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ABSTRACT 

 

Hard and ultra-incompressible materials are of great interest due to their important 

applications in industry. A common route to design hard materials is combining transition metals 

with light and small covalent elements. Light elements such as carbon, oxygen, nitrogen and 

boron have been considered as good candidates. This study includes the synthesis of ReB2, OsB2 

and another higher boride AlMgB14. 

Most of the techniques used for ReB2 synthesis reported 1:2.5 Re to B ratio because of 

the loss of the B during high temperature synthesis. However, as a result of B excess, the 

amorphous boron, located along the grain boundaries of polycrystalline ReB2, would degrade the 

ReB2 properties. Therefore, techniques which could allow synthesizing the stoichiometric ReB2 

preferably at room temperature are in high demand. This thesis reported the synthesis of ReB2 

powders using mechanochemical route by milling elemental crystalline Re and amorphous B 

powders in the SPEX 8000 high energy ball mill for 80 hours. The formation of boron and 

perrhenic acids are also reported after ReB2 powder was exposed to the moist air environment 

for a twelve months period of time. The synthesized ReB2 powder was characterized by X-ray 

diffraction, scanning electron microscope, transmission electron microscope, secondary ion mass 

spectrometry and Raman spectroscopy.  

OsB2 also shows its attractive properties. The hardness of orthorhombic OsB2 was 

reported to be 37 GPa, when the applied load is lowered to 0.245N. However, only one of the 

three predicted phases has been synthesized. In this study, the hexagonal OsB2 has been 

synthesized by the mechanochemical method. The lattice parameters of the Hex-OsB2 are 
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α=β=90°, γ=120°; a=b=2.9047 Å, c=7.4500 Å. The synthesized OsB2 powder was annealed at 

1050°C for 6 days, but no phase change was found. This shows that the Hex-OsB2 is very stable.  

Another promising hard material, AlMgB14, was also studied in this thesis. The AlMgB14 

was synthesized at 1050 °C under normal pressure. Several different routes were tried and 

compared. It shows AlMgB14 cannot be synthesized merely by ball milling, which can bring the 

risk of oxidization. Magnesium metal is preferred to use as one of the raw materials. 
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CHAPTER 1: INTRODUCTION 

 

Hard and ultra-incompressible materials are of great interest due to their important 

applications in industry. For example, they can be coated on cutting tools, blades and pistons to 

reduce wear and deformation. [1] The hardest known material diamond is not appropriate to be 

used in cutting ferrous metal because it reacts with iron. The second hardest material c-BN is not 

exist naturally and must be synthesized under extremely high temperature and pressure. [2] 

Therefore, this motivates people search for new superhard materials. 

A common route to design hard and ultra-incompressible materials is combining 

transition metals with light and small covalent elements. [3] Light elements such as carbon, 

oxygen, nitrogen and boron have been considered as good candidates. Transition-metal borides 

and nitrides, such as ReB2 [3], OsB2 [4,5], PtN2 [6,7], IrN2 [7] and OsN2 [8] were successfully 

synthesized in the recent years. Among those binary rare earth metal compounds, ReB2 and OsB2 

have shown their attractive mechanical properties. For example, ReB2 and OsB2 are ultra-

incompressible with bulk modulus of 365-395 GPa. [9]. ReB2 was reported with maximum 

Vickers hardness of 48 GPa, when the applied load is 0.49N and average hardness of 31 GPa. [4] 

OsB2 was reported with hardness of 37 GPa, when the applied load is 0.245N. [10] After the 

publication of those results, some issues were raised on the indentation size effect (ISE) in 

hardness measurements. Although the hardness of ReB2 and OsB2 do not exceed the threshold 

hardness for “superhard”, 40 GPa, they are still considered as hard and ultra-incompressible 

materials. 
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Another higher boride, hard material, AlMgB14 was also studied in this thesis. Boron 

tends to form covalent bonds, but it has only three valence electrons, which are not enough for it 

to form three dimensional networks by covalent bonding. However, boron-rich compounds can 

form boron clusters to create “economic” bonding. [11] Those boron clusters are usually B12 

icosahedra clusters. The complex interactions within (or between) those icosahedrals lead to the 

special mechanical and electronic properties of these materials. Those boron-rich compounds 

generally possess high hardness, high melting points, light weight, acid resistance and 

incompressibility. [11] 

ReB2 was reported to exhibit high hardness and low compressibility, which both are 

strong functions of its stoichiometry, namely Re to B ratio. Most of the techniques used for ReB2 

synthesis were reported 1:2.5 Re to B ratio because of the loss of the B during high temperature 

synthesis. However, as a result of B excess, the amorphous boron, located along the grain 

boundaries of polycrystalline ReB2, would degrade the ReB2 properties. Therefore, techniques 

which could allow synthesizing the stoichiometric ReB2 preferably at room temperature are in 

high demand.  

Recently, Chen et al. predicted that orthorhombic OsB2 can be transformed to the 

hexagonal OsB2 under high pressure, 2.5 GPa, by local density approximation (LDA) 

calculation. [18] Ren et al also reported the phase transition to be 10.8 GPa by the generalized 

gradient approximation (GGA). [9] However, no synthesis of hexagonal OsB2 was reported, 

neither the phase transition pressure between those two phases. So, exploration on hexagonal 

OsB2 is needed. 
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Except the high hardness, AlMgB14 has very low chemical reactivity to steel, stainless 

steel, and titanium even at a temperature as high as 1300°C. The coefficient of thermal expansion 

(CTE) of AlMgB14 was measured to be 9x10-6 K-1. [12] This value is very close to the CTE of 

widely used materials such as steel, titanium, and concrete. It is also cheap; the projected cost of 

manufacture of the boride is 10% of the cost of diamond and cubic BN. The price of AlMgB14 is 

about 0.4-2$/g.[12] These properties make the AlMgB14 to be a promising candidate to replace 

diamond as a high hardness material.  

In this thesis, ReB2 and hexagonal OsB2 powders were synthesized using 

mechanochemical route by milling elemental powders in the SPEX 8000 high energy ball mill. 

The AlMgB14 was synthesized at 1050 °C under normal pressure. Several different routes were 

tried and compared.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Rhenium Diboride 

 

Rhenium diboride (ReB2) is a ceramic that has been receiving a lot of attention in the 

scientific community because of its unusual properties. It has been reported as a superhard 

material [4,13,14] with a hardness of 48 GPa measured at a small applied load (0.5N), which 

means ReB2 can be regarded as “superhard” materials.  

 

2.1.1 Crystal structures of ReB2 

 

It was reported that it exhibits strong and highly covalent bonding, while a strong 

hybridization between the Re 5d and B 2p states indicates that Re-B bonds have also prevalent 

covalent character with some degree of ionic bonding present [15,16,17]. Covalent boron-boron 

bonds are significantly stronger than the covalent Re-B bonds [18], and such difference between 

the B-B and Re-B bonds, as well as between nonequivalent Re-B bonds is responsible for 

anisotropic compressibility and rigidity of the structure [19]. The strong directional B-B bonding 

complimented by Re-B covalent bonds are responsible for the high resistance to elastic and 

plastic deformations resulting in high shear, bulk, and Young’s moduli, which are indicative of 

high hardness of the compound [20]. It was also reported that both Re 5d and B 2p states are at 

the Fermi level and, hence, ReB2 exhibits metallic behavior [14]. 
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ReB2 has a hexagonal P63/mmc (No. 194) structure with lattice parameters a=b=2.9 Å 

and c= 7.478 Å. Four boron atoms occupy sites (2/3, 1/3, z), (1/3, 2/3, 1/2+z), (2/3, 1/3, 1/2-z), 

(1/3, 2/3, 1-z) with experimental z=0.048, while two Re atoms occupy sites (1/2, 2/3, 1/4) and 

(2/3, 1/3, 3/4). [21] The unit cell of ReB2 was shown in Figure 1. [22] 

 
Figure 1: The unit cell of ReB2 with Re-B and B-B bonds. [22] 
 

2.1.2 Synthesis of ReB2 

 

Figure 2 shows the phase diagram of the Re-B system. [23]. Although, the stoichiometric 

compound is ReB2, a phase of highest boron content in the Re-B phase diagram [24], it is 

difficult to synthesize a stoichiometric phase, and excess boron is usually required to ensure the 

formation of ReB2 due to boron loss during the synthesis. Several approaches are reported on the 
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synthesis of ReB2 [4,13,14,19,20,25,26,27,24,28,29,22,30,31]. In paper [19] ReB2 was prepared 

using the solid state synthesis in an alumina crucible at 1300K for 4 hours in vacuum from 

elemental B and Re taken in a molar ratio of 2.5:1. It was reported that the synthesized material 

contained 5% impurity. Hexagonal platelets ReB2 crystals were synthesized using 

(B3H8)Re(CO)4 molecular precursor through the confined-plume chemical deposition (CPCD) 

technique [28]. The precursor has a 1:3 Re/B stoichiometry, which mitigated the loss of boron 

during synthesis. Arc melting of the 1:2.5 ratio of elemental Re and 11B in Ar atmosphere was 

used in paper [20] to synthesize a composition of ReB2.  

