experiment to compare with the other samples used for mechanical testing.  
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Figure 51: Density & Porosity of Sintered Samples 

 

Figure 52: ZrB2-10wt%SiC sample density comparing to sintering temperature 
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Figure 53:ZrB2-20wt%SiC sample density comparing to sintering temperature 

 

Figure 54:ZrB2-30wt%SiC sample density comparing to sintering temperature 

After the density and porosity were found, the SiC grain size distribution were also found 

for each composition, which is shown below in Figure 55 for ZrB2-10wt%SiC, Figure 56 for 
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ZrB2-20wt%SiC and Figure 57 for ZrB2-30wt%SiC. Next to each of the grain size distribution 

graphs is a confocal micrograph of the sample surface of all three ceramic composite 

compositions. This is done in order for one to see the different between the three composites and 

why the average grain size can be different between the composites. The black spots are SiC and 

the gray area is ZrB2 for all of the confocal micrographs. Table 9 below shows the summary of 

the grain size distribution. Looking at this table, one sees that, as the weight percent of SiC is 

increased, the mean grain size increases as well.  This makes sense; since there is more SiC, the 

bigger grains can form.  

Table 9: SiC Grain Size Distribution 

Composite 

# SiC 

Grains  mean(µm) 

Standard 

Deviation(µm) 

ZrB2-10wt%SiC 94 1.484 0.977 

ZrB2-20wt%SiC 100 1.833 1.4 

ZrB2-30wt%SiC 98 2.122 1.48 

 

Figure 55: Confocal micrograph image of a polish surface of ZrB2-10wt%SiC (a) and grain Size 

distribution (b) 

 

 B 
 A 
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Figure 56: Confocal micrograph image of a polish surface of ZrB2-20wt%SiC (a) and grain Size 

distribution (b) 

 

Figure 57: Confocal micrograph image of a polish surface of ZrB2-30wt%SiC (a) and grain Size 

distribution (b) 

4.2: Mechanical Properties of ZrB2-SiC Processed by SPS 

 After calculating all of the densities and the sintering properties of the samples, one is 

interested in the mechanical properties of the samples; first is the fracture strength or flexure 

strength. This test was conducted using an MTS machine applying a load with the sample being 

 B  A 

 B 
 A 
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loaded in a 4-point bending configuration. Load was applied to the sample until the sample 

failed, or broke. The stress at which the sample failed at is called the flexure strength or fracture 

strength. This stress is calculated based on the sample’s dimensions, 4-point bending distances, 

and finally the load at which the sample failed. Equation 4 in the experiment section of the report 

shows how to calculate the fracture strength. The average results with the standard error are 

shown below as Figure 61. Looking at this figure, one sees a general trend that as SiC weight 

percent increases, the strength of the samples, on average, increases. This agrees with other 

results in literature shown in the literature search section of this thesis. Table 10 below shows the 

results of each of the five samples flexure strength used to make the graph shown in Figure 61.  

Table 10: Flexure Strength Results 

Composite Sample  

Sample  

Base 

(mm)  

Sample  

Height 

(mm) 

Supports 

Span 

(mm)  

Load  

Span 

(mm) 

Maximum  

Load(N)  

Breaking  

Stress(Mpa) 

ZrB2-

10%wtSiC 

1 2.5019 1.9939 18.22 9.64 346.64 448.28 

2 2.4892 1.9939 18.22 9.64 449.60 584.40 

3 2.4892 1.9939 18.22 9.64 395.05 513.49 

4 2.5019 1.9812 18.22 9.64 446.12 584.36 

5 2.4892 1.9939 18.22 9.64 256.44 333.32 

ZrB2-

20%wtSiC 

1 2.4765 1.9177 18.22 9.64 395.27 558.27 

2 2.4384 1.9177 18.22 9.64 229.56 329.30 

3 2.5019 2.0320 18.22 9.64 420.59 523.71 

4 2.4892 2.0066 18.22 9.64 421.27 540.66 

5 2.4892 1.9558 18.22 9.64 408.83 552.31 

ZrB2-

30%wtSiC 

1 2.4257 1.8796 18.22 9.64 555.73 834.15 

2 2.4384 1.9431 18.22 9.64 417.67 583.56 

3 2.413 1.9304 18.22 9.64 533.80 763.62 

4 2.4384 1.8796 18.22 9.64 484.68 723.71 

5 2.4384 1.9177 18.22 9.64 496.81 712.64 
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 After calculating the fracture strength, SEM images of the fracture surfaces were taken. 