 

Figure 2: Phase diagram of the Re-B system. [23] 
 



 
 

7 

Three different techniques, all with some excess of B, were reported to be used for the 

synthesis of ReB2. Spark Plasma Sintering, tri-arc crystal growing technique, and arc-melting are 

reported as techniques of choice to produce dense ReB2 [27]. Solid state synthesis from Re and B 

powders in Re/B molar ratio of 1:2.5 under pressure of 5 GPa and high temperature 1600°C for 

60 minutes, followed by quenching to the room temperature at 100 °C/s was reported in paper 

[26]. ReB2 crystals have also been synthesized by arc melting [4], zone melting [29] and optical 

floating zone furnace synthesis [25] techniques. Thin ReB2 films were produced by pulsed laser 

deposition (PLD) technique using ReB2 target, which was prepared by electron beam melting of 

the mixture of 1:2.5 Re to B powders [13]. While most of the techniques used to synthesize ReB2 

used excess boron, a few papers [14,22 ,30 ,31] utilize a 1:2 stoichiometric ratio for ReB2 

synthesis. In [22] two methods are reported, where one part of spectroscopically pure Re was 

heated with two parts of amorphous B. One method was by heating the powder mixture in sealed 

evacuated silica tubes at 1200°C for 12 hours and another method was by induction heating 

under the atmosphere of helium in vitrified alumina crucibles at 1500°C. Both methods yielded 

ReB2 structure [22]. In [30], the 1:2 mixture of Re to crystalline 11B powders were pressed into 

pellets, which were heated in an induction furnace under Ar atmosphere. The pellets were melted 

at 2600K for one hour. After synthesis, ReB2 samples were ground down using a ball mill with 

WC milling cups and balls. The 1:2 Re to B ratio was also used for synthesis of ReB2, but with 

the significant presence of aluminum as the growth medium [14]. The mixture was heated to 

1400°C and held at temperature for 5 hours, it was slowly cooled to 700°C and then quickly 

cooled to room temperature. After synthesis, the aluminum flux was dissolved in NaOH, and 

ReB2 crystals were washed with deionized water and dried in air [14].  
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SPS technique was also used to sinter dense ReB2 pellets by using 1:2 Re to B powder 

mixture [31] but besides the ReB2 phase, Re7B3 phase along with C impurity was also obtained 

during sintering. All the described techniques, used for the synthesis of ReB2, involved using of 

high temperatures, sometimes as high as 2600K. Since the vapor pressure of boron is much 

higher than that of rhenium, it created a problem with the stoichiometry of the ReB2 compound. 

A technique for ReB2 synthesis at nominally room temperature would represent a major advance 

in the material’s manufacture. The discussion in the literature inspired us to examine a new 

synthetic route to ReB2 powders. These powders, as well as those of other boron-rich solids are 

typically not commercially available; therefore, techniques which allow synthesis of boron-rich 

solids are of high interest, especially if synthesis is performed at room or near room 

temperatures. 

 

2.1.3 Mechanical properties of ReB2 

 

There have been numerous discussions in regard to the actual hardness of ReB2 which 

was reported in Science [4]. Several reports [32,25,26]suggest that the hardness of ReB2 was 

overestimated since it was measured in the region where the indentation size effect (ISE) is 

known to exist. According to different studies [32,25,26] the hardness value for ReB2 lies well 

below the threshold of 40 GPa, and claims of ReB2 being a super-hard material cannot be 

justified. However, evidence was produced [27] that the measured mechanical properties are 

strongly compositional dependent, where Re to B stoichiometry as well as morphology of the 

grains plays important roles in the mechanical behavior of ReB2. In particular, the presence of 
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excess of amorphous boron along the grain boundaries of spark plasma sintered ReB2, where 

1:2.5 Re to B stoichiometric ratio was used to synthesize polycrystalline material, was 

responsible for the measured lower hardness and Young’s modulus values [27]. Table 1 shows 

the elastic moduli for the tri-arc crystal, SPS compact, arc-melted ReB2 and theoretical models. 

The tri-arc crystal shows the highest elastic moduli, which is closer to the theoretical results. [27] 

 
Table 1: Elastic moduli, Poisson’s ratio and densities for the three forms of ReB2 obtained from 
the experimentally derived elastic constants along with theoretical calculations. [27] 
 

 E(GPa) B(GPa) G(GPa) ν Ρ(g/cm3) 
Tri-arc 661 383 273 0.21 12.51 

SPS compact 434 230 183 0.19 10.89 
Arc-melted 614 296 267 0.15 11.12 

GGA approx. 683 355 289 0.18 12.96 
 

Another problem, which makes ReB2 very difficult material to work with, is that it slowly 

degrades in the presence of moist air. When ReB2 interacts with water in air it becomes covered 

with a viscous solution within a few months. This property becomes especially serious when 

high surface area powders are exposed to water vapors in air, which may complicate ReB2 

implementation in industrial applications. 

 

2.2 Osmium Diboride 

 

Osmium is the most incompressible metal with bulk modulus ranges between 395 to 462 

GPa, which is comparable to diamond (443 GPa). [33][34]Since osmium carbide is metastable 

under ambient condition and osmium nitride only can be synthesized under extreme conditions 
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(greater than 50GPa and 2000K), osmium boride may be a good choice. Os-B system contains 

OsB1.1, OsB3 and OsB2, among which OsB2 has more Os-B bonds and results in higher hardness. 

[10] The phase diagram of Os-B system is shown in Figure 3. [35] 

  

Figure 3: Os-B phase diagram with OsB1.1, Os2B3 and OsB2 phases. [35] 
 
 

2.2.1 Crystal structures of OsB2 

 

Both OsB2 and ReB2 are ultra-incompressible and hard materials. However, OsB2 and 

ReB2 own different crystal structures. So far all the synthesized OsB2 [3,10,36,37,30] has an 

orthorhombic Pmmn (No. 59) structure with lattice parameters a=4.6855(6) Å, b=2.8730(3) Å 

and c=4.0778(4) Å [36], while ReB2 has a hexagonal P63/mmc (No. 194) structure with lattice 
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parameters a=2.9 Å and c=7.478 Å [4]. In the orthorhombic OsB2 unit cell, two Os atoms are 

placed at Wyckoff position of 2a (1/4, 1/4, z) and 4f (u, 1/4, v) for B atoms. [38, 39] Hexagonal 

OsB2 has the same symmetry with ReB2 [40]. The hexagonal unit cell contains two OsB2 

chemical formula unit (f.u.), two Os atoms are placed in 2c (1/3, 1/3, 1/4) and four B atoms in 4f 

(1/3, 2/3, z) positions, with z=0.548. [9] 

According to Chen’s study on 5d transition metal diborides MB2 (M=Hf, Ta, W, Re, Os, 

Ir), there are 3 types of crystal structures for OsB2, as shown in Figure 4, ReB2-type (Hex-I), 

RuB2-type (Orth), and AlB2-type (Hex-II). So far, the synthesized OsB2 has a RuB2-type (Orth) 

structure, whereas ReB2 crystallizes in the hexagonal ReB2-type structure. As shown in Figure 5, 

the Hex-I and Orth structures are very close in energy for all MB2 compounds. The Orth 

structure becomes marginally more stable than Hex-I, and Hex-II is the least stable for OsB2. So, 

Hex-I structure maybe a pressured-induced phase for OsB2. [18] 

 

 
Figure 4: Crystal structures of (a) ReB2-type (Hex-I), (b) RuB2-type (Orth), and (c) AlB2-type 
(Hex-II). [18] 
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Figure 5: Heats of formation (∆Hf) at zero pressure of MB2 (M=Hf, Ta, W, Re, Os, Ir). [18] 
 
 

A generalized gradient approximation (GGA) calculation was done by Ren et al. The 

GGA calculation results agree with the previous theoretical results and the experimental ones. 