These images are shown below as Figure 58, for ZrB2-10wt%SiC, Figure 59 for ZrB2-

20wt%SiC, and Figure 60 for ZrB2-30wt%SiC. These figures show the fracture surface of the 

samples taken by SEM using the secondary electron source. Looking at this fracture surface, one 

notices that the sample that fractured at the higher strength had a smoother surface. This is most 

likely due to the fact that the major defect that led to failure was not a surface defect, such as a 

scratch from machining the sample.  

 

Figure 58: ZrB2-10wt%SiC SEM Image of the fracture surface of the Maximum strength sample 

(a) and the average strength samples (b) 

 

 A  B 
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Figure 59: ZrB2-20wt%SiC SEM Image of the fracture surface of the Maximum strength sample 

(a) and the average strength samples (b) 

 

Figure 60: ZrB2-30wt%SiC SEM Image of the fracture surface of the Maximum strength sample 

(a) and the average strength samples (b) 

Following the fracture strength test, the fracture toughness test was conducted by using a 

single edge V-notch beam (SEVNB). This experiment was conducted by physically making a V-

notch in a sample, then using the sample 4-point bending configuration as the fracture strength 

 A  B 

 A  B 
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and loading it until failure.  Figure 61 again shows the results of the fracture toughness with the 

average value for each composition with standard error. Again the trend is, as the SiC weight 

percent increased, the fracture toughness increased as well. This also agrees with literature just 

like the flexure strength test did. Table 11 shows the calculated result of each sample that was 

used to construct the graph of fracture toughness shown in Figure 61.  

Table 11: Fracture Toughness Results 

Composite Sample  

Width 

(mm) 

Height 

(mm) 

Max 

Load(N) a(mm) Alpha 

K1c 

(MPa/m^1/2) 

ZrB2-

10wt%SiC 

8 1.9939 2.5146 33.046 1.176 0.468 2.814 

9 2.0193 2.5019 29.482 1.105 0.442 2.315 

12 2.0193 2.5019 44.772 0.870 0.348 2.727 

14 2.0066 2.4765 25.816 1.120 0.452 2.137 

15 1.9431 2.4892 46.909 0.767 0.308 2.699 

ZrB2-

20wt%SiC 

7 1.9685 2.5019 44.723 0.828 0.331 2.673 

8 2.0066 2.5019 35.070 0.971 0.388 2.392 

9 1.9939 2.5019 37.403 0.900 0.360 2.379 

11 2.0066 2.5146 44.443 0.880 0.350 2.717 

12 1.9812 2.5019 51.113 0.828 0.331 3.034 

ZrB2-

30wt%SiC 

6 1.9431 2.5019 54.727 0.876 0.350 3.483 

7 1.9939 2.5019 44.314 0.870 0.348 2.732 

8 2.0066 2.50063 44.758 0.827 0.331 2.624 

9 1.9685 2.5019 50.629 0.765 0.306 2.834 

10 1.9431 2.5146 51.208 0.746 0.297 2.815 
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Figure 61: The effect of SiC weight on Flexure Strength and Fracture Toughness 

 

 To show what the notches looked like before the fracture toughness test was conducted, 

pictures are included below as Figure 62 and Figure 63 for ZrB2-10wt%SiC composition, Figure 

64 and Figure 65 for ZrB2-20wt%SiC composition, and Figure 66 and Figure 67 for ZrB2-

30wt%SiC composition. Each figure has an overall picture of the entire notch and a picture of 

just the notch tip.  

 

Figure 62:ZrB2-10wt%SiC Sample 8 Notch depth (a) and Notch tip (b) 

A B 
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Figure 63: ZrB2-10wt%SiC Sample 14 Notch depth (a) and Notch tip (b) 

 

Figure 64: ZrB2-20wt%SiC Sample 7 Notch depth (a) and Notch tip (b) 

 

Figure 65: ZrB2-20wt%SiC Sample 9 Notch depth (a) and Notch tip (b) 

A B 

A B 

A B 
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Figure 66: ZrB2-30wt%SiC Sample 7 Notch depth (a) and Notch tip (b) 

 

Figure 67: ZrB2-30wt%SiC Sample 9 Notch depth (a) and Notch tip (b) 

 Below are the SEM pictures of the samples after the fracture toughness test was 

conducted. Figure 68 shows the SEM Images of ZrB2-10wt%SiC, Figure 69 for ZrB2-20wt%SiC, 

and Figure 70 for ZrB2-30wt%SiC. 