The hexagonal structure is only 0.048 eV higher than the orthorhombic structure at zero pressure, 

and the transition pressure of orthorhombic structure to hexagonal structure is 10.8 GPa. [9] 

However, Chen et al. reported that the orthorhombic OsB2 was found to transfer into 

hexagonal structure at 2.5 GPa with the local density approximation (LDA). [18] To our 

knowledge, there is no experimental report about the transition pressure of OsB2. This motivates 

us to verify it by experiments, but the first step is to explore the Hex-I OsB2. 
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2.2.2 Synthesis of OsB2 

 

The orthorhombic OsB2 was first synthesized in 1960s, but its high hardness was just 

found recently by Cumberland et al. in 2004. [3] Two methods were employed in their synthesis. 

When considered osmium metal can be oxidized to an extremely hazardous compound osmium 

tetroxide, vacuum or inert atmosphere was used to prevent oxidization in both methods. In the 

first method, MgB2 was used as precursor in solid-state metathesis reactions. [41] The reactants 

OsCl3 and MgB2 were mixed with a ratio of 2:3, initiated with a resistively heated Nichrome 

wire, self-propagated and went to completion in less than 1s, then Os2B3, OsB forms and some 

Os and B left. In the second method, a 1:2 molar ratio of Os:B heated at 1000 °C yielded a 

mixture of osmium borides; while the Os and B powders are mixed with 1:5 molar ratio and 

heated at 1000 °C for 3 days, then pure OsB2 forms and some boron left. [3]  

Another synthesis experiment was done by Singh. Single crystals of OsB2 were grown 

with a high temperature solution growth method using Cu-B as the flux. First, arc-melt Os 

powder and B chunks mixture with stoichiometric ratio, and put the arc-melted OsB2 sample in 

an Al2O3 crucible. The crucible was put into a tube furnace which was protected by argon flow. 

Heat the furnace to 1450 °C in 6 hours and hold this temperature for 6 hours. After it was cooled 

down, dissolve the Cu-B flux by dilute nitric (HNO3) acid. [36] 
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2.2.3 Mechanical Properties of OsB2 

 

The incompressibility (bulk modulus) of a wide variety of substances can be directly 

correlated with their valence electron densities, electrons/Å3. [42] Since high bulk modulus is 

often correlated with hardness, maximizing the valence electron density is a potentially useful 

design parameter. [43,44] Osmium has one of the highest valence electron densities for a pure 

metal (0.572 electrons/Å3), and recent measurements of its bulk modulus give values in the range 

of 395-462 GPa. [33,34,35,]  However, osmium has metallic bonds, whereas diamond possesses 

covalent bonds. This is why the bulk moduli of diamond and osmium are very close, but their 

hardnesses vary greatly. [3]  

 

Figure 6: Crystal structure of orthorhombic osmium diboride. Osmium atoms are shown as red 
spheres and boron atoms as yellow spheres. [3] 
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By incorporating boron atoms into osmium metal to create covalent bonding, the 

hardness can be improved. The individual axes changes linearly with increasing pressure. 

However, the compression of the axes shows interesting anisotropy, which is because OsB2 unit 

cell is not cubic. Figure 6 shows the crystal structure of orthorhombic OsB2. The b-direction of 

the crystal is most compressible, while the c-direction is the least compressible. [3] 

Figure 7 shows the conventional unit cell of orthorhombic OsB2. In Figure 1a, a 1×1×2 

supercell highlighting the weak (001) Os-Os layer, formed by the Os1 and Os2 atoms in the 

adjacent unit cells (Figure 1b). The triangular structure B1-Os1-B2 (or B3-Os2-B4) in the unit 

cell strengthens this Os-Os layer against the shear deformation in the [100] direction; however, 

in the [010] direction, the Os-Os layer is weak under the shear stress because most of the B-Os 

bonds are either perpendicular to this direction or lying outside of this Os-Os layer. [45]. 

 

Figure 7: (a) The conventional unit cell of OsB2. (b) The 1×1×2 supercell showing the Os-Os 
layer that is strong against shear deformation in the [100] direction but weak in the [010] 
direction. [45] 
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The Mohs hardness of the OsB2 is 9 on the Mohs scale (diamond is 10), which is 

comparable to sapphire. [3] The Vicker’s hardness is 37 GPa, when the applied load is lowered 

to 0.245N. Also, the hardness was found to be orientationally dependent, with values obtained 

along the <100> direction higher than those along the <001> direction, because the stronger B-B 

bonds located along the <100> direction. The Young’s modulus was found to be 410±35 GPa by 

nanoindentation experiments. [10] 

 

2.3 AlMgB14 

2.3.1 Crystal structure of AlMgB14 

 

The crystal structure of AlMgB14 was determined by Matkovich et al. in 1969. As shown 

in Figure 8, the distance between intra-icosahedral boron-boron with an average of 1.810 Å. 

There is a larger distance of 2.040 Å between extra-icosahedral boron atoms. Magnesium has 12 

bonds to boron atoms in six different icosahedral at an average distance of 2.730 Å and two 

bonds to extra-icosahedra boron neighbors at a distance of 2.363 Å. Aluminum has eight bonds 

to atoms in four different icosahedra at an average distance of 2.37 Å and four extra-icosahedra 

boron atoms at a short distance of 2.061 Å. [46] 
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Figure 8: A layer of icosahedral in MgAlB14 with extra-icosahedral atoms. The atoms shown fall 
within x=±1/4. [46] 
 

The AlMgB14 has an orthorhombic structure with 64 atoms. The icosahedrons are 

arranged in distorted, closed-packed layers, with atoms between the icosahedra. The lattice 

parameters of AlMgB14 was found a=5.848 Å, b= 10.313 Å, c=8.115 Å and β=90°. Figure 9 

shows the arrangement of boron icosahedra in unit cell. [46] Crystallographic studies indicate 

that the metal sites are not fully occupied in the lattice. The actual formula of AlMgB14 may be 

close to Al0.75Mg0.78B14. 
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Figure 9: Interpretation of unit cell dimensions in terms of an icosahedral arrangement. [46] 
 
 

2.3.2 Synthesis of AlMgB14 

 

AlMgB14 was first synthesized by Matkovich et al. by accident in 1969. AlMgB14 was 

observed when the mixture of boron and aluminum was heated to 1000 to 1400 °C, and Mg was 

impurity. Later, larger amount of the AlMgB14 was prepared by heating a mixture of magnesium, 

aluminum and boron with a proportion of 1: 2: 14. The mixture was heated to 900 °C for six 

hours; cooled and treated with concentrated hydrochloric acid. [46] After that, different synthesis 

methods were used to get high quality AlMgB14 samples. 

The MA/hot uniaxial pressing technique was used by Lewis et al. in their synthesis of 

AlMgB14. [47] The reactive sintering of the hard boride AlMgB14 from the elements was 
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investigated using the pulse electric current sintering (PECS) method. [48] No AlMgB14 was 

formed during the milling. Also, it was found that vacuum annealed boron brings better results 

than the untreated one and boron pieces are less oxygen contaminated, which leads to the most 

pure product in the group. When sintered under lower temperature, AlMgB4 was found, with 

increasing sintering temperature, AlMgB4 turns to AlMgB14. So, Roberts suggested that the 

reaction 

7AlMgB4=2AlMgB14 + 5Al + 5Mg                                            (1) 

maybe happened.  

Kevorkijan et al. successfully synthesized AlMgB14 under normal pressure and high 

temperature by using magnesium as a precursor. [49] Recently, Sun et al. applied a two-step heat 

treatment on the phase formation of AlMgB14. This method based on the two reactions below. 

6Mg (l) + Al (l) +14B (s) = Mg6AlB14 (s) (850 °C)                              (2) 

Mg6AlB14(s) =MgAlB14 (s) + 5 Mg(g)                                      (3) 

Mix Mg, Al and B with stoichiometric ratio of Mg6AlB14 uniformly by hand grinding in 

glove box filled with argon gas. The samples are sintered at 850 °C for 3 hours in closed argon 

atmosphere. In the second step, the Mg6AlB14 disks were put in the vacuum furnace sintered 

around 1050 °C for 180min yields 84% of AlMgB14. [50] 

 

2.3.3 Mechanical properties of AlMgB14 

 

One of the most interesting properties of AlMgB14 is its high hardness. Materials with 

high hardness and thermodynamically stable are usually considered to be used for tool and 
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protective coating applications. Some mechanical properties of hard materials are listed in Table 

2 for comparison. It can be seen that the hardness of TiB2 doped AlMgB14 is comparable to the 

cubic BN and cubic C3N4; while the density is lower than that of diamond, BN and C3N4. 

 
Table 2: Density, Hardness, bulk and shear Moduli of selected superhard materials. [52] 
 

Materials Density (g/cm3) 
Hardness 

(Gpa) 
Bulk Modulus 

(GPa) 
Shear Modulus 

(GPa) 

C (diamond) 3.52 70 443 535 

BN (cubic) 3.48 45-50 400 409 

C3N4 (cubic)  N/A 40-55 496 332 

TiB2 4.5 30-33 244 263 

AlMgB14 2.66 32-35 N/A  N/A 

AlMgB14+Si 2.67 35-40 N/A N/A 

AlMgB14+TiB2 2.7 40-46 N/A N/A 

 

Higashi et al. reported a hardness value of 27.4 to 28.3 GPa for AlMgB14. [51] Cook et al. 

obtained a hardness value of 32 to 35 GPa for their synthesized AlMgB14 baseline material, 

which is much higher than the hardness reported by other investigators who grew AlMgB14 

single crystals from high temperature solutions. When dope the baseline AlMgB14 with 30 

percent of TiB2, the hardness increased greatly to 46 GPa, which makes this material belongs to 

the category of “superhard material”.[52] Also, it is found that 30 percent of doping makes 

AlMgB14-TiB2 show the highest hardness. In most of the hard materials, hardness decreased 

when adding other elements of compounds. However, AlMgB14 shows is absolutely the 

opposite, which is interesting but hard to explain. 
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Figure 10: Nose wear vs. cutting time for uncoated and coated C-2 tools in dry machining (a); 
Flank wear vs. cutting time for uncoated and coated C-2 tools in dry machining (b). [12] 
 

Cherukuri et al have successfully coated AlMgB14 on C-2 and C-5 tools by Pulsed Laser 

Deposition (PLD). Thin coatings are strongly adhered to the tool edges at low temperature (500 

°C). In Figure 10, it is also demonstrated that AlMgB14 has the potential to exceed the 

performance of Ti-based coatings. [12] 
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2.4 Mechanochemistry 

 
Mechanochemistry is a part of solid state chemistry where intra-molecular bonds are 

mechanically broken. [53] Solids are different from gases and liquids, it can support shear strain. 

Thus mechanical forces can trigger chemical reactions. Shear force is more effective than pure 

isotropic compression, because shear changes the symmetry of a solid or molecule. For example, 

sheared spheres turned to be ellipsoids, cubic symmetry becomes tetragonal. The electronic 

structure of bonds in solids becomes unstable after the breaking of symmetry, which makes the 

solid tend to have chemical reaction. [54] Large strain brings together the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) to close the 

gap. Then the bonding electrons delocalize into the anti-bonding states. Electrons move freely 

and the activation energy for the reaction becomes zero, which is called athermal reaction. [55] 

Gilman et al. used a square lattice as a 2D model to compare the effect of shear and 

isotropic compression. When the square lattice is applied with a hydrostatic strain, the shifts of 

the band gap mid-point will be the same in the two orthogonal directions, and the minimum band 

gap will not be changed. [55] However, when the square lattice is applied with a shear strain, it 

causes one axis increase and the other decrease and the band gap mid-point shift in opposite 

directions. Thus the minimum gap decreased. [55] 

Ball milling is a widely used technique in mechanochemical synthesis. It contains 

planetary, vibration devices, Spex mills. Mechanical actions occur due to both normal pressure 

and shear. Based on the construction features of a mill and its operation regime, the relation 

between pressure and shear can be varied in a wide range. [56] 
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Besides, ball milling accelerates the kinetics of chemical reactions by creating fresh 

interfaces between reacting phases by dynamic fracturing, deformation and cold welding of the 

solid particles. It is also reported that milling devices can be used to synthesize a variety of 

metastable phases, amorphous alloys and nanostructured compounds. [57] In paper [58], discrete 

element models of the milling process were generated using EDEM. It is reported that Spex 

shake mill can produce compressive force 0.4 to 3 GPa by using steel milling vials and balls. 
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

3.1 Synthesis of ReB2 

 

Rhenium metal powder (99.99% pure, -325 mesh; Cerac) and boron powder (99% pure, -

325 mesh, amorphous; Alfa Aesar) were used as received. A total of 20 grams of a 

stoichiometric amount of rhenium and boron powders were loaded into a Spex tungsten carbide 

vial with two 12.7mm diameter tungsten carbide balls. The grinding was done by a Spex 8000 

mixer mill for a total of 80 hours.  

 

Figure 11: (a) Spex 8000 mixer mill and (b) milling vial and media. 
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Figure 11 shows the Spex 8000 mixer mill, milling vial and media. After ball milling, the 

powders were stored in plastic bags. No protective atmosphere was used in the whole 

experiment.  

 

3.2 Synthesis of OsB2 

 

In order to experimentally explore the hexagonal phase of OsB2 and find the phase 

transition pressure, experiments were conducted using ball milling. [59,60] This approach allows 

synthesis of numerous novel materials and very complex compounds by applying mechanical 

force to mixtures of elemental powders [56]. It involves repeated cold welding, fracturing, and 

re-welding of powder particles due to heavy deformation. As a result, the microstructure gets 

refined and the increased diffusivity (due to creation of a high density of crystalline defects) and 

reduced diffusion distances (due to refinement of microstructure) allow synthesis to take place at 

or near room temperature. In a mechanochemical synthesis, attrition results in the reduction of 

particle size. This effectively creates micro reaction regimes where frictional heating can supply 

the activation energy for the production of line compounds from the elements. At this point, the 

heat of reaction can drive the reaction forward and even result in a self-propagating reaction [61]. 

This method has been used to produce intermetallic phases, metallic glasses and composites and 

different borides [59,60 ,62,63,64,65,66,67]. Among the mechanochemical approaches, ball 

milling is a convenient way to achieve high pressure with shear forces.  
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Osmium metal powder (99.95% pure, Heraeus) and boron powder (99% pure, -325 mesh, 

amorphous and crystaline; Alfa Aesar) were used. Osmium and boron powders with molar ratio 

of 1:3, and two 12.7mm diameter tungsten carbide balls were loaded into a Spex tungsten 

carbide vial. The ball-to-powder weight ratio was 4:1. The grinding was done by a Spex 8000 

mixer mill for a total of 33 hours. Samples were taken out for XRD by every 2 hours. After 

milling, the mixture powder was sealed in a small vacuum quartz tube, and heated in a furnace 

for 6 days at 1050 °C. 

 

3.3 Synthesis of AlMgB14 

 

Different ways were used in synthesizing of AlMgB14. The processes of loading powders 

in all experiments were done in glove box under argon atmosphere (with an average oxygen 

concentration of 0.45 ppm), except the step of loading powders to SPS dies in Experiment 1. 