A B 

A B 
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Figure 68: ZrB2-10wt%SiC Fracture surface average (a) and maximum (b) 

 

Figure 69: ZrB2-20wt%SiC Fracture surface average (a) and maximum (b) 

 

Figure 70: ZrB2-30wt%SiC Fracture surface average (a) and maximum (b) 

 Since the samples used in these experiments were small, RUS was used in order to find 

the Young’s Modulus, Bulk Modulus, Shear Modulus and Poisson’s ratio; which are shown 

(a) 

(a) 

(a) 
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below as Figure 71 and Figure 72. Looking at these two figures on sees that the Young’s, bulk, 

and shear Moduli all decreased with increase in weight percent of SiC. This trend also matches 

literature shown in the literature part of this thesis. While Poisson’s ratio increases with increase 

in weight percent SiC. 

 

Figure 71: The effect of SiC weight on Young's Modulus and Bulk Modulus 
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Figure 72: The effect of SiC weight on Shear Modulus and Poisson's Ratio 

 

4.3: Bending Device Calibration 

Before the bending device could be used to conduct the experiment, it needed to be 

calibrated. This was done in the following fashion: since the output of the load cell initially 

produced a voltage, a correlation from voltage to force was calculated.  To do this, weights were 

applied by screwing off the load cell cap and placing an acrylic platform that provided a flat 

surface to apply various weights.  A series of weights from 10 g to 200 g was placed on the 

acrylic platform and the corresponding voltage was recorded to verify that the measured voltage 

is accurate. This calibration is shown below in Figure 73.  Based on the measured data, it was 

established that in order to obtain the force in Newton’s, the voltage output of the load cell had to 

be multiplied by eight. 
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Figure 73: Force applied versus voltage output for calibration of the load cell. 

In order to further verify the correctness of the measured stress and strain by the in-situ 

bending device, selected materials with a known Young’s modulus were used to perform the 

bending tests. Stress was applied by the load cell, and resulting strain was measured by an 

attached strain gauge. The foil strain gauge was mounted with cyanoacrylate adhesive strain 

gauge glue on the tensile surface of the sample. The wires of the strain gauge and a 

programmable power supply that outputted 4 V and 0.2 A were attached to an Omega BCM-1 in 

a quarter bridge configuration.  A Flute 114 multimeter was also attached to read the output 

voltage produced by the strain gauge. This setup is shown below in Figure 74. After the stress-

strain data were collected, the slope of the stress-strain curve was determined and the Young’s 

modulus was calculated.  
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Figure 74: Strain measurement setup for the sample under investigation. 

 

 Further, the measured Young’s modulus values were compared to those published in the 

literature or measured by other techniques. Few materials were selected as materials of choice 

for calibration and verification of in-situ bending device.  Aluminum 2024 T3 (Al) was chosen as 

an example of a soft and ductile material, as well as brittle ceramics, such as 

La0.8Sr0.2Ga0.8Mg0.2O3, La0.8Ca0.2CoO3, and B4C.  The Young’s modulus of Al was reported to be 

73.1 GPa [84], for La0.8Sr0.2Ga0.8Mg0.2O3 was reported to be 175 GPa [85], for La0.8Ca0.2CoO3 

was reported to be 135 GPa [86], and for B4C it was reported to be 450 GPa [87].  
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Each sample was loaded and unloaded five times using the in-situ bending device so that 

the stress-strain deformation curves could be collected for these materials for multiple times as 

shown below in Figure 75. 

 

Figure 75: Stress-strain deformation curves obtained by loading (a) Al, (b) La0.8Ca0.2CoO3, (c) 

La0.8Sr0.2Ga0.8Mg0.2O3, and (d) B4C samples using the in-situ loading device.  The Young’s 

moduli of the samples obtained from the measurements showed a good coincide 

By comparing the reference data measured in the literature to the experimental data obtained in 

the present research, one can see that the measured values of Young’s Moduli of the four 

materials deviated by 6% of the data published in the literature.  Thus, the calibration results 

show that the device performs very well and can be reliable for in-situ bending under laser 

radiation. 

(a) (b) 

(c) (d) 
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4.4: Raman Spectroscopy of ZrB2-SiC Samples  

Now looking at the Raman Spectra of ZrB2-SiC, one gets the spectrum shown in Figure 

76 below. The peaks in this figure are the peaks of 6H-SiC, which have been widely studied in 

literature as shown in the literature section of this thesis. The peaks shown in Figure 76 are the 

peaks investigated to find their dependence on stress. Before a stress test can be conducted, one 

needs to identify all of the peaks present and find out how to obtain an accurate curve fit of the 

data. The Wire software was use to do the curve fitting of the Raman spectra. The 4-peak 

position of 6H-SiC that one was interested in is TO peaks 767 cm
-1

, 789 cm
-1

, 797 cm
-1

 and LO 

peak 965 cm
-1

. Upon curve-fitting this initial spectra, one found that at different locations, the 

spectra was slightly different, with one or two of the peaks having a change in slope that could 

indicate another hidden peak. Thus in order to get a better curve fit, one would put in an extra 

curve on the spectra that had a significant change in slope. Therefore sometimes the spectra 

would have 4, 5, or 6 curves in the results. Upon looking into literature, one found that the extra 

curve corresponded to other SiC polytypes of 3C and 4H. This brought about a couple of 

questions: does our samples contain many polytypes of SiC? Or are these curves just a filler 

curve to improve the curve fitting? To answer these questions, one suggested either doing XRD 

or doing a Raman cooling experiment down to liquid nitrogen. The reason for the liquid cooling 

is that since Raman is a vibrational spectroscopy, when samples are cooled, there are less 

vibrations; thus the peaks in the spectra will be narrower and therefore one can see exactly how 

many curves are really present. From this, one can determine if these peaks correspond to 

different polytypes of SiC. For this thesis, one decided to use only 4-curve so one can be 
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consistent, since not all spectra have the extra curves. This spectrum was curve fitted by hand 

and the parameters of this curve fit were saved and used for every spectra in this thesis.  

 

Figure 76: ZrB2-SiC Raman Spectra 

The ZrB2 constituent of the composite has not been studied. Only in our preliminary 

studies had it been indicated that ZrB2 exhibits a very weak Raman activity, shown in Figure 78, 

and its two Raman active bands could be used to study the vibrational temperature and stress 

dependent properties of ZrB2. The crystal structure and Brillouin zone of transition metals 

diborides were described in earlier publications [88-91]. However, the analysis of the ZrB2 

phonon dispersion has just appeared in the paper in press [92]. The paper reported on two 

infrared active modes (E1u at 60.61 meV and A2u at 63.49 meV), as well as two Raman active 

modes (B1g at 67.76 meV and E2g at 98.45 meV), of calculated Γ point frequencies of ZrB2 

compound. It was also reported that the calculated phonon dispersion curves do not contain soft 

modes at any direction, thus pointing out the stability of the P6/mmm ZrB2 phase. The crystal 
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structure of ZrB2 is primitively hexagonal [93-96] with the unit cell of ZrB2 containing three 

atoms [97], which gave rise to a total of nine phonon branches, consisting of three acoustic 

modes and six optical modes. The boron atoms lie on the corners with the three nearest neighbor 

boron atoms in each plane. The Zr(Hf) atoms lie directly in the centers of each boron hexagon, 

but midway between adjacent boron layers. Each Zr(Hf) atom has 12 nearest neighbor B atoms, 

and six nearest neighbor in plane Zr(Hf) atoms. The Zr(Hf) atom is positioned at ( )000 ; one B 

atom is at ( )2
1

6
1

3
1 , and another B atom is at ( )2

1
3

1
3

2 . The Zr(Hf) layers alternate with the B layers; 

however, it is not considered a layered compound because of the very strong interaction between 

interlayers. While main contribution to acoustic phonons results from the transition metal 

sublattice, the high frequency phonons stem from the boron ions. This is expected since the 

boron atom is lighter than the transition metal atoms, which leads to comparatively weaker 

electron-phonon interactions. The covalent character of the B-B bonding is also important for the 

high frequency of phonons involving boron atoms.  

Yet, there is no experimental data published to confirm results of the theoretical 

calculations of the vibrational properties of ZrB2 or HfB2 ceramics. Our preliminary results [98] 

indicate that ZrB2 are indeed weakly Raman active with two Raman active bands with the raw 

data being shown in Figure 77 below. In order to see the two peaks better, one has to subtract the 

base line, and then change the range to 250-2000 Raman shift, and one will get the graph shown 

in Figure 78 below. Even though one found ZrB2 to be weakly Raman active, more in-depth 

research is required to understand the origin of these peaks and determine their 

stress/strain/temperature sensitivity. 
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Figure 77: ZrB2 Raw Data 

 

Figure 78: ZrB2 Raman Spectra 

 After conducting the curve fitting and defining the peaks of interest, Raman Mapping 

experiment of a sample from each of the composites was conducted. A Raman mapping is made 

by taking an area of a specimen and then breaking it up into a grid system; each of the grid points 
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will have a spectra taken. This was done for samples over an area of 20μm x 20μm. Once the 

mapping is complete, one has to do the analysis and choose what type of map to create. For this 

thesis, one was interested in the intensity of the highest peak, the TO 790cm
-1 

peak. Thus the 

entire data collected was curve fitted, and the intensity of the peak was calculated for each point. 