Table 3 listed the information of all the powders used in the experiments. 

 
Table 3: Purity, particle size and provider of the reactants. 
 

Reactants purity particle size company 
Al 99.97% -325 mesh Materion 
Mg 99.80% -325 mesh Alfa Aesar 

AlB2 99% -325 mesh Alfa Aesar 
MgB2 99% -325 mesh Alfa Aesar 

B 99% -325 mesh Alfa Aesar 
B 90-92% <5micron Materion 
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Experiment 1 

 The reaction  

AlB2+MgB2+10B=AlMgB14                                                      (4) 

was supposed to be realized to produce AlMgB14. Ball milling was first used to mix all the 

powders homogeneously and activate the reaction. The stoichiometric amount of AlB2 (99%, -

325 mesh, Alfa Aesar), MgB2 (99%, -325 mesh, Alfa Aesar), B (99%, -325 mesh, Alfa Aesar) 

and two tungsten carbide balls (12.7 mm diameter) were loaded into a Spex tungsten carbide 

vial. The ball to powder mass ratio was 4:1. The vial was loaded on Spex 8000 mixer mill for 

23.5 hours. In order to find out if AlMgB14 can be synthesized by ball milling, samples were 

taken out for XRD every 4 hours of milling. After milling, powders were loaded in 20mm 

diameter graphite dies for Spark Plasma Sintering (SPS). This process was exposed in air with a 

short time. Different from conventional hot pressing, heat generated internally in SPS. Figure 12 

shows the general schematic of the SPS. DC current passes through graphite die and sample 

when the sample is conductive. The sintering was under 1450 °C and 50 MPa, lasted for 5 

minutes. The heating curve of the whole sintering was shown in Figure 13. An 8mm thick disk 

was obtained after sintering. The disk was ground into powder again for XRD.  
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Source: http://www.ceramicindustry.com/CI/Home/Images/ci0508_f5_fig2_lrg.jpg 
 
Figure 12: Schematic of spark plasma sintering. 
 

 

Figure 13: Heating curve of spark plasma sintering. 
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Experiment 2 

The synthesis approach was changed to base on the reaction 

Al+Mg+14B=AlMgB14                                                             (5) 

since the elemental reactants may be more reactive. Al (99.97% pure, -325 mesh, Materion), Mg 

(99.8% pure, -325 mesh, Alfa Aesar) and B (99% pure, -325 mesh, amorphous and crystalline, 

Alfa Aesar) powders were loaded into vial stoichiometrically. They were milled for a total of 40 

hours. The ball to powder mass ratio was 4:1. Samples were taken out every 10 hours of milling 

for XRD. Another part of the mixture powders were milled with a ball to powder mass ratio of 

10:1 and milled for 2 hours. The milled powders were sintered in a tube furnace for 2 hours 

under argon flow. The sintering temperature was 1050 °C. 

Experiment 3 

Oxidization leads to the failure in the first two experiments. This experiment is aim to 

solve the problem of oxidization. The oxygen source can also be the boron powder since the high 

surface ratio powder can be oxidized somehow. Butanol was used to purify the boron powder. In 

the reaction  

B2O3+6C4H9OH            2(C4H9O)3B+3H2O                                     (6) 

the boiling point of C4H9OH is 118 °C which is higher than the boiling point of water. After it is 

fully reacted, the mixture was heat to 110°C to remove water. By the same time, the reaction will 

be forced to react towards right hand side so that more B2O3 will be consumed. Finally, the 

mixture was centrifuged and dried. 

When considered the magnesium powder is volatile at high temperature, excess 

magnesium was used in this experiment. The elemental Al (99.97% pure, -325 mesh, Materion), 
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Mg (99.8% pure, -325 mesh, Alfa Aesar) and boron (92% pure, -325 mesh, amorphous, 

Materion) powders were mixed in a molar ratio of 1:6:14. Instead of grinding the powders in 

Spex ball mill, mortar and pestle were used to mix those powders in a glove box. By this way, 

the mixture may not be as homogeneous as that grinded by Spex ball mill, but it avoided the risk 

of oxidization. The mixed powder was pressed to pellets (10mm diameter and 5mm thickness) 

by a small die in the glove box, as shown in Figure 14.  

 

Figure 14: The glove box and furnace. 
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By pressing powders together, diffusion of atoms under high temperature can mitigate the 

problem of inhomogeneous mixing. The pellets were put into a steel boat and sent to the tube 

furnace. All the preparing steps were in argon atmosphere. The furnace was heated up to 1050°C 

in 4 hours, maintain 1050 °C for 3 hours and then cooled down to room temperature in 5 hours. 

Argon flow was maintained during sintering. The pressure in the tube was a little higher than air 

pressure to prevent air going into the tube. After sintering, a pellet was ground for powder XRD. 

 
Experiment 4 

Experiment 4 was attempted to compare the different synthesizing routes. Table 4 listed 

the difference of each route. The same method was used as described in Experiment 3. Six 

samples were prepared and sintered in the same batch. XRD was performed after sintering. 

When considered the high vapor pressure of Mg leads to Mg loss during sintering, excess of Mg 

was used in Route 2. 

 
Table 4: Information of samples prepared in Experiment 4. 
 

Routes reaction equations Sintering 
1 Mg+Al+14B=AlMgB14 3 hours at 1050 °C 
2 6Mg+Al+14B=AlMgB14 3 hours at 1050 °C 
3 Mg+Al+14B=AlMgB14 6 hours at 1050 °C 
4 Mg+AlB2+12B=AlMgB14 3 hours at 1050 °C 
5 MgB2+Al+12B=AlMgB14 3 hours at 1050 °C 
6 AlB2+MgB2+10B=AlMgB14 3 hours at 1050 °C 
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3.4 Characterization of ReB2, OsB2 and AlMgB14 

3.4.1 XRD 

 

To ReB2, OsB2 and AlMgB14, a small sample was removed for phase analysis by X-ray 

diffraction (XRD) at every certain time. A Rigaku D/MAX X-Ray Diffractometer (Cu Kα 

radiation, λ=1.54056 Å, Rigaku, Tokyo, Japan) was used to record X-ray diffraction patterns of 

the powder from 10 to 80 degrees, with a scan speed of 2 seconds per step and a step size of 

0.01°. All the diffraction patterns are identified by JADE software (Materials Data Inc., 

Livermore, CA, USA). In the synthesis of osmium diboride, XRD was done with high resolution 

(0.002 degree/step) for the 25-hour-milled sample. The XRD data was used for Rietveld 

refinement. 

3.4.2 Microscopies 

 

The morphology and grain size of the powders were examined using a Scanning Electron 

Microscope (Zeiss ULTRA-55 FEG SEM, Zeiss, Oberkochen, Germany) equipped with a field 

emission gun operating between 10-20 kV. In the synthesis of OsB2, Energy-dispersive X-ray 

spectroscopy (EDX) was applied together with SEM to identify the elements exist in the osmium 

and boron mixture powder. A Transmission Electron Microscope (FEI Technai F30 TEM, FEI, 

Amsterdam, Netherlands) was used to get finer resolution images of the synthesized particles as 

well as to produce an area map distribution of Re, B, and W elements in the material. In the 
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synthesis of OsB2, TEM was also used to perform electron diffraction. The accelerating voltage 

of the TEM was 300kV. 

3.4.3 SIMS 

 

Secondary ion mass spectrometry was used to detect impurity elements present in the 

mixture powder. Adept 1010 Dynamic SIMS System (Physical Electronics USA, ULVAC-PHI, 

Kanagawa, Japan) has been applied to collect mass spectra for the samples. Cs primary beam of 

3kV and 25nA or 50nA was rastered over area 1000×1000μm. Both negative and positive 

secondary ions were collected. An auxiliary e-gun was used for charge neutralization. 

 

3.4.4 Micro-Raman Spectroscopy 

 

Raman spectroscopy is a spectroscopic technique used to study vibrational, rotational, 

and other low-frequency modes in a system. [68] A Renishaw InVia Raman spectrometer was 

used to study the vibrational spectra of ReB2 powders. The Raman spectrometer system is 

comprised of two lasers (532nm and 785nm) to excite the sample, a single spectrograph fitted 

with holographic notch filters and a Leica optical microscope (Leica, Wetzlar, Germany) rigidly 

mounted and optically coupled to the spectrometer. The generated laser power was 25mW. In a 

Raman spectra collection, the light of a laser is focused on the sample. The spectrum of collected 

scattered lights is analyzed by a spectrometer and a charge-coupled device (CCD) detector. 

Before collecting spectra of ReB2, the spectrometer was calibrated with a Si standard using a Si 



 
 

34 

band position at 520.3cm-1. The average collection time for a single spectrum was 300s. Five 

measurements were performed from different locations of the powder in order to obtain the 

repeatable data. The 50× objective was used for illumination of the spot of 3-4μm in diameter. 

Renishaw wire 2.0 software was used to produce two dimensional maps.  
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Rhenium Diboride 

4.1.1 XRD 

 

The synthesis of the desired ReB2 phase out of elemental Re and B was monitored by 

powder X-ray diffraction (XRD). The XRD patterns of metallic Re and B amorphous powders 

used for mechanochemical synthesis of ReB2 are shown in Figure 15(a) and (b). Figure 15 (c) 

shows the X-ray diffraction patterns of ReB2 powders after different milling times. The quantity 

of ReB2 increased with increased milling time. After 5, 10, 15 or even 20h of milling significant 

amounts of Re metal were still present. After 30 hours of milling a small amount of Re was still 

evident with the ReB2 formed. After 50h of ball milling no Re was detected by XRD. The peaks 

of (002), (100) and (103) ReB2 planes are sharper and have an increased intensity after 50h in 

comparison with 30h of milling, which indicates the presence of a more crystalline product. The 

WC phase was also present due to degradation of the milling media and vial upon contact with 

the abrasive product. Table 5 lists the lattice parameters of the synthesized ReB2 after mechanical 

alloying for 30, 50 and 80h, and lattice parameters of ReB2 reported in the literature (PDF card # 

01-073-1392) are also given for comparison [22]. As one can see from the Table 5, the measured 

lattice parameters match closely to the reported values. It is also noted that the lattice parameters 

slightly decrease with increase in mechanical alloying time, while the c/a ratio increases with 

longer mechanical alloying time approaching the reported value.  



 
 

36 

10 20 30 40 50 60 70 80
2o

In
te

n
s
it
y
, 

a
.u

.

Re
Re

Re

Re

Re

(a)

Re

0 10

 

10 20 30 40 50 60 70 80
2o

In
te

n
s
it
y
, 

a
.u

.

(b)

0 10

 

10 20 30 40 50 60 70 80




 Re

 WC

 ReB
2









 
 







 





















(c)

In
te

n
s
it
y
, 

a
.u

.

2o

 30h

50h

80h

0 10

 

Figure 15: (a) X-ray diffraction patterns of Re powder, (b) B powder  and (c) ReB2 mechanically 
alloyed powders after 30, 50, and 80 hours of milling. The observed broad peak at ~18° 2Ɵ in (b) 
is a common peak seen for amorphous materials. 
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Table 5: Lattice parameters of the synthesized ReB2 after mechanical alloying for 30, 50 and 80 
hours. 
 

Mechanical alloying time (hour) a (Å) c (Å) c/a ratio 

30 2.9176 7.5023 2.5714 

50 2.9057 7.4867 2.5766 

80 2.9018 7.4867 2.5800 

PDF#01-073-1392 [21] 2.9000 7.4780 2.5786 
 
 

4.1.2 Microscopies 

 

Figure 16 presents an SEM micrograph of the ReB2 powders after 80h of milling. It can 

be seen that a wide particle size distribution is observed. The size of the largest agglomerates is 

about 1 µm. Along with morphology study of agglomerates by SEM, high resolution 

characterization of selected particles was performed using TEM. A typical particle of 

mechanochemically synthesized ReB2 and its electron diffraction are shown in Figure 17. The 

particle size is about 60nm wide and 150nm long. It consists of a number of crystallites 5-10nm 

in diameter agglomerated together. The selected area electron diffraction pattern of the particle 

shows clearly defined diffraction spots, indicating that the particle is crystalline in nature. The 

maps of the distribution of Re, B, and W (Figure 18) show that the distribution of B is not 

homogeneous and a high concentration of boron can be seen in a location at one side of the 

particle under study. Tungsten was also located on the opposite side of the particle, thus 

confirming the XRD data of contamination of the ReB2 by the material used to make the vial and 

milling media.  
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Figure 16: SEM micrograph of ReB2 powders after ball milling for 80 hours. 
 

 

Figure 17: (a) TEM micrograph of a particle of ReB2 powder after 80 hours of milling, (b) 
Electron diffraction of ReB2 particle, (c) TEM micrograph of ReB2 lattice fringes. 
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Figure 18: Distribution maps of (a) Boron, (b) Rhenium, (c) Tungsten in ReB2 particle obtained 
 

4.1.3 SIMS 

 

The presence of a number of impurities was also confirmed by SIMS. It can be seen from 

Figure 19(a), that oxygen was detected in the mixture after milling for 0.5h since the 16O peak 

was present along with other oxygen containing peaks such as O+B, O2, and BO2. The intensity 

of the 16O peak increased relative to the intensity of 10,11B peak as milling time was increased 

indicating the further O contamination of the powders. The relative intensity of O, BO and BO2 

peaks over the 10,11B peak is shown in Table 6 and one can see that the oxygen content increased 

as milling time increased from 0.5h to 40h reaching a saturation point since the oxygen content 

did not increase significantly from 40h to 80h of milling. The Re+O peak intensity was also 

compared to the Re+B peak intensity for all three milling times. The intensity ratios of these 

peaks are presented in Table 6 and it is consistent with the increase in oxygen content after 

milling. Prominent among the other impurities were C, F, and Cl. While it was detected that the 

carbon content decreased with increased milling time, the F and Cl content increased upon 

milling for 40h, but decreased after 80h milling. This indicates that the impurities were not 
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distributed homogeneously in the powder, and the probes that were taken for analysis were not 

homogeneous; otherwise we should see the increase of the impurities content as time of milling 

increased.  
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Figure 19: Negative secondary ion mass spectrometry of ReB2 powders after 0.5h (a, d); 40h (b, 
e); and 80h (c, f) milling time. 
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Figure 20: Positive second ion mass spectrometry of ReB2 powders after 0.5h (a); 40h (b); and 
80h (c) milling time. 
 

Interestingly, hydrogen was detected in the powder after 30 minutes as well as after 

prolonged milling. The relative intensity of the H peak was the lowest after 30 minutes of milling 

and increased after longer milling. This could indicate the presence of water in the batch during 

milling. Positive secondary ions are more sensitive to detect metallic contaminations and they 

were used to detect metallic impurities present in Figure 20. Both Na and K were detected and 

their quantity increased upon increase in the milling time. However, their quantity was small 

after 80h of milling in comparison with 40h of milling time, which could be explained by the 
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non-homogeneous distribution of the elements in the batch. Co was also detected, as WC alloy 

contains Co as a soft binder in WC-Co cement composite. 

 
Table 6: Intensity ratio of impurities to boron SIMS peaks. 