Then the maps shown in Figure 79 were created. The dark areas represent low intensity and 

therefore are most likely ZrB2, while the brighter spots represent high intensity and are SiC 

grains. Thus one is able to show the distribution of the grains on the sample using Raman 

Mapping. 

 

Figure 79: Raman Mapping of ZrB2-SiC composites based on SiC 790cm
-1

 TO Peak Intensity 

4.5: Piezo-Spectroscopy coefficient of ZrB2-SiC Samples 

Thermal or mechanical processing of materials often results in inelastic strains, which 

generate residual stresses. Such processing or mechanical deformation-induced residual stresses 

can be categorized as macrostresses and microstresses. Macroscopic surface residual stresses 

often result either during the cooling of large size components due to poor thermal conductivity, 

especially in ceramics (resulting from differential thermal contraction between bulk of the 
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material and surface), or when different macroscopic regions of a component deform non-

uniformly but are constrained to fit together (such as the surface and interior). In contrast, 

residual microstresses can occur at the microstructural level (intergranular or interfacial 

microstresses) or at the level of the crystal structure (intragranular microstresses) [99]. Such 

stresses are, by necessity, balanced by opposing stresses in other locations within the material. 

Depending on the crystal structure and anisotropy, thermally induced residual stress state can be 

significantly complex, which is even further enhanced in multiphase composites where different 

phases have different CTEs and elastic moduli. Simple elastic theories may not predict the 

residual stress state, and residual stress measurements often require a combination of advanced 

experimental techniques and modeling efforts. 

The processing-induced intergranular microstresses develop during the cooling of a 

multiphase composite whenever materials with different coefficients of thermal expansion (CTE) 

and elastic moduli are bonded together [100-102], whereas the intragranular residual 

microstresses result in anisotropic single phase polycrystalline material due to thermal 

contraction differences between the crystallites [103-105]. Mechanical deformation-induced 

microstresses develop due to elastic-plastic deformation within the material or due to strain 

incompatibility within the grains. Development of such microstresses is critically dependent 

upon the elastic and plastic anisotropy intrinsic to the material because variations in the degree of 

elasto-plastic anisotropy strongly influence the magnitude of microstress [106]. The inter-/intra-

granular microstresses are of critical importance in failure mechanisms of the ceramics, such as 

ratio of the trans- and inter-granular fracture, crack branching or bridging [107], microcracking 

[108, 109], stress-induced phase transformation [110, 111], subcritical crack growth [112], 
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fatigue [113], etc. These microstresses govern crack-propagation induced energy dissipation 

[114, 115] and affect the ceramic toughness and strength. 

The appearance of the residual microstresses in the as-processed Zr(Hf)B2-SiC composite 

is explained by the mismatch in Young’s moduli (E) and CTE (α) between ZrB2 (E=489 GPa, 

α=5.9×10-6
K

-1
) [42, 48, 116]  and 6H-SiC (E=694 GPa, α=3.5×10-6

K
-1

) [117, 118], as well as the 

difference between room temperature (25
o
C) and the sintering temperature (typically at ~2100

 

º
C) of the composite. The equiaxed and almost spherical SiC grains can be assumed as elastic 

spheres of uniform size distributed in an infinite elastic continuum of ZrB2 matrix [119]. This 

results in an axially symmetric stress distribution around SiC grains. It has been shown that the 

ceramic grain will be under a uniform/hydrostatic pressure P which can be expressed as shown 

in the following equation 7 [119]: 

 ( )

0.5(1 ) (1 2 ) 1 2

(1 )

m p

m m p p

m p p

T
P

V

E V E

α α

ν ν ν

− ∆
=
 + + − −

+ −  

 
(7) 

where ν  is Poisson’s ratio, T∆  is temperature change, pV  is volume fraction of grains, and 

subscripts m  and p  stand for matrix and grain. On the other hand, radial (σrad) and tangential 

(σtan) stresses within the ZrB2 matrix and at a distance r from the center of grain are expressed, 

respectively, as equation 8 below [119]. 