Intensity Ratio 
Time, hour 

0.5 40 80 

Negative 

secondary 

ions 

BO/
10,11

B 9.6900 138.89 136.99 

BO2/
10,11

B 0.9414 91.743 125.00 

Re+O/Re+B 1.9547 4.9285 5.1546 

12
C/

10,11
B 7.9069 6.5309 4.3346 

19
F/

10,11
B 5.0478 143.95 78.667 

35,37
Cl/

10,11
B 0.2895 3.0687 2.1380 

1
H/

10,11
B 10.666 89.451 29.868 

Positive 

secondary 

ions 

16
O/

10,11
B 0.0007 0.0214 0.0016 

39,41
K/

10,11
B 0.0647 0.3678 0.0496 

59
Co/

10,11
B 0.0018 0.0208 0.0087 

23
Na/

10,11
B 0.0102 0.0441 0.0065 

 

4.1.4 Raman spectroscopy 

 

Raman spectra of ReB2 powders were acquired using two 532nm and 785nm lasers 

(Figure 21). Factor group analysis of ReB2 hexagonal structure results in 2 E1g and 2 E2g Raman 

active phonon modes, where E1g and E2g modes are reported as B-B pair atom vibrations in a-b 

plane of the unit cell as an “out-of-phase” vibrations with a calculated phonon energy of 85.2 
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MeV for E1g mode and 90.4 MeV for E2g mode 4. In the spectrum collected with IR 

frequencies, two bands are detected: one at 190 cm-1 and another at ~786 cm-1. In the spectrum 

collected using visible laser, two peaks at ~228cm-1 and 780 cm-1 wave numbers are also 

detected, but in addition two ~1400cm-1 and 1580cm-1 broad bands are present. These 1400cm-1 

and 1580cm-1 bands indicate the presence of carbon, which is explained by contamination of the 

ReB2 powders by milling. Due to the current experimental set up of the notch filter in the Invia 

spectrometer, only bands with wave numbers higher than 180 cm-1 could be detected.  
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Figure 21: Raman spectra of mechanically alloyed ReB2 powders after 80 hours of ball milling. 
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4.1.5 Reaction of powder ReB2 with O2 and H2O 

Upon storing ReB2 powder in air, packed in the plastic bag; it was found that the powders 

formed hard agglomerates. The XRD pattern of the long time stored powder is shown in Figure 

22. This may be due to a sequential attack by oxygen and water. Initially oxygen may react with 

the surface of ReB2 to form Re2O7 and B2O3 (Eq. 7).  

2ReB2 + 5O2  Re2O7 + B2O3                    (7) 

This reaction is thermodynamically favored with a heat of reaction of -1235.3 kJ/mol of 

ReB2. Not only is there a severe lattice mismatch between these oxides and the ReB2 compound 

but they quickly react with atmospheric water to form boric acid (Eq 8, -629.3 kJ/mol) and 

perrhenic acid (Eq. 9, -55.812 kJ/mol). 

B2O3 + 3H2O   2H3BO3                         (8) 

Re2O7 + H2O   2HReO4                           (9) 

The net reaction (Eq. 10) is enthalpically favored by -7.592 kJ/mol. [69], [70] 

2ReB2 + 4H2O   2H3BO3 + 2HReO4                       (10) 

These acids are hygroscopic and create a liquid layer that allows further degradation of 

the bulk material. In fact, storage of this material in air while in contact with nylon 6,6 results in 

holes in the nylon due to acidic degradation. Equations 7 through 10 suggest that applications of 

ReB2 will require exclusion of oxygen or water vapors since the reaction sequence cannot 

proceed without both. High surface area powders are more susceptible than solid billets. 
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Figure 22: X-ray diffraction patterns of ReB2 powder after 1 year storage in the plastic bag 
without any protective atmosphere. 

 

4.2 Osmium Diboride 

4.2.1 XRD 

 

In the earlier experiment, Os and B mixture was milled for 33 hours. It was found that a 

group of unknown XRD patterns existed apart from the identified OsB. It does not match with 

the given orthorhombic OsB2 pattern (PDF# 017-0370) but matches with the ReB2 pattern (PDF# 

00-011-0581) very well. It can be seen that Re and Os are adjacent in periodic table and their 
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atomic structures are very similar. Also, in the previous work ReB2 was mechanochemically 

synthesized by the same approach. It is possible that osmium diboride was formed, which has the 

same hexagonal structure with ReB2. Here we assume this phase is hexagonal OsB2.  

A new set of experiments were repeated. XRD patterns of powder mixture with different 

milling time were shown in Figure 23. It was found that the experiment was repeatable. OsB 

formed after the first 2 hours of milling, and very weak intensity of OsB2 was observed. After 6 

hours of milling, the intensity of Os decreased a lot and the major phase was OsB, OsB2 also 

show stronger intensity. When the mixture was milled by 14 hours, there was still some Os left, 

but it has a very weak intensity, while the OsB2 became the major phase. After that, it looks the 

intensity of OsB increased. However, that was because the XRD pattern of OsB and WC are 

almost overlapped. With the milling time increasing, more WC debris was chipped off from vial 

or balls. Besides, samples were taken every 2 hours made the ball to powder mass ratio increase, 

which lead to stronger collision between balls and vial, and created more WC debris. It can be 

seen that the 14 hour milled sample has high OsB2 concentration but less WC contamination.  
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Figure 23: XRD patterns of Os and B mixture at different milling time. 
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High resolution XRD was done on the 25-hour-milled sample. The XRD pattern was 

Rietveld refined and analyzed by GSAS+EXPGUI. [71,72] Figure 24 shows the refined XRD 

pattern. Lattice parameters were obtained from the Rietveld refined pattern. Table 7 listed the 

lattice parameters of the mechanochemically synthesized OsB2, ReB2 and the reported OsB2 

parameters (by theoretical calculation) [9]. It shows the lattice parameters of our synthesized 

OsB2 are very close to that of the ReB2, and also close to the simulated results. The unit cell of 

hexagonal and orthorhombic OsB2 were shown in Figure 25. 

 

Figure 24: Rietveld refinement XRD pattern of Os and B mixture milled for 25 hours. 
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Table 7: Lattice parameters of the mechanochemically synthesized OsB2, simulated OsB2 and 
ReB2. 
 

Lattice parameter data source a (Å) c (Å) c/a ratio 

synthesized 2.905 7.450 2.565 

ReB2 PDF#01-073-1392 [21] 2.900 7.478 2.579 

Theoretical calculation (GGA) 2.941 7.338 2.495 

 

 

Figure 25: Unit cells of hexagonal (a) and orthorhombic (b) OsB2. 
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4.2.2 SEM and EDX 

 

Figure 26 presents an SEM micrograph of the OsB2 powders after 14h of milling. A wide 

particle size distribution is observed. Most of the particles are smaller than 10 µm, while the 

largest agglomerate is about 30µm. Since the XRD pattern of the assumed hexagonal OsB2 

matched with that of the ReB2, EDX was applied in order to make sure that no contamination of 

Re in the mixture. The EDX result was shown in Figure 27. It can be seen that no Re detected. W 

is from the grinding media WC; C is from both WC and conductive carbon tape; and O existed 

due to the oxidization of B.  

 
Figure 26: SEM of Os and B mixture milled for 14 hours. 
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Figure 27: EDX of the Os and B mixture milled for 14 hours. 
 

4.2.3 TEM 

 

Along with morphology study of agglomerates by SEM, high resolution characterization 

of selected particles was performed using TEM. A typical particle of mechanochemically 
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synthesized OsB2 was shown in Figure 28. The particle size is about 0.4μm wide and 1μm long. 

It consists of a number of crystallites 5-10nm in diameter agglomerated together. The high 

resolution image was shown in Figure 29. The selected area electron diffraction pattern of the 

particle shows clearly defined diffraction spots in Figure 30. In those diffraction spots, spots B, 

C, D and E were the strongest. The distance of BE and CD were measured to be 4.8237 Å. Apply 

the Bragg's law,                                                                           (11) 

let wave length λ be 1.5418 Å for Cu Kα; d=1/2BE=1/2CD=2.4119 Å; when n=1, the 

corresponding characteristic peak position 2θ was found to be about 37.25°, which is very close 

to the XRD result 2θ=37.75° for the strongest peak. This confirms the particle observed is OsB2. 

 
Figure 28: Transmission electron micrograph of a particle of OsB2 powder. 
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Figure 29: Transmission electron micrograph of OsB2 lattice fringes. 
 

 
Figure 30: Electron diffraction pattern of OsB2 particle. 
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Figure 31 shows the XRD pattern of the sample after annealing. It can be seen that the 

crystallinity of each phase increased, but the hexagonal phase did not transform to orthorhombic 

phase, even though the hexagonal phase was predicted as metastable phase. 

  

Figure 31: XRD pattern of annealed Os and B mixture. 
 

An interesting phenomenon was observed when the author was washing the vials after 

milling. A lot of small bubbles came off from the inner wall of the vial. It is possible that the gas 

is hydrogen, which is formed by the reaction 

2B+6H2O=3H2+2B(OH)3                                                         (12) 
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It shows that boron powder became very reactive after milling, because boron does not react with 

water normally. Such reactive boron can also react with oxygen and water in the air. 

The phase transition of OsB2 from orthorhombic to hexagonal structure has not been 

experimentally found even if the pressure reached 32 GPa [9]. This is because the orthorhombic 

structure is already the most stable structure to OsB2. [18] Once the orthorhombic OsB2 is 

formed, it may be very hard to change it to hexagonal, the metastable phase. However, it is 

possible to reach the metastable state from the original state. Furthermore, Boldyrev reported that 

products produced by mechanochemical reactions may different from those of thermochemical 

ones for the same reactants. [73] It is also reported that ball milling is a good way to synthesize 

metastable phases, amorphous alloys and nanostructure compounds. [57] Ball milling creates 

shear force, which can cause the deformation in crystals easier than pure pressure. That is 

because shear changes the symmetry of a solid or molecule. The electronic structure of bonds in 

solids becomes unstable after the breaking of symmetry, which makes the solid tend to have 

chemical reaction. [54] Maybe that is why hexagonal OsB2 can be produced by ball milling. 

 

4.3 AlMgB14 

4.3.1 Experiment 1 

 

The XRD patterns of milled powders were shown in Figure 32. It shows no AlMgB14 was 

synthesized merely by ball milling. The powders are turning to be amorphous with the milling 

time increase.  
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Figure 32: XRD pattern of AlB2, MgB2, B mixture milled for 2h, 6h, 10h and 14h. 

 
Figure 33 shows the displacement versus temperature curve of the sample during 

sintering. It can be seen that with temperature and pressure increasing sample powders were 

densified, which lead to the displacement of the presser. When temperature is close to 1450 °C, 

the displacement becomes very small. That means the powders cannot be densified any more. 

The XRD pattern of the spark plasma sintered sample was shown in the Figure 34. The spinel 
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MgAl2O4 can be observed as the major phase from the pattern, and almost no AlMgB14 product 

was formed. The oxygen contamination is due to the mixture powder was exposed to air when 

filling the graphite dies or serious oxidization happened during milling. The other contamination 

is WC, which is due to the debris chipped from milling vials and milling media. 

 

Figure 33: Heating curve of the spark plasma sintering. 
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Figure 34: XRD patterns of the milled mixture powder after spark plasma sintering. 
 

4.3.2 Experiment 2 

 
The XRD patterns of the milled powders (with ball to powder mass ratio 4:1) were shown 

in Figure 35. The results were very similar to that of the first experiment: no AlMgB14 was 

observed and the mixture turned to be amorphous after milling. XRD pattern of the powder 
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milled with ball to powder mass ratio 10:1 was shown in Figure 36. It can be seen that the 

intensity of the elemental materials were weaker, and strong intensity of WC can be observed. 

Besides, a big crack was observed on the inner wall of a vial. It shows that increasing the ball to 

powder mass ratio cause damage to the vial, but no significant contribution on synthesis. The 

sintered sample also shows no AlMgB14 exist, and the major phase was the spinel MgAl2O4. 

After checking all the equipments, it was found that the oxidization happened in the milling step. 

The vibration during milling made the cap of the vial loosed somehow and not tight enough to 

prevent air going into the vial. This is why the ball milling step was given up in the later 

experiments. 

 

Figure 35: XRD patterns of Al, Mg and B mixture after milling (Ball to powder mass ratio 4:1). 
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Figure 36: XRD patterns of Al, Mg and B mixture after milling (Ball to powder mass ratio 10:1). 
 

4.3.3 Experiment 3 

 
XRD pattern of the sintered sample was shown in Figure 37. Although MgAl2O4 still 

exists, the major phase was AlMgB14. The first broad peak shows amorphous boron still exists. 

This is because the consumption of Al and Mg by oxidization and evaporation made boron left 

unreacted. Success of this experiment confirms the prediction that the oxidization happened 
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during milling in the first several experiments, but it is hard to detect MgAl2O4 by XRD since the 

mixture was amorphous after the milling step. 

 

Figure 37: XRD pattern of AlMgB14. 
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4.3.4 Experiment 4 

 
XRD patterns of the sintered samples were shown in Figure 38. Beside of the two phases 

usually observed AlMgB14 and MgAl2O4, the third phase AlMgB4 appeared in the sample 1, 4, 5 

and 6. The AlMgB4 was also found by Roberts et al. [48] in their synthesis of AlMgB14 by pulse 

electric current. It was found that the lower boride AlMgB4 is an intermediate product. The 

reaction  

7AlMgB4=2AlMgB14 +5Al+5Mg                                             (13) 

turns AlMgB4 to AlMgB14 when the temperature is high enough to allow this reaction happen. 

By comparing the result of Route 1 and Route 3, it can be seen that with the increasing of 

sintering time, the transformation rate of AlMgB4 to AlMgB14 increases. It shows that the longer 

sintering time can also make the AlMgB4 fully transformed to AlMgB14. However, by comparing 

the result of Route 1 and Route 2, we found that the excess magnesium used in the Route 2 result 

in no AlMgB4 left in the sample, and the intensity of AlMgB14 is much higher than MgAl2O4.  

This is because Mg evaporated during sintering, while the excess Mg compensated the loss of 

Mg. The evaporation of Mg produces a good Mg atmosphere around the sample to prevent the 

oxidization of Al and Mg in the sample. This explains why this approach yields samples with the 

highest quality. 

It shows that all the listed methods were able to produce AlMgB14, even though most of 

them were not fully reacted to form AlMgB14. It also confirmed that highly volatile pure Mg is 

better to be used instead of MgB2. [49] 
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Figure 38: XRD patterns of the powder produced by different routes in experiment 4. 
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CHAPTER 5: CONCLUSIONS 

 

The synthesis of ReB2, OsB2 and AlMgB14 has been studied in this thesis. We have 

shown that ReB2 powders can be synthesized mechanochemically from elemental crystalline Re 

and amorphous B powders in the stoichiometric 1:2 ratio.  A complete reaction was realized after 

70-80 hours of milling in a Spex-8000 high energy ball mill. By using this approach we have 

eliminated the need for excess boron reported by others. The synthesized powders were 

agglomerates of small crystallites as evidenced by SEM.  High resolution TEM showed that the 

material had a clear crystalline structure. The batch became contaminated both with WC-Co 

milling media during milling and with oxygen and hydrogen coming from the environment 

during selection of the intermediate samples for analysis. It is our expectation that powders free 

of excess of boron will facilitate a thorough understanding of the role composition on the 

hardness and elastic moduli of ReB2 ceramics. This is also a scalable solution that will ultimately 

allow larger quantities of this potentially useful material to be prepared. 

The hexagonal OsB2 has been synthesized by the mechanochemical method. The 1:3 

Os/B mixture powder was mill by Spex ball mill for a total of 33 hours. OsB2 starts formed after 

2 hours of milling. The lattice parameters of the hexagonal OsB2 are a=b=2.9047 Å, c=7.4500 Å; 

α=β=90°, γ=120°. The OsB2 particle was observed by TEM, and its electron diffraction pattern 

was obtained. The synthesized OsB2 powder was annealed at 1050°C for 6 days under vacuum 

atmosphere. No phase change was found. This shows the hexagonal OsB2 is very stable.  

The AlMgB14 was synthesized at 1050°C under normal pressure by different routes. It 

shows AlMgB14 cannot be synthesized merely by ball milling. Also, ball milling is not necessary 
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for the synthesis. The intermediate product AlMgB4 was found when the temperature is not high 

enough to turn AlMgB4 to AlMgB14. AlMgB14 can be synthesized based on AlB2 or MgB2, but 

the existence of Mg has positive effect to the synthesis. 
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