 3

31
rad p

p

P a
V

V r
σ

 
= − −  

 and  
3

tan 31 2
p

p

P a
V

V r
σ

 
= − + −  

 (8) 
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Thus, from the above equations it can be seen that when m pα α> , as is the case for ZrB2-

SiC composites, cooling of the composite from the sintering temperature will induce a uniform 

compressive stress within the SiC grains. The radial and tangential stresses within ZrB2 will be 

compressive and tensile, respectively, and both the stresses will be at maximum at the ZrB2-SiC 

interface. 

When modeling multiphase particle reinforced composites, residual microstresses in the 

matrix and inclusions (different phases) can be a-priori estimated based on the simplified 

composite theory [120-124]. However, experimental determination of these microstresses as a 

function of microstructural parameters would not only allow the stress state of a particular 

composite to be better assessed but also design of the composites with specific properties to suit 

desired/target applications. 

In order to find the residual stress, one must first find the non-stressed Raman peak 

position. These preliminary results are done without using the bending device, but just using 

unstressed state and finding the peak positions. This is needed in order to correlate the stress 

state in the ZrB2-SiC ceramic composite stress. This is shown in Figure 80 below for only the TO 

796cm
-1

 and LO 960cm
-1

 peaks. This relation was used to find the change in the stress based on 

the change in Raman shift. Now using equation 7 and 8, one can find the stress state of the SiC in 

the ZrB2-SiC ceramic composite. The diagram shown in Figure 81a below can be used to define 

all of the variables and the origin. One gets the following as shown in Figure 81b for the stress 

distribution starting with the center of a SiC and going out radial until there is no SiC left. The 

highest stress occurs at the interface of the ZrB2-SiC grains and then decreases from there. 
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Figure 80: Effect of SiC composition on Raman Peak Position 

 

Figure 81: ZrB2-SiC variable definition (a) and the calculated stress distribution (b) 

 Once the preliminary data was found, the in-situ bending experiment was conducted for 

ZrB2-20wt%SiC and ZrB2-30wt%SiC.  For each composition, multiple samples and multiple 

locations on each sample were investigated. This was done in order to get some statistical data. 

Thus one conducted five trails for each of the two compositions. For one of the trials, the interval 

A B 
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of stress was changed to 50MPa from 20MPa. This was done in order to see if there is a 

significant change in the piezo-spectroscopic coefficient. This was also done to make sure that a 

20MPa step size is not too small to get a meaningful change in peak position outside the 

uncertainty of our system. The uncertainty of the curve fitting process of our Renishaw Micro 

Raman Spectrometer, and the software is approximately 0.2cm
-1

 when obtaining the peaks 

positions. This may be apparent in some of the trial results. Some have positive correlations, 

which is the opposite of what the correlations should be. Figure 82 and Figure 83 below show 

two trails results for ZrB2-20wt%SiC. Looking at Figure 83, one finds the results of the run with 

50MPa step size. Looking at the slopes and comparing that to the first trail, one sees they are on 

the sample order of magnitude and also one sees that overall change between each point is more 

defined Thus for future work, one will use a step size of 50MPa to not only increase the accuracy 

of the curve fit but also to show the change in Raman shift from the previous stress state better. 

The last reason to use this is that one will be out of the range of uncertainty of the curve fitting 

for each of the results. Figure 84 below shows one-trail results for ZrB2-30wt%SiC. Summaries 

of all piezo-spectroscopy coefficients for each of the runs results are shown in Table 12 below. 

Looking at this table, one find that the slopes of both compositions are on the same order with 

ZrB2-30wt%SiC having a high slope. This makes sense since there is more SiC present in the 

samples. Comparing the pizeo-spectroscopy calculated in this thesis to one found in literature 

and they match very well. The values found in literature for 6H-SiC was found , to be in the 

range of ~0.2-3 GPa cm
-1 

[80]. The average values of the piezo-spectroscopy coefficient for all 

the runs are shown below as Table 13. The values were averaged for each peak and composition 

separately to come up with 8 final coefficients along with error. 



  

86 

 

 

Figure 82: ZrB2-20wt%SiC Result 

 

Figure 83: ZrB2-20wt%SiC Result 50MPa Step size 
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Figure 84:  ZrB2-30wt%SiC Trail 5 Results 

Table 12: Summary Calculated Piezo-Spectroscopy Coefficients 

  

TO Peaks(MPa*cm) LO Peak(MPa*cm) 

Composition Trial  Peak 1 Peak 2  Peak 3 Peak 4 

ZrB2-20wt%SiC 

1 0.0058 -0.0005 -0.0011 0.0026 

2 0.0006 0.0014 -0.0007 -0.004 

3 -0.0012 -0.0124 -0.0147 -0.009 

4 -0.041 -0.0023 -0.0086 -0.0033 

5 -0.0074 -0.005 -0.005 -0.0036 

ZrB2-30wt%SiC 

1 0.0007 -0.0005 0.0015 -0.0006 

2 -0.0041 -0.0041 -0.000002 -0.0012 

3 -0.0053 -0.0042 -0.0048 -0.008 

4 -0.0041 -0.0023 -0.0086 -0.0033 

5 -0.0114 -0.0084 -0.0083 -0.0076 
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Table 13: Average Piezo-Spectroscopy Coefficients 

Pure SiC 

peak position 

ZrB2-20wt%SiC 

(GPa
-1

*cm
-1

) 

ZrB2-30wt%SiC 

(GPa
-1

*cm
-1

) 

767cm
-1

 -3.42±6.912 -4.84±4.331 

797cm
-1

 -3.76±5.375 -3.9±2.937 

789cm
-1

 -6.02±5.821 -4.640±3.888 

965cm
-1

 -3.46±4.116 -4.14±3.491 

 

 Since the piezo-spectroscopy coefficients were found, one can now derive an equation for 

the relationship between the peak shift and the magnitude of the stress. The equation that defines 

the relationship between the peak shift and the stress is shown below as equation 9 [77]. 

 ∆𝜔 = 𝑘 ∗ 𝑃 (9) 

where Δω is the Raman peak shift, k is the piezo-spectroscopy coefficient in GPa*cm
-1

 and P is 

the magnitude of stress in GPa. Now using equation 9, one can derive 8 equations one for each 

peak position and composition. The 8 equations are shown in below in Table 14.  

Table 14: Equations Relating Peak Shift to Stress  

Pure SiC 

peak position 
ZrB2-20wt%SiC ZrB2-30wt%SiC 

767cm
-1

 ∆ω = −3.42 ± 6.912 ∗ P ∆ω = −3.46 ± 4.116 ∗ P 

797cm
-1

 ∆ω = −3.76 ± 5.375 ∗ P ∆ω = −3.9 ± 2.937 ∗ P 

789cm
-1

 ∆ω = −6.02 ± 5.821 ∗ P ∆ω = −4.64 ± 3.888 ∗ P 

965cm
-1

 ∆ω = −3.46 ± 4.116 ∗ P ∆ω = −4.14 ± 3.491 ∗ P 
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 Once the equation for the dependence of the peak shift on stress was derived, the stress 

state could be found based on the change in the Raman peak position. This could not be done for 

the current work since the peak position must be found with zero stress. The reason that the zero 

stress peak position could not be found is that the ceramic composites have residual stresses, 

which results in not getting the correct zero stress peak position. Thus in order to find the zero 

stress peak position, one needs to find the piezo-spectroscopy coefficient for pure SiC. This 

composition was present during the current work and will be conducted in the future works. 

Once the SiC piezo- spectroscopy coefficient is found, one can then finally find the stress based 

on the Raman peak shift and finally be able to produce stress mappings of ZrB2-10, 20, and 

30wt%SiC ceramic composites.  
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CHAPTER 5: CONCLUSIONS 

 ZrB2-10wt%SiC, ZrB2-20wt%SiC and ZrB2-30wt%SiC samples were produced using 

SPS. Following that, the samples were tested and fully characterized. The samples were 

characterized by calculating density, flexure strength, fracture toughness, Young’s modulus, bulk 

and sheer moduli. The trends found in this thesis for the increase of weight percent SiC vs. the 

mechanical properties are found to match well with literature. The mechanical testing was 

followed by using a SEM to look at the fracture surfaces, to find common defects (which 

included pores and dislocations), and to find the fracture origin. Following the characterization, 

Raman spectroscopy was carried out with and without the in-situ bending device to find the 

residual stresses between the ZrB2 phase and the SiC phase. The results obtained for the piezo-

spectroscopy in this thesis, for both ZrB2-20wt%SiC and ZrB2-30wt%SiC, fall in the range of 3-

6 GPa
-1

*cm
-1

; which compares well with previous results of 6H-SiC piezo-spectroscopy found in 

literature . For the ZrB2-20wt%SiC samples, calculating the piezo-spectroscopy with 20MPa and 

50MPa step size, one does not notice a real different between the two. The 50MPa step size 

shows better linear dependence and will decrease the experimental time to find the piezo-

spectroscopy coefficient. Finally, one still needed to find the piezo-spectroscopy coefficient of 

pure ZrB2, ZrB2-10wt%SiC and pure 6H-SiC. This is already in the works with the samples 

being produced. I am looking forward to continue this research into my PhD dissertation.  
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CHAPTER 6: FUTURE WORK 

Future work will allow me to continue the current work to further understand this 

material. By doing the following after residual stresses and magnitudes are determined, both in 

SiC reinforcing phase and ZrB2 matrix phase, I will work on determining how the residual 

stresses affect the mechanical and thermal properties of ZrB2-SiC composites. The static 

properties, such as bending and compressive strength, hardness, indentation fracture resistance, 

coefficient of thermal expansion, and Young’s Modulus of the composites will be measured both 

at room and high temperatures. The time dependent properties such as fatigue and creep will also 

be measured for ZrB2 composites with different quantities of the SiC phase. All of the properties 

will be evaluated as a function of volume fraction of SiC to identify the morphology, residual 

stress distribution, and volume fraction of the second phase that provides the best mechanical 

performance. Most important for such characterization is the determination of residual stresses 

and their redistribution under a variety of loading conditions, as well as the establishment of the 

stress-induced changes in the micro-structure with variable composition. 

I plan on testing the virgin ZrB2 - 10, 20, 30wt% SiC samples at the polysonic Wind 

Tunnel, available at the Florida State University in Tallahassee, where the conditions of the tests 

will resemble the conditions that the materials faces when hypersonic vehicles re-enter the 

Earth’s atmosphere. Figure 85 below shows the polysonic wind tunnel. Contact with the director 

of this wind tunnel has already been made and they have agreed I would be able to visit and 

conduct experiments on the wind tunnel once it is operational. Both very high speed and 

consequent friction upon re-entry bring the surfaces of leading edges and nose cone above 2000 

°C for a time frame of 30-60 second. This is where almost no other material can survive the 
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thermal shock and oxidation, except UHTC composites. Metals, when exposed to such 

conditions, simply melt. It is important to mention that in addition to very high temperature, the 

very aggressive species of dissociated oxygen ions attack the surface of leading edges and nose 

cones of the vehicles. The experiments that closely resemble the re-entry conditions will be 

performed using the Wind Tunnel facilities in Tallahassee. The samples of ZrB2 with 10, 20, and 

30wt% SiC will be exposed to hypersonic flows using the hypersonic wind tunnel. During the 

experiments, the samples will be exposed to hypersonic flow with a known fraction of 

dissociated oxygen and nitrogen fraction in the gas mixture. After exposing the samples to these 

harsh conditions, the surfaces of the ZrB2 - SiC composites will be analyzed by SEM to 

determine the formation of the oxide layers and evaluate the effect produced by the hypersonic 

wind tunnel experiments.  

 

Figure 85: Florida State University polysonic wind tunnel 

Following testing the material at Florida State University, I would like to visit NASA 

Langley Research facility and continue the research using the hypersonic wind tunnel. Since this 

wind tunnel not only goes to M=7 and another to M=20, which is 1.4-4 times higher than the 

maximum speed at the Florida State University polysonic wind tunnel, this will replicate the 

actual speed at which space vehicles re-enter the Earth’s atmosphere. This would increase the 

accuracy of results to be as close to the true flow as possible. In addition, this hypersonic wind 
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tunnel also offers the heating effects that occur upon re-entry.  This wind tunnel is one of a kind 

and is set apart from the rest of the hypersonic wind tunnels in the fact that it can replicate the 

flow the most accurately. The reason for this is that most other hypersonic wind tunnels have to 

cool down helium to a liquid state at high pressures in order to achieve the high Mach number 

flows in the hypersonic regime, causing the fluid to not be able to replicate the heating 

encountered during re-entry into the Earth’s atmosphere. 

 Following the hypersonic wind tunnel testing, one would like to conduct an arc jet 

testing. This experiment is used to replicate the heating upon re-entry. This is also used to 

investigate the oxidation effects in high heat flux environments. For this experiment, one would 

like to visit NASA Ames Research facility and work with the thermal protection group on fully 

testing this material as whole part instead of a layer of protection. Figure 86 below shows an arc 

jet test in progress. 

 

Figure 86: NASA Arc Jet 

 Following the hypersonic wind tunnel test and the arc jet test, one would like to do some 

simulations of this material. One will take into account heating, reaction rates, oxidation, 
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ablation, and the speed of the flow to get the most accurate simulation of the material. This 

including putting in properties of the material into the simulation to produce the best results.  
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